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SUMMARY

This thesis describes the development of a computational method based on the Euler
equations to predict the structure and dynamics of 3D unsteady sheet cavitation as it
occurs on stationary hydrofoils, placed in a steady uniforminflow.

Since the 1990s numerical methods based on the Euler or Navier-Stokes equations
have been developed to predict cavitating flows. Many existing cavitation models
depend on empirical parameters for the production and destruction of vapor. In this
thesis the equilibrium cavitation model is employed, whichassumes local thermody-
namic and mechanical equilibrium in the two-phase flow region. This model does
not depend on empirical constants for the modeling of cavitation.

From the experimental investigation of Foeth∗ it has become clear that the shed-
ding of a sheet cavity is governed by the direction and momentum of the re-entrant
and side-entrant jets and their impingement on the free surface of the cavity. There-
fore, the accurate prediction of the re-entrant and side-entrant jets is paramount for
an accurate prediction of the shedding of the sheet cavity. It appears that these ef-
fects are inertia driven and it is expected that a numerical method based on the Euler
equations is able to capture the phenomena associated with unsteady sheet cavitation.

Due to the dynamics of sheet cavitation strong pressure pulses are often generated,
originating from the collapse of shed vapor structures. To be able to predict the dy-
namics of the pressure waves, in this thesis the fluid is considered as a compressible
medium by adopting appropriate equations of state for the liquid phase, the two-phase
mixture and the vapor phase of the fluid.

Sheet cavitation occurs on hydrofoils, on impellers of pumps and on ship propellers.
To allow for the treatment of geometrically complex configurations and to have the

∗The work of Foeth, “The Structure of Three-Dimensional Sheet Cavitation”, thesis TU Delft (2008),
has been carried out within STW Project TSF.6170. The research presented in the present thesis is part
of the same project.
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flexibility to efficiently refine grids locally in regions with cavitation, the numerical
method developed is an edge-based, finite-volume method. The present numerical
method can handle unstructured grids consisting of any typeof elements, i.e. quadri-
laterals and/or triangles in 2D and hexahedrons, prisms, tetrahedrons and/or pyramids
in 3D.

This research has been conducted in close collaboration with the Department of Mar-
itime Technology at Delft University of Technology (DUT), where experiments have
been carried out for flows with cavitation. Within this collaboration a number of hy-
drofoil configurations have been designed employing the present numerical method.
These configurations have been tested in the cavitation tunnel at DUT. In the present
thesis the main aspects of the dynamics of the vapor sheet as observed on one of the
three-dimensional configurations, i.e. the 3D Twist11 hydrofoil, are summarized and
utilized to validate the present numerical method.

The main interest in the formulation of the numerical methodis to address the critical
aspects of the numerical simulation of the flow of a compressible fluid over a wide
range of Mach numbers employing an arbitrary equation of state. Emphasis is on the
numerical solution of the low-Mach number flow and the formulation of the boundary
conditions for the finite-volume method implemented for an edge-based unstructured
mesh.

Schmidt, in the group of Prof. Schnerr at TU Munich, has developed a Riemann-
based flux scheme implemented for a structured mesh. This scheme performs excel-
lently for low-Mach number flows without the necessity to usepreconditioning. In
collaboration with Schmidt and Prof. Schnerr, this flux scheme has been implemented
in the present edge-based numerical method for unstructured grids. Second-order ac-
curacy is obtained by employing the limiter of Venkatakrishnan.

In the present research the formulation for the non-reflective in- and outflow bound-
ary conditions for the Euler equations, as proposed by Thompson for the ideal gas
equation of state, have been generalized for an arbitrary equation of state. Further-
more, the solid wall boundary conditions at the surface of the hydrofoil are treated
by the specially designed Curvature Corrected Symmetry Technique.

Several test cases for single-phase water flow have been carried out to assess the
performance of the numerical method. The one-dimensional “Water Hammer” prob-
lem and a “Riemann problem for liquid flow” have been considered in order to
demonstrate the wave-capturing ability of the numerical method. The low-Mach
number flow over a two-dimensional cylinder is calculated toillustrate the capabil-
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ity of the present method to accurately calculate steady-state results for these flows
without the use of preconditioning methods. The numerical results for the flow about
two-dimensional NACA sections illustrate the second-order accuracy of the present
method. Furthermore, it is demonstrated that hybrid meshesconsisting of multiple el-
ement types can be used allowing efficient grid refinement close to the surface of the
hydrofoil. The single-phase water flow over the three-dimensional Twist11 hydrofoil
is presented to validate the numerical method with experimental results. It is found
that the pressure distribution on the foil is accurately predicted. The lift coefficient is
predicted to within 2% of the experimentally obtained value.

For cavitating flow, the one-dimensional “Closing Valve” test case and the “Two-
Rarefaction waves” test case are considered, which demonstrate the convergence and
stability of the developed numerical method. Subsequently, results for cavitating flow
about two-dimensional hydrofoils are presented. It is shown that the re-entrant jet,
the shedding of the sheet cavity, the collapse of the shed vapor cloud and the periodic
nature of the shedding are captured by the present numericalmethod.

The three-dimensional unsteady cavitating flow about the 3DTwist11 hydrofoil is
calculated. It is shown that the formation of the re-entrantflow and of a cavitat-
ing horse-shoe vortex are captured by the present numericalmethod. The calculated
results are quite similar to the experimental observations. However, at present the
computational time is too long to numerically investigate the unsteady periodic shed-
ding of the sheet cavity on three-dimensional configurations for long enough times.

In addition, the steady cavitating flow about the geometrically more complex 3D
Elliptic 11 Rake finite-span hydrofoil is simulated to show the capability of the nu-
merical method to predict sheet cavitation on a complex three-dimensional geometry.
It is found that the predicted shape of the sheet cavity corresponds well with the ex-
perimental results. However, the cavitation in the generated tip vortex observed in
the experiment is not captured in much detail, primarily dueto numerical dissipation
in the highly rotational flow in the vortex core.

Finally, within the scope of the present research non-equilibrium models for cavita-
tion have been investigated as well. For this the conventional approach is adopted in
which it is assumed that the liquid and vapor phase have a constant density. To solve
the governing equations for this model, we have applied the JST flux scheme com-
bined with the pre-conditioning method of Weiss & Smith. Some difficulties were
encountered with the JST scheme as well as drawbacks of the conventional cavita-
tion models. It is recommended to carry out more research into the non-equilibrium
models aimed at obtaining satisfactory results.





SAMENVATTING

Dit proefschrift beschrijft de ontwikkeling van een rekenmethode gebaseerd op de
Euler vergelijkingen voor het voorspellen van de structuuren dynamica van 3D, in-
stationaire vliescavitatie zoals voorkomt op een stationaire hydrofoil geplaatst in een
stationaire, uniforme aanstroming.

Om het gedrag van caviterende stromingen te voorspellen zijn sinds de jaren 90
numerieke methoden ontwikkeld gebaseerd op de Euler en Navier-Stokes verge-
lijkingen. Veel bestaande modellen voor caviterende stromingen zijn afhankelijk van
empirische parameters voor de produktie en destructie van waterdamp. In dit proef-
schrift wordt het equilibrium cavitatie model beschouwd, waarin lokaal thermisch en
mechanisch evenwicht wordt verondersteld. Dit model is niet afhankelijk van em-
pirische constanten voor het modelleren van cavitatie.

Zoals gevonden in het experimentele onderzoek van Foeth† wordt het afschudden van
een vliescaviteit bepaald door de richting en momentum van de re-entranten side-
entrant jetsen hun botsing met het vrije oppervlak van het vlies. Om deze reden is de
nauwkeurige voorspelling van dere-entrantenside-entrant jetseen kritische factor
in een nauwkeurige voorspelling van het afschud-gedrag vande vliescaviteit. Om-
dat deze effekten gedreven worden door inertia, is aangenomen dat een numerieke
methode gebaseerd op de Euler vergelijkingen de fenomenen die optreden bij vli-
escavitatie kan voorspellen.

De dynamica van vliescavitatie gaat vaak gepaard met sterkedruk pulsen, die ontstaan
door het ineen klappen van afgeschudde damp strukturen. Om de golf-dynamica
van deze druk pulsen te kunnen voorspellen, wordt in dit proefschrift de vloeistof
beschouwd als een samendrukbaar medium. Hiertoe zijn geschikte toestandsverge-
lijkingen voor de water fase, het twee-fase mengsel en de damp fase gekozen.

†Het werk van Foeth, ”The Structure of Three-Dimensional Sheet Cavitation”, proefschrift TUD
(2008), is verricht binnen het STW Project TSF.6170. Het onderzoek gepresenteerd in het huidige
proefschrift maakt deel uit van hetzelfde projekt.
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Vliescavitatie komt voor op hydrofoils, op impellers van pompen en op scheeps-
schroeven. Om geometrisch complexe configuraties te kunnendoorrekenen en om de
flexibiliteit te behouden om efficient het rekenrooster lokaal te verfijnen in gebieden
met cavitatie, is eenedge-based, eindige-volume methode ontwikkeld. De huidige
rekenmethode kan de caviterende stroming berekenen op ongestruktureerde roosters
die bestaan uit verschillende typen elementen, namelijk vierhoeken en/of driehoeken
in 2D en kubussen, prisma‘s, tetraeders en/of pyramiden in 3D.

Dit onderzoek is uitgevoerd in nauwe samenwerking met de afdeling Maritieme
Techniek van de Technische Universiteit Delft (TUD), waar experimenten zijn uit-
gevoerd aan caviterende stromingen. Binnen deze samenwerking zijn een aantal
hydrofoil-configuraties ontworpen met de huidige numerieke methode. Deze confi-
guraties zijn getest in de cavitatie tunnel van TUD. De belangrijke aspecten van de
dynamica van de vliescaviteit, zoals waargenomen op een vande drie-dimensionale
configuraties, namelijk de 3D Twist hydrofoil, zijn in dit proefschrift samengevat en
gebruikt om de ontwikkelde numerieke methode te valideren.

Het belangrijkste aspect in de formulering van de numeriekemethode is het nu-
merieke schema voor de stroming van een samendrukbare vloeistof, over een groot
bereik van het Mach getal, beschreven door een willekeurigetoestandsvergelijking.
De nadruk ligt op de nauwkeurigheid van het numerieke schemabij lage Mach getallen
en op de formulering van de randvoorwaarden voor de eindige-volume methode
geı̈mplementeerd voor eenedge-basedongestruktureerd rekenrooster.

Schmidt, in de afdeling van Prof. Schnerr aan de TU Munchen, heeft een flux schema
ontwikkeld voor laag-Mach getal stroming. Dit flux schema isgebaseerd op de
oplossing van het Riemann probleem en maakt geen gebruik vanpreconditionerings-
methoden. Schmidt heeft zijn flux schema geı̈mplementeerd in een numerieke meth-
ode voor gestruktureerde rekenroosters. DitRiemann-basedflux schema is in samen-
werking met Schmidt en Prof. Schnerr geı̈mplementeerd in dehuidige edge-based
numerieke methode voor ongestruktureerde rekenroosters.

In het huidige onderzoek zijn de niet-reflecterende in- en uitstroom randvoorwaarden
voor de Euler vergelijkingen, zoals geformuleerd door Thompson voor de toestands-
vergelijking voor een ideaal gas, gegeneralizeerd voor eenwillekeurige toestands-
vergelijking. Verder zijn de vaste wand randvoorwaarden ophet oppervlak van de
hydrofoil opgelegd met de speciaal ontworpenCurvature Corrected Symmetrytech-
niek.
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Om de prestatie van de numerieke methode te bepalen zijn verschillende test gevallen
voor de één-fase stroming van water uitgevoerd. Aan de hand van het één-dimensionale
“Water hamer” probleem en een “Riemann probleem voor vloeistof-stroming” is
gedemonstreerd dat de ontwikkelde numerieke methode het golf karakter van de
oplossing nauwkeurig representeert. De twee-dimensionale stroming rondom een
cirkel-cylinder bij een laag Mach getal is berekend om te illustreren dat de huidige
numerieke methode zo’n stroming nauwkeurig kan berekenen zonder preconditione-
rings methoden te gebruiken. De numerieke resultaten voor de twee-dimensionale
stroming rond NACA secties illustreren de tweede-orde nauwkeurigheid van de hui-
dige methode. Verder is gedemonstreerd dat hybride rekenroosters bestaande uit
meerdere element typen gebruikt kunnen worden, waardoor het rekenrooster vlakbij
het oppervlak van de hydrofoil efficient verfijnd kan worden.De één-fase stroming
van water over de drie-dimensionale Twist11 hydrofoil is berekend om de numerieke
methode te valideren met experimentele resultaten. De drukverdeling op de vleugel
wordt nauwkeurig voorspeld. De voorspelde lift coefficientligt binnen 2% van de
experimenteel gevonden waarde.

Voor stromingen met cavitatie zijn het één-dimensionale“Closing Valve” test geval en
het “twee expansie golven” test probleem beschouwd. De resultaten laten de conver-
gentie en stabiliteit van de ontwikkelde numerieke methodezien. Vervolgens worden
de resultaten voor de caviterende stroming rond twee-dimensionale hydrofoil-secties
gepresenteerd. De resultaten laten zien dat de huidige numerieke methode dere-
entrant jet, het afschudden van de vliescaviteit, het ineen klappen vande afgeschudde
bellen-wolk en het periodieke gedrag, voorspelt.

De instationaire caviterende stroming rond de 3D Twist11 hydrofoil is berekend. De
resultaten van de numerieke methode laten zien dat de ontwikkeling van dere-entrant
flowen de vorming van een caviterendehorse-shoewervel voorspeld kunnen worden.
De berekende resultaten komen overeen met de experimenteleobservaties. Echter, op
dit moment is de benodigde rekentijd te lang om de instationaire periodieke afschud-
ding van de vliescaviteit op drie-dimensionale configuraties lang genoeg numeriek te
onderzoeken.

Vervolgens is de stationaire caviterende stroming rond de geometrisch complexe 3D
Elliptic 11 Rake vleugel met eindige spanwijdte berekend omte demonstreren dat de
huidige methode de vliescaviteit kan voorspellen op een complexe drie-dimensionale
configuratie. De voorspelde vorm van de vliescaviteit komt goed overeen met die
gevonden in de experimenten. Echter, de resolutie van de tipwervel is ontoereikend
om tip-wervel cavitatie te voorspellen. Dit is hoofdzakelijk vanwege numerieke dis-
sipatie in de grote gradienten van de oplossing in de kern vande wervel.
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Binnen het trajekt van het huidige onderzoek zijn ook niet-evenwichts modellen voor
cavitatie onderzocht. Hierbij is de gebruikelijke aanpak gevolgd door aan te nemen
dat de dichtheid van zowel de vloeistof- als de dampfase constant zijn. Om de verge-
lijkingen voor dit model op te lossen, is het JST flux schema toegepast in combinatie
met de preconditionings-methode van Weiss & Smith. Tekortkomingen van het JST
schema in combinatie met cavitatie zijn gevonden alsmede enkele tekortkomingen
van de conventionele modellen voor cavitatie. Meer onderzoek naar niet-evenwichts
modellen is noodzakelijk om tot bevredigende resultaten tekomen.
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INTRODUCTION

1.1 Introduction to numerical simulation of sheet cavitation

Cavitation is the evaporation of a liquid in a flow when the pressure drops below the
saturation pressure of that liquid. The importance of understanding cavitating flows
is related to their occurrence in various technical applications, such as pumps, tur-
bines, ship propellers and fuel injection systems, as well as in medical sciences such
as lithotripsy treatment and the flow through artificial heart valves. Cavitation does
not occur in water only, but in any kind of liquid such as liquid hydrogen and oxygen
in rocket pumps or the lubricant in a bearing. The appearanceand disappearance of
regions with vapor is a major cause of noise, vibration, erosion and efficacy loss in
hydraulic machinery. In many technical applications cavitation is hardly avoidable
at all operating conditions. When it occurs it needs to be controlled. Therefore, one
needs detailed insight in the mechanisms that govern the cavitation phenomena.

There are several types of cavitation. Distinct appearances of cavitation are: sheet
cavitation, bubble cavitation and vortex cavitation. The present thesis concerns the
dynamics and structure of sheet cavitation. Sheet cavitation occurs on hydrofoils,
on blades of pumps and propellers, specifically when the loading is high. This type
of cavitation can usually not be avoided, because of high efficiency requirements.
The dynamics of sheet cavitation often generates strong pressure fluctuations due to
the collapse of shed vapor structures, which might lead to erosion of surface material.

Sheet cavitation is often called “fully-developed”, “attached” or “blade” cavitation.
They are all terms for the same large-scale cavitation structure. There are a number
of closely related important aspects to sheet cavitation:

• Shape and volume of the cavity. The topology of a sheet cavityis strongly
related to the load distribution of the lifting object and thus to the pressure
distribution on the object in the flow. Variations in volume cause pressure fluc-
tuations in the liquid that might lead to strong vibrations of nearby structures.
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FIGURE 1.1: Sheet cavitation on 2D hydrofoil. Photo taken by Foeth.

• Re-entrant flow at the closure region of sheet cavity. The re-entrant and side-
entrant flow dictate the behavior of the shedding of the cavity sheet. The shape
of the closure region of the cavity sheet dictates the direction of the re-entrant
and side-entrant jets.

• Shedding and collapse of vapor structures. The break-up of asheet cavity
causes a vortical flow of bubbly vapor clouds to be convected to regions with
higher pressure. Here, these clouds collapse resulting in strong pressure pulses
leading to unsteady loads of nearby objects as well as noise production and
possible erosion of surface material.

Since the 1990s numerical methods using the Euler or Navier-Stokes equations have
been developed to simulate cavitating flows. The development of these methods has
been advancing quickly in recent years, but they are still considered to be in a de-
veloping stage. The main problem in the numerical simulation of multi-dimensional
unsteady cavitating flow is the simultaneous treatment of two very different flow re-
gions: (nearly) incompressible flow of pure liquid in most ofthe flow domain and
low-velocity highly compressible flow of (pure) vapor in relatively small parts of the
flow domain. In addition, the two flow regimes can often not be distinguished that
clearly, for example in the transition region between vaporand liquid, i.e. the mixture
region of liquid and vapor.

Furthermore, unsteady three-dimensional cavitating flow calculations require sub-
stantial computer resources both in terms of memory and speed. Also, meshes with
appropriate high-resolution mesh density in the cavitating flow region are necessary.

In the present research a numerical method for solving the Euler equations for 3D
unsteady cavitating flow is developed. The accurate prediction of the direction and
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momentum of the re-entrant and side-entrant jets and their impingement on the cav-
ity surface form the indispensable basis of an accurate prediction of the shedding of
the cavity sheet. The direction and momentum of the re-entrant jets are all thought
to be inertia driven, so it is expected that a mathematical model based on the Euler
equations is able to capture the major structure of sheet cavitation.

1.2 Brief history on cavitation research

Research on cavitation dates back to the days of Euler (1754)who observed the oc-
currence of cavitation in high speed water flow during his studies on rotating flow ma-
chinery. The word cavitation has been introduced by Froude who described the voids
filled with vapor as cavities [191]. In 1895 Parsson was amongst the first to observe
the negative effects of cavitation on the performance of a ship propeller [112, 196].
He was the first to build a cavitation tunnel to investigate the problems due to cav-
itation experienced on the propeller on the shipTurbinia. The cavitation number
σ ≡ p∞−pv

1

2
ρ∞U2

∞
was introduced by Thoma in 1923 [74, 112] in the context of theexper-

imental investigation on water turbines and pumps.

In order to study the physical aspects of cavitation many experiments have been car-
ried out throughout the years. Theoretical and numerical approaches followed soon
with two main areas of research [74]: bubble dynamics and developed- or supercavi-
ties.

A large body of work has been published on bubble dynamics. Wemention, amongst
many others, Rayleigh (1917) [134] and Plesset (1949) [147], after whom the Rayleigh-
Plesset equation is named which describes the temporal evolution of the radius of a
vapor bubble in an incompressible, viscous liquid. The evolution is driven by effects
of pressure variations and surface tension.

The field of developed cavities started more than a century ago, e.g. Helmholz (1868)
[89, 112] and Kirchhoff (1869) [24, 111], with the work on free-streamline theory or
wake theory by using conformal mapping techniques or the non-linear hodograph
technique. Birkhoff & Zarantello [24] described the hodograph technique in detail,
see also Wu [222]. Wu points out that this theory can only be used for cavitating flow
around simple geometries like bluff bodies and flat plates, but can not be used for
cavitating flow around arbitrary bodies like hydrofoils or propeller blades. In 1953
Tulin [29, 197] applied linearization procedures to the problem of the flow about a
supercavitating symmetric profile at zero angle of attack and zero cavitation number.
Since then many researchers have extended the linear theoryto flows around arbitrary
bodies at any cavitation number.
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The introduction of computers in the 1970s brought about a large number of numer-
ical methods based on linear theory, which has been extendedto three-dimensional
flow problems by the use of lifting surface theory. Most lifting surface theory meth-
ods deal with sheet cavitation by imposing a transpiration type of (linearized) bound-
ary condition on the solid surface below the sheet cavity. The advantages of lifting
surface methods are their short computation times, enabling fast assessment and im-
provement of designs. The drawback of linear theory is that for partial cavity flows
around hydrofoils it predicts that the length and volume of acavity will increase when
the thickness of the hydrofoil is increased, which contradicts experimental observa-
tions. Also for unsteady sheet cavitation the dynamic motion of a sheet cavity is not
predicted [50] and linearized theory has a limited ability to describe complex flows
with enough accuracy [3].

Boundary element methods (also referred to as boundary integral methods or panel
methods) provided the possibility to consider the flow aboutgeometrically complex
bodies and to treat the full non-linear boundary conditionson the sheet cavity inter-
face. These methods are based on the potential flow hypothesis, in which the cavity
interface is represented by a streamline of constant pressure. The cavity surface is
iterated until both the kinematic and the dynamic boundary condition are satisfied
at the cavity surface [50, 206]. However, this model for cavitating flow requires an
artificial closure model for the cavity detachment point near the leading edge and
one at the end of the cavity sheet. Uhlman [203] (1987) was amongst the first to
solve a partial cavity flow on two-dimensional hydrofoils. De Lange [55] introduced
a method for the unsteady two-dimensional flow coupled to a re-entrant jet cavity
closure model. Dang & Kuiper [51] and Dang [50] extended thismethod to steady
cavitating flow about three dimensional hydrofoils. Nowadays, these methods have
become well established due to their matured stage and theirability to predict fully
three-dimensional unsteady cavitating flows, e.g. Kinnas [110] and Vaz [206]. How-
ever, it remains difficult to predict the detachment and closure of the sheet cavity,
which have a strong influence on the topology and dynamics of the sheet cavity. Fur-
thermore, these methods are difficult to extend to more complex physical phenomena
such as the shedding of the sheet cavity and vorticity-dominated flow such as the tip
vortex cavitation. The tracking of the liquid-vapor interface becomes a challenging
task, because of splitting and merging of the main vapor structures and very fast va-
porization and condensation phenomena.

A different approach to simulate cavitating flows emerged inthe 1990s. Methods
using the Euler or Navier-Stokes equations were developed together with a transport
equation for the void fraction, with two-phase flow equations or with other cavitation
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closure model equations. As classified by the 22nd ITTC special committee in 1999
[3] these approaches can be grouped into a number of categories. 1) Interface tracking
methods 2) Volume of Fluid methods 3) Discrete bubble methods and 4) Two-phase
flow methods. These methods are discussed in chapter 3. It must be noted that the
distinction between some of these groups is not always completely clear and that
combinations of the categories are used by different authors. Furthermore, numerical
methods exist which use a combination of the lifting surfaceor boundary element
method together with a method based on the Euler or Navier-Stokes equations.

1.3 Objective of present research

The overall objective of the project is to determine a model for the description of the
dynamics of three-dimensional sheet cavitation as it occurs on hydrofoils. The aim
of this thesis is to develop a numerical method employing theEuler equations for
3D unsteady flow for simulating cavitating flows. The numerical method features the
following aspects:

• Three-dimensionality. The configurations with cavitatingflow to be considered
are three-dimensional or display a three-dimensional flow.Future applications
may include flows in pumps and the flow about ship propellers.

• Compressibility. In unsteady cavitating flows strong pressure waves are gen-
erated. These waves have a strong impact on the cavitation intensity, i.e. on
erosion damage. Therefore, it is necessary to treat the wavedynamics quanti-
tatively correct, especially in the liquid phase.

• Unsteady flow conditions. Cavitating flows feature highly unsteady flow be-
havior, even under uniform inflow conditions.

• Low-Mach number flows. Numerical methods for density-basedflow models
are known to experience difficulties for low-Mach number flowconditions. In
industrial applications the flow speeds of water are low withrespect to the
speed of sound in water. Therefore, a proper treatment of thenumerical flux
schemes is essential to simulate these low-Mach number flows.

• Unsteady in- and outflow boundary conditions. Constant pressure boundary
conditions have a strong impact on cavitation dynamics, butthey are very rare
in experimental and industrial applications. Together with the self-excited peri-
odic oscillations in the unsteady cavitating flow regime, the accurate treatment
of non-reflective unsteady in- and outflow boundary conditions is essential.
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• Edge-based finite volume method. Unstructured grids allow the treatment of
geometrically complex configurations and the flexibility toefficiently refine
grids locally.

In this thesis the equilibrium cavitation model for cavitating flows is implemented
into an edge-based finite-volume method for three-dimensional, unsteady, compress-
ible flow. The main questions to be addressed are:

• Can the dynamics and structure of three-dimensional sheet cavitation be pre-
dicted?

• Can the re-entrant jet be predicted?

• Is the shedding of the cavity sheet captured correctly?

• Can the collapse of the shed vapor structures be predicted?

• Can the unsteady loads on objects in the flow and the unsteady pressure wave
dynamics be calculated?

The present research has been conducted in the framework of aSTW project in
close cooperation with the Department of Maritime Technology at Delft University
of Technology. Foeth [67] has carried out experiments for steady and unsteady in-
flow conditions in the Delft cavitation tunnel for three-dimensional sheet cavities.
His main objectives were:

• to provide a better insight in the physical mechanisms of thedynamics of sheet
cavitation.

• to provide a detailed and accurate database of benchmark tests for the valida-
tion of computational methods.

Within the collaborative research project various hydrofoil geometries have been
designed and tested in the cavitation tunnel. These configurations include the 3D
Twist11 hydrofoil and the Twisted Eppler hydrofoil, see Koop et al. [113], Foethet
al. [67, 69] and appendix D.

1.4 Outline of thesis

Chapter 2 provides an overview on the physical aspects of sheet cavitation as it oc-
curs on a hydrofoil. In some detail we discuss the dynamics ofthe sheet cavity on the
3D Twist11 hydrofoil as found by Foeth [67] in his experiments. The importance of
the three-dimensionality of the shape of the cavity and the direction of the re-entrant
jet is explained followed by the description of the physicalaspects of phase change
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of water.

Chapter 3 provides an overview on the mathematical models for cavitation. An in-
ventory of existing models is given followed by the description of the equilibrium
cavitation model chosen for the implementation in the numerical method. Further-
more, the homogeneous mixture equations are derived and appropriate equations of
state for compressible liquid flows are discussed.

Chapter 4 presents an overview of numerical methods based onthe Euler equations
for compressible flows. The focus is to address the critical aspects of simulating the
flow of a compressible fluid within a wide range of Mach numbersfor fluids with an
arbitrary equation of state employing an unstructured edge-based finite-volume com-
putational mesh. The treatment of the boundary conditions is considered in detail.
In the present work the treatment of Thompson [190] using theideal gas law as the
equation of state, is generalized for an arbitrary equationof state.

In chapter 5 numerical solutions for compressible single-phase water flow are con-
sidered. The one-dimensional “Water Hammer” and “Riemann problem for liquid”
are test cases considered to demonstrate the wave-capturing ability of the numerical
method. The low-Mach number flow over a two-dimensional cylinder is calculated to
illustrate the capability to calculate steady-state low-Mach number flows. To assess
the performance and the order of convergence of the numerical method the water flow
about two-dimensional NACA sections is considered. The single-phase water flow
over the three-dimensional Twist11 hydrofoil is presentedto validate the numerical
method using the experimental results of Foeth [67].

In chapter 6 results of numerical simulations for cavitating flows are presented. First,
one-dimensional test cases are considered to assess the convergence and stability of
the numerical method for cavitating flows. Then, the resultsof the two-dimensional
test case of Sauer [162] about a 2D NACA 0015 at6◦ angle of attack are presented to
verify the results of the numerical method. The cavitating flow about the 3D Twist11
hydrofoil is calculated to compare the results with the experiments of Foeth [67]. The
formation of the re-entrant flow and the formation of a cavitating horse-shoe vortex
are discussed. Lastly, the steady-state cavitating flow about the 3D Elliptic 11 Rake
hydrofoil is simulated to illustrate the capability of the present edge-based numerical
method to predict the cavitation pattern occurring in the flow about a complex geom-
etry in comparison to the experimental results of Van der Hout [204].

The conclusions and discussion of the present thesis are formulated in chapter 7 and
recommendations for future research are given.
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SHEET CAVITATION

In this chapter the physical aspects of sheet cavitation arediscussed. First, an intro-
duction to the types of cavitation is presented and relevantdimensionless numbers
are introduced. Then, the physical aspects of sheet cavitation on the 3D Twist11 hy-
drofoil are described. In the discussion emphasis is given to the three-dimensionality
and the dynamics of the sheet cavity. Finally, the phase change of water is discussed.

2.1 Types of cavitation

When the phase change occurs in flowing liquids, e.g. a decrease of the pressure
below the saturation pressure due to an expansion of the fluid, we speak of hydro-
dynamic cavitation. On the other hand, acoustic cavitationmay occur in a quiescent
or nearly quiescent liquid. When an oscillating pressure field is enforced on a liquid
medium, cavitation bubbles may appear within the liquid when the oscillation am-
plitude is large enough. Naturally, hydrodynamic cavitation and acoustic cavitation
may occur at the same time.

Cavitation can take different forms as it develops from its inception. In case the
pressure is mostly above the saturation pressure, cavitation is strongly dependent on
the basic non-cavitating or fully-wetted flow. As cavitation develops, the vapor struc-
tures disturb and modify the flow and a new often unsteady flow pattern evolves.
Cavitation patterns can be divided into different groups [74]:

• Bubble or “traveling” cavitation. Bubbles may appear in regions of low pres-
sure and low pressure gradients as a result of the rapid growth of small air
nuclei present in the liquid. The bubbles are carried along by the flow and
disappear when they enter a region with higher pressure.

• Attached or sheet cavitation. When a low pressure region is formed near the
leading edge of a streamlined object in the flow, the liquid flow separates from
the surface and a pocket of vapor is formed.
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• Cloud cavitation. When a vapor sheet detaches from the surface and is advected
with the flow, a region with a large number of vapor structuresis formed. This
region is usually called cloud cavitation, although it consists of a vortical flow
region with many vapor bubbles. This type is usually erosivewhen collapsing
near a surface.

• Vortex cavitation. In the low-pressure core of vortices thepressure may be low
enough for cavitation to occur. This type of cavitation is often found at the tip
of lifting surfaces and is therefore also denoted by tip vortex cavitation.

• Shear cavitation. In regions with high shear vorticity is produced. As a re-
sult coherent rotational structures are formed and the pressure level drops in
the core of the vortices, which become potential sites for cavitation. Flow sit-
uations with shear cavitation can be found in wakes, submerged jets at high
Reynolds number and separated flow regions which develop on foils at large
angles of attack.

For an overview of bubble cavitation see Brennen [29], for vortical cavitation see
Arndt [15] and for sheet cavitation see Franc [70, 74].

