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SUMMARY

This thesis describes the development of a computationtladdased on the Euler
equations to predict the structure and dynamics of 3D udgtsheet cavitation as it
occurs on stationary hydrofoils, placed in a steady uniforiow.

Since the 1990s numerical methods based on the Euler or Natakes equations
have been developed to predict cavitating flows. Many ewstiavitation models
depend on empirical parameters for the production andw#tn of vapor. In this

thesis the equilibrium cavitation model is employed, whassumes local thermody-
namic and mechanical equilibrium in the two-phase flow negi®his model does
not depend on empirical constants for the modeling of ctiwita

From the experimental investigation of Foeth has become clear that the shed-
ding of a sheet cavity is governed by the direction and mouarerdf the re-entrant
and side-entrant jets and their impingement on the freasairdf the cavity. There-
fore, the accurate prediction of the re-entrant and sidexenjets is paramount for
an accurate prediction of the shedding of the sheet cawitgppears that these ef-
fects are inertia driven and it is expected that a numeriahod based on the Euler
equations is able to capture the phenomena associatedngitbagly sheet cavitation.

Due to the dynamics of sheet cavitation strong pressurepuee often generated,
originating from the collapse of shed vapor structures. @able to predict the dy-
namics of the pressure waves, in this thesis the fluid is densil as a compressible
medium by adopting appropriate equations of state for thediphase, the two-phase
mixture and the vapor phase of the fluid.

Sheet cavitation occurs on hydrofoils, on impellers of parapd on ship propellers.
To allow for the treatment of geometrically complex confafions and to have the

*The work of Foeth, “The Structure of Three-Dimensional $Bewitation”, thesis TU Delft (2008),
has been carried out within STW Project TSF.6170. The rebgavesented in the present thesis is part
of the same project.
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flexibility to efficiently refine grids locally in regions witcavitation, the numerical
method developed is an edge-based, finite-volume method. pildsent numerical
method can handle unstructured grids consisting of anyaypéements, i.e. quadri-
laterals and/or triangles in 2D and hexahedrons, pristtrahiedrons and/or pyramids
in 3D.

This research has been conducted in close collaboratidmtigtDepartment of Mar-
itime Technology at Delft University of Technology (DUT) here experiments have
been carried out for flows with cavitation. Within this cditaation a number of hy-
drofoil configurations have been designed employing thegarenumerical method.
These configurations have been tested in the cavitatioret@d®UT. In the present
thesis the main aspects of the dynamics of the vapor shedisasved on one of the
three-dimensional configurations, i.e. the 3D Twist11 bjail, are summarized and
utilized to validate the present numerical method.

The main interest in the formulation of the numerical metiso address the critical
aspects of the numerical simulation of the flow of a compbésdiuid over a wide
range of Mach numbers employing an arbitrary equation ¢&st@mphasis is on the
numerical solution of the low-Mach number flow and the foratigin of the boundary
conditions for the finite-volume method implemented for dgeebased unstructured
mesh.

Schmidt, in the group of Prof. Schnerr at TU Munich, has dgyed a Riemann-
based flux scheme implemented for a structured mesh. Thesrscperforms excel-
lently for low-Mach number flows without the necessity to pseconditioning. In
collaboration with Schmidt and Prof. Schnerr, this flux snbdéas been implemented
in the present edge-based numerical method for unstructurds. Second-order ac-
curacy is obtained by employing the limiter of Venkatakniah.

In the present research the formulation for the non-refledti- and outflow bound-
ary conditions for the Euler equations, as proposed by Tlsompor the ideal gas
equation of state, have been generalized for an arbitrargteom of state. Further-
more, the solid wall boundary conditions at the surface effiadrofoil are treated
by the specially designed Curvature Corrected Symmetriariigoe.

Several test cases for single-phase water flow have beeedaut to assess the
performance of the numerical method. The one-dimensiohatér Hammer” prob-
lem and a “Riemann problem for liquid flow” have been consdem order to
demonstrate the wave-capturing ability of the numericathoe. The low-Mach
number flow over a two-dimensional cylinder is calculatedlltstrate the capabil-
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ity of the present method to accurately calculate steaahgstsults for these flows
without the use of preconditioning methods. The numeriesililts for the flow about
two-dimensional NACA sections illustrate the second-omlecuracy of the present
method. Furthermore, itis demonstrated that hybrid mestesisting of multiple el-
ement types can be used allowing efficient grid refinememsiecto the surface of the
hydrofoil. The single-phase water flow over the three-digi@mal Twist11 hydrofoil
is presented to validate the numerical method with experiadgesults. It is found
that the pressure distribution on the foil is accuratehdfmted. The lift coefficient is
predicted to within 2% of the experimentally obtained value

For cavitating flow, the one-dimensional “Closing Valvestease and the “Two-
Rarefaction waves” test case are considered, which denatmshe convergence and
stability of the developed numerical method. Subsequemrbults for cavitating flow
about two-dimensional hydrofoils are presented. It is shtwat the re-entrant jet,
the shedding of the sheet cavity, the collapse of the shearwdgud and the periodic
nature of the shedding are captured by the present numeretabd.

The three-dimensional unsteady cavitating flow about thel@i3t1l1 hydrofoil is
calculated. It is shown that the formation of the re-entfémiv and of a cavitat-
ing horse-shoe vortex are captured by the present numenigiilod. The calculated
results are quite similar to the experimental observatidiewever, at present the
computational time is too long to numerically investigdie tinsteady periodic shed-
ding of the sheet cavity on three-dimensional configuratimm long enough times.

In addition, the steady cavitating flow about the geomdtyicmore complex 3D

Elliptic 11 Rake finite-span hydrofoil is simulated to shdve tcapability of the nu-
merical method to predict sheet cavitation on a complexetisienensional geometry.
It is found that the predicted shape of the sheet cavity spomeds well with the ex-
perimental results. However, the cavitation in the gererdipp vortex observed in
the experiment is not captured in much detail, primarily thusumerical dissipation
in the highly rotational flow in the vortex core.

Finally, within the scope of the present research non-gxgjisim models for cavita-
tion have been investigated as well. For this the conveatiapproach is adopted in
which it is assumed that the liquid and vapor phase have damrdensity. To solve
the governing equations for this model, we have applied 8eflux scheme com-
bined with the pre-conditioning method of Weiss & Smith. Sodifficulties were
encountered with the JST scheme as well as drawbacks of tivertmonal cavita-
tion models. It is recommended to carry out more researchtive non-equilibrium
models aimed at obtaining satisfactory results.
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Dit proefschrift beschrijft de ontwikkeling van een rekegtiode gebaseerd op de
Euler vergelijkingen voor het voorspellen van de strucemiidynamica van 3D, in-
stationaire vliescavitatie zoals voorkomt op een statrertaydrofoil geplaatst in een
stationaire, uniforme aanstroming.

Om het gedrag van caviterende stromingen te voorspellensiids de jaren 90
numerieke methoden ontwikkeld gebaseerd op de Euler eneN8tokes verge-
lijkingen. Veel bestaande modellen voor caviterende stigem zijn afthankelijk van
empirische parameters voor de produktie en destructie aerdamp. In dit proef-
schrift wordt het equilibrium cavitatie model beschouwdann lokaal thermisch en
mechanisch evenwicht wordt verondersteld. Dit model i$ afkankelijk van em-
pirische constanten voor het modelleren van cavitatie.

Zoals gevonden in het experimentele onderzoek van Fegitdt het afschudden van
een vliescaviteit bepaald door de richting en momentum \are-gntranten side-
entrant jetsen hun botsing met het vrije oppervlak van het vlies. Om dedem is de
nauwkeurige voorspelling van de-entranten side-entrant jeteen kritische factor
in een nauwkeurige voorspelling van het afschud-gedragdeaviiescaviteit. Om-
dat deze effekten gedreven worden door inertia, is aangematat een numerieke
methode gebaseerd op de Euler vergelijkingen de fenomeeeoptteden bij vli-
escavitatie kan voorspellen.

De dynamica van vliescavitatie gaat vaak gepaard met stievkepulsen, die ontstaan
door het ineen klappen van afgeschudde damp strukturen. @golf-dynamica
van deze druk pulsen te kunnen voorspellen, wordt in ditfpobeift de vloeistof
beschouwd als een samendrukbaar medium. Hiertoe zijn igestbestandsverge-
liijkingen voor de water fase, het twee-fase mengsel en dgpdase gekozen.

