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SUMMARY

This thesis describes the development of a computationtladdased on the Euler
equations to predict the structure and dynamics of 3D udgtsheet cavitation as it
occurs on stationary hydrofoils, placed in a steady uniforiow.

Since the 1990s numerical methods based on the Euler or Natakes equations
have been developed to predict cavitating flows. Many ewstiavitation models
depend on empirical parameters for the production andw#tn of vapor. In this

thesis the equilibrium cavitation model is employed, whassumes local thermody-
namic and mechanical equilibrium in the two-phase flow negi®his model does
not depend on empirical constants for the modeling of ctiwita

From the experimental investigation of Foeth has become clear that the shed-
ding of a sheet cavity is governed by the direction and mouarerdf the re-entrant
and side-entrant jets and their impingement on the freasairdf the cavity. There-
fore, the accurate prediction of the re-entrant and sidexenjets is paramount for
an accurate prediction of the shedding of the sheet cawitgppears that these ef-
fects are inertia driven and it is expected that a numeriahod based on the Euler
equations is able to capture the phenomena associatedngitbagly sheet cavitation.

Due to the dynamics of sheet cavitation strong pressurepuee often generated,
originating from the collapse of shed vapor structures. @able to predict the dy-
namics of the pressure waves, in this thesis the fluid is densil as a compressible
medium by adopting appropriate equations of state for thediphase, the two-phase
mixture and the vapor phase of the fluid.

Sheet cavitation occurs on hydrofoils, on impellers of parapd on ship propellers.
To allow for the treatment of geometrically complex confafions and to have the

*The work of Foeth, “The Structure of Three-Dimensional $Bewitation”, thesis TU Delft (2008),
has been carried out within STW Project TSF.6170. The rebgavesented in the present thesis is part
of the same project.
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flexibility to efficiently refine grids locally in regions witcavitation, the numerical
method developed is an edge-based, finite-volume method. pildsent numerical
method can handle unstructured grids consisting of anyaypéements, i.e. quadri-
laterals and/or triangles in 2D and hexahedrons, pristtrahiedrons and/or pyramids
in 3D.

This research has been conducted in close collaboratidmtigtDepartment of Mar-
itime Technology at Delft University of Technology (DUT) here experiments have
been carried out for flows with cavitation. Within this cditaation a number of hy-
drofoil configurations have been designed employing thegarenumerical method.
These configurations have been tested in the cavitatioret@d®UT. In the present
thesis the main aspects of the dynamics of the vapor shedisasved on one of the
three-dimensional configurations, i.e. the 3D Twist11 bjail, are summarized and
utilized to validate the present numerical method.

The main interest in the formulation of the numerical metiso address the critical
aspects of the numerical simulation of the flow of a compbésdiuid over a wide
range of Mach numbers employing an arbitrary equation ¢&st@mphasis is on the
numerical solution of the low-Mach number flow and the foratigin of the boundary
conditions for the finite-volume method implemented for dgeebased unstructured
mesh.

Schmidt, in the group of Prof. Schnerr at TU Munich, has dgyed a Riemann-
based flux scheme implemented for a structured mesh. Thesrscperforms excel-
lently for low-Mach number flows without the necessity to pseconditioning. In
collaboration with Schmidt and Prof. Schnerr, this flux snbdéas been implemented
in the present edge-based numerical method for unstructurds. Second-order ac-
curacy is obtained by employing the limiter of Venkatakniah.

In the present research the formulation for the non-refledti- and outflow bound-
ary conditions for the Euler equations, as proposed by Tlsompor the ideal gas
equation of state, have been generalized for an arbitrargteom of state. Further-
more, the solid wall boundary conditions at the surface effiadrofoil are treated
by the specially designed Curvature Corrected Symmetriariigoe.

Several test cases for single-phase water flow have beeedaut to assess the
performance of the numerical method. The one-dimensiohatér Hammer” prob-
lem and a “Riemann problem for liquid flow” have been consdem order to
demonstrate the wave-capturing ability of the numericathoe. The low-Mach
number flow over a two-dimensional cylinder is calculatedlltstrate the capabil-
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ity of the present method to accurately calculate steaahgstsults for these flows
without the use of preconditioning methods. The numeriesililts for the flow about
two-dimensional NACA sections illustrate the second-omlecuracy of the present
method. Furthermore, itis demonstrated that hybrid mestesisting of multiple el-
ement types can be used allowing efficient grid refinememsiecto the surface of the
hydrofoil. The single-phase water flow over the three-digi@mal Twist11 hydrofoil
is presented to validate the numerical method with experiadgesults. It is found
that the pressure distribution on the foil is accuratehdfmted. The lift coefficient is
predicted to within 2% of the experimentally obtained value

For cavitating flow, the one-dimensional “Closing Valvestease and the “Two-
Rarefaction waves” test case are considered, which denatmshe convergence and
stability of the developed numerical method. Subsequemrbults for cavitating flow
about two-dimensional hydrofoils are presented. It is shtwat the re-entrant jet,
the shedding of the sheet cavity, the collapse of the shearwdgud and the periodic
nature of the shedding are captured by the present numeretabd.

The three-dimensional unsteady cavitating flow about thel@i3t1l1 hydrofoil is
calculated. It is shown that the formation of the re-entfémiv and of a cavitat-
ing horse-shoe vortex are captured by the present numenigiilod. The calculated
results are quite similar to the experimental observatidiewever, at present the
computational time is too long to numerically investigdie tinsteady periodic shed-
ding of the sheet cavity on three-dimensional configuratimm long enough times.

In addition, the steady cavitating flow about the geomdtyicmore complex 3D

Elliptic 11 Rake finite-span hydrofoil is simulated to shdve tcapability of the nu-
merical method to predict sheet cavitation on a complexetisienensional geometry.
It is found that the predicted shape of the sheet cavity spomeds well with the ex-
perimental results. However, the cavitation in the gererdipp vortex observed in
the experiment is not captured in much detail, primarily thusumerical dissipation
in the highly rotational flow in the vortex core.

Finally, within the scope of the present research non-gxgjisim models for cavita-
tion have been investigated as well. For this the conveatiapproach is adopted in
which it is assumed that the liquid and vapor phase have damrdensity. To solve
the governing equations for this model, we have applied 8eflux scheme com-
bined with the pre-conditioning method of Weiss & Smith. Sodifficulties were
encountered with the JST scheme as well as drawbacks of tivertmonal cavita-
tion models. It is recommended to carry out more researchtive non-equilibrium
models aimed at obtaining satisfactory results.
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Dit proefschrift beschrijft de ontwikkeling van een rekegtiode gebaseerd op de
Euler vergelijkingen voor het voorspellen van de strucemiidynamica van 3D, in-
stationaire vliescavitatie zoals voorkomt op een statrertaydrofoil geplaatst in een
stationaire, uniforme aanstroming.

Om het gedrag van caviterende stromingen te voorspellensiids de jaren 90
numerieke methoden ontwikkeld gebaseerd op de Euler eneN8tokes verge-
lijkingen. Veel bestaande modellen voor caviterende stigem zijn afthankelijk van
empirische parameters voor de produktie en destructie aerdamp. In dit proef-
schrift wordt het equilibrium cavitatie model beschouwdann lokaal thermisch en
mechanisch evenwicht wordt verondersteld. Dit model i$ afkankelijk van em-
pirische constanten voor het modelleren van cavitatie.

Zoals gevonden in het experimentele onderzoek van Fegitdt het afschudden van
een vliescaviteit bepaald door de richting en momentum \are-gntranten side-
entrant jetsen hun botsing met het vrije oppervlak van het vlies. Om dedem is de
nauwkeurige voorspelling van de-entranten side-entrant jeteen kritische factor
in een nauwkeurige voorspelling van het afschud-gedragdeaviiescaviteit. Om-
dat deze effekten gedreven worden door inertia, is aangematat een numerieke
methode gebaseerd op de Euler vergelijkingen de fenomeeeoptteden bij vli-
escavitatie kan voorspellen.

De dynamica van vliescavitatie gaat vaak gepaard met stievkepulsen, die ontstaan
door het ineen klappen van afgeschudde damp strukturen. @golf-dynamica
van deze druk pulsen te kunnen voorspellen, wordt in ditfpobeift de vloeistof
beschouwd als een samendrukbaar medium. Hiertoe zijn igestbestandsverge-
liijkingen voor de water fase, het twee-fase mengsel en dgpdase gekozen.

THet werk van Foeth, "The Structure of Three-Dimensionale$i@avitation”, proefschrift TUD
(2008), is verricht binnen het STW Project TSF.6170. Hetearmkk gepresenteerd in het huidige
proefschrift maakt deel uit van hetzelfde projekt.
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Vliescavitatie komt voor op hydrofoils, op impellers vannmeen en op scheeps-
schroeven. Om geometrisch complexe configuraties te kutoemekenen en om de
flexibiliteit te behouden om efficient het rekenrooster ke verfijnen in gebieden
met cavitatie, is eerdge-basedeindige-volume methode ontwikkeld. De huidige
rekenmethode kan de caviterende stroming berekenen ogtouigereerde roosters
die bestaan uit verschillende typen elementen, namekjiheeken en/of driehoeken
in 2D en kubussen, prisma’s, tetraeders en/of pyramide®in 3

Dit onderzoek is uitgevoerd in nauwe samenwerking met deliafyl Maritieme
Techniek van de Technische Universiteit Delft (TUD), wasperimenten zijn uit-
gevoerd aan caviterende stromingen. Binnen deze samengezin een aantal
hydrofoil-configuraties ontworpen met de huidige numegiekethode. Deze confi-
guraties zijn getest in de cavitatie tunnel van TUD. De bgligke aspecten van de
dynamica van de vliescaviteit, zoals waargenomen op eedeaie-dimensionale
configuraties, namelijk de 3D Twist hydrofoil, zijn in ditgefschrift samengevat en
gebruikt om de ontwikkelde numerieke methode te valideren.

Het belangrijkste aspect in de formulering van de numeriglethode is het nu-
merieke schema voor de stroming van een samendrukbareteipever een groot
bereik van het Mach getal, beschreven door een willeketdgstandsvergelijking.
De nadruk ligt op de nauwkeurigheid van het numerieke schimjfege Mach getallen
en op de formulering van de randvoorwaarden voor de eindijgne methode
geimplementeerd voor eenlge-basedngestruktureerd rekenrooster.

Schmidt, in de afdeling van Prof. Schnerr aan de TU Muncheeftieen flux schema
ontwikkeld voor laag-Mach getal stroming. Dit flux schemagebaseerd op de
oplossing van het Riemann probleem en maakt geen gebruigreaonditionerings-
methoden. Schmidt heeft zijn flux schema geimplementeeegm numerieke meth-
ode voor gestruktureerde rekenroosters.Rdémann-basetlux schema is in samen-
werking met Schmidt en Prof. Schnerr geimplementeerd ihudéige edge-based
numerieke methode voor ongestruktureerde rekenroosters.

In het huidige onderzoek zijn de niet-reflecterende in- étrgiom randvoorwaarden
voor de Euler vergelijkingen, zoals geformuleerd door Theam voor de toestands-
vergelijking voor een ideaal gas, gegeneralizeerd voorvabekeurige toestands-
vergelijking. Verder zijn de vaste wand randvoorwaarderhepopperviak van de
hydrofoil opgelegd met de speciaal ontworgeuarvature Corrected Symmettgch-
niek.
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Om de prestatie van de numerieke methode te bepalen zijchieade test gevallen
voor de één-fase stroming van water uitgevoerd. Aan dd tiamhet één-dimensionale
“Water hamer” probleem en een “Riemann probleem voor viok&roming” is
gedemonstreerd dat de ontwikkelde numerieke methode Hiekamakter van de
oplossing nauwkeurig representeert. De twee-dimengosi@bming rondom een
cirkel-cylinder bij een laag Mach getal is berekend om tgsiteren dat de huidige
numerieke methode zo’'n stroming nauwkeurig kan berekearder preconditione-
rings methoden te gebruiken. De numerieke resultaten vedwde-dimensionale
stroming rond NACA secties illustreren de tweede-orde r@unigheid van de hui-
dige methode. Verder is gedemonstreerd dat hybride re&stens bestaande uit
meerdere element typen gebruikt kunnen worden, waardaagekenrooster viakbij
het oppervlak van de hydrofoil efficient verfijnd kan worddbe één-fase stroming
van water over de drie-dimensionale Twist11 hydrofoil isskend om de numerieke
methode te valideren met experimentele resultaten. Deviiudeling op de vleugel
wordt nauwkeurig voorspeld. De voorspelde lift coefficiégt binnen 2% van de
experimenteel gevonden waarde.

Voor stromingen met cavitatie zijn het één-dimensiori@liosing Valvétest geval en
het “twee expansie golven” test probleem beschouwd. Dédtadsn laten de conver-
gentie en stabiliteit van de ontwikkelde numerieke methoee. Vervolgens worden
de resultaten voor de caviterende stroming rond twee-difarale hydrofoil-secties
gepresenteerd. De resultaten laten zien dat de huidige rrekmanethode dee-
entrant jet het afschudden van de vliescaviteit, het ineen klappengaigeschudde
bellen-wolk en het periodieke gedrag, voorspelt.

De instationaire caviterende stroming rond de 3D Twistldrbfpil is berekend. De
resultaten van de numerieke methode laten zien dat de dlivig van dee-entrant
flowen de vorming van een caviterertagrse-shoavervel voorspeld kunnen worden.
De berekende resultaten komen overeen met de experimebsaevaties. Echter, op
dit moment is de benodigde rekentijd te lang om de instaitierzeriodieke afschud-
ding van de vliescaviteit op drie-dimensionale configesatang genoeg numeriek te
onderzoeken.

Vervolgens is de stationaire caviterende stroming rondedrgetrisch complexe 3D
Elliptic 11 Rake vleugel met eindige spanwijdte berekendi®@ulemonstreren dat de
huidige methode de vliescaviteit kan voorspellen op eerptexe drie-dimensionale

configuratie. De voorspelde vorm van de vliescaviteit kowédyovereen met die
gevonden in de experimenten. Echter, de resolutie van deslipel is ontoereikend

om tip-wervel cavitatie te voorspellen. Dit is hoofdzajkelianwege numerieke dis-
sipatie in de grote gradienten van de oplossing in de kerrdeamervel.
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Binnen het trajekt van het huidige onderzoek zijn ook nietrsvichts modellen voor

cavitatie onderzocht. Hierbij is de gebruikelijke aanpakajgd door aan te nemen
dat de dichtheid van zowel de vloeistof- als de dampfasetannzijn. Om de verge-

lijkingen voor dit model op te lossen, is het JST flux schenegépast in combinatie
met de preconditionings-methode van Weiss & Smith. Tekonikgen van het JST
schema in combinatie met cavitatie zijn gevonden alsmeé#elenekortkomingen

van de conventionele modellen voor cavitatie. Meer ondszmar niet-evenwichts
modellen is noodzakelijk om tot bevredigende resultatémiren.
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INTRODUCTION

1.1 Introduction to numerical simulation of sheet cavitaton

Cavitation is the evaporation of a liquid in a flow when theggee drops below the
saturation pressure of that liquid. The importance of ustdeding cavitating flows

is related to their occurrence in various technical appboa, such as pumps, tur-
bines, ship propellers and fuel injection systems, as vedi anedical sciences such
as lithotripsy treatment and the flow through artificial heaives. Cavitation does
not occur in water only, but in any kind of liquid such as liginydrogen and oxygen
in rocket pumps or the lubricant in a bearing. The appearandedisappearance of
regions with vapor is a major cause of noise, vibration, ieroand efficacy loss in

hydraulic machinery. In many technical applications cidgh is hardly avoidable

at all operating conditions. When it occurs it needs to bdrodad. Therefore, one

needs detailed insight in the mechanisms that govern ttiaiam phenomena.

There are several types of cavitation. Distinct appeasanfeavitation are: sheet
cavitation, bubble cavitation and vortex cavitation. Thesgnt thesis concerns the
dynamics and structure of sheet cavitation. Sheet caitaiccurs on hydrofoils,
on blades of pumps and propellers, specifically when theingaid high. This type
of cavitation can usually not be avoided, because of higlcieffcy requirements.
The dynamics of sheet cavitation often generates strorgspre fluctuations due to
the collapse of shed vapor structures, which might leaddsien of surface material.

Sheet cavitation is often called “fully-developed”, “atteed” or “blade” cavitation.
They are all terms for the same large-scale cavitation tsireic There are a number
of closely related important aspects to sheet cavitation:

e Shape and volume of the cavity. The topology of a sheet cawistrongly
related to the load distribution of the lifting object andishto the pressure
distribution on the object in the flow. Variations in volumause pressure fluc-
tuations in the liquid that might lead to strong vibratiorisiearby structures.




2 CHAPTER 1. INTRODUCTION

FIGURE 1.1: Sheet cavitation on 2D hydrofoil. Photo taken by Foeth.

e Re-entrant flow at the closure region of sheet cavity. Thenteant and side-
entrant flow dictate the behavior of the shedding of the galieet. The shape
of the closure region of the cavity sheet dictates the doratf the re-entrant
and side-entrant jets.

e Shedding and collapse of vapor structures. The break-up stfeat cavity
causes a vortical flow of bubbly vapor clouds to be conveataggions with
higher pressure. Here, these clouds collapse resultingangspressure pulses
leading to unsteady loads of nearby objects as well as nem#uption and
possible erosion of surface material.

Since the 1990s numerical methods using the Euler or N&ti@tes equations have
been developed to simulate cavitating flows. The developwiahese methods has
been advancing quickly in recent years, but they are stilsitiered to be in a de-
veloping stage. The main problem in the numerical simutatibmulti-dimensional
unsteady cavitating flow is the simultaneous treatment ofwery different flow re-
gions: (nearly) incompressible flow of pure liquid in mosttioé flow domain and
low-velocity highly compressible flow of (pure) vapor inaélely small parts of the
flow domain. In addition, the two flow regimes can often not iguished that
clearly, for example in the transition region between vaput liquid, i.e. the mixture
region of liquid and vapor.

Furthermore, unsteady three-dimensional cavitating flalewations require sub-
stantial computer resources both in terms of memory anddsp&lso, meshes with
appropriate high-resolution mesh density in the cavitpfiow region are necessary.

In the present research a numerical method for solving ther Eguations for 3D
unsteady cavitating flow is developed. The accurate predicf the direction and
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momentum of the re-entrant and side-entrant jets and timgiingement on the cav-
ity surface form the indispensable basis of an accurataqiieudl of the shedding of
the cavity sheet. The direction and momentum of the re-enjets are all thought
to be inertia driven, so it is expected that a mathematicalehbased on the Euler
equations is able to capture the major structure of shedataw.

1.2 Brief history on cavitation research

Research on cavitation dates back to the days of Euler (Wbd)observed the oc-
currence of cavitation in high speed water flow during higligtsion rotating flow ma-
chinery. The word cavitation has been introduced by Froude described the voids
filled with vapor as cavities [191]. In 1895 Parsson was arsbtitg first to observe
the negative effects of cavitation on the performance ofipa gropeller [112, 196].

He was the first to build a cavitation tunnel to investigate pinoblems due to cav-
itation experienced on the propeller on the shigbinia. The cavitation number
o= % was introduced by Thoma in 1923 [74, 112] in the context ofekyger-

2P0

imental investigation on water turbines and pumps.

In order to study the physical aspects of cavitation mangearents have been car-
ried out throughout the years. Theoretical and numericatagehes followed soon
with two main areas of research [74]: bubble dynamics aneéldped- or supercavi-
ties.

A large body of work has been published on bubble dynamicsmaftion, amongst
many others, Rayleigh (1917) [134] and Plesset (1949) [B£@r whom the Rayleigh-
Plesset equation is named which describes the temporalterobf the radius of a
vapor bubble in an incompressible, viscous liquid. Thewah is driven by effects
of pressure variations and surface tension.

The field of developed cavities started more than a centwyeg. Helmholz (1868)
[89, 112] and Kirchhoff (1869) [24, 111], with the work on é&streamline theory or
wake theory by using conformal mapping techniques or thelimear hodograph

technique. Birkhoff & Zarantello [24] described the hodagjn technique in detail,
see also Wu [222]. Wu points out that this theory can only leelder cavitating flow

around simple geometries like bluff bodies and flat plates,dan not be used for
cavitating flow around arbitrary bodies like hydrofoils aopeller blades. In 1953
Tulin [29, 197] applied linearization procedures to thelppeon of the flow about a
supercavitating symmetric profile at zero angle of attaakzaro cavitation number.
Since then many researchers have extended the linear tloeftows around arbitrary
bodies at any cavitation number.
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The introduction of computers in the 1970s brought aboutgelaumber of numer-
ical methods based on linear theory, which has been extaiodimee-dimensional
flow problems by the use of lifting surface theory. Most tiffisurface theory meth-
ods deal with sheet cavitation by imposing a transpiratyge ©f (linearized) bound-
ary condition on the solid surface below the sheet cavitye @ativantages of lifting
surface methods are their short computation times, erpfdst assessment and im-
provement of designs. The drawback of linear theory is thiapértial cavity flows
around hydrofoils it predicts that the length and volume cdaty will increase when
the thickness of the hydrofoil is increased, which contredexperimental observa-
tions. Also for unsteady sheet cavitation the dynamic nmotiba sheet cavity is not
predicted [50] and linearized theory has a limited abili@ydescribe complex flows
with enough accuracy [3].

Boundary element methods (also referred to as boundargraitemethods or panel
methods) provided the possibility to consider the flow algmametrically complex
bodies and to treat the full non-linear boundary conditionghe sheet cavity inter-
face. These methods are based on the potential flow hypsthesvhich the cavity
interface is represented by a streamline of constant pesdthe cavity surface is
iterated until both the kinematic and the dynamic boundamddion are satisfied
at the cavity surface [50, 206]. However, this model for tating flow requires an
artificial closure model for the cavity detachment pointmiee leading edge and
one at the end of the cavity sheet. Uhlman [203] (1987) wasnastathe first to
solve a partial cavity flow on two-dimensional hydrofoilse Dange [55] introduced
a method for the unsteady two-dimensional flow coupled to-aenteant jet cavity
closure model. Dang & Kuiper [51] and Dang [50] extended thithod to steady
cavitating flow about three dimensional hydrofoils. Nowgglahese methods have
become well established due to their matured stage andabidiity to predict fully
three-dimensional unsteady cavitating flows, e.g. Kindd9] and Vaz [206]. How-
ever, it remains difficult to predict the detachment and wlesof the sheet cavity,
which have a strong influence on the topology and dynamidseo$heet cavity. Fur-
thermore, these methods are difficult to extend to more cexqghysical phenomena
such as the shedding of the sheet cavity and vorticity-datadhflow such as the tip
vortex cavitation. The tracking of the liquid-vapor inteté becomes a challenging
task, because of splitting and merging of the main vapocsiras and very fast va-
porization and condensation phenomena.

A different approach to simulate cavitating flows emergedhim 1990s. Methods
using the Euler or Navier-Stokes equations were developgethier with a transport
equation for the void fraction, with two-phase flow equasi@n with other cavitation
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closure model equations. As classified by the 22nd ITTC speommittee in 1999
[3] these approaches can be grouped into a number of cagsgajilnterface tracking
methods 2) Volume of Fluid methods 3) Discrete bubble metteoal 4) Two-phase
flow methods. These methods are discussed in chapter 3. tthausted that the
distinction between some of these groups is not always aelpl clear and that
combinations of the categories are used by different astlaurthermore, numerical
methods exist which use a combination of the lifting surfacdooundary element
method together with a method based on the Euler or NavakeStequations.

1.3 Obijective of present research

The overall objective of the project is to determine a modeltfie description of the
dynamics of three-dimensional sheet cavitation as it acoarhydrofoils. The aim
of this thesis is to develop a numerical method employingBhker equations for
3D unsteady flow for simulating cavitating flows. The numarimethod features the
following aspects:

e Three-dimensionality. The configurations with cavitatitogv to be considered
are three-dimensional or display a three-dimensional flaviure applications
may include flows in pumps and the flow about ship propellers.

e Compressibility. In unsteady cavitating flows strong puessvaves are gen-
erated. These waves have a strong impact on the cavitatiensity, i.e. on
erosion damage. Therefore, it is necessary to treat the gyaamics quanti-
tatively correct, especially in the liquid phase.

e Unsteady flow conditions. Cavitating flows feature highlsteady flow be-
havior, even under uniform inflow conditions.

e Low-Mach number flows. Numerical methods for density-baded models
are known to experience difficulties for low-Mach number floenditions. In
industrial applications the flow speeds of water are low wébkpect to the
speed of sound in water. Therefore, a proper treatment afidheerical flux
schemes is essential to simulate these low-Mach number.flows

e Unsteady in- and outflow boundary conditions. Constantsumresboundary
conditions have a strong impact on cavitation dynamicsthmiyt are very rare
in experimental and industrial applications. Togethehilie self-excited peri-
odic oscillations in the unsteady cavitating flow regime, diccurate treatment
of non-reflective unsteady in- and outflow boundary condgis essential.
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e Edge-based finite volume method. Unstructured grids altmvtteatment of
geometrically complex configurations and the flexibility @fficiently refine
grids locally.

In this thesis the equilibrium cavitation model for caviitat flows is implemented
into an edge-based finite-volume method for three-dimaasiansteady, compress-
ible flow. The main questions to be addressed are:

e Can the dynamics and structure of three-dimensional slee@ation be pre-
dicted?

e Can the re-entrant jet be predicted?
¢ Is the shedding of the cavity sheet captured correctly?
e Can the collapse of the shed vapor structures be predicted?

e Can the unsteady loads on objects in the flow and the unsteadgyre wave
dynamics be calculated?

The present research has been conducted in the frameworkSeWa project in
close cooperation with the Department of Maritime Techgglat Delft University
of Technology. Foeth [67] has carried out experiments feady and unsteady in-
flow conditions in the Delft cavitation tunnel for three-adnsional sheet cavities.
His main objectives were:

e to provide a better insight in the physical mechanisms oflijremics of sheet
cavitation.

¢ to provide a detailed and accurate database of benchmaskioeshe valida-
tion of computational methods.

Within the collaborative research project various hyditofometries have been
designed and tested in the cavitation tunnel. These coafigus include the 3D
Twistl1 hydrofoil and the Twisted Eppler hydrofoil, see iost al [113], Foethet
al. [67, 69] and appendix D.

1.4 Outline of thesis

Chapter 2 provides an overview on the physical aspects eft sfawitation as it oc-
curs on a hydrofoil. In some detail we discuss the dynamitsetheet cavity on the
3D Twistl1l hydrofoil as found by Foeth [67] in his experim&nThe importance of
the three-dimensionality of the shape of the cavity and ttection of the re-entrant
jet is explained followed by the description of the physiaspects of phase change
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of water.

Chapter 3 provides an overview on the mathematical modelsdaidtation. An in-
ventory of existing models is given followed by the desdoiptof the equilibrium
cavitation model chosen for the implementation in the nicaémethod. Further-
more, the homogeneous mixture equations are derived andgjgie equations of
state for compressible liquid flows are discussed.

Chapter 4 presents an overview of numerical methods basétedauler equations
for compressible flows. The focus is to address the critispkats of simulating the
flow of a compressible fluid within a wide range of Mach numberdluids with an
arbitrary equation of state employing an unstructured dxged finite-volume com-
putational mesh. The treatment of the boundary conditisronsidered in detail.
In the present work the treatment of Thompson [190] usingdbel gas law as the
equation of state, is generalized for an arbitrary equaifiate.

In chapter 5 numerical solutions for compressible sindlase water flow are con-
sidered. The one-dimensional “Water Hammer” and “Riemammblpm for liquid”
are test cases considered to demonstrate the wave-cgpalnility of the numerical
method. The low-Mach number flow over a two-dimensionalredgr is calculated to
illustrate the capability to calculate steady-state lowek number flows. To assess
the performance and the order of convergence of the nunheretaod the water flow
about two-dimensional NACA sections is considered. Thgleiphase water flow
over the three-dimensional Twistll hydrofoil is presenteslalidate the numerical
method using the experimental results of Foeth [67].

In chapter 6 results of numerical simulations for cavitgfilows are presented. First,
one-dimensional test cases are considered to assess tteegemte and stability of
the numerical method for cavitating flows. Then, the resafitthe two-dimensional
test case of Sauer [162] about a 2D NACA 0016%éngle of attack are presented to
verify the results of the numerical method. The cavitatiogvfabout the 3D Twist11
hydrofoil is calculated to compare the results with the expents of Foeth [67]. The
formation of the re-entrant flow and the formation of a cdintahorse-shoe vortex
are discussed. Lastly, the steady-state cavitating flowtabbe 3D Elliptic 11 Rake
hydrofoil is simulated to illustrate the capability of theepent edge-based numerical
method to predict the cavitation pattern occurring in the/fdbout a complex geom-
etry in comparison to the experimental results of Van dertHzo4].

The conclusions and discussion of the present thesis armufated in chapter 7 and
recommendations for future research are given.







PHYSICAL ASPECTS OF
SHEET CAVITATION

In this chapter the physical aspects of sheet cavitationliamissed. First, an intro-
duction to the types of cavitation is presented and reledanensionless numbers
are introduced. Then, the physical aspects of sheet dawitah the 3D Twist11 hy-

drofoil are described. In the discussion emphasis is giwe¢hd three-dimensionality
and the dynamics of the sheet cavity. Finally, the phasegghafiwater is discussed.

2.1 Types of cavitation

When the phase change occurs in flowing liquids, e.g. a deerefithe pressure
below the saturation pressure due to an expansion of the fiddspeak of hydro-
dynamic cavitation. On the other hand, acoustic cavitati@y occur in a quiescent
or nearly quiescent liquid. When an oscillating pressurd feeenforced on a liquid
medium, cavitation bubbles may appear within the liquid mkiee oscillation am-
plitude is large enough. Naturally, hydrodynamic cavitatand acoustic cavitation
may occur at the same time.

Cavitation can take different forms as it develops from itseption. In case the
pressure is mostly above the saturation pressure, cawititistrongly dependent on
the basic non-cavitating or fully-wetted flow. As cavitatidevelops, the vapor struc-
tures disturb and modify the flow and a new often unsteady flatem evolves.
Cavitation patterns can be divided into different groupq{7

e Bubble or “traveling” cavitation. Bubbles may appear inioeg of low pres-
sure and low pressure gradients as a result of the rapid lgrofvsmall air
nuclei present in the liquid. The bubbles are carried alopghle flow and
disappear when they enter a region with higher pressure.

e Attached or sheet cavitation. When a low pressure regioariadd near the
leading edge of a streamlined object in the flow, the liquid/fteparates from
the surface and a pocket of vapor is formed.




10 CHAPTER 2. PHYSICAL ASPECTS OFSHEET CAVITATION

e Cloud cavitation. When a vapor sheet detaches from thecsuafad is advected
with the flow, a region with a large number of vapor structusgermed. This
region is usually called cloud cavitation, although it detssof a vortical flow
region with many vapor bubbles. This type is usually erogmen collapsing
near a surface.

e \ortex cavitation. In the low-pressure core of vorticesphessure may be low
enough for cavitation to occur. This type of cavitation iteaffound at the tip
of lifting surfaces and is therefore also denoted by tipasortavitation.

e Shear cavitation. In regions with high shear vorticity isguced. As a re-
sult coherent rotational structures are formed and thespredevel drops in
the core of the vortices, which become potential sites faitaton. Flow sit-
uations with shear cavitation can be found in wakes, subedejgts at high
Reynolds number and separated flow regions which developitnat large
angles of attack.

For an overview of bubble cavitation see Brennen [29], fattigal cavitation see
Arndt [15] and for sheet cavitation see Franc [70, 74].

FIGURE 2.1 Cavitation patterns (a) Traveling bubble cavitation (b)ta&hed or
sheet cavitation (c) Tip vortex cavitation (d) Shear cauita. Taken from Franc
[71].
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2.2 Dimensionless numbers

To facilitate the discussion in this chapter and further rotthie thesis, relevant di-
mensionless numbers are introduced.

2.2.1 Cavitation numbero

The dimensionless cavitation numbewas introduced by Thoma, see Knapp [112].
The number is a measure for the sensitivity of the flow fortedizin to occur and is
useful to facilitate the comparison of results of experiteeand numerical simula-
tions. The cavitation number is defined as:

o= Poo Peatll) psag(T), (2.1)
ipOOUoo
wherep,, [Pa)], poo [kgm ™3] and U, [ms~!] are the free-stream pressure, free-
stream density and free-stream velocity, respectivelg,valnerep,,.(7") is the satu-
ration pressure of water at temperatdif¢ K]. Note that a higher cavitation number
indicates that the pressure in the flow must decrease mooeebedvitation occurs.
A smaller cavitation number indicates that a smaller des@apressure causes cav-
itation. Thus, a low cavitation number corresponds to a Biggteptibility for cavi-
tation.

2.2.2 Void fraction «
The void fractiona within a volumeV [m?] of a fluid follows from the fluid density

p= apv,sat(T) +(1—a) pl,sat(T) as

a= E _ p - pl,sat(T) (22)

Vo Pu,sat (T) - pl,sat(T)’

whereV, [m?] is the volume of vapor within the volumg of the fluid and where
pusat(T) [kgm ™3] and p; sa:(T) [kgm 3] are the saturated vapor and liquid density
at temperaturd’, respectively.

Experimentally, it is very difficult to determine the voidafition at any location in
the flow. Numerically, the void fraction is used for visualipn and analysis pur-
poses. Employing the equilibrium cavitation model the duteation of the void

fraction is just a post-processing step evaluating equndf#®).

2.2.3 Reynolds numberRke

The Reynolds number is the ratio of inertial forces to viscfmrces and thus it quan-
tifies the relative importance of these two type of forceegithe flow conditions.
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The Reynolds numbefe is defined as:

_ PocUsc L UL

Hoo Voo

Re (2.3)

wherep, is the density of the fluid{/,, a characteristic velocity of the flow, a
characteristic length scalen], 1., the dynamic fluid viscosity Pas], andv,, =
lhoo/Poo IS the kinematic fluid viscosityith?s~!]. The flow about a hydrofoil of
chord lengthc = 0.15m of pure watet at saturation pressure and at a velocity of
Uso = 10-50ms~! has a Reynolds number within the rangelef= 1.5-7.5<106.
The thicknesses and ¢ of a fully developed laminar and turbulent boundary layer
above a flat plate of length can be estimated to be equal to [176]

0.370

= or _
o Rex

, (2.4)

SHESS
ot
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respectively, withRe, = pUx/u. Consider a hydrofoil of chord length 0.if for
water the laminar and turbulent boundary layer thicknessbeafound equal t6 =
6.1x107%* m andd = 3.2x 1073 m, respectively, illustrating the thin boundary
layers in a water flow. Furthermore, Franc & Michel mentioattthe influence of
the Reynolds number on cavitation is not significant, seelatsapp [112]. In section
2.3.4 the role of viscosity is explained in more detalil.

2.2.4 Strouhal number St

The Strouhal numbe$t is employed to quantify the oscillating frequency in undiea
flows. For cavitating flows the Strouhal numlfris defined by:

_ I
St= 7 (2.5)

where f [ Hz] is the cavity shedding frequenc§js the mean cavity lengthaf] and
U Is the free stream velocity. Often, it is difficult to accwigtobtain a mean cavity
length for unsteady cavitation. So, for convenience we dedirdifferent Strouhal
numberSt. based on the chord lengthof the foil instead of on the mean cavity
length:

St = 5_‘3 (2.6)

*The dynamic viscosities of vapor and watefat= 293 K and saturation pressurg = psq:(T) =
2.3 x 10% Pa, are equal top, = 9.72x 10~% Pas andu; = 1.0053 x 10~% Pas, respectively [1].
The corresponding kinematic viscosities= 1/p of vapor and water are equal t@, = 5.67 x10™*
mZs~tandy, = 1.01x107% m%s~!. Note that atl’ = 293 K andp = 2.3 x 10® Pa the vapor
and liquid density are equal tp, = 0.017 kgm > andp; = 998.19 kgm ™3 [1], respectively. The
dynamic viscosity,; of water atT = 293K andp = 10° Pa is equal top; = 1.0053 x 10~2 Pas.
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2.2.5 Pressure coefficient’,, lift and drag coefficients

The dimensionless pressure coefficiehtis defined as

P — P
C, = , (2.7)
P %PooUgo
with p the local pressure in the flow field, and whexg, p., andU,, are the free-
stream pressure, the free-stream density and the frem¥sirelocity, respectively. In
the following we usually employ the C,, coefficient.

Neglecting skin friction, the drag and lift forces can beadbéed from

F = / pids, (2.8)
S

with S surface of the objecp the pressure on the surface of the object drkle unit
normal pointing into the object, i.e. out of the computasibdomain. In 2D we will
use lower-case symbols, i.e.

f= / pidC, (2.9)
C

with C' the closed curve of the object. For two-dimensional flow &alad2D geometry
the lift force ¢ per unit length in span-wise direction is equal to the conepbrof
£ in the direction normal to the free-stream, which in our cesg,. For three-
dimensional flow the lift force. is equal toF,. The drag forcel per unit length in
span-wise direction and the drag forbeare equal tof,, and £, for two-dimensional
or three-dimensional flow, respectively. The dimensianlds C;,, ¢; and dragCp,
cq coefficients are defined as

L L
Cr=——, =, 2.10
L %pOOUgOS q %pooUgOC ( )

D d
Cp=———, =, 2.11
D %pooUgoS Cd %pooUgOC ( )

whereS is the projected surface area of the object atite chord length of the body.
2.2.6  Mach number

The Mach numbei/ is defined as the ratio between the magnitude of the fluid ve-
locity |td| and the speed of sound in the fluid:

M= M, (2.12)
c

whereii is the velocity and: is the speed of soundifs—'].
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2.3 Sheet cavitation on a hydrofoil

The main focus of the present research is the cavitating ftowral a stationary hy-
drofoil, placed in a steady uniform flow. Depending on therapieg conditions many
types of cavitation can be observed on a cavitating hydrdéabble-, sheet-, cloud-
and vortex cavitation.

A vapor sheet is attached to the leading edge of a body on thgilessure side,
termed “suction side”. Near the leading edge a vapor cavitsheet is formed and
the liquid flow is detached. Franc & Michel [72, 73] and &eal. [123] investigated
the dependence of the behavior, the length and the thiclofebe vapor sheet as a
function of the cavitation number and the angle of attack of a 2D hydrofoil.
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FIGURE 2.2: Observed cavitation patterns on a 2D NACA 16012 hydrofoiaas
function of the angle of attack and the cavitation number. Taken from Franc &
Michel [73], note thato, is the cavitation number defined asn equation (2.1).

Franc & Michel [72] investigated the cavitation patternsad2D NACA 16012 hydro-
foil. They mention that for this relatively thin hydrofothé influence of the Reynolds
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number on cavitation is not significant. For cavitating fldveyt observed different
regions in thex—o plane corresponding to different cavitation patternsfiggree 2.2.

At low angle of attack and high values fercavitation does not occur. Keeping the
cavitation number high, but increasing the angle of attaegults in a partial cavity

on the suction side of the hydrofoil. Further increases énghgle of attack result in

a two-phase cavity and for very high angle of attack in séedadhear cavitation. For
low cavitation numbers and low angle of attack the cavityadetnent occurs at the
aft part of the foill For higher angles of attack the detachment moves upstredm an
becomes three-dimensional as visible in figure 2.2. For aigimer angles of attack,
i.e.a > 6° ando < 0.3, the sheet cavity extends beyond the trailing edge of the
hydrofoil, which is called supercavitation.

Le et al. [123] utilized a cavitating foil with a geometry consigjiof a flat upper
side and circular arc as its lower side. Keeping the ledgihthe sheet on the upper
surface constant and varying both angle of attacknd cavitation numbe#, they
found a linear dependence of the thickness of the sheet arathi@ation numbes.
Furthermore, they found a unique curve, relating the nomedisional lengtt/c of
the sheet cavity, witk the chord length of the hydrofoil, versus the non-dimeraion
parameter /(o — «; (o)) wherea; (o) corresponds with the angle of attack without
cavitation at that cavitation number. They also found tbattfieir foil the Strouhal
numberS = f¢/U at which the sheet cavity was shed, was nearly constant, i.e.
S =~ 0.28, wheref is the shedding frequency of the sheet cawitig the maximum
length of the sheet and the free-stream velocity.

When a vapor sheet is formed the minimum pressure on the doiale ps..(7),
which occurs inside the cavity itself, so the curvature efshrrounding streamlines
tends to be directed towards the cavity see figure 2.3. Doeanst of the sheet, the
flow re-attaches to the hydrofoil and thus splits the liquiavfinto two parts:

e the re-entrant jet, which travels upstream along the failisface carrying a
small quantity of liquid to the inside of the cavity,

¢ the outer liquid flow, that reattaches to the wall.

Both parts of the liquid flow are separated by a streamling thahe flow were
steady, would meet the wall perpendicularly at a stagngimnt. However, if this
flow were steady, the cavity would be filled with liquid ragid|

fIn this experiment leading edge roughness was not appliedowA Reynolds numbers the sheet
develops in laminar separation regions, which may be latakear the trailing edge for low angles of
attack. This does not occur in situations at higher Reynalgsber for which a turbulent boundary
layer develops.
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Cavity

Re-entrant jet

FIGURE 2.3: Closure region of the cavity sheet. Reconstructed from é¢-gaMichel
[74].

The re-entrant jet moves upstream towards the leading €ldgg #he surface of
the foil underneath the vapor sheet. At some point the rexenjet impinges on
the liquid-vapor interface, which can be at the leading afitfee re-entrant jet has
enough momentum and if the sheet is thick. This leads to agparor shedding of
part of the cavity which is then advected by the main flow in dstream direction.
The re-entrant jet gives rise to a circulatory flow pattenected around the sheet
cavity. Therefore, at the instant of shedding, circulatexists around this vapor
structure, which takes the form of a region with spanwisgicity above the surface.
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FIGURE 2.4: The break-off cycle, schematic view. (a) Start of the cyappor sheet

is growing, bubble cloud from previous shedding is conwkatéth the flow. (b)

Sheet reaches maximum extent, re-entrant jet starts to. fgc)nRe-entrant moves
upstream. (d) Re-entrant jet impinges on the cavity surfaapor cloud sheds from
main structure. (e) Vapor cloud is convected with the flowgutation is present
around the vapor cloud. (f) Vapor cloud collapses, vaporesiggows from leading
edge. Reconstructed from De Lange & De Bruin [56].
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The shed vapor structure may be broken into smaller vapaetsties such as bubbles
or cavitating vortices, which may collapse in regions witbher pressure. After
the shedding of the vapor cloud, a new cavity develops andivareentrant jet is
formed. This repeating shedding process, that is mainljratbed by inertia [74], can
be either random or periodic depending on the operatingitons. The shedding
process is illustrated in figures 2.4(a)—(f) taken from Dad&& De Bruin [56].

2.3.1 Three-dimensionality

In the past cavitation patterns have been observed for tmestsional geometries
such as 2D hydrofoils, see Asto#t al. [17] and a backward facing step, see Cal-
lenaereet al. [33]. Despite the two-dimensional geometry of the objacthie flow,
the cavitation sheet was often found to shed vapor cloudgutarly both in time
and in space, leading to a three-dimensional flow field. Degkeafa de Bruin [122]
predicted that the spanwise component of the velocity atbegclosure line of the
sheet cavity should remain constant, see also the theselodrge [55]. Hence, the
re-entrant jet should simply be reflected at the closuredime be directed sideways
as illustrated in figure 2.5.

Wincident
B —
-« T
Wiet (T

Cavity Cavity
closure closure
v line Y——"line

FIGURE 2.5: Reflection of incident flow by the closure line of the sheeitya¥he
flow is from left to right. Reconstructed from De Lange & DeiBii56].

Labertaux & Ceccio [121] showed that the leading-edge swaé#pe hydrofoil has a
significant effect on the topology of the cavity and on thediion of the re-entrant
jet. The importance of the re-entrant jet was further denmatedd by Kawanami
[108] who blocked the re-entrant jet and showed that theaton shedding behavior
changed significantly. When two sideways reflected re-anhjeds collide, the fluid
is ejected upwards hitting the cavity interface and caulsingl shedding of the sheet
cavity. The closure line of the cavity then becomes even rioee-dimensional re-
sulting in highly three-dimensional structures. From ¢éhaad other experiments it
has become clear that the form and the stability of the staefitlyds very dependent
on the three-dimensional geometry of the foil.
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Dang & Kuiper [50, 51] designed a twisted foil configuratianlbcalize the three-
dimensional effects. The direction of the re-entrant jes@und to be strongly
influenced by the cavity topology. In their case the cavitgmhwas determined by
the variation in the spanwise distribution of the loadinghed foil and not by sweep
angle. The foil spanned the tunnel from wall to wall. The &ion in the spanwise
loading was accomplished by the distribution of the twigglarof the foil, which
was high in the center and zero at the tunnel walls. Basedeogabmetry of the foll
of Dang, a new twisted hydrofoil denoted by 3D Twist1l1 hydilpfsee Foetlet al.
[68], Koop et al. [113] and appendix D was designed with a clear and conlilella
three-dimensional sheet cavity on a relatively simple tiimensional like configu-
ration.

The 3D Twist11 hydrofoil spans the cavitation tunnel fromisw@awall and is sym-
metric with respect to its mid-span plane. The foil has a gfsmvarying geometric
angle of attack (twist) fron9° at the tunnel wall td 1° at mid-section. This avoids
the interaction of the cavitation sheet with the boundaygialong the tunnel wall.
In section 5.7.1 a full description of the 3D Twistll hydiibie presented. In the
central part of the foil a three-dimensional sheet cavityn®with a planform that is
symmetric with respect to the mid-section plane. A top vidwhe sheet cavity on
the twisted foil is presented in figure 2.6 obtained from R¢66].