(a) (b)

(c) (d)

FIGURE 2.1: Cavitation patterns (a) Traveling bubble cavitation (b) Attached or
sheet cavitation (c) Tip vortex cavitation (d) Shear cavitation. Taken from Franc
[71].
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2.2 Dimensionless numbers

To facilitate the discussion in this chapter and further on in the thesis, relevant di-
mensionless numbers are introduced.

2.2.1 Cavitation numberσ

The dimensionless cavitation numberσ was introduced by Thoma, see Knapp [112].
The number is a measure for the sensitivity of the flow for cavitation to occur and is
useful to facilitate the comparison of results of experiments and numerical simula-
tions. The cavitation numberσ is defined as:

σ ≡ p∞ − psat(T )
1
2ρ∞U

2
∞

, (2.1)

wherep∞ [Pa], ρ∞ [kgm−3] andU∞ [ms−1] are the free-stream pressure, free-
stream density and free-stream velocity, respectively, and wherepsat(T ) is the satu-
ration pressure of water at temperatureT [K]. Note that a higher cavitation number
indicates that the pressure in the flow must decrease more before cavitation occurs.
A smaller cavitation number indicates that a smaller decrease in pressure causes cav-
itation. Thus, a low cavitation number corresponds to a highsusceptibility for cavi-
tation.

2.2.2 Void fraction α

The void fractionα within a volumeV [m3] of a fluid follows from the fluid density
ρ = αρv,sat(T ) + (1 − α) ρl,sat(T ) as

α ≡ Vv
V

=
ρ− ρl,sat(T )

ρv,sat(T ) − ρl,sat(T )
, (2.2)

whereVv [m3] is the volume of vapor within the volumeV of the fluid and where
ρv,sat(T ) [kgm−3] andρl,sat(T ) [kgm−3] are the saturated vapor and liquid density
at temperatureT , respectively.

Experimentally, it is very difficult to determine the void fraction at any location in
the flow. Numerically, the void fraction is used for visualization and analysis pur-
poses. Employing the equilibrium cavitation model the determination of the void
fraction is just a post-processing step evaluating equation (2.2).

2.2.3 Reynolds numberRe

The Reynolds number is the ratio of inertial forces to viscous forces and thus it quan-
tifies the relative importance of these two type of forces given the flow conditions.
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The Reynolds numberRe is defined as:

Re ≡ ρ∞U∞L

µ∞
=
U∞L

ν∞
, (2.3)

whereρ∞ is the density of the fluid,U∞ a characteristic velocity of the flow,L a
characteristic length scale [m], µ∞ the dynamic fluid viscosity [Pas], and ν∞ =
µ∞/ρ∞ is the kinematic fluid viscosity [m2 s−1]. The flow about a hydrofoil of
chord lengthc = 0.15m of pure water∗ at saturation pressure and at a velocity of
U∞ = 10–50ms−1 has a Reynolds number within the range ofRe = 1.5–7.5×106.
The thicknessesδ and δ̄ of a fully developed laminar and turbulent boundary layer
above a flat plate of lengthx can be estimated to be equal to [176]

δ

x
=

5√
Rex

, or
δ̄

x
=

0.370
5
√
Rex

, (2.4)

respectively, withRex = ρUx/µ. Consider a hydrofoil of chord length 0.15m, for
water the laminar and turbulent boundary layer thickness can be found equal toδ =
6.1×10−4 m and δ̄ = 3.2×10−3 m, respectively, illustrating the thin boundary
layers in a water flow. Furthermore, Franc & Michel mention that the influence of
the Reynolds number on cavitation is not significant, see also Knapp [112]. In section
2.3.4 the role of viscosity is explained in more detail.

2.2.4 Strouhal numberSt

The Strouhal numberSt is employed to quantify the oscillating frequency in unsteady
flows. For cavitating flows the Strouhal numberSt is defined by:

St ≡ fℓ

U∞
, (2.5)

wheref [Hz] is the cavity shedding frequency,ℓ is the mean cavity length [m] and
U∞ is the free stream velocity. Often, it is difficult to accurately obtain a mean cavity
length for unsteady cavitation. So, for convenience we define a different Strouhal
numberStc based on the chord lengthc of the foil instead of on the mean cavity
length:

Stc ≡
fc

U∞
. (2.6)

∗The dynamic viscosities of vapor and water atT = 293 K and saturation pressurep = psat(T ) =
2.3×103 Pa, are equal toµv = 9.72×10−6 Pas and µl = 1.0053×10−3 Pas, respectively [1].
The corresponding kinematic viscositiesν = µ/ρ of vapor and water are equal toνv = 5.67×10−4

m2 s−1 and νl = 1.01×10−6 m2 s−1. Note that atT = 293 K and p = 2.3 × 103 Pa the vapor
and liquid density are equal toρv = 0.017 kgm−3 andρl = 998.19 kgm−3 [1], respectively. The
dynamic viscosityµl of water atT = 293K andp = 105 Pa is equal toµl = 1.0053×10−3 Pas.
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2.2.5 Pressure coefficientCp, lift and drag coefficients

The dimensionless pressure coefficientCp is defined as

Cp ≡
p− p∞
1
2ρ∞U

2
∞

, (2.7)

with p the local pressure in the flow field, and wherep∞, ρ∞ andU∞ are the free-
stream pressure, the free-stream density and the free-stream velocity, respectively. In
the following we usually employ the−Cp coefficient.

Neglecting skin friction, the drag and lift forces can be obtained from

~F =

∫

S

p~ndS, (2.8)

with S surface of the object,p the pressure on the surface of the object and~n the unit
normal pointing into the object, i.e. out of the computational domain. In 2D we will
use lower-case symbols, i.e.

~f =

∫

C

p~ndC, (2.9)

withC the closed curve of the object. For two-dimensional flow about a 2D geometry
the lift force ℓ per unit length in span-wise direction is equal to the component of
~f in the direction normal to the free-stream, which in our caseis fy. For three-
dimensional flow the lift forceL is equal toFz. The drag forced per unit length in
span-wise direction and the drag forceD are equal tofx andFx for two-dimensional
or three-dimensional flow, respectively. The dimensionless lift CL, cl and dragCD,
cd coefficients are defined as

CL ≡ L
1
2ρ∞U

2
∞S

, cl ≡
ℓ

1
2ρ∞U

2
∞c

, (2.10)

CD ≡ D
1
2ρ∞U

2
∞S

, cd ≡
d

1
2ρ∞U

2
∞c

, (2.11)

whereS is the projected surface area of the object andc the chord length of the body.

2.2.6 Mach number

The Mach numberM is defined as the ratio between the magnitude of the fluid ve-
locity |~u| and the speed of sound in the fluid:

M ≡ |~u|
c

, (2.12)

where~u is the velocity andc is the speed of sound [ms−1].
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2.3 Sheet cavitation on a hydrofoil

The main focus of the present research is the cavitating flow around a stationary hy-
drofoil, placed in a steady uniform flow. Depending on the operating conditions many
types of cavitation can be observed on a cavitating hydrofoil: bubble-, sheet-, cloud-
and vortex cavitation.

A vapor sheet is attached to the leading edge of a body on the low-pressure side,
termed “suction side”. Near the leading edge a vapor cavity or sheet is formed and
the liquid flow is detached. Franc & Michel [72, 73] and Leet al. [123] investigated
the dependence of the behavior, the length and the thicknessof the vapor sheet as a
function of the cavitation numberσ and the angle of attackα of a 2D hydrofoil.

FIGURE 2.2: Observed cavitation patterns on a 2D NACA 16012 hydrofoil asa
function of the angle of attackα and the cavitation numberσ. Taken from Franc &
Michel [73], note thatσv is the cavitation number defined asσ in equation (2.1).

Franc & Michel [72] investigated the cavitation patterns ona 2D NACA 16012 hydro-
foil. They mention that for this relatively thin hydrofoil the influence of the Reynolds
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number on cavitation is not significant. For cavitating flow they observed different
regions in theα–σ plane corresponding to different cavitation patterns, seefigure 2.2.
At low angle of attack and high values forσ cavitation does not occur. Keeping the
cavitation number high, but increasing the angle of attack,results in a partial cavity
on the suction side of the hydrofoil. Further increases in the angle of attack result in
a two-phase cavity and for very high angle of attack in so-called shear cavitation. For
low cavitation numbers and low angle of attack the cavity detachment occurs at the
aft part of the foil.† For higher angles of attack the detachment moves upstream and
becomes three-dimensional as visible in figure 2.2. For evenhigher angles of attack,
i.e. α > 6◦ andσ < 0.3, the sheet cavity extends beyond the trailing edge of the
hydrofoil, which is called supercavitation.

Le et al. [123] utilized a cavitating foil with a geometry consisting of a flat upper
side and circular arc as its lower side. Keeping the lengthℓ of the sheet on the upper
surface constant and varying both angle of attackα and cavitation numberσ, they
found a linear dependence of the thickness of the sheet on thecavitation numberσ.
Furthermore, they found a unique curve, relating the non-dimensional lengthℓ/c of
the sheet cavity, withc the chord length of the hydrofoil, versus the non-dimensional
parameterσ/(α − αi(σ)) whereαi(σ) corresponds with the angle of attack without
cavitation at that cavitation number. They also found that for their foil the Strouhal
numberS = fℓ/U at which the sheet cavity was shed, was nearly constant, i.e.
S ≈ 0.28, wheref is the shedding frequency of the sheet cavity,ℓ is the maximum
length of the sheet andU the free-stream velocity.

When a vapor sheet is formed the minimum pressure on the foil equalspsat(T ),
which occurs inside the cavity itself, so the curvature of the surrounding streamlines
tends to be directed towards the cavity see figure 2.3. Downstream of the sheet, the
flow re-attaches to the hydrofoil and thus splits the liquid flow into two parts:

• the re-entrant jet, which travels upstream along the foil’ssurface carrying a
small quantity of liquid to the inside of the cavity,

• the outer liquid flow, that reattaches to the wall.

Both parts of the liquid flow are separated by a streamline that, if the flow were
steady, would meet the wall perpendicularly at a stagnationpoint. However, if this
flow were steady, the cavity would be filled with liquid rapidly.

†In this experiment leading edge roughness was not applied. At low Reynolds numbers the sheet
develops in laminar separation regions, which may be located near the trailing edge for low angles of
attack. This does not occur in situations at higher Reynoldsnumber for which a turbulent boundary
layer develops.
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Cavity

Re-entrant jet

∇p

p = psat(T )

FIGURE 2.3: Closure region of the cavity sheet. Reconstructed from Franc & Michel
[74].

The re-entrant jet moves upstream towards the leading edge along the surface of
the foil underneath the vapor sheet. At some point the re-entrant jet impinges on
the liquid-vapor interface, which can be at the leading edgeif the re-entrant jet has
enough momentum and if the sheet is thick. This leads to separation or shedding of
part of the cavity which is then advected by the main flow in downstream direction.
The re-entrant jet gives rise to a circulatory flow pattern directed around the sheet
cavity. Therefore, at the instant of shedding, circulationexists around this vapor
structure, which takes the form of a region with spanwise vorticity above the surface.

(a) (b)

(c) (d)

(e) (f)

FIGURE 2.4: The break-off cycle, schematic view. (a) Start of the cycle,vapor sheet
is growing, bubble cloud from previous shedding is convected with the flow. (b)
Sheet reaches maximum extent, re-entrant jet starts to form. (c) Re-entrant moves
upstream. (d) Re-entrant jet impinges on the cavity surface, vapor cloud sheds from
main structure. (e) Vapor cloud is convected with the flow, circulation is present
around the vapor cloud. (f) Vapor cloud collapses, vapor sheet grows from leading
edge. Reconstructed from De Lange & De Bruin [56].
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The shed vapor structure may be broken into smaller vapor structures such as bubbles
or cavitating vortices, which may collapse in regions with higher pressure. After
the shedding of the vapor cloud, a new cavity develops and a new re-entrant jet is
formed. This repeating shedding process, that is mainly controlled by inertia [74], can
be either random or periodic depending on the operating conditions. The shedding
process is illustrated in figures 2.4(a)–(f) taken from De Lange & De Bruin [56].

2.3.1 Three-dimensionality

In the past cavitation patterns have been observed for two-dimensional geometries
such as 2D hydrofoils, see Astolfiet al. [17] and a backward facing step, see Cal-
lenaereet al. [33]. Despite the two-dimensional geometry of the object in the flow,
the cavitation sheet was often found to shed vapor clouds irregularly both in time
and in space, leading to a three-dimensional flow field. De Lange & de Bruin [122]
predicted that the spanwise component of the velocity alongthe closure line of the
sheet cavity should remain constant, see also the thesis of de Lange [55]. Hence, the
re-entrant jet should simply be reflected at the closure lineand be directed sideways
as illustrated in figure 2.5.

~uincident
~uincident

~ujet

~ujet
CavityCavity
closureclosure
lineline

FIGURE 2.5: Reflection of incident flow by the closure line of the sheet cavity. The
flow is from left to right. Reconstructed from De Lange & De Bruin [56].

Labertaux & Ceccio [121] showed that the leading-edge sweepof the hydrofoil has a
significant effect on the topology of the cavity and on the direction of the re-entrant
jet. The importance of the re-entrant jet was further demonstrated by Kawanami
[108] who blocked the re-entrant jet and showed that the cavitation shedding behavior
changed significantly. When two sideways reflected re-entrant jets collide, the fluid
is ejected upwards hitting the cavity interface and causinglocal shedding of the sheet
cavity. The closure line of the cavity then becomes even morethree-dimensional re-
sulting in highly three-dimensional structures. From these and other experiments it
has become clear that the form and the stability of the sheet cavity is very dependent
on the three-dimensional geometry of the foil.
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Dang & Kuiper [50, 51] designed a twisted foil configuration to localize the three-
dimensional effects. The direction of the re-entrant jet was found to be strongly
influenced by the cavity topology. In their case the cavity shape was determined by
the variation in the spanwise distribution of the loading ofthe foil and not by sweep
angle. The foil spanned the tunnel from wall to wall. The variation in the spanwise
loading was accomplished by the distribution of the twist angle of the foil, which
was high in the center and zero at the tunnel walls. Based on the geometry of the foil
of Dang, a new twisted hydrofoil denoted by 3D Twist11 hydrofoil, see Foethet al.
[68], Koop et al. [113] and appendix D was designed with a clear and controllable
three-dimensional sheet cavity on a relatively simple two-dimensional like configu-
ration.

The 3D Twist11 hydrofoil spans the cavitation tunnel from wall-to-wall and is sym-
metric with respect to its mid-span plane. The foil has a spanwise varying geometric
angle of attack (twist) from0◦ at the tunnel wall to11◦ at mid-section. This avoids
the interaction of the cavitation sheet with the boundary layer along the tunnel wall.
In section 5.7.1 a full description of the 3D Twist11 hydrofoil is presented. In the
central part of the foil a three-dimensional sheet cavity forms with a planform that is
symmetric with respect to the mid-section plane. A top view of the sheet cavity on
the twisted foil is presented in figure 2.6 obtained from Foeth [66].

LE

TE

FIGURE 2.6: Top view of sheet cavitation on 3D Twist11 hydrofoil obtained from
Foeth [66]. Flow is from top to bottom, LE is leading edge, TE is trailing edge.
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2.3.2 Dynamics of the vapor sheet on 3D Twist11 hydrofoil

Foethet al. [68] carried out experiments for the 3D Twist11 hydrofoil in steady and
unsteady inflow conditions in the cavitation tunnel at DelftUniversity, see also Foeth
[67]. Their focus was to generate sheet cavities that are three-dimensional in char-
acter similar to ones that occur on ship propellers. In figures 2.7(a)–(t), taken from
Foethet al. [69], the process of the vapor shedding is presented. The shedding is
periodic, constant in its shedding frequency, and always includes the same macro
structural collapse [68]. In figure 2.7(a) the attached cavity has reached its maxi-
mum length. Due to the spanwise variation of the twist angle the sheet cavity is
three-dimensional and the closure line of the cavity is convex-shaped. The chord-
wise striations originating close to the leading edge are due to roughness elements
positioned at the leading edge. At the closure line of the vapor sheet a re-entrant
jet develops which moves in upstream direction along the surface of the foil into the
vapor structure. At both sides of the mid-section plane the re-entrant jet is directed
towards the plane of symmetry.

In the center plane the re-entrant flow from port side and thatfrom starboard side
collide and at this location the cavity quickly changes froma smooth vapor sheet into
a cloudy region which detaches from the main structure, see figures 2.7(b)–(h). At
the aft end of this structure a vaporous horse-shoe vortex develops. This structure,
presumably induced by the colliding side-entrant jets thatforce the water flow up-
wards, can be followed to figure 2.7(n). The vapor cloud is advected by the main
flow and collapses in the region with higher pressure on the aft part of the foil, see
figures 2.7(i)–(t). In the final images of the collapse of the vapor cloud a distinct
second, somewhat larger vaporous horse-shoe vortex or ring-vortex like structure is
observed, see figures 2.7(q)–(t). This process is repeated on a smaller scale at the two
crescent-shaped side-lobes in figures 2.7(i)–(r). In figures 2.7(q) and 2.7(r) a similar,
but smaller-scale vortical structure is formed at either side of the center plane due to
this secondary shedding process.

Foethet al. [69] showed that the re-entrant jet entering the sheet cavity determines
the shedding mechanism of the sheet. To distinguish betweenvarious directions of
the re-entrant flow, Foeth introduced the term side-entrantjet, which refers to that
part of the re-entrant jet originating from the sides of the cavity sheet.‡ This jet has
a strong span-wise velocity component. They reserved the term re-entrant jet for the
case this jet originates from that part of the cavity where the closure is more or less
perpendicular to the main flow and thus is mainly directed upstream.

In figure 2.8(a) the streamline topology on the cavity surface as given by Foethet

‡For the 3D Twist hydrofoil the side-entrant jets are directed towards the center plane of the foil.
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(a) (b) (c) (d)
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FIGURE 2.7: Shedding cycle on Twist 11 foil,U∞ = 4.96ms−1 ± 6.4%, α = 1◦,
σ = 0.66 ± 7.94%. Shown is every 7th frame of a 2000 Hz recording,i.e. the time
between two frames is3.5×10−3 s. Flow is from top to bottom. (a)–(d) Development
of re-entrant jet directed towards plane of symmetry. (c)–(f) Shedding starts in center
of sheet (e)–(p) Primary shedding, cavity center (p)–(t) Secondary shedding (cavity
sides) (q)–(t) Growth of sheet. Taken from Foeth et al. [69],see also the thesis of
Foeth [67].
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al. [69] is reproduced. At the closure of the cavity the streamlines are directed into
the vapor sheet. Note the difference between the re-entrantjet and the side-entrant
jet. When the sheet is growing the side-entrant jets from both sides are directed into
the closure region of the sheet. In the center plane of the sheet cavity the two side-
entrant jets collide and the fluid is ejected upward through the vapor-liquid interface
causing the shedding of part of the vapor sheet and the formation of the horse-shoe
vortex, that subsequently is convected by the main flow.

(a) (b)

(c) (d)

(e)

FIGURE 2.8: Sketches of the re-entrant flow (a) Streamlines over the cavity sheet
are directed inward. (b) The side-entrant jets collide in the center plane, part of
the re-entrant flow impinges on the interface of the cavity sheet causing the primary
shedding, part of the side-entrant flow is reflected towards the center of the side lobes.
(c) Process of shedding of (a) and (b) is repeated in side-lobes. (d) Re-entrant flow
approaches leading edge. (e) Cavity sheets grows. Reproduced from Foeth et al.
[69], see also thesis of Foeth [67].

In figure 2.8(b) the re-entrant jet is still traveling upstream and the side-entrant jets
are reflected away from the center plane. After the shedding of the vapor structure
the side-entrant jets in the side-lobes are directed towards each other, as presented in
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figure 2.8(c), causing the secondary shedding when these twojets meet, see figures
2.7(i)–(q). Foeth mentions that the mechanism of the secondary shedding does not
seem to be different from that of the primary shedding.

As presented in figure 2.8(e), the remaining cavity has a reasonably convex shape
of its closure line with two concave regions. Side-entrant flow appears at either side
of these latter regions. In the short period of converging side-entrant jets the cavity
grows into its convex shape again before the whole cycle is repeated. Foeth mentions
that the re-entrant jet directed towards the foil’s leadingedge in figure 2.8(e) does not
always visibly disturb the vapor interface at the leading edge and thus does not seem
to cause the detachment of the complete structure.

In summary, Foethet al. [69] conclude that the re-entrant flow from the sides dic-
tate the behavior of the shedding cycle and that the flow from the sides depends on
the cavity shape. The re-entrant flow reaching the leading edge appears not to be the
only cause for shedding.

2.3.3 Collapse of the vapor cloud

The break-up of a sheet cavity results in bubbly vapor clouds, containing vortical
structures, that are convected into regions of higher pressure. Here these clouds col-
lapse leading to strong pressures pulses [172]. During thisprocess, the hydrofoil
experiences high-frequency unsteady loads. This may lead to noise production and
possibly erosion of the foil’s surface. To capture these unsteady wave dynamics in
the flow it is essential to consider water as a compressible liquid.

In the literature the collapse mechanism of a single isolated bubble has been stud-
ied both theoretically and experimentally. Experimental observations on the collapse
of a single bubble as well as a bubble cloud demonstrate that violent radiated pressure
waves occur with amplitudes of the order of 100bar, see for example Fujikawa &
Akamatsu [75]. Reismannet al. [158] experimentally investigated the break-up and
collapse of sheet and vortex cavities and observed strong pressure pulses on the sur-
face. Furthermore, they suggest that shock dynamics is responsible for the damage
to surfaces and the generation of noise observed in many cavitating flows. Within the
medical application of shock-wave lithotripsy these high pressure pulses are used to
destruct kidney stones, see Ikedaet al. [103]. Johnsonet al. [107] investigated this
phenomenon numerically.

Schmidtet al. [169] developed a numerical method to predict the formation and
propagation of shocks and rarefaction waves related to the collapse of vapor regions
in cavitating flows. With their compressible flow simulationof the governing equa-
tions they indeed reproduced the unsteady loads on hydrofoils. The main focus of
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the present research is aimed at predicting the global behavior of the vapor sheet as
described in section 2.3.2. However, we will show that with the developed numeri-
cal method it is also possible to calculate the high pressurepulses generated by the
collapsing vapor clouds and the subsequent unsteady wave dynamics.

2.3.4 Role of viscosity

The accurate prediction of the direction and momentum of there-entrant and side-
entrant jets and their impingement on the cavity surface form the basis of an accurate
prediction of the shedding of the sheet cavity. These effects are all expected to be
inertia driven [172]. Furthermore, the global pressure dynamics is not controlled by
the viscosity of the fluid, so it is expected that numerical simulations based on the
Euler equations are able to capture the major (vortical) structures and dynamics of
sheet cavitation.

The effect of viscosity is the damping of large gradients andthe loss of mechani-
cal energy during the growth and collapse process. The viscosity of water and its
vapor is very low and the effects of viscosity on cavitation are assumed to be negli-
gible, see Knapp [112].

Viscous effects are predominant in the detachment of cavitating flow near the leading
edge as observed by Arakeri & Acosta [14] and confirmed by Franc & Michel [72]
in the case of hydrofoils. They showed that a well-developedcavity always detaches
downstream of laminar separation of the boundary layer. Attached cavitating flow can
form in a turbulent boundary layer. The natural transition to turbulence on ship pro-
pellers occurs near the leading edge resulting in attached leading-edge cavitation. On
smooth hydrofoils the natural transition to turbulence will occur at different locations
on the hydrofoil. Therefore, to resemble the flow on ship propellers in the experi-
ments of Foeth [67] leading edge roughness is applied to tripthe boundary layer into
transition. Thus, the leading edge roughness effectively eliminates the laminar flow
and causes the cavitation inception to occur at the leading edge. As a consequence
the point with minimum surface pressure and the point of cavity detachment are ap-
proximately at the same location. Therefore, in the presentinvestigation it is assumed
that cavitation occurs when−Cp,min = σ and consequently, that viscous effects do
not play a role in the detachment of cavitation.

For the collapse of vapor bubbles viscosity only plays a rolein the final stages of
the collapse. The radii of the bubbles are then of the order ofO(10−7m) [71]. In
combination with the scale of hydrofoils in experiments or propellers it is impossible
to capture these small length scales with present-day numerical methods. So the role
of viscosity is not considered for the collapse phase of vapor bubbles.
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The evolution of the vorticity distribution in shear layersis dominated by viscous
flow effects. However, the vorticity production due to density gradients, the so-called
baroclinic torque, is only a function of gradients in density perpendicular to gradients
in pressure, i.e.∇ρ×∇p and does not depend on viscosity.

Flow separation is a viscosity driven phenomenon, so for thevalidation of a flow
model based on the Euler equations it is essential that flow separation does not occur.
This is specifically so for the single-phase flow cases used for the validation of the
basic numerical method.

The flow in the core of for example a non-cavitating tip vortexis dominated by vis-
cosity, specifically in the viscous subcore. In a cavitatingtip vortex viscosity plays
a role at the interface between the vaporous core and the vortical liquid flow. An
inviscid flow model will capture the flow in the part of the vortical flow region away
from the viscous subcore and the liquid-vapor interface.

2.4 Phase change of water

In this thesis we consider the flow of the pure substance water. It may exist in more
than one phase, but the chemical composition, denoted byH2O, is the same for each
phase. When two different phases are present simultaneously, the medium is consid-
ered as a mixture. In figure 2.9 the phase diagram for water is presented [184]. Note
that the specific volume for water increases during freezing. The diagram shows the
pressure as function of specific volume and temperature, which is a surface in the
(v, T, p)-space.

Each possible equilibrium state is represented by a point onthis surface. The regions
of the surface that represent a single-phase, i.e. the solid, liquid and vapor phase, are
indicated. The triple line is the isotherm line at which all three states may coexist
in equilibrium at the same time. In this study we are not interested in the solid state
so from now on we only discuss temperatures and pressures higher than the freezing
temperatureTr = 273.15 K with the corresponding pressurepr = 611.7 Pa and
densityρr = 999.79 kgm−3 for water.

The critical point is the temperature above which there is noobservable difference
between liquid and vapor. The critical temperatureTc, pressurepc and densityρc for
water areTc = 647.16 K, pc = 221.2×105 Pa andρc = 322.0 kgm−3, respectively
[168]. In this study we do not consider conditions at temperatures higher than the
critical temperature, we remain at conditions around room temperature (T ≈ 293 K).
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FIGURE 2.9: Pressure-Volume-Temperature surface for water.Tc is the critical
temperature andTr is the freezing temperature. Figure reconstructed from Sonntag
et al. [184].

Considering temperatures above the triple point, thep-v-T surface presented in figure
2.9 can be projected onto thep-T plane or onto thep-v plane as presented in figures
2.10(a) and 2.10(b), respectively. Note that in thep-T plane the triple line collapses
to the triple pointTr.

The term saturation temperature designates the temperature at which phase change
takes place at a given pressure. This pressure is called the saturation pressure, which
depends on temperature. If a substance exists as liquid at the saturation temperature
and pressure, it is called saturated liquid and if a substance exists as vapor at the sat-
uration temperature and pressure, it is called saturated vapor. If for a given pressure
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FIGURE 2.10:Triple pointR, Tr = 273.15 K, pr = 611.7 Pa, ρr = 999.79 kgm−3.
Critical point C, Tc = 647.16 K, pc = 221.2×105 Pa, ρc = 322 kgm−3. [168] (a)
Projection onP -T plane for water, Curve:psat(T ). (b) Projection onp-v plane for
water. Curve I: liquid saturation curveρl,sat(T ), Curve II: vapor saturation curve
ρv,sat(T ) with ρ = 1/v.

the temperature of the liquid is lower than the saturation temperature, it is sometimes
called either a subcooled or a compressed liquid. When the vapor is at a temperature
higher than the saturation temperature for a given pressure, it is sometimes denoted
as a superheated vapor. In this thesis we do not use the terms compressed liquid or
superheated vapor.

In figure 2.10(a) the saturation pressure curvepsat(T ) for water is presented, which
is a function of the temperatureT given by the expression, see [168]:

ln

(
psat(T )

pc

)

=
Tc
T

7∑

i=1

aiθ
âi , for T ∈ [Tr, Tc], (2.13)

whereθ = 1 − T/Tc and where the coefficientsai andâi are presented in table 2.1.
This expression fits the known experimental data accurately[168]. The curve from
the triple pointR atTr to the critical pointC atTc separates the liquid and vapor do-
mains. This curve is usually denoted as the phase boundary, the saturation curve or
the coexistence curve. Crossing that curve represents a reversible transformation at
equilibrium conditions, i.e. evaporation or condensationof the water at the saturation
pressurepsat(T ). Cavitation in a liquid at a given temperature can occur by lowering
the pressure below the saturation pressure. Cavitation appears to be a similar process
as boiling, except that for boiling the driving mechanism isa temperature change at
constant pressure. Actually, in view of figure 2.10(a) both processes can be thought
of as the same process, i.e. as a crossing of the saturation pressure curve from the
liquid region to the vapor domain.
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In figure 2.10(b) thep-v diagram for water is presented. The region of the liquid-
vapor equilibrium states is bounded by the triple line and the saturation curves for
the saturation densities of the liquidρl,sat(T ) (Curve I) and vaporρv,sat(T ) (Curve
II), respectively. These saturation densities are given bythe approximate expressions
[168]

ρl,sat(T )

ρc
=

7∑

i=1

biθ
b̂i , for T ∈ [Tr, Tc], (2.14)

ln

(
ρv,sat(T )

ρc

)

=
7∑

i=1

ciθ
ĉi, for T ∈ [Tr, Tc], (2.15)

whereθ = 1 − T/Tc and where the coefficientsbi, b̂i, ci andĉi are included in table
2.1.

Index ai âi bi b̂i ci ĉi
1 0 0 1 0 0 0
2 −7.85823 1 1.99206 1/3 −2.02957 2/6
3 1.83991 3/2 1.10123 2/3 −2.68781 4/6
4 −11.7811 3 −0.512506 5/3 −5.38107 8/6
5 22.6705 7/2 −1.75263 16/3 −17.3151 18/6
6 −15.9393 4 −45.4485 43/3 −44.6384 37/6
7 1.77516 15/2 −6.75615×105 110/3 −64.3486 71/6

TABLE 2.1: Parameters for the saturation relations [168].Tc = 647.16 K, pc =
221.2×105 Pa, ρc = 322.0 kgm−3, Tr = 273.15 K.

2.4.1 Non-equilibrium states

It must be kept in mind that the saturation curves are not absolute boundaries between
the liquid and vapor states. For example in the case of rapid expansion of a liquid,
the liquid may cross the saturation curve without phase transition to vapor occurring.
Another example is the rapid expansion of vapor in a convergent-divergent nozzle,
where the temperature rapidly drops below the saturation temperature without phase
transition to liquid. The resulting states are called supersaturated states or metastable
states and the medium is considered to be in metastable equilibrium. It must be noted
that although the term “equilibrium” is used, a fluid in metastable state is highly sen-
sitive to impurities and disturbances. Transition to another phase may happen very
rapidly. The term “equilibrium” suggests stability and this is certainly not the case.

Water in metastable equilibrium can even withstand a negative absolute pressure,
i.e. tension, without phase change. For cavitation the tensile strength of the liquid is
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the magnitude of the tension∆p = psat(T ) − p at which rupture occurs. The forces
tending to hold liquid particles together are external pressure and intermolecular co-
hesive forces, see Knapp [112].

The tensile strength of the liquid is determined by weak spots in the liquid, see Bren-
nen [29]. These weak spots may form the onset, the nuclei, of cavitation. They appear
in two forms, i.e. homogeneous and heterogeneous nucleation. Homogeneous nucle-
ation is determined by thermal motions within the liquid that result in microscopic
voids that can act as the nuclei necessary for rupture. In a pure liquid surface tension
is one of the forces that keep molecules together and preventthe formation of large
voids. The term heterogeneous nucleation refers to ruptureof the liquid at sites of
impurity in the flow. In practical engineering the major weakspots in the liquid occur
at the boundary between liquid and solid walls or between theliquid and small solid
particles or micron-sized vapor and/or gas bubbles suspended in the liquid.