THet werk van Foeth, "The Structure of Three-Dimensionale$i@avitation”, proefschrift TUD
(2008), is verricht binnen het STW Project TSF.6170. Hetearmkk gepresenteerd in het huidige
proefschrift maakt deel uit van hetzelfde projekt.
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Vliescavitatie komt voor op hydrofoils, op impellers vannmeen en op scheeps-
schroeven. Om geometrisch complexe configuraties te kutoemekenen en om de
flexibiliteit te behouden om efficient het rekenrooster ke verfijnen in gebieden
met cavitatie, is eerdge-basedeindige-volume methode ontwikkeld. De huidige
rekenmethode kan de caviterende stroming berekenen ogtouigereerde roosters
die bestaan uit verschillende typen elementen, namekjiheeken en/of driehoeken
in 2D en kubussen, prisma’s, tetraeders en/of pyramide®in 3

Dit onderzoek is uitgevoerd in nauwe samenwerking met deliafyl Maritieme
Techniek van de Technische Universiteit Delft (TUD), wasperimenten zijn uit-
gevoerd aan caviterende stromingen. Binnen deze samengezin een aantal
hydrofoil-configuraties ontworpen met de huidige numegiekethode. Deze confi-
guraties zijn getest in de cavitatie tunnel van TUD. De bgligke aspecten van de
dynamica van de vliescaviteit, zoals waargenomen op eedeaie-dimensionale
configuraties, namelijk de 3D Twist hydrofoil, zijn in ditgefschrift samengevat en
gebruikt om de ontwikkelde numerieke methode te valideren.

Het belangrijkste aspect in de formulering van de numeriglethode is het nu-
merieke schema voor de stroming van een samendrukbareteipever een groot
bereik van het Mach getal, beschreven door een willeketdgstandsvergelijking.
De nadruk ligt op de nauwkeurigheid van het numerieke schimjfege Mach getallen
en op de formulering van de randvoorwaarden voor de eindijgne methode
geimplementeerd voor eenlge-basedngestruktureerd rekenrooster.

Schmidt, in de afdeling van Prof. Schnerr aan de TU Muncheeftieen flux schema
ontwikkeld voor laag-Mach getal stroming. Dit flux schemagebaseerd op de
oplossing van het Riemann probleem en maakt geen gebruigreaonditionerings-
methoden. Schmidt heeft zijn flux schema geimplementeeegm numerieke meth-
ode voor gestruktureerde rekenroosters.Rdémann-basetlux schema is in samen-
werking met Schmidt en Prof. Schnerr geimplementeerd ihudéige edge-based
numerieke methode voor ongestruktureerde rekenroosters.

In het huidige onderzoek zijn de niet-reflecterende in- étrgiom randvoorwaarden
voor de Euler vergelijkingen, zoals geformuleerd door Theam voor de toestands-
vergelijking voor een ideaal gas, gegeneralizeerd voorvabekeurige toestands-
vergelijking. Verder zijn de vaste wand randvoorwaarderhepopperviak van de
hydrofoil opgelegd met de speciaal ontworgeuarvature Corrected Symmettgch-
niek.
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Om de prestatie van de numerieke methode te bepalen zijchieade test gevallen
voor de één-fase stroming van water uitgevoerd. Aan dd tiamhet één-dimensionale
“Water hamer” probleem en een “Riemann probleem voor viok&roming” is
gedemonstreerd dat de ontwikkelde numerieke methode Hiekamakter van de
oplossing nauwkeurig representeert. De twee-dimengosi@bming rondom een
cirkel-cylinder bij een laag Mach getal is berekend om tgsiteren dat de huidige
numerieke methode zo’'n stroming nauwkeurig kan berekearder preconditione-
rings methoden te gebruiken. De numerieke resultaten vedwde-dimensionale
stroming rond NACA secties illustreren de tweede-orde r@unigheid van de hui-
dige methode. Verder is gedemonstreerd dat hybride re&stens bestaande uit
meerdere element typen gebruikt kunnen worden, waardaagekenrooster viakbij
het oppervlak van de hydrofoil efficient verfijnd kan worddbe één-fase stroming
van water over de drie-dimensionale Twist11 hydrofoil isskend om de numerieke
methode te valideren met experimentele resultaten. Deviiudeling op de vleugel
wordt nauwkeurig voorspeld. De voorspelde lift coefficiégt binnen 2% van de
experimenteel gevonden waarde.

Voor stromingen met cavitatie zijn het één-dimensiori@liosing Valvétest geval en
het “twee expansie golven” test probleem beschouwd. Dédtadsn laten de conver-
gentie en stabiliteit van de ontwikkelde numerieke methoee. Vervolgens worden
de resultaten voor de caviterende stroming rond twee-difarale hydrofoil-secties
gepresenteerd. De resultaten laten zien dat de huidige rrekmanethode dee-
entrant jet het afschudden van de vliescaviteit, het ineen klappengaigeschudde
bellen-wolk en het periodieke gedrag, voorspelt.

De instationaire caviterende stroming rond de 3D Twistldrbfpil is berekend. De
resultaten van de numerieke methode laten zien dat de dlivig van dee-entrant
flowen de vorming van een caviterertagrse-shoavervel voorspeld kunnen worden.
De berekende resultaten komen overeen met de experimebsaevaties. Echter, op
dit moment is de benodigde rekentijd te lang om de instaitierzeriodieke afschud-
ding van de vliescaviteit op drie-dimensionale configesatang genoeg numeriek te
onderzoeken.

Vervolgens is de stationaire caviterende stroming rondedrgetrisch complexe 3D
Elliptic 11 Rake vleugel met eindige spanwijdte berekendi®@ulemonstreren dat de
huidige methode de vliescaviteit kan voorspellen op eerptexe drie-dimensionale

configuratie. De voorspelde vorm van de vliescaviteit kowédyovereen met die
gevonden in de experimenten. Echter, de resolutie van deslipel is ontoereikend

om tip-wervel cavitatie te voorspellen. Dit is hoofdzajkelianwege numerieke dis-
sipatie in de grote gradienten van de oplossing in de kerrdeamervel.
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Binnen het trajekt van het huidige onderzoek zijn ook nietrsvichts modellen voor

cavitatie onderzocht. Hierbij is de gebruikelijke aanpakajgd door aan te nemen
dat de dichtheid van zowel de vloeistof- als de dampfasetannzijn. Om de verge-

lijkingen voor dit model op te lossen, is het JST flux schenegépast in combinatie
met de preconditionings-methode van Weiss & Smith. Tekonikgen van het JST
schema in combinatie met cavitatie zijn gevonden alsmeé#elenekortkomingen

van de conventionele modellen voor cavitatie. Meer ondszmar niet-evenwichts
modellen is noodzakelijk om tot bevredigende resultatémiren.




TABLE OF CONTENTS

Summary I
Samenvatting \%
1 Introduction 1
1.1 Introduction to numerical simulation of sheet cavati. . . . . . . 1
1.2 Brief history on cavitationresearch . . . .. .. .. .. .. ... 3
1.3 Objective of presentresearch . . . . ... ... ... ........ 5
1.4 Outlineofthesis . . . . ... ... ... .. .. .. .. .. . ..., 6
2 Physical Aspects of Sheet Cavitation 9
2.1 Typesofcavitation . ... ... ........ ... ........ 9
2.2 Dimensionlessnumbers . . . . . . .. ... .. o0 0 . 11
2.2.1 Cavitationnumber . .. ... ... ... ... ...... 11
2.2.2 VNoidfractiona . .. .. .. ... .. 11
223 Reynoldsnumbete . ... ... ... ... .. ...... 11
2.24 Strouhalnumbest . . . . .. ... . oo 12
2.2.5 Pressure coefficieat,, lift and drag coefficients . . . . . . 13
226 Machnumber. ... ... ... .. .. ... ........ 13
2.3 Sheet cavitation ona hydrofoil . . . .. .. ... ... ....... 41
2.3.1 Three-dimensionality . . . . ... ... ........... 17
2.3.2 Dynamics of the vapor sheet on 3D Twist11 hydrofoil . . 19
2.3.3 Collapse ofthevaporcloud ... .............. 22
234 Roleofviscosity . .. .. ... ... ... .. .. ..., 23
2.4 Phasechangeofwater . ....................... 24
2.4.1 Non-equilibriumstates . . .. ... ... .......... 27
3 Mathematical Models for Cavitating Flows 29
3.1 Mathematical models for simulating cavitating flows .. .. .. 29

3.1.1 Interface-tracking methods . . . .. ... ... ....... 30




ii TABLE OF CONTENTS
3.1.2 \Volume-of-Fluid methods . . . .. ... .......... 30
3.1.3 Discrete bubble methods . . . .. ... ........... 31
3.1.4 Two-phaseflowmethods . .. .. .............. 31