LE

TE

FIGURE 2.6: Top view of sheet cavitation on 3D Twist1l1l hydrofoil obtdifieom
Foeth [66]. Flow is from top to bottom, LE is leading edge, EHrailing edge.
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2.3.2 Dynamics of the vapor sheet on 3D Twist11 hydrofoil

Foethet al. [68] carried out experiments for the 3D Twistl1 hydrofailsteady and
unsteady inflow conditions in the cavitation tunnel at Délftiversity, see also Foeth
[67]. Their focus was to generate sheet cavities that asetimensional in char-
acter similar to ones that occur on ship propellers. In fig@&&(a)—(t), taken from
Foethet al. [69], the process of the vapor shedding is presented. Taddahg is
periodic, constant in its shedding frequency, and alwaghides the same macro
structural collapse [68]. In figure 2.7(a) the attached tgalvas reached its maxi-
mum length. Due to the spanwise variation of the twist anlgke gheet cavity is
three-dimensional and the closure line of the cavity is egrshaped. The chord-
wise striations originating close to the leading edge am tduroughness elements
positioned at the leading edge. At the closure line of theowagheet a re-entrant
jet develops which moves in upstream direction along thiasarof the foil into the
vapor structure. At both sides of the mid-section plane ghentrant jet is directed
towards the plane of symmetry.

In the center plane the re-entrant flow from port side and filwah starboard side
collide and at this location the cavity quickly changes frasmooth vapor sheet into
a cloudy region which detaches from the main structure, geees 2.7(b)—(h). At
the aft end of this structure a vaporous horse-shoe vorteslags. This structure,
presumably induced by the colliding side-entrant jets thete the water flow up-
wards, can be followed to figure 2.7(n). The vapor cloud iseated by the main
flow and collapses in the region with higher pressure on theat of the foil, see
figures 2.7())—(t). In the final images of the collapse of tlaar cloud a distinct
second, somewhat larger vaporous horse-shoe vortex ovoigx like structure is
observed, see figures 2.7(q)—(t). This process is repeatadimaller scale at the two
crescent-shaped side-lobes in figures 2.7(i)—(r). In figdr&(q) and 2.7(r) a similar,
but smaller-scale vortical structure is formed at eithde %if the center plane due to
this secondary shedding process.

Foethet al. [69] showed that the re-entrant jet entering the sheetycadtermines
the shedding mechanism of the sheet. To distinguish betwaeous directions of
the re-entrant flow, Foeth introduced the term side-enfjetntwhich refers to that
part of the re-entrant jet originating from the sides of taeity sheet. This jet has
a strong span-wise velocity component. They reserved thene-entrant jet for the
case this jet originates from that part of the cavity wheeedlosure is more or less
perpendicular to the main flow and thus is mainly directedreps.

In figure 2.8(a) the streamline topology on the cavity swefas given by Foetbt

tFor the 3D Twist hydrofoil the side-entrant jets are direttewards the center plane of the foil.
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FIGURE 2.7: Shedding cycle on Twist 11 follj,, = 4.96ms™' 4+ 6.4%, a = 1°,

o = 0.66 + 7.94%. Shown is every 7th frame of a 2000 Hz recording,i.e. the time
between two frames 5 x 10~3s. Flow is from top to bottom. (a)—(d) Development
of re-entrant jet directed towards plane of symmetry. @)Stedding starts in center

of sheet (e)—(p) Primary shedding, cavity center (p)—(ddBdary shedding (cavity
sides) (q)—(t) Growth of sheet. Taken from Foeth et al. [68f also the thesis of

Foeth [67].
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al. [69] is reproduced. At the closure of the cavity the stréaed are directed into
the vapor sheet. Note the difference between the re-erjgaand the side-entrant
jet. When the sheet is growing the side-entrant jets frorh bimtes are directed into
the closure region of the sheet. In the center plane of thet sfawity the two side-
entrant jets collide and the fluid is ejected upward throdgghvapor-liquid interface
causing the shedding of part of the vapor sheet and the famat the horse-shoe
vortex, that subsequently is convected by the main flow.

@) (b)

Side-entrant" Re-entrant
jot Jot

FIGURE 2.8: Sketches of the re-entrant flow (a) Streamlines over theycahieet
are directed inward. (b) The side-entrant jets collide i tbenter plane, part of
the re-entrant flow impinges on the interface of the cavigesltausing the primary
shedding, part of the side-entrant flow is reflected towandsenter of the side lobes.
(c) Process of shedding of (a) and (b) is repeated in sidedolfd) Re-entrant flow
approaches leading edge. (e) Cavity sheets grows. Repeddixom Foeth et al.
[69], see also thesis of Foeth [67].

In figure 2.8(b) the re-entrant jet is still traveling upsime and the side-entrant jets
are reflected away from the center plane. After the sheddirlgeovapor structure
the side-entrant jets in the side-lobes are directed tavaadh other, as presented in
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figure 2.8(c), causing the secondary shedding when thesgta/meet, see figures
2.7()—(q). Foeth mentions that the mechanism of the sesmgnshedding does not
seem to be different from that of the primary shedding.

As presented in figure 2.8(e), the remaining cavity has soreddy convex shape

of its closure line with two concave regions. Side-entramt/fhppears at either side
of these latter regions. In the short period of converginig-®ntrant jets the cavity

grows into its convex shape again before the whole cyclepisated. Foeth mentions
that the re-entrant jet directed towards the foil’s leadédge in figure 2.8(e) does not
always visibly disturb the vapor interface at the leadingeednd thus does not seem
to cause the detachment of the complete structure.

In summary, Foetlet al. [69] conclude that the re-entrant flow from the sides dic-
tate the behavior of the shedding cycle and that the flow fimensides depends on
the cavity shape. The re-entrant flow reaching the leadigg egpears not to be the
only cause for shedding.

2.3.3 Collapse of the vapor cloud

The break-up of a sheet cavity results in bubbly vapor clpgdstaining vortical
structures, that are convected into regions of higher pres#iere these clouds col-
lapse leading to strong pressures pulses [172]. Duringpilusess, the hydrofoll
experiences high-frequency unsteady loads. This may teadise production and
possibly erosion of the foil's surface. To capture thesdaady wave dynamics in
the flow it is essential to consider water as a compressitpedi

In the literature the collapse mechanism of a single isdl&gbble has been stud-
ied both theoretically and experimentally. Experimentaearvations on the collapse
of a single bubble as well as a bubble cloud demonstrate ibleit radiated pressure
waves occur with amplitudes of the order of 1B8r, see for example Fujikawa &
Akamatsu [75]. Reismanet al. [158] experimentally investigated the break-up and
collapse of sheet and vortex cavities and observed straggpre pulses on the sur-
face. Furthermore, they suggest that shock dynamics iemegge for the damage
to surfaces and the generation of noise observed in mantatiagi flows. Within the
medical application of shock-wave lithotripsy these higegsure pulses are used to
destruct kidney stones, see Ikeglaal. [103]. Johnsoret al. [107] investigated this
phenomenon numerically.

Schmidtet al. [169] developed a numerical method to predict the fornmaaod

propagation of shocks and rarefaction waves related todhapse of vapor regions
in cavitating flows. With their compressible flow simulatiohthe governing equa-
tions they indeed reproduced the unsteady loads on hytiofdhe main focus of
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the present research is aimed at predicting the global mhafithe vapor sheet as
described in section 2.3.2. However, we will show that witla tleveloped numeri-
cal method it is also possible to calculate the high prespulges generated by the
collapsing vapor clouds and the subsequent unsteady waaadys.

2.3.4 Role of viscosity

The accurate prediction of the direction and momentum ofr¢hentrant and side-
entrant jets and their impingement on the cavity surface fiie basis of an accurate
prediction of the shedding of the sheet cavity. These effaot all expected to be
inertia driven [172]. Furthermore, the global pressureasyits is not controlled by
the viscosity of the fluid, so it is expected that numericatidations based on the
Euler equations are able to capture the major (vorticaljcatres and dynamics of
sheet cavitation.

The effect of viscosity is the damping of large gradients #relloss of mechani-
cal energy during the growth and collapse process. The sitycof water and its

vapor is very low and the effects of viscosity on cavitatioa assumed to be negli-
gible, see Knapp [112].

Viscous effects are predominant in the detachment of dangtfiow near the leading
edge as observed by Arakeri & Acosta [14] and confirmed by ¢-&aMichel [72]

in the case of hydrofoils. They showed that a well-develogedty always detaches
downstream of laminar separation of the boundary layeaohttd cavitating flow can
form in a turbulent boundary layer. The natural transitioriurbulence on ship pro-
pellers occurs near the leading edge resulting in attacrestirig-edge cavitation. On
smooth hydrofoils the natural transition to turbulencd agicur at different locations
on the hydrofoil. Therefore, to resemble the flow on ship pheps in the experi-
ments of Foeth [67] leading edge roughness is applied tahtepoundary layer into
transition. Thus, the leading edge roughness effectivalyirmates the laminar flow
and causes the cavitation inception to occur at the leadigg.eAs a consequence
the point with minimum surface pressure and the point oftgalétachment are ap-
proximately at the same location. Therefore, in the preisgestigation it is assumed
that cavitation occurs whenC), ,,;, = o and consequently, that viscous effects do
not play a role in the detachment of cavitation.

For the collapse of vapor bubbles viscosity only plays a ioléhe final stages of
the collapse. The radii of the bubbles are then of the ord&?(@b—"m) [71]. In
combination with the scale of hydrofoils in experiments mpellers it is impossible
to capture these small length scales with present-day ncahenethods. So the role
of viscosity is not considered for the collapse phase of vapbbles.
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The evolution of the vorticity distribution in shear laydssdominated by viscous
flow effects. However, the vorticity production due to déngradients, the so-called
baroclinic torque, is only a function of gradients in deypgierpendicular to gradients
in pressure, i.eVp x Vp and does not depend on viscosity.

Flow separation is a viscosity driven phenomenon, so forvdiiglation of a flow
model based on the Euler equations it is essential that flparagon does not occur.
This is specifically so for the single-phase flow cases useth#ovalidation of the
basic numerical method.

The flow in the core of for example a non-cavitating tip voriexlominated by vis-
cosity, specifically in the viscous subcore. In a cavitatipgvortex viscosity plays
a role at the interface between the vaporous core and thiealolijuid flow. An
inviscid flow model will capture the flow in the part of the vigel flow region away
from the viscous subcore and the liquid-vapor interface.

2.4 Phase change of water

In this thesis we consider the flow of the pure substance whteray exist in more
than one phase, but the chemical composition, denotdd@:l6y, is the same for each
phase. When two different phases are present simultaryethesimedium is consid-
ered as a mixture. In figure 2.9 the phase diagram for wateesepted [184]. Note
that the specific volume for water increases during freeZirige diagram shows the
pressure as function of specific volume and temperaturegchwikia surface in the
(v, T, p)-space.

Each possible equilibrium state is represented by a poithisrsurface. The regions
of the surface that represent a single-phase, i.e. the $iglidd and vapor phase, are
indicated. The triple line is the isotherm line at which &lfde states may coexist
in equilibrium at the same time. In this study we are not iggézd in the solid state
so from now on we only discuss temperatures and pressuriertttgan the freezing
temperaturel,. = 273.15 K with the corresponding pressupe = 611.7 Pa and
densityp, = 999.79 kgm 3 for water.

The critical point is the temperature above which there i®bgervable difference
between liquid and vapor. The critical temperatilizepressures. and densityp,. for
water arel, = 647.16 K, p. = 221.2x10° Pa andp. = 322.0 kgm 2, respectively
[168]. In this study we do not consider conditions at tempees higher than the
critical temperature, we remain at conditions around roempteratured ~ 293 K).




2.4. PHASE CHANGE OF WATER 25

Critical
Point

Pressure

FIGURE 2.9: Pressure-Volume-Temperature surface for watéi, is the critical
temperature and’. is the freezing temperature. Figure reconstructed fromnEmm
et al. [184].

Considering temperatures above the triple pointpthel” surface presented in figure
2.9 can be projected onto thpel” plane or onto the-v plane as presented in figures
2.10(a) and 2.10(b), respectively. Note that in tHE plane the triple line collapses
to the triple pointZ;..

The term saturation temperature designates the temperatuvhich phase change
takes place at a given pressure. This pressure is callectin@aton pressure, which
depends on temperature. If a substance exists as liqui@ aathration temperature
and pressure, it is called saturated liquid and if a substanrists as vapor at the sat-
uration temperature and pressure, it is called saturatedrvéf for a given pressure
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FIGURE 2.10: Triple pointR, T, = 273.15 K, p, = 611.7 Pa, p, = 999.79 kgm 3.
Critical point C, T = 647.16 K, p. = 221.2x10° Pa, p. = 322 kgm 3. [168] (a)
Projection onP-T plane for water, Curvep,.:(T'). (b) Projection orp-v plane for
water. Curve I: liquid saturation curve; ,.(7"), Curve II: vapor saturation curve
pv,sat(T) with p = 1/2)

the temperature of the liquid is lower than the saturatiomperature, it is sometimes
called either a subcooled or a compressed liquid. When therva at a temperature
higher than the saturation temperature for a given presglsesometimes denoted
as a superheated vapor. In this thesis we do not use the temmaessed liquid or
superheated vapor.

In figure 2.10(a) the saturation pressure cysyg(7") for water is presented, which
is a function of the temperatuf@ given by the expression, see [168]:

7
psat(T)> Tc a;
In{———=) =— a;0%, forT e [T,,T,], 2.13

( Pe T ; [T, T (2.13)

wheref = 1 — T'/T,. and where the coefficients anda; are presented in table 2.1.
This expression fits the known experimental data accuri@§]. The curve from
the triple pointR at7;. to the critical point”' at T, separates the liquid and vapor do-
mains. This curve is usually denoted as the phase bound@gaturation curve or
the coexistence curve. Crossing that curve representssesiiele transformation at
equilibrium conditions, i.e. evaporation or condensatibthe water at the saturation
pressures,.(1"). Cavitation in a liquid at a given temperature can occur yeling
the pressure below the saturation pressure. Cavitatiosaappo be a similar process
as boiling, except that for boiling the driving mechanisnaigemperature change at
constant pressure. Actually, in view of figure 2.10(a) bathcpsses can be thought
of as the same process, i.e. as a crossing of the saturagssupe curve from the
liquid region to the vapor domain.
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In figure 2.10(b) thep-v diagram for water is presented. The region of the liquid-
vapor equilibrium states is bounded by the triple line arel ghturation curves for
the saturation densities of the liquigs,.(7") (Curve 1) and vapop,, s.:(T") (Curve

I), respectively. These saturation densities are givethbyapproximate expressions
[168]

Pl sat(T) ! b
Bsathn /o — § b0, forT e [T, T, (2.14)
Pe i=1
Pu,sat (T) ! &
In <7> = E 0%, forT e [T,,T.], (2.15)
Pc

=1

wheref = 1 — T'/T, and where the coefficients, bi, ¢; andé; are included in table
2.1.

Index a; a; bl bi Ci G

1 0 0 1 0 0 0

2 —7.85823 1 1.99206 1/3 | —2.02957 | 2/6
3 1.83991 | 3/2 1.10123 2/3 | —2.68781 | 4/6
4 —11.7811 3 —0.512506 5/3 | —5.38107 | 8/6
5 22.6705 | 7/2 —1.75263 16/3 | —17.3151 | 18/6
6 ~15.9393 | 4 —45.4485 43/3 | —44.6384 | 37/6
7 1.77516 | 15/2 | —6.75615x 10° | 110/3 | —64.3486 | 71/6

TABLE 2.1: Parameters for the saturation relations [168], = 647.16 K, p. =
221.2x10° Pa, p. = 322.0 kgem =3, T}, = 273.15 K.

2.4.1 Non-equilibrium states

It must be kept in mind that the saturation curves are notlatesboundaries between
the liquid and vapor states. For example in the case of raqpdresion of a liquid,
the liquid may cross the saturation curve without phasesitian to vapor occurring.
Another example is the rapid expansion of vapor in a convergeergent nozzle,
where the temperature rapidly drops below the saturatimpéeature without phase
transition to liquid. The resulting states are called ssigierrated states or metastable
states and the medium is considered to be in metastablebemuni. 1t must be noted
that although the term “equilibrium” is used, a fluid in mégde state is highly sen-
sitive to impurities and disturbances. Transition to aeoiphase may happen very
rapidly. The term “equilibrium” suggests stability andgli certainly not the case.

Water in metastable equilibrium can even withstand a negatbsolute pressure,
i.e. tension, without phase change. For cavitation thdleesgength of the liquid is
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the magnitude of the tensialyp = p,,:(7") — p at which rupture occurs. The forces
tending to hold liquid particles together are external gues and intermolecular co-
hesive forces, see Knapp [112].

The tensile strength of the liquid is determined by weakspothe liquid, see Bren-
nen [29]. These weak spots may form the onset, the nucledwitiation. They appear
in two forms, i.e. homogeneous and heterogeneous nualediimmogeneous nucle-
ation is determined by thermal motions within the liquidtthesult in microscopic
voids that can act as the nuclei necessary for rupture. Imalguid surface tension
is one of the forces that keep molecules together and prévweribrmation of large
voids. The term heterogeneous nucleation refers to rumtiutiee liquid at sites of
impurity in the flow. In practical engineering the major wesgots in the liquid occur
at the boundary between liquid and solid walls or betweetliglwed and small solid
particles or micron-sized vapor and/or gas bubbles suggkimdthe liquid.

Experimentally, it would be hard to distinguish between bgeneous nucleation
on one side and heterogeneous nucleation on small subymsized contaminant
particles in the liquid on the other side. In water, micrdxbies of undissolved gas
and roughness of surfaces of objects in the flow will alwaypresent and thus cav-
itation is conventionally considered as a heterogeneouaation process.

For homogeneous nucleation in pure water the theoretinalléestrength is approx-
imately equal to 1320ar at7 = 298 K [65, 141]. However, in experiments, due
to the problem of cleaning and degassing of the water angewarit, this value is
not found. Briggs [32], employing centrifugal force, wadeato reach a pressure of
—277 Pa before phase change from liquid water to vapor occurred.

Metastable states are important to consider for cavitatioeption as well as for
the final collapse phase of vapor bubbles. However, for emging problems the
water must be highly purified for metastable states to ooghgreas ordinary tap
water does not show this behavior. The large number of irtipsrpresent in tap
water immediately results in heterogeneous nucleationtfaul in the formation of
vapor bubbles.

Furthermore, the leading edge roughness applied on thefojidrprovides enough
nuclei for cavitation to occur. As the specific volume of watapor is much larger
than the specific volume of liquid water, the phase transitesults in fast pressure
equalization close to saturation conditions. Thereforeagsume that cavitation oc-
curs when the pressure is equal to the saturation presstinatsnetastable states do
not occur.




MATHEMATICAL MODELS
FOR CAVITATING FLoOwS

The present research aims at developing a method for nuetigrstmulating three-

dimensional unsteady cavitating flows that incorporatestbst important phenom-
ena for sheet cavitation. This chapter first discusses thst neoent developments
for numerically simulating cavitating flows. Then, in secti3.2 the equations for the
flow of a homogeneous mixture are derived. In section 3.3tansof state for com-

pressible liquids are discussed. In section 3.4 the equitib cavitation model em-

ployed in the present research is explained. Lastly, thensidn to non-equilibrium

models for cavitation is discussed in section 3.5.

3.1 Mathematical models for simulating cavitating flows

Computational methods for cavitating flows have evolvedamafel with compu-
tational resources. Starting in the 1970s and 80s witmgjfsurface and boundary
element techniques, the level of the physical models uyidgrthe numerical meth-
ods has increased substantially. However, it has provea &odifficult task to predict
the very complicated cavitation phenomena, involving pla®nge, surface tension,
turbulence, (non-equilibrium) thermodynamic effects, et

The main numerical problem in cavitating flow simulationthis simultaneous treat-
ment of two very different flow regions: (nearly) incompriéss flow of pure liquid
in most of the domain and low-velocity highly compressibtewlof (pure) vapor in
a relatively small part of the flow domain. In addition, theotflow regimes can
often not be distinguished that clearly, for example in Ha@sition region between
vapor and liquid in the closure region of a sheet cavity. lfemhore, unsteady three-
dimensional cavitating flow calculations require substhwomputer resources both
in terms of memory and speed. Also, meshes with approprigteresolution mesh
densities in the cavitating region are necessary.

In the distant future it might be possible to calculate thié Navier-Stokes equa-
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tions for each of the phases present in the flow and to compatg detail including
the motion of every interface within a cavitating flow. Uriarately, the computer
power, speed and memory required to capture all the pragessearring over a wide
range of time and length scales is far beyond the presenbitiyppaTlherefore, sim-
plifications are necessary to obtain a realistic model taukita cavitating flows.

In the 1990s methods using the Euler or Navier-Stokes emsivere developed,
coupled with a transport equation for the void fraction, ougled with two-phase
flow equations or other cavitation closure model equatidssclassified by the 22nd
ITTC special committee in 1999 [3] this approach can be gedupto a number of
categories.

e Interface-tracking methods

Volume-of-Fluid methods

Discrete-bubble methods

e Two-phase flow methods

3.1.1 Interface-tracking methods

Interface-tracking methods such as the level set methodkemparticles and surface-
fitting methods track the interface between the liquid arnubvdased on a pressure
streamline criterion. Note that this type of modeling cep@nds with a Lagrangian
type of approach. The cavitating flow region is assumed ta lecanstant pressure
equal to the saturation pressure. They require the presémigtinct interfaces to be
tracked. For the aft part of the cavity sheet, where therdisgtin between liquid and
vapor is not so clear, some wake model must be introducednples are, amongst
others: Furness & Hutton [76], Chen & Heister [37], Deshpeetdal. [59], Hirschiet
al. [92], Sussmauet al. [187], Van der Pijl [205] and Dijkhuizen [61]. These metkod
do not allow the description of the unsteady behavior ofatirig cavities, including
phenomena like the re-entrant jet, cavity breakdown or vajpud shedding.

3.1.2 Volume-of-Fluid methods

Volume-of-Fluid (VoF) methods as originally proposed bytH& Nichols in 1981
[93] can be classified as interface capturing methods. Tindyde a transport equa-
tion for the void fractiom defined as the ratio of vapor volume to the total volume of
the computational cell. In order to avoid smearing of therifaice, special methods
are used to derive the values of the void fraction at the fattge computational cell.
For that reason the Compressive Interface Capturing ortrargiMeshes (CICSAM)
scheme has been developed by Ubbink [201, 202]. The staMd&rchethod is used
for capturing distinct interfaces without phase transitie.g. free surface flow or the
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motion of single bubbles. To account for cavitation the dtad VoF methods are
extended to include, in addition to the convective transgbe change of the void
fraction due to phase transition, see for example Dieval. [60], Molin et al. [140]
and Sauer [162]. Sauer & Schnerr [163] developed a VoF mettittdbubble dy-
namics based on the Rayleigh equation, see also ¥tah[223]. This approach is
also followed by Bouziaet al. [26, 27].

3.1.3 Discrete bubble methods

Discrete bubble methods consider single or multiple cawitiybles which grow and
collapse as they travel through the pressure field. Ples$&b&peretti [148] analy-
tically described the growth and collapse of a single vapduble, see also Rayleigh
[134] and Plesset [147]. Since then many researchers haweriually studied the
behavior of single or of multiple bubbles. Examples include application of a
varying pressure field, the flow through a convergent-dieetquozzle, the behavior
of a collapsing bubble cloud and also the interaction of klgiouds with shock
waves. See amongst many others Fujikawa & Akamatsu [75hrigneet al. [31],
Coloniuset al. [43], Prestoret al. [151, 152], Delaleet al. [57], Johnsen & Colonius
[107], Wang & Brennen [215, 216].

3.1.4 Two-phase flow methods

Two-phase flow methods can be subdivided into different ypemethods: (a)
homogeneous-mixture methods and (b) multiple-speciesutti-oomponent flows.
Homogenous-mixture methods treat the fluid as a pseudolilidaverage proper-
ties such as density and viscosity. Thus, the fluid is treatdte whole computational
domain as a compressible fluid with a greatly varying den3ibe inside and outside
of the cavitating flow region is treated as a single mediumarndgeneous mixture
of liquid and vapor, who share the same velocity, pressudcetamperature. This
group of methods can be subdivided further into: transpguiaon-based methods,
barotropic-flow methods and homogeneous-equilibrium odhIn a overview this
can be summarized as:

(a) Homogeneous-mixture methods

e Transport Equation-based Methods (TEM)

o Bubble two-phase Transport models (BFT)
o mass transfer rate models

e barotropic-flow methods
e homogeneous-equilibrium methods

(b) Multi-component methods
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Transport-Equation based Methods (TEM) treat the flow of the vapor or liquid by
means of a transport equation for the volume or mass fraofitiquid or vapor (and
sometimes even a third fraction, e.g. for an inert gas). Tmsport equation-based
methods assume that the pressure, velocity and tempertdiferent phases are
equal (homogeneous mixture assumption). Transition framphase to the other is
accounted for by physical rate processes that appear aseseums in the transport
equation. These methods have the advantage that they eaimtalaccount the time
dependency of the mass transfer phenomena through enhjbéricafor the source
term. However, the choice of the constants in the empirielgtions appears to be
somewhat arbitrary. Two different classes can be distsigad: Two-phase Bubble
models and mass transfer rate models.

Kubotaet al. [116] proposed to relate the density of the mixture to theiomoof
bubbles and their dynamics in the flow. Cavitation is thus ehedl as the growth and
collapse process of vapor bubbles. The bubbles originate fruclei, which already
exist in the bulk flow and grow or collapse depending on theosunding conditions,
e.g. pressure and temperature. The evolution of the vapnésiis governed by the
Rayleigh or Rayleigh-Plesset equation, [134, 147]. Mangiss have adopted this
approach for example: Chen & Heister [38], Sauer [162], 8&u8chnerr [163],
Yuan & et al. [224, 223], Bouziacet al. [27, 26], Susan-Resiget al. [186]. Further-
more, some authors included empirical parameters for ptamuand destruction of
vapor: see e.g. Singhal [182] and Zwattal. [227, 226].

Merkle et al. [139] developed a pressure-based method with vaporizabaden-
sation source terms to account for the mass transfer bettheetwo phases. The
vapor and liquid components are solved employing masseceation equations for
the vapor, liquid and/or mixture or by transport equatiomsthe vapor/liquid vol-
ume or mass fraction. Their source terms have proven to téribility for cav-
itation modeling and offer the possibility to include timepgndency in the mass
transfer phenomena. However, the values for the empirimastants in the source
terms chosen by different authors vary significantly. Meklapproach has been
used in different and extended forms in combination with Euder equations, see
Neaves & Edwards [144], Reynolds Averaged Navier-StokeSN®) equations,
see Kunzet al. [117, 118, 119, 120], Venkateswarah al. [209, 210], Ahuja &
Hosangadi [9, 8, 96, 97], Medvitet al. [137], Daubyet al. [54], Senocak & Shyy
[173, 174, 175], Shirt al. [177], Saitoet al. [161], Zhou & Wang [225] and Large
Eddy Simulations (LES), see Wikstroet al. [220] and Persson [146, 99]. Senocak
& Shyy [174, 175] evaluated different formulations of thipé of models. They con-
cluded that the results of the methods for the pressurdhiisbn generally agree,
but that the difference in density distributions is sigrfic implying that the com-
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pressibility characteristics embodied in the cavitationrse terms differ. They pro-
posed an empiricism-free model based on interfacial dyosmvhich needs further
research.

The transport equation-based methods can be considerezhaguilibrium meth-
ods. Besides being based on bubble dynamics or empirica traassfer rates, meth-
ods are emerging based on thermodynamic considerationBegf@ource terms. See
for example lberet al. [100], Berget al. [22] and Barberon & Helluy [19]. In these
models the full set of continuity equation, momentum andg@neonservation equa-
tions for the mixture and the continuity equation for vapotiquid are solved. To
close the system of equations an appropriate equation tef &tathe pure phases
and the mixture phase must be added, which must result intansysf equations
accounting for two different pressures and preserving yipetbolic consistency.

Barotropic flow models: Delannoy & Kueny [58] proposed a formulation that cou-
ples the mixture density to the pressure through a baratiapi p(p) ranging from
the liquid density through a transitional zone to the vapengity. Vorticity pro-
duction is an important aspect of cavitating flows, esphcial the closure region
of the sheet cavity, see Gopalan & Katz [80]. Specificallis thorticity production
is a consequence of the baroclinic generation term of thecigrtransport equa-
tion, V% x Vp [174]. However, when a barotropic relation is employednthiee
gradients of density and pressure are always parallel,ehérecbaroclinic torque is
zero. Nevertheless, many other researchers have appigettdel with different
barotropic laws, see Reboud & Delannoy [157], Hoeijmaletral. [95], Arndtet al.
[16], Coutier-Delgoshat al. [44, 47, 45, 46, 48], Rebouet al. [156], Qin [154] and
Sinibaldiet al. [183]. In appendix F a barotropic flow model developed in gnaup

is described, see Veldhuis [207] and Kosipal. [113]. This model has been used in
the design of the Twist hydrofoils.

Homogeneous equilibrium models:Saurelet al. [166], Schmidtet al. [169] and
Schnerret al. [171] formulated the equilibrium cavitation model emplay the full
set of continuity, momentum and energy conservation egpstfor the flow of a
homogeneous mixture. The pure water and vapor phase argbaesby suitable
equations of state such that the governing equations aexthyiic in time and space.
The two-phase regime is enforced to be in thermodynamic awhamical equilib-
rium at all locations in the flow. In regions where two phasas exist the homoge-
neous equilibrium model returns a prediction of the bulksigrof the two-fluid mix-
ture, from which a volume fraction of vapor is obtained givemperature-dependent
saturation-state relations. This method is capable oficapt phase transitions, con-
densation shocks and other multi-phase flow features, lmsegailibrium effects are
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by definition excluded. Furthermore, due to the hyperbdaditure of the equations
for all phases, single-phase as well as two-phase wave gatipa phenomena can
be studied. This model for cavitating flows is independengrapirical parameters,
other than in the equation of state for the pure phases.

To close the description for the two-phase mixture and ferabmpressible water
physical mixture properties can be obtained from for exantgbulated steam tables
for p = 1/v(p, h), e = e(h,p), see Ventikos & Tzabiras [211]. Others employed a
different equation of state for the description of the lajucdwards & Franklin [63]
employed the Sanchez-Lacombe equation of state for radlffaws accompanied
with the equilibrium assumption in the two-phase region targntee a real-valued
speed of sound. Iga [102] adopted the Tammann equation of state for thediqui
phase. However, he did not take saturation conditions iotount. In [101] he ex-
tended his model to include a source term in the continuityadqgn for the vapor
phase to drive the two-phase flow towards saturation camditi

The use of tabulated steam data and the use of equationgettsta result in non-
hyperbolic systems can be avoided by employing an apprdixaméor the caloric
equation of state for water [165] along with appropriate atiquns of state for the
liquid’ and vapor phase and temperature-dependent saturatioiti@esidor phase
change. This is the cavitation model pursued in this thdgsisection 3.4 the equi-
librium cavitation model and the equations of state for coesgible pure water and
compressible pure vapor are presented.

Multi-component models or multiple-species methods have first been proposed by
Baer & Nunziatio [18] for detonation waves in granular exgies and modified by
Saurel & Abgrall [164] for the resolution of multi-phase rires and interface prob-
lems between pure compressible materials. These modelsimethe cavitating flow
by adopting a full set of equations, i.e. continuity, monuemtand energy conserva-
tion equations, for the vapor phase, the liquid phase an@sams even an inert gas
phase together with their own thermodynamic relations .y Etlew for both mechan-
ical and thermal non-equilibrium to be taken into accoutite Toupling between the
different phases is accounted for by appropriate transfations derived from two-
phase flow modeling considerations. Most models lead tocomservation forms
due to the interface interaction terms [34]. These methodsassumed to possess
more generality, but they are computationally expensimeesa full set of equations

*For densities between the spinodal values, the acousténe#jues for the Sanchez-Lacombe equa-
tion of state and also the van der Waals equation of state ameptex, implying that the system of Euler
equations coupled with these equations of state is not hyfier

TIAPWS [1] provides experimental data for water. In sectio# i8is shown that the modified Tait
equation of state used in the present study agrees with tRé/@data.
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for each component has to be solved. Various authors haesveal this approach
see for example: Sauret al. [164, 167, 125], Abgral [5], Allaireet al. [11], Paillére
et al. [145, 78], Cocchiet al. [40, 41], Quirk & Karni [155], Murrone & Guillard
[143]. Abgrall & Karni [6], Castro & Toro [34], Johnsen & Catius [107], Andri-
anovet al. [13], Chang & Liou [35].

3.2 Homogeneous mixture equations

In this section the flow equations for a homogeneous mixtueedarived. A good
overview and introduction are provided by the review agtiof Drew [62] and the
books of Brennen [30] and Wallis [214]. Homogeneous flow thgwovides the
simplest description for analyzing multi-phase or mutimgponent flows. By defini-
tion a phase is simply one of the states of matter, which cagitber a gas, a liquid or
a solid. Multi-phase flow is the simultaneous flow of severages. The term multi-
component flow is sometimes used to describe flows in whiclpliases present do
not consist of the same chemical substance. The equaticesilieg multi-phase
or multi-component flows are identical [214]. Thereforeg terms component and
phase are used indiscriminately throughout this thesis.

In homogeneous flow theory the relative motion between thased is neglected.
The mixture is treated as a pseudo-fluid whose propertiesusiadble averages of the
properties of the components in the flow. The method of deténgn the flow equa-
tions and the properties of the mixture is to start from sajeaequations for each
phase. The approach is based on the view that it is sufficiethe$cribe each phase
as a continuum obtained from a microscopic description hyitalde averaging pro-
cess.

3.2.1 Conservation of mass

Conservation of mass of a componénif the fluid flow requires that

opray N 0Py ;
at al’l

= My, (3.1)

where p;, denotes the density of componehnt o, = Vj/V the volume fraction

of componentk with V}, the volume occupied by phagein a volumeV, uy the
velocity of componenk and M, the rate of mass transfer to phas&om the other
phases. The quantitiesf;, are denoted as mass interaction terms. For each phase or
component in the flow there is a continuity equation like digma(3.1). We assume

¥Not all authors take phase-change into account, implyiagttie source terms are chosen equal to
zero.
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that the whole domain is occupied by all phases considemd, i
d ap=1. (3.2)
k

Since the total mass must be conserved it follows that theduihe mass-interaction
terms is equal to zero, i.e.

S My =0, (3.3)
k

Taking the sum of all continuity equations results in thettaity equation for the

mixture:
; Ek PO . Ek PLOEUE . .

Defining the mixture density as
pP=>_ prov, (3.5)
k

and assuming that relative motion between the phases doexcur and thus that
the phases have the same velodity = d, equation (3.4) reduces to the continuity
equation for the mixture, which is identical to that for agdexphase flow:

9p  O(pu;)
8t+ 8352-

= 0. (3.6)

3.2.2 Conservation of momentum

In the absence of effects of viscosity and of body forcesctmeservation of momen-
tum in thej-th direction of phasé can be written as

Oagpy,

apkakuk,j I
c%cj

ot Z?xl

(pkakuk,jum) = — + Jfk7j1 (3-7)
wherepy, is the pressure within phage which can be thought of as the average of
the microscopic pressuref;, ; is the force imposed on phageby the other phases
or components. The source tethy ; incorporates forces such as surface tension,
buoyancy, and other forces due to the interface between the phasesasstransfer
from one phase to another. As in the case of the mass intamakti,, it follows that
[62]
> Fry=0. (3.8)

k

Swhich is often written agy, ; Vay with py, ; the interfacial pressure
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Defining the mixture pressugeas

p= Z QkPk; (3.9)
k

and assuming that all the phases have the same pregsare and velocityd, = u
and taking the sum of all momentum equations in directiorsults in the mixture
momentum equation in directign

Op

s (3.10)

Opu; 0 B
ot " o, ) =

3.2.3 Conservation of energy

Neglecting gravity, the total specific energy. for phasek is the sum of the internal
specific energy;, and the kinetic energgﬁk-ﬁk of phasek

1
Er=er+ gﬁkzﬁk (3.11)

An appropriate statement of the first law of thermodynamasefach phase is as
follows [30]:

Rate of increase of total energy of phase
+ Net flux of total energy of phase

Rate of heat addition to phagdrom outside: Q.

+ Rate of work done to phageby the exterior surroundingsy,

— Rate of work done by stresses acting on phiase

+ Rate of heat transfer to phakdérom other phases@ M,

+ Rate of work done to phageby other phases or componen¥. M

The first two terms can be written as

0
oz, (progEpugi) - (3.12)

0

— E

57 (PrakB) +
The rate of heat addition due to external heating and to cdiwduof heatQ;, is
neglected as well as the rate of external widdk. Neglecting effects of viscosity, the
work done by stresses only consists of a pressure term. Tdrgyeaquation for the
individual phase may then be written as

opro B 0 Oayprug i
L et (pragEgug;) = QMg + WMy, — %

5 oz, (3.13)
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The two terms involving exchange of energy between the jgheae be combined
into an energy interaction ter#), given by

EL = OM, + WM,.. (3.14)
As in the case of mass interaction it follows that
Z & = 0. (3.15)
k

All the energy equations for the individual phases can besedto obtain the energy
equation for the mixture:

0 9 5
ot (Zk: pkOékEk> + o1 (Zk: pkOékEkUk,z) = o (Zk: akpkuhi) . (3.16)

Using the mixture density (3.5), the mixture pressure p (3.9) and the mixture spe-
cific internal energy defined by

pe =) proner, (3.17)
k

and assuming that the phases have the same pressures atitlegethe mixture
energy equation can be written as

opE 0 Opu;
— (pEBu;) = — , 3.18
ot o PP = 5, (3.18)
whereE' denotes the total specific energy of the mixture given by
E=e+ %ﬁ-ﬁ. (3.19)

It must be noted that when modeling multi-phase flows by thetureé equations
many modeling questions arise, see e.g. Brennen [30]. Moki-phase flow mod-
eling efforts concentrate on the individual phase equatainmotion and therefore
they focus on constructing the interaction tervs,, 7, and&y, see also Drew [62].
However, to model these interaction terms there does net axgeneral applicable
method that is independent of the flow topology. So, they hestonstructed empir-
ically given a particular flow pattern. In this thesis we athye equilibrium model
for cavitating flows assuming that the mixture remains irrrti@@ynamic and me-
chanical equilibrium as described in the next section. @loee, the homogeneous
mixture equations (3.6), (3.10) and (3.18) describe the dbthe mixture.

The set of mixture equations is not closed, there are 5 empgaand 6 unknowns,

namelyp, u, p, e. S0 an additional equation must be provided. In the follgwin
section 3.3 equations of state for compressible liquid flaresdiscussed. In section
3.4 the equilibrium cavitation model is addressed that glilse the set of equations
for the two-phase mixture.
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3.3 Equations of state for compressible liquids

In this section equations of state for compressible liqai@sdiscussed. For reference
the Maxwell relations for thermodynamics are presentegpeadix E. Considered
are the following equations of state:

¢ Stiffened gas equation of stater Tammann equation of state, see Harlow &
Amsden [85, 136]:

p=(v—1)pe = ¥Poo, (3.20)

with v andp. liquid-dependent constants. Note that for v <2 andp,, =0
the equation of state for a perfect gas is obtained.

e Tait equation of state

N
p =Ko <ﬁ - 1) + po, (3.21)
£0

with Ky and NV liquid dependent constants apgl and pg constant reference
density and reference pressure, respectively. Haywaidof@8ts out that the
equation to which Tait's name has been attached is not pedpbg Tait. It
appears to have originated through an unfortunate mistjolethy Tammann
of Tait’s original equation. Slightly different forms cormged with equation
(3.21) are used by various authors. We refer to Tait's eqnaif state as pre-
sented in equation (3.21).

¢ Modified Tait equation of state, see Saurett al. [166]

N
_ P
p = Kj <psat(T) 1) + psat (1), (3.22)

with K, and N liquid dependent constants apg,:(7') andps.:(T') tempera-
ture dependent saturation density and saturation presasectively. Saurel
et al. [166] adapted the Tait equation of state by including tinegerature de-
pendent saturation pressusg,:(7°) and corresponding liquid saturation den-
sity psat(T') as reference states, to treat the water as the saturatédi dioyn-
ponent of a two-phase mixture.

3.3.1 Speed of sound

The speed of sound is the velocity at which infinitesimal pressure waves travel
through a compressible fluid. The variations in pressurgemesmall and we assume
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that effects of viscosity and heat conduction are negkgibThe definition of the
speed of sound is

Op 1 /0p
=) = () . 3.23
=(5), == (&), @29
Many forms for the speed of sound can be derived, for example

1 ¢,(p,T) (52) ap p (Op

2_ _ —*p ov/T 2 _ (22 R e
= (0. T) (a_s) , or ¢ 7). + #\e) (3.24)

op T

From an eigenvalue analysis of the Jacobians of the flux keetwd choosing prim-
itive variables[p, u, v, w, T]T, so that equations of state are required in the form
p = p(p,T)andh = h(p,T'), we have derived relation (A.19) for the speed of sound

as
( o7 )
p —_
oT
? = P (3.25)

(&), ), (), 0= ()0

which can be found directly from the equations of state 7') andh(p, T').

3.3.2 Stiffened gas equation of state

The so-called stiffened gas equation of state [85] or Tanmemuation of state can
be used to describe compressible liquids (and even solitB))[at high pressures
[104]. The stiffened gas equation of state reads

p=0p(p,e) = (v — 1)pe = Yo, (3.26)

wherep, p ande are the pressure, density and specific internal energyecasgely.
The specific internal energy is given by [35, 145]:
=274 2=, (3.27)
Y p
with ¢, the specific heat at constant pressure assumed to be coriStamtequation
(3.25) we find the speed of sound to be equal to

3= % (P + Poo) - (3.28)

The value for the pressure constagt and for the polytropic constant are liquid-
dependent and can be determined from laboratory expersfiE3f] via an empirical
fit [104, 178]. Cocchiet al. [40] presented a derivation of the parametegsand-y.
Le Metayeret al. [124] derived values of the parameterandp., for water in pres-
ence of its vapor. For water, various values{oandp.., are found in the literature,
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see table 3.1. Note that Chang & Liou [35] adapted a non-phi/salue for the spe-
cific heat at constant pressure equaltp= 8095.08 kg "' K~ to match the values
of the density and speed of soundlat 298K.

\ Reference | 7 | poc [10° Pa] |
Chang & Liou (2007) [35] 1.932 11.645
Pailléreet al. (2003) [145] 2.8 8.5

Barberon & Helluy (2005) [19] 3.0 8.533
Halleret al. (2003) [84] 4.0 6.13
Saurel & Abgrall (1999) [164, 165] 4.4 6.0

Abgrall (2003) [7]
Shyue (2006) [180]
Cochi (1996, 1997) [40, 41]

Shye (1998) [178] 55 4.92115
Johnsen (2006) [107]
Shyue (1999) [179] 7.0 3.0
Luo et al. (2004) [135] 7.0 3.03975
Gallouét (2002) [77] 7.15 3.0

TaBLE 3.1: Stiffened gas equation of state. Values @ind p.., for water as used by
various authors.

To investigate the validity of the stiffened gas equatiostate for water at low pres-
sures, the analytical values from equation (3.26) are coedpaith experimental data
[1, 2, 213].

Comparison with experimental data

Using the parameter values of Chang & Liou [35], Pailleteal. [145] and Le
Metayeret al. [124] the density and the speed of sound are compared vetbxer-
imental NIST data [2] in figure 3.1.

For the pressure range from 0 to &ér it is shown that the density for water as found
from using the stiffened gas equation of state deviates theNIST data by approxi-
mately 6% and 37% for the parameter values of Paillere aridétayer, respectively.
The speed of sound found with the parameter values of Railgrrespond very well
with the NIST data, whereas the speed of sound found with dnanpeter values of
Le Meétayer deviates by approximately 12%. The values ofgl&Liou for the den-
sity and speed of sound correspond excellently with theraxgatal data. However,
to achieve this they have changed the value for the specificdieonstant pressure
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FIGURE 3.1: Stiffened gas equation of statE,= 298 K. The values of Chang &
Liou [35], Paillére et al. [145] and Le Mtayer et al. [124] are compared with NIST
data [2] as a function of pressune € [0,10] bar. (a) densityp (b) speed of sound

¢p to a non-physical value, i.e, = 8095.08 Jkg 1K1

From this comparison we conclude that, using the stifferes gguation of state,

a different liquid saturation density at saturation presss obtained compared with

the physical saturation value. Thus, we state that thestfl gas equation of state is
not suitable to use in combination with cavitation, sinoe shturation values for the

liquid density at low pressures do not match the experinhelatiza. 1

TThe author would like to thank S. Schmidt and Prof. Schnemfithe TU Munich for pointing out
this conclusion, see also Schmidt et al. [169].
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3.3.3 Modified Tait equation of state

To treat the water as the saturated liquid component of apivase mixture Saurel
et al [166] adapted the Tait equation to include the temperatapendent saturation
pressurep,q:(T) and corresponding liquid saturation density,:(7") as reference
states. The modified Tait equation of state for liquid theadse

ploT) =Ko Kpsaf(T))N !

From the Maxwell relations and equation (E.1) it is found tha

Ocy, (v, T NK,
< (E?v )>T - TUN Ni—z (N + D) (Peat)” — psat(T)Psa] + Thiar-  (3:30)

Psat

+ Psat (T) (329)

where the prime denotes differentiation with respeci’'tarhusc, is a function ofv
and7 and not just ofl’. The specific internal energy(v, T') can be found by using
equation (E.4) and the Maxwell relations

Oe . Oe _ ap
(a—T>U_cU(v,T), <3’U>T_ p+T<8T>v' (3.31)
yielding
T - . -
e(p,T) = / o (reps PYAT + (ppeg, Trop) + o0t ~ Dot + Ko) (p’“ef - 1)
Pref 1%
T’ref Y
+ Ko (psat(T) + NTplyy) <( P YN (Prief)N—1> . (3.32)
N—1 Psat(T) psat(T)

11

Instead of using the specific internal energy from equat®82) Saurekt al. [166]
proposed a simplification for water:

e(T) = co(T — Tref) + €0, (3.33)

wherec, is taken constant. This simplification can be justified bysidering terms

I and Il in equation (3.32). Since the density in water is agpnately constant we
find thatp,cr = p, p = psat(T) @andp,er ~ psq:(T) yielding that term | and term

Il are approximately equal to zero. Furthermore, for watdow temperatures it is
valid to assume that, (p,.f,T’) is constant and thus we find equation (3.33) for the
specific internal energy.
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Now, the speed of sound is found from equation (3.25) as

2 N(p— psa;(T) + Ko) 63
p / N(p — psat(T) + K(]) ,
+% <psat(T) - poat(T) Psat(T)> . (3.35)

3.4 Equilibrium model for cavitating flows

Following Saurelet al. [166] and Schmidet al. [169] the equilibrium cavitation
model is described. The physical model is based on the asgumtipat the two-phase
flow regime can be described as a homogeneous mixture thaineiim thermody-
namic and mechanical equilibrium. This implies an equilibr of local temperature,
local pressure and local velocity between the vapor anédicemponents of the two-
phase mixture. Under these assumptions, the flow of the reixtan be described
by the mixture equations of section 3.2 together with an@matte equation of state
that covers all fluid states possible: the compressible lyui state, the compress-
ible two-phase mixture state and the compressible purersate. The equations of
state must be such that the hyperbolic nature of the systeyovefrning equations is
preserved in order to study finite propagation speed wavenwin the fluid.