Experimentally, it would be hard to distinguish between homogeneous nucleation
on one side and heterogeneous nucleation on small sub-micron sized contaminant
particles in the liquid on the other side. In water, micro-bubbles of undissolved gas
and roughness of surfaces of objects in the flow will always bepresent and thus cav-
itation is conventionally considered as a heterogeneous nucleation process.

For homogeneous nucleation in pure water the theoretical tensile strength is approx-
imately equal to 1320bar at T = 298 K [65, 141]. However, in experiments, due
to the problem of cleaning and degassing of the water and equipment, this value is
not found. Briggs [32], employing centrifugal force, was able to reach a pressure of
−277 Pa before phase change from liquid water to vapor occurred.

Metastable states are important to consider for cavitationinception as well as for
the final collapse phase of vapor bubbles. However, for engineering problems the
water must be highly purified for metastable states to occur,whereas ordinary tap
water does not show this behavior. The large number of impurities present in tap
water immediately results in heterogeneous nucleation andthus, in the formation of
vapor bubbles.

Furthermore, the leading edge roughness applied on the hydrofoils provides enough
nuclei for cavitation to occur. As the specific volume of water vapor is much larger
than the specific volume of liquid water, the phase transition results in fast pressure
equalization close to saturation conditions. Therefore, we assume that cavitation oc-
curs when the pressure is equal to the saturation pressure sothat metastable states do
not occur.
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The present research aims at developing a method for numerically simulating three-
dimensional unsteady cavitating flows that incorporates the most important phenom-
ena for sheet cavitation. This chapter first discusses the most recent developments
for numerically simulating cavitating flows. Then, in section 3.2 the equations for the
flow of a homogeneous mixture are derived. In section 3.3 equations of state for com-
pressible liquids are discussed. In section 3.4 the equilibrium cavitation model em-
ployed in the present research is explained. Lastly, the extension to non-equilibrium
models for cavitation is discussed in section 3.5.

3.1 Mathematical models for simulating cavitating flows

Computational methods for cavitating flows have evolved in parallel with compu-
tational resources. Starting in the 1970s and 80s with lifting surface and boundary
element techniques, the level of the physical models underlying the numerical meth-
ods has increased substantially. However, it has proven to be a difficult task to predict
the very complicated cavitation phenomena, involving phase change, surface tension,
turbulence, (non-equilibrium) thermodynamic effects, etc.

The main numerical problem in cavitating flow simulations isthe simultaneous treat-
ment of two very different flow regions: (nearly) incompressible flow of pure liquid
in most of the domain and low-velocity highly compressible flow of (pure) vapor in
a relatively small part of the flow domain. In addition, the two flow regimes can
often not be distinguished that clearly, for example in the transition region between
vapor and liquid in the closure region of a sheet cavity. Furthermore, unsteady three-
dimensional cavitating flow calculations require substantial computer resources both
in terms of memory and speed. Also, meshes with appropriate high-resolution mesh
densities in the cavitating region are necessary.

In the distant future it might be possible to calculate the full Navier-Stokes equa-
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tions for each of the phases present in the flow and to compute every detail including
the motion of every interface within a cavitating flow. Unfortunately, the computer
power, speed and memory required to capture all the processes occurring over a wide
range of time and length scales is far beyond the present capability. Therefore, sim-
plifications are necessary to obtain a realistic model to simulate cavitating flows.

In the 1990s methods using the Euler or Navier-Stokes equations were developed,
coupled with a transport equation for the void fraction, or coupled with two-phase
flow equations or other cavitation closure model equations.As classified by the 22nd
ITTC special committee in 1999 [3] this approach can be grouped into a number of
categories.

• Interface-tracking methods

• Volume-of-Fluid methods

• Discrete-bubble methods

• Two-phase flow methods

3.1.1 Interface-tracking methods

Interface-tracking methods such as the level set method, marker particles and surface-
fitting methods track the interface between the liquid and vapor based on a pressure
streamline criterion. Note that this type of modeling corresponds with a Lagrangian
type of approach. The cavitating flow region is assumed to be at a constant pressure
equal to the saturation pressure. They require the presenceof distinct interfaces to be
tracked. For the aft part of the cavity sheet, where the distinction between liquid and
vapor is not so clear, some wake model must be introduced. Examples are, amongst
others: Furness & Hutton [76], Chen & Heister [37], Deshpandeet al. [59], Hirschiet
al. [92], Sussmanet al. [187], Van der Pijl [205] and Dijkhuizen [61]. These methods
do not allow the description of the unsteady behavior of pulsating cavities, including
phenomena like the re-entrant jet, cavity breakdown or vapor cloud shedding.

3.1.2 Volume-of-Fluid methods

Volume-of-Fluid (VoF) methods as originally proposed by Hirt & Nichols in 1981
[93] can be classified as interface capturing methods. They include a transport equa-
tion for the void fractionα defined as the ratio of vapor volume to the total volume of
the computational cell. In order to avoid smearing of the interface, special methods
are used to derive the values of the void fraction at the facesof the computational cell.
For that reason the Compressive Interface Capturing on Arbitrary Meshes (CICSAM)
scheme has been developed by Ubbink [201, 202]. The standardVoF method is used
for capturing distinct interfaces without phase transition, e.g. free surface flow or the
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motion of single bubbles. To account for cavitation the standard VoF methods are
extended to include, in addition to the convective transport, the change of the void
fraction due to phase transition, see for example Dievalet al. [60], Molin et al. [140]
and Sauer [162]. Sauer & Schnerr [163] developed a VoF methodwith bubble dy-
namics based on the Rayleigh equation, see also Yuanet al. [223]. This approach is
also followed by Bouziadet al. [26, 27].

3.1.3 Discrete bubble methods

Discrete bubble methods consider single or multiple cavitybubbles which grow and
collapse as they travel through the pressure field. Plesset &Prosperetti [148] analy-
tically described the growth and collapse of a single vapor bubble, see also Rayleigh
[134] and Plesset [147]. Since then many researchers have numerically studied the
behavior of single or of multiple bubbles. Examples includethe application of a
varying pressure field, the flow through a convergent-divergent nozzle, the behavior
of a collapsing bubble cloud and also the interaction of bubble clouds with shock
waves. See amongst many others Fujikawa & Akamatsu [75], Brennenet al. [31],
Coloniuset al. [43], Prestonet al. [151, 152], Delaleet al. [57], Johnsen & Colonius
[107], Wang & Brennen [215, 216].

3.1.4 Two-phase flow methods

Two-phase flow methods can be subdivided into different types of methods: (a)
homogeneous-mixture methods and (b) multiple-species or multi-component flows.
Homogenous-mixture methods treat the fluid as a pseudo-fluidwith average proper-
ties such as density and viscosity. Thus, the fluid is treatedin the whole computational
domain as a compressible fluid with a greatly varying density. The inside and outside
of the cavitating flow region is treated as a single medium or homogeneous mixture
of liquid and vapor, who share the same velocity, pressure and temperature. This
group of methods can be subdivided further into: transport equation-based methods,
barotropic-flow methods and homogeneous-equilibrium methods. In a overview this
can be summarized as:

(a) Homogeneous-mixture methods

• Transport Equation-based Methods (TEM)

◦ Bubble two-phase Transport models (BFT)

◦ mass transfer rate models

• barotropic-flow methods

• homogeneous-equilibrium methods

(b) Multi-component methods
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Transport-Equation based Methods (TEM) treat the flow of the vapor or liquid by
means of a transport equation for the volume or mass fractionof liquid or vapor (and
sometimes even a third fraction, e.g. for an inert gas). The transport equation-based
methods assume that the pressure, velocity and temperatureof different phases are
equal (homogeneous mixture assumption). Transition from one phase to the other is
accounted for by physical rate processes that appear as source terms in the transport
equation. These methods have the advantage that they can take into account the time
dependency of the mass transfer phenomena through empirical laws for the source
term. However, the choice of the constants in the empirical relations appears to be
somewhat arbitrary. Two different classes can be distinguished: Two-phase Bubble
models and mass transfer rate models.

Kubota et al. [116] proposed to relate the density of the mixture to the motion of
bubbles and their dynamics in the flow. Cavitation is thus modeled as the growth and
collapse process of vapor bubbles. The bubbles originate from nuclei, which already
exist in the bulk flow and grow or collapse depending on the surrounding conditions,
e.g. pressure and temperature. The evolution of the vapor bubbles is governed by the
Rayleigh or Rayleigh-Plesset equation, [134, 147]. Many studies have adopted this
approach for example: Chen & Heister [38], Sauer [162], Sauer & Schnerr [163],
Yuan & et al. [224, 223], Bouziadet al. [27, 26], Susan-Resigaet al. [186]. Further-
more, some authors included empirical parameters for production and destruction of
vapor: see e.g. Singhal [182] and Zwartet al. [227, 226].

Merkle et al. [139] developed a pressure-based method with vaporization/conden-
sation source terms to account for the mass transfer betweenthe two phases. The
vapor and liquid components are solved employing mass-conservation equations for
the vapor, liquid and/or mixture or by transport equations for the vapor/liquid vol-
ume or mass fraction. Their source terms have proven to offerflexibility for cav-
itation modeling and offer the possibility to include time dependency in the mass
transfer phenomena. However, the values for the empirical constants in the source
terms chosen by different authors vary significantly. Merkle’s approach has been
used in different and extended forms in combination with theEuler equations, see
Neaves & Edwards [144], Reynolds Averaged Navier-Stokes (RANS) equations,
see Kunzet al. [117, 118, 119, 120], Venkateswaranet al. [209, 210], Ahuja &
Hosangadi [9, 8, 96, 97], Medvitzet al. [137], Daubyet al. [54], Senocak & Shyy
[173, 174, 175], Shinet al. [177], Saitoet al. [161], Zhou & Wang [225] and Large
Eddy Simulations (LES), see Wikströmet al. [220] and Persson [146, 99]. Senocak
& Shyy [174, 175] evaluated different formulations of this type of models. They con-
cluded that the results of the methods for the pressure distribution generally agree,
but that the difference in density distributions is significant, implying that the com-
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pressibility characteristics embodied in the cavitation source terms differ. They pro-
posed an empiricism-free model based on interfacial dynamics which needs further
research.

The transport equation-based methods can be considered as non-equilibrium meth-
ods. Besides being based on bubble dynamics or empirical mass transfer rates, meth-
ods are emerging based on thermodynamic considerations forthe source terms. See
for example Ibenet al. [100], Berget al. [22] and Barberon & Helluy [19]. In these
models the full set of continuity equation, momentum and energy conservation equa-
tions for the mixture and the continuity equation for vapor or liquid are solved. To
close the system of equations an appropriate equation of state for the pure phases
and the mixture phase must be added, which must result in a system of equations
accounting for two different pressures and preserving the hyperbolic consistency.

Barotropic flow models: Delannoy & Kueny [58] proposed a formulation that cou-
ples the mixture density to the pressure through a barotropic law ρ(p) ranging from
the liquid density through a transitional zone to the vapor density. Vorticity pro-
duction is an important aspect of cavitating flows, especially in the closure region
of the sheet cavity, see Gopalan & Katz [80]. Specifically, this vorticity production
is a consequence of the baroclinic generation term of the vorticity transport equa-
tion, ∇1

ρ × ∇p [174]. However, when a barotropic relation is employed, then the
gradients of density and pressure are always parallel, hence the baroclinic torque is
zero. Nevertheless, many other researchers have applied this model with different
barotropic laws, see Reboud & Delannoy [157], Hoeijmakerset al. [95], Arndt et al.
[16], Coutier-Delgoshaet al. [44, 47, 45, 46, 48], Reboudet al. [156], Qin [154] and
Sinibaldiet al. [183]. In appendix F a barotropic flow model developed in ourgroup
is described, see Veldhuis [207] and Koopet al. [113]. This model has been used in
the design of the Twist hydrofoils.

Homogeneous equilibrium models:Saurelet al. [166], Schmidtet al. [169] and
Schnerret al. [171] formulated the equilibrium cavitation model employing the full
set of continuity, momentum and energy conservation equations for the flow of a
homogeneous mixture. The pure water and vapor phase are described by suitable
equations of state such that the governing equations are hyperbolic in time and space.
The two-phase regime is enforced to be in thermodynamic and mechanical equilib-
rium at all locations in the flow. In regions where two phases can exist the homoge-
neous equilibrium model returns a prediction of the bulk density of the two-fluid mix-
ture, from which a volume fraction of vapor is obtained giventemperature-dependent
saturation-state relations. This method is capable of capturing phase transitions, con-
densation shocks and other multi-phase flow features, but non-equilibrium effects are
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by definition excluded. Furthermore, due to the hyperbolic nature of the equations
for all phases, single-phase as well as two-phase wave propagation phenomena can
be studied. This model for cavitating flows is independent ofempirical parameters,
other than in the equation of state for the pure phases.

To close the description for the two-phase mixture and for the compressible water
physical mixture properties can be obtained from for example tabulated steam tables
for ρ = 1/v(p, h), e = e(h, p), see Ventikos & Tzabiras [211]. Others employed a
different equation of state for the description of the liquid. Edwards & Franklin [63]
employed the Sanchez-Lacombe equation of state for real-fluid flows accompanied
with the equilibrium assumption in the two-phase region to guarantee a real-valued
speed of sound.∗ Iga [102] adopted the Tammann equation of state for the liquid
phase. However, he did not take saturation conditions into account. In [101] he ex-
tended his model to include a source term in the continuity equation for the vapor
phase to drive the two-phase flow towards saturation conditions.

The use of tabulated steam data and the use of equations of state that result in non-
hyperbolic systems can be avoided by employing an approximation for the caloric
equation of state for water [165] along with appropriate equations of state for the
liquid† and vapor phase and temperature-dependent saturation conditions for phase
change. This is the cavitation model pursued in this thesis.In section 3.4 the equi-
librium cavitation model and the equations of state for compressible pure water and
compressible pure vapor are presented.

Multi-component modelsor multiple-species methods have first been proposed by
Baer & Nunziatio [18] for detonation waves in granular explosives and modified by
Saurel & Abgrall [164] for the resolution of multi-phase mixtures and interface prob-
lems between pure compressible materials. These models describe the cavitating flow
by adopting a full set of equations, i.e. continuity, momentum and energy conserva-
tion equations, for the vapor phase, the liquid phase and sometimes even an inert gas
phase together with their own thermodynamic relations. They allow for both mechan-
ical and thermal non-equilibrium to be taken into account. The coupling between the
different phases is accounted for by appropriate transfer relations derived from two-
phase flow modeling considerations. Most models lead to non-conservation forms
due to the interface interaction terms [34]. These methods are assumed to possess
more generality, but they are computationally expensive since a full set of equations

∗For densities between the spinodal values, the acoustic eigenvalues for the Sanchez-Lacombe equa-
tion of state and also the van der Waals equation of state are complex, implying that the system of Euler
equations coupled with these equations of state is not hyperbolic.

†IAPWS [1] provides experimental data for water. In section 3.4 it is shown that the modified Tait
equation of state used in the present study agrees with the IAPWS data.
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for each component has to be solved. Various authors have followed this approach‡ ,
see for example: Saurelet al. [164, 167, 125], Abgral [5], Allaireet al. [11], Paillére
et al. [145, 78], Cocchiet al. [40, 41], Quirk & Karni [155], Murrone & Guillard
[143]. Abgrall & Karni [6], Castro & Toro [34], Johnsen & Colonius [107], Andri-
anovet al. [13], Chang & Liou [35].

3.2 Homogeneous mixture equations

In this section the flow equations for a homogeneous mixture are derived. A good
overview and introduction are provided by the review article of Drew [62] and the
books of Brennen [30] and Wallis [214]. Homogeneous flow theory provides the
simplest description for analyzing multi-phase or multi-component flows. By defini-
tion a phase is simply one of the states of matter, which can beeither a gas, a liquid or
a solid. Multi-phase flow is the simultaneous flow of several phases. The term multi-
component flow is sometimes used to describe flows in which thephases present do
not consist of the same chemical substance. The equations describing multi-phase
or multi-component flows are identical [214]. Therefore, the terms component and
phase are used indiscriminately throughout this thesis.

In homogeneous flow theory the relative motion between the phases is neglected.
The mixture is treated as a pseudo-fluid whose properties aresuitable averages of the
properties of the components in the flow. The method of determining the flow equa-
tions and the properties of the mixture is to start from separate equations for each
phase. The approach is based on the view that it is sufficient to describe each phase
as a continuum obtained from a microscopic description by a suitable averaging pro-
cess.

3.2.1 Conservation of mass

Conservation of mass of a componentk of the fluid flow requires that

∂ρkαk
∂t

+
∂ρkαkuk,i

∂xi
= Mk, (3.1)

whereρk denotes the density of componentk, αk = Vk/V the volume fraction
of componentk with Vk the volume occupied by phasek in a volumeV , ~uk the
velocity of componentk andMk the rate of mass transfer to phasek from the other
phases. The quantitiesMk are denoted as mass interaction terms. For each phase or
component in the flow there is a continuity equation like equation (3.1). We assume

‡Not all authors take phase-change into account, implying that the source terms are chosen equal to
zero.
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that the whole domain is occupied by all phases considered, i.e.

∑

k

αk = 1. (3.2)

Since the total mass must be conserved it follows that the sumof the mass-interaction
terms is equal to zero, i.e.

∑

k

Mk = 0. (3.3)

Taking the sum of all continuity equations results in the continuity equation for the
mixture:

∂

∂t

(
∑

k

ρkαk

)

+
∂

∂xi

(
∑

k

ρkαkuk,i

)

= 0. (3.4)

Defining the mixture densityρ as

ρ =
∑

k

ρkαk, (3.5)

and assuming that relative motion between the phases does not occur and thus that
the phases have the same velocity~uk = ~u, equation (3.4) reduces to the continuity
equation for the mixture, which is identical to that for a single-phase flow:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (3.6)

3.2.2 Conservation of momentum

In the absence of effects of viscosity and of body forces, theconservation of momen-
tum in thej-th direction of phasek can be written as

∂ρkαkuk,j
∂t

+
∂

∂xi
(ρkαkuk,juk,i) = −∂αkpk

∂xj
+ Fk,j, (3.7)

wherepk is the pressure within phasek, which can be thought of as the average of
the microscopic pressure.Fk,j is the force imposed on phasek by the other phases
or components. The source termFk,j incorporates forces such as surface tension,
buoyancy§ , and other forces due to the interface between the phases andmass transfer
from one phase to another. As in the case of the mass interactionMk, it follows that
[62] ∑

k

Fk,j = 0. (3.8)

§which is often written aspk,i∇αk with pk,i the interfacial pressure



3.2. HOMOGENEOUS MIXTURE EQUATIONS 37

Defining the mixture pressurep as

p =
∑

k

αkpk, (3.9)

and assuming that all the phases have the same pressurepk = p and velocity~uk = ~u
and taking the sum of all momentum equations in directionj results in the mixture
momentum equation in directionj:

∂ρuj
∂t

+
∂

∂xi
(ρujui) = − ∂p

∂xj
. (3.10)

3.2.3 Conservation of energy

Neglecting gravity, the total specific energyEk for phasek is the sum of the internal
specific energyek and the kinetic energy12~uk ·~uk of phasek

Ek = ek +
1

2
~uk ·~uk. (3.11)

An appropriate statement of the first law of thermodynamics for each phase is as
follows [30]:

Rate of increase of total energy of phasek
+ Net flux of total energy of phasek
=
Rate of heat addition to phasek from outside:Qk

+ Rate of work done to phasek by the exterior surroundings:Wk

− Rate of work done by stresses acting on phasek
+ Rate of heat transfer to phasek from other phases:QMk

+ Rate of work done to phasek by other phases or components:WMk

The first two terms can be written as

∂

∂t
(ρkαkEk) +

∂

∂xi
(ρkαkEkuk,i) . (3.12)

The rate of heat addition due to external heating and to conduction of heatQk is
neglected as well as the rate of external workWk. Neglecting effects of viscosity, the
work done by stresses only consists of a pressure term. The energy equation for the
individual phase may then be written as

∂ρkαkEk
∂t

+
∂

∂xi
(ρkαkEkuk,i) = QMk + WMk −

∂αkpkuk,i
∂xi

. (3.13)
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The two terms involving exchange of energy between the phases can be combined
into an energy interaction termEk given by

Ek = QMk + WMk. (3.14)

As in the case of mass interaction it follows that
∑

k

Ek = 0. (3.15)

All the energy equations for the individual phases can be summed to obtain the energy
equation for the mixture:

∂

∂t

(
∑

k

ρkαkEk

)

+
∂

∂xi

(
∑

k

ρkαkEkuk,i

)

= − ∂

∂xi

(
∑

k

αkpkuk,i

)

. (3.16)

Using the mixture densityρ (3.5), the mixture pressure p (3.9) and the mixture spe-
cific internal energye defined by

ρe =
∑

k

ρkαkek, (3.17)

and assuming that the phases have the same pressures and velocities the mixture
energy equation can be written as

∂ρE

∂t
+

∂

∂xi
(ρEui) = −∂pui

∂xi
, (3.18)

whereE denotes the total specific energy of the mixture given by

E = e+
1

2
~u·~u. (3.19)

It must be noted that when modeling multi-phase flows by the mixture equations
many modeling questions arise, see e.g. Brennen [30]. Most multi-phase flow mod-
eling efforts concentrate on the individual phase equations of motion and therefore
they focus on constructing the interaction termsMk, Fk andEk, see also Drew [62].
However, to model these interaction terms there does not exist a general applicable
method that is independent of the flow topology. So, they mustbe constructed empir-
ically given a particular flow pattern. In this thesis we adopt the equilibrium model
for cavitating flows assuming that the mixture remains in thermodynamic and me-
chanical equilibrium as described in the next section. Therefore, the homogeneous
mixture equations (3.6), (3.10) and (3.18) describe the flowof the mixture.

The set of mixture equations is not closed, there are 5 equations and 6 unknowns,
namelyρ, ~u, p, e. So an additional equation must be provided. In the following
section 3.3 equations of state for compressible liquid flowsare discussed. In section
3.4 the equilibrium cavitation model is addressed that willclose the set of equations
for the two-phase mixture.
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3.3 Equations of state for compressible liquids

In this section equations of state for compressible liquidsare discussed. For reference
the Maxwell relations for thermodynamics are presented in appendix E. Considered
are the following equations of state:

• Stiffened gas equation of stateor Tammann equation of state, see Harlow &
Amsden [85, 136]:

p = (γ − 1)ρe − γp∞, (3.20)

with γ andp∞ liquid-dependent constants. Note that for1<γ<2 andp∞=0
the equation of state for a perfect gas is obtained.

• Tait equation of state

p = K0

(
ρ

ρ0
− 1

)N

+ p0, (3.21)

with K0 andN liquid dependent constants andρ0 andp0 constant reference
density and reference pressure, respectively. Hayward [88] points out that the
equation to which Tait’s name has been attached is not proposed by Tait. It
appears to have originated through an unfortunate misquotation by Tammann
of Tait’s original equation. Slightly different forms compared with equation
(3.21) are used by various authors. We refer to Tait’s equation of state as pre-
sented in equation (3.21).

• Modified Tait equation of state, see Saurelet al. [166]

p = K0

(
ρ

ρsat(T )
− 1

)N

+ psat(T ), (3.22)

with K0 andN liquid dependent constants andρsat(T ) andpsat(T ) tempera-
ture dependent saturation density and saturation pressure, respectively. Saurel
et al. [166] adapted the Tait equation of state by including the temperature de-
pendent saturation pressurepsat(T ) and corresponding liquid saturation den-
sity ρsat(T ) as reference states, to treat the water as the saturated liquid com-
ponent of a two-phase mixture.

3.3.1 Speed of sound

The speed of soundc is the velocity at which infinitesimal pressure waves travel
through a compressible fluid. The variations in pressure arevery small and we assume
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that effects of viscosity and heat conduction are negligible. The definition of the
speed of sound is

c2 ≡
(
∂p

∂ρ

)

S

= − 1

v2

(
∂p

∂v

)

S

. (3.23)

Many forms for the speed of sound can be derived, for example

c2 = − 1

v2

cp(p, T )

cv(v, T )

(
∂S
∂v

)

T(
∂S
∂p

)

T

, or c2 =

(
∂p

∂ρ

)

e

+
p

ρ2

(
∂p

∂e

)

ρ

. (3.24)

From an eigenvalue analysis of the Jacobians of the flux vectors and choosing prim-
itive variables[p, u, v, w, T ]T , so that equations of state are required in the form
ρ = ρ(p, T ) andh = h(p, T ), we have derived relation (A.19) for the speed of sound
as

c2 =

ρ

(
∂h

∂T

)

p

ρ

(
∂ρ

∂p

)

T

(
∂h

∂T

)

p

+

(
∂ρ

∂T

)

p

{

1 − ρ

(
∂h

∂p

)

T

} , (3.25)

which can be found directly from the equations of stateρ(p, T ) andh(p, T ).

3.3.2 Stiffened gas equation of state

The so-called stiffened gas equation of state [85] or Tammann equation of state can
be used to describe compressible liquids (and even solids [178]) at high pressures
[104]. The stiffened gas equation of state reads

p = p(ρ, e) = (γ − 1)ρe− γp∞, (3.26)

wherep, ρ ande are the pressure, density and specific internal energy, respectively.
The specific internal energy is given by [35, 145]:

e =
cp
γ
T +

p∞
ρ

, (3.27)

with cp the specific heat at constant pressure assumed to be constant. From equation
(3.25) we find the speed of sound to be equal to

c2 =
γ

ρ
(p+ p∞) . (3.28)

The value for the pressure constantp∞ and for the polytropic constantγ are liquid-
dependent and can be determined from laboratory experiments [136] via an empirical
fit [104, 178]. Cocchiet al. [40] presented a derivation of the parametersp∞ andγ.
Le Metayeret al. [124] derived values of the parametersγ andp∞ for water in pres-
ence of its vapor. For water, various values forγ andp∞ are found in the literature,
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see table 3.1. Note that Chang & Liou [35] adapted a non-physical value for the spe-
cific heat at constant pressure equal toCp = 8095.08Jkg−1K−1 to match the values
of the density and speed of sound atT = 298K.

Reference γ p∞ [108 Pa]

Chang & Liou (2007) [35] 1.932 11.645
Paillèreet al. (2003) [145] 2.8 8.5

Barberon & Helluy (2005) [19] 3.0 8.533
Haller et al. (2003) [84] 4.0 6.13

Saurel & Abgrall (1999) [164, 165] 4.4 6.0
Abgrall (2003) [7]
Shyue (2006) [180]

Cochi (1996, 1997) [40, 41]
Shye (1998) [178] 5.5 4.92115

Johnsen (2006) [107]
Shyue (1999) [179] 7.0 3.0

Luo et al. (2004) [135] 7.0 3.03975
Gallouët (2002) [77] 7.15 3.0

TABLE 3.1: Stiffened gas equation of state. Values ofγ andp∞ for water as used by
various authors.

To investigate the validity of the stiffened gas equation ofstate for water at low pres-
sures, the analytical values from equation (3.26) are compared with experimental data
[1, 2, 213].

Comparison with experimental data

Using the parameter values of Chang & Liou [35], Paillèreet al. [145] and Le
Mètayeret al. [124] the density and the speed of sound are compared with the exper-
imental NIST data [2] in figure 3.1.

For the pressure range from 0 to 10bar it is shown that the density for water as found
from using the stiffened gas equation of state deviates fromthe NIST data by approxi-
mately 6% and 37% for the parameter values of Paillère and LeMètayer, respectively.
The speed of sound found with the parameter values of Paillère correspond very well
with the NIST data, whereas the speed of sound found with the parameter values of
Le Mètayer deviates by approximately 12%. The values of Chang & Liou for the den-
sity and speed of sound correspond excellently with the experimental data. However,
to achieve this they have changed the value for the specific heat at constant pressure
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FIGURE 3.1: Stiffened gas equation of state,T = 298 K. The values of Chang &
Liou [35], Paillère et al. [145] and Le Ḿetayer et al. [124] are compared with NIST
data [2] as a function of pressurep ∈ [0,10] bar. (a) densityρ (b) speed of soundc.

cp to a non-physical value, i.e.cp = 8095.08Jkg−1K−1.

From this comparison we conclude that, using the stiffened gas equation of state,
a different liquid saturation density at saturation pressure is obtained compared with
the physical saturation value. Thus, we state that the stiffened gas equation of state is
not suitable to use in combination with cavitation, since the saturation values for the
liquid density at low pressures do not match the experimental data.¶

¶The author would like to thank S. Schmidt and Prof. Schnerr from the TU Munich for pointing out
this conclusion, see also Schmidt et al. [169].
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3.3.3 Modified Tait equation of state

To treat the water as the saturated liquid component of a two-phase mixture Saurel
et al. [166] adapted the Tait equation to include the temperaturedependent saturation
pressurepsat(T ) and corresponding liquid saturation densityρsat(T ) as reference
states. The modified Tait equation of state for liquid then reads:

p(ρ, T ) = K0

[(
ρ

ρsat(T )

)N

− 1

]

+ psat(T ). (3.29)

From the Maxwell relations and equation (E.1) it is found that
(
∂cv(v, T )

∂v

)

T

= T
NK0

vNρN+2
sat

[
(N + 1)(ρ′sat)

2 − ρsat(T )ρ′′sat
]
+ Tp′′sat. (3.30)

where the prime denotes differentiation with respect toT . Thuscv is a function ofv
andT and not just ofT . The specific internal energye(v, T ) can be found by using
equation (E.4) and the Maxwell relations

(
∂e

∂T

)

v

= cv(v, T ),

(
∂e

∂v

)

T

= −p+ T

(
∂p

∂T

)

v

, (3.31)

yielding

e(ρ, T ) =

T∫

Tref

cv(ρref , T̂ )dT̂ + e(ρref , Tref ) +
(Tp′sat − psat +K0)

ρref

(
ρref
ρ

− 1

)

︸ ︷︷ ︸

I

+
K0

N − 1

(
ρsat(T ) +NTρ′sat

)
(

(
ρ

ρsat(T )
)N−1 − (

ρref
ρsat(T )

)N−1

)

︸ ︷︷ ︸

II

. (3.32)

Instead of using the specific internal energy from equation (3.32) Saurelet al. [166]
proposed a simplification for water:

e(T ) = cv(T − Tref ) + e0, (3.33)

wherecv is taken constant. This simplification can be justified by considering terms
I and II in equation (3.32). Since the density in water is approximately constant we
find thatρref ≈ ρ, ρ ≈ ρsat(T ) andρref ≈ ρsat(T ) yielding that term I and term
II are approximately equal to zero. Furthermore, for water at low temperatures it is
valid to assume thatcv(ρref , T ) is constant and thus we find equation (3.33) for the
specific internal energy.
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Now, the speed of sound is found from equation (3.25) as

c2 =
N(p− psat(T ) +K0)

ρ
(3.34)

+
p

ρ2cv

(

p′sat(T ) − N(p− psat(T ) +K0)

ρsat(T )
ρ′sat(T )

)

. (3.35)

3.4 Equilibrium model for cavitating flows

Following Saurelet al. [166] and Schmidtet al. [169] the equilibrium cavitation
model is described. The physical model is based on the assumption that the two-phase
flow regime can be described as a homogeneous mixture that remains in thermody-
namic and mechanical equilibrium. This implies an equilibrium of local temperature,
local pressure and local velocity between the vapor and liquid components of the two-
phase mixture. Under these assumptions, the flow of the mixture can be described
by the mixture equations of section 3.2 together with an appropriate equation of state
that covers all fluid states possible: the compressible pureliquid state, the compress-
ible two-phase mixture state and the compressible pure vapor state. The equations of
state must be such that the hyperbolic nature of the system ofgoverning equations is
preserved in order to study finite propagation speed wave motions in the fluid.