3.2 Homogeneous mixture equations . . . . . ... ... ... 35
3.21 Conservationofmass. . ... ... ... ... ... .... 35
3.2.2 Conservation of momentum . ... ... .......... 36
3.2.3 Conservationofenergy . . . . .. ... ... ... ..... 37

3.3 Equations of state for compressible liquids . . . . . .. ...... . 39
3.3.1 Speedofsound . ... .. ... ... ... .. . ..., 39
3.3.2 Stiffened gas equationofstate . . . .. ... ... .. ... 40
3.3.3 Modified Tait equationofstate . . . .. ... ... ..... 43

3.4 Equilibrium model for cavitating flows . . . . . .. ... ... .. 44
3.4.1 Liquidphase .. .. .. ... .. .. .. .. . . .. ... 46
342 VNaporphase. .. .. .. ... .. .. .. ... .o a7
343 Mixturephase. ... ... ... .. .. .. .. .. ... 48

3.5 Remark on extension to non-equilibrium models . . . . . ...... 50

4 Numerical Methods for Compressible Flows 53

4.1 Three-dimensional unsteady Euler equations . . . . . .. ... 54

4.2 Finite-volumemesh . . . . . . .. ... o 55

4.3 Finite-volume formulation . . . . .. .. ... ... ... ... 57
4.3.1 Properties of the numerical flux . . .. ... ... ... .. 59
4.3.2 Riemannproblem. ... ... ... ... .......... 60

4.4 Time-integration . . .. .. .. .. ... ... 61

45 Fluxschemes . . . .. .. . ... ... 62
4.5.1 Jameson-Schmidt-Turkel scheme . . ... ... ... ... 62
45.2 HLLCfluxscheme . .. ... ... ... .. ... ..... 65
453 AUSMfamily ofschemes ... ... ............ 67

4.6 MUSCL-type higher order spatial reconstruction 71
4.6.1 Piece-wise linear reconstruction . . . .. ... ... .... 27

4.7 Low-Machnumberflows . . . . ... ... ... ... ....... 75
4.7.1 Preconditioning . . . . ... ... ... L oo 76
4.7.2 Adaptation of fluxschemes. . . . ... .. ... ...... 77

4.8 Boundaryconditions . ... ... .. .. ... .. .. 78
4.8.1 Time-dependent in- and outflow boundary conditions. ... 79
4.8.2 Solid wall boundary conditions . . . . ... ... ..... 86

4.9 Solution procedure for equilibrium cavitation model . . . . . . . 89




TABLE OF CONTENTS

5 Results Single Phase Water Flow 91

51 Parameters. . . . . . . . e 92

5.2 1D time dependent test case: “Water Hammer” . . . .. ... .. 92

5.3 1D Riemann problem for liquidflow . . . . . .. ... ... .. .. 95
5.3.1 Analytical solution for liquid flow . . . .. ... ... ... 96
5.3.2 Gridconvergence . . . . .. ... .. e 99

5.4 Water flowovera2Dcylinder . ... ... ... .......... 100
5.4.1 Geometry and computational domain . . .. ... ... .. 100
5.4.2 Numericalmethod . ... ... ... ............ 100
5.4.3 Results hybrid HLLC/AUSM flux scheme . . . . . . .. .. 101
5.4.4 Comparison with other fluxschemes . . . . . . ... .. .. 102
5.4.5 Results for different solid wall boundary conditions . . . 105
546 Conclusions .. ... .. ... .. .. ... .. .. ... 106

5.5 Water flow about a 2D NACAOQO12foil . . . . . .. ... ... ... 107
5.5.1 Geometry of NACAfoil . .. ... ... .. ........ 107
5.5.2 Computational domain and hybridmesh . . . . . ... ... 107
5.5.3 Numericalmethod . . ... ... .............. 109
5.5.4 Resultsforliftanddragforces . .. ... ... ....... 109
5.5.5 Numerical solutions . . . ... ... ............ 111

5.6 Water flow about 2D NACAO0015 &f for Usu =12 ms™* . . . .. 113

5.7 Single-phase water flow over 3D Twistl1 hydrofoil . . . .. .. 117
5.7.1 Geometry of 3D Twistll hydrofoil . . . . . .. ... .. .. 117
5.7.2 Experimentaldata ... ................... 118
5.7.3 Computational domainandmesh . . . ... ........ 120
5.7.4 Numerical method and flow conditions . . . .. .. .. .. 122
575 Convergence . . .. .. .. e e 122
5.7.6 Numerical results for lift and drag forces . . . . . .. .. 122
5.7.7 Comparison with experimental pressure data . . . . . . 124
5.7.8 Numerical results for flow solution . . . . . . ... ... .. 612

5.8 Conclusions on single-phase flow calculations . . . . . ....... 129

6 Numerical Results Cavitating Flow 131

6.1 Dimensionless total vaporvolume . . ... ... ......... 321

6.2 1D cavitating flowproblems . . ... ... ... ... ... .. .. 133
6.2.1 “Closing Valve” problem . . . . ... ... ... ...... 133
6.2.2 Two symmetric expansionwaves . . . . . . .. .. ... .. 136

6.3 Unsteady cavitating flow about 2D NACAQO1%&at . . . . . . . . 138
6.3.1 Results for total vaporvolume . . . . .. ... ... .... 140
6.3.2 Results for lift and drag coefficients . . . .. ... ... .. 421
6.3.3 Resultsduringacycle .. .................. 145
6.3.4 Collapse of convected vaporcloud . . . ... .. ...... 153




v TABLE OF CONTENTS

6.3.5 Influence of free-stream velocity,, at constantr . . . . . 155
6.3.6 Remark on development of cavitating flow after start-u. 157
6.4 Unsteady cavitating flow about 3D Twist11 hydrofoil . . . . . . 161
6.4.1 Totalvaporvolume . . . .. .. .. ... ... ....... 163
6.4.2 Re-entrantflow . . ... ... ... ... ... ... 164
6.4.3 Formation of a cavitating horse-shoe vortex . . . . . ... 170
6.4.4 Conclusions 3D Twistll hydrofoil . . . .. ... ... ... 172
6.5 Cavitating flow about 3D Elliptic 11 Rake hydrofoil . . . .... . . 174
6.5.1 Geometry of 3D Elliptic 11 Rake hydrofoil . . .. ... .. a7
6.5.2 Computational domainandmesh . . ... ... ...... 175
6.5.3 Flow conditions and numerical set-up . . . .. ... .. .. 717
6.5.4 Forces and total vaporvolume . . ... ... ........ 178
6.5.5 Flowsolutions . .. ... ... .. ... .......... 180
6.6 Conclusions cavitating flow calculations . . . ... ... .... 182
7 Discussion and Recommendations 185
7.1 Physical aspects of cavitation . . . . ... ... .......... 185
7.2 Mathematical models for cavitating flows . . . . ... ... ... 186
7.3 Numericalmethods . . . . . ... ... .. ... ... ... 188
7.4 Single-phase flow calculations . . . .. ... ... ........ 891
7.5 Cavitating flow calculations . . . . . . ... ... ... ....... 901
7.6 Futureresearch . .. ... ... ... .. .. .. .. .. . ..., 191
References 193
A Time-Dependent Boundary Conditions 213
B Rotational Invariance of 3D Euler equations 221
B.1 Proof of the rotational invariance property . . . ... ... ... 222
C Linear Acoustics for Water Hammer Problem 223
D Lifting Line Theory for 3D Twist Hydrofoil 225
E Maxwell Relations of Thermodynamics 231
F Barotropic Model for Cavitating Flow 233
G Non-Equilibrium Model for Cavitating flow 235
G.1 Sourcetermof Kunetal [117] . .. .. .. .. .. ... ..... 236
G.2 SourcetermofSauer[162] . .. .. .. .. .. ... .. .. ... 237

G.3 Remark on extension to compressible flows . . . ... ... .. 238




TABLE OF CONTENTS Vv

Acknowledgment 239

About the author 241







INTRODUCTION

1.1 Introduction to numerical simulation of sheet cavitaton

Cavitation is the evaporation of a liquid in a flow when theggee drops below the
saturation pressure of that liquid. The importance of ustdeding cavitating flows

is related to their occurrence in various technical appboa, such as pumps, tur-
bines, ship propellers and fuel injection systems, as vedi anedical sciences such
as lithotripsy treatment and the flow through artificial heaives. Cavitation does
not occur in water only, but in any kind of liquid such as liginydrogen and oxygen
in rocket pumps or the lubricant in a bearing. The appearandedisappearance of
regions with vapor is a major cause of noise, vibration, ieroand efficacy loss in

hydraulic machinery. In many technical applications cidgh is hardly avoidable

at all operating conditions. When it occurs it needs to bdrodad. Therefore, one

needs detailed insight in the mechanisms that govern ttiaiam phenomena.