Summarizing, the governing equations are the Euler equatioconservation form
for the mixture variables written here for Cartesian couatis as:
ou 0F,(U oF,(U OF,(U
0U  OF.(U)  OFy(U)  0F.(U)
ot ox oy 0z

=0, (3.36)

whereU = [p, pu, pv, pw, pE]T is the vector of conserved variables aRg(U),
F,(U) andF.(U) are the three components of the flux vectors given as

pu pv pw
pu2 +p puv puw
F=[F,(U) Fy,(U) F.(U) |= puv  pv’+p  pow , (3.37)

puw pLw pw2 +p
pHu pHv pHw

where the total specific enthal@y is equal to

H=E+L_pyl

P 2

with the total specific energy’ defined in equation (3.19). The speed of sound
is defined in equation (3.25). For closure of the system oaggus it is necessary

-4, (3.38)
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to adopt equations of stafe= p(p,T) andh = h(p,T) that describe each of the
three possible states: the liquid state, the vapor statdrenchixture state. In the
following the liquid phase is denoted by subscripthe vapor phase by subscript
and saturation conditions by subscript.

Before continuing with the equations of state the satunatiorves of section 2.4
are repeated here for clarity. The relation between pressod temperature during
phase change is given by the analytical expression [168]:

DPsat (T) Tc ’ a;
In (T) = zi:aﬁ , (3.39)
wheref = 1 — T'/T,. and wherep. andT, represent the critical pressure and critical
temperature, which for water are equapto= 22.120x 10% Pa and7, = 647.16 K,
respectively. The coefficients anda; are given in table 2.1. In figure 3.2 the values
from equation (3.39) for the saturation presspig as a function of the temperature
T are compared with the experimental data [2]. It shows thatalytical expres-
sion fits the experimental data accurately.

2501 , :
—— Analytical saturation pressure C

NIST data [2]
200+

Psat [bar]
[
)

100r

50

R

300 400 500 600 700
T[K]
FIGURE 3.2: Comparison between analytical expression for the satomagiressure
psat |bar| (line) and experimental saturation data [2] (dots) versemperaturel’
[K]. R is the triple point and”' is the critical point.

The liquid and vapor saturation densities along the saturaurves are given by, see
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[168]

7
Pl sat(T) b
Plsat’” ) _ N p,0b, (3.40)
Y
1)\ <
In (”%) = b, (3.41)
¢ i=1

wherep, is the critical density for water equal t@ = 322 kgm 2. In figure 3.3 the
values from equations (3.40) and (3.41) from for the liquatlisation density; ..
and vapor saturation density .., are compared with the experimental data [2]. This
again shows that the analytical expressions fit the expetmhdata accurately.

R
1000¢ — Liquid saturation density
7 800r
g
o0
=
§ 6001 e NIST data saturation density
400r
C
200
R — Vapor saturation density
0k e ; ‘ ; ‘
300 400 500 600 700
T[K]

FIGURE 3.3: Comparison between analytical expression for saturatioves (solid
lines) and experimental saturation data [2] (dots) for theger saturation density
pusat [ kgm ™3] and liquid saturation density; s,; [kgm ™3] versus temperatur@’
[K]. Ris the triple point and”' is the critical point.

3.4.1 Liquid phase

As presented in section 3.3 we follow Saueehl. [166] by adopting a modification
of the Tait equation of state to describe the pressure ofdqo@llas a function of the
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density and temperature:

N
Pl
T =Ko |[[—2—) —1
(o1, Th) 0[<pz,sat(Tz)>

where for water{, = 3.3x10% PaandN = 7.15 are taken to be constant. A caloric
equation of state that is a good approximation, see sect®nis3given by

+ Dsat (Tl)’ (342)

el(T;) = Cu(T) — To) + e, (3.43)

whereC,, is the specific heat at constant volume for liquid, is a reference tem-
perature and, is the internal energy at this reference temperature. Ftentiaese
constants have the valués; = 4180 Jkg 'K, Ty = 273.15 K andejy = 617.0
Jkg~!, respectively. Applying equation (3.25), the speed of sayirin the liquid is
given by:

Nﬁ(jl) yZ! < Nﬁ(jl) >
2 / /
& = + (D) — ——2 o (1)) ), 3.44

— sa d ,Sa T
Wherep(T) =D _psat(T) + K01 plsat(T) = dpdi%(T) andp;,sat(T) = pl'dﬂf( )

3.4.2 Vapor phase

Saurelet al. [166] use the ideal gas equation of state for the vapor phase

pv(pm ev) - (’Y - 1)Pv€v, or pv(pvaTv) = pvRTvv (345)

with ~ the ratio of specific heats and = R/J\Z/ the specific gas constant for vapor
with v = 1.327 andR = 461.6 Jkg~' K~!. The corresponding caloric equation of
state is

ev(Tv) = va(Tv - TO) + LU(TO) + €0, (346)

where L,, represents the latent heat of vaporization &ng the specific heat at
constant volume with values, (Ty) = 2.3753 x 10 Jkg 'K~!, Cy, = 1410.8
Jkg 1K1, Ty = 273.15 K, respectively. The speed of sound of vapgiis given
by

2 =~2 — \RT,. (3.47)
Table 3.2 gives an overview of values of the parameters ustikiequations of state
for liquid and vapor.
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Liquid Vapor
parameter] value parameter] value
N 7.15 y 1.327
Ky 3.3x10% Pa R 461.6Jkg K1
Chy 4180Jkg 1K1 o 1410.8Jkg 'K~!
Ty 273.15K Ty 273.15K
el 617.0Jkg ™! Ly(Tp) | 2.753x 10 Jkg 'K~!

TaBLE 3.2: Parameters for liquid and vapor phase of water.
3.4.3 Mixture phase
The two phases in the mixture are assumed to be in thermal aatianical equi-

librium and the pressure in the mixture phase is taken to beldq the saturation
pressure:

p=py=p, and T, =T, (3.48)
P = psat(T). (3.49)
The mixture density and mixture internal energyare defined by
p = apv,sat(T) + (1 - a)pl,sat(T)’ (350)
pe = apysat(Tes(T) + (1 — a)prsar(T)er(T), (3.51)
where the void fraction of the vapar= V,,/V is obtained from equation (3.50) as
— T
a = p pl,sat( ) (352)

B pv,sat (T) - pl,sat(T) .
For the two-phasic states, the temperature is determined definition (3.51) of the
internal energy of the mixture by substituting equationgdpand (3.46)
peE = (T - TO) {apv,sat(T)va + (1 - a)Pl,sat(T)Cvl} + Py, sat (T)LU(TO) + pego.
The model is based on thermodynamic equilibrium and thusdldibrium speed of
sound in a saturated mixture can be calculated by the forofuleallis [214]
r «a + 1l -«

pC2 pv,sat(T)C?) pl,sat(T)CIQ -
In figure 3.4 the resulting mixture speed of sound is preserntean be seen that for
values of the void fraction betweénl < o < 0.9 the corresponding speed of sound
is lower than 10ms~".

(3.53)

Equations (3.50)—(3.53) represent a closed algebraiemsyttat permits the com-
putation of all thermodynamic variables for equilibriunatsts inside the saturation
zones. The equations of state for all three possible phases@resented in the— v
diagram shown in figure 3.5. The liquid density and vapor iigase compared with
the IAPWS experimental data represented by the black ddigure 3.5.
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FIGURE 3.4: The mixture speed of sourdms~!] at 7 = 298 K as a function of
the void fractiono. Note that, for liquid & = 0) the speed of sound is approximately
equal to 1540ms~!, for vapor (@ = 1.0) the speed of sound is 42@s~! and for

a = 0.5 the speed of sound is equal to 4uls~!.
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FIGURE 3.5: p-v diagram for water with isotherm at reference temperature
T = 298 K. Presented are the IAPWS experimental data [2] (black dtie) sat-
uration curves for liquid and vapor (dashed lines), the sation pointsSy, and Sy
at T = 298 K for liquid and vapor, respectively, the modified Tait eqoatof state
for the liquid, mixture state and the perfect gas equatiostafte (solid lines).C' is
critical point.
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3.5 Remark on extension to non-equilibrium models

The formulation presented in the preceding section doeseuptire the solution of
an additional transport equation for the mass fraction arme fraction of vapor. To
incorporate non-equilibrium effects the equilibrium caiwhs p, = p; = Psa:c(T)

andT; = T, are relaxed and the following conservation equation fovegor mass

is added:
dapy

ot

with M, a finite-rate mass transfer source term for vapor. This tasion offers the
possibility to include a relaxation term in order to modehreqjuilibrium processes
and thermodynamic effects, which offers more flexibilityd&scribe phase transition
in cavitation. However, in the existing (incompressibl@wilmodels this flexibility
comes at the prize of user-defined free parameters in particuthe source terms.
These empirical parameters must be chosen very carefully. h&Ve investigated
non-equilibrium models for incompressible flows as presegim appendix G. More
research should be conducted to obtain the adequate valudsete parameters in
order to enable prediction of cavitation with smaller utaimty. Source terms with-
out empirical parameters such as proposed by Senocak & SfA@Y pr source terms
based on thermodynamic considerations as proposed byetl@n100], do not de-
pend on user-defined free parameters and are preferabléheverore conventional
methods.

+ V- (ap,d) = M,, (3.54)

Furthermore, we experienced numerical instabilities wtiendensity ratiop;/p,
was increased to a value exceeding 100. As discussed iors&ch one of the pos-
sibilities for these instabilities might be the JST flux stlee which we have used
in combination with the non-equilibrium models. Employiaglifferent flux scheme
such as the HLLC flux scheme as described in section 4.5, nmagvesthese insta-
bilities.

When a compressible water-vapor medium is considered atticadd and major
challenge lies in preserving the hyperbolic consistencthefsystem of equations.
Furthermore, when both water and vapor are present in ong@wational control
volume two different pressures need to be accounted fougir@ppropriate equa-
tions of state. The pressure in the liquid phase will beconegéative”, i.e. a tensile
stress. The question is which equation of state can be us¢hisaegime. For den-
sities between the spinodal values the acoustic eigers/&u¢he Sanchez-Lacombe
equation of state as used by Edwards & Liou [68] the Van der Waals equation of

I Edwards & Liou [63] employed the Sanchez-Lacombe equatistate for real-fluid flows accom-
panied with the equilibrium assumption in the two-phaseomego guarantee a real-valued speed of
sound.
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state are complex-valued, implying that the system of Eedgrations coupled with
these equations of state is not hyperbolic in the whole flold.fi&he equations of
state for liquid flow, as discussed in section 3.3, need tacberapanied with an ap-
propriate equation of state for the vapor phase. Howeveznwturning to a positive
pressure in the vapor phase from a negative pressure imgtind phase an inflection
point appears in thg-v-diagram resulting in complex-valued eigenvalues.







NUMERICAL METHODS
FORCOMPRESSIBLEFLOWS

For the simulation of cavitating flows the fluid is consideasch homogeneous, com-
pressible, inviscid medium as presented in sections 32-3he flow of such a
medium can be described by the three-dimensional unstealgy &quations, which
are presented in section 4.1.

The literature on the numerical simulation of compressflis is extensive, see
amongst others the books by Toro [194], Blazek [25], Feetd64], Laney [122]

and Hirsch [90, 91]. In this chapter an overview of the retévaumerical methods
is presented. The focus is on addressing the critical asmédimulating a com-
pressible flow over a wide range of Mach numbers with an ayitequation of state
employing a numerical method implemented on an unstrudtadge-based finite-
volume computational mesh.

In the present study the edge-based finite-volume methodrsiructured meshes
is employed, which offers great flexibility and easy ap@itity to the solution of
flow problems in domains with a complicated geometry. Thedimolume mesh is
presented in section 4.2 followed by the finite volume foratioh in section 4.3.

In section 4.4 the time-integration method is outlineddakd in section 4.5 by the
description of several different flux schemes. In sectidntde MUSCL-type higher

order spatial reconstruction for unstructured grids iscdbed, which is necessary
to extend the numerical method to second-order spatiaracguln section 4.7 the
low-Mach number problem is addressed and an adaptatior tituthschemes in or-

der to overcome this problem is presented.

The formulation of the boundary conditions are presentedeiction 4.8. In the
present work the boundary condition treatment of Thompd®@9] using the per-
fect gas law as the equation of state, is generalized to atmaaybequation of state.
Lastly, the solution procedure is presented in section 4.9.
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4.1 Three-dimensional unsteady Euler equations

The equations of motion describing an inviscid, non-heatdcicting, compressible
flow are the Euler equations. These five equations form ainea# system, express-
ing the conservation of mass, momentum and energy. Comsydephysical domain
Q2 at a fixed position with boundaryy = 0¢2, the Euler equations read in integral
conservation form

% [[fuae+ [[F)-ada=o, (4.1)
Q A

whereU = [p, pu, pv, pw, pE]" is the vector of conserved variables wijtlthe den-

sity, i = [u,v,w]’ the velocity vector,E = e + %ﬁ-ﬁ the specific total energy,
ande the specific internal energy. The out of the control volumreated unit normal
vectorii = [n,, n,,n.]7 denotes the orientation of surfage The tensor of fluxes
F(U) written as[F,.(U), F,(U), F.(U)] is given by

pu pv pw
qu +p pVU pwy
F(U) = puwv  pv:4p  pow : (4.2)

puw pow pw2 +p
puH pvH pwH

wherep is the pressure anll = £ + p/p = h + 51-i is the specific total enthalpy.
The inviscid quxF(U)-ﬁ in equation (4.1) can now be found by

F(U)-ii = F,(U)n, + F,(U)n, + F.(U)n,, (4.3)

which yields
pU
. plu + png
F(U)n= | paw+pny, |, (4.4)
puw + pn
puH
wheret is the contravariant velocity component normal to the srfa defined by

U = U-0 = ung + vny + wn.. (4.5)

The system of equations (4.1) is not closed and an appregatation of state is re-
quired, which preserves the hyperbolic nature of the systieequations as discussed
in sections 3.2—3.5. We choose the equations of gtatep(p, 7)) andh = h(p,T)

of section 3.4.
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4.2 Finite-volume mesh

Let Q C R? be the physical domain occupied by the fluid and(lgtbe a polygonal

or polyhedral approximation of2. The set of finite volumes or control volumes
Vi, = {Vi};e s, whereJ Cc Z* = {1,2,...}, is called a finite volume mesh ,,,

if all control volumesV; are closed polygons or polyhedrons with mutually disjoint
interiors such that

o=V (4.6)

In unstructured meshes the control volumes have no paticutlering, i.e. neigh-
boring control volumes cannot be directly identified by thedices. Employing the
numerical program FavomesfiL09], the control volumes are constructed from a fi-
nite element mesh by means of a node-centered dual meshegbeses of Put [153]
and Kelleners [109]. The finite element meshes can consilgione type, triangles
or quadrilaterals in 2D and tetrahedrons or hexahedra in=3@al as of a mix of
different element types, quadrilaterals and triangleddrad hexahedra, tetrahedra,
prisms and pyramids in 3D, see the MSc-thesis of Hospers T9&] mixed grids are
usually called hybrid grids. In the present numerical méthoy combination of any
type of elements can be employed offering great flexibilitgdnstructing a mesh of
good gquality around a complex body and fitting this mesh msithounding box. As
an illustration the reader could think of a hybrid mesh atbarship propeller, which
is located inside a cavitation tunnel.

In figure 4.1 a dual finite-volume mesh associated with aduidar grid is illustrated.
A control volume (grey polygon) associated with a vert@} ¢f the triangular grid
is defined as a closed polygon. This polygon is obtained byrjgithe centers of
gravity (©) of every triangle that contains the vertex with the midpd¢in) of every
edge containing the vertex. If the vertex belongs to the daognof the computa-
tional domain, then the control volume is closed by the gltasegments joining the
vertex with the midpoints of the boundary sides that contianvertex.

As illustrated in figure 4.1, for 2D the face between two cohiblumes now consists
of two segments, denoted I8y and.S; in figure 4.1 with unit normal vectorg; and
n,. In 3D the number of sub-faces that form the face of the contlume is arbi-
trary. For the present numerical method these segmentsangired into one single
face with one single unit normal vector. For more detailsteeahesis of Kelleners
[109]. Note that the total number of control volum&s, is equal to the total number
of vertices of the finite element mesh.

*The numerical program Favomesh has been provided by P.ré&Be For this, the author would
like to express his gratitude.




56 CHAPTER4. NUMERICAL METHODS FORCOMPRESSIBLEFLOWS

FIGURE 4.1: Construction of the node-centered finite volume mesh in am the
triangular elements. The two segmeftsand.S, separating the two control volumes,
with their unit normal vectorsi; and ni;, are combined into one segment with one
unit normal vector, see for more details the thesis of Kelterj109].

Denote the set of all interior faces b9y, the set of all boundary faces I and the
set of all faces by; g = S U Sg. Two control volumed/; andV; are either disjoint
or their intersection is formed by a common part of their tamesoV; andoV;. If
0V; N 9V; contains at least one segment or one manifold tieandV; are called
neighbors and their shared segments are denoted by thieirfeee S;;:

Sj =0V;nov; = S;. 4.7)

In the numerical method;; consists of only one segment or manifold. The following
notation is introduced]V;| is the area (2D) or volume (3D) of control volunié,
|Si;| is the length (2D) or area (3D) of fac;, the vectom; is the outer normal unit
vector todV; on §;;. Define the ses(i) as the set of indices of all the neighbors of
control volumeV;:

sy={jeJii#j | OVinaV; #0}. (4.8)

The segments or manifolds of the boundé&#y; of the control volume that are part of
the boundary(2;, of the computational domain are denoted$y, wherej € Jp C
Z- ={-1,-2,...}, thusS; C 9V; N 9Q,. Note that,/ N Jp = @), meaning that
the boundary faces are not part of the interior faces andwécsa. Define the set
sp(1) as the set of the indices of all the faces of control volumevhich belong to
the boundary(?;, of the computational domain

ss(i)={j€Jg | S;CAV;NON}, (4.9)
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and thus we have that
ovinow = J 8. (4.10)
J€sp(1)
Now the setS(¢) of all the indices of the faces of control voluné are formed by
putting

S(i) = s(i) | ss (i), (4.11)
resulting in
v, = |J s (4.12)
JES()
Vil = > ISyl (4.13)
Jes(i)

Defining Ny, as the total number of faces; of control volumeV;, i.e. Ny, = [S(7)
and defining a one-to-one mapping frofiti) — S(i) C Z*, we can write equa-
tions (4.12) and (4.13) as

Nfi

v, = Y S, (4.14)
j=1
Nfi

Vil = > ISl (4.15)
j=1

4.3 Finite-volume formulation

In order to derive a finite volume scheme equation (4.1) cacdbsidered for each
control volumeV; with boundaryoV;:

a - —
ot Hf Udv + ﬂ F(U)-1;; doV; = 0. (4.16)
Vi oV,
Defining the control volume averagés as

U; = |71| jvﬂ udv, (4.17)

t It can be shown that the control volume averad&sare up to second order equal id .4, the
function value at the center of gravity or centroid of the tohvolume, see thesis of Kelleners [109].
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with |V;| the volume of control volumé; and taking into account equation (4.14)
yields
00, 1 &
5t ;QF(U)-nij ds,; = 0. (4.18)
=15

The quxﬁ(U)'ﬁ can be evaluated by considering equation (4.3), i.e.
F(U)-ii = F,(U)n, + F,(U)n, + F,(U)n,. (4.19)

However, this would require three different flux evaluasiorinstead, the flux can
be evaluated by exploiting the rotational invariance prypef the Euler equatiods
which states that

F.(U)n, + F,(U)n, + F,(U)n, = T"'F,(TU), (4.20)

with T the rotation matrix and@'~! its inverse given in terms of the elements of the
unit normal vectoii = [n,, ny, n.|T by

1 0 0 0 O 1 0 0 0 O
0 ng ny mn, 0 0 ngy tie tog O
T=|0 tiy tiy ti, 0|, T =]0 n, tiy t2, 0|, (421)
0 t2,x ZL/2,y t2,z 0 0 Ny ZL/l,z ZL/2,z 0
0 O 0 0 1 0 0 0 0 1

where the unit vectors, t; andt, form an orthogonal system, ifét; = 0, fito = 0
andt;-ty = 0. Note thatn = t; x ta.

Thus, the quxF(U)-ﬁ can be evaluated by first applying the rotation maffix
to the original column vector with the conserved variablégielding the rotated
conserved variablet) = TU. Note thatU is aligned with a new Cartesian frame
(2,9, 2), where the coordinate is in the direction normal to the boundasy; in the
direction ofni andy, 2 are in the directions tangential to the boundayy. Then,

the inter-cell fluxF,(U) is evaluated and rotated back to they, ) directions by
applying the inverse of the rotation matrix. Equation (4.d& now be written as:

_ Ny,

aUZ 1 X _1

2tV Zl [[ TP, (TU) s, = 0. (4.22)
J=15;

#The proof of the rotational invariance property of the Euéguations is usually presented in two
dimensions, see for example Toro [194]. In appendix B thefdropresented for three dimensions with
the rotation matriXT' of equation (4.21). Note that the proof for the hyperbajicit the Euler equations
can be formulated similarly, see for example Feistauer [®&4 is omitted in this thesis.
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The inter-cell fluxt, (TU) can be approximated by the numerical fHXTU, TUR):
F.(TU) ~ H(TU, TUg), (4.23)

whereU, and U g depend on the control volume averagésandU,. Before pro-
ceeding the following notation is introduced for the nuroakiflux:

T 'F,(TU) ~ T'H(TU,, TUg) = H(U, Ug, i;;), (4.24)

where the unit normal vectat;; defines the rotation matricés and T~!. When

the facesS;; belongs to the boundaty;, of the computational domain, then it is nec-
essary to determin® z from boundary conditions. Note that, wh&fy, = U, and

U = U, the finite volume scheme is first-order accurate when an ajppate Rie-
mann solver is used. The extension to higher order is predéntsection 4.6. Also,
note that wherlJ; andUg depend on the control volume averages at the previous
time level(s) only, the scheme is explicit. WhEh, andU g also depend on the con-
trol volume averages at the current time level, the schenmagkcit.

Applying equation (4.24) to (4.22) and assuming that the evigal fluxH is con-
stant over the face;, the semi-discretized form of the finite-volume formulatio
reads:

oU; 1 &
o +W;H(UL,UR,nij)\sgj\:o. (4.25)

The finite-volume approximate solution of equation (4.1jrae ¢t = ¢* is defined as
the piece-wise constant vector-valued functidfﬂ‘@ which are obtained from equa-
tion (4.25). The vectofjf, i.e. the control-volume-averaged value of control volume
V; can be considered as the value of the approximate solutitire atentroid of the
finite volumeV; at timet = ¢*.

4.3.1 Properties of the numerical flux
The numerical flu should have the following properties:
1. H(U, V,n) is consistent:

H(U,U,id) = F(U)-i (4.26)

2. H(U, V, 1) is conservative:

H(U,V,ii) = —H(V,U, —ii). (4.27)

If H satisfies conditions (4.26) and (4.27) then the method J4s25lled consistent
and conservative, respectively.
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4.3.2 Riemann problem

(Approximate) Riemann solvers define the numerical #Hiky adopting a Riemann
problem at every cell interfacg; as illustrated in the left picture of figure 4.2. Denote
the location of the centroid of the interface ®y. In terms of the rotated coordinates
Z, y andz with z in the direction normal to the interface and whérandZ are in the
tangential directions, the interface is located:at 0. The Riemann problem at time

level " at the interfaces;; is denoted byR P’ (I]"z, ﬂ%) and has initial conditions

. {UL:TUL fa<o (4.28)

U@t =4 - .
@)= on —TUn i8>0

as presented in the left picture of figure 4.2.
U(&, t" t
(¢ A S S, Sk
U% . . . .

A

Ui

2y

=0 Z
FIGURE 4.2: Riemann problem (left) at the interface locatedkatcorresponding to

& = 0, at time-levek = ¢* and Riemann fan (right) with four solution states, &;,
U.r, U.gr, Ug, separated by a left wave, a contact wave and a right wave evhos

speeds are denoted IS¢, S, and Sg, respectively.

For t—" not too large, the Riemann probleR\” (fjg,fj’]%) has a similarity so-
lution that is constant along plane manifoléls= /(¢ — t") = const in the (,t)
plane. A possible configuration of the solution is preseindte right picture of fig-
ure 4.2. The waves denoted By andSg correspond to two nonlinear waves across
which all primitive variables change. These waves can bieeeghocks or rarefac-
tions. The waveS, in between the left wavé;, and right waveSg correspond to
three linear waves, which always lie between the nonlineares. One of these lin-
ear waves correspond to a contact wave across which onlyethgtg changes. The
other two linear waves correspond to shear waves acroshwhiy the tangential
velocity component$ andw change, respectively. In the solution of the Riemann
problem two state¥J,; andU, z between the nonlinear and linear waves exist. The
pressure* and the normal velocityg* in the two star-regions are equal to each other,
l.e.p; = pp, u; = U%. The density changes across the contact wave and thus it is
different in the two star-regions.
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Now denote this similarity solution b¥J’;,(s). The value along = 0 gives the
solution at the interface;; and thus the numerical flud can be defined by

H(U?, U, 1i;;) = T~ 'Fo(Ukp(0)). (4.29)

Methods based on the solution of the Riemann problem aredcc&@lodunov-type
methods after Godunov [79], who presented a first-order mghatheme which could
capture shock waves without introducing spurious osoiiet Godunov's method
and its various derivatives have become very popular duddin tobustness and
ability to achieve high resolution of discontinuities. Téwginal Godunov scheme
assumed the construction of an exact solution of the Rierpaoislem, which is in

general difficult. This drawback can be avoided by the usendd@proximation of

the exact solution resulting in a so-called approximatariien solver.

4.4 Time-integration

The semi-discretized form of the finite-volume formulatisrpresented in equation
(4.25). Defining the residud@®]’ at time-levelt™ for control volumeV; as:

Ny,

n 1 - n n -

R} = v Y~ H(U}, U, i) IS5, (4.30)
i3

then equation (4.25) can be written as

U,
ot

+R? =0. (4.31)

To advance the solution from time-lewél to time-levelt"+! a standard low-storage
four-stage Runge-Kutta time-integration method is emgipywhich is defined as
follows:

ul” = oy,
u® = U o ARNY fork—1,....4
o = U, (4.32)

with the coefficientsy, equal to[0.1084,0.2602, 0.5052, 1.0], resulting in second-
order accuracy in time [25]. For unsteady flow calculatidms time stepAt is a
global time step defined as the minimum of the local time stépdl control volumes

At = min At;, (4.33)
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where the local time step is defined by

4

At; = — -
! max (|U;] + ¢, [U;])

(4.34)

with ¢; a characteristic length of control volumé defined as the diameter of the
smallest inscribed sphere of control voluiieand whereii; andc; are the local ve-
locity vector and speed of sound in control voluivig respectively. The constant
CFL numberC is set to 0.8 unless stated otherwise.

For steady-flow calculations local time stepping can beiaggb accelerate the so-
lution to steady-state. Then, assigned to each controlwely; is At; defined in
equation (4.34) instead of the global time stepfrom equation (4.33).

45 Flux schemes

In the present research a number of classical flux schemeddeawn investigated. At
first, the Jameson-Schmidt-Turkel (JST) scheme with thegoitioning method of
Weiss & Smith [218] was employed following the theses of HgliB3] and Verhoeff
[212]. However, it was found that for cavitating flows the J§heme introduced
small oscillations at sharp gradients of the density in tbev.fl These oscillations
were disastrous for the stability and accuracy of the nurakmethod. In the search
for a more robust, stable and accurate scheme other flux sshieave been consid-
ered. For clarity and completeness in later chapters, thgsemes are described in
this section.

The stability and accuracy of the scheme is not only infludrme sharp gradients
of the density in the flow. The so-called low-Mach number pEobis also very
important. This problem is addressed in section 4.7.

45.1 Jameson-Schmidt-Turkel scheme

One of the most widely known and used flux schemes is the Jem&dumidt-Turkel
(JST) scheme [106]. The numerical flux at a faggis calculated by averaging the
conservative variables to the left and to the right of thefac

Hjst (ULaURyﬁij) = (F(GZ) —I—F(GJ))ﬁZJ (4.35)

N

Note that for the left and right states at the face the comblme-averages are
substituted. The central discretization of equation (Mi8known to be unstable. To
suppress odd-even decoupling and to avoid spurious dgmiéanear discontinuities
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an explicit artificial dissipatiochtermD; is added to the right hand side of the finite-
volume formulation in equation (4.25). On structured giitdis based on a blend
of 2nd- and 4th- differences scaled by the maximum eigervafuthe convective
flux Jacobian. On unstructured grids a combination of anuithelil Laplacian and
biharmonic operator is employed [105]. Here, the formaolatf Verhoeff [212] is

followed: .
©)) (4)
D,=— (D" -D;"]), 4.36
\4 < : : ) (4.36)
with |S;;| the surface area of the face and whﬁg) is a second-order dissipation
term related to the control volume-averaged value of thddcign of U, i.e. AU =

V - VU, which is computed in flux form as:
D = Z e (T =0y |81, (4.37)

The fourth-order dissipation teerZ@) is related to the control-volume-averaged
value of AAT. In flux form D" is defined by

Nf Ny,
D = Z)\” e [0 -05) =Y (0 - Ty) | 1841- (4.38)
k=1 k=1

The coefﬂment/\ij is an estimate of the spectral radius of the local flux Jacoata
the face: )

Nij = 5 (G| + i + g5 + ¢5), (4.39)
with d the local velocity vector and the local speed of sound, respectively. The
dimensionless artificial dissipation coefficientd ande® are defined as:

. 1
65]2) = min <I{27/ij, 5) ) (440)
D = ma (0, 54 — ), (4.41)

where ks, k4 and oy, are user-defined dimensionless constants, typical valies a
ko € [1/4,1/2], kg € [1/64,1/32] and,, = 2.0, depending on the flow problem
considered, see Wesseling [219]. The dimensionless péeameg is the so-called
“shock sensor” defined as

vij = max(v;,v;), (4.42)
Nfi | |
Pr — Di
1; Pk + pil

$so-called because of its resemblance with viscous terms




64 CHAPTER4. NUMERICAL METHODS FORCOMPRESSIBLEFLOWS

For cavitating flows the shock sensor needs to be defined odethgty as well in
order to detect sharp gradients in density. Near sharpemutedthe coefficient; is
large and thus the fourth-order dissipation will have thee® and only the second-
order dissipation is present. In smooth regions of the flpws small and thus the
second-order dissipation will become small while the flowotder dissipation will
remain non-zero.

Failure of the JST scheme for cavitating flows

It was found that the JST scheme fails to calculate solufimnsavitating flows due to
under- and overshoots at discontinuities with large degmatios. As an illustration,
we select a Riemann problem employing the equation of stageerfect gas, which
resembles a moving contact surface with a large jump in teimsa constant pres-
sure field. The Riemann problem is defined in equation (4.88)fgure 4.2. Here,
we adopt the values for the left and right stdtg = [pr,ur, pr]” = [1.0,1.0,1.0]"
andVg = [1/10,1.0,1.0]7, respectively.

Note that in this problem, the density ratig,/pr is equal to 10. For cavitating
flow at a temperaturé =293 K with saturation pressune,,; =2, 318 Pa, the liquid
and vapor density are equal p9,; = 998.19 kgm™% andpy, sqr = 0.0172 kgm ™3,
respectively [2], resulting in a density raiQq¢ /v, sat = 58, 000.

For a quadrilateral grid with 100 points irrdirection the solution for the density at
t = 0.25s is presented in figure 4.3. The solution obtained with the I$iEme with
the shock sensor based on the pressure is compared withabesetution and the
numerical solution obtained with the second-order HLLCesl. The solutions for
the pressure and velocity are always found to be constamighout the domain.

In the solution obtained with the JST scheme distinct unded overshoots are
present around the contact surface. With the shock sensedban the pressure
it is not possible to calculate the solution for higher dgnsatios, because the under-
shoot generates negative values for the density resultirigilure of the numerical
method. Adopting a shock sensor based on the density imptbreesolution. The
undershoots are reduced significantly, such that probleithsdensity ratiosr./pr
up to a value of 100 can be calculated. However, the undetslimaensity are not
completely removed. Tuning the values for the constanis:, anda; improve the
results, but even then the over-and undershoots are notlettyremoved. For cav-
itating flow problems with allowable density ratios largean 50,000, it was found
that the undershoots result in negative values for the feasd thus in failure of the
numerical method.
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FIGURE 4.3: Solution of Riemann problem, representing a moving corgadace
with a jumppr/pr = 10 in density. Presented are the exact solution (solid line) an
the numerical solutions obtained with the JST schemecfor= 0.5, k4 = 0.025,
o, = 2.0 and second-order HLLC scheme, respectivaly. = 0.01, CF'L = 0.8.

45.2 HLLC flux scheme

Harten, Lax and van Leer [87] presented an approach forrgplvie Riemann prob-
lem approximately. The resulting Riemann solvers have mec&nown as HLL
Riemann solvers. In this approach an approximation for timaerical flux at the
interfaces of the control volumes is obtained directly. Tdea is to assume a wave
configuration for the solution that consists of two wavewitven speeds separating
three constant states. However, the assumption of a twe-wanfiguration is not
correct for the Euler equations. The resolution of contaates and material inter-
faces is inaccurate. Toet al. [195] modified the HLL solver to improve the solution
around such contacts. This modification has become knowmeadltLC Riemann
solver. The derivation of the relations can be found in thekoaf Toro [194]. Batten
et al. [21] showed that with an appropriate choice for the acouwstid contact wave
velocities the HLLC solver yields the exact resolution afiaded shock and contact
waves. Furthermore, they demonstrated that this solveossiyely conservative,
which forces the numerical method to preserve initiallyiipas pressures and den-
sities. Here, the formulation of Battezt al. [21] is followed to construct a HLLC
solver for an unstructured mesh.

As illustrated in the right picture of figure 4.2 the Riemamolgem at the cell inter-
face has a similarity solution with four possible statepasated by three waves. The
HLLC scheme considers an approximation of the Riemannisaolas a simplified
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Riemann fan with four possible constant states,We, U, ., U,z and Uy, sepa-
rated by a left wave, a contact wave and a right wave with spged, and Sy, re-
spectively. Note that the stat&hy are the rotated conserved variabl&s; = TU
with T the rotation matrix defined in equation (4.21). The wave dpege defined

by

Sp, = min(dy — cp, R — CRr), (4.44)
Sp = max(ﬂL +cr,UR + CR), (4.45)
5. — prRUR(SR — UR) — prur(SL —ar) +pr — PR (4.46)

pr(Sr —UR) — pr(SL —ur)

with ¢ the speed of sound aridthe velocity in normal direction, i.€. = d-n. The
approximate solutiofU, is given by

A

Uy, if S>>0

X U, if S, <0<8,

U, = ~ . . 4.47
U.r if S, <0< 8y ( )
Ugr If Sp<0

To determine the intermediate stalds; andU, the following conditions are as-
sumed:

ﬁ/*L - '&*R - 'IAL* - S*: P« = PxR = DPx» (448)

wherep, is given by
p« = pr(tr — Sp)(0r — Sk) +pr = pr(tr — Sr)(Ur — ) +pr.  (4.49)

The intermediate state vectdis,;, ; are now given by

1 0
N S — 14 up, 1 P« —PK
U = pre [ XUV g |+ (o 0 . (4.50)
Sk — S, - Sk — S,
Wi 0
E, P+Ss — P UK

and the numerical HLLC flu¥ ;. can be written as

F,(Uyp) if S;>0
. 1) Fo(UL)+S.(U., —Up) if Sp <0< 8,
Hy;.(Up, Ug,ii;;) =T ! N . " ) .
(UL, Ur, 1) F,(Ug) + Sgp(U.z — Ug) if S, <0< Sk
Fx(UR) if Sp<0

(4.51)
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4.5.3 AUSM family of schemes

Liou & Steffen [133] proposed a simple and accurate flux ptitscheme denoted by
Advection Upstream Splitting Method (AUSM). The undemlgiidea of the method
is the observation that the inviscid flux consists of two ptsity distinct parts,
namely a convective part and a pressure part. So the basisiétdrmine an appro-
priately defined cell-face advection Mach number usingegliuom the two neigh-
boring control volumes via associated characteristicdgealso, a pressure splitting
is applied. For different purposes, a number of extensiosnaodifications to the
scheme have been proposed. Amongst others we recall the Als8Meme [130],
which is designed to remove pressure oscillations arowwlglimoving shocks and
contacts for cases in which the flow is aligned with the gtie, AUSM+-up and the
AUSM-+-up for all speeds schemes [131, 132] which are dedigoémprove accu-
racy for the case of low-Mach number flows.

The starting point is to split the inviscid quﬁ(U)-ﬁ into two parts, a convective
flux F(©) and a pressure fluk®):

F(U)-ii = F© 4+ FP) = jjgp + FP), (4.52)
with the mass fluxi equal torh, = p(ii-ii), the vectorp defined by = [1,u, v, w, H]”
and with the pressure flux equalB?) = p [0, ny, n,, 1., 0]7. The numerical invis-

cid flux H is also split in two parts, a numerical convective fHX” and a numerical
pressure fluEH®):

H(Uy, Ug, ii;;) = H (U, Ug, i) + H? (UL, Up, iiyj). (4.53)
The numerical convective flul(©) is defined in the following general upwind form
HO (UL, Ug, fiyj) = iy + i g, (4.54)

where the contributiong); and) are weighted by the split mass fluxes" and
", which follow the consistency requirement

m=m' +m", (4.55)
the proper upwinding conditions
mt >0, m” <0, (4.56)
and the mutually exclusive requirement

(mT)(m ™) = 0. (4.57)
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The split mass fluxes are defined by
mt =cpLMT, mT =c¢prM™, (4.58)

with ¢ a common speed of sound defineddy 3(c;, +cg) and whereM + and M ~
can be combined into the interface Mach numbé&with A/ = M+ 4 M—, which
is defined later on. Using the properties (4.55)—(4.57) tiaerical convective flux
can be rewritten as

H) (UL, Ug, 1) =M prr /g (4.59)
where
_ [ () i M>0
()L/R—{ (p if M <0 (4.60)

The numerical pressure fliH®) is defined as

H(p)(UL>UR7ﬁij) =p| ny . (461)

The AUSM, AUSM+ and AUSM+-up schemes differ in their defioitiof A/ and
p. To facilitate the formulation of the different schemes fokowing polynomial
functions are defined:

Mﬁ)(M) = %(Mi M), (4.62)
ME (M) = ii(Mﬂ)?, (4.63)
. MG (M) it |[M|>1
M) = , 4.64
My (M) M, (M) (1;16@\/& (M)) if M| <1 (4.64)
) )
1

—ME (M if |[M]>1
Poy(M) = ¢ M ot M= d o)

M (M) ((iZ—M) q:16aMM?;)(M)) if [M] <1

The left and right Mach number®;, and Mg are defined by

My = 2B gy, = BER (4.66)

c c
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AUSM scheme

The AUSM scheme [133] is defined by using the numerical cdaiveeflux H(®) in
equation (4.59) and the numerical pressure HIf® in equation (4.61) and by setting
M equal to

M = M?;l)(ML) +M(_4)(MR), (4.67)

with 8 = 0 in equation (4.64) and by settingequal to
p= pL'P(—g)(ML) + pR'P(E) (MR), (4.68)

with o = 0 in equation (4.65).

AUSM+ scheme

The AUSM+ scheme [130] is defined by using the numerical octiwe flux H(¢)
in equation (4.59) and the numerical pressure % in equation (4.61) and by
settingM equal to )

M = M}y (ML) + M (M), (4.69)
with 3 = £ in equation (4.64) and by settifgequal to

b =pLPE (ML) + pRP 5 (M), (4.70)

with o = 2 in equation (4.65).

AUSM+-up scheme

The AUSM+-up scheme [131, 132] is defined by using the nurakcienvective flux
H(® in equation (4.59) and the numerical pressure HIf%) in equation (4.61) and
by settingM/ equal to

M = M7,

(o (ML) + M) (M) + M, (4.71)

with M, defined by

M, = — K, max(1 — o M2, 0)pRﬁ;2pL, (4.72)
where ) )
ﬁ=§(PL+PR)v M2:§(ME+M§)- (4.73)

and with the coefficients equal to= 1.0, K, = 1 and3 = .

P is set equal to
p= pLP(Jg)(ML) + PrP 5 (MR) + Pu, (4.74)
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whereP, is equal to

P, = —2K,p¢* P(—g)(ML)P(E)(MR) (Mp — Myp), (4.75)

with K, = 3 anda = 2.

AUSM+-up for all speeds scheme

The AUSM+-up scheme for all speeds [131, 132] is defined byptdgp the AUSM+-
up scheme by using the numerical convective fHii¥) in equation (4.59) and the
numerical pressure flul(®) in equation (4.61) and by setting equal to

M = M@)(ML) + My (Mg) + My, (4.76)
with M, defined by
M, = — B2 rmax(1 — o N12, 0)PRZPL 4.77)
ot gt '
where
1 _ 1
p=5 (oL +pr), M= (M]+Mp), (4.78)
and
fa(Mo) = My(2 — My), (4.79)
with
My = min (1,maX(M2,MCZO)) : (4.80)

and with the coefficients equal to= 1.0, K,, = 1, 8 = 1 andM, = 1072

p is set equal to

P =pLP§ (ML) + prP (Mg) + Pu, (4.81)
whereP, is equal to
Py = =2foKupe® P (ML)P) (Mg)(Mp — ML), (4.82)
with
o= 1—36(—4 +5f2), (4.83)

and with K, = 3.
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4.6 MUSCL-type higher order spatial reconstruction

To extend the numerical method from first- order to seconttpra MUSCL-type
reconstruction method has been implemented. The Monotgwréam-Centred
Scheme for Conservation Laws (MUSCL) is based on the workaof veer [127].
The MUSCL approach implies higher-order accuracy obtaime@mploying data
reconstructions and the avoidance of spurious oscillatinconstraining the recon-
struction with the use of a limiter method.

The semi-discretized form of the finite-volume formulatimndescribed in equa-
tion (4.25). Taking the control volume average valligsandU; for the left and right
statesU;, and Uy for the numerical flux, results in a spatial discretizatiohis is
only first-order accurate. To obtain higher-order accurétty left and right states
U andUp can be taken from higher order polynomi&k(i) representing the so-
lution in control voluméeV;. Here, we consider piece-wise linear data reconstructions

Higher-order methods will produce spurious oscillatiamghie vicinity of high gradi-
ents. The use of monotone schemes would prevent such tsoilaUnfortunately,
Godunov stated that monotone linear schemes are at mosirfilest accurate. Thus
to get higher-order accuracy, non-linear versions of treetemes should be con-
structed by applying limiter functions to the piece-wiseelr reconstructions. We
are seeking the following desired properties:

1. second-order or higher accuracy when the solution is #moo
2. the produced solutions do not have spurious oscillati@as high gradients.

3. the schemes produce high-resolution of discontinuities

For structured meshes many techniques and limiter fursetiawe been constructed,
see for example the books of Leveque [128] and Toro [194]td#dB6] introduced
the useful concept of Total Variation Diminishing (TVD) oofal Variation Non In-
creasing schemes based on non-linear stability theory. T2 schemes are based
on a concept aimed at preventing the generation of new eatnertine flow solution.
Sweby [188] introduced the TVD region and the second ordeb T&gion giving
design rules for limiters. A few of the most popular limitene theminmod limiter
[128], thesuperbee limitef194], thevan Leer limiter[126] and thevan Albada lim-
iter [10].

Schemes for multi-dimensional structured meshes can tsrooted relatively easy
by dimensional splitting. However, Suresh [185] has shdvamfior multi-dimensional
problems most TVD limiters give rise to large spurious datidns near discontinu-
ities. The cause of these oscillations can be traced badctmstructions that are not
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bounded by neighboring cell averages. Suresh [185] prdwedftthe reconstruction
in each cell is bounded by the cell averages of first-ordeghimirs then the MUSCL
scheme is positivity preserving.

These TVD-schemes can not be extended directly to multedsional unstructured
meshes. This is specifically due to the difficulty in implertiegn and enforcing a
monotonicity criterion that relies on next-neighbor infa@tion. In structured grids
this information is available, but it is missing in unstuetd grids. Darwish and
Moukalled [53] gave a nice overview on TVD schemes for urcstmed grids. Barth
& Jespersen [20] introduced a MUSCL-type reconstructiotha for unstructured
grids, which is bounded over the whole control volume by talliinmediate neigh-
bors. Darwish & Moukalled [53] mention that the limiter of Ba & Jespersen and
the van Leer limiter were found to be similar. Venkatakrashrj208] adjusted the
method of Barth & Jespersen with a van Albada type limitethinpresent numeri-
cal method the limiter method for unstructured grids of B&tJespersen [20] and
of Venkatakrishnan [208] is implemented.

4.6.1 Piece-wise linear reconstruction

Considering piece-wise linear data reconstructions irh eamntrol volume the re-
construction polynomialdJ;(X) representing the solution for either the conserved
variablesp, pu, pv, pw andpE or the primitive variablep, u, v, w ande in control
volumeV; can be written as:

ﬁi (i) = ﬁi + (VU)cg,z(i - icg,i)v (484)

where(VU),,; is the gradient of the variabldd at the centroid of control volume
V; andx,., ; is the location of the center of gravity of control voluriig For linear
reconstructions the extrema Bf;(X) occur at the boundaries of the control volume.
We are interested in the value at the cent®jgof an interfacesS;; between control
volumesV; and its neighbol/;. For each face;; of control volumeV; the extrapo-
lated valuedU;; are equal to

Uij = U; + (VU),, ; (Rij — Regi). (4.85)

The gradien(VU)Cg,i in control volumeV; is computed using the Green-Gauss lin-
ear reconstruction from approximate forms of the exactiogla

/ vUdv = / Uiids. (4.86)
Vi aV;

So that
1

1
vU . vudV = — Unds, 4.87
(VOeq. |%|/ |v;-|/ i (4-87)
Vi oV
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with |V;| the volume of control volum&;. For a node-centered dual mesh the gradi-
ent is calculated by taking the sum over all faces of the vilyeat the face, i.e.