Summarizing, the governing equations are the Euler equations in conservation form
for the mixture variables written here for Cartesian coordinates as:

∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
+
∂Fz(U)

∂z
= 0, (3.36)

whereU = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved variables andFx(U),
Fy(U) andFz(U) are the three components of the flux vectors given as

F =
[

Fx(U) Fy(U) Fz(U)
]

=









ρu ρv ρw
ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p
ρHu ρHv ρHw









, (3.37)

where the total specific enthalpyH is equal to

H = E +
p

ρ
= h+

1

2
~u·~u, (3.38)

with the total specific energyE defined in equation (3.19). The speed of soundc
is defined in equation (3.25). For closure of the system of equations it is necessary
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to adopt equations of stateρ = ρ(p, T ) andh = h(p, T ) that describe each of the
three possible states: the liquid state, the vapor state andthe mixture state. In the
following the liquid phase is denoted by subscriptl, the vapor phase by subscriptv
and saturation conditions by subscriptsat.

Before continuing with the equations of state the saturation curves of section 2.4
are repeated here for clarity. The relation between pressure and temperature during
phase change is given by the analytical expression [168]:

ln

(
psat(T )

pc

)

=
Tc
T

7∑

i

aiθ
âi , (3.39)

whereθ = 1 − T/Tc and wherepc andTc represent the critical pressure and critical
temperature, which for water are equal topc = 22.120×106 Pa andTc = 647.16 K,
respectively. The coefficientsai andâi are given in table 2.1. In figure 3.2 the values
from equation (3.39) for the saturation pressurepsat as a function of the temperature
T are compared with the experimental data [2]. It shows that the analytical expres-
sion fits the experimental data accurately.
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FIGURE 3.2: Comparison between analytical expression for the saturation pressure
psat [bar] (line) and experimental saturation data [2] (dots) versus temperatureT
[K]. R is the triple point andC is the critical point.

The liquid and vapor saturation densities along the saturation curves are given by, see
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[168]
ρl,sat(T )

ρc
=

7∑

i=1

biθ
b̂i , (3.40)

ln

(
ρv,sat(T )

ρc

)

=

7∑

i=1

ciθ
ĉi, (3.41)

whereρc is the critical density for water equal toρc = 322 kgm−3. In figure 3.3 the
values from equations (3.40) and (3.41) from for the liquid saturation densityρl,sat
and vapor saturation densityρv,sat are compared with the experimental data [2]. This
again shows that the analytical expressions fit the experimental data accurately.
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FIGURE 3.3: Comparison between analytical expression for saturation curves (solid
lines) and experimental saturation data [2] (dots) for the vapor saturation density
ρv,sat [kgm−3] and liquid saturation densityρl,sat [kgm−3] versus temperatureT
[K]. R is the triple point andC is the critical point.

3.4.1 Liquid phase

As presented in section 3.3 we follow Saurelet al. [166] by adopting a modification
of the Tait equation of state to describe the pressure of the liquid as a function of the
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density and temperature:

pl(ρl, Tl) = K0

[(
ρl

ρl,sat(Tl)

)N

− 1

]

+ psat(Tl), (3.42)

where for waterK0 = 3.3×108 Pa andN = 7.15 are taken to be constant. A caloric
equation of state that is a good approximation, see section 3.3, is given by

el(Tl) = Cvl(Tl − T0) + el0, (3.43)

whereCvl is the specific heat at constant volume for liquid,T0 is a reference tem-
perature andel0 is the internal energy at this reference temperature. For water these
constants have the valuesCvl = 4180 Jkg−1K−1, T0 = 273.15 K andel0 = 617.0
Jkg−1, respectively. Applying equation (3.25), the speed of sound cl in the liquid is
given by:

c2l =
Np̄(Tl)

ρl
+

pl
ρ2
lCvl

(

p′sat(Tl) −
Np̄(Tl)

ρl,sat(Tl)
ρ′l,sat(Tl)

)

, (3.44)

wherep̄(T ) = pl − psat(T ) +K0, p′sat(T ) = dpsat(T )
dT andρ′l,sat(T ) =

dρl,sat(T )
dT .

3.4.2 Vapor phase

Saurelet al. [166] use the ideal gas equation of state for the vapor phase

pv(ρv, ev) = (γ − 1)ρvev , or pv(ρv, Tv) = ρvRTv, (3.45)

with γ the ratio of specific heats andR = R̂/M̂ the specific gas constant for vapor
with γ = 1.327 andR = 461.6 Jkg−1K−1. The corresponding caloric equation of
state is

ev(Tv) = Cvv(Tv − T0) + Lv(T0) + el0, (3.46)

whereLv represents the latent heat of vaporization andCvv the specific heat at
constant volume with valuesLv(T0) = 2.3753×106 Jkg−1K−1, Cvv = 1410.8
Jkg−1K−1, T0 = 273.15 K, respectively. The speed of sound of vaporcv is given
by

c2v = γ
pv
ρv

= γRTv. (3.47)

Table 3.2 gives an overview of values of the parameters used in the equations of state
for liquid and vapor.
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Liquid Vapor
parameter value parameter value

N 7.15 γ 1.327
K0 3.3×108 Pa R 461.6Jkg−1K−1

Cvl 4180Jkg−1K−1 Cvv 1410.8Jkg−1K−1

T0 273.15K T0 273.15K
el0 617.0Jkg−1 Lv(T0) 2.753× 106 Jkg−1K−1

TABLE 3.2: Parameters for liquid and vapor phase of water.

3.4.3 Mixture phase

The two phases in the mixture are assumed to be in thermal and mechanical equi-
librium and the pressure in the mixture phase is taken to be equal to the saturation
pressure:

pl = pv = p, and Tl = Tv, (3.48)

p = psat(T ). (3.49)

The mixture densityρ and mixture internal energye are defined by

ρ = αρv,sat(T ) + (1 − α)ρl,sat(T ), (3.50)

ρe = αρv,sat(T )ev(T ) + (1 − α)ρl,sat(T )el(T ), (3.51)

where the void fraction of the vaporα ≡ Vv/V is obtained from equation (3.50) as

α =
ρ− ρl,sat(T )

ρv,sat(T ) − ρl,sat(T )
. (3.52)

For the two-phasic states, the temperature is determined from definition (3.51) of the
internal energy of the mixture by substituting equations (3.43) and (3.46)

ρe = (T − T0) {αρv,sat(T )Cvv + (1 − α)ρl,sat(T )Cvl}+αρv,sat(T )Lv(T0)+ρel0.

The model is based on thermodynamic equilibrium and thus theequilibrium speed of
sound in a saturated mixture can be calculated by the formulaof Wallis [214]

1

ρc2
=

α

ρv,sat(T )c2v
+

1 − α

ρl,sat(T )c2l
. (3.53)

In figure 3.4 the resulting mixture speed of sound is presented. It can be seen that for
values of the void fraction between0.1 ≤ α ≤ 0.9 the corresponding speed of sound
is lower than 10ms−1.

Equations (3.50)–(3.53) represent a closed algebraic system that permits the com-
putation of all thermodynamic variables for equilibrium states inside the saturation
zones. The equations of state for all three possible phases are represented in thep−v
diagram shown in figure 3.5. The liquid density and vapor density are compared with
the IAPWS experimental data represented by the black dots infigure 3.5.
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FIGURE 3.4: The mixture speed of soundc [ms−1] at T = 298 K as a function of
the void fractionα. Note that, for liquid (α = 0) the speed of sound is approximately
equal to 1540ms−1, for vapor (α = 1.0) the speed of sound is 420ms−1 and for
α = 0.5 the speed of sound is equal to 4.1ms−1.
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FIGURE 3.5: p-v diagram for water with isotherm at reference temperature
T∞ = 298 K. Presented are the IAPWS experimental data [2] (black dots), the sat-
uration curves for liquid and vapor (dashed lines), the saturation pointsSL andSV
at T = 298 K for liquid and vapor, respectively, the modified Tait equation of state
for the liquid, mixture state and the perfect gas equation ofstate (solid lines).C is
critical point.
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3.5 Remark on extension to non-equilibrium models

The formulation presented in the preceding section does notrequire the solution of
an additional transport equation for the mass fraction or volume fraction of vapor. To
incorporate non-equilibrium effects the equilibrium conditions pv = pl = psat(T )
andTl = Tv are relaxed and the following conservation equation for thevapor mass
is added:

∂αρv
∂t

+ ∇ · (αρv~u) = Mv, (3.54)

withMv a finite-rate mass transfer source term for vapor. This last equation offers the
possibility to include a relaxation term in order to model non-equilibrium processes
and thermodynamic effects, which offers more flexibility todescribe phase transition
in cavitation. However, in the existing (incompressible) flow models this flexibility
comes at the prize of user-defined free parameters in particular in the source terms.
These empirical parameters must be chosen very carefully. We have investigated
non-equilibrium models for incompressible flows as presented in appendix G. More
research should be conducted to obtain the adequate values for these parameters in
order to enable prediction of cavitation with smaller uncertainty. Source terms with-
out empirical parameters such as proposed by Senocak & Shyy [173] or source terms
based on thermodynamic considerations as proposed by Ibenet al. [100], do not de-
pend on user-defined free parameters and are preferable overthe more conventional
methods.

Furthermore, we experienced numerical instabilities whenthe density ratioρl/ρv
was increased to a value exceeding 100. As discussed in section 4.5 one of the pos-
sibilities for these instabilities might be the JST flux scheme, which we have used
in combination with the non-equilibrium models. Employinga different flux scheme
such as the HLLC flux scheme as described in section 4.5, may remove these insta-
bilities.

When a compressible water-vapor medium is considered an additional and major
challenge lies in preserving the hyperbolic consistency ofthe system of equations.
Furthermore, when both water and vapor are present in one computational control
volume two different pressures need to be accounted for through appropriate equa-
tions of state. The pressure in the liquid phase will become “negative”, i.e. a tensile
stress. The question is which equation of state can be used for this regime. For den-
sities between the spinodal values the acoustic eigenvalues for the Sanchez-Lacombe
equation of state as used by Edwards & Liou [63]‖ or the Van der Waals equation of

‖Edwards & Liou [63] employed the Sanchez-Lacombe equation of state for real-fluid flows accom-
panied with the equilibrium assumption in the two-phase region to guarantee a real-valued speed of
sound.
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state are complex-valued, implying that the system of Eulerequations coupled with
these equations of state is not hyperbolic in the whole flow field. The equations of
state for liquid flow, as discussed in section 3.3, need to be accompanied with an ap-
propriate equation of state for the vapor phase. However, when returning to a positive
pressure in the vapor phase from a negative pressure in the liquid phase an inflection
point appears in thep-v-diagram resulting in complex-valued eigenvalues.
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For the simulation of cavitating flows the fluid is consideredas a homogeneous, com-
pressible, inviscid medium as presented in sections 3.2–3.4. The flow of such a
medium can be described by the three-dimensional unsteady Euler equations, which
are presented in section 4.1.

The literature on the numerical simulation of compressibleflows is extensive, see
amongst others the books by Toro [194], Blazek [25], Feistauer [64], Laney [122]
and Hirsch [90, 91]. In this chapter an overview of the relevant numerical methods
is presented. The focus is on addressing the critical aspects of simulating a com-
pressible flow over a wide range of Mach numbers with an arbitrary equation of state
employing a numerical method implemented on an unstructured edge-based finite-
volume computational mesh.

In the present study the edge-based finite-volume method forunstructured meshes
is employed, which offers great flexibility and easy applicability to the solution of
flow problems in domains with a complicated geometry. The finite volume mesh is
presented in section 4.2 followed by the finite volume formulation in section 4.3.

In section 4.4 the time-integration method is outlined followed in section 4.5 by the
description of several different flux schemes. In section 4.6 the MUSCL-type higher
order spatial reconstruction for unstructured grids is described, which is necessary
to extend the numerical method to second-order spatial accuracy. In section 4.7 the
low-Mach number problem is addressed and an adaptation to the flux schemes in or-
der to overcome this problem is presented.

The formulation of the boundary conditions are presented insection 4.8. In the
present work the boundary condition treatment of Thompson [190] using the per-
fect gas law as the equation of state, is generalized to an arbitrary equation of state.
Lastly, the solution procedure is presented in section 4.9.
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4.1 Three-dimensional unsteady Euler equations

The equations of motion describing an inviscid, non-heat-conducting, compressible
flow are the Euler equations. These five equations form a non-linear system, express-
ing the conservation of mass, momentum and energy. Considering a physical domain
Ω at a fixed position with boundaryA = ∂Ω, the Euler equations read in integral
conservation form

∂

∂t

y

Ω

UdΩ +
x

A

~F(U)·~n dA = 0, (4.1)

whereU = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved variables withρ the den-
sity, ~u = [u, v,w]T the velocity vector,E = e + 1

2~u ·~u the specific total energy,
ande the specific internal energy. The out of the control volume directed unit normal
vector~n = [nx, ny, nz]

T denotes the orientation of surfaceA. The tensor of fluxes
~F(U) written as[Fx(U),Fy(U),Fz(U)] is given by

~F(U) =









ρu ρv ρw
ρu2 + p ρvu ρwu
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p
ρuH ρvH ρwH









, (4.2)

wherep is the pressure andH = E + p/ρ = h+ 1
2~u·~u is the specific total enthalpy.

The inviscid flux~F(U)·~n in equation (4.1) can now be found by

~F(U)·~n = Fx(U)nx + Fy(U)ny + Fz(U)nz, (4.3)

which yields

~F(U)·~n =









ρû
ρûu+ pnx
ρûv + pny
ρûw + pnz
ρûH









, (4.4)

whereû is the contravariant velocity component normal to the surfaceA defined by

û = ~u·~n = unx + vny + wnz. (4.5)

The system of equations (4.1) is not closed and an appropriate equation of state is re-
quired, which preserves the hyperbolic nature of the systemof equations as discussed
in sections 3.2–3.5. We choose the equations of stateρ = ρ(p, T ) andh = h(p, T )
of section 3.4.
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4.2 Finite-volume mesh

Let Ω⊂R
3 be the physical domain occupied by the fluid and letΩh be a polygonal

or polyhedral approximation ofΩ. The set of finite volumes or control volumes
Vh = {Vi}i∈J , whereJ ⊂ Z

+ = {1, 2, . . .}, is called a finite volume mesh inΩh,
if all control volumesVi are closed polygons or polyhedrons with mutually disjoint
interiors such that

Ω̄h =
⋃

i∈J

Vi. (4.6)

In unstructured meshes the control volumes have no particular ordering, i.e. neigh-
boring control volumes cannot be directly identified by their indices. Employing the
numerical program Favomesh∗ [109], the control volumes are constructed from a fi-
nite element mesh by means of a node-centered dual mesh, see the theses of Put [153]
and Kelleners [109]. The finite element meshes can consist ofonly one type, triangles
or quadrilaterals in 2D and tetrahedrons or hexahedra in 3D as well as of a mix of
different element types, quadrilaterals and triangles in 2D and hexahedra, tetrahedra,
prisms and pyramids in 3D, see the MSc-thesis of Hospers [98]. The mixed grids are
usually called hybrid grids. In the present numerical method any combination of any
type of elements can be employed offering great flexibility in constructing a mesh of
good quality around a complex body and fitting this mesh inside a bounding box. As
an illustration the reader could think of a hybrid mesh around a ship propeller, which
is located inside a cavitation tunnel.

In figure 4.1 a dual finite-volume mesh associated with a triangular grid is illustrated.
A control volume (grey polygon) associated with a vertex ( ) of the triangular grid
is defined as a closed polygon. This polygon is obtained by joining the centers of
gravity (G#) of every triangle that contains the vertex with the midpoint (#) of every
edge containing the vertex. If the vertex belongs to the boundary of the computa-
tional domain, then the control volume is closed by the straight segments joining the
vertex with the midpoints of the boundary sides that containthe vertex.

As illustrated in figure 4.1, for 2D the face between two control volumes now consists
of two segments, denoted byS1 andS2 in figure 4.1 with unit normal vectors~n1 and
~n2. In 3D the number of sub-faces that form the face of the control volume is arbi-
trary. For the present numerical method these segments are combined into one single
face with one single unit normal vector. For more details seethe thesis of Kelleners
[109]. Note that the total number of control volumesNcv is equal to the total number
of vertices of the finite element mesh.

∗The numerical program Favomesh has been provided by P. Kelleners. For this, the author would
like to express his gratitude.
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~n1

~n2

S1
S2

FIGURE 4.1: Construction of the node-centered finite volume mesh in 2D from the
triangular elements. The two segmentsS1 andS2 separating the two control volumes,
with their unit normal vectors~n1 and~n2, are combined into one segment with one
unit normal vector, see for more details the thesis of Kelleners [109].

Denote the set of all interior faces bySI , the set of all boundary faces bySB and the
set of all faces bySI,B = SI ∪ SB . Two control volumesVi andVj are either disjoint
or their intersection is formed by a common part of their boundaries∂Vi and∂Vj . If
∂Vi ∩ ∂Vj contains at least one segment or one manifold thenVi andVj are called
neighbors and their shared segments are denoted by the interior faceSij:

Sij = ∂Vi ∩ ∂Vj = Sji. (4.7)

In the numerical methodSij consists of only one segment or manifold. The following
notation is introduced:|Vi| is the area (2D) or volume (3D) of control volumeVi,
|Sij | is the length (2D) or area (3D) of faceSij, the vector~nij is the outer normal unit
vector to∂Vi onSij . Define the sets(i) as the set of indices of all the neighbors of
control volumeVi:

s(i) = {j ∈ J ; i 6= j | ∂Vi ∩ ∂Vj 6= ∅} . (4.8)

The segments or manifolds of the boundary∂Vi of the control volume that are part of
the boundary∂Ωh of the computational domain are denoted bySij, wherej ∈ JB ⊂
Z
− = {−1,−2, . . .}, thusSij ⊂ ∂Vi ∩ ∂Ωh. Note that,J ∩ JB = ∅, meaning that

the boundary faces are not part of the interior faces and viceversa. Define the set
sb(i) as the set of the indices of all the faces of control volumeVi which belong to
the boundary∂Ωh of the computational domain

sb(i) = {j ∈ JB | Sij⊂∂Vi ∩ ∂Ωh} , (4.9)
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and thus we have that
∂Vi ∩ ∂Ωh =

⋃

j∈sb(i)

Sij. (4.10)

Now the setS(i) of all the indices of the faces of control volumeVi are formed by
putting

S(i) = s(i)
⋃

sb(i), (4.11)

resulting in

∂Vi =
⋃

j∈S(i)

Sij , (4.12)

|∂Vi| =
∑

j∈S(i)

|Sij |. (4.13)

DefiningNfi
as the total number of facesSij of control volumeVi, i.e.Nfi

= |S(i)|
and defining a one-to-one mapping fromS(i) → Ŝ(i) ⊂ Z

+, we can write equa-
tions (4.12) and (4.13) as

∂Vi =

Nfi∑

j=1

Sij , (4.14)

|∂Vi| =

Nfi∑

j=1

|Sij |. (4.15)

4.3 Finite-volume formulation

In order to derive a finite volume scheme equation (4.1) can beconsidered for each
control volumeVi with boundary∂Vi:

∂

∂t

y

Vi

UdV +
x

∂Vi

~F(U)·~nij d∂Vi = 0. (4.16)

Defining the control volume averages̄Ui as†

Ūi =
1

|Vi|
y

Vi

UdV , (4.17)

† It can be shown that the control volume averagesŪi are up to second order equal toUcg, the
function value at the center of gravity or centroid of the control volume, see thesis of Kelleners [109].
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with |Vi| the volume of control volumeVi and taking into account equation (4.14)
yields

∂Ūi

∂t
+

1

|Vi|

Nfi∑

j=1

x

Sij

~F(U)·~nij dSij = 0. (4.18)

The flux~F(U)·~n can be evaluated by considering equation (4.3), i.e.

~F(U)·~n = Fx(U)nx + Fy(U)ny + Fz(U)nz. (4.19)

However, this would require three different flux evaluations. Instead, the flux can
be evaluated by exploiting the rotational invariance property of the Euler equations‡ ,
which states that

Fx(U)nx + Fy(U)ny + Fz(U)nz = T−1Fx(TU), (4.20)

with T the rotation matrix andT−1 its inverse given in terms of the elements of the
unit normal vector~n = [nx, ny, nz|T by

T =









1 0 0 0 0
0 nx ny nz 0
0 t1,x t1,y t1,z 0
0 t2,x t2,y t2,z 0
0 0 0 0 1









, T−1 =









1 0 0 0 0
0 nx t1,x t2,x 0
0 ny t1,y t2,y 0
0 nz t1,z t2,z 0
0 0 0 0 1









, (4.21)

where the unit vectors~n,~t1 and~t2 form an orthogonal system, i.e~n·~t1 = 0, ~n·~t2 = 0
and~t1 ·~t2 = 0. Note that,~n = ~t1 ×~t2.

Thus, the flux~F(U) · ~n can be evaluated by first applying the rotation matrixT

to the original column vector with the conserved variablesU yielding the rotated
conserved variableŝU = TU. Note thatÛ is aligned with a new Cartesian frame
(x̂, ŷ, ẑ), where the coordinatêx is in the direction normal to the boundarySij in the
direction of~n and ŷ, ẑ are in the directions tangential to the boundarySij . Then,
the inter-cell fluxFx(Û) is evaluated and rotated back to the(x, y, z) directions by
applying the inverse of the rotation matrix. Equation (4.18) can now be written as:

∂Ūi

∂t
+

1

|Vi|

Nfi∑

j=1

x

Sij

T−1Fx(TU) dSij = 0. (4.22)

‡The proof of the rotational invariance property of the Eulerequations is usually presented in two
dimensions, see for example Toro [194]. In appendix B the proof is presented for three dimensions with
the rotation matrixT of equation (4.21). Note that the proof for the hyperbolicity of the Euler equations
can be formulated similarly, see for example Feistauer [64], but is omitted in this thesis.
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The inter-cell fluxFx(TU) can be approximated by the numerical fluxH(TUL,TUR):

Fx(TU) ≈ H(TUL,TUR), (4.23)

whereUL andUR depend on the control volume averagesŪi andŪj . Before pro-
ceeding the following notation is introduced for the numerical flux:

T−1Fx(TU) ≈ T−1H(TUL,TUR) ≡ H(UL,UR, ~nij), (4.24)

where the unit normal vector~nij defines the rotation matricesT andT−1. When
the faceSij belongs to the boundaryΩh of the computational domain, then it is nec-
essary to determineUR from boundary conditions. Note that, whenUL = Ūi and
UR = Ūj the finite volume scheme is first-order accurate when an approximate Rie-
mann solver is used. The extension to higher order is presented in section 4.6. Also,
note that whenUL andUR depend on the control volume averages at the previous
time level(s) only, the scheme is explicit. WhenUL andUR also depend on the con-
trol volume averages at the current time level, the scheme isimplicit.

Applying equation (4.24) to (4.22) and assuming that the numerical fluxH is con-
stant over the faceSij , the semi-discretized form of the finite-volume formulation
reads:

∂Ūi

∂t
+

1

|Vi|

Nfi∑

j=1

H(UL,UR, ~nij) |Sij | = 0. (4.25)

The finite-volume approximate solution of equation (4.1) attime t = tk is defined as
the piece-wise constant vector-valued functionsŪk

h, which are obtained from equa-
tion (4.25). The vector̄Uk

i , i.e. the control-volume-averaged value of control volume
Vi can be considered as the value of the approximate solution atthe centroid of the
finite volumeVi at timet = tk.

4.3.1 Properties of the numerical flux

The numerical fluxH should have the following properties:

1. H(U,V, ~n) is consistent:

H(U,U, ~n) = ~F(U)·~n (4.26)

2. H(U,V, ~n) is conservative:

H(U,V, ~n) = −H(V,U,−~n). (4.27)

If H satisfies conditions (4.26) and (4.27) then the method (4.25) is called consistent
and conservative, respectively.
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4.3.2 Riemann problem

(Approximate) Riemann solvers define the numerical fluxH by adopting a Riemann
problem at every cell interfaceSij as illustrated in the left picture of figure 4.2. Denote
the location of the centroid of the interface by~xf . In terms of the rotated coordinates
x̂, ŷ andẑ with x̂ in the direction normal to the interface and whereŷ andẑ are in the
tangential directions, the interface is located atx̂ = 0. The Riemann problem at time

level tn at the interfaceSij is denoted byRPnij
(

Ûn
L, Û

n
R

)

and has initial conditions

Û (x̂, tn) =

{
Ûn
L = TUn

L if x̂ < 0

Ûn
R = TUn

R if x̂ > 0
, (4.28)

as presented in the left picture of figure 4.2.

Û(x̂, tn)

Ûn
L

Ûn
R

x̂ = 0 x̂

t

x̂

ÛL Û∗L Û∗R ÛR

SL S∗ SR

FIGURE 4.2: Riemann problem (left) at the interface located at~xf corresponding to
x̂ = 0, at time-levelt = tk and Riemann fan (right) with four solution states, i.e.ÛL,
Û∗L, Û∗R, ÛR, separated by a left wave, a contact wave and a right wave whose
speeds are denoted bySL, S∗ andSR, respectively.

For t–tn not too large, the Riemann problemRPnij

(

Ûn
L, Û

n
R

)

has a similarity so-

lution that is constant along plane manifoldss = x̂/(t − tn) = const in the (x̂, t)
plane. A possible configuration of the solution is presentedin the right picture of fig-
ure 4.2. The waves denoted bySL andSR correspond to two nonlinear waves across
which all primitive variables change. These waves can be either shocks or rarefac-
tions. The waveS∗ in between the left waveSL and right waveSR correspond to
three linear waves, which always lie between the nonlinear waves. One of these lin-
ear waves correspond to a contact wave across which only the density changes. The
other two linear waves correspond to shear waves across which only the tangential
velocity componentŝv andŵ change, respectively. In the solution of the Riemann
problem two stateŝU∗L andÛ∗R between the nonlinear and linear waves exist. The
pressurep∗ and the normal velocitŷu∗ in the two star-regions are equal to each other,
i.e. p∗L = p∗R, û∗L = û∗R. The density changes across the contact wave and thus it is
different in the two star-regions.
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Now denote this similarity solution byUn
RP (s). The value alongs = 0 gives the

solution at the interfaceSij and thus the numerical fluxH can be defined by

H(Un
L,U

n
R, ~nij) = T−1Fx(U

n
RP (0)). (4.29)

Methods based on the solution of the Riemann problem are called Godunov-type
methods after Godunov [79], who presented a first-order upwind scheme which could
capture shock waves without introducing spurious oscillations. Godunov‘s method
and its various derivatives have become very popular due to their robustness and
ability to achieve high resolution of discontinuities. Theoriginal Godunov scheme
assumed the construction of an exact solution of the Riemannproblem, which is in
general difficult. This drawback can be avoided by the use of an approximation of
the exact solution resulting in a so-called approximate Riemann solver.

4.4 Time-integration

The semi-discretized form of the finite-volume formulationis presented in equation
(4.25). Defining the residualRn

i at time-leveltn for control volumeVi as:

R
n
i =

1

|Vi|

Nfi∑

j=1

H(Un
L,U

n
R, ~nij) |Sij |, (4.30)

then equation (4.25) can be written as

∂Ūi

∂t
+ R

n
i = 0. (4.31)

To advance the solution from time-leveltn to time-leveltn+1 a standard low-storage
four-stage Runge-Kutta time-integration method is employed, which is defined as
follows:

U
(0)
i = Ūn

i ,

U
(k)
i = U

(0)
i − αk∆tR

k−1
i , for k = 1, . . . , 4

Ūn+1
i = U

(4)
i , (4.32)

with the coefficientsαk equal to[0.1084, 0.2602, 0.5052, 1.0], resulting in second-
order accuracy in time [25]. For unsteady flow calculations the time step∆t is a
global time step defined as the minimum of the local time stepsof all control volumes

∆t = min
i

∆ti, (4.33)
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where the local time step is defined by

∆ti = C
ℓi

max (|~ui| + ci, |~ui|)
, (4.34)

with ℓi a characteristic length of control volumeVi defined as the diameter of the
smallest inscribed sphere of control volumeVi and where~ui andci are the local ve-
locity vector and speed of sound in control volumeVi, respectively. The constant
CFL numberC is set to 0.8 unless stated otherwise.

For steady-flow calculations local time stepping can be applied to accelerate the so-
lution to steady-state. Then, assigned to each control volume Vi is ∆ti defined in
equation (4.34) instead of the global time step∆t from equation (4.33).

4.5 Flux schemes

In the present research a number of classical flux schemes have been investigated. At
first, the Jameson-Schmidt-Turkel (JST) scheme with the preconditioning method of
Weiss & Smith [218] was employed following the theses of Habing [83] and Verhoeff
[212]. However, it was found that for cavitating flows the JSTscheme introduced
small oscillations at sharp gradients of the density in the flow. These oscillations
were disastrous for the stability and accuracy of the numerical method. In the search
for a more robust, stable and accurate scheme other flux schemes have been consid-
ered. For clarity and completeness in later chapters, theseschemes are described in
this section.

The stability and accuracy of the scheme is not only influenced by sharp gradients
of the density in the flow. The so-called low-Mach number problem is also very
important. This problem is addressed in section 4.7.

4.5.1 Jameson-Schmidt-Turkel scheme

One of the most widely known and used flux schemes is the Jameson-Schmidt-Turkel
(JST) scheme [106]. The numerical flux at a faceSij is calculated by averaging the
conservative variables to the left and to the right of the face:

Hjst (UL,UR, ~nij) =
1

2

(
F(Ūi) + F(Ūj)

)
·~nij . (4.35)

Note that for the left and right states at the face the control-volume-averages are
substituted. The central discretization of equation (4.35) is known to be unstable. To
suppress odd-even decoupling and to avoid spurious oscillations near discontinuities
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an explicit artificial dissipation§ termDi is added to the right hand side of the finite-
volume formulation in equation (4.25). On structured gridsit is based on a blend
of 2nd- and 4th- differences scaled by the maximum eigenvalue of the convective
flux Jacobian. On unstructured grids a combination of an undivided Laplacian and
biharmonic operator is employed [105]. Here, the formulation of Verhoeff [212] is
followed:

Di =
1

|Vi|
(

D
(2)
i − D

(4)
i

)

, (4.36)

with |Sij| the surface area of the face and whereD
(2)
i is a second-order dissipation

term related to the control volume-averaged value of the Laplacian ofU, i.e.∆U =
∇ · ∇U, which is computed in flux form as:

D
(2)
i =

Nfi∑

j=1

λijǫ
(2)
ij

(
Ūj − Ūi

)
|Sij |. (4.37)

The fourth-order dissipation termD(4)
i is related to the control-volume-averaged

value of∆∆U. In flux form D
(4)
i is defined by

D
(4)
i =

Nfi∑

j=1

λijǫ
(4)
ij





Nfj∑

k=1

(
Ūk − Ūj

)
−

Nfi∑

k=1

(
Ūk − Ūi

)



 |Sij |. (4.38)

The coefficientλij is an estimate of the spectral radius of the local flux Jacobian at
the face:

λij =
1

2
(|~ui| + ci + |~uj | + cj) , (4.39)

with ~u the local velocity vector andc the local speed of sound, respectively. The
dimensionless artificial dissipation coefficientsǫ(2) andǫ(4) are defined as:

ǫ
(2)
ij = min

(

κ2νij ,
1

2

)

, (4.40)

ǫ
(4)
ij = max (0, κ4 − ακνij) , (4.41)

whereκ2, κ4 andακ are user-defined dimensionless constants, typical values are
κ2 ∈ [1/4, 1/2], κ4 ∈ [1/64, 1/32] andακ = 2.0, depending on the flow problem
considered, see Wesseling [219]. The dimensionless parameter νij is the so-called
“shock sensor” defined as

νij = max (νi, νj) , (4.42)

νi =

Nfi∑

k=1

|pk − pi|
|pk + pi|

. (4.43)

§so-called because of its resemblance with viscous terms
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For cavitating flows the shock sensor needs to be defined on thedensity as well in
order to detect sharp gradients in density. Near sharp gradients the coefficientνi is
large and thus the fourth-order dissipation will have the value 0 and only the second-
order dissipation is present. In smooth regions of the flowνi is small and thus the
second-order dissipation will become small while the fourth-order dissipation will
remain non-zero.