There are several types of cavitation. Distinct appeasanfeavitation are: sheet
cavitation, bubble cavitation and vortex cavitation. Thesgnt thesis concerns the
dynamics and structure of sheet cavitation. Sheet caitaiccurs on hydrofoils,
on blades of pumps and propellers, specifically when theingaid high. This type
of cavitation can usually not be avoided, because of higlcieffcy requirements.
The dynamics of sheet cavitation often generates strorgspre fluctuations due to
the collapse of shed vapor structures, which might leaddsien of surface material.

Sheet cavitation is often called “fully-developed”, “atteed” or “blade” cavitation.
They are all terms for the same large-scale cavitation tsireic There are a number
of closely related important aspects to sheet cavitation:

e Shape and volume of the cavity. The topology of a sheet cawistrongly
related to the load distribution of the lifting object andishto the pressure
distribution on the object in the flow. Variations in volumause pressure fluc-
tuations in the liquid that might lead to strong vibratiorisiearby structures.
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FIGURE 1.1: Sheet cavitation on 2D hydrofoil. Photo taken by Foeth.

e Re-entrant flow at the closure region of sheet cavity. Thenteant and side-
entrant flow dictate the behavior of the shedding of the galieet. The shape
of the closure region of the cavity sheet dictates the doratf the re-entrant
and side-entrant jets.

e Shedding and collapse of vapor structures. The break-up stfeat cavity
causes a vortical flow of bubbly vapor clouds to be conveataggions with
higher pressure. Here, these clouds collapse resultingangspressure pulses
leading to unsteady loads of nearby objects as well as nem#uption and
possible erosion of surface material.

Since the 1990s numerical methods using the Euler or N&ti@tes equations have
been developed to simulate cavitating flows. The developwiahese methods has
been advancing quickly in recent years, but they are stilsitiered to be in a de-
veloping stage. The main problem in the numerical simutatibmulti-dimensional
unsteady cavitating flow is the simultaneous treatment ofwery different flow re-
gions: (nearly) incompressible flow of pure liquid in mosttioé flow domain and
low-velocity highly compressible flow of (pure) vapor inaélely small parts of the
flow domain. In addition, the two flow regimes can often not iguished that
clearly, for example in the transition region between vaput liquid, i.e. the mixture
region of liquid and vapor.

Furthermore, unsteady three-dimensional cavitating flalewations require sub-
stantial computer resources both in terms of memory anddsp&lso, meshes with
appropriate high-resolution mesh density in the cavitpfiow region are necessary.

In the present research a numerical method for solving ther Eguations for 3D
unsteady cavitating flow is developed. The accurate predicf the direction and
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momentum of the re-entrant and side-entrant jets and timgiingement on the cav-
ity surface form the indispensable basis of an accurataqiieudl of the shedding of
the cavity sheet. The direction and momentum of the re-enjets are all thought
to be inertia driven, so it is expected that a mathematicalehbased on the Euler
equations is able to capture the major structure of shedataw.

1.2 Brief history on cavitation research

Research on cavitation dates back to the days of Euler (Wbd)observed the oc-
currence of cavitation in high speed water flow during higligtsion rotating flow ma-
chinery. The word cavitation has been introduced by Froude described the voids
filled with vapor as cavities [191]. In 1895 Parsson was arsbtitg first to observe
the negative effects of cavitation on the performance ofipa gropeller [112, 196].

He was the first to build a cavitation tunnel to investigate pinoblems due to cav-
itation experienced on the propeller on the shigbinia. The cavitation number
o= % was introduced by Thoma in 1923 [74, 112] in the context ofekyger-

2P0

imental investigation on water turbines and pumps.

In order to study the physical aspects of cavitation mangearents have been car-
ried out throughout the years. Theoretical and numericatagehes followed soon
with two main areas of research [74]: bubble dynamics aneéldped- or supercavi-
ties.

A large body of work has been published on bubble dynamicsmaftion, amongst
many others, Rayleigh (1917) [134] and Plesset (1949) [B£@r whom the Rayleigh-
Plesset equation is named which describes the temporalterobf the radius of a
vapor bubble in an incompressible, viscous liquid. Thewah is driven by effects
of pressure variations and surface tension.

The field of developed cavities started more than a centwyeg. Helmholz (1868)
[89, 112] and Kirchhoff (1869) [24, 111], with the work on é&streamline theory or
wake theory by using conformal mapping techniques or thelimear hodograph

technique. Birkhoff & Zarantello [24] described the hodagjn technique in detail,
see also Wu [222]. Wu points out that this theory can only leelder cavitating flow

around simple geometries like bluff bodies and flat plates,dan not be used for
cavitating flow around arbitrary bodies like hydrofoils aopeller blades. In 1953
Tulin [29, 197] applied linearization procedures to thelppeon of the flow about a
supercavitating symmetric profile at zero angle of attaakzaro cavitation number.
Since then many researchers have extended the linear tloeftows around arbitrary
bodies at any cavitation number.
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The introduction of computers in the 1970s brought aboutgelaumber of numer-
ical methods based on linear theory, which has been extaiodimee-dimensional
flow problems by the use of lifting surface theory. Most tiffisurface theory meth-
ods deal with sheet cavitation by imposing a transpiratyge ©f (linearized) bound-
ary condition on the solid surface below the sheet cavitye @ativantages of lifting
surface methods are their short computation times, erpfdst assessment and im-
provement of designs. The drawback of linear theory is thiapértial cavity flows
around hydrofoils it predicts that the length and volume cdaty will increase when
the thickness of the hydrofoil is increased, which contredexperimental observa-
tions. Also for unsteady sheet cavitation the dynamic nmotiba sheet cavity is not
predicted [50] and linearized theory has a limited abili@ydescribe complex flows
with enough accuracy [3].

Boundary element methods (also referred to as boundargraitemethods or panel
methods) provided the possibility to consider the flow algmametrically complex
bodies and to treat the full non-linear boundary conditionghe sheet cavity inter-
face. These methods are based on the potential flow hypsthesvhich the cavity
interface is represented by a streamline of constant pesdthe cavity surface is
iterated until both the kinematic and the dynamic boundamddion are satisfied
at the cavity surface [50, 206]. However, this model for tating flow requires an
artificial closure model for the cavity detachment pointmiee leading edge and
one at the end of the cavity sheet. Uhlman [203] (1987) wasnastathe first to
solve a partial cavity flow on two-dimensional hydrofoilse Dange [55] introduced
a method for the unsteady two-dimensional flow coupled to-aenteant jet cavity
closure model. Dang & Kuiper [51] and Dang [50] extended thithod to steady
cavitating flow about three dimensional hydrofoils. Nowgglahese methods have
become well established due to their matured stage andabidiity to predict fully
three-dimensional unsteady cavitating flows, e.g. Kindd9] and Vaz [206]. How-
ever, it remains difficult to predict the detachment and wlesof the sheet cavity,
which have a strong influence on the topology and dynamidseo$heet cavity. Fur-
thermore, these methods are difficult to extend to more cexqghysical phenomena
such as the shedding of the sheet cavity and vorticity-datadhflow such as the tip
vortex cavitation. The tracking of the liquid-vapor inteté becomes a challenging
task, because of splitting and merging of the main vapocsiras and very fast va-
porization and condensation phenomena.

A different approach to simulate cavitating flows emergedhim 1990s. Methods
using the Euler or Navier-Stokes equations were developgethier with a transport
equation for the void fraction, with two-phase flow equasi@n with other cavitation
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closure model equations. As classified by the 22nd ITTC speommittee in 1999
[3] these approaches can be grouped into a number of cagsgajilnterface tracking
methods 2) Volume of Fluid methods 3) Discrete bubble metteoal 4) Two-phase
flow methods. These methods are discussed in chapter 3. tthausted that the
distinction between some of these groups is not always aelpl clear and that
combinations of the categories are used by different astlaurthermore, numerical
methods exist which use a combination of the lifting surfacdooundary element
method together with a method based on the Euler or NavakeStequations.