(VU)oys = o > Uy 18,1 (4.88)

with Ny, the number of faces of control volunig, |S;;| the surface area of face
Si; and where the valu#J; is taken as the weighted mean of the control-volume-
averaged values at both sides of the face:

u. _ Vi[O, +|v;|T;
d Vil + [V

(4.89)

To avoid spurious oscillations the extrapolated boundatyesU;; obtained from
equation (4.85) must be constrained with the applicaticmlwhiter function®. The
limited extrapolated boundary values are then used fordfieahd right statedJ;,
andUg:

U = Ui+ 9, [(VU),, (R — Kegi)| (4.90)
Up = U;+ 9, [(VU)CQJ-(iij - icg,j)} , (4.91)
whereW € [0, 1] is the limiter function yet to be defined.
Barth & Jespersen [20] enforced the monotonicity critetignstating that the val-
ues of the reconstructed polynomials within a control vatushould not exceed the
maximum and minimum control-volume-averaged solutionthefneighbors of the

control volume including the one of control volumé&. Thus Barth & Jespersen
required that

Uin <UL, Ug < UP?, (4.92)
whereU7"" = min (U;, Upeighbours) aNdU*** = max (Uy, Upeighbours ) -
The value for the limiter functiod’;, satisfying equation (4.92) is equal to
W; = min (¥;), (4.93)

with ¥,; the limiter function at the facs;;.
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Limiter function of Barth & Jespersen [20]

Barth & Jespersen defined the limiter functidn; as

ymner _ U, _
o —L——— if U; —U; >0
(Uij_U_i> ’
Vi = c1><7% _I_}J’) if Uj; —U; <0 (4.94)
1y ) _
1 if U — U, =0

which ensures that the argumentdofs always> 0. The function®(z) is defined by
®(z) = min(1, z), (4.95)

which renders¥;; € [0,1]. Venkatakrishnan [208] proposed a modified version of
the limiter of Barth & Jespersen to reduce its problems withvergence to steady-
state, which can be related to the use of non-differentifibietions such as thevin
function.

Limiter function of Venkatakrishnan [208]

Venkatakrishnan [208] proposes a modification of the varedéblimiter in combi-
nation with the method of Barth & Jespersen. With the unkachiéxtrapolated values
U;; defined by equation (4.85), I&t_ be equal to

A_=1U;; - U, (4.96)
and letA , be defined by

A+:{Ui ~U;, fA_>0

urin —U; fA_<0 (4.97)

The limiter function®;; of Barth & Jespersen, equation (4.94), is then defined by

v, = @(%) (4.98)

(@)

Venkatakrishnan proposed to modify the tefin & (%) yielding ¥;; as

(4.100)

1 [ (A2 + 2)A_ +2A%2 AT }

U, = —
TUOAL A2 4202 ALAL + €2
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where Venkatakrishnan take$to be equal tq K Ax)? with K = 0.3 and Az a rel-
evant local grid size. Venkatakrishnan mentions that alsrahle suffices, so taking
€2 = 102 to revert to the unlimited scheme for smooth solutions wdnglch valid
option. Taking a value of{ = 0.0 is known to stall convergence to steady-state,
whereas a higher value, such &s= 5.0, leads to oscillations near discontinuities,
see for more details Blazek [25]. To prevent division by g/\amall valueA _ in the
term < should be replaced byign(A_)(|A_| + w) with w = 10712,

In the present numerical method we adopt a valu& of 0.3 for steady flow calcu-
lations. For unsteady flow calculations we tadke= 0.0.

4.7 Low-Mach number flows

From the beginning of CFD in the 1960s two separate classesirokrical meth-
ods for numerically simulating flows have been used: detisfgsed and pressure-
based methods have been used for compressible and incaibpgetow, respec-
tively. However, many flow problems exist in which a part oé thow region is
nearly incompressible, whereas significant compressil@ffects occur in other re-
gions of the flow. Cavitating flow problems have a large donfiglied with almost
incompressible liquid flow and much smaller vaporous regionwhich the flow
is compressibe and even supersonic flow may occur. In reearsymany efforts
have been made to develop unified numerical approachesleagawlving a larger
range of fluid flow problems, see amongst many others Wegsglitf] and Koren
[114, 115]. For this purpose, either typical “incompreksiflow methods are gen-
eralized to high-speed compressible flows, or the “compesslow methods are
extended to low-Mach number flows or incompressible flows.

However, two major problems have been found to occur whevirgpllow-Mach
number flows with “compressible”-flow methods: (1) extreynglow or stalled con-
vergence (2) globally incorrect flow solutions. To solvesthgroblems a popular
technique has been to introduce suitable preconditioeags,Turkel [200] and Weiss
& Smith [218]. In more recent years, adaptation of the fluxesohs by scaling or
modifying the numerical dissipation in regions with low-ttanumber flows have
been found to be successful, e.g. Guillard & Viozat [82],L[@32] and Schmidét
al. [169].

The difficulty with slow convergence in solving the compibksflow equations
for low-Mach number flows is associated with the large digpan acoustic wave
speeds|i| + c and|d] — ¢, and the waves convected at fluid spefeil,[200]. The
“stiffness” of the equations is determined by the charastiercondition numbet’y
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[25] defined as the ratio of the largest eigenvalue to thelssiaigenvalue:

G| -+ 1
— ’““ﬁ’ 14 - (4.101)

Cn

with M the local Mach number. The allowable local time step is kaiiby the fastest
wave, i.e. byjt| + ¢, such that in one time step the wave moves over one computa-
tional cell at most. During one time step, the slowest wahesyever, move only
over a fraction of the cell width. Thus a large value of thedibon numberM — 0,
reduces the efficiency of wave propagation resulting in & slonvergence of the
numerical method.

The reason for the globally incorrect solutions in the lovadé¥ number limit has been
identified by Turkelet al.[200] and Guillard & Viozat [82] to relate to the amount of
artificial dissipation in schemes for compressible flowse Pphysical pressure fluc-
tuations scale with the square of the Mach number, whiledhdisns of the discrete
system contain pressure fluctuations of the order of the Maafber [81, 82]. Thus,
the artificial dissipation in the numerical scheme does natescorrectly for Mach
numbers approaching zero and the accuracy and stabilityabf schemes suffer at
low-Mach number. The use of second-order schemes and/owfiigks improves the
accuracy, but the additional computational cost is sulisfaespecially for 2D and
3D calculations. Additionally, Liou [131] and Schmidt al. [169] illustrated that
for the classical Riemann solvers the dissipation in theamigal approximation for
the pressure for compressible flows is scaled by a ter® @icAu), whereas the
changes in pressure due to smooth changes in the flow scaléwit.Aw). For air
at standard conditiongc is of O(10%) and for waterpc is of O(10°) from which it
can be concluded that for the calculation of a water flow tffisceis even stronger.
Schmidtet al.[169] introduced a modified pressure flux formulation to ioy@ the
numerical results, which is outlined in section 4.7.2.

4.7.1 Preconditioning

Preconditioning methods cope with the spreading of theegmhf the eigenvalues
by pre-multiplying the term with the time-derivative in tgstem of equations by
a suitable preconditioning matrix which alters the speethefacoustic waves. This
makes their speed of the same order of magnitude as the kelcaity of the flow and
thus removes the disparity in wave-speeds. In this manmez|leconditioned system
is recovered, together with good convergence propertie4967 Chorin [39] intro-
duced the method of artificial compressibility for incomgsible flows by adding an
artificial time derivative of the pressure in the continudtyuation. Since then many
preconditioning methods have been developed, e.g. théyfafmpreconditioners in-
troduced by Turkel [198, 199]. We also mention the precaowiilhg method of Weiss
& Smith [218] which provides a modified expression for theidsgives of density
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with respect to pressure for an arbitrary equation of state.

A drawback of preconditioning methods is that due to the tdim of the speed

of the acoustic waves time-accuracy is lost. The precamditi equations only

have steady-state solutions in common with those of thanaligystem. Another

drawback is the lack of robustness of the method near siagnatints, which may

be due to artificial dissipation, where solution eigenviectiecome almost parallel
[52], causing small perturbations to be amplified over stiore-scales. For time-

dependent problems, the “dual-time stepping” techniqueldsen developed [218],
in which the derivative with respect to physical time arateel as source terms. Dur-
ing each physical time-step, the system of preconditiorgpahions is advanced in
artificial or “pseudo” time to reach a pseudo-steady-statgseudo-time.

Unfortunately, the preconditioning method converges Blavhen the physical time
stepAt is chosen of the same order of magnitude as the pseudo-tapé\st Fur-
thermore, when highly unsteady flows are considered, sudaagting flows, or
when fast moving shocks and waves need to be captured, stioh ésise in liquid
flows, many small physical time steps need to be taken andufktithe stepping
method becomes inefficient.

4.7.2 Adaptation of flux schemes

Wallis [214] formulated the terms continuity waves (alsoadked by kinematic waves
or hydrodynamic coupling) and dynamic waves. Continuity@gare a quasi-steady-
state phenomenon and occur due to smooth changes in theflewteady-state value
simply propagates into another. The change in pressuressth waves is related
to the change in velocity a&p ~ puAwu. On the other hand, dynamic waves are usu-
ally due to forces or sharp discontinuities in the flow. Tharde in pressure across
such waves is then related to the change in velocithas: pcAu.

Classical Riemann solvers assume that the solution cemdidiynamic waves. Many
authors only consider shock tube problems when studyingenigai flux schemes.

For these type of problems the solution consists of dynanaves and thus the clas-
sical Riemann solvers work very well. However, for steatiteslow-Mach number

flows the classical Riemann solvers become too dissipainee ghe solution then

consists of continuity waves.

In the literature on the preconditioning methods it is fouth@t the numerical meth-
ods can be improved by modifying the flux schemes by propdingcaf the numer-

ical dissipation for low-Mach number flows [81, 82]. An exdmpf such a modified
scheme is the “AUSM+-up for all speeds” scheme of Liou [132]1which is also

applied to compressible liquid flows [35].
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Schmidtet al. [169] proposed a hybrid solution approach to overcome thedn-
rate calculations of the pressure field for (low-Mach numliguid flows. They
combined the HLLC flux scheme and the AUSM flux scheme to olatdlimx scheme
that is able to handle time-dependent wave phenomena assveliv-Mach number
liquid flows. They followed the general philosophy of the fhnof AUSM schemes,
in which the Euler fluxes are split in a convective part andesgure part. The mass
flux is calculated with the HLLC mass flux defined in equatiorb{4 and the pres-
sure flux is determined with the AUSM pressure splitting dedim equations (4.68),
(4.70), (4.74) and (4.81), respectively. In later chapteegefer to this flux formula-
tion as the hybrid HLLC/AUSM flux scheme.

Schmidtet al. [170, 172] formulated the hybrid solution approach in gtsly dif-
ferent flux formulation showing that this newer formulatienuniformly consistent
for M — 0. Following discussions with Schmidt and Schnerr we havdeémpnted
their formulation into the present edge-based numericahouk"

4.8 Boundary conditions

The treatment of the boundary conditions is based on the aonghost-cells ap-
proach, which implies that the numerical flux over a boundasrface is determined
with the same numerical flux as used for internal cells. Wherfdces;; considered

is located on the boundafy;, of the computational domain the right stafig; for the
numerical fluxH(U, Ug, ni;;) at the cell-interface can be reconstructed from the
stateU, in a virtual control volume or “ghost” cell. The statg, in the ghost cell

is specified by applying suitable boundary conditions taibthe control-volume-
averaged values of the ghost cell.

For the in- and outflow boundaries the right sttg for the numerical flux is taken
equal to the state in the ghost ctl|,. For the solid wall the state in the ghost cell is
used to obtain the reconstructed valdg at the boundary interface. By applying the
non-permeability condition usingy;, the reconstructed right valléy at the bound-
ary interface is then obtained.

First, in section 4.8.1 the time-dependent in- and outflowngiary conditions are
described. In the present work the method of Thompson foe-tlependent non-
reflecting boundary conditions is generalized for arbjtrequations of state as pre-

TDuring the development of the present numerical method wfite very much from extensive
discussion with S. Schmidt and Prof. Schnerr of the TU Munigbr this the author would like to
express his gratitude.
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sented in appendix A. Then, in section 4.8.2 the boundargitions for solid walls
are presented.

4.8.1 Time-dependent in- and outflow boundary conditions

In appendix A, the time-dependent, non-reflecting, in- antflawv boundary condi-

tions for the hyperbolic Euler equations are derived foiteaty equation of state and
for an arbitrary orientation of the boundary. Briefly, thegning characteristics are
explicitly calculated and allowed to move out of the domdmcoming characteris-

tics are handled by setting the time-derivative of their ktgle equal to zero, thus
ensuring that waves do no enter the domain during simulaftang the boundary

conditions a non-reflective character.

Rudy & Strikwerda [160] presented a non-reflecting subsoatiow boundary con-
dition for the numerical simulation of the time-dependantdrized compressible
Navier-Stokes equations, for the case that these equatienssed to obtain a steady
state solution. Their boundary condition effectively reelsi reflections of outgoing
waves at the boundary and increases the convergence tostaedly-state. Thomp-
son [189, 190] introduced a unified formalism for the tim@eledent treatment of
boundary conditions for the system of hyperbolic equatitorened by the Euler
equations using the perfect gas law as the equation of stat@milar approach is
followed in the books of Hirsch [91] and Feistauer [64]. Poin& Lele [149] ex-
tended the formalism of Thompson to the Navier-Stokes @t All non-physical
reflections from the in- and outflow boundaries can be comajyleemoved by the
formalism of Thompson. Colonius [42] presented an overvoawmodeling artifi-
cial boundary conditions for compressible flow. In the pneéseork, the method of
Thompson is generalized for an arbitrary equation of statkfar arbitrary orienta-
tion of the boundary.

The central concept is that a hyperbolic system of equatiepeesents the propa-
gation of waves and that at any boundary some of the wavesepagnating into the
computational domain while others are propagating outsvafthe number and type
of conditions at a boundary of a multi-dimensional domam @efined by the eigen-
values of the Jacobian of the component of the flux vector éndirection normal

to the boundary. Each eigenvaldgrepresents the characteristic velocity at which a
particular wave propagates. The behavior of outgoing we/esmpletely described
by the solution within and at the boundary of the computatiatomain, while the
behavior of the incoming waves is specified by data extem#hé computational
domain.

Thus, because of the wave structure of the hyperbolic empstithe number of
boundary conditions that may be imposed depends on thegshgsithe problem
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and may not be specified arbitrarily, i.e.

the number of boundary conditions which must be specifiecpatrd on the bound-
ary is equal to the number of incoming waves at that point.

The number of boundary conditions required at any point @nhkbundary may
change in time. Also, the number of boundary conditions ireguat any time may
vary with position on the boundary. Table 1 presents the rurmofphysical boundary
conditions for different types of boundaries.

| Boundary type | Number of physical boundary conditiols

Supersonic inflow 5

Subsonic inflow 4
Supersonic outflow 0
Subsonic outflow 1

TaBLE 4.1: Number of physical boundary conditions for different tymdsthe
boundary of the computational domain.

The dependance of the characteristics on an arbitrary ieguaitstate turns out to be
reduced to the formulation of the two variableghe speed of sound, ang which
are defined by

»(or)
C2 or p

B dp oh dp Ny (4102
P(a‘) (a?) *(a?) {1‘f’<a—> }
P/ P p P/

oh
1= (a—p>T
S S (4.103)

The spatial derivatives in normal direction in the defimgmf £, in equations (A.28)-
(A.32) are calculated by employing a first order forward détizaton

8(]3 — (bg - ¢z
oz Az

whereg, denotes the value of variabdein the ghost cell at the previous time-level
andAz is the distance between the ghost cell and the center oftgraiihe control
volume, which is equal to the characteristic lengtif the control volume defined as

(4.104)
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the diameter of the smallest inscribed sphere of the comtdaime. The time deriva-
tives in equations (A.41)—(A.45) are calculated with tmediintegration method de-
scribed in section 4.4 to obtain the new rotated primitiveiakﬁesQ; in the ghost
cells yielding:

Q =Q,—At(d+C), (4.105)

with d andC defined in equations (A.40) and (A.14), respectively. The retated
primitive variablesQ; are then rotated back {@, y, z) coordinates by multiplying
with the inverseéI'~! of the rotation matrix defined in equation (4.21). The new-con
served variabIeI;J; in the ghost points can then be obtained through the apptepri
equations of statg)” = p(p;, T,7) andh) = h(p],T,").

Specifying the boundary conditions

Specifying the boundary conditions determines the valfigl i equations (A.41)—
(A.45) for incoming waves, while for outgoing waves the s wf£, are determined
by equations (A.28)—(A.32). Note th&t and£5; describe the left and right acoustic
waves, £, the wave related to entropy and thaf and £4 describe the wave associ-
ated with the convection of the shear waves.

Besides the solid wall, four different situations are poiesi
e subsonic inflow
e supersonic inflow
e subsonic outflow
e supersonic outflow

In figure 4.4 each of these situations are illustrated fomthee-speeda; =u — c,
Ao =A3= A =10 and A5 =4 + c on the boundary located at= 0 with unit normal
vectorn pointing out of the computational domain and wittin the direction ofi.

Subsonic inflow is characterized by < 4 < 0, so that\;_4 < 0 andA5; > 0. Thus

£5 is computed from its definition in equation (A.32) and theeotfour £; are spec-
ified from boundary conditions. Subsonic outflow is chanamgel by0 < 4 < ¢, SO
thatA\; < 0 andXy_5 > 0. Thus£,_5 are computed from its definition in equations
(A.29)—(A.32) andg, is specified from boundary conditions. Supersonic inflow is
specified byi < —c¢, so that all\; < 0. This means that all values; must be spec-
ified from boundary conditions. Supersonic outflow at thertolauy is characterized
by & > ¢ so that all\; > 0. Consequently, no boundary conditions can be specified
at all. In this case alf’; are determined from equations (A.28)—(A.32).
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(a) oD D (b) oD D
u+c U U—c utec u U—c
i i
B S B S
=0 2=0
© oD cD (d) oD cD
utc U U—c utec U d—c
i i
B S B S
=0 2=0

FIGURE 4.4: Four different situations for in- and outflow boundary caratis. OD
denotes the Outer Domaid; D denotes the Computational Domaif.— ¢, & and

4 + ¢ denote the characteristic wave speeds at the boundary ofdhputational
domain located at: = 0. (@) subsonic inflow (b) subsonic outflow (c) supersonic
inflow (d) supersonic outflow.

In the remainder of this section practical examples for thendary conditions are
presented. First, the fully non-reflective boundary caadg for the four different
situations of figure 4.4 are formulated. Then, an asymptutit-reflective subsonic
outflow boundary condition can be prescribed [149, 160] biyndey a relaxation
condition around a prescribed time-averaged mean pregsurd.astly, we discuss
the classical constant pressure outflow boundary congdlitidrich turns out to be
fully reflective at the outflow boundary.

Non-reflecting boundary conditions

The non-reflecting boundary condition demands that the itudpl of an incoming
wave is constant in time, which is equivalent to stating th&tre is no incoming
wave. If we now set the correspondidly equal to zero then that wave amplitude
remains constant. Note th&t describes the inflow of entropy, so settiig = 0
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states that the inflow entropy is constant in the normal toec Setting£3; = 0 and
£4 = 0 will hold the tangential velocities andw velocities constant in the absence

of tangential effects.

The subsonic and supersonic non-reflecting boundary g¢onsliare now specified
in table 4.2. Definings = At/Az the non-reflective boundary conditions in terms

of the new rotated primitive variables are presented iretdlb.

Subsonic inflowi—c < @ < 0

Subsonic outflow0 < @ < ¢

5.‘41 = 0 5.‘,1 = 0
Yop OT
= 0 = QM| ==L -
L2 L2 2 ( 005 | 0%
00
£ = 0 L3 = A3 %
£ = 0 £y = M azi}
oz
Oop ot a Op ot
L5 As (a;z« +pca@> £ = X (a;z« +pcag:~>
Supersonic inflowz < —c Supersonic outflowt > ¢
_ _ op ou
5.‘41 = 0 5.‘41 - /\1 (a‘% - pCa£>
Yop  OT
= 0 = )\ —
L2 L2 2 ( poi 03
00
= 0 = A
£3 £3 39z
£ = 0 £y = M alf
oz
_ _ dp ou
gs = 0 L5 = A5 <8ﬁc+pcc‘9§c>

TABLE 4.2: Sub- and supersonic non-reflective boundary conditions tifoe-

dependent in- and outflow.
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Subsonic inflowi—c < @ < 0

by, = DPg— %V(@g +¢q) [Dg — Pi + pgcq(Ug — U;)]
A N TP N N
g = g — %V(u;}]gc;g) [pg — pi + pgcy (g — )]
of = 0,
WF o= dy
_ gt . .
TS = Ty- %Vw(uf)igc‘]) [pg — i + pycy(ily — ;)]
Subsonic outflowd < 4@ < ¢
p; = Pg— %V("ag +¢g) [Pg — Pi + pgcq(tg — U;)]
. R g+ A N
iy = g — %V(uﬁgczg) [pg — pi + pycy(ity — 1))
QA}; = g — vig(dy — 0;)
WS =y — vig(y —}Ui)
T9+ = T, —- %V W(c‘{%gug)(pg —pi) +¥(ig + Cg)cg(ag — ;) + 24y (T, — TZ)]
Supersonic inflowi < —c¢
Py = pg
i =
vy = 1
W=y
TH = T,
Supersonic outflowi > ¢
p; = Pg—vV [ag(pg —pi) + Png;(ﬂg - f%)]
ﬁ;' = @g v [(pg/;m) + ﬁg(ag _ ﬁz)}
ﬁ;‘ = Dy — I/?lg(f}g — ;)
12);' = Wy — I/ﬂg(d}g — W;)
Ty = Ty—veg(iy — ) + tg(Ty — T;)]

TABLE 4.3: Rotated primitive variables in ghost cell for sub- and sgosic non-
reflective in- and outflow.
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Asymptotic pressure non-reflective outflow boundary condibn

Poinsot & Lele [149], see also Rudy & Strickwerda [160], dissed a method to use
a non-reflecting boundary condition as presented above ddiianally incorporate
some physical information on the mean static pressure attinfi., (for example a
free surface in a cavitation tunnel). Imposing the presatimefinity does not fix any
of the dependent variables on the boundary. The constasgumeat infinity is now
used to obtain the amplitude variation of the ingoing waye If the outlet pressure
is not close te,,, weak reflected waves will enter the domain through the btdle
bring the pressure at the outlet back to a value clogg oA simple way to do this
is to set

£1=K({p— p), (4.106)

whereK is equal toK = o(1 — M?)c/A# [149]. For subsonic water flow we apply
the valueK = ¢/Az. The resulting set of boundary conditions are specifiedbleta
4.4. Definingy = At/Az the asymptotic non-reflective subsonic outflow boundary
conditions in terms of the new rotated primitive variables presented in table 4.5.

£ = K(p—p)

Lo = Ao <—%% + g—g)
£3 = )\38—2

£4 = )\48—2

g5 = s (%4 pedt)

TABLE 4.4: Asymptotic non-reflecting subsonic boundary conditions

Subsonic outflow0 < @ < ¢

p;’ = Pg— %V [(tig + ¢g) [Pg — Pi + pgcy(ly — ;)] + c4(pg — Poo)]
ﬁ;' = @g _ %V ﬂgl’g‘*‘cgpzc—g(ﬂg"‘cg)m + (ﬁg + Cg)(?lg . ,&Z)
{)3_ = g —viy(dy — ;)
12); Wy — Vig(Wy — W;)
Tg+ = T,— %V% ((2cg — tig)pg — cgpoc + (g — c4)Pi)
+3v [ (tig + cg)eg(ty — ;) + 204(Ty — T;)]

TABLE 4.5: Asymptotic subsonic non-reflective boundary conditions tifme-
dependent in- and outflow.




86 CHAPTER4. NUMERICAL METHODS FORCOMPRESSIBLEFLOWS

Remark on constant pressure outflow boundary condition

Within the scope of the presented formalism the constargspre subsonic outflow
boundary condition can be considered. When the pressureisrkto be a constant
at the boundary, the%f = 0in equation (A.41). This is satisfied$#; + £, =0, or
£1 = —£5 giving the boundary conditions specified in table 4.6. Itag/rclear that,

£ = —&

Lo = X (—%% + g—g)
£3 = /\38—2

£y = )‘48_152:)

Ls = X5 <% + pc%)

TABLE 4.6: Constant pressure subsonic outflow boundary conditions

when specifying a constant pressure at the outflow bountteryamplitude of the in-
coming waveg; becomes equal to the negative amplitude of the outgoing \Wave
This implies that the outgoing wav; is completely reflected into the domain. For
steady flow calculations these reflected waves deteridnatednvergence to steady-
state solution. For unsteady calculations these refleckee@swn-physically interfere
with the unsteady solution in the computational domaintt&rmore, when cavitat-
ing flows are considered, if the amplitude of the outgoing evavarge enough, then
through the reflection the pressure drops to saturatiorsprescausing cavitation to
occur at the outflow boundary. Thus, it becomes clear thahtimereflective treat-
ment of in- and outgoing waves is essential for unsteadytatawy flows.

4.8.2 Solid wall boundary conditions

The formulation in the previous subsection could also bel disea slip solid wall
boundary condition [190]. However, we prefer to follow th@rhulation of Rizzi
[159], Dadone [49] and Wang [217]. Applying the non-permikdgcondition on a
solid wall, i.e.t = d - i = 0, results in that the mass and energy flux vanish as can
be seen in equation (4.4). The only nonzero flux term is thegoire contribution in
the momentum equations. However, this would result in @chffit flux formulation

for the solid wall faces than for the internal faces.

Instead, the same flux formulation of equation (4.24) is eygdl. The right extrap-
olated valuedJ i are determined from the left extrapolated varialles by aplying
the symmetry technique. The valugk, in the ghost cells on the solid walls are ob-
tained by applying either the classical Symmetry Technigueunnel walls or the
Curvature Corrected Symmetry Technique for surfaces olfiflaeofoil in the flow.
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Rizzi [159] derived an auxiliary relation for the pressutete solid wall incorpo-
rating the surface geometry. Dadoeteal. [49] extended this idea and denoted their
method Curvature Corrected Symmetry Technique (CCST)gvdad Sun [217] for-
mulated the CCST method for unstructured grids. Here theadtation of Wang
[217] is followed. First, the classical symmetry technigaealiscussed. Then the
CCST for unstructured grids is presented.

A wall boundary as shown in figure 4.5 is considered. The swkdl is denoted

by the thick black curved line, the (triangular) grid is repented with the solid lines,
the control volumes are illustrated with the grey polygorith heir faces denoted by
the dashed lines. Ghost cells are employed as mirror imagie anterior control
volumes and assumed to be located at the grey circles. lollbe/ing the flow vari-
ables in the interior control volum and in the ghost cells are denoted by subscript
1 andg, respectively.

FIGURE 4.5: Solid wall boundary. Thick black solid line denotes thedolall. The
triangles denote the grid, the control volumes are depittgthe grey polygons with
their faces denoted by the dashed lines. The circles areghtecof gravities of the
control volume and the filled circles are the associated ghomts.

Classical Symmetry Technique

In the classical Symmetry Technique the non-permeabilitydition is applied by
assigning the values of the velocity vector of the ghosta®lnirror images of those
at the interior control volume. Furthermore, the wall istesed to be adiabatic, i.e.
T, = T;, resulting in:

Dg = Dis (4.107)
Py = pi (4.108)
i, = u;—2(u;-n)n, (4.109)

hy = hipg,T)). (4.110)
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Curvature Corrected Symmetry Technique

The basic idea of CCST is to use the local momentum equatispetcify the pressure
at the ghost cell. Therefore, the following equation is auplocally, [159]

Op
0z
wherex is the local curvature of the boundary, which is provided Hgy tnesh pro-

gram Favomesh, see for details the thesis of Kelleners [1@8@jplying equation
(4.111) to the ghost cell yields

= —pli|?k, (4.111)

Py = pi — Adpy|iy[*k, (4.112)

where p,, and d,, are chosen to be the density and tangential velocity at @lontr
volumeV;:

pw = pi (4.113)
i, = i — (U;f)i (4.114)

The distanceAz is determined by assuming that the internal control volumés
mirrored in the solid wall. Thus, the center of the ghost ekt distanceAz =
|Xcq,s — Xy| from the solid wall, where; is the location of the boundary face. The
velocity at the ghost cell is again computed according to

—

i, = d; — 2(ii; -#)i. (4.115)

Assuming that the temperature is equal to the temperatweritrol volumel;, the
density and the specific total enthalpy at the ghost cell angpzited from

pg = plpg,Ti), (4.116)
hy = h(pg,Ty). (4.117)
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4.9 Solution procedure for equilibrium cavitation model

p"y (pu)", (pv)",
(pw)", (pE)",
u™, o™, W, BT, e,
T’ﬂ, an, pn’ C’I'L

(pv)"*1L, (pw)™t,

n+1 n+1
p ’ (pu) ' 4{un+1 vn—l—l wn—l—l

Tt =T, o™t = q,
pn+1 Cn—l—l

- (pE)"™+! g e
. [ pl’sat(T*), pv,sat(T*) T — T
%) >
Pl > Pl,;«ﬁJ(rl >) ptl <
Pl,sat (T*) Po.sat (T*) Pu,sat (T*)
Liquid Mixture Vapor
a =0, 0<a<l, a =1,
T =T | |T =T et | T =T(e"t!)
| |
no
yes







RESULTS SINGLE PHASE
WATER FLOW

In this chapter numerical solutions for compressible siffgiase water flow are con-
sidered. The single-phase pure water flow is calculated synaisig that the water
cannot turn into vapor. Thus, the modified Tait equation afesgiven in equation

(3.42) is adopted and the liquid is allowed to follow the pres-density curve for

water below the saturation pressure as presented in fighire 3.

First in section 5.2, the one-dimensional “Water Hammest &ase is considered
to demonstrate the wave-capturing ability of the numemoeeathod followed by a 1D
Riemann problem for liquid flow in section 5.3.

Then, in section 5.4 the low-Mach number flow over a two-disi@mal cylinder
is calculated employing the different flux schemes preskiriesections 4.5 and
4.7.2. The solutions are compared with the analytical inm@ssible potential flow
solution. This test case illustrates the improvement ofstieady-state flow results
for low-Mach number flows achieved by adopting the modified farmulation of
Schmidtet al. [169, 170] presented in section 4.7.2. Furthermore, tealte for
the Curvature-Corrected Symmetry Technique (CCST) anctltssical symmetry
technique (ST) for the solid wall boundary conditions armpared to illustrate the
improvement obtained with the CCST technique presenteddtion 4.8.2.

In section 5.5 the order of convergence of the numerical atethinvestigated by cal-
culating the solution for steady-state water flow over a timensional NACA0012
hydrofoil employing hybrid meshes of increasing grid dgndin section 5.6 the nu-
merical results for single-phase flow about a two-dimeraiBiACA0015 at6° angle
of attack are compared with a reference solution of Wrob21]2

Finally, in section 5.7 the single-phase water flow over adkiimensional Twistl1
hydrofoil is presented to validate the numerical methodhwhe experimental results
of Foeth [67], who measured the lift force as well as the presen the hydrofoil for
flow at high values of the cavitation numberi.e. for single-phase water flow.
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5.1 Parameters

To facilitate the discussion in this chapter we introduath norm for the residual
and for the global error. As a measure for the convergencartisimthe steady-state
solution, theL,-norm £ (R) of the residual at time level is defined as

(5.1)

with N the number of points and the residl¥jl defined in equation (4.30).

As a measure for the global error in a quantity the Ls-norm Lo(¢) is defined
as:

N
£50) = y| 5 D Bimum — Diana)® (5.2)
i=1

with NV the number of pointsp; .., the numerical solution fap in pointi andg; qn,
the analytical or exact solution f@rin pointq.

5.2 1D time dependent test case: “Water Hammer”

To demonstrate the wave capturing ability of the presentarigal method for a
compressible liquid, we consider the so-called “Water Hamimroblem, which is
sometimes called the “Joukowsky shock” [181].

Consider an initially steady flow of liquid through a pipe Wi constant cross-
section. The initial velocity of the liquid is denoted ly and the initial pressure

and temperature are denoted fyyandT;, respectively. At an arbitrary time, say
t = 0, the entire outflow boundary is closed instantly. At thatans a pressure rise
occurs at the solid wall of the outflow boundary resulting imugpstream traveling

shock wave. After passage of the shock wave the fluid will besit

The Joukowsky equation [181] or Joukowsky-Frizell equdtiapproximates the
change in pressurAp = p — pg to the change in velocithu = u — ug accross
the shock wave:

Ap = —pocoAu, (5.3)

*The first explicit statement in the context of water hammausigally attributed to Joukowsky
(1898). Frizell (1898) and Allievi (1902) also found equati(5.3), but they did not provide any ex-
perimental validation. Tijsseling [192] points out thathEmnes von Kries published the theory of
water hammer in 1883 in a study on blood flow in arteries. Thuees von Kries derived the Joukowsky
formula 15 years before Joukowsky and Frizell in 1898.
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wherepy is the density and, the speed of sound of the liquid at temperatiigeand
pressureyy. The Joukowsky equation is derived from linearized acoukgory. The
verification of the validity of this assumption is presented\ppendix C.

Evaluating equation (5.3) for the pressurafter the passage of the shock wave re-
sults in:

P = po + poColo- (5.4)

The boundary condition for the outflow is simply set to a reflecsolid wall att = 0
and for the inflow boundary the non-reflective boundary comas are applied. Fol-
lowing Berget al. [22] we choose the initial pressugg and the initial velocityug
equal topy = 10° Pa andug = 1.0 ms™!, respectively and we consider four differ-
ent initial temperature$y = 293 K, 313 K, 333 K and353 K, respectively.

Note that, for a flow of liquid the pressure rigep;;, calculated with equation (5.4)
is approximately equal tdp;;, ~ 15 bar. For a flow of air the pressure rigkp;,

is found to be only equal t&\p,;. ~ 4 mbar, illustrating the tremendous pressure
pulses possible in compressible liquid flows compared waihfgpws.

Ty Pexp PTait M Cexp CTait M
Pexp Cexp

[K] | [kgm~?] | [kgm~?] [] [ms™'] | [ms™'] []

293 | 998.24 998.23 0.001% 1481.9 | 1537.66 3.8%

313 | 992.27 992.26 0.001% 1528.7 | 1542.26 0.89%

333 | 983.27 983.26 0.001% 1550.9 | 1549.27 0.11%

353 | 971.88 971.88 0.0% 1554.5| 1558.26 0.24%

TABLE 5.1: Comparison of the data from the modified Tait equation oesfat the
density and speed of sound with the experimental valuesoflpf = 10°Pa and
four temperatureqy.

In table 5.1 the densityr,;; and speed of sounel,;; obtained with the modified
Tait equation of state are compared with the experimenti& (g for the density
pexp and speed of sound,,, respectively. We find that the relative errors in den-
sity and speed of sound are less ttiaB01% and3.8%, respectively, showing that
experimental values for the density of the water can be cered accurately by the
modified Tait equation of state and that errors up to 4% magst éxithe speed of
sound.

For the four temperatures the analytical estimate for tlessurep,,.. = po +
PTaitCTaitto after the passage of the shock wave is compared with theupeass,,
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TO Pana Pnum panap_w
[K] | [10°Pa] | [10°Pa] -]
293 | 1.635 1.637 0.12%
313| 1.630 1.632 0.12%
333 | 1.623 1.626 0.18%
353| 1.611 1.617 0.37%

TaBLE 5.2: Comparison of the analytical (equation (5.4)) and numdriesults
for the pressure after the passage of the Joukowsky shoal,fer 1.0 ms—! and
po = 10° Pa.

obtained with the present numerical method. As presenttbie 5.2 the maximum
relative difference for the pressure after the shock is kequ@.37%. These results
indicate that we can accurately represent a shock wave imaressible liquid with
the present numerical method.

In figure 5.1 the solution for the pressure and velocity aefdifferent time instances
t1 = 0.2ms, to = 0.4ms andt3 = 0.6ms after the closure of the outflow boundary
is presented fofy = 293 K. We applied the second-order hybrid HLLC/AUSM+up
scheme with the limiter of Venkatakrishnan for a 2D quatkilal and 2D triangular
mesh with 100 elements irrdirection and 4 elements iprdirection. The results for
both types of grids are identical to plotting accuracy. lufeg5.1 it is shown that
the shock, which generates a pressure increase of abduir] s sharply captured
without any oscillations in the pressure or velocity diastion in the pipe.

(& (b) 1

7]

1.5E+06

1E+06

p [Pa]
u[ms™]

500000 -

0.2

N

1 1 1 1 1 1
0 0.2 0.4 0.8 1 0 0.4 0.8

Of6 0.6
X [m] X [m]
FIGURE 5.1: Numerical solution for the Joukowsky shock with seconeohybrid
HLLC/AUSM+up scheme for (a) pressure (b) velocityat= 0.2 ms, t3 = 0.4 ms,
t3 = 0.6 ms for Ty = 293 K. Flow is from left to right with the right boundary
atx =1 m closed att = 0 s. The shock travels from right to left. Results are for
a 2D quadrilateral grid with 100 points ir-direction and 4 points iny-direction.

CFL=0..
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5.3 1D Riemann problem for liquid flow

The solution for the Riemann problem for flows with the petrfgas law as equa-
tion of state is well known, see Menikoff [138] and Toro [194or liquid flow the
numerical solution for the Riemann problem is very challegg lvingset al. [104]
presented the exact solution for the stiffened gas equafistate and the Tait equa-
tion of state. Note that, it is not possible to construct tkecé solution the modified
Tait equation of state as discussed in section 5.3.1.

The initial conditions for the left and right state are chogeanalogy with the clas-
sical Sod’s shock tube test case for the flow of a perfect gamile® to the “Water
Hammer” problem in section 5.2 the numerical results deinatesthe capability of
the method to capture and predict the wave dynamics in casipte liquid flows.
Amongst others, Chen & Cooke [36] and Schmadital. [170] also considered the
numerical solution of a Riemann problem for liquid flow.

A tube with a length of 1m is considered filled with water anaseld at both ends. In
the center of the tube at= 0.5m a diaphragm is placed separating two reservoirs of
fluid. Both reservoirs have an initial temperatdge The left and right reservoir have
a chosen initial pressung;, = 1.0 x 10% Pa andpyr = 1.0 x 10* Pa, respectively and
a velocityugr, = 0 andugr = 0, respectively. At = 0 the membrane separating
the two reservoirs is removed. The density in the two re$eris obtained using
the modified Tait equation given in equation (3.42). Theiahitonditions are de-
scribed in table 5.3. The numerical solutions are obtaimed wiangular mesh with
100 elements in:-direction and 4 elements ipdirection. We have also considered
a quadrilateral mesh of equal mesh density but the resdte@uivalent to plotting
accuracy. The second-order hybrid HLLC/AUSM+up schemeeofisn 4.7.2 is em-
ployed.

POL uor | Tor POR uor | Tor
[Pa] | [ms™'] | [K] [Pa] | [ms™'] | [K]

| 1.0x10° | 0.0 [293] 1.0x10*| 0.0 |293]
TABLE 5.3: Initial data for Riemann problem in tube.

The solution of this Riemann problem consists of a left ragrexpansion wave, a
right running contact wave and a right running shock waverasgmted in figure 5.2.
The expansion wave hits the solid wall at the left end of theetand reflects as an
expansion wave running towards the center of the domain.righé running shock

is reflected at the right solid wall of the tube and reflecthwleft as a shock wave.
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FIGURE 5.2: Initial conditions and resulting characteristics of thelstion of the
Riemann problem with closed left and right boundaries.

To illustrate the wave-dynamic character of the flow the tsiuis considered at dif-
ferent time-instantsy, wheret y = NAt, with At = 0.9x10"%sandN = 1,2, .., 6.

In figures 5.3 the time-dependent solutions for the presanck velocity are pre-
sented. In figures 5.3(a) and (b), the left-running expansiave and the right-
running shock wave are about to hit the solid wall at the efidlsectube at = ¢3. In
figures 5.3(c) and (d) the expansion wave has reflected abtardgning expansion
wave and the shock wave has reflected as a left-running shaek&. WAtt = ¢ the
reflected waves are about to meet each other. The shock aadsxp waves are
captured without any oscillations in the pressure and vtglodote that the width of
the expansion wave is much smaller compared to that of ameigawave in gas
flows.

5.3.1 Analytical solution for liquid flow

For the modified Tait equation of state it is not possible tostauct the exact solu-
tion for the Riemann problem. lvingst al. [104] presented the exact solution for
the Tait equation of state. In this section we compare theemigal solutiongarr
for the Tait equation of state with the exact solutityy. Furthermore, the numerical
solutiong,,,.qr 4 rr for the modified Tait equation of state presented in figurecar8
then be compared to the numerical solutigiu ;7 for the Tait equation of state.

In figure 5.4 the three solutiong.., ¢rarr and ¢,0arqi are presented at time-
instantt, = 1.8 x 10~*s for the pressure, velocity, density and speed of sound,
respectively. It is shown that the numerical solutipr ;7 (dashed line) predicts the
location of the rarefaction and the shock accurately copgpémw the exact solution
¢es (solid line). Furthermore, the numerical solutiop,.qr 477 (dotted line) corre-
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FIGURE 5.3: Solution Riemann problem for liquid flow. (a)-(b) pressucd-(()
velocity (e)-(f) density at time-instantg—3 (left) andt,—tg (right). tny = NAt, with
At =0.9x10~* s. Results are obtained with second-order hybrid HLLC/AU Sill+
scheme on a triangular grid with 100 points irdirection and 4 points iny-
direction. C'fl = 0.8, At.;~1.17x107%s. por, =10® Pa, por=10* Pa, ug, =0,
uor =0, Tor, =Tor =293 K,
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sponds to plotting accuracy with the numerical solutign ;7. A small deviation
in the value for the speed of sound is found due to the temyrera¢lated terms in
equation (3.44), which are not present in the speed of sourithé Tait equation of
state. From figure 5.4 we conclude that the present numenietilod accurately pre-
dicts the wave dynamics in a compressible water flow comparéte exact solution
of the Riemann problem for the Tait equation of state.

Mod. Tait (b) =r .
—— Taitnum — sk *-+  Mod. Tait
—  Tait exact i B —— Taitnum
w —  Tait exact
E 20 :—
l ST —
o R :
l 10F
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FIGURE 5.4; Solution Riemann problem for liquid flow. a) pressure (bpeiy (c)
density (d) speed of sound. Comparison of numerical s@iuto Tait equation of
state (dashed) and modified Tait equation of state (dott&fl)exact solution for Tait
equation of state (solid) at = 1.8x10~* s. Results are obtained with second-order
hybrid HLLC/AUSM+up scheme on a triangular grid with 100 mpisi in z-direction.
Cfl=0.8, por, =10% Pa, pop =10 Pa, uor, =0, uor =0, Tor, =Tor =293 K.
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5.3.2 Grid convergence

To assess the convergence of the numerical method for cegilpies liquid flow five
triangular grids consisting of 50, 100, 200, 400 and 800 tsamx-direction and 2,
4, 8, 16 and 32 points ig-direction are constructed. The numerical solutions a¢{im
instantt, = 1.8 x10~* s are calculated with & F'L number equal to 0.8, resulting
in the numerical time step&t.,; for the five grids as presented in table 5.4.

@ (b)
5 = T
= w Zf — 100
J 2o
5- i
X [m]
50
— 100
— 200
— 400
— 800
v o [m] _ _ o [m] _

FIGURE 5.5: Solution Riemann problem for liquid flow solutiontat= 1.8 x 10~ s.
(a) pressure (b) velocity (c) density (d) speed of sound.uleare obtained with
second-order hybrid HLLC/AUSM+up scheme on trianguladgnvith 50, 100, 200,
400, 800 points in-direction, respectively’ fI = 0.8, por, = 10® Pa, por =10 Pa,
uor, =0, upr =0, Tor, =Tor =293 K.

The numerical solutions for the pressure, velocity, dgnaitd speed of sound are
presented in figure 5.5. It is shown that the discontinuitiethe solution, i.e. the
shock wave and the expansion wave, become steeper when shesmefined. Fur-
thermore, the solution around the shock wave and the exgramsve center nicely
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mesh| At.p [107° s]
50 1.671
100 1.170
200 0.523
400 0.290
800 0.127

TABLE 5.4: Liquid Riemann problem. Numerical time stepg.; for five grids.

around on the same positions for all five grids. We remark tiieutsolution on the
mesh with 400 points i-direction experiences small oscillations in the center re
gion. The origin of these oscillations is not clear. Fromstheolutions we conclude
that the numerical method converges towards the corregti@olwhen the grid and
the time-step are refined.

5.4 Water flow over a 2D cylinder

To assess the performance of the numerical method for loskhMiamber liquid flow,
the inviscid flow around a 2D cylinder is considered.

5.4.1 Geometry and computational domain

The circle cylinder has radiuB =1 m. An O-type mesh of quadrilaterals is used
to construct the vertex-centered control volumes. The meshists of 128 nodes on
the surface of the cylinder and 32 nodes in radial directitime first 16 nodes away
from the cylinder are located such that the grid is compjeteatular up to a radius
of 4 cylinder radii. From the radius = 4R to the outer boundaries of the computa-
tional domain the grid is stretched, such that each quaeirilbis approximately 1.2
times longer than the previous quadrilateral.

The outer boundary at the-axis is located at 40 times the radius of the cylinder. At
the y-axis the outer boundaries are positioned at 65 times thasad the cylinder.
This results in a lens-shaped computational domain to enthat the inflow and
outflow boundary remain clearly distinct from each other grad during a simulation
the normal component of the flow at the in- or outflow bound&mags has the same
sign, see for more details the thesis of Kelleners [109]. ddraputational mesh and
a close-up around the cylinder are presented in figure 5.6.