Failure of the JST scheme for cavitating flows

It was found that the JST scheme fails to calculate solutionsfor cavitating flows due to
under- and overshoots at discontinuities with large density ratios. As an illustration,
we select a Riemann problem employing the equation of state for a perfect gas, which
resembles a moving contact surface with a large jump in density in a constant pres-
sure field. The Riemann problem is defined in equation (4.28) and figure 4.2. Here,
we adopt the values for the left and right stateVL = [ρL, uL, pL]T = [1.0, 1.0, 1.0]T

andVR = [1/10, 1.0, 1.0]T , respectively.

Note that in this problem, the density ratioρL/ρR is equal to 10. For cavitating
flow at a temperatureT =293 K with saturation pressurepsat=2, 318 Pa, the liquid
and vapor density are equal toρl,sat = 998.19 kgm−3 andρv,sat = 0.0172 kgm−3,
respectively [2], resulting in a density ratioρl,sat/ρv,sat≈58, 000.

For a quadrilateral grid with 100 points inx-direction the solution for the density at
t = 0.25s is presented in figure 4.3. The solution obtained with the JSTscheme with
the shock sensor based on the pressure is compared with the exact solution and the
numerical solution obtained with the second-order HLLC scheme. The solutions for
the pressure and velocity are always found to be constant throughout the domain.

In the solution obtained with the JST scheme distinct under-and overshoots are
present around the contact surface. With the shock sensor based on the pressure
it is not possible to calculate the solution for higher density ratios, because the under-
shoot generates negative values for the density resulting in failure of the numerical
method. Adopting a shock sensor based on the density improves the solution. The
undershoots are reduced significantly, such that problems with density ratiosρL/ρR
up to a value of 100 can be calculated. However, the undershoots in density are not
completely removed. Tuning the values for the constantsκ2, κ4 andαk improve the
results, but even then the over-and undershoots are not completely removed. For cav-
itating flow problems with allowable density ratios larger than 50,000, it was found
that the undershoots result in negative values for the density and thus in failure of the
numerical method.
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FIGURE 4.3: Solution of Riemann problem, representing a moving contactsurface
with a jumpρL/ρR = 10 in density. Presented are the exact solution (solid line) and
the numerical solutions obtained with the JST scheme forκ2 = 0.5, κ4 = 0.025,
ακ = 2.0 and second-order HLLC scheme, respectively.∆x = 0.01, CFL = 0.8.

4.5.2 HLLC flux scheme

Harten, Lax and van Leer [87] presented an approach for solving the Riemann prob-
lem approximately. The resulting Riemann solvers have become known as HLL
Riemann solvers. In this approach an approximation for the numerical flux at the
interfaces of the control volumes is obtained directly. Theidea is to assume a wave
configuration for the solution that consists of two waves with given speeds separating
three constant states. However, the assumption of a two-wave configuration is not
correct for the Euler equations. The resolution of contact waves and material inter-
faces is inaccurate. Toroet al. [195] modified the HLL solver to improve the solution
around such contacts. This modification has become known as the HLLC Riemann
solver. The derivation of the relations can be found in the book of Toro [194]. Batten
et al. [21] showed that with an appropriate choice for the acoustic and contact wave
velocities the HLLC solver yields the exact resolution of isolated shock and contact
waves. Furthermore, they demonstrated that this solver is positively conservative,
which forces the numerical method to preserve initially positive pressures and den-
sities. Here, the formulation of Battenet al. [21] is followed to construct a HLLC
solver for an unstructured mesh.

As illustrated in the right picture of figure 4.2 the Riemann problem at the cell inter-
face has a similarity solution with four possible states, separated by three waves. The
HLLC scheme considers an approximation of the Riemann solution as a simplified
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Riemann fan with four possible constant states, i.e.ÛL, Û∗L, Û∗R andÛR, sepa-
rated by a left wave, a contact wave and a right wave with speedSL, S∗ andSR, re-
spectively. Note that the stateŝUK are the rotated conserved variables:ÛK = TUK

with T the rotation matrix defined in equation (4.21). The wave speeds are defined
by

SL = min(ûL − cL, ûR − cR), (4.44)

SR = max(ûL + cL, ûR + cR), (4.45)

S∗ =
ρRûR(SR − ûR) − ρLûL(SL − ûL) + pL − pR

ρR(SR − ûR) − ρL(SL − ûL)
, (4.46)

with c the speed of sound and̂u the velocity in normal direction, i.e.̂u = ~u·~n. The
approximate solution̂U∗ is given by

Û∗ =







ÛL if SL ≥ 0

Û∗L if SL < 0 ≤ S∗
Û∗R if S∗ < 0 ≤ SR
ÛR if SR < 0

. (4.47)

To determine the intermediate statesÛ∗L andÛ∗R the following conditions are as-
sumed:

û∗L = û∗R = û∗ = S∗, p∗L = p∗R = p∗, (4.48)

wherep∗ is given by

p∗ = ρL(ûL − SL)(ûL − S∗) + pL = ρR(ûR − SR)(ûR − S∗) + pR. (4.49)

The intermediate state vectorŝU∗L,R are now given by

Û∗K = ρK

(
SK − ûK
SK − S∗

)









1
ûk
v̂k
ŵk
Ek









+

(
1

SK − S∗

)









0
p∗ − pK

0
0

p∗S∗ − pK ûK









, (4.50)

and the numerical HLLC fluxHhllc can be written as

Hhllc(UL,UR, ~nij) = T−1







Fx(ÛL) if SL ≥ 0

Fx(ÛL) + SL(Û∗L − ÛL) if SL < 0 ≤ S∗
Fx(ÛR) + SR(Û∗R − ÛR) if S∗ < 0 ≤ SR
Fx(ÛR) if SR < 0

.

(4.51)
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4.5.3 AUSM family of schemes

Liou & Steffen [133] proposed a simple and accurate flux splitting scheme denoted by
Advection Upstream Splitting Method (AUSM). The under-lying idea of the method
is the observation that the inviscid flux consists of two physically distinct parts,
namely a convective part and a pressure part. So the basis is to determine an appro-
priately defined cell-face advection Mach number using values from the two neigh-
boring control volumes via associated characteristic speeds. Also, a pressure splitting
is applied. For different purposes, a number of extensions and modifications to the
scheme have been proposed. Amongst others we recall the AUSM+ scheme [130],
which is designed to remove pressure oscillations around slowly moving shocks and
contacts for cases in which the flow is aligned with the grid, the AUSM+-up and the
AUSM+-up for all speeds schemes [131, 132] which are designed to improve accu-
racy for the case of low-Mach number flows.

The starting point is to split the inviscid flux~F(U) ·~n into two parts, a convective
flux F(c) and a pressure fluxF(p):

~F(U)·~n = F(c) + F(p) = ṁψ + F(p), (4.52)

with the mass fluxṁ equal toṁ = ρ(~u·~n), the vectorψ defined byψ = [1, u, v, w,H]T

and with the pressure flux equal toF(p) = p [0, nx, ny, nz, 0]
T . The numerical invis-

cid flux H is also split in two parts, a numerical convective fluxH(c) and a numerical
pressure fluxH(p):

H(UL,UR, ~nij) = H(c)(UL,UR, ~nij) + H(p)(UL,UR, ~nij). (4.53)

The numerical convective fluxH(c) is defined in the following general upwind form

H(c)(UL,UR, ~nij) = ṁ+ψL + ṁ−ψR, (4.54)

where the contributionsψL andψR are weighted by the split mass fluxesṁ+ and
ṁ−, which follow the consistency requirement

ṁ = ṁ+ + ṁ−, (4.55)

the proper upwinding conditions

ṁ+ ≥ 0, ṁ− ≤ 0, (4.56)

and the mutually exclusive requirement

(ṁ+)(ṁ−) = 0. (4.57)
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The split mass fluxes are defined by

ṁ+ = c̄ ρLM
+, ṁ− = c̄ ρRM

−, (4.58)

with c̄ a common speed of sound defined byc̄ = 1
2(cL+cR) and whereM+ andM−

can be combined into the interface Mach numberM̄ with M̄ = M+ +M−, which
is defined later on. Using the properties (4.55)–(4.57) the numerical convective flux
can be rewritten as

H(c)(UL,UR, ~nij) = c̄ M̄ ρL/RψL/R, (4.59)

where

(·)L/R =

{
(·)L if M̄ ≥ 0
(·)R if M̄ < 0

. (4.60)

The numerical pressure fluxH(p) is defined as

H(p)(UL,UR, ~nij) = p̄









0
nx
ny
nz
0









. (4.61)

The AUSM, AUSM+ and AUSM+-up schemes differ in their definition of M̄ and
p̄. To facilitate the formulation of the different schemes thefollowing polynomial
functions are defined:

M±
(1)(M) =

1

2
(M ± |M |), (4.62)

M±
(2)(M) = ±1

4
(M ± 1)2, (4.63)

M±
(4)(M) =

{ M±
(1)(M) if |M | ≥ 1

M±
(2)(M)

(

1 ∓ 16βM∓
(2)(M)

)

if |M | < 1
, (4.64)

P±
(5)(M) =







1

M
M±

(1)(M) if |M | ≥ 1

M±
(2)(M)

(

(±2 −M) ∓ 16αMM∓
(2)(M)

)

if |M | < 1
(4.65)

The left and right Mach numbersML andMR are defined by

ML =
~uL ·~n
c̄

, MR =
~uR ·~n
c̄

. (4.66)
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AUSM scheme

The AUSM scheme [133] is defined by using the numerical convective flux H(c) in
equation (4.59) and the numerical pressure fluxH(p) in equation (4.61) and by setting
M̄ equal to

M̄ = M+
(4)(ML) + M−

(4)(MR), (4.67)

with β = 0 in equation (4.64) and by settinḡp equal to

p̄ = pLP+
(5)(ML) + pRP−

(5)(MR), (4.68)

with α = 0 in equation (4.65).

AUSM+ scheme

The AUSM+ scheme [130] is defined by using the numerical convective flux H(c)

in equation (4.59) and the numerical pressure fluxH(p) in equation (4.61) and by
settingM̄ equal to

M̄ = M+
(4)(ML) + M−

(4)(MR), (4.69)

with β = 1
8 in equation (4.64) and by settinḡp equal to

p̄ = pLP+
(5)(ML) + pRP−

(5)(MR), (4.70)

with α = 3
16 in equation (4.65).

AUSM+-up scheme

The AUSM+-up scheme [131, 132] is defined by using the numerical convective flux
H(c) in equation (4.59) and the numerical pressure fluxH(p) in equation (4.61) and
by settingM̄ equal to

M̄ = M+
(4)(ML) + M−

(4)(MR) +Mp, (4.71)

with Mp defined by

Mp = −Kp max(1 − σM̃2, 0)
pR − pL
ρ̄c̄2

, (4.72)

where

ρ̄ =
1

2
(ρL + ρR) , M̃2 =

1

2

(
M2
L +M2

R

)
, (4.73)

and with the coefficients equal toσ = 1.0, Kp = 1
4 andβ = 1

8 .

p̂ is set equal to
p̄ = pLP+

(5)(ML) + pRP−
(5)(MR) + Pu, (4.74)
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wherePu is equal to

Pu = −2Kuρ̄c̄
2 P+

(5)(ML)P−
(5)(MR) (MR −ML), (4.75)

with Ku = 3
4 andα = 3

16 .

AUSM+-up for all speeds scheme

The AUSM+-up scheme for all speeds [131, 132] is defined by adopting the AUSM+-
up scheme by using the numerical convective fluxH(c) in equation (4.59) and the
numerical pressure fluxH(p) in equation (4.61) and by settinḡM equal to

M̄ = M+
(4)(ML) + M−

(4)(MR) + M̄p, (4.76)

with M̄p defined by

M̄p = −Kp

fa
max(1 − σM̄2, 0)

pR − pL
ρ̄c̄2

, (4.77)

where

ρ̄ =
1

2
(ρL + ρR) , M̄2 =

1

2

(
M2
L +M2

R

)
, (4.78)

and

fa(M0) = M0(2 −M0), (4.79)

with

M0 = min
(
1,max(M̄2,M2

co)
)

, (4.80)

and with the coefficients equal toσ = 1.0, Kp = 1
4 , β = 1

8 andM0 = 10−2.

p̄ is set equal to

p̄ = pLP+
(5)(ML) + pRP−

(5)(MR) + P̄u, (4.81)

whereP̄u is equal to

P̄u = −2faKuρ̄c̄
2 P+

(5)(ML)P−
(5) (MR)(MR −ML), (4.82)

with

α =
3

16
(−4 + 5f2

a ), (4.83)

and withKu = 3
4 .
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4.6 MUSCL-type higher order spatial reconstruction

To extend the numerical method from first- order to second-order, a MUSCL-type
reconstruction method has been implemented. The Monotone Upstream-Centred
Scheme for Conservation Laws (MUSCL) is based on the work of van Leer [127].
The MUSCL approach implies higher-order accuracy obtainedby employing data
reconstructions and the avoidance of spurious oscillations by constraining the recon-
struction with the use of a limiter method.

The semi-discretized form of the finite-volume formulationis described in equa-
tion (4.25). Taking the control volume average valuesŪi andŪj for the left and right
statesUL andUR for the numerical flux, results in a spatial discretization which is
only first-order accurate. To obtain higher-order accuracy, the left and right states
UL andUR can be taken from higher order polynomialsŨi(~x) representing the so-
lution in control volumeVi. Here, we consider piece-wise linear data reconstructions.

Higher-order methods will produce spurious oscillations in the vicinity of high gradi-
ents. The use of monotone schemes would prevent such oscillations. Unfortunately,
Godunov stated that monotone linear schemes are at most first-order accurate. Thus
to get higher-order accuracy, non-linear versions of theseschemes should be con-
structed by applying limiter functions to the piece-wise linear reconstructions. We
are seeking the following desired properties:

1. second-order or higher accuracy when the solution is smooth.

2. the produced solutions do not have spurious oscillationsnear high gradients.

3. the schemes produce high-resolution of discontinuities.

For structured meshes many techniques and limiter functions have been constructed,
see for example the books of Leveque [128] and Toro [194]. Harten [86] introduced
the useful concept of Total Variation Diminishing (TVD) or Total Variation Non In-
creasing schemes based on non-linear stability theory. TheTVD schemes are based
on a concept aimed at preventing the generation of new extrema in the flow solution.
Sweby [188] introduced the TVD region and the second order TVD region giving
design rules for limiters. A few of the most popular limitersare theminmod limiter
[128], thesuperbee limiter[194], thevan Leer limiter[126] and thevan Albada lim-
iter [10].

Schemes for multi-dimensional structured meshes can be constructed relatively easy
by dimensional splitting. However, Suresh [185] has shown that for multi-dimensional
problems most TVD limiters give rise to large spurious oscillations near discontinu-
ities. The cause of these oscillations can be traced back to reconstructions that are not
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bounded by neighboring cell averages. Suresh [185] proved that if the reconstruction
in each cell is bounded by the cell averages of first-order neighbors then the MUSCL
scheme is positivity preserving.

These TVD-schemes can not be extended directly to multi-dimensional unstructured
meshes. This is specifically due to the difficulty in implementing and enforcing a
monotonicity criterion that relies on next-neighbor information. In structured grids
this information is available, but it is missing in unstructured grids. Darwish and
Moukalled [53] gave a nice overview on TVD schemes for unstructured grids. Barth
& Jespersen [20] introduced a MUSCL-type reconstruction method for unstructured
grids, which is bounded over the whole control volume by all its immediate neigh-
bors. Darwish & Moukalled [53] mention that the limiter of Barth & Jespersen and
the van Leer limiter were found to be similar. Venkatakrishnan [208] adjusted the
method of Barth & Jespersen with a van Albada type limiter. Inthe present numeri-
cal method the limiter method for unstructured grids of Barth & Jespersen [20] and
of Venkatakrishnan [208] is implemented.

4.6.1 Piece-wise linear reconstruction

Considering piece-wise linear data reconstructions in each control volume the re-
construction polynomials̃Ui(~x) representing the solution for either the conserved
variablesρ, ρu, ρv, ρw andρE or the primitive variablesρ, u, v, w ande in control
volumeVi can be written as:

Ũi(~x) = Ūi + (∇U)cg,i ·(~x − ~xcg,i), (4.84)

where(∇U)cg,i is the gradient of the variablesU at the centroid of control volume
Vi and~xcg,i is the location of the center of gravity of control volumeVi. For linear
reconstructions the extrema ofŨi(~x) occur at the boundaries of the control volume.
We are interested in the value at the centroid~xij of an interfaceSij between control
volumesVi and its neighborVj . For each faceSij of control volumeVi the extrapo-
lated valuesUij are equal to

Uij = Ūi + (∇U)cg,i ·(~xij − ~xcg,i). (4.85)

The gradient(∇U)cg,i in control volumeVi is computed using the Green-Gauss lin-
ear reconstruction from approximate forms of the exact relation

∫

Vi

∇UdV =

∫

∂Vi

U~ndS. (4.86)

So that

(∇U)cg,i ≡
1

|Vi|

∫

Vi

∇UdV =
1

|Vi|

∫

∂Vi

U~ndS, (4.87)
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with |Vi| the volume of control volumeVi. For a node-centered dual mesh the gradi-
ent is calculated by taking the sum over all faces of the valueUf at the face, i.e.

(∇U)cg,i =
1

|Vi|

Nfi∑

j=1

Uf |Sij |~nij , (4.88)

with Nfi
the number of faces of control volumeVi, |Sij | the surface area of face

Sij and where the valueUf is taken as the weighted mean of the control-volume-
averaged values at both sides of the face:

Uf =
|Vi|Ūj + |Vj |Ūi

|Vi| + |Vj|
. (4.89)

To avoid spurious oscillations the extrapolated boundary valuesUij obtained from
equation (4.85) must be constrained with the application ofa limiter functionΨ. The
limited extrapolated boundary values are then used for the left and right statesUL

andUR:

UL = Ūi + Ψi

[

(∇U)cg,i ·(~xij − ~xcg,i)
]

, (4.90)

UR = Ūj + Ψj

[

(∇U)cg,j ·(~xij − ~xcg,j)
]

, (4.91)

whereΨ ∈ [0, 1] is the limiter function yet to be defined.

Barth & Jespersen [20] enforced the monotonicity criterionby stating that the val-
ues of the reconstructed polynomials within a control volume should not exceed the
maximum and minimum control-volume-averaged solutions ofthe neighbors of the
control volume including the one of control volumeVi. Thus Barth & Jespersen
required that

Umin
i ≤ UL,UR ≤ Umax

i , (4.92)

whereUmin
i = min

(
Ūi, Ūneighbours

)
andUmax

i = max
(
Ūi, Ūneighbours

)
.

The value for the limiter functionΨi, satisfying equation (4.92) is equal to

Ψi = min (Ψij) , (4.93)

with Ψij the limiter function at the faceSij.
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Limiter function of Barth & Jespersen [20]

Barth & Jespersen defined the limiter functionΨij as

Ψij =







Φ

(
Umax
i − Ūi

Uij − Ūi

)

if Uij − Ūi > 0

Φ

(
Umin
i − Ūi

Uij − Ūi

)

if Uij − Ūi < 0

1 if Uij − Ūi = 0

, (4.94)

which ensures that the argument ofΦ is always≥ 0. The functionΦ(x) is defined by

Φ(x) = min(1, x), (4.95)

which rendersΨij ∈ [0, 1]. Venkatakrishnan [208] proposed a modified version of
the limiter of Barth & Jespersen to reduce its problems with convergence to steady-
state, which can be related to the use of non-differentiablefunctions such as themin
function.

Limiter function of Venkatakrishnan [208]

Venkatakrishnan [208] proposes a modification of the van Albada limiter in combi-
nation with the method of Barth & Jespersen. With the unlimited extrapolated values
Uij defined by equation (4.85), let∆− be equal to

∆− = Uij − Ūi, (4.96)

and let∆+ be defined by

∆+ =

{
Umax
i − Ūi if ∆− > 0

Umin
i − Ūi if ∆− < 0

. (4.97)

The limiter functionΨij of Barth & Jespersen, equation (4.94), is then defined by

Ψij = Φ

(
∆+

∆−

)

(4.98)

=

(
1

∆−

)[

∆−Φ

(
∆+

∆−

)]

. (4.99)

Venkatakrishnan proposed to modify the term∆−Φ
(

∆+

∆−

)

yieldingΨij as

Ψij =
1

∆−

[
(∆2

+ + ǫ2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− + ∆−∆+ + ǫ2

]

, (4.100)
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where Venkatakrishnan takesǫ2 to be equal to(K∆x)3 with K = 0.3 and∆x a rel-
evant local grid size. Venkatakrishnan mentions that a small value suffices, so taking
ǫ2 = 10−12 to revert to the unlimited scheme for smooth solutions wouldbe a valid
option. Taking a value ofK = 0.0 is known to stall convergence to steady-state,
whereas a higher value, such asK = 5.0, leads to oscillations near discontinuities,
see for more details Blazek [25]. To prevent division by a very small value∆− in the
term 1

∆−
should be replaced bysign(∆−)(|∆−| + ω) with ω = 10−12.

In the present numerical method we adopt a value ofK = 0.3 for steady flow calcu-
lations. For unsteady flow calculations we takeK = 0.0.

4.7 Low-Mach number flows

From the beginning of CFD in the 1960s two separate classes ofnumerical meth-
ods for numerically simulating flows have been used: density-based and pressure-
based methods have been used for compressible and incompressible flow, respec-
tively. However, many flow problems exist in which a part of the flow region is
nearly incompressible, whereas significant compressibility effects occur in other re-
gions of the flow. Cavitating flow problems have a large domainfilled with almost
incompressible liquid flow and much smaller vaporous regions in which the flow
is compressibe and even supersonic flow may occur. In recent years, many efforts
have been made to develop unified numerical approaches capable of solving a larger
range of fluid flow problems, see amongst many others Wesseling [219] and Koren
[114, 115]. For this purpose, either typical “incompressible”-flow methods are gen-
eralized to high-speed compressible flows, or the “compressible”-flow methods are
extended to low-Mach number flows or incompressible flows.

However, two major problems have been found to occur when solving low-Mach
number flows with “compressible”-flow methods: (1) extremely slow or stalled con-
vergence (2) globally incorrect flow solutions. To solve these problems a popular
technique has been to introduce suitable preconditioners,e.g. Turkel [200] and Weiss
& Smith [218]. In more recent years, adaptation of the flux schemes by scaling or
modifying the numerical dissipation in regions with low-Mach number flows have
been found to be successful, e.g. Guillard & Viozat [82], Liou [132] and Schmidtet
al. [169].

The difficulty with slow convergence in solving the compressible-flow equations
for low-Mach number flows is associated with the large disparity in acoustic wave
speeds,|~u| + c and|~u| − c, and the waves convected at fluid speed,|~u| [200]. The
“stiffness” of the equations is determined by the characteristic condition numberCN
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[25] defined as the ratio of the largest eigenvalue to the smallest eigenvalue:

CN =
|~u| + c

|~u| = 1 +
1

M
, (4.101)

withM the local Mach number. The allowable local time step is limited by the fastest
wave, i.e. by|~u| + c, such that in one time step the wave moves over one computa-
tional cell at most. During one time step, the slowest waves,however, move only
over a fraction of the cell width. Thus a large value of the condition number,M → 0,
reduces the efficiency of wave propagation resulting in a slow convergence of the
numerical method.

The reason for the globally incorrect solutions in the low-Mach number limit has been
identified by Turkelet al. [200] and Guillard & Viozat [82] to relate to the amount of
artificial dissipation in schemes for compressible flows. The physical pressure fluc-
tuations scale with the square of the Mach number, while the solutions of the discrete
system contain pressure fluctuations of the order of the Machnumber [81, 82]. Thus,
the artificial dissipation in the numerical scheme does not scale correctly for Mach
numbers approaching zero and the accuracy and stability of such schemes suffer at
low-Mach number. The use of second-order schemes and/or finer grids improves the
accuracy, but the additional computational cost is substantial, especially for 2D and
3D calculations. Additionally, Liou [131] and Schmidtet al. [169] illustrated that
for the classical Riemann solvers the dissipation in the numerical approximation for
the pressure for compressible flows is scaled by a term ofO(ρc∆u), whereas the
changes in pressure due to smooth changes in the flow scale with O(ρu∆u). For air
at standard conditionsρc is of O(102) and for waterρc is of O(106) from which it
can be concluded that for the calculation of a water flow this effect is even stronger.
Schmidtet al. [169] introduced a modified pressure flux formulation to improve the
numerical results, which is outlined in section 4.7.2.

4.7.1 Preconditioning

Preconditioning methods cope with the spreading of the values of the eigenvalues
by pre-multiplying the term with the time-derivative in thesystem of equations by
a suitable preconditioning matrix which alters the speed ofthe acoustic waves. This
makes their speed of the same order of magnitude as the local velocity of the flow and
thus removes the disparity in wave-speeds. In this manner, awell-conditioned system
is recovered, together with good convergence properties. In 1967 Chorin [39] intro-
duced the method of artificial compressibility for incompressible flows by adding an
artificial time derivative of the pressure in the continuityequation. Since then many
preconditioning methods have been developed, e.g. the family of preconditioners in-
troduced by Turkel [198, 199]. We also mention the preconditioning method of Weiss
& Smith [218] which provides a modified expression for the derivatives of density
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with respect to pressure for an arbitrary equation of state.

A drawback of preconditioning methods is that due to the adaptation of the speed
of the acoustic waves time-accuracy is lost. The preconditioned equations only
have steady-state solutions in common with those of the original system. Another
drawback is the lack of robustness of the method near stagnation points, which may
be due to artificial dissipation, where solution eigenvectors become almost parallel
[52], causing small perturbations to be amplified over shorttime-scales. For time-
dependent problems, the “dual-time stepping” technique has been developed [218],
in which the derivative with respect to physical time are treated as source terms. Dur-
ing each physical time-step, the system of preconditioned equations is advanced in
artificial or “pseudo” time to reach a pseudo-steady-state in pseudo-time.

Unfortunately, the preconditioning method converges slowly when the physical time
step∆t is chosen of the same order of magnitude as the pseudo-time step∆τ . Fur-
thermore, when highly unsteady flows are considered, such ascavitating flows, or
when fast moving shocks and waves need to be captured, such isthe case in liquid
flows, many small physical time steps need to be taken and the dual-time stepping
method becomes inefficient.

4.7.2 Adaptation of flux schemes

Wallis [214] formulated the terms continuity waves (also denoted by kinematic waves
or hydrodynamic coupling) and dynamic waves. Continuity waves are a quasi-steady-
state phenomenon and occur due to smooth changes in the flow, one steady-state value
simply propagates into another. The change in pressure across such waves is related
to the change in velocity as∆p ≈ ρu∆u. On the other hand, dynamic waves are usu-
ally due to forces or sharp discontinuities in the flow. The change in pressure across
such waves is then related to the change in velocity as∆p ≈ ρc∆u.

Classical Riemann solvers assume that the solution consists of dynamic waves. Many
authors only consider shock tube problems when studying numerical flux schemes.
For these type of problems the solution consists of dynamic waves and thus the clas-
sical Riemann solvers work very well. However, for steady-state low-Mach number
flows the classical Riemann solvers become too dissipative since the solution then
consists of continuity waves.

In the literature on the preconditioning methods it is found, that the numerical meth-
ods can be improved by modifying the flux schemes by proper scaling of the numer-
ical dissipation for low-Mach number flows [81, 82]. An example of such a modified
scheme is the “AUSM+-up for all speeds” scheme of Liou [131, 132], which is also
applied to compressible liquid flows [35].
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Schmidtet al. [169] proposed a hybrid solution approach to overcome the inaccu-
rate calculations of the pressure field for (low-Mach number) liquid flows. They
combined the HLLC flux scheme and the AUSM flux scheme to obtaina flux scheme
that is able to handle time-dependent wave phenomena as wellas low-Mach number
liquid flows. They followed the general philosophy of the family of AUSM schemes,
in which the Euler fluxes are split in a convective part and a pressure part. The mass
flux is calculated with the HLLC mass flux defined in equation (4.51) and the pres-
sure flux is determined with the AUSM pressure splitting defined in equations (4.68),
(4.70), (4.74) and (4.81), respectively. In later chapterswe refer to this flux formula-
tion as the hybrid HLLC/AUSM flux scheme.

Schmidtet al. [170, 172] formulated the hybrid solution approach in a slightly dif-
ferent flux formulation showing that this newer formulationis uniformly consistent
for M → 0. Following discussions with Schmidt and Schnerr we have implemented
their formulation into the present edge-based numerical method.¶

4.8 Boundary conditions

The treatment of the boundary conditions is based on the common ghost-cells ap-
proach, which implies that the numerical flux over a boundaryinterface is determined
with the same numerical flux as used for internal cells. When the faceSij considered
is located on the boundaryΩh of the computational domain the right stateUR for the
numerical fluxH(UL,UR, ~nij) at the cell-interface can be reconstructed from the
stateUg in a virtual control volume or “ghost” cell. The stateUg in the ghost cell
is specified by applying suitable boundary conditions to obtain the control-volume-
averaged values of the ghost cell.

For the in- and outflow boundaries the right stateUR for the numerical flux is taken
equal to the state in the ghost cellUg. For the solid wall the state in the ghost cell is
used to obtain the reconstructed valueUL at the boundary interface. By applying the
non-permeability condition usingUL the reconstructed right valueUR at the bound-
ary interface is then obtained.

First, in section 4.8.1 the time-dependent in- and outflow boundary conditions are
described. In the present work the method of Thompson for time-dependent non-
reflecting boundary conditions is generalized for arbitrary equations of state as pre-

¶During the development of the present numerical method we profited very much from extensive
discussion with S. Schmidt and Prof. Schnerr of the TU Munich. For this the author would like to
express his gratitude.
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sented in appendix A. Then, in section 4.8.2 the boundary conditions for solid walls
are presented.

4.8.1 Time-dependent in- and outflow boundary conditions

In appendix A, the time-dependent, non-reflecting, in- and outflow boundary condi-
tions for the hyperbolic Euler equations are derived for arbitrary equation of state and
for an arbitrary orientation of the boundary. Briefly, the outgoing characteristics are
explicitly calculated and allowed to move out of the domain.Incoming characteris-
tics are handled by setting the time-derivative of their amplitude equal to zero, thus
ensuring that waves do no enter the domain during simulationgiving the boundary
conditions a non-reflective character.

Rudy & Strikwerda [160] presented a non-reflecting subsonicoutflow boundary con-
dition for the numerical simulation of the time-dependent linearized compressible
Navier-Stokes equations, for the case that these equationsare used to obtain a steady
state solution. Their boundary condition effectively reduces reflections of outgoing
waves at the boundary and increases the convergence towardssteady-state. Thomp-
son [189, 190] introduced a unified formalism for the time-dependent treatment of
boundary conditions for the system of hyperbolic equationsformed by the Euler
equations using the perfect gas law as the equation of state.A similar approach is
followed in the books of Hirsch [91] and Feistauer [64]. Poinsot & Lele [149] ex-
tended the formalism of Thompson to the Navier-Stokes equations. All non-physical
reflections from the in- and outflow boundaries can be completely removed by the
formalism of Thompson. Colonius [42] presented an overviewon modeling artifi-
cial boundary conditions for compressible flow. In the present work, the method of
Thompson is generalized for an arbitrary equation of state and for arbitrary orienta-
tion of the boundary.