1.3 Obijective of present research

The overall objective of the project is to determine a modeltfie description of the
dynamics of three-dimensional sheet cavitation as it acoarhydrofoils. The aim
of this thesis is to develop a numerical method employingBhker equations for
3D unsteady flow for simulating cavitating flows. The numarimethod features the
following aspects:

e Three-dimensionality. The configurations with cavitatitogv to be considered
are three-dimensional or display a three-dimensional flaviure applications
may include flows in pumps and the flow about ship propellers.

e Compressibility. In unsteady cavitating flows strong puessvaves are gen-
erated. These waves have a strong impact on the cavitatiensity, i.e. on
erosion damage. Therefore, it is necessary to treat the gyaamics quanti-
tatively correct, especially in the liquid phase.

e Unsteady flow conditions. Cavitating flows feature highlsteady flow be-
havior, even under uniform inflow conditions.

e Low-Mach number flows. Numerical methods for density-baded models
are known to experience difficulties for low-Mach number floenditions. In
industrial applications the flow speeds of water are low wébkpect to the
speed of sound in water. Therefore, a proper treatment afidheerical flux
schemes is essential to simulate these low-Mach number.flows

e Unsteady in- and outflow boundary conditions. Constantsumresboundary
conditions have a strong impact on cavitation dynamicsthmiyt are very rare
in experimental and industrial applications. Togethehilie self-excited peri-
odic oscillations in the unsteady cavitating flow regime, diccurate treatment
of non-reflective unsteady in- and outflow boundary condgis essential.
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e Edge-based finite volume method. Unstructured grids altmvtteatment of
geometrically complex configurations and the flexibility @fficiently refine
grids locally.

In this thesis the equilibrium cavitation model for caviitat flows is implemented
into an edge-based finite-volume method for three-dimaasiansteady, compress-
ible flow. The main questions to be addressed are:

e Can the dynamics and structure of three-dimensional slee@ation be pre-
dicted?

e Can the re-entrant jet be predicted?
¢ Is the shedding of the cavity sheet captured correctly?
e Can the collapse of the shed vapor structures be predicted?

e Can the unsteady loads on objects in the flow and the unsteadgyre wave
dynamics be calculated?

The present research has been conducted in the frameworkSeWa project in
close cooperation with the Department of Maritime Techgglat Delft University
of Technology. Foeth [67] has carried out experiments feady and unsteady in-
flow conditions in the Delft cavitation tunnel for three-adnsional sheet cavities.
His main objectives were:

e to provide a better insight in the physical mechanisms oflijremics of sheet
cavitation.

¢ to provide a detailed and accurate database of benchmaskioeshe valida-
tion of computational methods.

Within the collaborative research project various hyditofometries have been
designed and tested in the cavitation tunnel. These coafigus include the 3D
Twistl1 hydrofoil and the Twisted Eppler hydrofoil, see iost al [113], Foethet
al. [67, 69] and appendix D.

1.4 Outline of thesis

Chapter 2 provides an overview on the physical aspects eft sfawitation as it oc-
curs on a hydrofoil. In some detail we discuss the dynamitsetheet cavity on the
3D Twistl1l hydrofoil as found by Foeth [67] in his experim&nThe importance of
the three-dimensionality of the shape of the cavity and ttection of the re-entrant
jet is explained followed by the description of the physiaspects of phase change
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of water.

Chapter 3 provides an overview on the mathematical modelsdaidtation. An in-
ventory of existing models is given followed by the desdoiptof the equilibrium
cavitation model chosen for the implementation in the nicaémethod. Further-
more, the homogeneous mixture equations are derived andgjgie equations of
state for compressible liquid flows are discussed.

Chapter 4 presents an overview of numerical methods basétedauler equations
for compressible flows. The focus is to address the critispkats of simulating the
flow of a compressible fluid within a wide range of Mach numberdluids with an
arbitrary equation of state employing an unstructured dxged finite-volume com-
putational mesh. The treatment of the boundary conditisronsidered in detail.
In the present work the treatment of Thompson [190] usingdbel gas law as the
equation of state, is generalized for an arbitrary equaifiate.

In chapter 5 numerical solutions for compressible sindlase water flow are con-
sidered. The one-dimensional “Water Hammer” and “Riemammblpm for liquid”
are test cases considered to demonstrate the wave-cgpalnility of the numerical
method. The low-Mach number flow over a two-dimensionalredgr is calculated to
illustrate the capability to calculate steady-state lowek number flows. To assess
the performance and the order of convergence of the nunheretaod the water flow
about two-dimensional NACA sections is considered. Thgleiphase water flow
over the three-dimensional Twistll hydrofoil is presenteslalidate the numerical
method using the experimental results of Foeth [67].

In chapter 6 results of numerical simulations for cavitgfilows are presented. First,
one-dimensional test cases are considered to assess tteegemte and stability of
the numerical method for cavitating flows. Then, the resafitthe two-dimensional
test case of Sauer [162] about a 2D NACA 0016%éngle of attack are presented to
verify the results of the numerical method. The cavitatiogvfabout the 3D Twist11
hydrofoil is calculated to compare the results with the expents of Foeth [67]. The
formation of the re-entrant flow and the formation of a cdintahorse-shoe vortex
are discussed. Lastly, the steady-state cavitating flowtabbe 3D Elliptic 11 Rake
hydrofoil is simulated to illustrate the capability of theepent edge-based numerical
method to predict the cavitation pattern occurring in the/fdbout a complex geom-
etry in comparison to the experimental results of Van dertHzo4].

The conclusions and discussion of the present thesis armufated in chapter 7 and
recommendations for future research are given.







PHYSICAL ASPECTS OF
SHEET CAVITATION

In this chapter the physical aspects of sheet cavitationliamissed. First, an intro-
duction to the types of cavitation is presented and reledanensionless numbers
are introduced. Then, the physical aspects of sheet dawitah the 3D Twist11 hy-

drofoil are described. In the discussion emphasis is giwe¢hd three-dimensionality
and the dynamics of the sheet cavity. Finally, the phasegghafiwater is discussed.

2.1 Types of cavitation

When the phase change occurs in flowing liquids, e.g. a deerefithe pressure
below the saturation pressure due to an expansion of the fiddspeak of hydro-
dynamic cavitation. On the other hand, acoustic cavitati@y occur in a quiescent
or nearly quiescent liquid. When an oscillating pressurd feeenforced on a liquid
medium, cavitation bubbles may appear within the liquid mkiee oscillation am-
plitude is large enough. Naturally, hydrodynamic cavitatand acoustic cavitation
may occur at the same time.

Cavitation can take different forms as it develops from itseption. In case the
pressure is mostly above the saturation pressure, cawititistrongly dependent on
the basic non-cavitating or fully-wetted flow. As cavitatidevelops, the vapor struc-
tures disturb and modify the flow and a new often unsteady flatem evolves.
Cavitation patterns can be divided into different groupq{7

e Bubble or “traveling” cavitation. Bubbles may appear inioeg of low pres-
sure and low pressure gradients as a result of the rapid lgrofvsmall air
nuclei present in the liquid. The bubbles are carried alopghle flow and
disappear when they enter a region with higher pressure.

e Attached or sheet cavitation. When a low pressure regioariadd near the
leading edge of a streamlined object in the flow, the liquid/fteparates from
the surface and a pocket of vapor is formed.
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e Cloud cavitation. When a vapor sheet detaches from thecsuafad is advected
with the flow, a region with a large number of vapor structusgermed. This
region is usually called cloud cavitation, although it detssof a vortical flow
region with many vapor bubbles. This type is usually erogmen collapsing
near a surface.

e \ortex cavitation. In the low-pressure core of vorticesphessure may be low
enough for cavitation to occur. This type of cavitation iteaffound at the tip
of lifting surfaces and is therefore also denoted by tipasortavitation.

e Shear cavitation. In regions with high shear vorticity isguced. As a re-
sult coherent rotational structures are formed and thespredevel drops in
the core of the vortices, which become potential sites faitaton. Flow sit-
uations with shear cavitation can be found in wakes, subedejgts at high
Reynolds number and separated flow regions which developitnat large
angles of attack.

For an overview of bubble cavitation see Brennen [29], fattigal cavitation see
Arndt [15] and for sheet cavitation see Franc [70, 74].

FIGURE 2.1 Cavitation patterns (a) Traveling bubble cavitation (b)ta&hed or
sheet cavitation (c) Tip vortex cavitation (d) Shear cauita. Taken from Franc
[71].
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2.2 Dimensionless numbers

To facilitate the discussion in this chapter and further rotthie thesis, relevant di-
mensionless numbers are introduced.