5.4.2 Numerical method

The numerical simulation is started from an initial unifoffow with free stream
Mach numberM,, = 6.5 x 1073, corresponding with a free-stream velocity of
Uso =10 ms™!, at pressurg., = 1.0 x 10° Pa and temperatur@,, = 293 K. For




5.4. WATER FLOW OVER A2D CYLINDER 101

@ 0
60+ “ll',' i
il af
i oF
E‘ :— §§:§:§\WWWI E 1
NaE==" > 0
: EE Y \\\v\\\\\§
F 7N 2E
o
NN BRI STRN SR i _47 ]
-40 -20 0 20 40 -4 -2 0 2 4
X [m] X [m]

FIGURE 5.6: (a) Computational domainl28 x 32 nodes (b) Close-up of the mesh
around the cylinder. Flow is from left to right.

the cylinder surface the curvature-corrected solid wallristary conditions of sec-
tion 4.8.2 are chosen. For the in- and outflow boundary therafiactive boundary
conditions of section 4.8.1 are applied. The results in &g&.7 and 5.8 are obtained
with the second-order hybrid HLLC/AUSM flux scheme of Schi@tlal. [169] as
described in section 4.7.2 with the limiter of Venkataknah.

5.4.3 Results hybrid HLLC/AUSM flux scheme

The numerical solution for the Mach numbef is presented in figure 5.7. The Mach
number distribution is nearly perfect symmetrical withpest to thez- andy-axis.
This indicates that the numerical solution is an accurgigesentation of this inviscid
flow solution. The maximum Mach number is reached at the taptattom of the
cylinder and is equal to 0.013, which corresponds to a vsl@ti2U ..

In figure 5.8 the numerical solution (squares) for th€,, coefficient and the tangen-
tial velocity |u;., |/Us 0N the surface of the cylinder are compared with the analyti-
cal, incompressible flow solution (lines) given by, see Argderson [12]:

Cpegae: = 1—4 (1 - (%)2> , (5.5)
7’@‘5‘,;““‘ = 2/1- (%)2. (5.6)
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FIGURE 5.7: Numerical solution for the Mach number for water flow arourid 2
cylinder, Uy, =10 ms™!, My, = 6.5x 1073, pse = 10°Pa, T, = 293 K. Solution
obtained with second-order hybrid HLLC/AUSM scheme. Nglective in- and
outflow boundary conditions and Curvature Corrected Symme&echnique for
cylinder wall. CFL.=0.8.

The numerical solution shows excellent agreement withdference solution for this
low Mach number. On the surface of the cylinder no oscilli the pressure or
velocity are present and the pressure is accurately olot@wnen in the downstream
stagnation point.

The largest deviation for the-C), coefficient occurs at the top and bottom of the
cylinder and is approximately equal tB%. The numerically obtained lift and drag
coefficientc; and ¢y are equal tc6.3 x 104 and5.0 x 1073, resprectively. For in-
viscid low-Mach number flow these values should be equal to aad thus these
values are a measure for the global error of the solution erstinface of the cylin-
der. TheL,-norm defined in equation (5.2) for the pressure coefficiadttangential
velocity with respect to the analytical solution are equal’t(C,) = 1.2 x 1072
andLs(ug,) = 9.7x 1072, respectively. These values are compared in section 5.4.4
with the values obtained using other flux schemes and inose6t#.5 with the results
employing the classical symmetry technique for the solil b@ndary conditions.

5.4.4 Comparison with other flux schemes

In figure 5.9 the second-order solutions for the Mach numbtioned with four other
schemes of section 4.5 are presented, i.e. HLLC, JST, AUSMMISM+up for all
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FIGURE 5.8: Numerical solution (squares) and analytical solution €k) for water
flow around 2D cylinder folU,, = 10 ms~' corresponding taV/,, =6.5x 1073 at
Poo =10°Pa and T, =293 K. Second-order hybrid HLLC/AUSM scheme. Non-
reflective in- and outflow boundary conditions and CurvatG@rected Symmetry
Technique for cylinder wallC F'L =0.8. (a) —C), coefficient (b) relative tangential
velocity || /Us on the surface of the cylinder.

speeds. Note the differences with the results obtainedtivtnybrid HLLC/AUSM
scheme presented in figure 5.7.

The Mach number distribution obtained with the HLLC schese® figure 5.9(a) in-
dicates that this method is much too dissipative for thisMach number flow. The
solution is symmetrical with respect to theaxis, but there is clearly no symmetry
with respect to the-axis. The maximum Mach number on the surface of the cylin-
der is equal t®.6x 1073, but it is not obtained at the top and bottom= 0) of the
cylinder, but atz = —0.38m.

The Mach number distribution obtained with the AUSM scheffigyre 5.9(b), is
inaccurate. At these low-Mach numbers the coupling betvierpressure and ve-
locity is lost resulting in the presented non-smooth sohutiThe Mach number dis-
tribution obtained with the JST scheme shown in figure 5.8fpears to be of better
quality, but close to the surface of the cylinder a layer ghhpressure appears, re-
sulting in a completely inaccurate solution on the surfddbe cylinder. The results

in figure 5.9(d) obtained with the AUSM+-up for all speedsestle are much better
than for the other three schemes. However, the solutiontisampletely symmet-
rical with respect to thg-axis, as is the case for the result obtained with the hybrid
HLLC/AUSM scheme presented in figure 5.7.
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FIGURE 5.9: Comparison of second-order results obtained with differfiax
schemes. Numerical solution for Mach number for water flosuad 2D cylinder,
Uso=10 ms™!, My =6.5x10"3, poo =10° Pa andT,, =293 K. CFL=0.8. Non-
reflective in- and outflow boundary conditions and CurvatG@rected Symmetry
Technique for cylinder wall. Solution obtained with (a) HLb) AUSM (c) JST (d)
AUSM+-up for all speeds.

The lift and drag coefficients; andc, as well as thd.,-norm for the pressure coef-
ficient C,, and the tangential velocity,,,, as defined in equation (5.2) are presented
in table 5.5 for the hybrid HLLC/AUSM flux scheme and the fougtassical” flux
schemes.

From the comparison of the solutions presented in figurertidse0 and from the nu-
merically obtained lift and drag coefficients as well as fhenorm for C), anduq,
presented in table 5.5 it can be concluded that the adaptatithe classical HLLC
and AUSM schemes to the hybrid scheme as proposed by Scénaidf169], results
in a much improved solution for low-Mach number liquid flow.
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| fluxscheme || o1 | cll [ £20Cp) | Lo(wan) | fig |
hyb. HLLC/AUSM || 6.3x10~* | 5.0x1072 || 1.2x1072 | 9.7x1072 || 5.7

HLLC 2.7x1073 0.28 0.87 4.68 5.9(a)

AUSM 6.47 -0.28 30..25 1.25 5.9(b)

JST 2.47 1.13x10% | 5.2x10? 6.59 5.9(c)

AUSM+up fas || -1.1x107% | 4.2x1072 || 8.3x 1072 0.47 5.9(d)

TABLE 5.5: Low-Mach number flow about 2D cylinder. Comparison of liftlatrag
coefficients as well ab,-norm forC), and the tangential velocity on the surfacg,,.

5.4.5 Results for different solid wall boundary conditions

The results obtained with the Curvature-Corrected Symmietchnique (CCST) and
the classical Symmetry Technique (ST) presented in sedt®2 for the solid wall

boundary conditions at the surface of the cylinder are coatpapplying the second-
order hybrid HLLC/AUSM scheme. In figure 5.10 the resultstfue Mach number
distribution are presented for the CCST and ST boundaryitions, respectively.
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FIGURE 5.10: Comparison of results for different solid wall boundary ddions.
Mach number distribution for water flow around 2D cylindé/,, =10 ms~!,
My=6.5x10"3, pe=10°Pa, TH,=293 K. CFL = 0.8. Second-order
hybrid HLLC/AUSM scheme with (a) Curvature-Corrected SgtmyriTechnique
(b) Symmetry Technique.

The solution for the Symmetry Technique presented in figut8(5) shows a devia-
tion from the symmetric solution compared with the solutidmtained with the CCST
technique presented in figure 5.10(a). For the ST technig{reimerics-induced)
wake-like structure is formed behind the cylinder.

The lift and drag coefficients as well as the-norm forC,, anduy,,, are presented in
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table 5.6. The wake-like structure for the ST technigue fisagented by the higher
value for the drag coefficienf; compared with the value found for the CCST tech-
nique.

Furthermore, thd.o-norm found for the pressure and velocity on the surface @f th
cylinder are found to be almost an order higher than for th&T&chnique. From
figure 5.10 and table 5.6 it is concluded that the CCST tectniopproves the accu-
racy of the solution for this cylinder test case.

| bound. cond] ¢ [[1 | call [ £20C) | Lo(wan) | fig |
CCST 6.3x107% [ 5.0x1073 || 1.2x1072 [ 9.7x102 || 5.10(a)
ST -3.5x107% | 7.5x 1073 || 8.5x 1072 0.46 5.10(b)

TABLE 5.6: Low-Mach number flow about 2D cylinder. Results with secanaer
hybrid HLLC/AUSM flux scheme. Comparison of lift and dragfficients as well
as Lo-norm for C,, and the tangential velocity on the surfaog,,, for Curvature-
Corrected Symmetry Technique (CCST) and Symmetry Teeh{8qu.

5.4.6 Conclusions

In this section the low-Mach number single-phase water floguaa two-dimensional
cylinder is calculated. The numerical solutions are comgavith the analytical po-
tential flow solution.

It is shown that the adaptation of the classical HLLC and AUSMeme to the hy-
brid HLLC/AUSM scheme as originally proposed by Schnetal [169], results in
a much improved solution for low-Mach-number inviscid liddlow about a two-
dimensional cylinder.

Furthermore, it is shown that the Curvature-Corrected SginnmTechnique (CCST)
for solid wall boundary conditions improves the accuracyhaf solution compared
with the classical Symmetry Technique (ST).

We have reduced the free-stream velo€ity even further for the hybrid flux scheme.
However, forl,, < 1.0 ms™!, which corresponds to a Mach numbgr=6.5x 1074,
the solution starts to develop irregularities in the pressund velocity on the surface
of the cylinder. Schmidet al. [170] succeeded in obtaining a solution for Mach
numbers as low a8/ = 1074,
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5.5 Water flow about a 2D NACA0012 foil

To assess the order of convergence of the numerical metlkosinple-phase water
flow about a two-dimensional NACA0012 hydrofoil 4it angle of attack with chord
lengthc equal toc=0.15m is considered as computed on three hybrid meshes with
different grid density. The inflow velocity is chosen equalt, = 50 ms~! corre-
sponding with a free stream Mach numberdf, =0.0325 at a free-stream pressure
Pse = 10° Pa and free-stream temperatufg, = 293K, yielding a free stream den-
Sity poo =998.2 kgm 3.
5.5.1 Geometry of NACA foll
The section of the hydrofoil is presented in figure 5.11. Theetisionless half-
thickness distributiorg(z) is given by [4]:

Y= L (CL()\/% +a1x + agi'z + Cbgi'g + CL4E‘4) , (5.7)

0.20

with ag = 0.2969, a; = —0.126, as = —0.3516, a3 = 0.2843, a4 = —0.1015. ¢t is
the thickness parameter, here- 0.12 andz = z/c is the dimensionless coordinate
along the chord line ranging from 0 at the leading edge to hatttailing edge.
Note that with the definition in equation (5.7) the trailingge has a finite thickness.
Therefore, the trailing edge is extended using the profifanitien of equation (5.7)
until zero thickness at = 1.0089304.

0.1
o
0 0.25 05 0.75 1
z/c]
FIGURE 5.11: Section of NACA0012 hydrofoil 4t angle of attack.

y/c[]

5.5.2 Computational domain and hybrid mesh

The computational domain is sketched in figure 5.12. Thedfgdris located in a
channel with heigh2c and a length oRc upstream of the hydrofoil anglc down-
stream of the hydrofoil. The flow is from left to right.

The median dual mesh is constructed from a hybrid mesh dowgisf a layer of
gquadrilateral elements around the foil and in part of theavakhe regions with the
guadrilaterals are indicated with the circled numbers inrfg5.12. The region in
the wake with quadrilaterals extends one chord length #fehydrofoil. The rest
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FIGURE 5.12: Computational domain for 2D NACA0012 hydrofoil 4t angle of
attack in a channel.

of the computational domain is filled with triangles to fit thiesh easily within the
channel. Note that the hybrid mesh approach offers greabifliex in constructing
the mesh for this computational domain.

Three different mesh densities are chosen in the regionsdrthe hydrofoil in-
dicated by the circled numbers in figure 5.12. The number afiglateral elements
in the different regions are chosen such that the number adirijaterals along the
foil is equal to 100, 200, and 400, respectively. The exaatlver of quadrilaterals
in the different regions is listed in table 5.7. The variahldenotes the number of
quadrilaterals in the direction perpendicular to the sigfaf the hydrofoil, i.e. the
“thickness” of the quadrilateral layer.

number of pointg| » | O | O | O | O | O | #quad's| # control
on foll volumes
100 10/ 15| 10| 10| 15| 26 1,520 4,041
200 20130 20| 20| 30| 52 | 6,080 10,419
400 40| 60| 40| 40| 60| 104 | 24,320 | 31,976

TABLE 5.7: Number of quadrilaterals per segment of the computatiooahain pre-
sented in figure 5.12 and total number of control volumes é@hemesh.

The triangular mesh around the quadrilateral layer is ahgseh that the transition
from the quadrilaterals to the triangles is relatively sthooFurthermore, for the
meshes of different density close to the foil, the triandlether away in the com-
putational domain are approximately equal in size. Theltiagumeshes around the
hydrofoil are presented in figure 5.13.
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FIGURE 5.13: (a) Computational mesh for water flow around 2D NACA0012 hy-
drofoil at 4° angle of attack in channel. (b)—(d) Close up of mesh arourtidigil.
Points on foil: (b) 100 (c) 200 (d) 400.

5.5.3 Numerical method

The results are obtained with the hybrid HLLC/AUSM flux scleeas presented

in section 4.7.2. In the following the first and second-orcesults are presented.
The second-order results are obtained with the limiter pteibf Venkatakrishnan
employing the primitive variable§, u, v, w,e]”. For the inflow the non-reflective
boundary conditions are applied. For the outflow the asytigptmnstant pressure
boundary condition withp., is used. The top and bottom of the channel as well as
the surface of the hydrofoil are slip solid walls. For thefaoe of the hydrofoil the
Curvature Corrected Symmetry Technique is applied. Toleae the calculation
towards the steady-state solution local time-steppingdied.

5.5.4 Results for lift and drag forces

The lift and drag coefficientg andc, for the three meshes are presented in table 5.8
and figure 5.14 for first- and second-order reconstructiespectively.

number of points first-order second-order
on foil cd [ al] cdl-] al-]
100 0.02517| 0.4901| 0.00687| 0.5299
200 0.01425| 0.5075| 0.00236| 0.5389
400 0.00991| 0.5157| 0.00110| 0.5424

TaBLE 5.8: Lift and drag coefficients;, ¢, for meshes of increasing grid den-
sity on surface of 2D NACA0012 foil df angle of attack. First- and second-
order results with hybrid HLLC/AUSM schemep,, = 10°Pa, Uy, = 50 ms™*,

Poo = 998.2 kgm ™3, T, = 293 K.
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FIGURE 5.14: Lift coefficient¢; (left) and drag coefficients:; (right) for 2D
NACAO0012 foil a#® angle of attack as a function of the number of poiit®on the
surface of the foil. Presented are results obtained with-fisgd second-order re-
construction with hybrid HLLC/AUSM flux schemeg, = 10°Pa, Us, = 50 ms™ !,
Poo = 998.2 kgm 3, T, = 293 K.

The absence of viscous forces implies that the resultagtfdrae or drag coefficient
exerted by the flow on the hydrofoil must be equal to zero. Wstitated in table 5.8
and figure 5.14 the calculated drag coefficient is not equakto, which is due to
the action of numerical dissipation in the numerical methdde value of the drag
coefficientcy thus gives a measure for the global error. For increasirdydgnsity or
with second-order spatial reconstruction, this value ndestease. From the rate of
decrease with increasing number of grid points on the feildider of the numerical
method can be obtained.

For increasing mesh density the lift and drag coefficientsukhconverge to the
grid-independent value. Richardson’s extrapolation iplegred to obtain the grid-
independent value(0):

c(h) =¢c(0) + CR? (5.8)

whereh = 1/N is a measure for the mesh density, ) is the value of the coefficient
at the grid with mesh density, andC andp are constants, which are determined
using the first- and second-order results for the lift and) d@efficients for the three
meshes. In table 5.9 the values fgf), C' andp are presented for the lift and drag
coefficients for the first- and second-order spatial recansgbn.

From tables 5.8 and 5.9 we conclude that the first-order s#naetion method indeed
gives results that are close to first-order. Also, we corelinét the second-order re-
construction method produces results that are close todemaler for single-phase
water flow, when the drag coefficient is considered.
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number of points first-order second-order
on foil call | all call] | all
c(0) 0.0070| 0.5230| 0.00061| 0.5446

C 833 | —4.88 | 2991 | —7.82

p 1.33 1.09 1.84 1.36

TABLE 5.9: Richardson’s extrapolation, values fey(0),C,¢;(0) and p for first-
and second-order results for 2D NACAO0012 foil 4t angle of attack. Re-
sults obtained with hybrid HLLC/AUSM schemeg,, = 10°Pa, Uy = 50 ms™!,
Poo = 998.2 kgm ™3, T, = 293 K.

Furthermore, we find that the second-order reconstructiethod results in a smaller
value for the drag coefficient for all meshes compared wittittst-order reconstruc-
tion scheme. Stated more strongly, we find that the drag coeiti obtained with
the second-order reconstruction method on the coarsestimssaller than the drag
coefficient obtained with the first-order reconstructiorntimoe on the finest mesh. In
addition the lift coefficient obtained with the second-ardeethod on the coarsest
mesh is higher than the lift coefficient obtained with thetfoler method on the
finest mesh.

5.5.5 Numerical solutions

In figures 5.15(a) and (b) the first-order solution for thefaste distribution of the
—C), coefficient and the Mach numb@t are presented for the three meshes. The
solution for the mesh with 400 points on the surface of therdfgil shows a lower
value of —C,, at the trailing edge than for the other meshes meaning thattgna-
tion point at the trailing edge is resolved better. Addiéithyy the maximum of-C,

on the top surface of the foil is equal to 1.47 and is highen fioa the 100 and 200
mesh, which have a maximum value of 1.27 and 1.40, respsctivéhe solution

for the Mach number shows more difference between the sokitbn the different
meshes. The Mach number in the stagnation point at thengag@dge of the foil for
the mesh with 400 points is equal to 0.0165.

In figures 5.15(c) and (d) the solutions using the secondraretonstruction method
for the distribution of the-C), coefficient and the Mach number on the surface of the
hydrofoil are presented for the three meshes. The trendedddhutions is compara-
ble to the first-order solution. However, the maximum andimium values of the
solutions are much higher and lower, respectively, tharifferfirst-order solutions.
The maximum value of-C), for the 400 points mesh is now equal to 1.68 compared
with 1.66 and 1.62 for the 200 and 100 mesh, respectively. mimémum value of
the Mach number in the stagnation point at the trailing edgequal to 0.0147 for
the mesh with 400 points. Note that, the value becomes muetr lior a finer mesh.
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FIGURE 5.15: Solutions for—C), coefficient (left) and Mach numbeéd (right) on
surface of the 2D NACAO0012 foil P angle of attack for meshes with increasing
grid-density on the surface of the foil. Results obtaineith fwst- (top) and second-
order (bottom) reconstruction with hybrid HLLC/AUSM fluheme.p,, = 10° Pa,
Uso = 50 ms™ 1, T, = 293 K. (a) —C,, coefficient first-order (b) Mach numbeér
first-order (c)—C, coefficient second-order (d) Mach numligrsecond-order.

Also, note that the value ofC), at the stagnation point at the nose of the foil becomes
much closer to-1 for all three meshes compared with the first-order solutions

From tables 5.8 and figure 5.15 we conclude that the secatet-eplution obtained
on the mesh with 100 points is of better quality than the firsker solution obtained
on the mesh with 400 points. Furthermore, we conclude tratrbsh with 200
points in combination with the second-order spatial retrasson method leads to
an already accurate solution on the surface of the hydrofdié difference between
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the second-order solutions for the pressure coefficigrif and the Mach number/
obtained on the meshes with 200 and 400 points is relativebils

In figure 5.16 the second-order solutions for pressure eo&fi—C), and Mach num-
ber M are presented for the mesh with 200 points on the surface diitirofoil. The
maximum value of-C), is equal to 1.65 and is obtained on the top surface of the foil
close to the leading edge. TheC, values in the stagnation points on the nose and
at the trailing edge of the foil are equal t61.0024 and —0.278, respectively. The
maximum value for the Mach number is equal to 0.053 on the udjase of the foil.
The Mach number in the stagnation points are equdl.4oc 10~3 at the nose and
0.0178 at the trailing edge, respectively.

Level -Cp Level M
' - afel] |
FIGURE 5.16: Second-order solutions for 2D NACAO0012 foil4dt angle of attack
obtained with hybrid HLLC/AUSM scheme on mesh with 200 paintthe surface of
the foil. poo = 10°Pa, Us, = 50 ms™!, T, = 293 K. (left) —C,, coefficient (right)
Mach number\f.
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5.6  Water flow about 2D NACAO0015 at6° for U,, =12 ms™!

In this section the single-phase water flow about a two-dsgioeral NACA0015 hy-
drofoil at6° angle of attack is considered for a free-stream veldGity=12 ms~!.
Wrobel [221] calculated the inviscid, incompressible flawv this foil applying a
central discretization scheme with artificial dissipatibfis second-order solution is
used as a reference for the solution obtained with the presenerical method.

The chord length of the foil i = 0.13m. The half-thickness distribution of the
foil is given by equation (5.7) where= 0.15. The hydrofoil is located in a channel
with height2c¢ and a length o2c upstream of the hydrofoil aritt downstream of the
foil. The computational domain is presented in figure 5.1fe Tow is from left to
right.
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FIGURE 5.17: Computational domain for 2D NACAO0015 hydrofoil Gt angle of

attack in a channel.

The computational domain is divided into triangular anddyilateral elements as
illustrated in figure 5.18, which shows a close-up aroundhtyarofoil. On the sur-

face of the foil 200 quadrilaterals are positioned as erplaiin table 5.7. The total
number of control volumes is equal to 10k, the number of giesis equal to 8k and
the number of quadrilaterals is equal to 6.5k.
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FIGURE 5.18: Close-up of hybrid quadrilateral/triangular mesh for theD2
NACAO0015 hydrofoil a° angle of attack in a channel. 200 quadrilaterals on the sur-
face of the hydrofoil. Total: 10,419 control volumes, 7,938ngles, 6,480 quadri-

laterals.

The free-stream velocity is set {8, = 12 ms~!, which results in a Mach number
equal toM, = 7.8x1073 at a free-stream pressyrg, = 0.74175x10° Pa and free-
stream temperaturg,, = 293 K, which yields a free stream density @f, = 998.2

kgm 3.
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The results are obtained with the hybrid HLLC/AUSM flux scleeas presented

in section 4.7.2. The first 50k time steps are calculated thi¢hfirst-order spatial
reconstruction method. Then, the calculation is continwith the MUSCL-type
second-order reconstruction method applying the limit&enkatakrishnan employ-
ing the primitive variable$p, u, v, w, ¢]” . For the inflow the non-reflective boundary
conditions are applied. For the outflow the asymptotic corispressure boundary
condition withp., is used. The top and bottom of the channel as well as the surfac
of the hydrofoil are no-slip solid walls. For the surfacetwd hiydrofoil the Curvature-
Corrected Symmetry Technique is employed. To acceleratedlktulation towards
the steady-state solution local time-stepping is employed

The residuals fop and pu are presented in figure 5.19. During the first 50k itera-
tions, when the first-order reconstruction is employedr#iseduals decrease rapidly.
When the second-order reconstruction is switched on, siduals stall at a level of
O(10~%) for the density and of orde®(10~3) for pu. It is known that the limiter

of Venkatakrishnan stalls the convergence to the steadg-solution. In the present
calculation the limiter function switches on and off in thentrol volume around the
trailing edge. To solve this stall in convergence Bramka8&] fliscusses a number
of limiters for unstructured grids besides the limiter oinKatakrishnan. More re-
search is necessary to solve this problem in the future.

10'
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FIGURE 5.19: Residuals forp and pu as a function of iteration step on 2D
NACAO0015 hydrofoil a6° angle of attackp., = 0.74175x 10° Pa, Uy, = 12 ms™!,
Poo = 998.2 kgm ™3, T,,, = 293 K.

The lift and drag force are equal #§ = 7746 Nm~! and f, = 33 Nm™!, respec-
tively, which is equivalent te; = 0.829 andc; = 0.0035, respectively. It must be
noted that during the calculation the values for the lift draly force vary up to 1.6%
for the lift force and up to 28% for the drag force. This vaddatis caused due to
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the problems with convergence to steady-state describedealIhe values for the
lift and drag force presented above are the average valeeshmlast 600k iterations.

The distribution of the-C), coefficient and the Mach numbér on the surface of
the foil are presented in figure 5.20. Note that the maximulwegfor —C;, on the
top surface of the hydrofoil is equal to 2.46 and in the stignaoint at the trailing
edge—C, = —0.35. The values for-C, and M in the point closest to the stagnation
point on the nose of the foil are equal+d.0057 and1.5 x 10~4, respectively.
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FIGURE 5.20: Solution on surface of NACAO0015 hydrofoil &t angle of at-
tack in a channel. po, = 0.74175x10°Pa, Uy = 12 ms™!, My, = 7.8x1073,
Poo = 998.2 kgm 3, T, = 293 K,. Solutions obtained with second-order hybrid
HLLC/AUSM flux scheme forC,, coefficient (left) and Mach numbéi (right) for
hybrid mesh with 200 points on surface of hydrofoil.

The small overshoots around the trailing edge of the hydrafe due to the treatment
of the trailing edge in constructing the median dual mesheyprogram Favomesh.
The overshoots in the solution for the pressure coeffidignand Mach numben/
become smaller for finer (hybrid) meshes.

The control volume around the trailing edge is badly shapAdsolution to this
problem is to split the control volume in an upper and lowantoa volume on the
surface of the hydrofoil. This has been investigated in ooug by Hospers [98],
who showed that by splitting the control volume around tladitrg edge the solu-
tion is then allowed to be discontinuous at the trailing edgerrently, the program
Favomesh has been adapted by H. de Vries to automate thingptit the control
volume around the trailing edge.
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Compared with the results for the 2D NACAO0012 4t angle of attack obtained
in section 5.5 the overshoot is larger, because the 2D NAQB®Ydrofoil is placed
at an higher angle of attack. Furthermore, the free-strealoctity in this section is
equal toU,, = 12 ms™!, whereas a free-stream velocity Gf, = 50 ms~! was
chosen in the previous section. At lower free-stream vBscithe numerical flux
schemes are more sensitive to irregularities in the gridtddlee low numerical dis-
sipation.

Wrobel [221] reports lift and drag forces equalfip = 7602 Nm~!'andf, = 30.7
Nm~!, respectively, which amount t¢ = 0.813 andc, = 0.0032 in his calculation.
His maximum—C,, value on the top surface of the foil and in the stagnation tpatin
the trailing edge are approximately equal to 2.5 a1td25, respectively. Comparing
the results of the present numerical method with the resfiN§robel, we conclude
that the solution on the foil is accurately solved for witle fhresent density-based
numerical method on a hybrid quadrilateral/triangular imes

5.7 Single-phase water flow over 3D Twistl1 hydrofoil

Foeth [67] has carried out experiments on a three-dimeakiwall-to-wall twisted
hydrofoil placed in a cavitation tunnel. The main objectifehis section is to val-
idate the numerical method utilizing the experimental datasingle-phase water
flow. Here, the interest is in the steady-state solution fofoun inflow conditions.
The cavitating flow about the 3D Twist11 hydrofoil will be cidered in section 6.4.

5.7.1 Geometry of 3D Twist11 hydrofoil

The hydrofoil is denoted by TwistXX hydrofoil, because afiarying geometric an-
gle of attack from0° at the tunnel walls to XX angle of attack at mid-section, see
Dang [51], Koopet al. [113] and Foeth [67]. The chord length of the foil is equal to
¢ = 0.15m. The foil spans the cavitation tunnel from wall to wall angisymmetric
with respect to its mid-span plane.

The hydrofoil has a spanwise varying distribution of thealogeometric angle of
attacka(y) to avoid interaction of the cavitation sheet with the tunmell. The local
angle of attacky(y) is defined by a cubic polynomial, such that itig,;; degrees at
the tunnel wallyp,,, ., degrees at mid-span and that its derivative in spanwisetiire
is zero at the wall as well as at mid-span:

A7) = Amaz (2l71° = 37% + 1) + qwan, (5.9)
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wherey = y/c is the dimensionless coordinate in span-wise direcgioa [—1, 1],
with ¢ = 0 is defined to be at the mid-plane of the span and 1 at the tunnel wall
at the starboard side. Note that,,; is the rotation angle of the entire hydrofoil and
is always equal to the local angle of attack at the tunnel.wall
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FIGURE 5.21: Span-wise distribution of geometric angle of attack of Tidis
hydrofoil at—2° angle of attack.

The sections of the hydrofoil rotate aroumd= z/c = 0.75 to reduce the optical
blocking of the mid-section plane by the hydrofoil when viegvfrom the sides of
the foil, which is illustrated in figure 5.22(c), where théesiview of the foil is pre-
sented.

The foil under consideration is the Twistl1-a2° angle of attack, yielding,,,q, =11°
and a,,q = —2° in equation (5.9). The size of the foil 515m in chord wise and
0.3m in span-wise direction. The hydrofoil has a NACA0009 setctidth its half-

thickness distribution given by equation (5.7) with= 0.09. The hydrofoil is pre-
sented in figure 5.22, where a 3D view, top view, side view aodtfview are shown.

5.7.2 Experimental data

Foeth [66] measured the forces and moments exerted by thefithe foil as well as
local pressures on the surface of the hydrofoil. For thellpoessure measurements
20 transducers were fitted in the foil at locations as preskimtfigure 5.23 and table
5.10, see for more details the thesis of Foeth [67].
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FIGURE 5.22: 3D Twistl1 hydrofoil at—2° angle of attack, flow is ir-direction.
(a) 3D view (b) top view (c) side view (d) front view.

sensor Xx/c  y/s| sensor  x/c yls| sensor x/lc yls

1 0.40 040 8 0.05 0.50] 15 0.50 0.40
0.75 050 9 0.025 0.50, 16 0.05 0.30
0.50 0.50; 10 0.05 0.40 17 0.10 0.30
0.40 0.50 11 0.10 0.40 18 0.20 0.30
0.30 0.50, 12 0.20 0.40 19 0.05 0.20
0.20 0.50, 13 0.30 0.40 20 0.05 0.10
7 0.10 0.50; 14 0.40 0.40

TABLE 5.10: Locations of the pressure transducers on the Twist11 hgilliof per-
cent of chord and (full-)span position. All sensors are plhon the suction side,
except sensor 1, which is placed on the pressure side.

OO WN

Foeth carried out single-phase flow experiments for thregearof attack, i.e—1°,
—2° and—3°. Here, the angle of attack ef2° is considered, because for this inci-
dence cavitating flow experiments were conducted as welld@p Furthermore, for
each angle of attack the pressures and forces were measwaibas flow veloci-
ties. Here, the results fd/., = 6.75 ms™!, Too = 297 K andp., = 0.97 x 10° Pa
are considered. For these flow conditions Foeth [66] re@oifif force of 455N,
which amounts to a lift coefficien€’;, = 0.46. There are no experimental results
available for the drag force. The measurements for the locg) values on the sur-
face of the foil are presented in figure 5.27 together withnilne@erical results.
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FIGURE 5.23: Locations of the pressure sensors on 3D Twistll hydrofoil 2t
angle of attack, flow is ir-direction. All sensors are placed on the suction side,
except sensor 1, which is placed on the pressure side.

5.7.3 Computational domain and mesh

Slip solid walls

‘§x Outlet

2c

Inlet

Flow
-

Symmetry Plane

FIGURE 5.24: Computational domain for 3D Twist11 hydrofoil a° angle of at-
tack. The back side, top and bottom of the channel are slig g8dlls, the front side
is a symmetry plane, the left and right side are the in- andlowt The surfaces of
the foil are solid slip walls. Note that the flow is from leftright.

For numerical purposes the length of the test section i®éasmd to minimize the
effects of the implementation of the inlet and outlet bougdaonditions. The hy-
drofoil is located in a channel with height, a length of3c upstream of the leading
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edge, a length dtc downstream of the trailing edge and a widthsof c. Note that
for the numerical flow simulation only the starboard half loé test section and the
foil is considered, because of its geometric symmetry aaé#sumed hydrodynamic
symmetry.

The computational domain is divided into tetrahedral eletsatilizing the software
package ICEM-CFD. The surface of the foil is divided in 7 suipfaces, i.e. one sur-
face wrapping around the leading edge and three surfaceshem side of the foil.
Each surface has its own size of surface elements (rati6:8)40 ensure a fine mesh
around the nose of the foil and a somewhat coarser mesh onttaees closer to
the trailing edge. Note that the tetrahedrons close to theife much smaller than
the tetrahedrons further away in the flow field. The elementthe trailing edge are
refined to reduce the effects of the badly-shaped contralnves around the trailing
edge as explained in section 5.6.

Following a limited grid sensitivity study [113] it was cdaded that for single-phase
water flow a total number of around 350k tetrahedrons is aatedior a sufficiently
accurate solution on the surface of the foil, which resuitapproximately 70k con-
trol volumes in the complete computational domain. Thishrispresented in figure
5.25. For cavitating flow a tetrahedral grid with a refinemaonhg the suction side
of the hydrofoil is considered. In this section that gridegerred to as the fine grid.
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FIGURE5.25: Tetrahedral mesh for 3D Twist11 hydrofoil-aR° angle of attack. Pre-
sented are the surface meshes on the hydrofoil and tunreemgdl. Total: 356,638
tetrahedrons, 69,365 control volumes. Flow is from leftitit.
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5.7.4 Numerical method and flow conditions

The numerical results are obtained with the hybrid HLLC/AWUfBux scheme as pre-
sented in section 4.7.2. The first 50k iteration steps amitzbd with the first-order
spatial reconstruction method. Then, the calculation rginaed with the MUSCL-
type second-order reconstruction method applying thadinmethod of Venkatakr-
ishnan employing the primitive variabldg, u,v,w,e]”. For the inflow the non-
reflective boundary conditions are applied. For the outfllegvdsymptotic constant
pressuren,, boundary condition is used. The top and bottom of the chaaumeeslip
solid walls as well as the surface of the hydrofoil. The swlal boundary conditions
for the hydrofoil are calculated with the Curvature-CotegcSymmetry technique.
To accelerate the calculation towards the steady-statgi@ollocal time-stepping is
applied.

For single-phase flow the temperature is chosen eqalte- 297 K and the asymp-
totic outlet pressure is set fo, = 0.97 x 10° Pa, which yields a free stream density
Poo = 998.3 kgm~3. Corresponding to the experimental setup described ifosect
5.7.2 a free stream velocity,, = 6.75 ms~! is chosen yielding a free stream Mach
numberM,, = 0.0044. These results are compared with results of a calculation
at free stream velocity/,, = 50 ms~!, M., = 0.0325 with the same free-stream
pressurey,, and temperaturé,..

5.7.5 Convergence

The residuals fop and pu are presented in figure 5.26 fof,, = 6.75 ms~! and
Us, = 50 ms™!, respectively. During the first 50k iterations, when thetfinsier
reconstruction is employed, the residuals decrease yapilhen the second-order
reconstruction is switched on the residuals stall at a lef/€(10~3) for the density
and of ordei?(10~2) for pu for U,, = 50 ms~!. As mentioned in section 5.6 for the
2D calculation, it is known that the limiter of Venkataknsn stalls the convergence
to the steady-state solution.

5.7.6 Numerical results for lift and drag forces

In table 5.11 the values of the lift and drag coefficients aes@nted for the free-
stream velocityU,, = 6.75 ms~' on both grids and fof/,, = 50 ms~' on the
coarse grid. Note that only the star-board half of the hyaltdfas been calculated,
so the calculated forces are multiplied by two to compard Wit experimentally
obtained forces. The reference surf&a equation (2.10) of the hydrofoil is equal to
2¢?. Due to the problems with convergence the lift and drag feerg forU,, = 6.75
ms~! up to 1.9% and 20.4% for the lift and drag force, respectivElyr U,, = 50
ms~! they vary up to 0.4% and 2.8%, respectively. The presenteesdor the lift
and drag coefficients are the average values over the lastés@kons.
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FIGURE 5.26: Residuals forp and pu as a function of iteration step on 3D
Twist11 hydrofoil at-2° angle of attackp., = 0.97x10° Pa, pos = 998.2 kgm ™3,
Too = 297 K. Top: Uy, = 6.75 ms~! Bottom: U,, = 50 ms™!.

Uso numerical experimental
[ms™'] | mesh | Cp[] | CLll ||  Cr[
6.75 | coarse|| 0.010 | 0.442 0.46
6.75 fine || 0.0083| 0.445 0.46
50 coarse|| 0.0098| 0.454 -

TABLE 5.11: 3D Twistl1 hydrofoil at-2° angle of attack. Lift and drag coefficients
Cr, Cp for velocitiesU,, = 6.75 ms~! on coarse and fine grid and,, = 50 ms—!
on coarse grid. Added are the experimentally obtained \safaethe lift coefficient.
Poo = 0.97x10° Pa, poo = 998.3 kgm 3, T,,, = 297 K.
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The lift force forU,, = 6.75 ms~! is calculated to be equal t51.8N. Note that
this value correspond to withit% with the measured valué5N for U,, = 6.75
ms~!. Furthermore, the experimentally obtained lift coeffiti€h, = 0.46 is suffi-
cienf accurately predicted by the present numerical method. Engwe conclude
that the calculated lift force corresponds satisfactorthviie measured value for
single-phase water flow at this low Mach number and angletatfor which flow
separation does not occur.

The calculated lift coefficient on the coarse and fine meslappeoximately equal to
each other, which verifies that the coarse grid is adequate $officiently accurate
solution on the surface of the hydrofoil for single phase flow

For inviscid flow at low Mach number the lift coefficieat;, for the velocities, =

6.75 ms~! andU,, = 50 ms~! should be about equal to each other. In table 5.11 is
presented that the lift coefficient slightly differs for hdtee-stream velocities. The
value forU,, = 50 ms~! is closer to the experimental value than fag, = 6.75
ms 1.

For this three-dimensional inviscid flow case the drag faxilenot be zero. The

wake downstream of the trailing edge contains vorticityrsteng from the differ-

ence in direction of the velocity over the suction side aralftbw over the pressure
side. At the trailing edge these two flows meet and generatalmg vortex sheet.

This trailing vorticity induces an upwash/downwash disition at the foil which in-

creases/reduces the local angle of attack experienceceldpith This results in the
so-called induced drag. In [113] we have investigated theand downwash on the
foil by employing Prandtl’s lifting-line theory, which isicluded in appendix D. In
section 5.7.8 a visualization of the trailing vorticity isggented.

From the good agreement between the experimentally obtdififorce and the
calculated value and the agreement between the calcuifiteddfficients for both
velocities, we conclude that the present numerical methathpable of accurately
predicting the lift force on the foil for low speed 3D singkase water flow.

5.7.7 Comparison with experimental pressure data

Foeth’s experimentally obtainedC), values at the surface of the hydrofoil at the
locations indicated in figure 5.23 are compared with the migakresults. The ex-
perimental values are grouped together for the same spé#iopesi.e. 50%, 40%,

fFoeth [66] mentions that his calibration was verified forreangle of attack by placing weights on
the hydrofoil in an empty cavitation tunnel. A deviation3% from the calibrated value was found and
Foeth applied a correction for this discrepancy.
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30%, and 20% of the span. These values are denoted by the gpaes in figure
5.27. At the same span positions slices are made throughutnencal solution at
the surface of the hydrofoil. These are presented with theed circles in figure 5.27.
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FIGURE 5.27: 3D Twistll hydrofoil at—2° angle of attack. Experimental
(open squares) and numerical (solid circles) distributiohthe —C), coefficient
for Usx =50ms™!, T =297 K, po = 0.97x10°Pa, poo = 998.2 kgm 3.
@y/s=0.5,(b)y/s=04,(c)y/s=0.3,(d)y/s=0.2.

As can be seen in figure 5.27 the numerical results correspasbnably well with
the experimental data. However, the experimental value/at= 0.3 at 40% span
appears to deviate from the numerical results. Foeth [66]times that the value
from this pressure sensor is not trustworthy.

Furthermore, as can be seen in figure 5.27, an oversheetjnvalue at the trailing
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edge is observed in the numerical results. This is causelddmxetatively bad-shaped
control volume around the trailing edge for a node-centelteal mesh. As explained
in section 5.6 a possible solution is to split the controlumoés around the trailing
edge into an upper and lower control volume allowing a difnoous solution at

the trailing edge. Currently, within our group H. de Vriestadapted the program
Favomesh to automate the splitting of the control volumesirad the trailing edge.

When the mesh is refined around the trailing edge, this ogetsieduces.

From figure 5.27 we conclude that the solution for the pressur the surface of
the 3D Twistll hydrofoil at-2° angle of attack can be calculated accurately for
single-phase water flow at low-Mach number.

5.7.8 Numerical results for flow solution

In figure 5.28 the distribution of-C), coefficient on the surface of the hydrofoil is
presented for fully wetted water flow withi,, = 50 ms~!. In the center on the
suction side of the hydrofoil a clear low pressure regionisiole. The design of the
foil has been such that cavitation occurs in the center ofdtiend that cavitation
is avoided near the tunnel walls. Due to the span-wise vgrgimgle of attack the
pressure near the tunnel walls of the cavitation tunnel ishrhugher resulting in a
lower —C), value.

To illustrate the generated vorticity in the wake of the lofdil an iso-contour of the
x-component of the vorticity, i.dw,|/ (Ux/c) = 0.4, is presented in figure 5.29.
The vortical wake of the hydrofoil is generated due to thé&dince in the direction
of the velocity over the suction side and pressure side dfiydeofoil. At the trailing
edge these two flows meet and generate a trailing vortex.shieetvortex sheet rolls
up further downstream in the domain into two regions of wigtiwith their centers
located aty = y/c = —0.5 andy = y/c = 0.5, respectively. Unfortunately, the
mesh is too coarse further away from the hydrofoil to be ablesolve the roll-up of
the vortex sheet more accurately.

This trailing vorticity induces an upwash/downwash at thi€ ¥vhich increases/redu-
ces the local angle of attack experienced by the foil. In #r@er of the foil a down-

wash is experienced by the foil, which reduces the occuer@ficavitation due to

the lower effective angle of attack. At the tunnel walls tlyelitofoil experiences an
upwash, causing a higher effective angle of attack whickiéed an earlier onset of
cavitation than expected by considering the negative laogle of attack at the tun-
nel walls.

In [113] we investigated the up- and downwash on the Twist@8st11 and Twist14
hydrofoils due to the vortical wake by means of PrandtI'ssieal lifting line theory.
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FIGURE 5.28: 3D Twistll hydrofoil at—2° angle of attack. Distribution of
—C), coefficient on surface of hydrofoil. Second-order hybridLBIAUSM flux
scheme on tetrahedral mestl,, = 50 ms™!, Tho = 297 K, pss = 0.97x 10° Pa,
Poo = 998.2 kgm 3.

The lifting line theory for the Twist hydrofoil is includechiappendix D. From this
theory an estimate for the effective angle of attack of theT8istl1l hydrofoil is

obtained. From the numerical results presented in figui@ the calculated effective
angle of attack at various locationg along the span of the foil is obtained through

acsr(yo) = %?;O), (5.10)

wherec;(yo) follows from

1
S CTE R E,) M

with C’g L the C,, distribution along the upper and lower side of the sectiaated
at spanwise locationg.

In figure 5.30 the estimated effective angle of attagk 1z, obtained from Prandtl’'s
lifting line theory, the calculated effective angle of akav. ¢ ..., Obtained from the
Euler calculations presented in figure 5.28 and the locaingddic angle of attack
ageom are presented for the 3D Twistl1 hydrofoil -a2° angle of attack. As illus-
trated in figure 5.30 both the estimated and calculated tefieangle of attack are
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FIGURE 5.29: 3D Twistll hydrofoil at—2° angle of attack. Iso-contour
of the z-component of vorticity|w,|/ (Usx/c) = 0.4. Second-order hybrid
HLLC/AUSM flux scheme on tetrahedral meshbl,, = 50 ms™!, T, = 297 K,
Poo = 0.97x 10° Pa, poe = 998.2 kgm 3.
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FIGURE 5.30: Twistl1 hydrofoil at—2° angle of attack. Geometric angle of attack
ageom (sOlid line), the effective angle of attack as predictearfi@randtl’s lifting line
theorya. s pr1 (dashed line) and the effective angle of attack as preditrted the
Euler calculationso £ um (Stars).
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higher than the local geometric angle of attack at the tunrdls and lower at the
mid-span plane. Thus, the vortical wake of the hydrofoil gyates upwash at the
tunnel walls and downwash at mid-section of the foil.

The downwash at mid-span derived from the Euler equatioreeagjuite well with
the values found from Prandtl‘s lifting line theory. The wgsh, which occurs near
the tunnel walls, is higher in the Euler results comparethéarésult from lifting line
theory. This might be due to the neglect in Prandtl’s liftlimg theory of the roll-up
of the vortical wake, which is present in the solution obtdirirom the Euler equa-
tions. The center of vorticity will remain the same, see ljinakers [94]. The roll-up
effects the upwash apparently more near the wall than thendash near the center
of the foil. This needs to be explored further. Furthermare conclude that for fully
wetted flow Prandtl’s lifting line theory can be used in damiya potentially inter-
esting Twist distribution that subsequently can be expldtether using the Euler
method, see Koopt al. [113] and appendix D.