The central concept is that a hyperbolic system of equationsrepresents the propa-
gation of waves and that at any boundary some of the waves are propagating into the
computational domain while others are propagating outwards. The number and type
of conditions at a boundary of a multi-dimensional domain are defined by the eigen-
values of the Jacobian of the component of the flux vector in the direction normal
to the boundary. Each eigenvalueλi represents the characteristic velocity at which a
particular wave propagates. The behavior of outgoing wavesis completely described
by the solution within and at the boundary of the computational domain, while the
behavior of the incoming waves is specified by data external to the computational
domain.

Thus, because of the wave structure of the hyperbolic equations, the number of
boundary conditions that may be imposed depends on the physics of the problem
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and may not be specified arbitrarily, i.e.

the number of boundary conditions which must be specified at apoint on the bound-
ary is equal to the number of incoming waves at that point.

The number of boundary conditions required at any point on the boundary may
change in time. Also, the number of boundary conditions required at any time may
vary with position on the boundary. Table 1 presents the number of physical boundary
conditions for different types of boundaries.

Boundary type Number of physical boundary conditions

Supersonic inflow 5
Subsonic inflow 4

Supersonic outflow 0
Subsonic outflow 1

TABLE 4.1: Number of physical boundary conditions for different typesof the
boundary of the computational domain.

The dependance of the characteristics on an arbitrary equation of state turns out to be
reduced to the formulation of the two variablesc, the speed of sound, andψ, which
are defined by

c2 =

ρ

(
∂h

∂T

)

p

ρ

(
∂ρ

∂p

)

T

(
∂h

∂T

)

p

+

(
∂ρ

∂T

)

p

{

1 − ρ

(
∂h

∂p

)

T

} , (4.102)

ψ =

1 − ρ

(
∂h

∂p

)

T(
∂h

∂T

)

p

. (4.103)

The spatial derivatives in normal direction in the definitions ofLi in equations (A.28)-
(A.32) are calculated by employing a first order forward discretizaton

∂φ

∂x̂
=
φg − φi

∆x̂
, (4.104)

whereφg denotes the value of variableφ in the ghost cell at the previous time-level
and∆x̂ is the distance between the ghost cell and the center of gravity of the control
volume, which is equal to the characteristic lengthℓ of the control volume defined as
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the diameter of the smallest inscribed sphere of the controlvolume. The time deriva-
tives in equations (A.41)–(A.45) are calculated with the time integration method de-
scribed in section 4.4 to obtain the new rotated primitive variablesQ̂+

g in the ghost
cells yielding:

Q̂+
g = Q̂g − ∆t (d + C) , (4.105)

with d andC defined in equations (A.40) and (A.14), respectively. The new rotated
primitive variablesQ̂+

g are then rotated back to(x, y, z) coordinates by multiplying
with the inverseT−1 of the rotation matrix defined in equation (4.21). The new con-
served variablesU+

g in the ghost points can then be obtained through the appropriate
equations of stateρ+

g = ρ(p+
g , T

+
g ) andh+

g = h(p+
g , T

+
g ).

Specifying the boundary conditions

Specifying the boundary conditions determines the values of Li in equations (A.41)–
(A.45) for incoming waves, while for outgoing waves the values ofLi are determined
by equations (A.28)–(A.32). Note thatL1 andL5 describe the left and right acoustic
waves,L2 the wave related to entropy and thatL3 andL4 describe the wave associ-
ated with the convection of the shear waves.

Besides the solid wall, four different situations are possible:

• subsonic inflow

• supersonic inflow

• subsonic outflow

• supersonic outflow

In figure 4.4 each of these situations are illustrated for thewave-speedsλ1 = û − c,
λ2 =λ3 =λ4 = û andλ5 = û+ c on the boundary located atx̂ = 0 with unit normal
vector~n pointing out of the computational domain and withx̂ in the direction of~n.

Subsonic inflow is characterized by−c < û < 0, so thatλ1−4 < 0 andλ5 > 0. Thus
L5 is computed from its definition in equation (A.32) and the other fourLi are spec-
ified from boundary conditions. Subsonic outflow is characterized by0 < û < c, so
thatλ1 < 0 andλ2−5 > 0. ThusL2−5 are computed from its definition in equations
(A.29)–(A.32) andL1 is specified from boundary conditions. Supersonic inflow is
specified bŷu < −c, so that allλi < 0. This means that all valuesLi must be spec-
ified from boundary conditions. Supersonic outflow at the boundary is characterized
by û > c so that allλi > 0. Consequently, no boundary conditions can be specified
at all. In this case allLi are determined from equations (A.28)–(A.32).
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(a) OD CD

û−cûû+c

x̂ = 0

~n

(b) OD CD

û−cûû+c

x̂ = 0

~n

(c) OD CD

û−cûû+c

x̂ = 0

~n

(d) OD CD

û−cûû+c

x̂ = 0

~n

FIGURE 4.4: Four different situations for in- and outflow boundary conditions.OD
denotes the Outer Domain,CD denotes the Computational Domain.û − c, û and
û + c denote the characteristic wave speeds at the boundary of thecomputational
domain located at̂x = 0. (a) subsonic inflow (b) subsonic outflow (c) supersonic
inflow (d) supersonic outflow.

In the remainder of this section practical examples for the boundary conditions are
presented. First, the fully non-reflective boundary conditions for the four different
situations of figure 4.4 are formulated. Then, an asymptoticnon-reflective subsonic
outflow boundary condition can be prescribed [149, 160] by defining a relaxation
condition around a prescribed time-averaged mean pressurep∞. Lastly, we discuss
the classical constant pressure outflow boundary condition, which turns out to be
fully reflective at the outflow boundary.

Non-reflecting boundary conditions

The non-reflecting boundary condition demands that the amplitude of an incoming
wave is constant in time, which is equivalent to stating thatthere is no incoming
wave. If we now set the correspondingLi equal to zero then that wave amplitude
remains constant. Note thatL2 describes the inflow of entropy, so settingL2 = 0
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states that the inflow entropy is constant in the normal direction. SettingL3 = 0 and
L4 = 0 will hold the tangential velocitieŝv andŵ velocities constant in the absence
of tangential effects.

The subsonic and supersonic non-reflecting boundary conditions are now specified
in table 4.2. Definingν = ∆t/∆x̂ the non-reflective boundary conditions in terms
of the new rotated primitive variables are presented in table 4.5.

Subsonic inflow:−c < û < 0 Subsonic outflow:0 < û < c

L1 = 0 L1 = 0

L2 = 0 L2 = λ2

(

−ψ
ρ

∂p

∂x̂
+
∂T

∂x̂

)

L3 = 0 L3 = λ3
∂v̂

∂x̂

L4 = 0 L4 = λ4
∂ŵ

∂x̂

L5 = λ5

(
∂p

∂x̂
+ ρc

∂û

∂x̂

)

L5 = λ5

(
∂p

∂x̂
+ ρc

∂û

∂x̂

)

Supersonic inflow:̂u < −c Supersonic outflow:̂u > c

L1 = 0 L1 = λ1

(
∂p

∂x̂
− ρc

∂û

∂x̂

)

L2 = 0 L2 = λ2

(

−ψ
ρ

∂p

∂x̂
+
∂T

∂x̂

)

L3 = 0 L3 = λ3
∂v̂

∂x̂

L4 = 0 L4 = λ4
∂ŵ

∂x̂

L5 = 0 L5 = λ5

(
∂p

∂x̂
+ ρc

∂û

∂x̂

)

TABLE 4.2: Sub- and supersonic non-reflective boundary conditions fortime-
dependent in- and outflow.
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Subsonic inflow:−c < û < 0

p+
g = pg − 1

2ν(ûg + cg) [pg − pi + ρgcg(ûg − ûi)]

û+
g = ûg − 1

2ν
(ûg+cg)
ρgcg

[pg − pi + ρgcg(ûg − ûi)]

v̂+
g = v̂g
ŵ+
g = ŵg

T+
g = Tg − 1

2ν
ψ(ûg+cg)

ρg
[pg − pi + ρgcg(ûg − ûi)]

Subsonic outflow:0 < û < c

p+
g = pg − 1

2ν(ûg + cg) [pg − pi + ρgcg(ûg − ûi)]

û+
g = ûg − 1

2ν
(ûg+cg)
ρgcg

[pg − pi + ρgcg(ûg − ûi)]

v̂+
g = v̂g − νûg(v̂g − v̂i)

ŵ+
g = ŵg − νûg(ŵg − ŵi)

T+
g = Tg − 1

2ν
[

ψ
(cg−ûg)
ρg

(pg − pi) + ψ(ûg + cg)cg(ûg − ûi) + 2ûg(Tg − Ti)
]

Supersonic inflow:̂u < −c

p+
g = pg
û+
g = ûg
v̂+
g = v̂g
ŵ+
g = ŵg

T+
g = Tg

Supersonic outflow:̂u > c

p+
g = pg − ν

[
ûg(pg − pi) + ρgc

2
g(ûg − ûi)

]

û+
g = ûg − ν

[
(pg−pi)
ρg

+ ûg(ûg − ûi)
]

v̂+
g = v̂g − νûg(v̂g − v̂i)

ŵ+
g = ŵg − νûg(ŵg − ŵi)

T+
g = Tg − ν [ψcg(ûg − ûi) + ûg(Tg − Ti)]

TABLE 4.3: Rotated primitive variables in ghost cell for sub- and supersonic non-
reflective in- and outflow.
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Asymptotic pressure non-reflective outflow boundary condition

Poinsot & Lele [149], see also Rudy & Strickwerda [160], discussed a method to use
a non-reflecting boundary condition as presented above and additionally incorporate
some physical information on the mean static pressure at infinity p∞ (for example a
free surface in a cavitation tunnel). Imposing the pressureat infinity does not fix any
of the dependent variables on the boundary. The constant pressure at infinity is now
used to obtain the amplitude variation of the ingoing waveL1. If the outlet pressure
is not close top∞, weak reflected waves will enter the domain through the outlet to
bring the pressure at the outlet back to a value close top∞. A simple way to do this
is to set

L1 = K(p− p∞), (4.106)

whereK is equal toK = σ(1−M2)c/∆x̂ [149]. For subsonic water flow we apply
the valueK = c/∆x̂. The resulting set of boundary conditions are specified in table
4.4. Definingν = ∆t/∆x̂ the asymptotic non-reflective subsonic outflow boundary
conditions in terms of the new rotated primitive variables are presented in table 4.5.

L1 = K(p− p∞)

L2 = λ2

(

−ψ
ρ
∂p
∂x̂ + ∂T

∂x̂

)

L3 = λ3
∂v̂
∂x̂

L4 = λ4
∂ŵ
∂x̂

L5 = λ5

(
∂p
∂x̂ + ρc∂û∂x̂

)

TABLE 4.4: Asymptotic non-reflecting subsonic boundary conditions

Subsonic outflow:0 < û < c

p+
g = pg − 1

2ν [(ûg + cg) [pg − pi + ρgcg(ûg − ûi)] + cg(pg − p∞)]

û+
g = ûg − 1

2ν
[
ûgpg+cgp∞−(ûg+cg)pi

ρgcg
+ (ûg + cg)(ûg − ûi)

]

v̂+
g = v̂g − νûg(v̂g − v̂i)

ŵ+
g = ŵg − νûg(ŵg − ŵi)

T+
g = Tg − 1

2ν
ψ
ρg

((2cg − ûg)pg − cgp∞ + (ûg − cg)pi)

+1
2ν [ψ(ûg + cg)cg(ûg − ûi) + 2ûg(Tg − Ti)]

TABLE 4.5: Asymptotic subsonic non-reflective boundary conditions for time-
dependent in- and outflow.
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Remark on constant pressure outflow boundary condition

Within the scope of the presented formalism the constant pressure subsonic outflow
boundary condition can be considered. When the pressure is known to be a constant
at the boundary, then∂p∂t = 0 in equation (A.41). This is satisfied ifL5 + L1 = 0, or
L1 = −L5 giving the boundary conditions specified in table 4.6. It is now clear that,

L1 = −L5

L2 = λ2

(

−ψ
ρ
∂p
∂x̂ + ∂T

∂x̂

)

L3 = λ3
∂v̂
∂x̂

L4 = λ4
∂ŵ
∂x̂

L5 = λ5

(
∂p
∂x̂ + ρc∂û∂x̂

)

TABLE 4.6: Constant pressure subsonic outflow boundary conditions

when specifying a constant pressure at the outflow boundary,the amplitude of the in-
coming waveL1 becomes equal to the negative amplitude of the outgoing waveL5.
This implies that the outgoing waveL5 is completely reflected into the domain. For
steady flow calculations these reflected waves deteriorate the convergence to steady-
state solution. For unsteady calculations these reflected waves un-physically interfere
with the unsteady solution in the computational domain. Furthermore, when cavitat-
ing flows are considered, if the amplitude of the outgoing wave is large enough, then
through the reflection the pressure drops to saturation pressure, causing cavitation to
occur at the outflow boundary. Thus, it becomes clear that thenon-reflective treat-
ment of in- and outgoing waves is essential for unsteady cavitating flows.

4.8.2 Solid wall boundary conditions

The formulation in the previous subsection could also be used for a slip solid wall
boundary condition [190]. However, we prefer to follow the formulation of Rizzi
[159], Dadone [49] and Wang [217]. Applying the non-permeability condition on a
solid wall, i.e.û = ~u · ~n = 0, results in that the mass and energy flux vanish as can
be seen in equation (4.4). The only nonzero flux term is the pressure contribution in
the momentum equations. However, this would result in a different flux formulation
for the solid wall faces than for the internal faces.

Instead, the same flux formulation of equation (4.24) is employed. The right extrap-
olated valuesUR are determined from the left extrapolated variablesUL by aplying
the symmetry technique. The valuesUg in the ghost cells on the solid walls are ob-
tained by applying either the classical Symmetry Techniquefor tunnel walls or the
Curvature Corrected Symmetry Technique for surfaces of thehydrofoil in the flow.
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Rizzi [159] derived an auxiliary relation for the pressure at the solid wall incorpo-
rating the surface geometry. Dadoneet al. [49] extended this idea and denoted their
method Curvature Corrected Symmetry Technique (CCST). Wang and Sun [217] for-
mulated the CCST method for unstructured grids. Here the formulation of Wang
[217] is followed. First, the classical symmetry techniqueis discussed. Then the
CCST for unstructured grids is presented.

A wall boundary as shown in figure 4.5 is considered. The solidwall is denoted
by the thick black curved line, the (triangular) grid is represented with the solid lines,
the control volumes are illustrated with the grey polygons with their faces denoted by
the dashed lines. Ghost cells are employed as mirror images of the interior control
volumes and assumed to be located at the grey circles. In the following the flow vari-
ables in the interior control volumeVi and in the ghost cells are denoted by subscript
i andg, respectively.

FIGURE 4.5: Solid wall boundary. Thick black solid line denotes the solid wall. The
triangles denote the grid, the control volumes are depictedby the grey polygons with
their faces denoted by the dashed lines. The circles are the center of gravities of the
control volume and the filled circles are the associated ghost points.

Classical Symmetry Technique

In the classical Symmetry Technique the non-permeability condition is applied by
assigning the values of the velocity vector of the ghost cellas mirror images of those
at the interior control volume. Furthermore, the wall is assumed to be adiabatic, i.e.
Tg = Ti, resulting in:

pg = pi, (4.107)

ρg = ρi, (4.108)

~ug = ~ui − 2(~ui ·~n)~n, (4.109)

hg = h(pg, Ti). (4.110)
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Curvature Corrected Symmetry Technique

The basic idea of CCST is to use the local momentum equation tospecify the pressure
at the ghost cell. Therefore, the following equation is applied locally, [159]

∂p

∂x̂
= −ρ|~u|2κ, (4.111)

whereκ is the local curvature of the boundary, which is provided by the mesh pro-
gram Favomesh, see for details the thesis of Kelleners [109]. Applying equation
(4.111) to the ghost cell yields

pg = pi − ∆x̂ρw|~uw|2κ, (4.112)

whereρw and ~uw are chosen to be the density and tangential velocity at control
volumeVi:

ρw = ρi (4.113)

~uw = ~ui − (~ui ·~n)~n. (4.114)

The distance∆x̂ is determined by assuming that the internal control volumeVi is
mirrored in the solid wall. Thus, the center of the ghost cellis at distance∆x̂ =
|~xcg,i − ~xf | from the solid wall, where~xf is the location of the boundary face. The
velocity at the ghost cell is again computed according to

~ug = ~ui − 2(~ui ·~n)~n. (4.115)

Assuming that the temperature is equal to the temperature incontrol volumeVi, the
density and the specific total enthalpy at the ghost cell are computed from

ρg = ρ(pg, Ti), (4.116)

hg = h(pg, Ti). (4.117)
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4.9 Solution procedure for equilibrium cavitation model

Solution at
time t = tn

ρn, (ρu)n, (ρv)n,
(ρw)n, (ρE)n,

un, vn, wn, En, en,
T n, αn, pn, cn

Solve mixture
equations

ρn+1, (ρu)n+1,
(ρv)n+1, (ρw)n+1,

(ρE)n+1

un+1, vn+1, wn+1,
En+1, en+1

Set initial
temperature T ∗ = T n

Determine
liquid

and vapor
saturation
densities

ρl,sat(T
∗), ρv,sat(T ∗) T ∗ = T

Determine
phase

ρn+1 >
ρl,sat(T

∗)

ρl,sat(T
∗) >

ρn+1 >
ρv,sat(T

∗)

ρn+1 <
ρv,sat(T

∗)

Determine
temperature

and void
fraction

α = 0,
T = T (en+1)

0 < α < 1,
T = T (ρn+1, en+1)

α = 1,
T = T (en+1)

Convergence
for tem-
perature?

|T − T ∗| < 10−8?

Determine
solution at

time t = tn+1

T n+1 = T , αn+1 = α,
pn+1, cn+1

Liquid Mixture Vapor

yes

no
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In this chapter numerical solutions for compressible single-phase water flow are con-
sidered. The single-phase pure water flow is calculated by assuming that the water
cannot turn into vapor. Thus, the modified Tait equation of state given in equation
(3.42) is adopted and the liquid is allowed to follow the pressure-density curve for
water below the saturation pressure as presented in figure 3.5.

First in section 5.2, the one-dimensional “Water Hammer” test case is considered
to demonstrate the wave-capturing ability of the numericalmethod followed by a 1D
Riemann problem for liquid flow in section 5.3.

Then, in section 5.4 the low-Mach number flow over a two-dimensional cylinder
is calculated employing the different flux schemes presented in sections 4.5 and
4.7.2. The solutions are compared with the analytical incompressible potential flow
solution. This test case illustrates the improvement of thesteady-state flow results
for low-Mach number flows achieved by adopting the modified flux formulation of
Schmidtet al. [169, 170] presented in section 4.7.2. Furthermore, the results for
the Curvature-Corrected Symmetry Technique (CCST) and theclassical symmetry
technique (ST) for the solid wall boundary conditions are compared to illustrate the
improvement obtained with the CCST technique presented in section 4.8.2.

In section 5.5 the order of convergence of the numerical method is investigated by cal-
culating the solution for steady-state water flow over a two-dimensional NACA0012
hydrofoil employing hybrid meshes of increasing grid density. In section 5.6 the nu-
merical results for single-phase flow about a two-dimensional NACA0015 at6◦ angle
of attack are compared with a reference solution of Wrobel [221].

Finally, in section 5.7 the single-phase water flow over a three-dimensional Twist11
hydrofoil is presented to validate the numerical method with the experimental results
of Foeth [67], who measured the lift force as well as the pressure on the hydrofoil for
flow at high values of the cavitation numberσ, i.e. for single-phase water flow.
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5.1 Parameters

To facilitate the discussion in this chapter we introduce theL2 norm for the residual
and for the global error. As a measure for the convergence towards the steady-state
solution, theL2-normLn2 (R) of the residual at time leveln is defined as

Ln2 (R) =

√
√
√
√ 1

N

N∑

i=1

Rn
i , (5.1)

with N the number of points and the residualR
n
i defined in equation (4.30).

As a measure for the global error in a quantityφ, theL2-norm L2(φ) is defined
as:

L2(φ) =

√
√
√
√ 1

N

N∑

i=1

(φi,num − φi,ana)
2, (5.2)

withN the number of points,φi,num the numerical solution forφ in point i andφi,ana
the analytical or exact solution forφ in point i.

5.2 1D time dependent test case: “Water Hammer”

To demonstrate the wave capturing ability of the present numerical method for a
compressible liquid, we consider the so-called “Water Hammer” problem, which is
sometimes called the “Joukowsky shock” [181].

Consider an initially steady flow of liquid through a pipe with a constant cross-
section. The initial velocity of the liquid is denoted byu0 and the initial pressure
and temperature are denoted byp0 andT0, respectively. At an arbitrary time, say
t = 0, the entire outflow boundary is closed instantly. At that instant a pressure rise
occurs at the solid wall of the outflow boundary resulting in an upstream traveling
shock wave. After passage of the shock wave the fluid will be atrest.

The Joukowsky equation [181] or Joukowsky-Frizell equation∗ approximates the
change in pressure∆p = p − p0 to the change in velocity∆u = u − u0 accross
the shock wave:

∆p = −ρ0c0∆u, (5.3)
∗The first explicit statement in the context of water hammer isusually attributed to Joukowsky

(1898). Frizell (1898) and Allievi (1902) also found equation (5.3), but they did not provide any ex-
perimental validation. Tijsseling [192] points out that Johannes von Kries published the theory of
water hammer in 1883 in a study on blood flow in arteries. Therefore, von Kries derived the Joukowsky
formula 15 years before Joukowsky and Frizell in 1898.
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whereρ0 is the density andc0 the speed of sound of the liquid at temperatureT0 and
pressurep0. The Joukowsky equation is derived from linearized acoustic theory. The
verification of the validity of this assumption is presentedin Appendix C.

Evaluating equation (5.3) for the pressurep after the passage of the shock wave re-
sults in:

p = p0 + ρ0c0u0. (5.4)

The boundary condition for the outflow is simply set to a reflective solid wall att = 0
and for the inflow boundary the non-reflective boundary conditions are applied. Fol-
lowing Berget al. [22] we choose the initial pressurep0 and the initial velocityu0

equal top0 = 105 Pa andu0 = 1.0 ms−1, respectively and we consider four differ-
ent initial temperaturesT0 = 293 K, 313 K, 333 K and353 K, respectively.

Note that, for a flow of liquid the pressure rise∆pliq calculated with equation (5.4)
is approximately equal to∆pliq ≈ 15 bar. For a flow of air the pressure rise∆pair
is found to be only equal to∆pair ≈ 4 mbar, illustrating the tremendous pressure
pulses possible in compressible liquid flows compared with gas flows.

T0 ρexp ρTait
|ρexp − ρTait|

ρexp
cexp cTait

|cexp − cTait|
cexp

[K] [kgm−3] [kgm−3] [-] [ms−1] [ms−1] [-]

293 998.24 998.23 0.001% 1481.9 1537.66 3.8%
313 992.27 992.26 0.001% 1528.7 1542.26 0.89%
333 983.27 983.26 0.001% 1550.9 1549.27 0.11%
353 971.88 971.88 0.0% 1554.5 1558.26 0.24%

TABLE 5.1: Comparison of the data from the modified Tait equation of state for the
density and speed of sound with the experimental values [1] for p0 = 105 Pa and
four temperaturesT0.

In table 5.1 the densityρTait and speed of soundcTait obtained with the modified
Tait equation of state are compared with the experimental data [1] for the density
ρexp and speed of soundcexp, respectively. We find that the relative errors in den-
sity and speed of sound are less than0.001% and3.8%, respectively, showing that
experimental values for the density of the water can be reproduced accurately by the
modified Tait equation of state and that errors up to 4% may exist in the speed of
sound.

For the four temperatures the analytical estimate for the pressurepana = p0 +
ρTaitcTaitu0 after the passage of the shock wave is compared with the pressurepnum
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T0 pana pnum
pana − pnum

pana
[K] [106 Pa] [106 Pa] [-]

293 1.635 1.637 0.12%
313 1.630 1.632 0.12%
333 1.623 1.626 0.18%
353 1.611 1.617 0.37%

TABLE 5.2: Comparison of the analytical (equation (5.4)) and numerical results
for the pressure after the passage of the Joukowsky shock foru0 = 1.0 ms−1 and
p0 = 105 Pa.

obtained with the present numerical method. As presented intable 5.2 the maximum
relative difference for the pressure after the shock is equal to 0.37%. These results
indicate that we can accurately represent a shock wave in a compressible liquid with
the present numerical method.

In figure 5.1 the solution for the pressure and velocity at three different time instances
t1 = 0.2ms, t2 = 0.4ms andt3 = 0.6ms after the closure of the outflow boundary
is presented forT0 = 293 K. We applied the second-order hybrid HLLC/AUSM+up
scheme with the limiter of Venkatakrishnan for a 2D quadrilateral and 2D triangular
mesh with 100 elements inx-direction and 4 elements iny-direction. The results for
both types of grids are identical to plotting accuracy. In figure 5.1 it is shown that
the shock, which generates a pressure increase of about 15bar, is sharply captured
without any oscillations in the pressure or velocity distribution in the pipe.
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FIGURE 5.1: Numerical solution for the Joukowsky shock with second-order hybrid
HLLC/AUSM+up scheme for (a) pressure (b) velocity att1 = 0.2 ms, t2 = 0.4 ms,
t3 = 0.6 ms for T0 = 293 K. Flow is from left to right with the right boundary
at x = 1 m closed att = 0 s. The shock travels from right to left. Results are for
a 2D quadrilateral grid with 100 points inx-direction and 4 points iny-direction.
CFL=0.8.
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5.3 1D Riemann problem for liquid flow

The solution for the Riemann problem for flows with the perfect gas law as equa-
tion of state is well known, see Menikoff [138] and Toro [194]. For liquid flow the
numerical solution for the Riemann problem is very challenging. Ivingset al. [104]
presented the exact solution for the stiffened gas equationof state and the Tait equa-
tion of state. Note that, it is not possible to construct the exact solution the modified
Tait equation of state as discussed in section 5.3.1.

The initial conditions for the left and right state are chosen in analogy with the clas-
sical Sod’s shock tube test case for the flow of a perfect gas. Similar to the “Water
Hammer” problem in section 5.2 the numerical results demonstrate the capability of
the method to capture and predict the wave dynamics in compressible liquid flows.
Amongst others, Chen & Cooke [36] and Schmidtet al. [170] also considered the
numerical solution of a Riemann problem for liquid flow.

A tube with a length of 1m is considered filled with water and closed at both ends. In
the center of the tube atx = 0.5m a diaphragm is placed separating two reservoirs of
fluid. Both reservoirs have an initial temperatureT0. The left and right reservoir have
a chosen initial pressurep0L=1.0×108 Pa andp0R=1.0×104 Pa, respectively and
a velocityu0L = 0 andu0R = 0, respectively. Att = 0 the membrane separating
the two reservoirs is removed. The density in the two reservoirs is obtained using
the modified Tait equation given in equation (3.42). The initial conditions are de-
scribed in table 5.3. The numerical solutions are obtained on a triangular mesh with
100 elements inx-direction and 4 elements iny-direction. We have also considered
a quadrilateral mesh of equal mesh density but the results are equivalent to plotting
accuracy. The second-order hybrid HLLC/AUSM+up scheme of section 4.7.2 is em-
ployed.

p0L u0L T0L p0R u0R T0R

[Pa] [ms−1] [K] [Pa] [ms−1] [K]

1.0×108 0.0 293 1.0×104 0.0 293

TABLE 5.3: Initial data for Riemann problem in tube.

The solution of this Riemann problem consists of a left running expansion wave, a
right running contact wave and a right running shock wave as presented in figure 5.2.
The expansion wave hits the solid wall at the left end of the tube and reflects as an
expansion wave running towards the center of the domain. Theright running shock
is reflected at the right solid wall of the tube and reflects to the left as a shock wave.
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t1
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t4

t5

t6
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FIGURE 5.2: Initial conditions and resulting characteristics of the solution of the
Riemann problem with closed left and right boundaries.

To illustrate the wave-dynamic character of the flow the solution is considered at dif-
ferent time-instantstN , wheretN = N∆t, with ∆t = 0.9×10−4 s andN = 1, 2, .., 6.

In figures 5.3 the time-dependent solutions for the pressureand velocity are pre-
sented. In figures 5.3(a) and (b), the left-running expansion wave and the right-
running shock wave are about to hit the solid wall at the ends of the tube att = t3. In
figures 5.3(c) and (d) the expansion wave has reflected as a right-running expansion
wave and the shock wave has reflected as a left-running shock wave. Att = t6 the
reflected waves are about to meet each other. The shock and expansion waves are
captured without any oscillations in the pressure and velocity. Note that the width of
the expansion wave is much smaller compared to that of an expansion wave in gas
flows.

5.3.1 Analytical solution for liquid flow

For the modified Tait equation of state it is not possible to construct the exact solu-
tion for the Riemann problem. Ivingset al. [104] presented the exact solution for
the Tait equation of state. In this section we compare the numerical solutionφTAIT
for the Tait equation of state with the exact solutionφex. Furthermore, the numerical
solutionφmodTAIT for the modified Tait equation of state presented in figure 5.3can
then be compared to the numerical solutionφTAIT for the Tait equation of state.

In figure 5.4 the three solutionsφex, φTAIT andφmodTait are presented at time-
instant t2 = 1.8× 10−4 s for the pressure, velocity, density and speed of sound,
respectively. It is shown that the numerical solutionφTAIT (dashed line) predicts the
location of the rarefaction and the shock accurately compared to the exact solution
φex (solid line). Furthermore, the numerical solutionφmodTAIT (dotted line) corre-
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FIGURE 5.3: Solution Riemann problem for liquid flow. (a)-(b) pressure (c)-(d)
velocity (e)-(f) density at time-instantst0–t3 (left) andt4–t6 (right). tN = N∆t, with
∆t = 0.9×10−4 s. Results are obtained with second-order hybrid HLLC/AUSM+up
scheme on a triangular grid with 100 points inx-direction and 4 points iny-
direction. Cfl = 0.8, ∆tcfl≈1.17×10−6 s. p0L=108 Pa, p0R=104 Pa, u0L=0,
u0R=0, T0L=T0R=293 K,
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sponds to plotting accuracy with the numerical solutionφTAIT . A small deviation
in the value for the speed of sound is found due to the temperature related terms in
equation (3.44), which are not present in the speed of sound for the Tait equation of
state. From figure 5.4 we conclude that the present numericalmethod accurately pre-
dicts the wave dynamics in a compressible water flow comparedto the exact solution
of the Riemann problem for the Tait equation of state.
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FIGURE 5.4: Solution Riemann problem for liquid flow. a) pressure (b) velocity (c)
density (d) speed of sound. Comparison of numerical solution for Tait equation of
state (dashed) and modified Tait equation of state (dotted) with exact solution for Tait
equation of state (solid) att2 = 1.8×10−4 s. Results are obtained with second-order
hybrid HLLC/AUSM+up scheme on a triangular grid with 100 points inx-direction.
Cfl = 0.8, p0L=108 Pa, p0R=104 Pa, u0L=0, u0R=0, T0L=T0R=293 K.
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5.3.2 Grid convergence

To assess the convergence of the numerical method for compressible liquid flow five
triangular grids consisting of 50, 100, 200, 400 and 800 points inx-direction and 2,
4, 8, 16 and 32 points iny-direction are constructed. The numerical solutions at time-
instantt2 = 1.8×10−4 s are calculated with aCFL number equal to 0.8, resulting
in the numerical time steps∆tcfl for the five grids as presented in table 5.4.
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FIGURE 5.5: Solution Riemann problem for liquid flow solution att2 = 1.8×10−4 s.
(a) pressure (b) velocity (c) density (d) speed of sound. Results are obtained with
second-order hybrid HLLC/AUSM+up scheme on triangular grids with 50, 100, 200,
400, 800 points inx-direction, respectivelyCfl = 0.8, p0L=108 Pa, p0R=104 Pa,
u0L=0, u0R=0, T0L=T0R=293 K.