2.2.1 Cavitation numbero

The dimensionless cavitation numbewas introduced by Thoma, see Knapp [112].
The number is a measure for the sensitivity of the flow fortedizin to occur and is
useful to facilitate the comparison of results of experiteeand numerical simula-
tions. The cavitation number is defined as:

o= Poo Peatll) psag(T), (2.1)
ipOOUoo
wherep,, [Pa)], poo [kgm ™3] and U, [ms~!] are the free-stream pressure, free-
stream density and free-stream velocity, respectivelg,valnerep,,.(7") is the satu-
ration pressure of water at temperatdif¢ K]. Note that a higher cavitation number
indicates that the pressure in the flow must decrease mooeebedvitation occurs.
A smaller cavitation number indicates that a smaller des@apressure causes cav-
itation. Thus, a low cavitation number corresponds to a Biggteptibility for cavi-
tation.

2.2.2 Void fraction «
The void fractiona within a volumeV [m?] of a fluid follows from the fluid density

p= apv,sat(T) +(1—a) pl,sat(T) as

a= E _ p - pl,sat(T) (22)

Vo Pu,sat (T) - pl,sat(T)’

whereV, [m?] is the volume of vapor within the volumg of the fluid and where
pusat(T) [kgm ™3] and p; sa:(T) [kgm 3] are the saturated vapor and liquid density
at temperaturd’, respectively.

Experimentally, it is very difficult to determine the voidafition at any location in
the flow. Numerically, the void fraction is used for visualipn and analysis pur-
poses. Employing the equilibrium cavitation model the duteation of the void

fraction is just a post-processing step evaluating equndf#®).

2.2.3 Reynolds numberRke

The Reynolds number is the ratio of inertial forces to viscfmrces and thus it quan-
tifies the relative importance of these two type of forceegithe flow conditions.
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The Reynolds numbefe is defined as:

_ PocUsc L UL

Hoo Voo

Re (2.3)

wherep, is the density of the fluid{/,, a characteristic velocity of the flow, a
characteristic length scalen], 1., the dynamic fluid viscosity Pas], andv,, =
lhoo/Poo IS the kinematic fluid viscosityith?s~!]. The flow about a hydrofoil of
chord lengthc = 0.15m of pure watet at saturation pressure and at a velocity of
Uso = 10-50ms~! has a Reynolds number within the rangelef= 1.5-7.5<106.
The thicknesses and ¢ of a fully developed laminar and turbulent boundary layer
above a flat plate of length can be estimated to be equal to [176]

0.370

= or _
o Rex

, (2.4)
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respectively, withRe, = pUx/u. Consider a hydrofoil of chord length 0.if for
water the laminar and turbulent boundary layer thicknessbeafound equal t6 =
6.1x107%* m andd = 3.2x 1073 m, respectively, illustrating the thin boundary
layers in a water flow. Furthermore, Franc & Michel mentioattthe influence of
the Reynolds number on cavitation is not significant, seelatsapp [112]. In section
2.3.4 the role of viscosity is explained in more detalil.

2.2.4 Strouhal number St

The Strouhal numbe$t is employed to quantify the oscillating frequency in undiea
flows. For cavitating flows the Strouhal numlfris defined by:

_ I
St= 7 (2.5)

where f [ Hz] is the cavity shedding frequenc§js the mean cavity lengthaf] and
U Is the free stream velocity. Often, it is difficult to accwigtobtain a mean cavity
length for unsteady cavitation. So, for convenience we dedirdifferent Strouhal
numberSt. based on the chord lengthof the foil instead of on the mean cavity
length:

St = 5_‘3 (2.6)

*The dynamic viscosities of vapor and watefat= 293 K and saturation pressurg = psq:(T) =
2.3 x 10% Pa, are equal top, = 9.72x 10~% Pas andu; = 1.0053 x 10~% Pas, respectively [1].
The corresponding kinematic viscosities= 1/p of vapor and water are equal t@, = 5.67 x10™*
mZs~tandy, = 1.01x107% m%s~!. Note that atl’ = 293 K andp = 2.3 x 10® Pa the vapor
and liquid density are equal tp, = 0.017 kgm > andp; = 998.19 kgm ™3 [1], respectively. The
dynamic viscosity,; of water atT = 293K andp = 10° Pa is equal top; = 1.0053 x 10~2 Pas.




2.2. DIMENSIONLESS NUMBERS 13

2.2.5 Pressure coefficient’,, lift and drag coefficients

The dimensionless pressure coefficiehtis defined as

P — P
C, = , (2.7)
P %PooUgo
with p the local pressure in the flow field, and whexg, p., andU,, are the free-
stream pressure, the free-stream density and the frem¥sirelocity, respectively. In
the following we usually employ the C,, coefficient.

Neglecting skin friction, the drag and lift forces can beadbéed from

F = / pids, (2.8)
S

with S surface of the objecp the pressure on the surface of the object drkle unit
normal pointing into the object, i.e. out of the computasibdomain. In 2D we will
use lower-case symbols, i.e.

f= / pidC, (2.9)
C

with C' the closed curve of the object. For two-dimensional flow &alad2D geometry
the lift force ¢ per unit length in span-wise direction is equal to the conepbrof
£ in the direction normal to the free-stream, which in our cesg,. For three-
dimensional flow the lift force. is equal toF,. The drag forcel per unit length in
span-wise direction and the drag forbeare equal tof,, and £, for two-dimensional
or three-dimensional flow, respectively. The dimensianlds C;,, ¢; and dragCp,
cq coefficients are defined as

L L
Cr=——, =, 2.10
L %pOOUgOS q %pooUgOC ( )

D d
Cp=———, =, 2.11
D %pooUgoS Cd %pooUgOC ( )

whereS is the projected surface area of the object atite chord length of the body.
2.2.6  Mach number

The Mach numbei/ is defined as the ratio between the magnitude of the fluid ve-
locity |td| and the speed of sound in the fluid:

M= M, (2.12)
c

whereii is the velocity and: is the speed of soundifs—'].
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2.3 Sheet cavitation on a hydrofoil

The main focus of the present research is the cavitating ftowral a stationary hy-
drofoil, placed in a steady uniform flow. Depending on therapieg conditions many
types of cavitation can be observed on a cavitating hydrdéabble-, sheet-, cloud-
and vortex cavitation.

A vapor sheet is attached to the leading edge of a body on thgilessure side,
termed “suction side”. Near the leading edge a vapor cavitsheet is formed and
the liquid flow is detached. Franc & Michel [72, 73] and &eal. [123] investigated
the dependence of the behavior, the length and the thiclofebe vapor sheet as a
function of the cavitation number and the angle of attack of a 2D hydrofoil.
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FIGURE 2.2: Observed cavitation patterns on a 2D NACA 16012 hydrofoiaas
function of the angle of attack and the cavitation number. Taken from Franc &
Michel [73], note thato, is the cavitation number defined asn equation (2.1).

Franc & Michel [72] investigated the cavitation patternsad2D NACA 16012 hydro-
foil. They mention that for this relatively thin hydrofothé influence of the Reynolds
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number on cavitation is not significant. For cavitating fldveyt observed different
regions in thex—o plane corresponding to different cavitation patternsfiggree 2.2.

At low angle of attack and high values fercavitation does not occur. Keeping the
cavitation number high, but increasing the angle of attaegults in a partial cavity

on the suction side of the hydrofoil. Further increases énghgle of attack result in

a two-phase cavity and for very high angle of attack in séedadhear cavitation. For
low cavitation numbers and low angle of attack the cavityadetnent occurs at the
aft part of the foill For higher angles of attack the detachment moves upstredm an
becomes three-dimensional as visible in figure 2.2. For aigimer angles of attack,
i.e.a > 6° ando < 0.3, the sheet cavity extends beyond the trailing edge of the
hydrofoil, which is called supercavitation.

Le et al. [123] utilized a cavitating foil with a geometry consigjiof a flat upper
side and circular arc as its lower side. Keeping the ledgihthe sheet on the upper
surface constant and varying both angle of attacknd cavitation numbe#, they
found a linear dependence of the thickness of the sheet arathi@ation numbes.
Furthermore, they found a unique curve, relating the nomedisional lengtt/c of
the sheet cavity, witk the chord length of the hydrofoil, versus the non-dimeraion
parameter /(o — «; (o)) wherea; (o) corresponds with the angle of attack without
cavitation at that cavitation number. They also found tbattfieir foil the Strouhal
numberS = f¢/U at which the sheet cavity was shed, was nearly constant, i.e.
S =~ 0.28, wheref is the shedding frequency of the sheet cawitig the maximum
length of the sheet and the free-stream velocity.