5.8 Conclusions on single-phase flow calculations

In this chapter the single-phase flow of water has been ceresidor 1D, 2D and 3D
flow problems. It is judged essential to accurately caleusatgle phase water flow
to be able to calculate cavitating flow correctly. In this ptes we have shown that
the present numerical method is able to:

e accurately predict time-accurate wave and shock dynamigguid flow prob-
lems such as the “Water Hammer” problem and the Riemannegmofr liquid
flow;

e accurately calculate steady-state low-Mach number lifjaid, without the use
of preconditioning methods, by employing a hybrid HLLC/AM3ux scheme
such as developed by Schmattal [169, 170, 172];

e accurately calculate the steady-state water flow abouidiw@nsional hydro-
foils;

e accurately predict the lift coefficient for the 3D Twistl1dugfoil at—2° angle
of attack for single-phase liquid flow under uniform inflownclitions;

e accurately predict the pressure coeffici€iton the surface of the 3D Twist
hydrofoil at —2° angle of attack compared to experimentally obtained local
pressure data.

Furthermore, we conclude that the numerical method emmipthe MUSCL-type
reconstruction method and the limiter of Venkatakrishrauelose to second-order
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accuracy for the single phase water flow about two-dimemsioydrofoils.

The development and implementation of non-reflective banndonditions for com-

pressible water flow allow shock and expansion waves to |#aeomputational

domain without reflection back into the domain. This is inipot for unsteady flow

calculations. Furthermore, although not shown in detaithis chapter, the non-
reflective boundary conditions improve the convergencé¢osteady-state solution
because traveling shock and expansion waves are allowedye the computational
domain without reflections.

The development and implementation of the Curvature-CtedeSymmetry Tech-
nique for the slip solid walls of the object in the flow imprewhe numerical solution
near the surfaces of objects in the flow.

The results for steady-state low-Mach number flow have bmendved by the hybrid
HLLC/AUSM flux scheme as developed by Schmedtal. [169]. Following discus-
sions with Schmidt and Prof. Schnerr of the TU Munich we hawplémented their
formulation into the present edge-based numerical metbodirfistructured grids.
For the hybrid flux scheme we have reduced the Mach number fevtrer than
presented. However, fdi,, < 1.0 ms~!, which corresponds to a Mach number
M =6.5 x 10~ the solution starts to develop irregularities in the pressnd ve-
locity on the surface of the cylinder. Schmieltal [170] succeeded in obtaining a
solution for Mach numbers as low a8—*.

Furthermore, we conclude that the badly-shaped contraimves around the trail-
ing edge have a negative effect on the numerical solutioositalydrofoils. The

pressure near the trailing edge of the hydrofoil experiersreall under- and over-
shoots. Refining the grids near the trailing edge improvesitimerical results. At
present, within our group H. de Vries has adapted the preesging mesh program
Favomesh to automate the splitting of the control volumekeatrailing edge into an
upper and lower control volume on the surface of the hydrofoi

Lastly, we have found that the limiter method of Venkataknegn sometimes stalls
the convergence to the steady-state solution. A possiltlgico might be to imple-
ment one of the limiting methods described in the thesis @ndamp [28]. For
unsteady flow calculations the limiter of Venkatakrishnaorkg satisfactory, under-
and overshoots are not observed at sharp gradients or tiragities in the flow.




NUMERICAL RESULTS
CAVITATING FLOW

In this chapter results of numerical simulations for caintg flows are presented.
The equilibrium cavitation model as presented in sectigni8applied to simulate
the occurrence of cavitation. The two-phase flow regime &idleed as a homoge-
neous mixture in which the vapor and liquid components oftét® phase mixture
remain in thermodynamic and mechanical equilibrium.

In section 6.2 one-dimensional test cases are consideragsess the convergence
and stability of the numerical method for cavitating flowrdki the so-called “Clos-
ing Valve problem” of Berget al. [22] is discussed. Then, the 1D test case of Saurel
et al. [166] is presented, which illustrates the occurrence witagon by enforcing a
left- and right-running expansion wave.

In section 6.3 the test case of Sauer [162] is presentedheeavitating flow about
a 2D NACA 0015 section &° angle of attack at free stream velocity Gf, = 12
ms~! and cavitation number = 1.0. Also, the cavitating flow at a different free-
stream velocity ofUs, = 50 ms™', but identical cavitation number = 1.0, is
considered to investigate that flows with the same cavitatiomber result in the
same cavitating flow characteristics.

In section 6.4 the cavitating flow about the 3D Twist11 hydioat —2° angle of
attack is simulated at the same cavitation numbet 1.1 as in the experiments of
Foeth [67]. The development of the re-entrant flow is presgband the formation of
a cavitating horse-shoe vortex is investigated.

Lastly, in section 6.5 the steady-state cavitating flow atloe 3D Elliptic 11 Rake
hydrofoil is calculated, at the same cavitation numbet 0.68 as in the experi-
ments of Van der Hout [204], to show that the present edgeeébasmerical method
is capable of predicting the cavitation pattern occurrimghie flow about a complex
geometry.
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In table 6.1 the test cases for the two-dimensional and threensional cavitating
flow are summarized.

\ Foil | ] | Usc[ms™ [ o [] ] mesh |
2D NACAO0015 6.0 12,50 1.0 | hybrid quadrilateral/triangulafr
3D Twistl1l —-2.0 50 1.1 tetrahedral
3D Elliptic 11 Rake| 3 50 0.68 tetrahedral

TABLE 6.1: Test cases for 2D and 3D cavitating flow.

6.1 Dimensionless total vapor volume

The dimensionless total vapor volume is calculated diffdyefor the 1D, 2D and
3D test cases. For 1D flow the dimensionless total vapor veldm, 1 p is the total
vapor volume divided by the volume of the computational doma p:

1
Vvap,lD = —D Z O‘i‘/i- (61)

whereN is the total number of control volumes and where the voidtioac follows
from equation (2.2) with the volumE of the fluid taken equal to the volunié, of
the control volume. For flows about 2D hydrofoils the dimensss total vapor
volumeV,,,, 2p is defined as

vap,QD 2 Zaz X (62)

wherec is the chord length of the hydrofoil. For flows about 3D hyailsf the
dimensionless total vapor volumg,, sp is defined as

vap,3D - Zaz i (63)

From now on the total vapor volumé$;, 1p, Viap2p andV,,, 3p are denoted by
Vwap- The test case considered defines which equatiorVfgy is considered, i.e.
equation (6.1), (6.2) or (6.3) for 1D, 2D or 3D flow test casespectively.
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6.2 1D cavitating flow problems

6.2.1 “Closing Valve” problem

Berg et al. [22] investigated the cavitating flow in hydraulic pipams Here, their
“Closing Valve” problem is calculated. Consider a uniformowlof water through a
pipe of lengthl, = 0.1 m. The initial velocityuy and the initial pressurg, are set

to up = 1.0 ms~! andpy = 10° Pa, respectively. The initial temperature is denoted
by Ty, which is equal tdly = 293 K. For these initial conditions the speed of sound
equalscy = 1537.7 ms~ L.

At an arbitrary time, say = 0 the entire inflow boundary is closed infinitely fast.
Due to the inertia of the water an expansion wave startslingvéhrough the pipe.
Consequently, the pressure at the inlet boundary may drapetsaturation pres-
surepsq:(Tp) and the fluid starts to cavitate. All results are evaluatdteatnd-time

t = 5.0x107° s, which is just before the expansion wave reaches the outftouad>
ary. The grid is constructed from quadrilaterals and in ff@stion the influence of
the grid size is investigated.

The results are obtained with the HLLC flux scheme as predéntsection 4.5.2.

In the following first and second-order results are presenihe second-order re-
sults are obtained with the limiter method of Venkatakrahemploying the primi-
tive variables)p, u, v, w, ¢]T. For the outflow the non-reflective boundary conditions
are applied. The inflow and side walls of the pipe are slipdsetills.

To assess the order of the convergence of the numerical chetie solution is cal-
culated on five different grids, i.e. consisting of 50, 10002400, and 800 points in
z-direction and 2, 4, 8, 16 and 32 pointsgrdirection, respectively. From now on
the grids will be referred to by the number of grid pointszhirection. The total
vapor volumeV,,,, defined in equation (6.1) is calculated at time 5.0x107° s. In
table 6.2 the calculated total vapor volume is presentethiofive different grids for
first- and second-order spatial reconstruction. The tdidevs that the vapor volume
remains small and appears to converge for increasing mestityle

Richardson’s extrapolation is applied to estimate thd t@tpor volumeV,,,,(0) by
Viap(h) = Viap(0) + ChP, (6.4)

for three grids with increasing mesh density. The valuesifgy(0), C, andp are
presented in table 6.3. Note the,,(0) is equal t04.6819 x 107% andp ~ 1
for both the first- and second-order results. Thus, it is ébtlat both the first-order
method and the second-order method converge linearly only.
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N 15t-order 2nd_order
Viap [107*%] | Viap [1074%]
50 4.67183 4.69074
100 4.67685 4.68631
200 4.67937 4.68410
400 4.68062 4.68299
800 4.68125 4.68243

TABLE 6.2: Closing Valve problem. Total vapor volumetat 5.0x10~°s, first- and
second-order results for meshes with 50, 100, 200, 400 a@g8idts inx-direction.

15t-order ond_grder
N Viap(0) C P Voap(0) C P
[104%] | [1077] [104%] | [1077]

50/100/200 || 4.68191| -4.93 | 0.994| 4.68190| 4.48 | 1.003
100/200/400|| 4.68185| -5.27 | 1.011|| 4.68187| 4.31 | 0.993
200/400/800|| 4.68189| -4.74 | 0.989 || 4.68186| 4.18 | 0.987

TABLE 6.3: Closing Valve problem. Grid convergence of total vapor uzdu Con-
stants obtained with Richardson’s extrapolation.

In figure 6.1 first and second-order solutions for the presguthe velocityu and
the speed of soundare presented for the five different meshes. The numerioal ti
stepsAt. s, are equal to the numerical time steps presented in tablerbfigyure 6.2
the solution for the void fraction. and the Mach numbe¥/ are presented. Note that
for the results in figure 6.2 the scale of thexxis is different in order to illustrate the
region of interest, namely the region close to the closest.inl

At t = 5.0 x 10775 the right-running expansion wave, that appears as sooreas th
inlet closes, has almost reached the outflow boundary. Hemvéwe pressure in the
tube cannot decrease below saturation pressure withamdpthe liquid to cavitate.
Thus, the pressure drops to saturation pressure and thamseaonstant. The vapor
fraction « is equal to zero after the expansion wave has passed. Thetyetwen
also remains constant. The decrease in velocity dependsatetrease in pressure.
In the linearized case, see section 5.2, the differencelacig is derived to be equal

to Au = Ap/poco = 0.064 ms~!, which is confirmed in figure 6.1(d).

However, at the left boundary the velocity has to becomeldéquaro. Consequently,
the fluid is forced to cavitate, i.e. the void fractionincreases to 1. This results in
the formation of a liquid-vapor contact surface, followgddm expansion wave in the
vapor, where the velocity decreases to zero. The speed ehwie contact surface
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FIGURE 6.1: Closing Valve problem. Flow is from left to right.= 5.0x107° s
Results obtained with HLLC scheme: first-order spatial restouction (left) and
second-order reconstruction (rightyy = 1.0 ms™!, py = 10° Pa, Ty = 293 K.
(a)—(b) pressurey (c)—(d) velocityu (e)—(f) speed of sound See figure 6.2 for the
void fractionae and Mach numbef/.

moves is much smaller than the velocity of the expansion watlee liquid and thus,

in the time considered, the contact surface is located ¢toee closed valve. The
second expansion wave in the vapor is therefore not resobsdting in a singular
point at the left boundary. This also explains the valug ef 1.0 in table 6.3 for the

second-order spatial reconstruction.
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FIGURE 6.2: Closing Valve problem. Flow is from left to right. = 5.0 x 107> s.
Results obtained with HLLC scheme: first-order spatial restouction (left) and
second-order reconstruction (rightiy = 1.0 ms™!, py = 10° Pa, T) = 293 K.
(a)—(b) void fractiona (c)—(d) Mach numbed/. Note the difference in scale of the
x-axis compared with figure 6.1.

6.2.2 Two symmetric expansion waves

Saurelet al. [166] presented an one-dimensional test case for cangtdkows for
which evaporation in the fluid is forced by a left- and rightining expansion wave.
Saureket al. considered hypervelocity:& 3000 ms~!) underwater projectiles which

is outside the scope of the present research. Thus, in thi®sehe conditions
defined by Schmidet al. [169] are considered. The results are obtained with the
second-order hybrid HLLC/AUSM+up flux scheme on a quadsitdt mesh consist-
ing of 100 points inc-direction.

Initially, a tube with a length of in is completely filled with water at a tempera-
ture of Ty = 303.15 K with py,(Ty) = 4,254Pa andcy = 1539.6 ms~!. In

the center of the tube, at = 0.5 m, a diaphragm is placed separating two reser-
voirs of fluid. The water to the left of the membrane has anahitelocity of
uor, =—10.0 ms~!, whereas the fluid to the right of the membrane has an initial
velocity equal taugr = 10.0 ms~!. The pressure on both sides of the membrane is
set topor, = por = 0.9x10° Pa. At t = 0 the membrane is removed. The left and
right ends of the tube are non-reflective outflow boundaries.
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FIGURE 6.3: Two symmetric expansion waves. Solution at time-instants
to—t3 with ty =0+ NAt, where At=0.9x10"*s. Results are obtained
with second-order hybrid HLLC/AUSM+up scheme on a quatkitd mesh
with 100 points in z-direction.  At.p = 1.17x1075s, wor = —10 ms™},
wr=10 ms™', por=por=0.9x10° Pa, Ty, =Tyr=303.15 K. (a) pressure

(b) velocityu (c) void fractiona (d) speed of sound Note that the solution for the
velocity and speed of sound at time-instamtandts are to plotting accuracy equal

to the solution at;.

The solution to this test case corresponds to two rarefagtves, one running to the
left and the other running in opposite direction. In the facdon wave the pressure
decreases rapidly to the saturation pressure, but the fr@otion o remains equal to

zero. Evaporation of the liquid takes place over the corgadace near the center of
the domain. In the center region vapor is produced at constarperature because
of the assumption of local equilibrium during phase changkthus the pressure re-
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mains constant at the saturation pressug(7p).

Results for the pressuge velocity u, void fractiona and speed of soundare pre-
sented in figure 6.3 for times; = 04+ N At with At = 0.9x10~4sandN =0,...,3.
All solutions are free of oscillations. At this early timesthontact surfaces on either
side of the center are positioned in a very small region atdha centerline. Note
the sharp transition in velocity from = —10 ms~ ! tou = 10 ms~! atz = 0.5m
and the dramatic decrease in speed of sound freml 540 ms~' toc ~ 6 ms~! at

x = 0.5m.

For the same initial conditions, the exact solution for Erghase water flow without
cavitation employing the Tait equation of state can be daled. For single phase
water flow, the pressure in the center of the domain reachassél- 150 bar and the
velocity becomes equal to zero over a relatively large pttedomain.

6.3 Unsteady cavitating flow about 2D NACAO0O015 a6°

To verify the present density-based numerical method aatdntwo-dimensional
test case of an unsteady cavitating flow is considered, saer3$462], Sauer &
Schnerr [163] and Schneat al [171]. At the presented conditions this test case
shows to good approximation a 2D periodic unsteady cangdtow with character-
istic behavior such as the cyclic formation of a cavitatibeet, the formation of the
re-entrant jet and the shedding of a vapor cloud. In this@ethe results obtained
with the present numerical method are compared with thdtsestiSchnerret al
[171].

The two-dimensional test case is very well suited for nuoaénerification. Unfor-
tunately, validation with experiments is not possible,shese of the lack of data for
the case of purely two-dimensional flow. As explained inisec2.3 the shedding on
a two-dimensional hydrofoil will never be completely twovgknsional. In his thesis
Sauer [162] refers to experiments for a two-dimensionatdfgil of Keller & Arndt
for the same flow conditions. As is clear from experimentsveo-dimensional hy-
drofoils, the sheet cavity is always influenced by altenmpside-wall effects as well
as by the three-dimensional spherical propagation of sivasies. The local collapse
along the closure line of the sheet cavity induces local-mle resulting in random
collapse and shedding of vapor along the span-wise closw®f the cavity sheet.

The hydrofoil considered is a 2D NACAQ0015 hydrofolil étt angle of attack with
chord lengthc = 0.13m. The solution for fully-wetted, i.e. single-phase watenflo
was presented in section 5.6. The computational domairesepted in figure 5.17.
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The inflow velocityU,, is set tol2 ms™—!. For cavitating flow the free-stream pres-
sureps is chosen such that the cavitation number, defined in equéid), is equal
too = 1.0 atT = 293 K with p,:(T) = 2,321 Pa, yielding for the initial pres-
sureps, = 0.742 x 10° Pa.

Uso Poo Ty Poo Coo g
[ms~'] | [10°Pa] | [K] | [kem™®] | [ms™'] | []

12 0.742 | 293 | 998.2 | 1537.6| 1.0
TABLE 6.4: Conditions for cavitating flow about 2D NACAO0015 hydrof@ibaangle
of attack with chord lengtih = 0.13m.

For the inflow the non-reflective boundary condition is emgplih  For the outflow
the asymptotic non-reflective pressure boundary condiiapplied with free-stream
pressurep... The top and bottom of the channel are slip solid walls andHerslip
solid wall of the hydrofoil the curvature-corrected symmeaechnique is used. The
results are obtained with the hybrid HLLC/AUSM flux schemesettion 4.7.2. A
CF L number of 0.8 is employed for all simulations.

In the following first- and second-order results are comghanath the second-order
results calculated with the limiter method of Venkataknish employing the primi-
tive variablesp, u, v, w, ¢]” . When calculating the second-order results the first 50k
time-steps are performed applying the first-order recangton.

Furthermore, two hybrid quadrilateral/triangular gride aonsidered, a coarse and
a finer grid with 100 and 200 points on the surface of the hyadkafespectively. A
close-up of the hybrid meshes around the hydrofoil is prtesein figure 6.4. For both
grids the total number of elements and total number of cobatlomes are presented
in table 6.5. For more details on the construction of the igpinresh see section 5.5.2.
For the chose F'L number the corresponding numerical time sfepy; is approx-
imately equal taAz .y ~ 1.4x 10~ 7s for the coarse mesh amiit . =~ 3.9 x 10785
for the fine mesh.

mesh | # points foil | # quad’s| # triangles| # control | At.g
surface volumes | [1077s]

coarse 100 1,520 4,747 3,995 14

fine 200 6,080 8,339 10,401 0.39

extrafine 400 24,320 14,873 31,998 0.11

TABLE 6.5: Computational meshes for cavitating flow about 2D NACAOE a
angle of attack.
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FIGURE 6.4: Close-up of foil with hybrid quadrilateral/triangular miesfor 2D
NACAO0015 hydrofoil a6 angle of attack. (left) coarse mesh: 100 points on sur-
face of hydrofoil, 3,995 control volumes, 1,520 quadritals, 4,747 triangles (right)
fine mesh: 200 points on surface of hydrofoil, 10,401 comotimes, 6,080 quadri-
laterals, 8,339 triangles.

6.3.1 Results for total vapor volume

The total vapor volum#&,,,, defined in equation (6.2), is a convenient parameter for
understanding the transient evolution of the cavitating.flbhe total vapor volume is
calculated at each time step. After the start-up phase thetlhrand shedding of the
vapor sheet and the collapse of the shed vapor cloud indueié-essillatory behav-
ior, which is approximately periodic in time. It takes apgiroately 0.2 in simulated
time until a repeatable pattern in the variation of totaloraglume with time is ob-
served. The time-histories of the total vapor volulg, during 4 cycles, sometime
after the start-up phase, are presented in figure 6.5. Thi#s@se obtained applying
the first- and second-order reconstruction on the coarséirmmchesh, respectively.

Applying the Fast Fourier Transform (FFT) on the time-higtof the total vapor vol-
ume, the main frequency of the repeated pattern in the taf@mvolume is found.
The frequencies for the first- and second-order results @edharse and fine grid are
presented in table 6.6 together with the Strouhal numbezdan the chord length.
Also presented are the average of the total vapor vollppgand the extremum val-
ues in total vapor volume.

From figure 6.5 and table 6.6 it becomes clear that for firdeoreconstruction the
mesh has a large influence on the frequency of the oscillatitime total vapor vol-
ume and thus on the calculated Strouhal number. The freteeeabtained for both
meshes using the second-order reconstruction method egmsenably well with
each other.

The order of reconstruction and the mesh density have aiafigence on the time-
averaged value of the total vapor volume. When a higher aetmnstruction or a
finer mesh is employed, then the amount of vapor present ahevaydrofoil in-
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FIGURE 6.5: Time-history of total vapor volumg,,, for unsteady cavitating flow
about 2D NACA0015 hydrofoil #@° angle of attackg = 1.0 with Uy, = 12 ms™!.
Four shedding cycles after start-up phase. Note the diiferen scale of the vertical
axis. (a) first-order, coarse grid7 = 5.03 x 10~2s (b) second-order, coarse grid:
T = 4.23x 10725 (c) first-order, fine grid:T = 2.43 x 1025 (d) second-order, fine
grid: T = 4.13x 10 2s.

mesh| order || f St Voap | maz Viap | min Vi
[Hz] | [] [1072] [%] [%]
100 1 19.9 | 0.216|| 0.39 170 37
200 1 41.1 | 0.445 1.05 108 92
400 1 40.9 | 0.443| 1.82 120 75
100 2 23.6 | 0.256| 3.87 116 85
200 2 24.2 | 0.262| 4.65 113 91

TABLE 6.6: Frequency, Strouhal numbéit,., time-averaged total vapor volumé,,,
and extreme values in total vapor volume for time-dependsat vapor volume
for unsteady cavitating flow about 2D NACAO0015 hydrofoibatangle of attack.
c=0.13m, 0 = 1.0 with Uy, = 12 ms~L.

creases up to a factor of 4. This finding is illustrated moeady in section 6.3.3

where the solution for the void fraction for the first- and@®at order reconstruction
on the fine mesh during the cycles shown in figure 6.5 is predent

Furthermore, from table 6.6 it is clear that employing thetforder reconstruc-
tion method a different shedding frequency is found congbarith the result of the
second-order reconstruction method. The reason for thistiglear. A possibility
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might be that due to the nonlinearity of the equations molgisns are possible. To
study this further the first-order solution is continuedhatite second-order recon-
struction and the second-order solution is continued whithfirst-order reconstruc-
tion. However, these additional calculations have not mregpd far enough to draw
conclusions.

In his thesis Sauer [162] reports a numerically obtainequeacy off ~ 11 Hz.
Sauer used the pressure-based method CAVKA, which is fidgrdn space and time
for cavitating flow. Employing their compressible dendigsed method CATUM
Schnerret al. [171] calculated a frequency ¢f~ 9 Hz both for a first-order method
on a coarse grid as well as for a second-order method on a fthevije remark that
our coarse grid is coarser than their coarse grid and thafimeigrid is finer than
their fine grid. Schneret al. [171] refer to experiments of Keller & Arndt who found
an experimentally observed frequency fof~ 16Hz. Based on table 6.6 we have
found a main frequency of ~ 24 Hz obtained with the second-order reconstruction
method. We do not know the reason for the difference in maguency compared
to the one found by Schneet al. [171].

Based on the findings in table 6.6 we conclude that the fid#foresults on the
fine mesh differ significantly from the one on the coarse mdashbe able to obtain
grid-converged first-order solutions the grid needs to laed further. A first-order
solution on a hybrid mesh with 400 points on the surface ofydrofoil has been
calculated to verify the results of the first-order solutionthe fine mesh of table 6.6.
For this 400-mesh the frequency is found to be equal to 4.9which is close to
the value found with the first-order scheme on the 200-mesh.

We conclude that the second-order results on the fine meséspond much bet-

ter with the second-order results on the coarse mesh, thahddirst-order results.

Thus, applying the second-order reconstruction, theisol@ppears to depend more
consistently on the mesh density. However, when using a firessh a better reso-
lution in the shed vapor cloud and the sheet cavity is obthared thus more local

events are resolved.

6.3.2 Results for lift and drag coefficients

The time-history of the lift and drag coefficients during £les sometime after the
start-up phase for the first- and second-order discregizath the coarse and fine grid
are presented in figures 6.6 and 6.7. In table 6.7 the timexged lift and drag coeffi-
cients as well as the extremum values are presented. Asrameéethe second-order
results on the fine mesh for single phase water flow are addaeltdcavitation a de-
crease by a factor of 1.5-1.7 in lift coefficient as well as lastantial drag is found.
These values correspond with the values found by Sauer,[¥88] mentions that
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this is in agreement with the experiments of Keller & Arndbr Ehe 400-mesh we
find the value of; = 0.075 for the time-averaged drag coefficient, which is equal to
the value found by Sauer [163]. Applying the Fast Fouriem$farm on the signal
of the lift and drag coefficient the same main frequenciesf@ad as in the time-
history of the total vapor volume.
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FIGURE 6.6: Time-dependent drag coefficient for unsteady cavitating flow about
2D NACAO0015 hydrofoil aé° angle of attackg = 1.0 with Uy, = 12 ms~!. Pre-
sented are four shedding cycles after start-up phase. Nwealifference in scale
of the vertical axis. (a) first-order, coarse grid7 = 5.03x1072s (b) second-
order, coarse grid: T = 4.23x10~2s (c) first-order, fine grid: 7' = 2.43x 10725
(d) second-order, fine gridi” = 4.13x 10 2s.

During the time that the flow is periodic in terms of the totaper volume, the lift
and drag coefficients show high frequency pulses, whichtrésmn resolved phys-
ical (pressure) waves, which are generated by the collajpsieedl vapor structures.
Note that even for the first-order results obtained on theseomesh the lift coeffi-
cient becomes negative with values as low-@s5¢;. Schnereet al [171] explain that
these negative lift pulses can be formed by either the faomaif expansion waves
as reflections of shocks at phase boundaries with constessgyme or by the pressure
rise due to shocks impacting on the suction side of the fathBrocesses have been
found in the present numerical simulations discussed itioge6.3.6 and we support
the findings of Schnert al. [171].

From table 6.7 it is clear that when the second-order renactgtin is employed,
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FIGURE 6.7: Time-dependent lift coefficient for unsteady cavitating flow about 2D
NACAO0015 hydrofoil a6° angle of attackg = 1.0 with U,, = 12 ms~!. Presented
are four shedding cycles after start-up phase. Note therdifice in scale of thg-
axis. (a) first-order, coarse grid7T = 5.03 x 10~2s (b) second-order, coarse grid:
T = 4.23x10725 (c) first-order, fine grid:T = 2.43 x 1025 (d) second-order, fine
grid: T = 4.13x 10 2s.

flow | mesh| order q minlmazx ¢ Cq minlmax cg
[] [%] [] [%]

cav 100 1 0.489| -58/148 0.080 -62/192

cav 200 1 0.484| -1250/341 | 0.066 | -2302/267

cav 400 1 0.559| -1280/461 || 0.075 | -2535/716

cav 100 2 0.515| -1051/757 0.108 -567/925

cav 200 2 0.546| -2864/791 || 0.109 | -2270/1081

[water] 200 | 2 | 0.829] . [ 0.0035] . |

TABLE 6.7: Averaged and extremum values for lift and drag coefficietsiristeady
cavitating flow about 2DNACAO0015 hydrofoil &t angle of attack.c = 0.13m,

o = 1.0 with U, = 12 ms~!. The last line in the table is the numerical result for
single-phase water flow.

the time-averaged values increase slightly compared téirdteorder results. Also,
a large increase in extremum values is observed. Scleheir [171] observed the
same large increase. It is clear that the loading of the ligdllchanges dramatically
during a shedding cycle. Furthermore, comparing the cagideresults with those
obtained on the fine grid we observe that the time-averagkstyvalo not change
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much. In contrast the extremum values again increase suiadiia due to the col-

lapse of the small-scale vapor structures. In the limit oahdéinitesimally small mesh

size, these vapor structures become very small vapor taibHlewever, currently it

is impossible to combine the mesh resolution required tolvesthese small-sized
bubbles with the scale of the hydrofoil. A good validatiosttease for small-scale
collapse might be the collapse of a single vapor bubble. Mewat present the dif-
ficulty to resolve this testcase lies in the very large mestsitle required to resolve
the final stages of the collapsing bubble and in the apptinadf the non-reflective
boundary conditions to model far-field conditions.

6.3.3 Results during a cycle

In this section the cycles illustrated in figure 6.5-6.7 avasidered. The solution
for the void fractiona. above the hydrofoil is presented for a number of equidistant
time-intervals during the cycle. Furthermore, the timgttny of the lift and drag
coefficients are compared to those of the total vapor voluncetrelate the occurring
flow phenomena. To illustrate the dependence on the ordecohstruction both the
first-order and second-order results for the 200-grid aseudised.

First order results on 200-grid

In figure 6.8 the solution for the void fractiam at 10 equidistant time-instants are
presented, which illustrates the cyclic behavior of theovagheet and its shedding.
Time-instant] is marked as the end or start of the shedding cycle. The p&tiod
the cycle isI" = 0.0243s and fyc. = 41.1 Hz with St, = 0.445.

O The sheet cavity starts to grow at the leading edge of theofigitlr The shed va-
por region that has convected about half a chord length fl@ptevious shedding
cycle is visible above the hydrofoild The sheet cavity continues to grow. The shed
vapor region is convected with the flow and starts to collaps€&€he sheet cavity has
reached its maximum length. The shed vapor region has sektbpThe process of
the collapse of the vapor cloud is discussed in more detaéation 6.3.4. For the
first-order results, at the instant of the collapse of thedskapor region, the sheet
cavity stops growing. It is an open question whether or netsheet cavity stops
growing due to the collapse of the shed vapor regioi re-entrant flow develops at
the closure region of the cavity sheet. Note the small valrfiow region at the end of
the sheetld The re-entrant jet containing liquid water travels upstiedong the sur-
face of the hydrofoil.0 The re-entrant jet hits the liquid-vapor interface, distng
the sheet cavity. The sheet is split into two regions, i.argd vapor structure around
which a circulatory flow pattern is generated and the remgimpart of the vapor
sheet on the leading edge of the hydrofail A re-entrant jet develops at the closure
region of the remaining part of the vapor sheet causing thallssheet to collapse.
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FIGURE 6.8: Unsteady cavitating flow about 2D NACAQ015 &t &ngle of at-
tack. First order solution on 200-mesh for void fraction ¢ = 1.0, Uy, = 12
ms™!, T =0.0243s, feoe = 41.1Hz Ot=17T/10 Ot =2T/10 Ot =3T/10
O¢t=4T/100¢t=5T/100¢t=6T/100¢t="7T/100¢=8T/100 ¢ =9T/10
Ot="T.

The large vapor structure slowly moves with the main floiwThe remaining part of
the vapor sheet has collapsed resulting in a high pressise pn the leading edge of
the hydrofoil sometime between pictureandd, which is illustrated in figure 6.9.
The maximum pressure just after the collapse at the leadigg is found to be equal
to 19.5bar occurring at the surface of the hydrofoil. This illustratee high local
pressure pulses on the foil due to the shedding of the sheigt.CBhe disappearance
of the first part of the sheet cavity at the leading edge coetbimith the shock wave
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generates a second, small rotating vapor region as visibpéctured of figure 6.8.

0. The second small vortical flow region catches up with thgdarapor structure
shed earlier and the two regions mergeThe large shed vapor region rotates and is
convected with the flow. Note the vertical extent of the vagtaucture in pictures]
andO. The nose of the hydrofoil is now free of vapor and a new vapeetstarts to
grow. This process is repeated continuously.
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FIGURE 6.9: Pressure distribution just after the collapse of the sheditgaat the
leading edge between picturés and . The black line denotes the void fraction
equal toa = 0.001.

In figure 6.10 the first-order result for the total vapor voi¥,,, during the cycle on

the 200-mesh is presented. Also the lift and drag coeffisiarg plotted. The total
vapor volume decreases between instah@snd ] and increases betwe&handll.

The increase is caused by the growth and rapid merging oftibe gapor regions.
The decrease starts with the collapse of the shed vapomregibe sharp increase
between instantsl andl] is caused by the reaction of the sheet cavity to the pressure
pulse generated by the collapse of the shed vapor regionpéereed in more detail

in section 6.3.4.

The lift and drag coefficients show large fluctuations frostamt[], corresponding
with the collapse of the small sheet cavity on the leadingeenfgthe hydrofoil, to
instantd which corresponds with the formation of the re-entrant jetha closure
region of the large sheet cavity. From the disappearancheo$lieet cavity at the
leading edge and the subsequent shedding between tinagsist and [ result in
the disappearance and collapse of small vapor structurédsedinont part of the hy-
drofoil sending high frequency pressure waves through timeaih. From instant],
corresponding with the start of the growth of the vapor shieefust before instant
O the pressure pulses change in behavior. Instead of themapdtses during 1]
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FIGURE 6.10: Unsteady cavitating flow about 2D NACAO0015 hydrofoibatingle of
attack.o = 1.0, Uy, = 12 ms~! . Solution for cycle indicated in figure 6.5 for first-
order reconstruction on fine gridl’ = 0.0243s, f = 41.1Hz. At.p = 1.4x1077s.
(a) Total vapor volume (b) Lift coefficient (c) Drag coefficient,.
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now the pressure pulses appear to be more structured in flugng the interval
from O to O only parts of the large shed vapor cloud disappear. Betwestarits]
and [ the large shed vapor cloud collapses resulting in a hightivegpeak in the
lift and drag coefficient followed by a high positive peak.elthinimum lift and drag
coefficient are equal tg = —6.05 andcy = —1.52, respectively. Note that the scale
of the vertical axis in figure 6.10 does not cover the complatge. These peaks are
due to the collapse of the shed vapor cloud and its rebounathw explained in
more detail in section 6.3.4. During the time-interval begw instant$] andO the
vapor volume decreases as well as the lift and drag coefficidso, the lift and drag
coefficient do not show many oscillations. During this tim&rval the cavity sheet
has stopped growing in size and a re-entrant jet is movingyegrs underneath the
vapor sheet.

Comparing figure 6.8 and figure 6.10 we observe that when thigycsheet is be-
ing shed and the shed vapor region is convected with the fleev,pctured-[1,
high-frequency pulses are observed. Between picturesd ] the shed vapor re-
gion collapses causing large peaks in the lift and drag cieff. In the time that
the re-entrant jet is moving upstream underneath the she#y @and in the absence
of a shed vapor region, see picturés], the lift and drag coefficient remain fairly
constant and they do not show high-frequency pulses. Huntire, it is found that
the pressure on the foil at the location of the re-entrangggvisible in picturél and
[, is equal to the saturation pressure. Therefore, we coadhat the re-entrant jet
is a flow of liquid at a pressure equal to the saturation pressi2.3 x 103 Pa. Be-
tween time-instant§] and[] the vapor sheet near the leading edge of the hydrofoil
disappears, which is visible as the high peak in the dragdficaaft, caused by the
high pressure acting on the forward facing part of the hyaitof

Second order results on fine grid

In figure 6.11 the void fraction: at 10 equidistant time-instants are presented for the
solution employing the second-order reconstruction or2fi@mesh. Compared to
the first-order results much more vapor is produced and nurglkex vapor struc-
tures are observed. However, the main pattern of the shgddimains the same.
Time-instant] is marked as the end or start of the shedding cycle. The p&tiod

the cycle isI" = 0.0413s and fycjc = 24.2 Hz.

O The sheet cavity starts to grow at the leading edge of theofigitlr The shed va-
por regions from the previous shedding cycle are visiblevaltbe hydrofoil at about
80% chord-length. The last vapor region visible is produced tdugow around the
trailing edge.] The sheet cavity continues to grow. The shed vapor regiomgeme
and are convected with the flow. Behind the hydrofoil the vapgion starts to col-
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FIGURE 6.11: Unsteady cavitating flow about 2D NACAO0015 &t éhgle of at
tack. Second-order solution on 200-mesh for void fractoro = 1.0, Uy, = 12
ms™!, T = 0.0413s, foye = 24.2Hz Ot =17/10 Ot =27/10 Ot = 3T/10
O¢t=4T/100¢t=5T/100¢t=6T/100¢t="7T/100¢=8T/100 ¢ =9T/10
Ot="T.

lapse. ] The sheet cavity has reached its maximum length, which igdothan in
the result from the first-order reconstruction. The shedwaggion has almost com-
pletely collapsed. For the second-order results, at thanh®f the collapse of the
shed vapor region, the sheet cavity stops growing, justdseeen in the first-order
solution. O A re-entrant flow develops at the closure region of the cashityet. Note
the small vortical flow region at the end of the sheet. Alse, ¥hpor-liquid inter-
face oscillates due to the sudden stop of the growth of thetshe The re-entrant
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jet travels upstream along the surface of the hydrofoil. IBw@goor structures are
shed from the main sheet cavity, which appears to break ugpiarate vapor regions.
[0 The re-entrant jet hits the liquid-vapor interface, dibing the sheet cavity. The
sheet is split into two main regions, i.e. large shed vapuorcaires around which a
circulatory flow is generated and the remaining part of thmovaheet on the nose of
the hydrofoil. 0 A re-entrant jet has developed at the closure region of timair@ing
part of the vapor sheet causing this small sheet to collafisecollapse causes small
vortical regions filled with vapor to emerge from the leadatdge. The large shed
vapor structures slowly move with the main flow. They rotatd energe into larger
vapor regions.d The remaining part of the vapor sheet has completely cathps
resulting in high pressure pulses on the nose of the hydroébiveen picturel and
0. The disappearing of the first part of the sheet cavity atehdihg edge combined
with the shock wave generates small rotating vapor regwhgsh catch up with the
larger shed vapor structurds. The small vortical regions have merged with the large
shed vapor structures and they all merge into one largetimgtvapor structureld
The large shed vapor region rotates and is convected witfidive Note the height
of the vapor structure in picturd. The nose of the hydrofoil is now free of vapor
and a new vapor sheet starts to grow. This process is repeatdduously.

In figure 6.12 the second-order results for the fine grid fer tibtal vapor volume
Vuap during the cycle is presented as well as the lift and dragficesits. The total
vapor volume decreases between instah@snd ] and increases betwe&handll.
The increase is caused by the growth and rapid merging oftibe gapor regions.
The decrease starts with the collapse of the shed vapomregibe sharp increase
just after instant] is caused by the reaction of the sheet cavity to the pressisep
generated by the collapse of the shed vapor region.

The lift and drag coefficients show large fluctuations frostamt], corresponding
with the collapse of the small sheet cavity on the leadingeenlgthe hydrofoil, to
instantd which corresponds with the formation of the re-entrant jetha closure
region of the sheet cavity. The disappearing of the sheatycaivthe leading edge
and its subsequent shedding between time-instamtisd! result in the disappearing
and collapse of many smaller-scale vapor structures sty frequency pressure
waves through the domain. Compared to the first-order edilié pressure pulses
are much higher in amplitude and they occur more randomlye flaximum and
minimum lift coefficient are now equal tg = 2.1 and¢; = —5.6, respectively.
From instantd, corresponding with the start of the growth of the vapor shtegust
after instant’] the pressure pulses change in behavior. Instead of the langiem
pulses duringd—{ now the pressure pulses appear to be more structured in time.
During the interval fron] to [ only parts of the large shed vapor cloud disappear.
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FIGURE 6.12: Unsteady cavitating flow about 2D NACA0015 hydrofoil Gt

angle of attack.c = 1.0, Uy, = 12 ms™ 1.

Solution for cycle indicated in figure

6.5 for second-order reconstruction on fine grid7 = 0.0413s, f = 24.2Hz.
(a) Total vapor volume (b) Lift coefficient (c) Drag coefficienty.
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Just after instanf] the large shed vapor cloud collapses resulting in a hightivega
peak in lift and drag coefficient followed by a high positivegi. Compared to the
first-order results the maximum and minimum pressure pus¢hie second-order
results are much less, because the collapsing vapor regjiocdted far behind the
hydrofoil. During the time-interval between instafisand] the lift and drag coef-

ficient do not show as many oscillations. During this timiiwal the sheet cavity
has stopped growing in size and a re-entrant jet is movingyegr® underneath the
vapor sheet.

Comparing figure 6.11 and figure 6.12 we observe that wherathitycsheet is being
shed and the shed vapor region is convected with the flow, iseegs -1, high
frequency pulses are observed. Just after pidiuthe shed vapor region collapses
causing large peaks in the lift and drag coefficient. In theetthat the re-entrant jet
is moving upstream underneath the sheet cavity and in trenabf a shed vapor
region, see pictures-[1, the lift and drag coefficient remain fairly constant, aligh
they do show some pressure pulses. Between time-instaatsd[] the vapor sheet
near the leading edge of the hydrofoil disappears, whiclisible as the high peaks
in the lift and drag coefficients.

6.3.4 Collapse of convected vapor cloud

Between picture&l and] of figure 6.8 the convected vapor region collapses near the
trailing edge of the foil. In this section the process of thibapse and the rebound of
the vapor region is discussed in more detail, see figure @i8black line denotes a
void fraction equal tax = 0.001. Note that the scale of the pressure stops abhi5

to better illustrate the occurring flow phenomena.

In figure 6.13(a) the convected vapor region reaches a ragitbnhigher pressure.
Inside the vapor region the pressure is equal to the sadarptessure. This pressure
difference induces a local flow field directed towards theteeaf the vapor region
and causes the vapor region to collapse. The inwards moijogl limpacts at the
center of the former vapor region and initiates an outwaogh@gating circular shock
as presented in figure 6.13(b). The maximum pressure in figliEb) is equal to
68.2 bar.

The shock wave hits the vapor sheet to the left on the suciiend the foil. Due
to lower acoustic impedance: of the two-phase flow region compared to that of
the liquid®, the shock wave is reflected as an expansion wave from theacgeof

*The acoustic impedancg is defined asZ = pc. The reflection coefficierR from an interface is
defined as
Iy — 74
T Zo+ 20

(6.5)
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FIGURE 6.13: Collapse of shed vapor region. Unsteady cavitating flow &tahy
NACAO0015 at 6 angle of attack. First-order solution on 200-mesh for prges
The black line denotes = 0.001. (a) ¢t = t;: before collapse of vapor region (b)
ty = t1 +2.22x1073s: collapse of vapor region (di = to +46x10~%s: reflection
of shock wave from interface of sheet cavity #(d)= t3 + 74 x 10~ %s: rebound of
vapor region.

the sheet at which the pressure is constant. This procdissisdted figure 6.13(c),
where the shock and expansion wave are running radially adtévrom the vapor
sheet. The shock wave is visible as the circular region di pigssure. Above the
sheet the shock wave has not reflected from the vapor sheit, iwlthe center the
expansion wave is visible as the low pressure region. Thekshave is reflected
from the tunnel top wall as visible in figure 6.13(d), whichpkains the oscillatory
behavior observed in lift and drag coefficients in figure @)@&nd (c) between in-
stantsl] and[J.

At the location of the former vapor region the pressure agefarns to saturation
pressure causing the liquid to cavitate again as shown inefi§ul3(d). The black
line denotes a void fractiom = 0.001. This new vapor region also collapses resulting
in a second outward moving shock wave. The outward movinglshimterfere with
the remaining vapor sheet on the suction side of the foil hadheet’s re-entrant jet.
During the collapse of the vapor cloud the vapor sheet stopsigg and a re-entrant
jetis formed.

With Z1 = (p¢)1iquia~ O(10%) and Ze = (p¢) two—phase = O(10?)-0(10%). Note that whe << Z;
thenR — —1. Thus, most of the acoustic energy is reflected witB® phase change.
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The maximum pressure in each control volume is calculatedhglthe time-interval
between figure 6.13(a) and the time-instant just after tbhersmkcollapse of the vapor
cloud. As presented in figure 6.14 the maximum pressure glahis time-interval

is found to be equal to 81.Bar, which is the pressure peak at the time-instant of
the collapse of the vapor cloud. Note the relatively highspuees occurring near
the liquid-vapor interface of the sheet cavity, which irades local collapse of vapor
from the cavity sheet. The maximum pressure on the surfatteedfydrofoil is found

to be equal to 39.bar illustrating the high local pressure peaks on the foil dgirin
the collapse of the shed vapor cloud.

Pmazx [105 Pa]

y [m]

2 [m]

FIGURE 6.14: Maximum pressure during the collapse and rebound of shedrvap

region between pictures and [ of figure 6.8. The maximum pressure is found to be
equal to 81.2bar. Maximum pressure on surface of the foil is found to be equal t

39.8 bar.

6.3.5 Influence of free-stream velocity/,, at constanto

To investigate the influence of the free-stream veloCity on the characteristics of
the cavitating flow, a free-stream velocity 6f, = 50 ms~' is chosen, but fixing
the value for the cavitation number, i®® = 1.0 by increasing the reference pressure
Pso. The results are obtained on the 200-mesh presented in figliEmploying the
first- and second-order reconstruction method. The nu@ldnne stepA..; is equal

t0o Acp ~ 3.77x 10~8s. The initial conditions are presented in table 6.8.

The behavior of the cavitation during the shedding cyclecappto be similar com-
pared to the results fdr,, = 12 ms~! at the same value of. In figures 6.15 and
6.16 the total vapor volumg,,,,, the lift and drag coefficients andc, are presented
for four periods in the periodic shedding phase. Applyingaatfourier Transform
(FFT) on the “signal” of the total vapor volume, the frequgrsnd corresponding
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Uso Poo T Poo Coo o
[ms™'] | [10°Pa] | [K] | [kgm™®] | [ms™'] | [
50 12.5 293 998.7 1540.0| 1.0

TABLE 6.8: Conditions for cavitating flow about 2D NACA0015 hydrofaitaangle
of attack with chord lengtla = 0.13m with Uy, = 50 ms~! ando = 1.0.

Strouhal number based on the chord length are calculatedseTare presented in
table 6.9 together with the time-averaged and the extrenmalues.

order f St Veap | Min/max| ¢ min/max Cd min/max
[Hz] | [[] || [1072] | Vip [%] || [ | %] [-] cq [%]

1 186 | 0.48| 1.02 | 84/118 | 0.49| -217/175|| 0.063 | -489/173

2 106 | 0.28| 5.06 | 67/139 || 0.64 | -412/307| 0.119| -526/434
TABLE 6.9: Cavitating flow about 2D NACAO0015 ét angle of attack witlt/,, = 50
ms~!, ¢ = 1.0. Fine mesh with 200 nodes on hydrofoil controur. Frequeficy
Strouhal numbefi., time-averaged total vapor volum_eap, extreme values in total
vapor volume, time-averaged lift and drag coefficiehtand é; and extreme values
in lift and drag coefficients.