The numerical solutions for the pressure, velocity, density and speed of sound are
presented in figure 5.5. It is shown that the discontinuitiesin the solution, i.e. the
shock wave and the expansion wave, become steeper when the mesh is refined. Fur-
thermore, the solution around the shock wave and the expansion wave center nicely
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mesh ∆tcfl [10−6 s]
50 1.671
100 1.170
200 0.523
400 0.290
800 0.127

TABLE 5.4: Liquid Riemann problem. Numerical time steps∆tcfl for five grids.

around on the same positions for all five grids. We remark thatthe solution on the
mesh with 400 points inx-direction experiences small oscillations in the center re-
gion. The origin of these oscillations is not clear. From these solutions we conclude
that the numerical method converges towards the correct solution when the grid and
the time-step are refined.

5.4 Water flow over a 2D cylinder

To assess the performance of the numerical method for low-Mach number liquid flow,
the inviscid flow around a 2D cylinder is considered.

5.4.1 Geometry and computational domain

The circle cylinder has radiusR = 1 m. An O-type mesh of quadrilaterals is used
to construct the vertex-centered control volumes. The meshconsists of 128 nodes on
the surface of the cylinder and 32 nodes in radial direction.The first 16 nodes away
from the cylinder are located such that the grid is completely circular up to a radius
of 4 cylinder radii. From the radiusr = 4R to the outer boundaries of the computa-
tional domain the grid is stretched, such that each quadrilateral is approximately 1.2
times longer than the previous quadrilateral.

The outer boundary at thex-axis is located at 40 times the radius of the cylinder. At
they-axis the outer boundaries are positioned at 65 times the radius of the cylinder.
This results in a lens-shaped computational domain to ensure that the inflow and
outflow boundary remain clearly distinct from each other andthat during a simulation
the normal component of the flow at the in- or outflow boundary always has the same
sign, see for more details the thesis of Kelleners [109]. Thecomputational mesh and
a close-up around the cylinder are presented in figure 5.6.

5.4.2 Numerical method

The numerical simulation is started from an initial uniformflow with free stream
Mach numberM∞ = 6.5 × 10−3, corresponding with a free-stream velocity of
U∞=10 ms−1, at pressurep∞ = 1.0×105 Pa and temperatureT∞ = 293 K. For
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FIGURE 5.6: (a) Computational domain,128×32 nodes (b) Close-up of the mesh
around the cylinder. Flow is from left to right.

the cylinder surface the curvature-corrected solid wall boundary conditions of sec-
tion 4.8.2 are chosen. For the in- and outflow boundary the non-reflective boundary
conditions of section 4.8.1 are applied. The results in figures 5.7 and 5.8 are obtained
with the second-order hybrid HLLC/AUSM flux scheme of Schmidt et al. [169] as
described in section 4.7.2 with the limiter of Venkatakrishnan.

5.4.3 Results hybrid HLLC/AUSM flux scheme

The numerical solution for the Mach numberM is presented in figure 5.7. The Mach
number distribution is nearly perfect symmetrical with respect to thex- andy-axis.
This indicates that the numerical solution is an accurate representation of this inviscid
flow solution. The maximum Mach number is reached at the top and bottom of the
cylinder and is equal to 0.013, which corresponds to a velocity of 2U∞.

In figure 5.8 the numerical solution (squares) for the−Cp coefficient and the tangen-
tial velocity |~utan|/U∞ on the surface of the cylinder are compared with the analyti-
cal, incompressible flow solution (lines) given by, see e.g.Anderson [12]:

Cpexact = 1 − 4

(

1 −
( x

R

)2
)

, (5.5)

|~utanexact |
U∞

= 2

√

1 −
( x

R

)2
. (5.6)
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FIGURE 5.7: Numerical solution for the Mach number for water flow around 2D
cylinder,U∞ = 10 ms−1, M∞ = 6.5×10−3, p∞ = 105 Pa, T∞ = 293 K. Solution
obtained with second-order hybrid HLLC/AUSM scheme. Non-reflective in- and
outflow boundary conditions and Curvature Corrected Symmetry Technique for
cylinder wall.CFL=0.8.

The numerical solution shows excellent agreement with the reference solution for this
low Mach number. On the surface of the cylinder no oscillations in the pressure or
velocity are present and the pressure is accurately obtained even in the downstream
stagnation point.

The largest deviation for the−Cp coefficient occurs at the top and bottom of the
cylinder and is approximately equal to1.8%. The numerically obtained lift and drag
coefficientcl andcd are equal to6.3×10−4 and5.0×10−3, resprectively. For in-
viscid low-Mach number flow these values should be equal to zero and thus these
values are a measure for the global error of the solution on the surface of the cylin-
der. TheL2-norm defined in equation (5.2) for the pressure coefficient and tangential
velocity with respect to the analytical solution are equal to L2(Cp) = 1.2×10−2

andL2(utan) = 9.7×10−2, respectively. These values are compared in section 5.4.4
with the values obtained using other flux schemes and in section 5.4.5 with the results
employing the classical symmetry technique for the solid wall boundary conditions.

5.4.4 Comparison with other flux schemes

In figure 5.9 the second-order solutions for the Mach number obtained with four other
schemes of section 4.5 are presented, i.e. HLLC, JST, AUSM and AUSM+up for all
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FIGURE 5.8: Numerical solution (squares) and analytical solution (lines) for water
flow around 2D cylinder forU∞ = 10 ms−1 corresponding toM∞=6.5×10−3 at
p∞=105 Pa and T∞=293 K. Second-order hybrid HLLC/AUSM scheme. Non-
reflective in- and outflow boundary conditions and CurvatureCorrected Symmetry
Technique for cylinder wall.CFL= 0.8. (a) −Cp coefficient (b) relative tangential
velocity|~u|/U∞ on the surface of the cylinder.

speeds. Note the differences with the results obtained withthe hybrid HLLC/AUSM
scheme presented in figure 5.7.

The Mach number distribution obtained with the HLLC scheme,see figure 5.9(a) in-
dicates that this method is much too dissipative for this low-Mach number flow. The
solution is symmetrical with respect to thex-axis, but there is clearly no symmetry
with respect to they-axis. The maximum Mach number on the surface of the cylin-
der is equal to9.6×10−3, but it is not obtained at the top and bottom (x = 0) of the
cylinder, but atx = −0.38m.

The Mach number distribution obtained with the AUSM scheme,figure 5.9(b), is
inaccurate. At these low-Mach numbers the coupling betweenthe pressure and ve-
locity is lost resulting in the presented non-smooth solution. The Mach number dis-
tribution obtained with the JST scheme shown in figure 5.9(c)appears to be of better
quality, but close to the surface of the cylinder a layer of high pressure appears, re-
sulting in a completely inaccurate solution on the surface of the cylinder. The results
in figure 5.9(d) obtained with the AUSM+-up for all speeds scheme are much better
than for the other three schemes. However, the solution is not completely symmet-
rical with respect to they-axis, as is the case for the result obtained with the hybrid
HLLC/AUSM scheme presented in figure 5.7.
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FIGURE 5.9: Comparison of second-order results obtained with different flux
schemes. Numerical solution for Mach number for water flow around 2D cylinder,
U∞=10 ms−1,M∞=6.5×10−3, p∞=105 Pa andT∞=293 K. CFL=0.8. Non-
reflective in- and outflow boundary conditions and CurvatureCorrected Symmetry
Technique for cylinder wall. Solution obtained with (a) HLLC (b) AUSM (c) JST (d)
AUSM+-up for all speeds.

The lift and drag coefficientscl andcd as well as theL2-norm for the pressure coef-
ficientCp and the tangential velocityutan as defined in equation (5.2) are presented
in table 5.5 for the hybrid HLLC/AUSM flux scheme and the four “classical” flux
schemes.

From the comparison of the solutions presented in figure 5.7 and 5.9 and from the nu-
merically obtained lift and drag coefficients as well as theL2-norm forCp andutan
presented in table 5.5 it can be concluded that the adaptation of the classical HLLC
and AUSM schemes to the hybrid scheme as proposed by Schmidtet al. [169], results
in a much improved solution for low-Mach number liquid flow.
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flux scheme cl [-] cd [-] L2(Cp) L2(utan) fig

hyb. HLLC/AUSM 6.3×10−4 5.0×10−3 1.2×10−2 9.7×10−2 5.7
HLLC 2.7×10−3 0.28 0.87 4.68 5.9(a)
AUSM 6.47 -0.28 30..25 1.25 5.9(b)

JST 2.47 1.13×103 5.2×102 6.59 5.9(c)
AUSM+up fas -1.1×10−4 4.2×10−2 8.3×10−2 0.47 5.9(d)

TABLE 5.5: Low-Mach number flow about 2D cylinder. Comparison of lift and drag
coefficients as well asL2-norm forCp and the tangential velocity on the surfaceutan.

5.4.5 Results for different solid wall boundary conditions

The results obtained with the Curvature-Corrected Symmetry Technique (CCST) and
the classical Symmetry Technique (ST) presented in section4.8.2 for the solid wall
boundary conditions at the surface of the cylinder are compared applying the second-
order hybrid HLLC/AUSM scheme. In figure 5.10 the results forthe Mach number
distribution are presented for the CCST and ST boundary conditions, respectively.
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FIGURE 5.10: Comparison of results for different solid wall boundary conditions.
Mach number distribution for water flow around 2D cylinder,U∞=10 ms−1,
M∞= 6.5×10−3, p∞=105Pa, T∞=293 K. CFL = 0.8. Second-order
hybrid HLLC/AUSM scheme with (a) Curvature-Corrected Symmetry Technique
(b) Symmetry Technique.

The solution for the Symmetry Technique presented in figure 5.10(b) shows a devia-
tion from the symmetric solution compared with the solutionobtained with the CCST
technique presented in figure 5.10(a). For the ST technique a(numerics-induced)
wake-like structure is formed behind the cylinder.

The lift and drag coefficients as well as theL2-norm forCp andutan are presented in
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table 5.6. The wake-like structure for the ST technique is represented by the higher
value for the drag coefficientcd compared with the value found for the CCST tech-
nique.

Furthermore, theL2-norm found for the pressure and velocity on the surface of the
cylinder are found to be almost an order higher than for the CCST technique. From
figure 5.10 and table 5.6 it is concluded that the CCST technique improves the accu-
racy of the solution for this cylinder test case.

bound. cond. cl [-] cd [-] L2(Cp) L2(utan) fig

CCST 6.3×10−4 5.0×10−3 1.2×10−2 9.7×10−2 5.10(a)
ST -3.5×10−4 7.5×10−3 8.5×10−2 0.46 5.10(b)

TABLE 5.6: Low-Mach number flow about 2D cylinder. Results with second-order
hybrid HLLC/AUSM flux scheme. Comparison of lift and drag coefficients as well
asL2-norm forCp and the tangential velocity on the surfaceutan for Curvature-
Corrected Symmetry Technique (CCST) and Symmetry Technique (ST).

5.4.6 Conclusions

In this section the low-Mach number single-phase water flow about a two-dimensional
cylinder is calculated. The numerical solutions are compared with the analytical po-
tential flow solution.

It is shown that the adaptation of the classical HLLC and AUSMscheme to the hy-
brid HLLC/AUSM scheme as originally proposed by Schmidtet al. [169], results in
a much improved solution for low-Mach-number inviscid liquid flow about a two-
dimensional cylinder.

Furthermore, it is shown that the Curvature-Corrected Symmetry Technique (CCST)
for solid wall boundary conditions improves the accuracy ofthe solution compared
with the classical Symmetry Technique (ST).

We have reduced the free-stream velocityU∞ even further for the hybrid flux scheme.
However, forU∞ ≤ 1.0 ms−1, which corresponds to a Mach numberM=6.5×10−4,
the solution starts to develop irregularities in the pressure and velocity on the surface
of the cylinder. Schmidtet al. [170] succeeded in obtaining a solution for Mach
numbers as low asM = 10−4.
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5.5 Water flow about a 2D NACA0012 foil

To assess the order of convergence of the numerical method the single-phase water
flow about a two-dimensional NACA0012 hydrofoil at4◦ angle of attack with chord
lengthc equal toc=0.15m is considered as computed on three hybrid meshes with
different grid density. The inflow velocity is chosen equal to U∞ = 50 ms−1 corre-
sponding with a free stream Mach number ofM∞=0.0325 at a free-stream pressure
p∞ = 105 Pa and free-stream temperatureT∞ = 293K, yielding a free stream den-
sity ρ∞=998.2 kgm−3.

5.5.1 Geometry of NACA foil

The section of the hydrofoil is presented in figure 5.11. The dimensionless half-
thickness distribution̄y(x̄) is given by [4]:

ȳ =
t

0.20

(

a0

√
x̄+ a1x̄+ a2x̄

2 + a3x̄
3 + a4x̄

4
)

, (5.7)

with a0 = 0.2969, a1 = −0.126, a2 = −0.3516, a3 = 0.2843, a4 = −0.1015. t is
the thickness parameter, heret = 0.12 andx̄ = x/c is the dimensionless coordinate
along the chord line ranging from 0 at the leading edge to 1 at the trailing edge.
Note that with the definition in equation (5.7) the trailing edge has a finite thickness.
Therefore, the trailing edge is extended using the profile definition of equation (5.7)
until zero thickness at̄x = 1.0089304.
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FIGURE 5.11:Section of NACA0012 hydrofoil at4◦ angle of attack.

5.5.2 Computational domain and hybrid mesh

The computational domain is sketched in figure 5.12. The hydrofoil is located in a
channel with height2c and a length of2c upstream of the hydrofoil and3c down-
stream of the hydrofoil. The flow is from left to right.

The median dual mesh is constructed from a hybrid mesh consisting of a layer of
quadrilateral elements around the foil and in part of the wake. The regions with the
quadrilaterals are indicated with the circled numbers in figure 5.12. The region in
the wake with quadrilaterals extends one chord length afterthe hydrofoil. The rest
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FIGURE 5.12: Computational domain for 2D NACA0012 hydrofoil at4◦ angle of
attack in a channel.

of the computational domain is filled with triangles to fit themesh easily within the
channel. Note that the hybrid mesh approach offers great flexibility in constructing
the mesh for this computational domain.

Three different mesh densities are chosen in the regions around the hydrofoil in-
dicated by the circled numbers in figure 5.12. The number of quadrilateral elements
in the different regions are chosen such that the number of quadrilaterals along the
foil is equal to 100, 200, and 400, respectively. The exact number of quadrilaterals
in the different regions is listed in table 5.7. The variablen denotes the number of
quadrilaterals in the direction perpendicular to the surface of the hydrofoil, i.e. the
“thickness” of the quadrilateral layer.

number of points n ① ② ③ ④ ⑤ # quad’s # control
on foil volumes

100 10 15 10 10 15 26 1,520 4,041
200 20 30 20 20 30 52 6,080 10,419
400 40 60 40 40 60 104 24,320 31,976

TABLE 5.7: Number of quadrilaterals per segment of the computational domain pre-
sented in figure 5.12 and total number of control volumes for each mesh.

The triangular mesh around the quadrilateral layer is chosen such that the transition
from the quadrilaterals to the triangles is relatively smooth. Furthermore, for the
meshes of different density close to the foil, the trianglesfurther away in the com-
putational domain are approximately equal in size. The resulting meshes around the
hydrofoil are presented in figure 5.13.
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FIGURE 5.13: (a) Computational mesh for water flow around 2D NACA0012 hy-
drofoil at 4◦ angle of attack in channel. (b)–(d) Close up of mesh around hydrofoil.
Points on foil: (b) 100 (c) 200 (d) 400.

5.5.3 Numerical method

The results are obtained with the hybrid HLLC/AUSM flux scheme as presented
in section 4.7.2. In the following the first and second-orderresults are presented.
The second-order results are obtained with the limiter method of Venkatakrishnan
employing the primitive variables[ρ, u, v, w, e]T . For the inflow the non-reflective
boundary conditions are applied. For the outflow the asymptotic constant pressure
boundary condition withp∞ is used. The top and bottom of the channel as well as
the surface of the hydrofoil are slip solid walls. For the surface of the hydrofoil the
Curvature Corrected Symmetry Technique is applied. To accelerate the calculation
towards the steady-state solution local time-stepping is applied.

5.5.4 Results for lift and drag forces

The lift and drag coefficientscl andcd for the three meshes are presented in table 5.8
and figure 5.14 for first- and second-order reconstruction, respectively.

number of points first-order second-order
on foil cd [-] cl[-] cd[-] cl[-]

100 0.02517 0.4901 0.00687 0.5299
200 0.01425 0.5075 0.00236 0.5389
400 0.00991 0.5157 0.00110 0.5424

TABLE 5.8: Lift and drag coefficientscl, cd for meshes of increasing grid den-
sity on surface of 2D NACA0012 foil at4◦ angle of attack. First- and second-
order results with hybrid HLLC/AUSM scheme.p∞ = 105Pa, U∞ = 50 ms−1,
ρ∞ = 998.2 kgm−3, T∞ = 293 K.
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FIGURE 5.14: Lift coefficient cl (left) and drag coefficientscd (right) for 2D
NACA0012 foil at4◦ angle of attack as a function of the number of pointsN on the
surface of the foil. Presented are results obtained with first- and second-order re-
construction with hybrid HLLC/AUSM flux scheme.p∞ = 105Pa, U∞ = 50 ms−1,
ρ∞ = 998.2 kgm−3, T∞ = 293 K.

The absence of viscous forces implies that the resultant drag force or drag coefficient
exerted by the flow on the hydrofoil must be equal to zero. As illustrated in table 5.8
and figure 5.14 the calculated drag coefficient is not equal tozero, which is due to
the action of numerical dissipation in the numerical method. The value of the drag
coefficientcd thus gives a measure for the global error. For increasing grid density or
with second-order spatial reconstruction, this value mustdecrease. From the rate of
decrease with increasing number of grid points on the foil the order of the numerical
method can be obtained.

For increasing mesh density the lift and drag coefficients should converge to the
grid-independent value. Richardson’s extrapolation is employed to obtain the grid-
independent valuec(0):

c(h) = c(0) + Chp (5.8)

whereh = 1/N is a measure for the mesh density,c(h) is the value of the coefficient
at the grid with mesh densityh, andC andp are constants, which are determined
using the first- and second-order results for the lift and drag coefficients for the three
meshes. In table 5.9 the values forc(0), C andp are presented for the lift and drag
coefficients for the first- and second-order spatial reconstruction.

From tables 5.8 and 5.9 we conclude that the first-order reconstruction method indeed
gives results that are close to first-order. Also, we conclude that the second-order re-
construction method produces results that are close to second-order for single-phase
water flow, when the drag coefficient is considered.



5.5. WATER FLOW ABOUT A 2D NACA0012FOIL 111

number of points first-order second-order
on foil cd [-] cl[-] cd[-] cl[-]

c(0) 0.0070 0.5230 0.00061 0.5446
C 8.33 −4.88 29.91 −7.82
p 1.33 1.09 1.84 1.36

TABLE 5.9: Richardson’s extrapolation, values forcd(0),C,cl(0) and p for first-
and second-order results for 2D NACA0012 foil at4◦ angle of attack. Re-
sults obtained with hybrid HLLC/AUSM scheme.p∞ = 105 Pa, U∞ = 50 ms−1,
ρ∞ = 998.2 kgm−3, T∞ = 293 K.

Furthermore, we find that the second-order reconstruction method results in a smaller
value for the drag coefficient for all meshes compared with the first-order reconstruc-
tion scheme. Stated more strongly, we find that the drag coefficient obtained with
the second-order reconstruction method on the coarsest mesh is smaller than the drag
coefficient obtained with the first-order reconstruction method on the finest mesh. In
addition the lift coefficient obtained with the second-order method on the coarsest
mesh is higher than the lift coefficient obtained with the first-order method on the
finest mesh.

5.5.5 Numerical solutions

In figures 5.15(a) and (b) the first-order solution for the surface distribution of the
−Cp coefficient and the Mach numberM are presented for the three meshes. The
solution for the mesh with 400 points on the surface of the hydrofoil shows a lower
value of−Cp at the trailing edge than for the other meshes meaning that the stagna-
tion point at the trailing edge is resolved better. Additionally, the maximum of−Cp
on the top surface of the foil is equal to 1.47 and is higher than for the 100 and 200
mesh, which have a maximum value of 1.27 and 1.40, respectively. The solution
for the Mach number shows more difference between the solutions on the different
meshes. The Mach number in the stagnation point at the trailing edge of the foil for
the mesh with 400 points is equal to 0.0165.

In figures 5.15(c) and (d) the solutions using the second-order reconstruction method
for the distribution of the−Cp coefficient and the Mach number on the surface of the
hydrofoil are presented for the three meshes. The trend of the solutions is compara-
ble to the first-order solution. However, the maximum and minimum values of the
solutions are much higher and lower, respectively, than forthe first-order solutions.
The maximum value of−Cp for the 400 points mesh is now equal to 1.68 compared
with 1.66 and 1.62 for the 200 and 100 mesh, respectively. Theminimum value of
the Mach number in the stagnation point at the trailing edge is equal to 0.0147 for
the mesh with 400 points. Note that, the value becomes much lower for a finer mesh.
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FIGURE 5.15: Solutions for−Cp coefficient (left) and Mach numberM (right) on
surface of the 2D NACA0012 foil at4◦ angle of attack for meshes with increasing
grid-density on the surface of the foil. Results obtained with first- (top) and second-
order (bottom) reconstruction with hybrid HLLC/AUSM flux scheme.p∞ = 105 Pa,
U∞ = 50 ms−1, T∞ = 293 K. (a) −Cp coefficient first-order (b) Mach numberM
first-order (c)−Cp coefficient second-order (d) Mach numberM second-order.

Also, note that the value of−Cp at the stagnation point at the nose of the foil becomes
much closer to−1 for all three meshes compared with the first-order solutions.

From tables 5.8 and figure 5.15 we conclude that the second-order solution obtained
on the mesh with 100 points is of better quality than the first-order solution obtained
on the mesh with 400 points. Furthermore, we conclude that the mesh with 200
points in combination with the second-order spatial reconstruction method leads to
an already accurate solution on the surface of the hydrofoil. The difference between
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the second-order solutions for the pressure coefficient−Cp and the Mach numberM
obtained on the meshes with 200 and 400 points is relatively small.

In figure 5.16 the second-order solutions for pressure coefficient−Cp and Mach num-
berM are presented for the mesh with 200 points on the surface of the hydrofoil. The
maximum value of−Cp is equal to 1.65 and is obtained on the top surface of the foil
close to the leading edge. The−Cp values in the stagnation points on the nose and
at the trailing edge of the foil are equal to−1.0024 and−0.278, respectively. The
maximum value for the Mach number is equal to 0.053 on the top surface of the foil.
The Mach number in the stagnation points are equal to1.4×10−3 at the nose and
0.0178 at the trailing edge, respectively.
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FIGURE 5.16: Second-order solutions for 2D NACA0012 foil at4◦ angle of attack
obtained with hybrid HLLC/AUSM scheme on mesh with 200 points on the surface of
the foil. p∞ = 105 Pa, U∞ = 50 ms−1, T∞ = 293 K. (left) −Cp coefficient (right)
Mach numberM .

5.6 Water flow about 2D NACA0015 at6◦ for U∞=12 ms
−1

In this section the single-phase water flow about a two-dimensional NACA0015 hy-
drofoil at6◦ angle of attack is considered for a free-stream velocityU∞ =12 ms−1.
Wrobel [221] calculated the inviscid, incompressible flow for this foil applying a
central discretization scheme with artificial dissipation. His second-order solution is
used as a reference for the solution obtained with the present numerical method.

The chord length of the foil isc = 0.13m. The half-thickness distribution of the
foil is given by equation (5.7) wheret = 0.15. The hydrofoil is located in a channel
with height2c and a length of2c upstream of the hydrofoil and3c downstream of the
foil. The computational domain is presented in figure 5.17. The flow is from left to
right.
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FIGURE 5.17: Computational domain for 2D NACA0015 hydrofoil at6◦ angle of
attack in a channel.

The computational domain is divided into triangular and quadrilateral elements as
illustrated in figure 5.18, which shows a close-up around thehydrofoil. On the sur-
face of the foil 200 quadrilaterals are positioned as explained in table 5.7. The total
number of control volumes is equal to 10k, the number of triangles is equal to 8k and
the number of quadrilaterals is equal to 6.5k.
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FIGURE 5.18: Close-up of hybrid quadrilateral/triangular mesh for the 2D
NACA0015 hydrofoil at6◦ angle of attack in a channel. 200 quadrilaterals on the sur-
face of the hydrofoil. Total: 10,419 control volumes, 7,939triangles, 6,480 quadri-
laterals.

The free-stream velocity is set toU∞ = 12 ms−1, which results in a Mach number
equal toM∞ = 7.8×10−3 at a free-stream pressurep∞ = 0.74175×105 Pa and free-
stream temperatureT∞ = 293 K, which yields a free stream density ofρ∞ = 998.2
kgm−3.
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The results are obtained with the hybrid HLLC/AUSM flux scheme as presented
in section 4.7.2. The first 50k time steps are calculated withthe first-order spatial
reconstruction method. Then, the calculation is continuedwith the MUSCL-type
second-order reconstruction method applying the limiter of Venkatakrishnan employ-
ing the primitive variables[ρ, u, v, w, e]T . For the inflow the non-reflective boundary
conditions are applied. For the outflow the asymptotic constant pressure boundary
condition withp∞ is used. The top and bottom of the channel as well as the surface
of the hydrofoil are no-slip solid walls. For the surface of the hydrofoil the Curvature-
Corrected Symmetry Technique is employed. To accelerate the calculation towards
the steady-state solution local time-stepping is employed.

The residuals forρ andρu are presented in figure 5.19. During the first 50k itera-
tions, when the first-order reconstruction is employed, theresiduals decrease rapidly.
When the second-order reconstruction is switched on, the residuals stall at a level of
O(10−4) for the density and of orderO(10−3) for ρu. It is known that the limiter
of Venkatakrishnan stalls the convergence to the steady-state solution. In the present
calculation the limiter function switches on and off in the control volume around the
trailing edge. To solve this stall in convergence Bramkamp [28] discusses a number
of limiters for unstructured grids besides the limiter of Venkatakrishnan. More re-
search is necessary to solve this problem in the future.
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FIGURE 5.19: Residuals forρ and ρu as a function of iteration step on 2D
NACA0015 hydrofoil at6◦ angle of attack.p∞ = 0.74175×105 Pa,U∞ = 12 ms−1,
ρ∞ = 998.2 kgm−3, T∞ = 293 K.

The lift and drag force are equal tofy = 7746 Nm−1 andfx = 33 Nm−1, respec-
tively, which is equivalent tocl = 0.829 andcd = 0.0035, respectively. It must be
noted that during the calculation the values for the lift anddrag force vary up to 1.6%
for the lift force and up to 28% for the drag force. This variation is caused due to
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the problems with convergence to steady-state described above. The values for the
lift and drag force presented above are the average values over the last 600k iterations.

The distribution of the−Cp coefficient and the Mach numberM on the surface of
the foil are presented in figure 5.20. Note that the maximum values for−Cp on the
top surface of the hydrofoil is equal to 2.46 and in the stagnation point at the trailing
edge−Cp = −0.35. The values for−Cp andM in the point closest to the stagnation
point on the nose of the foil are equal to−1.0057 and1.5×10−4, respectively.
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FIGURE 5.20: Solution on surface of NACA0015 hydrofoil at6◦ angle of at-
tack in a channel. p∞ = 0.74175×105 Pa, U∞ = 12 ms−1, M∞ = 7.8×10−3,
ρ∞ = 998.2 kgm−3, T∞ = 293 K,. Solutions obtained with second-order hybrid
HLLC/AUSM flux scheme for−Cp coefficient (left) and Mach numberM (right) for
hybrid mesh with 200 points on surface of hydrofoil.

The small overshoots around the trailing edge of the hydrofoil are due to the treatment
of the trailing edge in constructing the median dual mesh by the program Favomesh.
The overshoots in the solution for the pressure coefficientCp and Mach numberM
become smaller for finer (hybrid) meshes.

The control volume around the trailing edge is badly shaped.A solution to this
problem is to split the control volume in an upper and lower control volume on the
surface of the hydrofoil. This has been investigated in our group by Hospers [98],
who showed that by splitting the control volume around the trailing edge the solu-
tion is then allowed to be discontinuous at the trailing edge. Currently, the program
Favomesh has been adapted by H. de Vries to automate the splitting of the control
volume around the trailing edge.



5.7. SINGLE-PHASE WATER FLOW OVER3D TWIST11 HYDROFOIL 117

Compared with the results for the 2D NACA0012 at4◦ angle of attack obtained
in section 5.5 the overshoot is larger, because the 2D NACA0015 hydrofoil is placed
at an higher angle of attack. Furthermore, the free-stream velocity in this section is
equal toU∞ = 12 ms−1, whereas a free-stream velocity ofU∞ = 50 ms−1 was
chosen in the previous section. At lower free-stream velocities the numerical flux
schemes are more sensitive to irregularities in the grid dueto the low numerical dis-
sipation.

Wrobel [221] reports lift and drag forces equal tofy = 7602 Nm−1 andfx = 30.7
Nm−1, respectively, which amount tocl = 0.813 andcd = 0.0032 in his calculation.
His maximum−Cp value on the top surface of the foil and in the stagnation point at
the trailing edge are approximately equal to 2.5 and−0.25, respectively. Comparing
the results of the present numerical method with the resultsof Wrobel, we conclude
that the solution on the foil is accurately solved for with the present density-based
numerical method on a hybrid quadrilateral/triangular mesh.

5.7 Single-phase water flow over 3D Twist11 hydrofoil

Foeth [67] has carried out experiments on a three-dimensional wall-to-wall twisted
hydrofoil placed in a cavitation tunnel. The main objectiveof this section is to val-
idate the numerical method utilizing the experimental datafor single-phase water
flow. Here, the interest is in the steady-state solution for uniform inflow conditions.
The cavitating flow about the 3D Twist11 hydrofoil will be considered in section 6.4.

5.7.1 Geometry of 3D Twist11 hydrofoil

The hydrofoil is denoted by TwistXX hydrofoil, because of its varying geometric an-
gle of attack from0◦ at the tunnel walls to XX◦ angle of attack at mid-section, see
Dang [51], Koopet al. [113] and Foeth [67]. The chord length of the foil is equal to
c = 0.15m. The foil spans the cavitation tunnel from wall to wall and itis symmetric
with respect to its mid-span plane.

The hydrofoil has a spanwise varying distribution of the local geometric angle of
attackα(ȳ) to avoid interaction of the cavitation sheet with the tunnelwall. The local
angle of attackα(ȳ) is defined by a cubic polynomial, such that it isαwall degrees at
the tunnel wall,αmax degrees at mid-span and that its derivative in spanwise direction
is zero at the wall as well as at mid-span:

α(ȳ) = αmax
(
2|ȳ|3 − 3ȳ2 + 1

)
+ αwall, (5.9)
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whereȳ = y/c is the dimensionless coordinate in span-wise directionȳ = [−1, 1],
with ȳ = 0 is defined to be at the mid-plane of the span andȳ = 1 at the tunnel wall
at the starboard side. Note thatαwall is the rotation angle of the entire hydrofoil and
is always equal to the local angle of attack at the tunnel wall.
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FIGURE 5.21: Span-wise distribution of geometric angle of attack of Twist11
hydrofoil at−2◦ angle of attack.