When a vapor sheet is formed the minimum pressure on the doiale ps..(7),
which occurs inside the cavity itself, so the curvature efshrrounding streamlines
tends to be directed towards the cavity see figure 2.3. Doeanst of the sheet, the
flow re-attaches to the hydrofoil and thus splits the liquiavfinto two parts:

e the re-entrant jet, which travels upstream along the failisface carrying a
small quantity of liquid to the inside of the cavity,

¢ the outer liquid flow, that reattaches to the wall.

Both parts of the liquid flow are separated by a streamling thahe flow were
steady, would meet the wall perpendicularly at a stagngimnt. However, if this
flow were steady, the cavity would be filled with liquid ragid|

fIn this experiment leading edge roughness was not appliedowA Reynolds numbers the sheet
develops in laminar separation regions, which may be latakear the trailing edge for low angles of
attack. This does not occur in situations at higher Reynalgsber for which a turbulent boundary
layer develops.
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Cavity

Re-entrant jet

FIGURE 2.3: Closure region of the cavity sheet. Reconstructed from é¢-gaMichel
[74].

The re-entrant jet moves upstream towards the leading €ldgg #he surface of
the foil underneath the vapor sheet. At some point the rexenjet impinges on
the liquid-vapor interface, which can be at the leading afitfee re-entrant jet has
enough momentum and if the sheet is thick. This leads to agparor shedding of
part of the cavity which is then advected by the main flow in dstream direction.
The re-entrant jet gives rise to a circulatory flow pattenected around the sheet
cavity. Therefore, at the instant of shedding, circulatexists around this vapor
structure, which takes the form of a region with spanwisgicity above the surface.
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FIGURE 2.4: The break-off cycle, schematic view. (a) Start of the cyappor sheet

is growing, bubble cloud from previous shedding is conwkatéth the flow. (b)

Sheet reaches maximum extent, re-entrant jet starts to. fgc)nRe-entrant moves
upstream. (d) Re-entrant jet impinges on the cavity surfaapor cloud sheds from
main structure. (e) Vapor cloud is convected with the flowgutation is present
around the vapor cloud. (f) Vapor cloud collapses, vaporesiggows from leading
edge. Reconstructed from De Lange & De Bruin [56].
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The shed vapor structure may be broken into smaller vapaetsties such as bubbles
or cavitating vortices, which may collapse in regions witbher pressure. After
the shedding of the vapor cloud, a new cavity develops andivareentrant jet is
formed. This repeating shedding process, that is mainljratbed by inertia [74], can
be either random or periodic depending on the operatingitons. The shedding
process is illustrated in figures 2.4(a)—(f) taken from Dad&& De Bruin [56].

2.3.1 Three-dimensionality

In the past cavitation patterns have been observed for tmestsional geometries
such as 2D hydrofoils, see Asto#t al. [17] and a backward facing step, see Cal-
lenaereet al. [33]. Despite the two-dimensional geometry of the objacthie flow,
the cavitation sheet was often found to shed vapor cloudgutarly both in time
and in space, leading to a three-dimensional flow field. Degkeafa de Bruin [122]
predicted that the spanwise component of the velocity atbegclosure line of the
sheet cavity should remain constant, see also the theselodrge [55]. Hence, the
re-entrant jet should simply be reflected at the closuredime be directed sideways
as illustrated in figure 2.5.

Wincident
B —
-« T
Wiet (T

Cavity Cavity
closure closure
v line Y——line

FIGURE 2.5: Reflection of incident flow by the closure line of the sheeitya¥he
flow is from left to right. Reconstructed from De Lange & DeiBii56].

Labertaux & Ceccio [121] showed that the leading-edge swaé#pe hydrofoil has a
significant effect on the topology of the cavity and on thediion of the re-entrant
jet. The importance of the re-entrant jet was further denmatedd by Kawanami
[108] who blocked the re-entrant jet and showed that theaton shedding behavior
changed significantly. When two sideways reflected re-anhjeds collide, the fluid
is ejected upwards hitting the cavity interface and caulsingl shedding of the sheet
cavity. The closure line of the cavity then becomes even rioee-dimensional re-
sulting in highly three-dimensional structures. From ¢éhaad other experiments it
has become clear that the form and the stability of the staefitlyds very dependent
on the three-dimensional geometry of the foil.
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Dang & Kuiper [50, 51] designed a twisted foil configuratianlbcalize the three-
dimensional effects. The direction of the re-entrant jes@und to be strongly
influenced by the cavity topology. In their case the cavitgmhwas determined by
the variation in the spanwise distribution of the loadinghed foil and not by sweep
angle. The foil spanned the tunnel from wall to wall. The &ion in the spanwise
loading was accomplished by the distribution of the twigglarof the foil, which
was high in the center and zero at the tunnel walls. Basedeogabmetry of the foll
of Dang, a new twisted hydrofoil denoted by 3D Twist1l1 hydilpfsee Foetlet al.
[68], Koop et al. [113] and appendix D was designed with a clear and conlilella
three-dimensional sheet cavity on a relatively simple tiimensional like configu-
ration.

The 3D Twist11 hydrofoil spans the cavitation tunnel fromisw@awall and is sym-
metric with respect to its mid-span plane. The foil has a gfsmvarying geometric
angle of attack (twist) fron9° at the tunnel wall td 1° at mid-section. This avoids
the interaction of the cavitation sheet with the boundaygialong the tunnel wall.
In section 5.7.1 a full description of the 3D Twistll hydiibie presented. In the
central part of the foil a three-dimensional sheet cavityn®with a planform that is
symmetric with respect to the mid-section plane. A top vidwhe sheet cavity on
the twisted foil is presented in figure 2.6 obtained from R¢66].

LE

TE

FIGURE 2.6: Top view of sheet cavitation on 3D Twist1l1l hydrofoil obtdifieom
Foeth [66]. Flow is from top to bottom, LE is leading edge, EHrailing edge.
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2.3.2 Dynamics of the vapor sheet on 3D Twist11 hydrofoil

Foethet al. [68] carried out experiments for the 3D Twistl1 hydrofailsteady and
unsteady inflow conditions in the cavitation tunnel at Délftiversity, see also Foeth
[67]. Their focus was to generate sheet cavities that asetimensional in char-
acter similar to ones that occur on ship propellers. In fig@&&(a)—(t), taken from
Foethet al. [69], the process of the vapor shedding is presented. Taddahg is
periodic, constant in its shedding frequency, and alwaghides the same macro
structural collapse [68]. In figure 2.7(a) the attached tgalvas reached its maxi-
mum length. Due to the spanwise variation of the twist anlgke gheet cavity is
three-dimensional and the closure line of the cavity is egrshaped. The chord-
wise striations originating close to the leading edge am tduroughness elements
positioned at the leading edge. At the closure line of theowagheet a re-entrant
jet develops which moves in upstream direction along thiasarof the foil into the
vapor structure. At both sides of the mid-section plane ghentrant jet is directed
towards the plane of symmetry.

In the center plane the re-entrant flow from port side and filwah starboard side
collide and at this location the cavity quickly changes frasmooth vapor sheet into
a cloudy region which detaches from the main structure, geees 2.7(b)—(h). At
the aft end of this structure a vaporous horse-shoe vorteslags. This structure,
presumably induced by the colliding side-entrant jets thete the water flow up-
wards, can be followed to figure 2.7(n). The vapor cloud iseated by the main
flow and collapses in the region with higher pressure on theat of the foil, see
figures 2.7())—(t). In the final images of the collapse of tlaar cloud a distinct
second, somewhat larger vaporous horse-shoe vortex ovoigx like structure is
observed, see figures 2.7(q)—(t). This process is repeatadimaller scale at the two
crescent-shaped side-lobes in figures 2.7(i)—(r). In figdr&(q) and 2.7(r) a similar,
but smaller-scale vortical structure is formed at eithde %if the center plane due to
this secondary shedding process.

Foethet al. [69] showed that the re-entrant jet entering the sheetycadtermines
the shedding mechanism of the sheet. To distinguish betwaeous directions of
the re-entrant flow, Foeth introduced the term side-enfjetntwhich refers to that
part of the re-entrant jet originating from the sides of taeity sheet. This jet has
a strong span-wise velocity component. They reserved thene-entrant jet for the
case this jet originates from that part of the cavity wheeedlosure is more or less
perpendicular to the main flow and thus is mainly directedreps.