From table 6.9 we conclude that the Strouhal nunfffgrbased on the chord length
found for a free-stream velocity/,, = 50 ms™! for first- and second-order recon-
struction on the 200-mesh are approximately equal to theegdiound folU/, = 12
ms~! presented in table 6.6. Thus, keeping the same value fesults in the same
characteristics of the shedding of the cavity sheet. HowéweU,, = 50 ms~! the
formation and shedding of vapor is much faster in time thanlfg = 12 ms™!,
which is illustrated by the higher value for the frequencyrtRermore, the time-
averaged total vapor volumi,,,, is approximately equal fob/,, = 50 ms~! and
Uso = 12 ms™!. The maximum and minimum total vapor volume fdr, = 50
ms~! are slightly higher and lower, respectively, than &g, = 12 ms~!. Thus, to
obtain the same shedding behavior, calculation time camedsoy taking a higher
value for the free-stream velocity keeping the cavitatiombero the same. Further-
more, the periodic behavior is reached earlier in time teguin a shorter start-up
phase of the simulation.

Compared to the results féf,, = 12 ms~! the values for the time-averaged drag
coefficient appears to be similar. However, the time-awdddt coefficient for the
second-order results is much higher fag, = 50 ms~! compared to the one for
Us = 12 ms~!. The extremum values of the lift and drag coefficients appeae
less than fol/,, = 12 ms™".
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As is illustrated in figures 6.15 and 6.16 the patterns of tit@ vapor volume, the
lift and drag coefficient are found to follow the same globathavior as fol/, = 12
ms~! as presented in figures 6.10 and 6.12. We have compared tiits ries the
void fraction forU,, = 50 ms~! with the results for the void fraction withi,, = 12
ms~! illustrated in figures 6.8 and 6.11. Globally, the solutiémsthe void fraction
appear to be similar, therefore, the solution for the vagattion forU,, = 50 ms™!
is omitted in this section.

6.3.6 Remark on development of cavitating flow after start-p

In this section the simulation of cavitating flow has beemtethfrom uniform water
flow. A large number of time-steps need to be taken beforettbdding of the sheet
becomes periodic. Basically, at start-up of the simulati@uniform water flow hits
the hydrofoil followed by a shock wave running from the leggiedge of the foil
in upstream direction until it leaves the domain throughitiiet boundary. At the
suction side of the foil and around the trailing edge an egjgemwave is generated
causing immediate evaporation of the water resulting inpwaocket. The left run-
ning shock wave and right running expansion wave are refldmek and forth from
the top and bottom walls of the channel and from the hydrdifefbre they disappear
through the non-reflective in- and outlet.

Due to the ambient higher pressure the vapor pocket on the dfaithe hydrofoil
disappears causing pressure waves to run through the domlagnpressure on the
suction side of the foil becomes equal to the saturationspresand a vapor sheet
develops. This sheet grows in time until a re-entrant jebimed causing the shed-
ding of the vapor sheet. In the start-up phase of the caloul#ite transient pressure
waves influence the speed and movement of the re-entramtdedifahe cavity sheet.

The processes described above are repeated continuougdy. afcertain time the
initial pressure waves resulting from the start-up fromfamin flow conditions have
disappeared and the cavitating flow on the hydrofoil is aldwo grow and shed
freely. On the fine grid presented in figure 6.4 about 2.5 amllime steps have to
be taken before this repeatable behavior is reached andt thesomes clear that un-
steady cavitating flow problems must be calculated for a long before the initial

flow disturbances disappeatr.

It is also possible to start from a steady-flow solution forgie-phase water flow
at the same free-stream conditions. The start-up phasemsréduced but it still
takes many time steps before the periodic shedding behisvalrserved. Applying
the same free-stream conditions the same periodic behapoedicted when started
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FIGURE 6.15: Unsteady cavitating flow about 2D NACAOQ0015 hydrofoil6atan-

gle of attack. ¢ = 1.0 Uy, = 50 ms™ .

First-order reconstruction on fine grid.

T =5.38x1073s, f = 186Hz, S;, = 0.48. (a) Time-dependent vapor volume (b)
Lift coefficientc; (c) Drag coefficient,.
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FIGURE 6.16: Unsteady cavitating flow about 2D NACAQ0015 hydrofoibatangle

of attack. 0 = 1.0 U, = 50 ms™!.

Second-order reconstruction on fine grid.

T =9.43x1073s, f = 106Hz, S;, = 0.28. (a) Time-dependent vapor volume (b)
Lift coefficientc; (c) Drag coefficient,.
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from an uniform flow solution or from a steady-flow solutionr &ingle-phase water
flow.

To speed up the calculation towards the periodic cavitatimg, it might be worth-

while to investigate methods such as multi-grid, precaoiihg and/or implicit time-

integration, which allow larger numerical time steps to hken. However, care
should be taken that the larger numerical time steps stifllve the high-frequency
pressure pulses, which we believe to have a major influenabeself-oscillatory

behavior of the sheet cavity and its shedding.
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6.4 Unsteady cavitating flow about 3D Twist11 hydrofoil

The unsteady cavitating flow about the 3D Twist11 hydrofoi-&° angle of attack
with chord lengthc = 0.15 m is calculated, to compare the results obtained with
the present edge-based numerical method with the expdasmé&Roeth [67]. Foeth
carried out experiments for cavitating flow with steady andteady inflow. Here,
only steady inflow is considered at the cavitation numbet 1.1. An overview of
the characteristics of the experiments has been providsedtion 2.3. The focus in
this section is on comparing the numerical results for theaber and structure of
the vapor sheet with the experiments of Foeth [67].

The geometry of the hydrofoil is presented in section 5.d@gkther with the compu-
tational domain as presented in figure 5.24. The geometgymsretric with respect
to the mid-span plane. It is assumed that the flow is also synimabout this plane.
Therefore, in order to save computational time only thebstard-half of the test sec-
tion and the foil is considered. This assumption of the hgidnamic symmetry is
supported by the experimental findings, see Foeth [67], evtiés shown that small
scale structures are symmetric with respect to the mid-pfare. The solution for
fully-wetted (single-phase) water flow has been presemiesgction 5.7.

To speed-up the formation and shedding of the cavity she#ftemumerical sim-
ulations, calculations are performed at a free-streamcitglof U,, = 50 ms™!

at the same cavitation number= 1.1 as in the experiments of Foeth [67]. The
free-stream conditions are presented in table 6.10.

Uso Poo T o
[ms™] | [10°Pa) | [K] | [
| 50 | 1375 [297]|1.1]

TABLE 6.10: Free-stream conditions for cavitating flow about 3D Twishiytirofoil
at —2° angle of attack.

For the inflow the non-reflective boundary condition is emgplih  For the outflow
the asymptotic non-reflective pressure boundary condiscepplied. The in- and
outflow boundary conditions are an approximation of the flenditions, since the
cavitation tunnel does not have a prescribed flow at the id-cartlet. We have ex-
tended the computational domain compared with the camidtinnel to ensure that
the in- and outflow are located away from regions with caidtat The top and bot-
tom of the channel are slip solid walls treated with the sytnynechnique and for
the slip solid wall of the hydrofoil the curvature-corretteymmetry technique is
applied. The results are obtained with the second-orderidhyfl LC/AUSM flux




162 QHAPTER 6. NUMERICAL RESULTS CAVITATING FLOW

scheme of section 4.7.2 with the limiter method of Venkagdran employing the

primitive variablesp, u, v, w, e]” .

Two grids are considered as presented in table 6.11: a cterabedral grid with
68k control volumes and a finer tetrahedral grid with 205ktdnvolumes. The
coarse tetrahedral mesh has been considered in sectioarliéfsingle-phase wa-
ter flow calculations. Employing the first-order reconstiat on the coarse mesh,
the sheet cavity is found to become steady for this mesh.Hemdcond-order recon-
struction method on the coarse mesh we find that the resolotithe cavity sheet and
its shedding is not adequate. The coarse mesh is too coamssolge the re-entrant
jet and the shed vapor structures properly. The re-entranti$l captured within one
computational control volume and the sheet cavity occadipsheds vortical vapor
regions, which quickly dissipate.

To improve the resolution in the region with cavitation, fireer mesh is obtained
by refining the region along the suction side of the hydrafmibpproximately 10%
chord length in normal direction to ensure that the sheetyc&vlocated in this re-
fined region. With the use of prismatic layers on top of therbfall the resolution
of the mesh near the surface of the hydrofoil can be improved é&urther in order
to capture the re-entrant and side-entrant flows more amturaHowever, for the
global behavior of the shedding of the sheet cavity this isfmond necessary. The
first-order solution on the coarse grid has been used asitta golution for the nu-
merical solutions performed on the fine grid by employinggbkition-interpolation
method Grid2Grid, see Hospers [98].

A close-up of the fine mesh around the hydrofoil is presemefigure 6.17. The
total number of elements and number of tetrahedrons for Inetbhes are presented
in table 6.11 along with the corresponding numerical tinep £¢.; for the chosen
CF L number of 0.8.

mesh | # control | # tetrahedrong Aty

volumes [10785]

coarse| 69,365 356,638 2.65
fine | 205,520 | 1,095,685 1.01

TABLE 6.11: Number of control volumes, number of tetrahedrons and niz@dme
stepAt..s; for cavitating flow simulations with' F'L = 0.8.

To accelerate the calculations the numerical method haspeallelized by decom-
posing the computational mesh in 8 equal-sized blocks. &heltis indicate that the
obtained speed-up is almost linear with the number of pgmres However, the par-
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FIGURE 6.17: Close-up of fine tetrahedral mesh for 3D Twistl1l hydrofoil-&°
angle of attack. 205,520 control volumes, 1,095,685 tetains.

allelization needs to be optimized further.

On a Quad-Core Xeon X5460 3.G&lz /2x6MB cache, 1333 FSB, 8GB memory
computer and employing the parallelization for 8 process$iotakes approximately
1h to calculate 500 time steps using the second-order rgactisn method on the
fine mesh. This corresponds wiihx 10~%s in simulation time. In this case the small
tetrahedral elements at the leading edge of the foil redtrec numerical time step.
These small elements are necessary to resolve the hightuuenat the nose of the
NACAO0009 hydrofoil. A thicker hydrofoil such as the NACAOB&s presented in
section 6.3 would allow for larger elements to be used atehdihg edge of the foil.

6.4.1 Total vapor volume

The transient evolution of the cavitating flow can be illagtd with the total vapor
volume as defined in equation (6.3) as a function of time. laréd.18 the total va-
por volume is presented for the present numerical simulatibich progressed up to
10ms. From Foeth [67] it follows that the shedding cycle takeswal38 ms at a free
stream velocity 06.58ms~!. For the present case &fms~' this would correspond
with a shedding cycle of ins.

Figure 6.18 clearly indicates that the time period coveregischot contain shedding
cycles. The flow is not yet periodic in time and the calculatsould be continued
further. In this section the formation of re-entrant flow ahd formation of a cavi-

tating horse-shoe vortex is discussed. Both phenomenau@gsegimilar to the ones
observed in the experiments of Foeth [67].
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FIGURE 6.18: Total vapor volume 3D Twistll hydrofoil at2° angle of attack,

o = 1.1. Fine grid, second-order hybrid HLLC/AUSM flux scheme. Rola-6 cor-
respond with figure 6.19(1)—(6) and with figure 6.20(1)—(®oint 8 corresponds
with figure 6.21. Point&; correspond with the solutions of the cavitating horse-shoe
vortex presented in figures 6.22(1)—(6) and painicorresponds with figure 6.23.

The black dots refer to the solutions presented in figure3-®.23. The points 1-6
correspond with figure 6.19(1)—(6) and 6.20(1)—(6). PoinbBesponds with figure
6.21. The point%; correspond with figure 6.22(1)—(6) and poliatcorresponds with
figure 6.23.

6.4.2 Re-entrant flow

In this section the re-entrant flow on the surface of the higilrand the onset of
shedding of the sheet cavity is illustrated for the first sliegl cycle. During the
growth of the sheet, a re-entrant flow is already moving epsir underneath the va-
por sheet, which is confirmed by the experimental resultsoett[67].

As illustrated in figure 6.18 by the points 1-8 we select a nemmdf time-instants
ty during the part of the cycle in which the sheet cavity growstddongest ex-
tent. Heretny = tg + NA, wherety approximately corresponds with the start of
the growth of the sheet. Furthermom¥, = 1,2,... andAt = 4.0 x 10~%s, which
corresponds to 40k numerical time-steps.

In the left pictures of figure 6.19 two iso-contours of thedvraction, i.e. = 0.05
anda = 0.5 are presented. In the right pictures of figure 6.19 the stieamon the
surface of the hydrofoil are shown colored by value of thelfoactiona. The vec-
tors indicate the direction of the flow. The time-intervatieeen each picture (1)—(6)
is At=4.0x10~*s. The total time presented in figure 6.1Rid x 10~ 3s.

At the time-instants of figure 6.19, the left pictures of fig@.20 gives the contours
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FIGURE 6.19: Re-entrant flow for 3D Twist11 hydrofoil at2° angle of attackg =
1.1. Fine grid, second-order hybrid HLLC/AUSM flux scheni&t between rows:
At = 4.0 x 10~%s. Pictures (1)—(6) correspond with points 1-6 in figure 6.018ft)
iso-contoursae = 0.05 and . = 0.5. (right) streamlines on surface of the hydrofoil
colored by value of the void fraction.
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of the y-component of the vorticityv,/ (Us/c) at the plane of symmetry. The
direction is pointing into the picture. Two contours of tr@d/fraction, i.e.« = 0.05
anda = 0.5, are indicated with the thick black lines. The streamlinesh® plane of
symmetry are given by the thin black lines to visualize the/fimttern. In the right
pictures of figure 6.20 the pressure on the surface of theofgitland the plane of
symmetry is presented together with two iso-surfages 0.05 anda = 0.5 of the
void fraction.

In figure 6.19(1) the vapor sheet is at the leading edge ofdiharid growing. Shed
vapor structures produced earlier are still visible. Ambihese vapor structures a
circulatory flow is generated as illustrated in the righttyie by the reversed flow
region on the surface of the hydrofoil underneath the vapgions. The circulatory
flow region around the shed vapor structures is clearly Msib the left picture of
figure 6.20(1). Furthermore, at the closure of the sheetycavregion with high
vorticity has developed, which will drive the re-entrantfloAs shown in the right
picture of figure 6.20(1) the pressure underneath the vdpetss equal to the satu-
ration pressure approximately equalitQ;(7') ~ 3,000Pa atT = 297K. Also, the
low pressure around the shed vapor structures is visible.

In picture 6.19(2) the earlier shed vapor regions have gisaed and the region with
circulatory flow is convected with the flow. At the same timeantrant flow is start-
ing to develop at the closure line of the sheet cavity astitiisd in pictures 6.19(2)
and 6.19(3) starting as a side-entrant jet. The pressuse mlue to the collapse of
the vapor structures is not visible due to the large timeriratl between pictures (2)
and (3), i.eAt=4.0x10"*sf.

In pictures 6.19(4)-6.19(6) the re-entrant jet moves epsitr underneath the sheet
cavity. This flow is mainly a flow of liquid indicated by the ldwolor of the stream-
lines. The vortical flow regions are convected further ddvazsn with the flow. In
picture 6.19(3) the re-entrant flow appears to be directédard from the plane of
symmetry. In picture 6.19(4) a small side-entrant flow haslbgped at the outline
of the sheet cavity. In picture 6.19(6) the re-entrant flofully developed and side-
entrant flow is visible. The re-entrant flow presented in #fé pictures of figures
6.19(4)-6.19(6) show very close agreement with figure 5flthe thesis of Foeth
[67].

In the surface streamline pattern in the right pictures afrBg6.19 a region with
retarded flow is seen. The location of this region on the sartrresponds with the

fNote that during this time the pressure pulse has travelqutagmately1540 x 4.0 - 10™*m =
0.616m. The chord length of the foil is= 0.15m.
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FIGURE 6.20: 3D Twistll hydrofoil at-2° angle of attacke = 1.1. Fine grid,
second-order hybrid HLLC/AUSM schem@t between rows:At = 4.0 x 10™4s.
Pictures (1)—(6) correspond with points 1-6 in figure 6.18eft] streamlines on
symmetry plane. Contours gfcomponent of vorticity,c/Us,. y-axis is pointing
into the picture. Thick black lines denote contours= 0.05 and« = 0.5. (right)
pressure on surface of hydrofoil and on symmetry planectsdeursa = 0.05 and
a = 0.5.
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location of the large vortical structure in figure 6.20.

As visible in the left picture of figure 6.20(4) by the streamak on the symmetry
plane, a small vortical region is created at the closureoregf the sheet cavity. This
vortical region becomes stronger and larger as visible énléft pictures of figures
6.20(5) and (6). This results in the cut off of the first vapmustures, which is indi-
cated by the separated region at the closure of the she¢y davioted by the thick
black line representing a void fraction equakte= 0.5.

In figure 5.19 of the thesis of Foeth [67] the cut-off of thetfivertical structure

at the closure line of the sheet cavity is discussed in detdié sketch from the re-
sults of the experiments corresponds fairly well with tifepécture in figure 6.20(6).

The re-entrant jets have met at mid-span. Then, they aretedl®utward and are
impinging through the sheet cavity above the re-entrant fisvgketched in figure
2.8(b) in chapter 2 of this thesis. The fluid impinging on thieiface isolates a re-
gion of vapor as visible in the left picture of figure 6.19(8)yound this vapor region

a circulatory flow pattern is observed as illustrated by theasnlines in the left pic-

ture of figure 6.20(6). This region with circulatory flow istdehed from the sheet
cavity and advected with the flow. Thus, the impingement agtdahment of the
vapor structure is captured in the present numerical sitouls based on the Euler
equations. This suggests that these phenomena appeamiertig in nature.

Note that in figure 6.19(6) a sharp interface between thedigquthe re-entrant jet
and the vapor in the cavity above the re-entrant flow does pyp¢a to be present
in the numerical simulation. The interface between theidigund vapor is captured
within 2—3 computational cells. Refining the grid close te surface of the hydrofoil
by employing prismatic layers will improve the accuracy apturing the re-entrant
flow.

Figure 6.21 presents the solution at time-instantvhich corresponds with point 8
in figure 6.18 and which i At later than the results shown in figures 6.19(6) and
6.20(6). Presented are the outline of the sheet cavitytteamlines and the pressure
on the surface of the hydrofoil. Compare figures 2.8(b)—(dh igures 6.21(a)—
(b). In figure 6.21(a) it is shown that the vapor in the cenfahe hydrofoil is now
detached from the main sheet cavity. Also, two side-lobeth®fsheet cavity have
formed. In figure 6.21(b) the re-entrant flow is clearly magyiowards the leading
edge of the foil. Note the sharp transition from liquid to @apt the mid-span of the
hydrofoil.

In figure 6.21(c) the pressure on the surface of the hydrédgiéther with the two
iso-contoursae = 0.05 anda = 0.5 are given. Note that at mid-span between the
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FIGURE 6.21: 3D Twist11 hydrofoil at-2° angle of attack.c = 1.1, T = 297K,
psat(T)) = 0.03bar. Fine grid, second-order hybrid HLLC/AUSM scheme. Time-
instanttg, which corresponds with point 8 in figure 6.18. (a) Iso-soéfsx = 0.05
anda = 0.5 (b) Streamlines on surface of hydrofoil colored by the valfithe void

fraction. (c) pressure on surface of hydrofoil and on symynplane. Iso-contours
a=0.05anda = 0.5.
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detached vapor structure and the main sheet cavity a “hal¢hieé vapor appears.
Here, at the edge of the sheet cavity and the edge of the shedstaucture pressure
pulses are observed due to the collapse of (small) vapanegi

6.4.3 Formation of a cavitating horse-shoe vortex

A very distinct feature of the shedding of the sheet cavitylen3D Twistl1 hydro-
foil is the formation of a cavitating horse-shoe vortex a& tenter of the hydrofoil.
See for instance the experimental results of Foeth [67]rtedan figures 2.7(c)—(k).

In figure 6.22(1)—(6) the formation and convection of suctadtating horse-shoe

vortex in the numerical simulation is illustrated. Presenare a top view and a side
view of the hydrofoil, the sheet cavity and the horse-shagexo The time-instants

presented correspond with poirits—hg in figure 6.18.

In figure 6.22(1) the shed vapor region in the center of thedeiaches from the
sheet cavity and forms a horse-shoe vortex. The center ofdiiex is convected
upward, primarily by its self-induced velocity.

The horse-shoe vortex is convected with the flow and is almuabllapse in figure
6.22(6). The height of the horse-shoe vortex is clearlyblésin figure 6.22(3) and
(4). It reaches up to 2-3 times the thickness of the sheetycdwithe experiments of
Foeth the height of the shed vapor cloud is found to be an itapbfeature.

The sheet cavity at the center of the hydrofoil starts to gagain. The side-lobs

of the sheet are clearly visible. The shape of the remainfrtheosheet cavity cor-

respond very well with the experimental results. Refer tgketches of the sheet
presented in figure 2.8(c) and (d).

As comparison a picture of the experimental results is piteskein figure 6.23(b).
Foeth [66] reports that the conditions for this picture wslightly different, i.e.

a = —1° ando = 1.13. However, the effects of the slight increase in angle of
attack are counteracted by the slight increase in cauvitationber and thus, the two
conditions are very similar. Foeth [66] mentions that therall shedding of the sheet
cavity did not change much compared to the conditions ptedan this section, i.e.
a=—2°ando = 1.1.

Figure 6.23 illustrates that the calculated shape of thetstevity and of the cav-
itating horse-shoe vortex are quite similar to the expenitaleobservations.
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FIGURE 6.22: Formation of a horse-shoe vortex on 3D Twist11l hydrofoil-&°
angle of attackg = 1.1. Fine grid, second-order hybrid HLLC/AUSM scheme. Time
step between rows is equal fot = 5.0 x 10~*s, which corresponds to 50k time
steps. Figures (1)—(6) corresponds with poihishg in figure 6.18. Iso-contours of
void fraction equal tax = 1073 anda = 0.5. (left) Top view (right) side view.
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(@)

(b)

FIGURE 6.23: Cavitating horse-shoe vortex on 3D Twist11 hydrofoil. (aierical
result at—2° angle of attackg = 1.1. Fine grid, second-order hybrid HLLC/AUSM
scheme. Iso-surfaces = 102 anda = 0.5 (b) Experimental result obtained from
Foeth [67], angle of attack-1°, 0 = 1.13.

6.4.4 Conclusions 3D Twist11 hydrofoil

In this section the numerical results for the cavitating fldvout the 3D Twist11 hy-
drofoil at —2° angle of attack are presented. We have shown that the shdpe of
sheet cavity and the outline of the closure region as predliby the results of the
present numerical method compare quite well with the expemial results of Foeth
[67].

The development of a re-entrant flow is predicted in closeagent with that seen
in the experiments of Foeth. During the growth of the sheeg;entrant jet is already
moving upstream underneath the vapor sheet, as is obsertieel €xperiments. The
predicted re-entrant flow is a flow of liquid.
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The impingement of the re-entrant flow on the cavity integfand the detachment
of the first vortical structure is captured in the present aroal simulations based
on the Euler equations. This suggests that these phenorppearao be inertial of
nature.

The formation of a cavitating horse-shoe vortex and its eilme with the flow is
captured in the present numerical simulations. The numlegsults agree quite well
with the experimental observations.

At present the calculation times are too long to investiglgeshedding of the sheet
cavity on 3D configurations for long enough times. The totainber of computa-

tional cells should be reduced drastically without losing tequired grid resolution.

Employing prismatic elements or hexahedral elements ¢todee surface of the hy-

drofoil might help since then larger aspect ratios for thenpaotational cells can be
chosen than for tetrahedral elements.

To speed up the calculation towards the periodic cavitdtimg, it might be worth-
while to investigate methods such as multi-grid, precaodiihg and/or implicit time-
integration, which allow larger numerical time steps to bkeh. However, the
larger admissible numerical time steps should still resdhe high-frequency pres-
sure pulses, which we believe to have a major influence orethescillatory behav-
ior of the sheet cavity and its shedding.
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6.5 Cavitating flow about 3D Elliptic 11 Rake hydrofoil

In the cavitation tunnel at Delft University of Technologgrnvder Hout [204] has
carried out cavitating flow experiments on a three-dimeraidinite-span skewed
hydrofoil of elliptic planform. The purpose was to investig the interaction be-
tween sheet and vortex cavitation for steady and unstedhbwirtonditions. Here,
the interest is in steady, cavitating flow solutions at umfanflow conditions. The
objective of this section is to show that the outline and shafpthe sheet cavity on
a complex three-dimensional geometry can be predictedthdtipresent edge-based
numerical method employing the equilibrium cavitation mlodn our group this 3D
elliptic hydrofoil has been studied by Ton [193] to invesatig the numerical method
of vorticity confinement in compressible flow of a perfect §as

6.5.1 Geometry of 3D Elliptic 11 Rake hydrofoll

The hydrofoil considered is the so-called Elliptic 11 Rakeltofoil. The section
of the hydrofoil is a NACAO0009 section defined in equation7j5with thickness

t = 0.09. The chord lengtfe(y) is a function of the dimensionless span-wise coordi-
natey defined by the expression

e(5) = \/CRO — §?) + 32C, (6.6)

wherey = y/s with s the semi-span of the hydrofoi} is the chord-length of the
root section of the hydrofoll, i.e. at= 0, andC'r is the chord length at the tip of the
hydrofoil aty = 1. The hydrofoil has a swept leading edge, i.e. a translatfdhe
leading edge of the section idirection. Thex-coordinate of the midpoint of the
local section chord-line, denoted &g is defined as

20(y) = —¢(y) + Cr. (6.7)

The hydrofolil is twisted by a rotation around the mid-chpaint x = z(gy) of the
local section. The twist angle is defined as,

e“/ag —1

a(y) = ar < p—

>§+ﬁ, 6.8)

whereg is the global rotation angle, equivalent to the angle ofcattaf the hydrofoil
at its root section. In this section the foil has an angle @icktof 3 = 3°. ar is the
local rotation angle at the tip ang, is a twist-distribution shape parameter. Finally,

#The computational meshes in this section have been probigddn, for which the author would
like to express his gratitude.
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the foil is given rake, i.e. a translation along theaxis, by defining the-coordinate
of the midpoint of the local chord-line, denotedzgsas

e'R — 1

20(y) = Rry (em — 1> , (6.9)

whereRr is the rake at the tip angg is a rake-distribution shape parameter. In table
6.12 the parameters used by Van der Hout for this foil aregmtesl. In figure 6.24 a
3D view, a top view, a side view and a front view of the hydrb&oe presented.

parameter] value | parameter value
s 0.2m Rr 0.02m
Cr 0.15m Ya 7.0
Cr 0.05m YR 1.0
ar 11°

TABLE 6.12: Parameters for 3D Elliptic 11 Rake hydrofoil.

(b)

FIGURE 6.24: 3D Elliptic 11 Rake hydrofoil af = 3° angle of attack, flow is in
z-direction. (a) 3D view (b) top view (c) side view (d) fronewi.

6.5.2 Computational domain and mesh

The computational domain fits the test-section of the ctiwitgunnel at Delft Uni-
versity of Technology. For numerical purposes the testimedas been extended
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from a length of 0.6m to a length of 0.9m. Thus, the computational domain is a
rectangular box with dimensions Qu&0.3mx0.3m, i.e.6 x 2 x 2 chord lengthg’z.
The origin of the domain is taken as the midpoint of the cHore-of the hydrofoil

at the root section of the foil. The foil is mounted to the tehwall and the tip of
the foil is located aR/3 of the width of the tunnel. The computational domain is
presented in figure 6.25.

Slip solid walls

FIGURE 6.25: Computational domain for 3D Elliptic 11 Rake Hydrofoil 3t angle
of attack. The flow is from left to right. The walls of the chelrare slip solid walls,
the left and right side are the in- and outflow, respectivdlize surfaces of the foll
are solid slip walls.

Two computational meshes have been constructed utiliziegsbftware package
ICEM-CFD: a coarse grid containing 270k tetrahedral elasiand a finer grid con-
sisting of 567k tetrahedrons. The coarse grid is only usaibtain a suitable initial

solution for the numerical simulations performed on the §rid and is not discussed
further.

In figure 6.26 the fine mesh for the complete domain is predeftete that the com-
putational domain is rotated compared with the view showiigure 6.25. The fine
grid features a cylindrically refined region with its axic&ted along the expected
path of the tip vortex. This cylindrical region is visible figure 6.26 at the outflow
boundary. In figure 6.27 a close-up of the surface mesh irigglregion of the hydro-
foil is shown. The grid is refined in the regions around théitg edge, the wing tip
and the leading edge.
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FIGURE 6.26: Surface mesh of the fine grid for 3D Elliptic 11 Rake Hydro&il
£ = 3° angle of attack. Note the cylindrical refined region in thpeoted path of the
vortex. This cylindrical regions starts at the tip of thed foi

FIGURE 6.27: Surface mesh of the fine grid in the region around the tip of3ibe
Elliptic 11 Rake Hydrofoil a3 = 3° angle of attack.

6.5.3 Flow conditions and numerical set-up

To compare the numerical results with the results of the ixy@nts of Van der Hout
[204] the case chosen is for a cavitation numberwof 0.68 and a free-stream
temperaturel,, = 293K. To speed up the formation of the sheet cavity the free-
stream velocity is set t&/,, = 50 ms~! yielding a free-stream pressure equal to




178 QHAPTER 6. NUMERICAL RESULTS CAVITATING FLOW

Poc = 8.51 x 10° Pa, a free-stream density @f,, = 998.6 kgm > and a free-stream
speed of sound equal tg, = 1539.2 ms~!,

For the inflow the non-reflective boundary condition is ergpth For the outflow
the asymptotic non-reflective pressure boundary condftonvater flow is applied
as in this simulation it is expected that the tip vortex wil savitate when it reaches
the outflow boundary. The conditions at the walls of the clehane slip solid walls
treated by the solid wall symmetry technique. The condéiatthe slip solid walls of
the hydrofoil are treated by the curvature-corrected sytnntechnique. The results
are obtained with the hybrid HLLC/AUSM flux scheme of sectbii.2.

Although a steady-flow solution is pursued, the results atained time-accurately.
We have found that applying local time-stepping to this tiig flow problem did
not result in a converging solution. The differences in fineetstep taken for the
different control volumes become too large due to the laiifferdnce in speed of
sound for a control volume completely filled with water comgghto that of a control
volume containing some vapor, i®;, ~ 1500 ms~! andc,—o5 ~ 5 ms™!.

The route towards the final solution is the following. Thetfeder solution on
the coarse grid is calculated for 50k time steps and theriramd with the second-
order spatial reconstruction method with the limiter of kiatakrishnan applied to the
primitive variables|p, u,v,w,e]”. When the flow solution has become reasonably
steady, this solution is then interpolated to the finer gsithg the solution interpola-
tion program Grid2Grid, see Hospers [98]. This initialimatroute reduces the time
necessary for the flow field to develop. The calculation istbentinued on the fine
grid by employing the second-order spatial reconstruction

6.5.4 Forces and total vapor volume

In the experiments of Van der Hout [204] the cavitating flowdo= 0.68 about the
3D Elliptic 11 Rake Foil was found to be fairly steady except & slow oscillating
motion of the cavitating trailing vortex. The mesh furtherag from the hydrofoil is
still too coarse to resolve the cavitation in the trailingtes accurately, so a steady-
flow solution is obtained. The total vapor volume, as defimeglguation (6.3) witle
taken equal t@'r, reaches a constant value equaltg, = 0.23.

Figure 6.28 presents the force coefficients for the camigatiow about the hydro-
foil. The force coefficients are calculated with equatiobs.Q) and (2.11) with the
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FIGURE 6.28: Cavitating flow about 3D Elliptic 11 Rake Hydrofoil 8¢ angle of
attack. Fine mesh, 567k tetrhahedroms= 0.68. Force coefficients’,, C;, and C,
on the foil.

projected surface areégequal to
1
S = s/c(g)dg, (6.10)
0

which evaluates t& = 0.024584 m?2. Due to computer problems with writing of the
data files the information for the first 60k iterations or apgmately 10~3s is lost.
This did not influence the calculation. When the solutiondnee steady at approxi-
matelyt~0.015s, the second-order solution on the coarse grid has beepdakéed
to the fine grid, which is visible as the peaks in the plot offthree coefficients. Then
the second-order calculation is continued on the fine gritithe values for the force
coefficients become constant.

| data [ C.[ | G [C]
Numerical result 0.0137| —0.067 | 0.277
Experiments Van der Hout [204] 0.0336| —0.0276 | 0.269

TABLE 6.13: Force coefficients for 3D Elliptic 11 Rake hydrofoil3itangle of attack,
o = 0.68.

The calculated force coefficients and the measured valugarotier Hout are pre-
sented in table 6.13. It is shown that the lift coeffici€htis predicted to within 3%
from the experimental result. The predicted drag coefficténand the side force
coefficientC, show a deviation up to 250% compared with the experimente Th
reason for these large differences is not known.
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6.5.5 Flow solutions

Van der Hout [204] reported that the sheet cavity near theftie foil is approxi-
mately steady. Besides some small disturbances, the @ppeaof the cavity does
not change much in time and the shedding of vapor clouds Esnabn figure 6.29
the iso-contour of the computed void fractian= 0.01 is presented together with an
experimental result of van der Hout [204] for cavitating flow

FIGURE 6.29: 3D Elliptic 11 Rake Hydrofoil at3° angle of attack. o = 0.68,
T=293K. Left: Numerical solution. Iso-contour af=0.01. Right: Experimental
result Van der Hout [204], photograph taken from [204]. Thasted box denotes the
outline of the picture on the right.

The dashed box denotes the outline of the photograph of {heriexental result. As
can be seen in figure 6.29 the outline and shape of the shagt aae reasonably
well predicted. Thus, this demonstrates that the presentrival method is capable
of predicting the shape of a sheet cavity on a complex thieettsional geometry.

However, in the numerical result the amount of vapor pregenhe tip vortex is
not enough to obtain a value for the void fraction larger ar&do« = 0.01. There-
fore, in the region where the tip vortex is located, therepisam iso-surface: = 0.01

of the void fraction visible. Due to numerical dissipatidme tvorticity distribution in
the core of the vortex is not compact enough to generate aisufly high enough
azimuthal velocity to result in a larger region with the p@® equal to the saturation
pressure.
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Within the scope of this research Ton [193] has investig#tedso-called “Vorticity
Confinement” method to improve the prediction of the votyidistribution within
the vortex core and to capture the vortex core over a muctetadigtance behind the
foil. The confinement technique might be an alternative doal grid adaption. Ton
showed that it is indeed possible to improve the numericalltdor a given mesh.
However, it was also concluded that the vorticity confinetmeathod requires fine-
tuning for every new case. It is therefore not robust nor-frsemdly and this method
needs further exploration.

FIGURE 6.30: 3D Elliptic 11 Rake Hydrofoil at3° angle of attack. o = 0.68,
T=293K. Numerical solution. Iso-contouws,/ (Us,/Cr) = 2 of the component in
z-direction of the vorticity.

In figure 6.30 the iso-contow,,/ (Us,/Cr) = 2 of the component in-direction
of the vorticity is presented, clearly indicating the ragiaf the tip vortex. As can
be seen in figure 6.30 the vortex core can be distinguishedt délweee chord lengths
Cr downstream of the trailing edge, so almost up to the outflomndary. However,
apparently the magnitude of the vorticity in the core is ightenough to reduce the
pressure to the saturation pressure.

In this section numerical solutions for steady cavitatirgvflabout the 3D Elliptic
Rake hydrofoil have been presented. Van der Hout also coediexperiments for
unsteady inflow conditions by placing two hydrofoils withcolsting trailing edge
flaps upstream of the Rake hydrofoil. In the present studynaenical simulation of
such an unsteady forcing case has not been pursued.

On ship propellers sheet cavitation and tip vortex cawatatccur simultaneously
and interact with each other, while simultaneously suljgcinsteady inflow. In the
future research should be carried out both numerically dsageexperimentally to
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investigate the interaction between sheet cavitation afudatating) tip vortex. In
this section we have shown that the present numerical mashodpable of accu-
rately predicting the outline of the sheet cavity. Curngtitle main difficulty lies in
predicting the cavitating trailing vortex.

6.6 Conclusions cavitating flow calculations

In this chapter numerical solutions for cavitating flow hdeen considered for 1D,
2D and 3D flow problems. We have shown that the present nuateriethod em-
ploying the equilibrium cavitation model is able to:

e predict the formation of cavitation in one-dimensional flpreblems, such as
the “Closing Valve problem” and the cavitating Riemann pealb featuring
two expansion waves;

e predict the periodic unsteady cavitating flow about a 2D NAOAS at6° angle
of attack at a cavitation number = 1.0 with characteristic behavior such as
the cyclic formation of a sheet cavity, the formation of tleeentrant jet and
the shedding of a vapor cloud;

e predict the collapse of a vapor cloud and the subsequentgnggsure pulses
on the surface of the hydrofoil, which is important for thegtiction of erosion
and noise;

¢ predict the unsteady loading of the hydrofoil due to the dyica of the cavi-
tating flow about the hydrofoil and due to the collapse of skagabr structures;

e predict the shape of the sheet cavity and the outline of theucké region on
the 3D Twistll hydrofoil at-2° angle of attack. This result correlates to the
experiments of Foeth [67];

¢ predict the onset of shedding of the sheet cavity on the 3B{IWihydrofoil at
—2° angle of attack, i.e. the development of a re-entrant jeth@dubsequent
shedding of a cavitating horse-shoe vortex. These prettenomena show
close agreement with the experiments of Foeth [67];

e predict the shape of the sheet cavity on a complex 3D geoyrmioh as the
3D Elliptic Rake hydrofoil. This result compares favoralith the results of
the experiments of Van der Hout [204];

¢ predict the lift coefficient”, to within 3% compared to the experiments of Van
der Hout [204] for the cavitating flow about the 3D Elliptic lkkaHydrofoil.
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The calculation times required by the present numericahatkfor the shedding of
a cavity sheet on a three-dimensional geometry such as thst Aydrofoils are so

demanding that parallelization of the numerical methodguired to speed up the
calculations. Preliminary results of a parallelizationtleé method indicate that an
almost linear speed-up with the number of processors carbtagned. The paral-

lelization of the numerical method needs to be optimizeth&r

We have presented the onset of the shedding of the sheey cawvithe 3D Twist
hydrofoil. With the parallelization of the numerical methmmplemented, the calcu-
lations performed in this thesis for the 3D Twist hydrofodlad to be continued on a
grid with a higher resolution near the surface of the hydtafoorder to capture the
formation and direction of the re-entrant jet more acclyaffo save computational
resources prismatic elements close to the surface of thetojidor hexahedral ele-
ments can be employed. Furthermore, the numerical predicti the dynamics of
the shedding should be compared one-to-one with the expetinof Foeth [67] to
further validate the numerical method.

For two-dimensional cavitating flow the strong pressures@silgenerated due to the
collapse of shed vapor structures are predicted with theeniaal method. In section
6.3.3 we have illustrated that at the instant of the collaggdhe shed vapor region,
the sheet cavity stops growing. Itis an open question if tle@scavity stops growing
due to the collapse of the shed vapor region. The influendeegbtessure pulses on
the shedding mechanism should be investigated both nualigras well as experi-
mentally, especially the influence on the formation of themgant jet.

The numerical method might be validated for the collapsehefisvapor structures
and resulting pressure pulses by investigating the calaps single vapor bubble.
Currently, the difficulty lies in the very fine grid resolutimeeded for the final stages
of the collapse of the bubble and in the application of the-reflective boundary

conditions to model far-field conditions.







DISCUSSION AND
RECOMMENDATIONS

In this chapter the conclusions of the present researchoaneufated and recom-
mendations are given for future work. The conclusions amdmemendations are
discussed chapter by chapter of this thesis.

7.1 Physical aspects of cavitation

This research has been conducted in close collaboratidntétDepartment of Mar-

itime Technology at Delft University of Technology. Withiinis collaboration a num-

ber of hydrofoil configurations have been designed emptpyumerical simulations

and experiments. The 3D Twistll hydrofoil has been desigoddhve a clear and
controllable three-dimensional sheet cavity. It has béenwa that the shape of the
cavity and the closure line of the cavity determine the dioecof the re-entrant flow

and that the re-entrant flow from the sides dictates the bhehafthe shedding cycle.

Therefore, the shedding of a sheet cavity is governed byitbetosbn and momentum

of the re-entrant and side-entrant jets and their impingéroe the cavity surface.

These effects are inertia driven.

The dynamics of sheet cavitation generate strong pressisespdue to the collapse
of shed vapor structures. Within experiments it is a diffitatk to capture and/or
visualize these pressure pulses and the associated unkiadohg of the foils. In the
present numerical results for cavitating flows these prespulses are predicted in
detail. In order to further validate the numerical method important to gain more
knowledge experimentally on the strength of the pulses mlgpation with unsteady
sheet cavitation. Furthermore, the influence of the presgulses on the shedding
mechanism should be investigated both numerically as ewrpatally, especially the
influence on the formation of the re-entrant jet.

The present research focussed on sheet cavitation on enstatihydrofoil located
in uniform inflow conditions. Foetkt al. [67] conducted experiments on hydrofoils
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placed behind two stacked hydrofoils with oscillating flamnerating an unsteady
inflow. Currently research is conducted within our group todel these oscillating
hydrofoils employing so-called “transpiration” boundargnditions. This research
should be extended to numerically investigate the influehcmsteady inflow on the
shedding of the cavitation sheet and compare the resultose tof the experiments
of Foeth. Besides the oscillating hydrofoils placed ugstref the cavitating hydro-
foil, numerical investigations can be carried out for a tating hydrofoil oscillating
in pitch and/or heave.

In section 6.5 steady-flow numerical solutions for cauitatilow about the 3D Ellip-

tic Rake hydrofoil have been presented. Van der Hout [20A4flaoted experiments
on the 3D Elliptic Rake hydrofoil for steady and unsteadyowftonditions. On ship

propellers sheet cavitation and tip vortex cavitation ostunultaneously and interact
with each other. Future work should be carried out both nigakly as well as exper-

imentally, to investigate the interaction between the shaety and the (cavitating)

vortex.

7.2 Mathematical models for cavitating flows

In chapter 3 the mathematical model is discussed for a casie homogeneous

water-vapor mixture at equilibrium saturation conditioi$is model does not have
any empirical free parameters for phase-transition ansgl tifiers a general applica-

ble model for cavitation. It is shown that with the employegiations of state for the

three phases, the experimental data for the density, peeasd speed of sound are
accurately represented.

Concerning the equation of state for compressible water shown that the mod-
ified Tait equation of state proposed by Sawrthl [166] agrees accurately with
experimental data. The stiffened gas equation of state &emhas also been inves-
tigated. It is shown that close to saturation conditionsstiffiened gas equation of
state does not agree with experimental data.

We have also investigated a barotropic model for cavitaai®well as non-equilibrium
cavitation models employing a transport equation for thiel Waction and source
terms for phase transition, see appendices F and G. We reeodim investigate the
possibility to include in the present numerical method adgitaahal transport equa-
tion for the volume or mass fraction of vapor to be able toudel non-equilibrium

effects through source terms.

The non-equilibrium models offer more flexibility to dedwiphase transition in cav-
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itation and to include thermodynamic effects. Howeverhméxisting (incompressible-
flow) models this flexibility comes at the prize of user-defifieee parameters in par-
ticular in the source terms. These empirical parameters peushosen very carefully.
More research should be conducted to obtain the adequatesvir these parame-
ters in order to enable prediction of cavitation with smallecertainty. Source terms
without empirical parameters such as proposed by Senocahky& R73] or source
terms based on thermodynamic considerations as propodbdiost al. [100] should

be considered in order to remove the dependency on useeddiige parameters.
Furthermore, in the present numerical method we experiengmerical instabilities
when the density rati@; /p, was increased to a value exceeding 100. One of the
possibilities for these instabilities might be the JST flakeme, which we have used
in combination with the non-equilibrium models. Employiaglifferent flux scheme
such as the HLLC flux scheme as described in chapter 4 miguteetthe numerical
instabilities.

Besides the difficulty of accurately describing some typdimte-rate production
and/or destruction source term, a major challenge lieserfdht that when a fully
compressible water-vapor medium is considered, the hpjeiy needs to be pre-
served. When both water and vapor are present in one corigmatiatontrol volume
two different pressures need to be accounted for throughopppte equations of
state. Furthermore, the pressure in the liquid phase wilblbe “negative”, i.e. a
tensile stress. So when returning to a positive pressuteeindpor phase an inflec-
tion point is created in thg-v-diagram resulting in complex-valued eigenvalues.

Concerning the barotropic model for cavitation we concltid this simple descrip-
tion reduces the computational effort. However, as dismligs section 3.1 the baro-
clinic production term in the vorticity transport equatifproportional toVp x Vp)

is not present in this model since the gradient in pressysarallel to the gradient in
density. Furthermore, we have found that for steady-flowtsmis too much cavita-
tion is predicted due to the assumed smooth transition adénsity of the fluid from
the liquid density to the vapor density. Steepening thesitam curve improves the
results, but numerical instabilities occur when the trdmsiis chosen too steep. At
present it is expected that the instabilities are causetidy$T flux scheme, which
has been employed for the barotropic method. Combining dnattmpic model with
a different flux scheme such as the HLLC flux scheme as prasémtehapter 4
might reduce the numerical instabilities. Furthermore,haee employed the dual-
time stepping technique to extend the barotropic cavitatimdel to unsteady flows.
For design purposes this model can be developed furthee gigives a simple and
reasonable first estimate of cavitating flows.
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7.3 Numerical methods

In the present research an edge-based finite-volume metimdden developed.
Within the scope of this project we extended the in-househrpesprocessing pro-
gram Favomesh, such that it can handle 2D and 3D grids cimgist any element
type, i.e. quadrilaterals and/or triangles in 2D and hededres, prisms, tetrahedrons
and/or pyramids in 3D. This enabled the improvement of tig-igrsolution close to
hydrofoils where cavitation occurs, see the MSc. thesisaggdrs [98]. This offers
great flexibility in constructing meshes of good quality wibcally refined regions
to be used to simulate cavitating flows about complex 3D gé&oase

In the numerical steady-flow results small numerical oatidhs in the solution are
experienced at the trailing edge of the hydrofoils. Theseetd out to be due to the
treatment of the trailing edge in constructing the mediaal duesh by the mesh-
prepocessing program Favomesh. The control volume ardwntidiling edge is not
properly shaped. Refining the grid around the trailing edgesdmprove the nu-
merical results somewhat. However, a solution to this gnobis to split the control
volume in an upper and lower control volume correspondintpéoupper and lower
side of the hydrofoil. This solution has been investigateaur group by Hospers
[98]. At present the splitting of the control volume in Favesh has been automated
for general 3D meshes by H. de Vries. Another possibility hige to employ a
cell-centered dual mesh, for which the control volumesHiernumerical method are
formed by the elements of the mesh.

It has been found that the JST flux scheme is not suited forlating cavitating
flows due to numerics-induced under- and overshoots at dosuigfaces. These nu-
merical oscillations result in a negative value of the digrisi case the density ratio
p1/ pv across the contact surface becomes too large.

The HLLC and the AUSM family of flux schemes have been inves#id for cav-
itating flows. Following the research of Schmigtal [169] it was found that for
steady low-Mach number liquid flows these flux schemes do radyze accurate
results. Following Schmidet al. a hybrid HLLC/AUSM flux scheme has been im-
plemented, which improves the numerical results for flowoat Mach number.
With the present implementation of the hybrid flux schememnrmstructured mesh
solutions at low-Mach numbers could be obtained. For siredt meshes, however,
Schmidtet al. [170] obtained excellent results at even lower Mach number

Besides the adaptation of the flux scheme, preconditioreimgoe employed to simu-
late low-Mach number flows. We have developed a precondlitipmethod for cavi-
tating flows based on the method of Weiss & Smith [218]. Howgtevas found that
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for unsteady cavitating flows this method becomes ineffidilere to the small phys-
ical time step that needs to be taken in order to capture thieady flow phenomena.

We investigated and implemented a MUSCL-type reconstrnatiethod for unstruc-
tured grids. The limiter of Venkatakrishnan is employedst@ady and unsteady flow
simulations. It was found that this limiter stalls the camg@nce towards the steady-
state flow solution. More research needs to be carried ouatpoave the convergence
towards a steady-flow solution. A possible solution mightdienplement one of the
limiting methods described in the thesis of Bramkamp [28]r &nsteady flow cal-
culations the limiter of Venkatakrishnan works satisfaitgounder- and overshoots
are not observed at sharp gradients or discontinuitieseiridkv.

In section 4.8 non-reflective in- and outflow boundaries fdviteary equations of
state have been developed and implemented in the preseetricahmethod. These
boundary conditions allow waves in the flow solution to lethes computational do-
main without any reflection at the boundary of the computeicdomain. This is
necessary to avoid that spurious reflected waves interfédretiae time-dependent
cavitating flow solution. Furthermore, the non-reflectivaibdary conditions im-
prove the convergence to the steady-flow solution.

The development and implementation of the Curvature-CteceSymmetry Tech-
nique for the solid walls with slip conditions improves themmerical solution of the
flow near the surfaces.

7.4 Single-phase flow calculations

In chapter 5 the single-phase flow of water has been considerelD, 2D and 3D

flow problems. It is was judged to be essential to show thantireerical method
is able to accurately calculate single phase water flow bedtiempting to calculate
cavitating flows. In chapter 5 it is shown that the present eniral method is able
to:

e accurately predict time-accurate wave and shock dynamigguid flow prob-
lems such as the “Water Hammer” problem and the Riemanngumofur liquid
flow;

e accurately calculate steady-state low-Mach number lifjaig, without the use
of preconditioning methods, by employing a hybrid HLLC/AM3ux scheme
such as developed by Schmattal [169, 170];

e accurately calculate the steady-state water flow aboutdiw@nsional hydro-
foils;
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e accurately predict the lift coefficient for steady-stateavdlow about the 3D
Twist1l1 hydrofoil at—2° angle of attack;

e accurately predict the pressure coefficiehton the surface of the 3D Twist
hydrofoil at—2° angle of attack in comparison to experimentally obtainad su
face pressure data.

Furthermore, we conclude that the numerical method emppthe MUSCL-type
reconstruction method and the limiter of Venkatakrishraldose to second-order
accuracy for the single phase water flow about two-dimemsioydrofoils.

7.5 Cavitating flow calculations

In chapter 6 numerical results for cavitating flows are pneszk for 1D, 2D and 3D
flow problems. It is shown that the present numerical metmopleying the equilib-
rium cavitation model is capable to:

e accurately predict the formation of cavitation for one-dimsional flow such
as the so-called “Closing Valve” problem in 1D and the cdiita Riemann
problem of two outward running expansion waves;

e predict the periodic unsteady cavitating flow about a 2D NAOAS att® angle
of attack at cavitation number = 1.0 with characteristic behavior, such as the
cyclic formation of a sheet cavity, the formation of the rgrant jet and the
shedding of a vapor cloud;

¢ predict the collapse of a shed vapor structure and captaersubsequent pres-
sure wave dynamics in the liquid and on the surface of thedigdy which is
important for the prediction of erosion and noise;

e predict the unsteady loading of the hydrofoil due to the dyica of the cavi-
tating flow and due to the collapse of shed vapor structures;

e accurately predict the shape of a sheet cavity and the eutifrthe closure
region on the 3D Twistll hydrofoil at2° angle of attack compared to the
experiments of Foeth [67];

e predict the onset of shedding of a cavity sheet on the 3D Twikydrofoil at
—2° angle of attack, i.e. the development of a re-entrant jeth@dubsequent
shedding of a cavitating horse-shoe vortex. These pretgtenomena show
close agreement with the experiments of Foeth [67];

e predict the shape of the sheet cavity on a complex 3D geonseiti as the 3D
Elliptic Rake hydrofoil compared to the experiments of Vam Hout [204];
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¢ predict the lift coefficient”, to within 3% compared to the experiments of Van
der Hout [204] for the cavitating flow about the 3D Elliptic lkkaHydrofoil.

Currently, the calculation of unsteady cavitating flows@t2D geometries requires
too long calculation times. Work has been started to devalpprallelized version
of the numerical method. Preliminary results indicate thatimplementation in the
parallelization results in a speed-up that is almost liveigln the number of proces-
sors. This speed-up is necessary to validate the presergrimainmethod with the
experiments of Foeth. The parallelization of the numenathod needs to be opti-
mized further. Other accelerating techniques such as-gittimethods and implicit
time-integration methods should be investigated.

We have presented the onset of the shedding of the sheey cawvithe 3D Twist
hydrofoil. With the parallelization of the numerical methimplemented, the calcu-
lations performed in this thesis for the 3D Twist hydrofoded to be continued on
a grid with a higher resolution near the surface of the hyalrdf order to capture
the formation and direction of the re-entrant jets more eately. Furthermore, the
numerical prediction of the dynamics of the shedding shbeldompared one-to-one
with the experiments of Foeth to further validate the nuoannethod.

For two-dimensional cavitating flow the strong pressures@silgenerated due to the
collapse of shed vapor structures are predicted with theenioad method. In section
6.3.3 we have illustrated that at the instant of the collagsbe shed vapor region,
the sheet cavity stops growing. It is an open question whethaot the sheet cav-
ity stops growing due to the collapse of the shed vapor regitre influence of the
pressure pulses on the shedding mechanism should be gatestiboth numerically
as well as experimentally, especially the influence on thedbion of the re-entrant
jet.

The numerical method could be validated for the collapsehefisvapor structures
and resulting pressure pulses by investigating the calaps single vapor bubble.
Currently, the difficulty lies in the very fine grid resolutimeeded for the final stages
of the collapse of the bubble and in the application of the-reflective boundary

conditions to model far-field conditions.

7.6 Future research

Besides the recommendations stated in the above sectiern®ltbwing subjects

should be investigated further in order to increase the keage on cavitating flows,
to improve the current mathematical model and numericahoteaind to extend the
numerical method to other research fields:
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Investigate methods such as preconditioning and implicietintegration for
cavitating flows. Questions to be addressed are: can theugtgmhase in nu-
merical simulations of cavitating flows towards (semi)ipéic shedding be
accelerated? Can unsteady flow phenomena in compressjblddisuch as
pressure wave-dynamics be captured efficiently? Can th&-geaodic shed-
ding cycles and the pressure wave-dynamics generated apsiolg vapor
structures be simulated efficiently?

Investigate the interaction between sheet cavitation afodvatating) tip vor-

tex. One of the difficulties lies in accurately predicting thternal structure of
the (cavitating) vortex. Within the scope of this researoh 193] has inves-
tigated the so-called “Vorticity Confinement” method. Itswshown that it is
indeed possible to improve the numerical results for tigives. However, it
was also concluded that the vorticity confinement methodiyet robust and
needs to be explored further.

Extend the numerical method to the flow in rotating fluid maehy. Many
cavitating flows occur in rotating devices such as pumps &ipl gopellers
and it is recommended to extend the present investigatidinetse interesting
flow problems.

Investigate the collapse of a single vapor bubble to vaidae numerical
method for the collapse of shed vapor structures and regyitiessure pulses.
An interesting flow problem to be investigated is the colapfa single or of
multiple vapor bubbles close to a solid wall. This enablepragict the pres-
sure pulses on the wall and to relate these pulses to susitigpfor erosion.
Currently, the difficulty lies in the very fine grid resolutimeeded for the final
stages of the collapse of the bubble and in the applicaticgheohon-reflective
boundary conditions to account for far-field conditions.

Investigate effects of viscosity. In the current numericedthod the flow is
assumed to be an inviscid flow. For the shedding of the sheéy cascosity
does not play a role. However, effects of viscosity do playla in flows
close to solid walls. Therefore, effects due to viscosity ba included in the
mathematical model. A possible difficulty lies in implemiagtan appropriate
turbulence model for compressible two-phase flow.
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TIME-DEPENDENT
BOUNDARY CONDITIONS

In this appendix the time-dependent boundary conditionshi® 3D unsteady Euler
equations are derived. The method of Thompson [189, 19Qjnfm-dependent non-
reflecting boundary conditions is generalized for arbjtrequations of state and for
arbitrary orientation of the boundary.

Consider the three-dimensional Euler equations in padifédérential conservation

form oU OF,(U OF,(U OF.(U
| OFa(U) | OF,(U)  9F.(U)

ot ox dy 0z

whereU = [p, pu, pv, pw, pE]T is the vector of conserved variables, wjtthe den-
sity, @i = [u, v, w]” the velocity vectorF = e + %ﬁ-ﬁ the specific total energy,the
specific internal energy, and whdre (U), F,(U) andF.(U) form the components
of the vector of fluxes in the-, y- and z-direction, respectively, defined by

=0, (A1)

pU pU pw

pu2 +p puU pwU
F.(U) = pUv , F,(U)=| p?+p |, F.(U)= PWU :
puw pow pw2 +p
puH pvH pwH

whereH = E+p/p=h+ %ﬁ-ﬁ is the specific total enthalpy. Equations of state
are required to close the system, exg= p(p,T) ande = e(p,T'). Here we choose
as equations of staje= p(p,T) andh = h(p,T) [142].

The conservation laws can be converted to an equivalent setve equations, which
represent nonlinear waves propagating at characterigdeds. These speeds are
functions of the local solution and may vary in space and tirdafortunately, in
multi-dimensional problems no unique direction of progamaexists, because the
coefficient matrices involved are not simultaneously dredizable [91]. Fortunately,
the boundary condition analysis only requires that any aoedinate direction be di-
agonizable at atime, i.e. the coordinate directed alonguisard unit normal vector
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i on the boundary considered.

First, adopt a local coordinate systém y, 2) with & the coordinate directed along
the outward unit normal vectat and whergj, Z are coordinates in mutually orthogo-
nal tangential directions along the boundary. Equatiod)8an be rewritten in terms
of the rotated conserved variables= [p, pit, p0, pi, pE]T by multiplying with the
rotation matrixT as defined in equation (4.21) yielding

+ = 0. (A.2)

In the present study the wave-speed analysis is carriedsig the primitive vari-
ablesQ = [p, 4, 9, w, T]" rather than the conserved variables. Then we may write

oU  _9Q
ot P (A-3)

with P the matrix with element®;; = gg The matrixP is given by

J

Pp 0 0 0 pT
upp p 0 0 upr

P= Upp 0 p 0 vpT , (A.4)
Wpp 0 0 »p wpr

Hpp—1+phy, pu po pw prH+ phr

where we used thatE = p(h + 31 - @) — p and wherep, = (a—p)T- pT = (88_5)“) '
p

hy = (g_g)T andhy = (24),
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The inverse of matri® is denoted byP—! and is given by

h H— = . =
phr +pr(H—0-0) — pr  pr pr_pr
¢ ¢ ¢ ¢ ¢
7 1
- - 0 0 0
P P
0 1
pl = . 0 - 0 o |,
P P
i 1
_— 0 0 - 0
P P
—pp(H —-0) + 1 — ph
Pp( u-a) + Plp _oPp _sPp _ P Pp
¢ ¢ ¢ ¢ 9
whereg is defined by
¢ = ppphr + pr(1 — phy). (A.5)
Note that,i- = G- 1. Similarly to equation (A.3), we may write
IF; - 9Q
= A —, A.6
BE r (A.6)
IF; - 9Q
= Ay,—, A7
a5 255 (A7)
OF; - 0Q
= As;—, A.8
BB 502 (A.8)
where the Jacobian matricéswith elementsA;; = gg'v are given by
J
app p 0 0 apr
) W2pp + 1 2pl 0 0 W pr
A= wbpp po ol 0 wuvpr . (A.9)
uwpp pw 0 ol wwpT

WHp, + piih, pH + pt® pad paw praH + pihy

opp 0 p 0 opr

3 uvpp po ol 0 wopr

A, = 2p, +1 0 2p0 0 %pr . (A.10)
VWpp 0 pw po DWpT

dHpy + pdh, pad pH + p? pow  proH + pdhr
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wWpp 0 0 p wpr

3 uwpp pw 0 ol wwpT
As = DWpp 0 pw po VWpT . (A11)

w2p, + 1 0 0 2 wpr

WHpy + ph, pid pow pH + p® prwH + phy

Transforming the conservation form (A.2) into primitiverfio and multiplying by
P! gives:

0Q 0Q 0Q oQ
I LA A A —0, A.12
o T Mgy Ty TA; (A.12)
with A, = P~1A; equal to
] , ) ) , _
N p*hr R p*hr
Q 00 0 b0 00
] ]
1 J 00 0 0 0 0 0
1)
A = ) D Ars=1|2 0 b 00|,
0 0 @ 0 0 )
0 0 0 4 0 0 0 0 b0
1—ph 1—ph
o PL=Pw) o g 4 0 o PP o o
L ¢ A L ¢ i
) ) ]
. p-hr
w0 0 0
)
0 @ 0 0 0
Ay— | 0 0 0 0
1
20 0 W 0
0
1_

Now consider the wave speeds associated with the Jacobkmgtine flux in normal
directionz. Therefore, rewrite equation (A.12) as

= A.13
ot :E+C 0, ( )
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with X )

0Q 0Q

Y 0z

The 5 left and right eigenvectols; andR; of matrix A satisfy

C=A,

+ Aj

L;FAl = )\ZLZT and AlRZ’ = /\iRi1
respectively, where the eigenvalugsare derived from
|A; — M| = 0.

The characteristic polynomial is found to be:

(i — ) [(a— A2 — piﬂ 0.

The eigenvalues are real, ordered< Ay = A3 = A4 < A5 and read
AM=U—¢ X=1U, AX3=1U M=1U Ns=1u-+c,

where the speed of souds given by

2= phr _ phr
¢ ppphr + pr(1 — phy)
Defining
_L=phy
1/} - hT ’

and using equation (A.19) the matricAg become

2

@ p2 0 0 0 o 0 pc 0 0
%aooo 0o 0 00
Ai=|0 0 @00/, A=|10 9 00
0 0 0 @ 0 00 0 o 0
0 ¥z 0 0 4 00 2 0 b
w0 0 p® 0
0w 0 0 0
As;=|0 0 @ 0 0
%oowo
0 0 0 o2 w

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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The left and right eigenvectors of matri; follow from equation (A.15) with some
specific choices for the degrees of freedom including thedwueeto the multiplicity
of the eigenvalue\ = 4:

1 — 0 0 1
—pc 0 0 0 pc
L, = 0 , Lo = 0 , Ly = 1 , Ly = 0 , Ly = 0 ,
0 0 0 1 0
0 1 0 0 0
%1 0 0 0 %
e 0 0 0 e
R, = 0 y, Ro=[0|,Rs=1|1]|,Rs=|[0], Ry= 0
0 0 0 1 0

Note that with the choices made, the left and right eigemrscare bi-orthonormal,
ie.
L'R; =0 for i+ (A.21)
L/R; =1 for i=j. (A.22)
A diagonalizing similarity transformation may be genedater A by forming the

matrix S such that its columns are the right eigenvectors and itgse&! whose
rows are the left eigenvectors. The matsband its inverse are therefore given by

'%1000%' 1¢—p6000
“95c 00 0 52 -2 0 001
S = 0O 010 0|, St= 0 0 1 0 0 (A.23)
0 0 01 O 0 0O 01 0
i > 100 2 | 1 pc 00 0
The similarity transformation is then
ST1A;S =A, (A.24)

whereA is the diagonal matrix of the eigenvalues. Applying thisigfarmation to
equation (A.13) gives
5199 + As—la—(;Q +stc=o. (A.25)
ot oz
Alternatively, the component form is obtained by multipigiequation (A.13) with
LI
LroQ 1o

T L
i e +L;C=0, fori=1,.,5 (A.26)
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Defining the column vectog with components; as

L= AiLiTa—(?, (A.27)
oz
gives
dp ou
21 = )\1 (a‘% - pca:i) (A28)
e = a L% T (A.29)
p 0T 0%
£3 = A3 azj (A.30)
oz
Ly = )\487{) (A.31)
oz
dp ol
L5 = s <% + pc(%) , (A.32)
or writing in terms of%—%
ap . 1 25 21
9% 2 <)\5 + )\1> (A.33)
on 1 (£ £
o 2pc ()\5 )\1> (A-34)
00 £3
= = A.35
95 (A.35)
ow L4
= = A.36
O W (A.36)
or Ly Y (L5 L
7T + % <>\5 + /\1> . (A.37)
Equation (A.26) can now be written as
L,.T%—? + & +LIc=o. (A.38)

The problem of implementing boundary conditions is now pedlto the problem of
computing the appropriate values for tBeterms. Given the values fct; equation

(A.25) can be solved fofs* by multiplying byS giving:
0Q

i = A.39
5 +8SL£+C =0, ( )
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where

% (L1+L5) ] dy
3pe (—L1+ £5) ds
S¢g = £3 = | d;s |. (A.40)
L4 dy
_%(214-35)—1—22_ ds
Written in full the primitive form (A.39) becomes
op Op . Op o (00 Ow
5 1+vag+w82+pc ag+az (A.41)
ou Lou . o0u
N + do + UZ?_Q + waé = (A.42)
00 00 0v  10p
et d - — 4+ =0 A.43
Y TR TR T (A.43)
Ow Ow 0w 10p
— dy + 0= — = =0 A.44
T T PP (A44)
oT oT oT 00 Ow
— ds + 0 D ol e =0, A.45
o T TGy ThGE e (ag*az) 0 (A.45)

where thel;'s are defined in equation (A.40). The spatial derivativesdarmal direc-
tion in the definitions of£; in equations (A.28)-(A.32) are calculated by employing
a first order forward discretizaton
8¢ o ¢g - sz

oz Az’ (A46)
whereg, denotes the value of variabdein the ghost cell at the previous time-level
andAz is the distance between the ghost cell and the center oftgraiihe control
volume, which is equal to the characteristic lengtif the control volume defined as
the diameter of the smallest inscribed sphere of the comblaime. The time deriva-
tives in equations (A.41)—(A.45) are calculated with tmadtiintegration method de-
scribed in section 4.4 to obtain the new rotated primitivBahiesQ; in the ghost
cells yielding:

Q =Q,— At(d+0C), (A.47)
with d andC defined in equations (A.40) and (A.14), respectively. The retated
primitive variablesQ;r are then rotated back (@, y, z) coordinates by multiplying
with the inverseéI'~! of the rotation matrix defined in equation (4.21). The new-con
served variabIeI;J; in the ghost points can then be obtained through the appttepri
equations of statg]” = p(p},T,") andh) = h(p;,T,").

The dependance of the characteristics on an arbitrary iequat state turned out
to be reduced to the formulation of the two variabtethe speed of sound defined in
equation (A.19), and defined in equation (A.20).




ROTATIONAL INVARIANCE
OF 3D EULER EQUATIONS

The rotational invariance property of the Euler equatiana ivell known property
and is formulated as:
F(U)-ii = T"'F,(TU), (B.1)

with F(U) and F,(U) defined in equation (4.2)T the rotation matrix andl'—!
its inverse to be defined later on amdthe unit normal vector. Toro [194] pre-
sented the proof for the rotational invariance propertyttierEuler equations for two-
dimensional flow. Billet & Toro [23] stated this property fthree-dimensional flow
in terms of the unit normal vectat = [cos a cos 3, sin a cos 3, sin §]7 as well as the
hyperbolicity property of the Euler equations employing perfect gas equation of
state. In this appendix the proof of the rotational invac@wf the Euler equations
for three-dimensional flow is presented in terms of the uedtorsi = [n,, n,,n]7
without making a specific choice for the tangential unit vest This approach is
very practical for implementation in the numerical methaodl rovides a general
description for the rotational invariance property.

FIGURE B.1: General unit normal vectofi = [n,,n,,n.]|7 in three-dimensional
domain in(x,y, z)-space with tangential vectors andte. The anglesx and g3
rotate the original coordinateér, y, z) about thez-axis andy-axis, respectively.
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B.1 Proof of the rotational invariance property

The Euler equations for three-dimensional flow satisfy tit@tional invariance prop-
erty:
F.(U)n, + F,(U)n, + F,(U)n, = T"'F,(TU), (B.2)

for all unit vectorsn = [ng, n,, n.]” and vectorsU with F_, F, andF, the three
components of the flux vector defined in equation (4.2) arfdIvihe rotation matrix
and T~ ! its inverse, namely

0 0 0
Ng Ny N,

0 0 0 0
0
tl,:c ZL/l,y ZL/l,z 0 , T_lz
0
1

Ng tiz tog
ny tiy tay
ny, ti, to,
0 0 0

., (B.3)

t2,m t2,y t2,z
0 0 0

H

I
cocooc o~
co oo~
— oo oo

where the unit vectors, t; andt, form a orthogonal system, i.@-t; = 0, -ty = 0
andt; -ty = 0. Note thati = t; x ts.

Proof. First we calculatdJ = TU:

TU = [p, pii, pd, pi, pE]", (B.4)

— g

With & = W -0 = ung +vny +wn,, 0 = -t andw = u - t2. Note that
u = (d-8)f+ (ﬁ-”l £ + (ﬁ-Eg) t, = aii + t; + wts. The vectorF,(TU)
now reads

[

ol
pi® + p
F,(TU) = piid . (B.5)
PpUW
a(pE +p)

Rotating the vectoF,(TU) back to(z, y, z) coordinates yields:
ol
be(fmm + @tl,m + wt2,m) + png
T 'F,(TU) = | pi(any + 01, +dtay) +pny | . (B.6)
Pﬂ(@nz + @tl,z + Q11752,2) + pn,
u(pE + p)

Substitutingi, © andw and collecting the terms ia?, uv, uw, v?, vw, w? yields

T 'F,(TU) = F,(U)n, + F,(U)n, + F.(U)n.. (B.7)




LINEAR ACOUSTICS FOR
WATER HAMMER PROBLEM

In section 5.2 the Joukowsky equation, an approximatioh@sblution for the “Wa-
ter Hammer” problem is presented. The Joukowsky equatiateised using lin-
earized acoustic theory [181]. As presented in sectioneZotessure chang&p
across the shock wave in water is of the order oftibb. This would suggest that
it is inappropriate to apply linearized acoustics to thisigem. In this appendix the
validity of the linearization is verified.

The Euler equations for one-dimensional isentropic flovdrea

ap ou op

ou ou Op
pE + pu% + 9 - 0, (C.2)
p=f(p) (C.3)

Consider the situation that the acoustic wave propagatesgh an uniform flow field
with densitypg, velocity ug and pressurgy. Assume that the solution for the density
p, velocity v and pressurg of the Euler equations can be written as a perturbation to
the uniform flow solution:

p(z,t) = po+pop, (C.4)
u(x,t) = wug+ cou, (C.5)
p(z,t) = po+ Ap, (C.6)

where the primed variables denote the dimensionless paitans to the initial states.
Substitution in the Euler equations (C.1) and (C.2) yields

op' o’ 0’ ,0u’ ,0p

po <E+‘30@—x+“°a—m“°f’%“0“a—x =0
ou’ ou'’ ou'’ ! (A

Poco <—u + g + p -I-—Z (uop/+u/+P/U/)> —I——(&Up) = 0
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Assuming thap’ = O(e) andu’ = O(¢) and linearizing yields

E +CO% +u0% - 0’ (C7)
ou’ o’ 1 0(Ap)
E + UOE + @ O = 0. (C8)

To write the pressure perturbation in terms of the densityupeation we can start
from equation (C.3):

po+Ap = f(po +pop’) = fpo) +pof'(po)p" + - (C.9)
Sincepy = f(po) andf’(po) = ¢ we find

Ap _ poc

o m !
we recognize that small perturbations in the density résyiéerturbations in the pres-
sure that have an amplification factor @fc2 /po. For the flow of a perfect gas this
amplification factor is equal tg, which for air is equal toy = 1.4. For the flow of
water the amplification factor is of the order®®25 x 10, illustrating the large pres-
sure pulses possible in water flow even for small perturhatio density and velocity.

(C.10)

Eliminating Ap in equations (C.7) and (C.8) with equation (C.10) yields

0 p, up Co 0 p, o
Slo]le e lsa]-o c.11)
The eigenvalues are:
Al =wug +co, A2 =ug — Co, (C.12)
and the corresponding left eigenvectors satisfy:
1 -1
L[] e[ . c13
The compatibility relations are obtained from
d s dx
LI — =0 along — = \;, C.14
zdsi[u/] 0 g — =) (C.14)
which yields in terms ofAp
1 , dz
—Ap + v’ = constant, along 7 = o + co, (C.15)
PoCy
1 , dz
———5Ap +u = constant, along 7~ o — <o (C.16)
PoCy

Equation (C.16) is written in dimensionless form. In dimenal form we recognize
the Joukowksy equation (5.3) along the character@i& ug — Co.




LIFTING LINE THEORY FOR
3D TwiIsST HYDROFOIL

For the fully wetted flow around the Twisted hydrofoil Prdredtlassical lifting-line
theory is applied to estimate the spanwise distributiorheflbcal effective angle of
attack of the foil. This local effective angle of attack detees to a large extent the
pressure distribution on the foil and thus the sheet camitain the foil. In the lifting
line theory a finite wing is modeled by a single spanwisenitiine along which the
circulationI'(y) varies as presented in figure D.1. A system of vortices witmgiths
~ = dI'/dy trails from the lifting line in downstream direction, repemting the wake
of the foil. This wake induces a down- or upwash at the liftiimg, lowering or in-
creasing the local effective angle of attack of the foil.

To 1 ™
Uso ' ¢
# zi Y £
T >
'S v —dlg
F 7= ayCe

g\

y=—b/2

FiIGUuRE D.1: The lifting line model of a finite wing and its wake.

The circulation distributionl’(y) is determined from Prandtl‘s lifting line theory
[150], see e.g. Anderson [12]. The semi-infinite trailingtea sheet induces a down-
washw at a pointy, located at the lifting line given by

b/2 4
1 (W)
w(yo):—g/ dy_ dy, (D.1)
Yo — Y

—b/2
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with b the span of the foil. For small angles of attack the inducegleaof attacko;
is

b/2 dr
w(yo) 1 / @(y)
“ U 70U ) yo—y " (b-2)
—b/2

The lift £(y) of a local section follows from the Kutta-Joukowski theoram

£(y0) = PocUssT (y0), (D.3)

which in Prandtl's lifting-line theory is expressed as

(o) = 5PV c(0)cr(vo), 04

with ¢(yo) the chord of the section gt. The lift coefficientc;(y) is given by
c(yo) = 2maey s (o), (D.5)

where the effective angle of attack s, is equal to

aerr(yo) = a(yo) — @i(yo) — w=0(yo), (D.6)

with o(yo) the geometric angle of attack and_(yo) the zero-lift angle of the sec-
tion. Equating equation (D.3) and (D.4) then results in Biafundamental integral
equation of lifting line theory for the circulation disttbon I'(y)

b/2
af )zir(y(]) + avo(yo) + — / %(y)d (D.7)
Yo TUooc(y0) £=01Y0 AU Yo —1 Y- .
—b/2

This integral equation is solved iteratively for givefy,), ar—o(yo), ¢(yo), andU.
Oncel'(yo) is computedg;(yo) follows from equations (D.3) and (D.4) as

21 (yo)
Uooc(y(]) ’

while from equations (D.5) and (D.6) we then find the inducegl@ of attacky;(yo)
as

c(yo) = (D.8)

c\y
(o) = a(yo) — cw=0(yo) — % (D.9)
The Twist hydrofoil is not a finite foil, but it extends to th@annel walls, i.e. in
effect it is an infinite-span foil with periodically varyingvist. Furthermore, the foll
is located in a hexahedron with a square cross-section. Mfhence of all tunnel

walls on the flow around the hydrofoil can be accounted forrsoducing a series
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of images of the model of the lifting line. The influence expeced by the foil in
the channel is the induced velocity from the vortex systefmbtese images. For a
square tunnel of width a doubly infinite series of images is required, situatedat th
points(y = mb, z = nb), wherem andn assume all positive and negative integers.
The induced angle of attack in equation (D.2) can now be evritts

b/2+mb

00 0o dar _
a; (y(]) _ 471-}] Z Z dy (ym)(y(] ym)

2
* m=—co n:—oob/Q_mb (yO - ym) + (zO - zn)

5 dYm. (D.10)

The solution of equation (D.7) fdr(yo) is obtained by discretizing the integral in
equation (D.7) and solving the set of discretized equatitaratively as described
in Anderson [12]. The resulting circulation distributién(£) for the Twist08 a®°
angle of attack and Twistl1 hydrofoil at3° angle of attack in the test section are
presented in figure D.2.

0.2r

0.15¢
=
~ 01 .

—— Twist08,0°
, --- Twistll,—3° N
005 .-
o 05 0 0.5 1
y/cl-]

FIGURE D.2: Circulation distributionT'(y) as a function of the spanwise coordi-
nate £ for the Twist08 foil at)° angle of attack (solid) and the Twist11 foil a3°
(dashed).

The effect of the foil extending up to the channel walls isadle seen in that’(y)
near the wall is no longer varying as the square root of thiewnie from the wall,
while also at the wall the circulation is not zero. The walllbdary condition implies
thatdl"/dy = 0 at the walls.
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Note that for the Twistll hydrofoil at-3° I'(y) has a lower value over the com-
plete span than the Twist08 foil. So for the Twist11 foil alke local value of;(y)

will be lower along the whole span, especially near the withle latter is important,
because we want to avoid cavitation. Also, note that contpardwistO8I'(y) has a
more 3D shape for the Twist11 hydrofoil aB° angle of attack. The geometric angle
of attacka..,, and the effective angle of attaek ;; for the Twist08 al° angle of
attack and the Twist11 foil at3° angle of attack are presented in figure D.3(a) and
(b), respectively.

(@) (b)

8r

a[?]

SR — Qgeom
H - Qeff
0 ol
-2 -2
- 05 0 05 1 -1 05 0 05 1
y/cl] y/cl]

FIGURE D.3: Geometric angle of attack,..,, (solid) and effective angle of attack
oy (dashed) for (a) TwistO8 & angle of attack (b) Twist11 at3° angle of attack.

In Table 1 the effective angle of attack at the tunnel walld ahmidspan are pre-
sented for five different configurations. Note that the dffecangle of attack at the
tunnel wall and at midspan is linearly dependent on the exxé of the foil as a
whole.

Due to the spanwise varying lift distribution of the hydrbfithe associated vorti-
cal wake generates downwash in the central part of the hyiliefid upwash near
the tunnel walls. For the TwistO8 hydrofoil &t angle of attack the effective angle
of attack at the center is lowered fro&i to about5°, while at the tunnel wall it
is increased fron®° to almost3°. So in order to prevent the cavity from reaching
the tunnel wall, the geometric angle of attack of the hydtdfas to be decreased
in order to have a zero effective angle of attack near thediwall. In the central
part of the hydrofoil this then results in a much lower effeetangle of attack than
the geometric angle of attack and consequently in a caatyisresmaller than desired.

The Twist11 foil design results in a more three dimensionstridution of the ef-
fective angle of attack, which will produce a more trianguhaped cavitation sheet.
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Foil angle of || ageom Qeff Qgeom Qeff
attack [] || wall [°] | wall [°] || mid-span f] | mid-span f]

Twist08 0 0 2.8 8.0 5.1
Twist08 -3 -3 -0.2 5.0 2.1
Twistl1 0 0 3.9 11.0 7.0
Twistl1 -2 -2 1.9 9.0 5.0
Twistl1 -3 -3 0.9 8.0 4.0
Twist14 0 0 4.9 14.0 9.0
Twist14 -5 -5 -0.1 9.0 4.0

TABLE 4.1: Effective angle of attack at tunnel walls and at midspan ter Twist08,
Twistll, and Twist14 foils at various angle of attack.

Furthermore with incidence 3°, the effective angle of attack at the tunnel wall will
be small refraining the cavitation sheet of reaching theélwalls, while at midspan
the effective angle of attack is still aroudé, which is high enough for a substantial
cavity sheet.







MAXWELL RELATIONS OF
THERMODYNAMICS

The classical Maxwell relations of thermodynamics in teofithe independent vari-
ables specific volume = 1/p and temperatur@' read

(@), =t (@)= ().
(@), w0 ), @), =7 (Gr) o (),
(a7), = 7m0 (@), = (or).

wheree(v, T') is the specific internal energy(T', v) the pressuré (T, v) the specific
enthalpy defined by» = e + p/p, S(T,v) the entropy ana, (T, v) the specific
heat constant at constant volume, assumed to be given. grakith equating cross
derivatives fore(v, T') yields:

2
(LCUg’”))T —T <%>v. (E.1)

In terms of the independent variableandT" the Maxwell relations yield:

(3—§>p=cp<ﬂp>—p(§—§>p’ (%)f‘T(%)p‘p(%)T’
() - (5), =0 -7 (57) -

() domn (2),-(&),
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wherec, (T, p) is the specific heat constant at constant pressure, assarbedjiven.
Taking and equating cross derivatives 97", p) yields:

ey (T, p)> < 0%v >
— ] =T = . (E.2)
( Op . or* ),
From above expressions it can be derived that
B Op ov
e)(Top) — co(T.v) = T (a—T) (a—T> E3)

To derive the value of a quantitf(x, y) of two variablesr andy the partial deriva-
tives can be integrated using either one of the followingesgions With(z,.c 7, Y, f)
some reference state

T Y
s = [ (5) @ [ (5)) @i E4)
Tref Yref
x Yy
82
_/ / <8$5fy> (Avg)dgdi‘_‘_f(l'ref»yref);
Tref Yref
T Y
f(%y) = /<%>y(£7yref)di'+/<g_‘£>x(wag)d:g"i_f(wreﬁyref).
Tref Yref

xT

sew = [ (5) G / (55) (@reso 00 + Faresne).

Tref Yref




BAROTROPICMODEL FOR
CAVITATING FLOW

Delannoy & Kueny [58] were among the first to model cavitafilogvs by adopting a
barotropic equation of staje= p(p), directly coupling the pressure with the density.
In this model it is further assumed that the vapor and thedighare the same velocity
and pressure. Furthermore, the effects of viscosity antdosauction are neglected.
Note that with the barotropic equation of state the equaforthe total energy of
the mixture is not needed anymore. Under these assumptiertsvo-phase flow is
described by the following (Euler) equations for the migtur

0U | 9F;(U)  9F,(U)  OF.(U)

gl = F.1
ot ox oy ox 0 (F.1)

whereU = [p, pu, pv, pw]? is the vector of conserved variables dhg(U), F,(U)
andF . (U) are the flux vectors given as

é)u pv pw
u” +p Uv UW
p o P . (F.2)
puv pv° +p pvw
puw pLw pw2 +p

F=[F.,(U) F,(U) F.(U)]=

respectively, where is the density of the mixturaj = [u, v, w] the velocity vector
and p the pressure. The barotropic equation of state for cangafiows is such
that the mixture density equals the liquid dengitywhen the pressure is above the
saturation pressurg;,; and equals the vapor densjby when the pressure is below
the saturation pressure. Between these two states thesgrieath transition region.
An appropriate equation of state is, see Kebl [113] and Veldhuis [207]:

D 1 C,+oUZ
%l) = 5 |:A+ + A_ tanh < pA_ ?>:| y (F3)

with A, andA_ given by

A+:m A_:M (F.4)

Pl Pl
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and wherd/2 is a reference velocity and parametsis directly related to the mini-
mum speed of sound in the vapor/liquid mixtGe/dp) i, = a®>/A_. The pressure
coefficientC,, is given by

P — P
C,= , F.5
" iU (5
and the cavitation number by
Poo — Psat
oc=—, (F.6)
smUZ,

with p., a reference pressure apgl; the saturation pressure at a reference tempera-
ture. A plot of the above equation of state is presented indigul using a reference
temperaturé” = 300 K at which the densities for the vapor and liquid are equal to
p = 996.5 kgm~3 andp, = 0.0256 kgm ™3, respectively and at which the satura-
tion pressure is equal {@,; = 3,537 Pa.

(@) (b)

gl H 1000F
08 ' c'f‘a_' 8oof |
Ii‘ 06 bSD 600
= =
S04 Uoo/a—15 < 400 ; g:oo/a:éf)
Uoo/a:5 ; oo/a:20
0.2 — Uso/a = 20 200} — Ux/a =
0 : ’I‘ ‘ ‘ ‘ | | oL | | | |
05 0 05 1 15 2 25 0 5 4 A 5
o+ Cy[-] p [10* Pa]

FIGURE F.1: Barotropic equation of state fdv,, /a equal to 1.5 (dotted), 5 (dashed)
and 20 (solid), respectively 8t = 300K . The saturation liquid and vapor densities
are equal top; = 996.5 kgm ™3 and p, = 0.0256 kgm 3, respectively and the
saturation pressure i®s,; = 3,537 Pa. (a) Density ratiop/p; as a function of
o + C,. (b) Densityp as a function of pressure




NON-EQUILIBRIUM MODEL
FOR CAVITATING FLOW

Within the scope of the present research we have invedtigete-equilibrium mod-
els for cavitation. We followed conventional approacheassuming that the liquid
and vapor phase have a constant density. To solve the gogegguations we have
applied the JST flux scheme [106] and the pre-conditionehatkbf Weiss & Smith
[218]. As discussed in section 3.5 we encountered some udiféis with the JST
scheme and drawbacks of the conventional cavitation modelthis appendix we
present the non-equilibrium models considered. Resuttsiar presented, more re-
search needs to be carried out to obtain satisfactory sesult

To account for non-equilibrium effects an additional eduratfor either the vapor
mass or liquid mass is to be introduced. Define the void facti as the fraction
of vapor volumeV,, and the volumé/,, of the control volume, i.ea = VL Fur-
thermore, define the vapor mass fractioas the fraction of vapor mass, within a
computational control volume and the total mass within the control volume, i.e.
w= ;’:— Then the continuity equation for the vapor mass can beesritt one of
the following equivalent forms:

dap,

5 + V- (apyid) = M,, (G.1)
or

0

LL 4V (upti) = M, (G-2)

Note that,ap, = up = m,/Ve, and thatp = ap, + (1 — a)p; wherep, and p;
denote the densities of pure liquid and pure vapor, respygtiwhich are assumed
to be constant within the scope of this model. Assuming theptrature to remain
constant, then the energy equation is decoupled from tlee etjuations and we have
the following set of equations:

0U | OF;(U)  9F,(U) , OF.(U)

= = G.3
ot ox oy 0z S (©-3)
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whereU = p, pu, pv, pw, ap,]T is the vector of conserved variablds, (U), F, (U)
andF,(U) are the flux vectors given by

pu pv pw
pu2 +p puUv puUw
F=[F,(U) Fy(U) F.(U)]=| pw p’+p pow |, (G4
puw pLw pw2 +p
QpyU QPyv APy W

and wheres is the source term given & = [0, 0, 0,0, M, 7. The source term1,
describes the rate of change of the vapor mass due to vagiamizand condensation.
In this section we describe the model of Kuetzal [117] based on mass transfer
rates and the model of Sauer [162], Sauer & Schnerr [163] asath ¥ Schnerr [224]
based on bubble dynamics.

G.1 Source term of Kunzetal. [117]

Kunzet al [117] modeled the source tetw,, based on the (empirical) mass transfer
rates of Merkleet al. [139]. Many authors have adopted these mass transferinates
various forms using different values for the empirical ¢anss in the model. Here
we follow the notation of Kunet al. [117].

The source terriV, is written as
MU == Mlv - le- (G.5)

For transition of liquid to vapo,;, is modeled as being proportional to the liquid
volume fractionl — « and the difference of the pressure with the saturation press
po(l — )
My = Cproda————

lv prod %plUgotoo
whereC,,.q is an empirical constant/, is the mean flow velocity ant,, is a mean
flow time-scale taken equal tg, = 1.0s ort», = U, /c. Note that, both options are
used in the literature. For the transfer from vapor to liqaidimplified form of the
Ginzburg-Landau potential [117] is employed:

min(07p - psat)- (G6)

pu(l —a)’a

le = Cdest (G7)

too
Here also(C,.: is an empirical constant. Various authors have adoptea thasrce
terms for the production and destruction of vapor. As preskin table 7.1 these
authors use different values for the empirical constans, and Cges.. Wikstrom
[220] mentions thal),.,q andCy.s; must be set as high as possible in order to simu-
late almost instant transition.
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\ Article | Cproa | Caest |
Kunzet al (1999) [117] 0.2 0.2
Kunzet al. (2000) [118] 100 100

Medvitz et al. (2002) [137] 100 1000
Wikstromet al. (2003) 1000 | 1000

Lindauet al. (2002) [129] || 100,000, 200

Huuva (2008) [99] 1000 | 1000

TABLE 7.1: Employed values faf’,,,; and Cy.; found in the literature.

G.2 Source term of Sauer [162]

Kubotaet al. [116] were among the first to model the two-phase fluid as pedéed
mixture of an incompressible liquid and tiny vapor bubbleghkjch grow or collapse
according to their surroundings, i.e. the local pressutetamperature. Sauer [162],
Sauer & Schnerr [163] and Yuan & Schnerr [224] adopted thjgr@gch within a
Volume of Fluid (VoF) framework. It is their model [162] foh¢ source terrov1,,
that is described in this section.

The fluid is considered as a dispersed two-phase flow withnlaydables which grow
and collapse and thus change the void fraction in a compuatlticontrol volume.
The void fraction is defined as the fraction of the volume gfard/,, within a control
volume with volumé,,, = V,, + V; and it may be written in terms of the total volume
of the bubbles within a control volume:
_ Y Noubpies3mR> noVy - 3TR3 ng - smR3
4= Vo +V - Nbubbleséﬂ'Rg +V - noVj - ATR3 + Vi - ng - iTR3 41’
3 3 3
whereV, andV; are the volumes occupied by the vapor and the liquid, respeéct
All bubbles in the control volume are assumed to have the sadiasR. Nyyppies
is the number of bubbles within the control volume and it isado the bubble
concentratiomg per unit volume of pure liquid times the volunie occupied by the
liquid within the control volume. The rate of changd, of the vapor mass due to
phase transition does now depend on the number of bubblesptol volume times
the volume change of a single bubble:

My = py—0 L (2 s G.8
P Trno RS dt (37T > (©-8)

Under the assumption that effects of bubble-bubble intenas and bubble coales-
cence can be neglected and that the bubbles remain sphénie&ayleigh-Plesset
equation, see eg. Brennen [29], is adopted to describe titddogrowth and collapse:

d?R 3<dR>2_p—poo 20  4u dR

R 242 _ 20 Apan G.9
a2\ a o mR _ pRdl (G.9)
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whereo is the surface tension andis the viscosity of the liquid. Neglecting viscos-
ity, the surface tension and second-order terms, the Rewygjuation results, which
may be considered for the so-called inertia-controlledblrilgrowth:

i _ |2 <p_p°°> (G.10)

dt 3 P

wherep is the pressure in the liquid at the bubble boundaryapds the pressure in
the liquid at a large distance from the bubble. Within thepscof this modep is set
equal to the saturation pressuyrg; andp., to the pressure in the control volume. To
account for the collapse of the bubble as well, the rate afigbaf the bubble radius

can be written as:
dR . 2 |psat - p|
— sat — Zmsar 7 G.11
i sign(psat — P)| | 3 ( )

Finally, the source ternM,, reads

. PuT0 * 47TR2 / 2 |psat - p|
Mv = Szgn(psat - p) (1 T g - %WR3) 5 P . (G12)

G.3 Remark on extension to compressible flows

In the formulation above it is assumed thatand p, remain constant and that the
temperature remains constant. To obtain a fully comprksfilov formulation these
assumptions must be relaxed. In addition to the system cdtens in equation
(G.3), the equation for conservation of total energy and@mjate equations of state
for water, two-phase mixture and vapor must be formulatessufming that the two-
phase mixture is allowed to be in non-equilibrium, we musbaat for two pressures,
i.e. aliquid pressure and a vapor pressure, within a cortipatd control volume. As
discussed in section 3.5 a major challenge lies in presgthie hyperbolicity of the
system of equations. The pressure in the liquid phase wibime “negative”, i.e.
a tensile stress. When returning to a positive pressuredrvdpor phase from a
negative pressure in the liquid phase an inflection pointésted in thep-v-curve
resulting in complex eigenvalues. The question is whichaéqu of state can be
used for this regime. The acoustic eigenvalues for the SEmkchcombe equation of
state, see Edwards & Liou [63], for densities between theasfal values or the Van
der Waals equation of state are complex-valued, implyirg the system of Euler
eqguations coupled with these equations of state is not bgper The equations of
state discussed in section 3.3 need to be accompanied wipmnppriate equation
of state for the vapor phase.
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