In figure 2.8(a) the streamline topology on the cavity swefas given by Foetbt

tFor the 3D Twist hydrofoil the side-entrant jets are direttewards the center plane of the foil.
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FIGURE 2.7: Shedding cycle on Twist 11 follj,, = 4.96ms™' 4+ 6.4%, a = 1°,

o = 0.66 + 7.94%. Shown is every 7th frame of a 2000 Hz recording,i.e. the time
between two frames 5 x 10~3s. Flow is from top to bottom. (a)—(d) Development
of re-entrant jet directed towards plane of symmetry. @)Stedding starts in center

of sheet (e)—(p) Primary shedding, cavity center (p)—(ddBdary shedding (cavity
sides) (q)—(t) Growth of sheet. Taken from Foeth et al. [68f also the thesis of

Foeth [67].
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al. [69] is reproduced. At the closure of the cavity the stréaed are directed into
the vapor sheet. Note the difference between the re-erjgaand the side-entrant
jet. When the sheet is growing the side-entrant jets frorh bimtes are directed into
the closure region of the sheet. In the center plane of thet sfawity the two side-
entrant jets collide and the fluid is ejected upward throdgghvapor-liquid interface
causing the shedding of part of the vapor sheet and the famat the horse-shoe
vortex, that subsequently is convected by the main flow.

@) (b)

Side-entrant" Re-entrant
jot Jot

FIGURE 2.8: Sketches of the re-entrant flow (a) Streamlines over theycahieet
are directed inward. (b) The side-entrant jets collide i tbenter plane, part of
the re-entrant flow impinges on the interface of the cavigesltausing the primary
shedding, part of the side-entrant flow is reflected towandsenter of the side lobes.
(c) Process of shedding of (a) and (b) is repeated in sidedolfd) Re-entrant flow
approaches leading edge. (e) Cavity sheets grows. Repeddixom Foeth et al.
[69], see also thesis of Foeth [67].

In figure 2.8(b) the re-entrant jet is still traveling upsime and the side-entrant jets
are reflected away from the center plane. After the sheddirlgeovapor structure
the side-entrant jets in the side-lobes are directed tavaadh other, as presented in
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figure 2.8(c), causing the secondary shedding when thesgta/meet, see figures
2.7()—(q). Foeth mentions that the mechanism of the sesmgnshedding does not
seem to be different from that of the primary shedding.

As presented in figure 2.8(e), the remaining cavity has soreddy convex shape

of its closure line with two concave regions. Side-entramt/fhppears at either side
of these latter regions. In the short period of converginig-®ntrant jets the cavity

grows into its convex shape again before the whole cyclepisated. Foeth mentions
that the re-entrant jet directed towards the foil’s leadédge in figure 2.8(e) does not
always visibly disturb the vapor interface at the leadingeednd thus does not seem
to cause the detachment of the complete structure.

In summary, Foetlet al. [69] conclude that the re-entrant flow from the sides dic-
tate the behavior of the shedding cycle and that the flow fimensides depends on
the cavity shape. The re-entrant flow reaching the leadigg egpears not to be the
only cause for shedding.

2.3.3 Collapse of the vapor cloud

The break-up of a sheet cavity results in bubbly vapor clpgdstaining vortical
structures, that are convected into regions of higher pres#iere these clouds col-
lapse leading to strong pressures pulses [172]. Duringpilusess, the hydrofoll
experiences high-frequency unsteady loads. This may teadise production and
possibly erosion of the foil's surface. To capture thesdaady wave dynamics in
the flow it is essential to consider water as a compressitpedi

In the literature the collapse mechanism of a single isdl&gbble has been stud-
ied both theoretically and experimentally. Experimentaearvations on the collapse
of a single bubble as well as a bubble cloud demonstrate ibleit radiated pressure
waves occur with amplitudes of the order of 1B8r, see for example Fujikawa &
Akamatsu [75]. Reismanet al. [158] experimentally investigated the break-up and
collapse of sheet and vortex cavities and observed straggpre pulses on the sur-
face. Furthermore, they suggest that shock dynamics iemegge for the damage
to surfaces and the generation of noise observed in mantatiagi flows. Within the
medical application of shock-wave lithotripsy these higegsure pulses are used to
destruct kidney stones, see Ikeglaal. [103]. Johnsoret al. [107] investigated this
phenomenon numerically.

Schmidtet al. [169] developed a numerical method to predict the fornmaaod

propagation of shocks and rarefaction waves related todhapse of vapor regions
in cavitating flows. With their compressible flow simulatiohthe governing equa-
tions they indeed reproduced the unsteady loads on hytiofdhe main focus of
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the present research is aimed at predicting the global mhafithe vapor sheet as
described in section 2.3.2. However, we will show that witla tleveloped numeri-
cal method it is also possible to calculate the high prespulges generated by the
collapsing vapor clouds and the subsequent unsteady waaadys.

2.3.4 Role of viscosity

The accurate prediction of the direction and momentum ofr¢hentrant and side-
entrant jets and their impingement on the cavity surface fiie basis of an accurate
prediction of the shedding of the sheet cavity. These effaot all expected to be
inertia driven [172]. Furthermore, the global pressureasyits is not controlled by
the viscosity of the fluid, so it is expected that numericatidations based on the
Euler equations are able to capture the major (vorticaljcatres and dynamics of
sheet cavitation.

The effect of viscosity is the damping of large gradients #relloss of mechani-
cal energy during the growth and collapse process. The sitycof water and its

vapor is very low and the effects of viscosity on cavitatioa assumed to be negli-
gible, see Knapp [112].

Viscous effects are predominant in the detachment of dangtfiow near the leading
edge as observed by Arakeri & Acosta [14] and confirmed by ¢-&aMichel [72]

in the case of hydrofoils. They showed that a well-develogedty always detaches
downstream of laminar separation of the boundary layeaohttd cavitating flow can
form in a turbulent boundary layer. The natural transitioriurbulence on ship pro-
pellers occurs near the leading edge resulting in attacrestirig-edge cavitation. On
smooth hydrofoils the natural transition to turbulencd agicur at different locations
on the hydrofoil. Therefore, to resemble the flow on ship pheps in the experi-
ments of Foeth [67] leading edge roughness is applied tahtepoundary layer into
transition. Thus, the leading edge roughness effectivalyirmates the laminar flow
and causes the cavitation inception to occur at the leadigg.eAs a consequence
the point with minimum surface pressure and the point oftgalétachment are ap-
proximately at the same location. Therefore, in the preisgestigation it is assumed
that cavitation occurs whenC), ,,;, = o and consequently, that viscous effects do
not play a role in the detachment of cavitation.

For the collapse of vapor bubbles viscosity only plays a ioléhe final stages of
the collapse. The radii of the bubbles are then of the ord&?(@b—"m) [71]. In
combination with the scale of hydrofoils in experiments mpellers it is impossible
to capture these small length scales with present-day ncahenethods. So the role
of viscosity is not considered for the collapse phase of vapbbles.
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The evolution of the vorticity distribution in shear laydssdominated by viscous
flow effects. However, the vorticity production due to déngradients, the so-called
baroclinic torque, is only a function of gradients in deypgierpendicular to gradients
in pressure, i.eVp x Vp and does not depend on viscosity.

Flow separation is a viscosity driven phenomenon, so forvdiiglation of a flow
model based on the Euler equations it is essential that flparagon does not occur.
This is specifically so for the single-phase flow cases useth#ovalidation of the
basic numerical method.

The flow in the core of for example a non-cavitating tip voriexlominated by vis-
cosity, specifically in the viscous subcore. In a cavitatipgvortex viscosity plays
a role at the interface between the vaporous core and thiealolijuid flow. An
inviscid flow model will capture the flow in the part of the vigel flow region away
from the viscous subcore and the liquid-vapor interface.

2.4 Phase change of water

In this thesis we consider the flow of the pure substance whteray exist in more
than one phase, but the chemical composition, denotdd@:l6y, is the same for each
phase. When two different phases are present simultaryethesimedium is consid-
ered as a mixture. In figure 2.9 the phase diagram for wateesepted [184]. Note
that the specific volume for water increases during freeZirige diagram shows the
pressure as function of specific volume and temperaturegchwikia surface in the
(v, T, p)-space.

Each possible equilibrium state is represented by a poithisrsurface. The regions
of the surface that represent a single-phase, i.e. the $iglidd and vapor phase, are
indicated. The triple line is the isotherm line at which &lfde states may coexist
in equilibrium at the same time. In this study we are not iggézd in the solid state
so from now on we only discuss temperatures and pressuriertttgan the freezing
temperaturel,. = 273.15 K with the corresponding pressupe = 611.7 Pa and
densityp, = 999.79 kgm 3 for water.

The critical point is the temperature above which there i®bgervable difference
between liquid and vapor. The critical temperatilizepressures. and densityp,. for
water arel, = 647.16 K, p. = 221.2x10° Pa andp. = 322.0 kgm 2, respectively
[168]. In this study we do not consider conditions at tempees higher than the
critical temperature, we remain at conditio