The sections of the hydrofoil rotate aroundx̄ = x/c = 0.75 to reduce the optical
blocking of the mid-section plane by the hydrofoil when viewing from the sides of
the foil, which is illustrated in figure 5.22(c), where the side view of the foil is pre-
sented.

The foil under consideration is the Twist11 at−2◦ angle of attack, yieldingαmax=11◦

andαwall=−2◦ in equation (5.9). The size of the foil is0.15m in chord wise and
0.3m in span-wise direction. The hydrofoil has a NACA0009 section with its half-
thickness distribution given by equation (5.7) witht = 0.09. The hydrofoil is pre-
sented in figure 5.22, where a 3D view, top view, side view and front view are shown.

5.7.2 Experimental data

Foeth [66] measured the forces and moments exerted by the flowon the foil as well as
local pressures on the surface of the hydrofoil. For the local pressure measurements
20 transducers were fitted in the foil at locations as presented in figure 5.23 and table
5.10, see for more details the thesis of Foeth [67].
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(a) (b)

(c) (d)

FIGURE 5.22: 3D Twist11 hydrofoil at−2◦ angle of attack, flow is inx-direction.
(a) 3D view (b) top view (c) side view (d) front view.

sensor x/c y/s sensor x/c y/s sensor x/c y/s
1 0.40 0.40 8 0.05 0.50 15 0.50 0.40
2 0.75 0.50 9 0.025 0.50 16 0.05 0.30
3 0.50 0.50 10 0.05 0.40 17 0.10 0.30
4 0.40 0.50 11 0.10 0.40 18 0.20 0.30
5 0.30 0.50 12 0.20 0.40 19 0.05 0.20
6 0.20 0.50 13 0.30 0.40 20 0.05 0.10
7 0.10 0.50 14 0.40 0.40

TABLE 5.10: Locations of the pressure transducers on the Twist11 hydrofoil in per-
cent of chord and (full-)span position. All sensors are placed on the suction side,
except sensor 1, which is placed on the pressure side.

Foeth carried out single-phase flow experiments for three angles of attack, i.e.−1◦,
−2◦ and−3◦. Here, the angle of attack of−2◦ is considered, because for this inci-
dence cavitating flow experiments were conducted as well [66, 67]. Furthermore, for
each angle of attack the pressures and forces were measured at various flow veloci-
ties. Here, the results forU∞ = 6.75 ms−1, T∞ = 297 K andp∞ = 0.97×105 Pa
are considered. For these flow conditions Foeth [66] reportsa lift force of 455N,
which amounts to a lift coefficientCL = 0.46. There are no experimental results
available for the drag force. The measurements for the local−Cp values on the sur-
face of the foil are presented in figure 5.27 together with thenumerical results.
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FIGURE 5.23: Locations of the pressure sensors on 3D Twist11 hydrofoil at−2◦

angle of attack, flow is inx-direction. All sensors are placed on the suction side,
except sensor 1, which is placed on the pressure side.

5.7.3 Computational domain and mesh
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FIGURE 5.24: Computational domain for 3D Twist11 hydrofoil at−2◦ angle of at-
tack. The back side, top and bottom of the channel are slip solid walls, the front side
is a symmetry plane, the left and right side are the in- and outflow. The surfaces of
the foil are solid slip walls. Note that the flow is from left toright.

For numerical purposes the length of the test section is increased to minimize the
effects of the implementation of the inlet and outlet boundary conditions. The hy-
drofoil is located in a channel with height2c, a length of3c upstream of the leading
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edge, a length of2c downstream of the trailing edge and a width ofs = c. Note that
for the numerical flow simulation only the starboard half of the test section and the
foil is considered, because of its geometric symmetry and the assumed hydrodynamic
symmetry.

The computational domain is divided into tetrahedral elements utilizing the software
package ICEM-CFD. The surface of the foil is divided in 7 sub-surfaces, i.e. one sur-
face wrapping around the leading edge and three surfaces on either side of the foil.
Each surface has its own size of surface elements (ratio 1:4:6:8) to ensure a fine mesh
around the nose of the foil and a somewhat coarser mesh on the surfaces closer to
the trailing edge. Note that the tetrahedrons close to the foil are much smaller than
the tetrahedrons further away in the flow field. The elements on the trailing edge are
refined to reduce the effects of the badly-shaped control volumes around the trailing
edge as explained in section 5.6.

Following a limited grid sensitivity study [113] it was concluded that for single-phase
water flow a total number of around 350k tetrahedrons is adequate for a sufficiently
accurate solution on the surface of the foil, which results in approximately 70k con-
trol volumes in the complete computational domain. This mesh is presented in figure
5.25. For cavitating flow a tetrahedral grid with a refinementalong the suction side
of the hydrofoil is considered. In this section that grid is referred to as the fine grid.

Y

X

Z

FIGURE 5.25:Tetrahedral mesh for 3D Twist11 hydrofoil at−2◦ angle of attack. Pre-
sented are the surface meshes on the hydrofoil and tunnel side wall. Total: 356,638
tetrahedrons, 69,365 control volumes. Flow is from left to right.
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5.7.4 Numerical method and flow conditions

The numerical results are obtained with the hybrid HLLC/AUSM flux scheme as pre-
sented in section 4.7.2. The first 50k iteration steps are calculated with the first-order
spatial reconstruction method. Then, the calculation is continued with the MUSCL-
type second-order reconstruction method applying the limiter method of Venkatakr-
ishnan employing the primitive variables[ρ, u, v, w, e]T . For the inflow the non-
reflective boundary conditions are applied. For the outflow the asymptotic constant
pressurep∞ boundary condition is used. The top and bottom of the channelare slip
solid walls as well as the surface of the hydrofoil. The solidwall boundary conditions
for the hydrofoil are calculated with the Curvature-Corrected Symmetry technique.
To accelerate the calculation towards the steady-state solution local time-stepping is
applied.

For single-phase flow the temperature is chosen equal toT∞ = 297 K and the asymp-
totic outlet pressure is set top∞ = 0.97×105 Pa, which yields a free stream density
ρ∞ = 998.3 kgm−3. Corresponding to the experimental setup described in section
5.7.2 a free stream velocityU∞ = 6.75 ms−1 is chosen yielding a free stream Mach
numberM∞ = 0.0044. These results are compared with results of a calculation
at free stream velocityU∞ = 50 ms−1, M∞ = 0.0325 with the same free-stream
pressurep∞ and temperatureT∞.

5.7.5 Convergence

The residuals forρ andρu are presented in figure 5.26 forU∞ = 6.75 ms−1 and
U∞ = 50 ms−1, respectively. During the first 50k iterations, when the first-order
reconstruction is employed, the residuals decrease rapidly. When the second-order
reconstruction is switched on the residuals stall at a levelof O(10−3) for the density
and of orderO(10−2) for ρu for U∞ = 50 ms−1. As mentioned in section 5.6 for the
2D calculation, it is known that the limiter of Venkatakrishnan stalls the convergence
to the steady-state solution.

5.7.6 Numerical results for lift and drag forces

In table 5.11 the values of the lift and drag coefficients are presented for the free-
stream velocityU∞ = 6.75 ms−1 on both grids and forU∞ = 50 ms−1 on the
coarse grid. Note that only the star-board half of the hydrofoil has been calculated,
so the calculated forces are multiplied by two to compare with the experimentally
obtained forces. The reference surfaceS in equation (2.10) of the hydrofoil is equal to
2c2. Due to the problems with convergence the lift and drag forcevary forU∞ = 6.75
ms−1 up to 1.9% and 20.4% for the lift and drag force, respectively. ForU∞ = 50
ms−1 they vary up to 0.4% and 2.8%, respectively. The presented values for the lift
and drag coefficients are the average values over the last 50kiterations.
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FIGURE 5.26: Residuals forρ and ρu as a function of iteration step on 3D
Twist11 hydrofoil at−2◦ angle of attack.p∞ = 0.97×105 Pa, ρ∞ = 998.2 kgm−3,
T∞ = 297 K. Top:U∞ = 6.75 ms−1 Bottom:U∞ = 50 ms−1.

U∞ numerical experimental
[ms−1] mesh CD [-] CL [-] CL [-]

6.75 coarse 0.010 0.442 0.46
6.75 fine 0.0083 0.445 0.46
50 coarse 0.0098 0.454 -

TABLE 5.11: 3D Twist11 hydrofoil at−2◦ angle of attack. Lift and drag coefficients
CL,CD for velocitiesU∞ = 6.75 ms−1 on coarse and fine grid andU∞ = 50 ms−1

on coarse grid. Added are the experimentally obtained values for the lift coefficient.
p∞ = 0.97×105 Pa, ρ∞ = 998.3 kgm−3, T∞ = 297 K.
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The lift force forU∞ = 6.75 ms−1 is calculated to be equal to451.8N. Note that
this value correspond to within1% with the measured value455N for U∞ = 6.75
ms−1. Furthermore, the experimentally obtained lift coefficient CL = 0.46 is suffi-
cient† accurately predicted by the present numerical method. Fromthis we conclude
that the calculated lift force corresponds satisfactory with the measured value for
single-phase water flow at this low Mach number and angle of attack for which flow
separation does not occur.

The calculated lift coefficient on the coarse and fine mesh areapproximately equal to
each other, which verifies that the coarse grid is adequate for a sufficiently accurate
solution on the surface of the hydrofoil for single phase flow.

For inviscid flow at low Mach number the lift coefficientCL for the velocitiesU∞=
6.75 ms−1 andU∞ = 50 ms−1 should be about equal to each other. In table 5.11 is
presented that the lift coefficient slightly differs for both free-stream velocities. The
value forU∞ = 50 ms−1 is closer to the experimental value than forU∞ = 6.75
ms−1.

For this three-dimensional inviscid flow case the drag forcewill not be zero. The
wake downstream of the trailing edge contains vorticity stemming from the differ-
ence in direction of the velocity over the suction side and the flow over the pressure
side. At the trailing edge these two flows meet and generate a trailing vortex sheet.
This trailing vorticity induces an upwash/downwash distribution at the foil which in-
creases/reduces the local angle of attack experienced by the foil. This results in the
so-called induced drag. In [113] we have investigated the up- and downwash on the
foil by employing Prandtl’s lifting-line theory, which is included in appendix D. In
section 5.7.8 a visualization of the trailing vorticity is presented.

From the good agreement between the experimentally obtained lift force and the
calculated value and the agreement between the calculated lift coefficients for both
velocities, we conclude that the present numerical method is capable of accurately
predicting the lift force on the foil for low speed 3D single-phase water flow.

5.7.7 Comparison with experimental pressure data

Foeth’s experimentally obtained−Cp values at the surface of the hydrofoil at the
locations indicated in figure 5.23 are compared with the numerical results. The ex-
perimental values are grouped together for the same span positions, i.e. 50%, 40%,

†Foeth [66] mentions that his calibration was verified for each angle of attack by placing weights on
the hydrofoil in an empty cavitation tunnel. A deviation of3% from the calibrated value was found and
Foeth applied a correction for this discrepancy.
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30%, and 20% of the span. These values are denoted by the open squares in figure
5.27. At the same span positions slices are made through the numerical solution at
the surface of the hydrofoil. These are presented with the closed circles in figure 5.27.
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FIGURE 5.27: 3D Twist11 hydrofoil at−2◦ angle of attack. Experimental
(open squares) and numerical (solid circles) distributionof the −Cp coefficient
for U∞ = 50 ms−1, T∞ = 297 K, p∞ = 0.97×105 Pa, ρ∞ = 998.2 kgm−3.
(a) y/s = 0.5, (b) y/s = 0.4, (c) y/s = 0.3, (d) y/s = 0.2.

As can be seen in figure 5.27 the numerical results correspondreasonably well with
the experimental data. However, the experimental value atx/c = 0.3 at 40% span
appears to deviate from the numerical results. Foeth [66] mentions that the value
from this pressure sensor is not trustworthy.

Furthermore, as can be seen in figure 5.27, an overshoot in−Cp value at the trailing
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edge is observed in the numerical results. This is caused by the relatively bad-shaped
control volume around the trailing edge for a node-centereddual mesh. As explained
in section 5.6 a possible solution is to split the control volumes around the trailing
edge into an upper and lower control volume allowing a discontinuous solution at
the trailing edge. Currently, within our group H. de Vries has adapted the program
Favomesh to automate the splitting of the control volumes around the trailing edge.
When the mesh is refined around the trailing edge, this overshoot reduces.

From figure 5.27 we conclude that the solution for the pressure on the surface of
the 3D Twist11 hydrofoil at−2◦ angle of attack can be calculated accurately for
single-phase water flow at low-Mach number.

5.7.8 Numerical results for flow solution

In figure 5.28 the distribution of−Cp coefficient on the surface of the hydrofoil is
presented for fully wetted water flow withU∞ = 50 ms−1. In the center on the
suction side of the hydrofoil a clear low pressure region is visible. The design of the
foil has been such that cavitation occurs in the center of thefoil and that cavitation
is avoided near the tunnel walls. Due to the span-wise varying angle of attack the
pressure near the tunnel walls of the cavitation tunnel is much higher resulting in a
lower−Cp value.

To illustrate the generated vorticity in the wake of the hydrofoil an iso-contour of the
x-component of the vorticity, i.e.|ωx|/ (U∞/c) = 0.4, is presented in figure 5.29.
The vortical wake of the hydrofoil is generated due to the difference in the direction
of the velocity over the suction side and pressure side of thehydrofoil. At the trailing
edge these two flows meet and generate a trailing vortex sheet. The vortex sheet rolls
up further downstream in the domain into two regions of vorticity with their centers
located at̄y = y/c = −0.5 and ȳ = y/c = 0.5, respectively. Unfortunately, the
mesh is too coarse further away from the hydrofoil to be able to resolve the roll-up of
the vortex sheet more accurately.

This trailing vorticity induces an upwash/downwash at the foil, which increases/redu-
ces the local angle of attack experienced by the foil. In the center of the foil a down-
wash is experienced by the foil, which reduces the occurrence of cavitation due to
the lower effective angle of attack. At the tunnel walls the hydrofoil experiences an
upwash, causing a higher effective angle of attack which induces an earlier onset of
cavitation than expected by considering the negative localangle of attack at the tun-
nel walls.

In [113] we investigated the up- and downwash on the Twist08,Twist11 and Twist14
hydrofoils due to the vortical wake by means of Prandtl’s classical lifting line theory.
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FIGURE 5.28: 3D Twist11 hydrofoil at−2◦ angle of attack. Distribution of
−Cp coefficient on surface of hydrofoil. Second-order hybrid HLLC/AUSM flux
scheme on tetrahedral mesh.U∞ = 50 ms−1, T∞ = 297 K, p∞ = 0.97×105 Pa,
ρ∞ = 998.2 kgm−3.

The lifting line theory for the Twist hydrofoil is included in appendix D. From this
theory an estimate for the effective angle of attack of the 3DTwist11 hydrofoil is
obtained. From the numerical results presented in figure 5.28 the calculated effective
angle of attack at various locationsy0 along the span of the foil is obtained through

αeff (y0) =
cl(y0)

2π
, (5.10)

wherecl(y0) follows from

cl(y0) = −
1∫

0

{

CUp

(
x

c(y0)
, y0

)

− CLp

(
x

c(y0)
, y0

)}

d

(
x

c(y0)

)

, (5.11)

with CU,Lp theCp distribution along the upper and lower side of the section located
at spanwise locationsy0.

In figure 5.30 the estimated effective angle of attackαeff,PLL obtained from Prandtl’s
lifting line theory, the calculated effective angle of attackαeff,num obtained from the
Euler calculations presented in figure 5.28 and the local geometric angle of attack
αgeom are presented for the 3D Twist11 hydrofoil at−2◦ angle of attack. As illus-
trated in figure 5.30 both the estimated and calculated effective angle of attack are
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FIGURE 5.29: 3D Twist11 hydrofoil at−2◦ angle of attack. Iso-contour
of the x-component of vorticity|ωx|/ (U∞/c) = 0.4. Second-order hybrid
HLLC/AUSM flux scheme on tetrahedral mesh.U∞ = 50 ms−1, T∞ = 297 K,
p∞ = 0.97×105 Pa, ρ∞ = 998.2 kgm−3.
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FIGURE 5.30: Twist11 hydrofoil at−2◦ angle of attack. Geometric angle of attack
αgeom (solid line), the effective angle of attack as predicted from Prandtl’s lifting line
theoryαeff,PLL (dashed line) and the effective angle of attack as predictedfrom the
Euler calculationsαeff,num (stars).
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higher than the local geometric angle of attack at the tunnelwalls and lower at the
mid-span plane. Thus, the vortical wake of the hydrofoil generates upwash at the
tunnel walls and downwash at mid-section of the foil.

The downwash at mid-span derived from the Euler equations agrees quite well with
the values found from Prandtl‘s lifting line theory. The upwash, which occurs near
the tunnel walls, is higher in the Euler results compared to the result from lifting line
theory. This might be due to the neglect in Prandtl’s liftingline theory of the roll-up
of the vortical wake, which is present in the solution obtained from the Euler equa-
tions. The center of vorticity will remain the same, see Hoeijmakers [94]. The roll-up
effects the upwash apparently more near the wall than the downwash near the center
of the foil. This needs to be explored further. Furthermore,we conclude that for fully
wetted flow Prandtl’s lifting line theory can be used in deriving a potentially inter-
esting Twist distribution that subsequently can be explored further using the Euler
method, see Koopet al. [113] and appendix D.

5.8 Conclusions on single-phase flow calculations

In this chapter the single-phase flow of water has been considered for 1D, 2D and 3D
flow problems. It is judged essential to accurately calculate single phase water flow
to be able to calculate cavitating flow correctly. In this chapter we have shown that
the present numerical method is able to:

• accurately predict time-accurate wave and shock dynamics in liquid flow prob-
lems such as the “Water Hammer” problem and the Riemann problem for liquid
flow;

• accurately calculate steady-state low-Mach number liquidflow, without the use
of preconditioning methods, by employing a hybrid HLLC/AUSM flux scheme
such as developed by Schmidtet al. [169, 170, 172];

• accurately calculate the steady-state water flow about two-dimensional hydro-
foils;

• accurately predict the lift coefficient for the 3D Twist11 hydrofoil at−2◦ angle
of attack for single-phase liquid flow under uniform inflow conditions;

• accurately predict the pressure coefficientCp on the surface of the 3D Twist
hydrofoil at −2◦ angle of attack compared to experimentally obtained local
pressure data.

Furthermore, we conclude that the numerical method employing the MUSCL-type
reconstruction method and the limiter of Venkatakrishnan is close to second-order
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accuracy for the single phase water flow about two-dimensional hydrofoils.

The development and implementation of non-reflective boundary conditions for com-
pressible water flow allow shock and expansion waves to leavethe computational
domain without reflection back into the domain. This is important for unsteady flow
calculations. Furthermore, although not shown in detail inthis chapter, the non-
reflective boundary conditions improve the convergence to the steady-state solution
because traveling shock and expansion waves are allowed to leave the computational
domain without reflections.

The development and implementation of the Curvature-Corrected Symmetry Tech-
nique for the slip solid walls of the object in the flow improves the numerical solution
near the surfaces of objects in the flow.

The results for steady-state low-Mach number flow have been improved by the hybrid
HLLC/AUSM flux scheme as developed by Schmidtet al. [169]. Following discus-
sions with Schmidt and Prof. Schnerr of the TU Munich we have implemented their
formulation into the present edge-based numerical method for unstructured grids.
For the hybrid flux scheme we have reduced the Mach number evenfurther than
presented. However, forU∞ ≤ 1.0 ms−1, which corresponds to a Mach number
M = 6.5 × 10−4 the solution starts to develop irregularities in the pressure and ve-
locity on the surface of the cylinder. Schmidtet al. [170] succeeded in obtaining a
solution for Mach numbers as low as10−4.

Furthermore, we conclude that the badly-shaped control volumes around the trail-
ing edge have a negative effect on the numerical solutions about hydrofoils. The
pressure near the trailing edge of the hydrofoil experiences small under- and over-
shoots. Refining the grids near the trailing edge improves the numerical results. At
present, within our group H. de Vries has adapted the pre-processing mesh program
Favomesh to automate the splitting of the control volumes atthe trailing edge into an
upper and lower control volume on the surface of the hydrofoil.

Lastly, we have found that the limiter method of Venkatakrishnan sometimes stalls
the convergence to the steady-state solution. A possible solution might be to imple-
ment one of the limiting methods described in the thesis of Bramkamp [28]. For
unsteady flow calculations the limiter of Venkatakrishnan works satisfactory, under-
and overshoots are not observed at sharp gradients or discontinuities in the flow.
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In this chapter results of numerical simulations for cavitating flows are presented.
The equilibrium cavitation model as presented in section 3.4 is applied to simulate
the occurrence of cavitation. The two-phase flow regime is described as a homoge-
neous mixture in which the vapor and liquid components of thetwo-phase mixture
remain in thermodynamic and mechanical equilibrium.

In section 6.2 one-dimensional test cases are considered toassess the convergence
and stability of the numerical method for cavitating flow. First, the so-called “Clos-
ing Valve problem” of Berget al. [22] is discussed. Then, the 1D test case of Saurel
et al. [166] is presented, which illustrates the occurrence of cavitation by enforcing a
left- and right-running expansion wave.

In section 6.3 the test case of Sauer [162] is presented, i.e.the cavitating flow about
a 2D NACA 0015 section at6◦ angle of attack at free stream velocity ofU∞ = 12
ms−1 and cavitation numberσ = 1.0. Also, the cavitating flow at a different free-
stream velocity ofU∞ = 50 ms−1, but identical cavitation numberσ = 1.0, is
considered to investigate that flows with the same cavitation number result in the
same cavitating flow characteristics.

In section 6.4 the cavitating flow about the 3D Twist11 hydrofoil at −2◦ angle of
attack is simulated at the same cavitation numberσ = 1.1 as in the experiments of
Foeth [67]. The development of the re-entrant flow is presented and the formation of
a cavitating horse-shoe vortex is investigated.

Lastly, in section 6.5 the steady-state cavitating flow about the 3D Elliptic 11 Rake
hydrofoil is calculated, at the same cavitation numberσ = 0.68 as in the experi-
ments of Van der Hout [204], to show that the present edge-based numerical method
is capable of predicting the cavitation pattern occurring in the flow about a complex
geometry.
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In table 6.1 the test cases for the two-dimensional and three-dimensional cavitating
flow are summarized.

Foil α [◦] U∞ [ms−1] σ [-] mesh

2D NACA0015 6.0 12, 50 1.0 hybrid quadrilateral/triangular
3D Twist11 −2.0 50 1.1 tetrahedral

3D Elliptic 11 Rake 3 50 0.68 tetrahedral

TABLE 6.1: Test cases for 2D and 3D cavitating flow.

6.1 Dimensionless total vapor volume

The dimensionless total vapor volume is calculated differently for the 1D, 2D and
3D test cases. For 1D flow the dimensionless total vapor volumeVvap,1D is the total
vapor volume divided by the volume of the computational domain VCD:

Vvap,1D =
1

VCD

N∑

i=1

αiVi, (6.1)

whereN is the total number of control volumes and where the void fractionα follows
from equation (2.2) with the volumeV of the fluid taken equal to the volumeVcv of
the control volume. For flows about 2D hydrofoils the dimensionless total vapor
volumeVvap,2D is defined as

Vvap,2D =
1

c2

N∑

i=1

αiVi, (6.2)

wherec is the chord length of the hydrofoil. For flows about 3D hydrofoils the
dimensionless total vapor volumeVvap,3D is defined as

Vvap,3D =
1

c3

N∑

i=1

αiVi. (6.3)

From now on the total vapor volumesVvap,1D, Vvap,2D andVvap,3D are denoted by
Vvap. The test case considered defines which equation forVvap is considered, i.e.
equation (6.1), (6.2) or (6.3) for 1D, 2D or 3D flow test cases,respectively.
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6.2 1D cavitating flow problems

6.2.1 “Closing Valve” problem

Berg et al. [22] investigated the cavitating flow in hydraulic pipelines. Here, their
“Closing Valve” problem is calculated. Consider a uniform flow of water through a
pipe of lengthL = 0.1 m. The initial velocityu0 and the initial pressurep0 are set
to u0 = 1.0 ms−1 andp0 = 105 Pa, respectively. The initial temperature is denoted
by T0, which is equal toT0 = 293 K. For these initial conditions the speed of sound
equalsc0 = 1537.7 ms−1.

At an arbitrary time, sayt = 0 the entire inflow boundary is closed infinitely fast.
Due to the inertia of the water an expansion wave starts traveling through the pipe.
Consequently, the pressure at the inlet boundary may drop tothe saturation pres-
surepsat(T0) and the fluid starts to cavitate. All results are evaluated atthe end-time
t = 5.0×10−5 s, which is just before the expansion wave reaches the outflow bound-
ary. The grid is constructed from quadrilaterals and in thissection the influence of
the grid size is investigated.

The results are obtained with the HLLC flux scheme as presented in section 4.5.2.
In the following first and second-order results are presented. The second-order re-
sults are obtained with the limiter method of Venkatakrishnan employing the primi-
tive variables[ρ, u, v, w, e]T . For the outflow the non-reflective boundary conditions
are applied. The inflow and side walls of the pipe are slip solid walls.

To assess the order of the convergence of the numerical method, the solution is cal-
culated on five different grids, i.e. consisting of 50, 100, 200, 400, and 800 points in
x-direction and 2, 4, 8, 16 and 32 points iny-direction, respectively. From now on
the grids will be referred to by the number of grid points inx-direction. The total
vapor volumeVvap defined in equation (6.1) is calculated at timet = 5.0×10−5 s. In
table 6.2 the calculated total vapor volume is presented forthe five different grids for
first- and second-order spatial reconstruction. The table shows that the vapor volume
remains small and appears to converge for increasing mesh density.

Richardson’s extrapolation is applied to estimate the total vapor volumeVvap(0) by

Vvap(h) = Vvap(0) + Chp, (6.4)

for three grids with increasing mesh density. The values forVvap(0), C, andp are
presented in table 6.3. Note thatVvap(0) is equal to4.6819×10−4% andp ≈ 1
for both the first- and second-order results. Thus, it is found that both the first-order
method and the second-order method converge linearly only.
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N 1st-order 2nd-order
Vvap [10−4%] Vvap [10−4%]

50 4.67183 4.69074
100 4.67685 4.68631
200 4.67937 4.68410
400 4.68062 4.68299
800 4.68125 4.68243

TABLE 6.2: Closing Valve problem. Total vapor volume att = 5.0×10−5 s, first- and
second-order results for meshes with 50, 100, 200, 400 and 800 points inx-direction.

1st-order 2nd-order
N Vvap(0) C p Vvap(0) C p

[10−4%] [10−5] [10−4%] [10−5]

50/100/200 4.68191 -4.93 0.994 4.68190 4.48 1.003
100/200/400 4.68185 -5.27 1.011 4.68187 4.31 0.993
200/400/800 4.68189 -4.74 0.989 4.68186 4.18 0.987

TABLE 6.3: Closing Valve problem. Grid convergence of total vapor volume. Con-
stants obtained with Richardson’s extrapolation.

In figure 6.1 first and second-order solutions for the pressure p, the velocityu and
the speed of soundc are presented for the five different meshes. The numerical time
steps∆tcfl are equal to the numerical time steps presented in table 5.4.In figure 6.2
the solution for the void fractionα and the Mach numberM are presented. Note that
for the results in figure 6.2 the scale of thex-axis is different in order to illustrate the
region of interest, namely the region close to the closed inlet.

At t = 5.0×10−5 s the right-running expansion wave, that appears as soon as the
inlet closes, has almost reached the outflow boundary. However, the pressure in the
tube cannot decrease below saturation pressure without forcing the liquid to cavitate.
Thus, the pressure drops to saturation pressure and then remains constant. The vapor
fractionα is equal to zero after the expansion wave has passed. The velocity then
also remains constant. The decrease in velocity depends on the decrease in pressure.
In the linearized case, see section 5.2, the difference in velocity is derived to be equal
to ∆u = ∆p/ρ0c0 = 0.064 ms−1, which is confirmed in figure 6.1(d).

However, at the left boundary the velocity has to become equal to zero. Consequently,
the fluid is forced to cavitate, i.e. the void fractionα increases to 1. This results in
the formation of a liquid-vapor contact surface, followed by an expansion wave in the
vapor, where the velocity decreases to zero. The speed at which the contact surface
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FIGURE 6.1: Closing Valve problem. Flow is from left to right.t = 5.0×10−5 s.
Results obtained with HLLC scheme: first-order spatial reconstruction (left) and
second-order reconstruction (right).u0 = 1.0 ms−1, p0 = 105 Pa, T0 = 293 K.
(a)–(b) pressurep (c)–(d) velocityu (e)–(f) speed of soundc. See figure 6.2 for the
void fractionα and Mach numberM .

moves is much smaller than the velocity of the expansion wavein the liquid and thus,
in the time considered, the contact surface is located closeto the closed valve. The
second expansion wave in the vapor is therefore not resolvedresulting in a singular
point at the left boundary. This also explains the value ofp ≈ 1.0 in table 6.3 for the
second-order spatial reconstruction.
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FIGURE 6.2: Closing Valve problem. Flow is from left to right.t = 5.0×10−5 s.
Results obtained with HLLC scheme: first-order spatial reconstruction (left) and
second-order reconstruction (right).u0 = 1.0 ms−1, p0 = 105 Pa, T0 = 293 K.
(a)–(b) void fractionα (c)–(d) Mach numberM . Note the difference in scale of the
x-axis compared with figure 6.1.

6.2.2 Two symmetric expansion waves

Saurelet al. [166] presented an one-dimensional test case for cavitating flows for
which evaporation in the fluid is forced by a left- and right-running expansion wave.
Saurelet al. considered hypervelocity (u=3000 ms−1) underwater projectiles which
is outside the scope of the present research. Thus, in this section the conditions
defined by Schmidtet al. [169] are considered. The results are obtained with the
second-order hybrid HLLC/AUSM+up flux scheme on a quadrilateral mesh consist-
ing of 100 points inx-direction.

Initially, a tube with a length of 1m is completely filled with water at a tempera-
ture of T0 = 303.15 K with psat(T0) = 4, 254Pa and c0 = 1539.6 ms−1. In
the center of the tube, atx = 0.5 m, a diaphragm is placed separating two reser-
voirs of fluid. The water to the left of the membrane has an initial velocity of
u0L=−10.0 ms−1, whereas the fluid to the right of the membrane has an initial
velocity equal tou0R = 10.0 ms−1. The pressure on both sides of the membrane is
set top0L = p0R = 0.9×105 Pa. At t = 0 the membrane is removed. The left and
right ends of the tube are non-reflective outflow boundaries.
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FIGURE 6.3: Two symmetric expansion waves. Solution at time-instants
t0–t3 with tN = 0 +N∆t, where ∆t = 0.9×10−4 s. Results are obtained
with second-order hybrid HLLC/AUSM+up scheme on a quadrilateral mesh
with 100 points in x-direction. ∆tcfl = 1.17×10−6 s, u0L = −10 ms−1,
u0R=10 ms−1, p0L=p0R=0.9×105 Pa, T0L=T0R=303.15 K. (a) pressurep
(b) velocityu (c) void fractionα (d) speed of soundc. Note that the solution for the
velocity and speed of sound at time-instantst2 andt3 are to plotting accuracy equal
to the solution att1.

The solution to this test case corresponds to two rarefaction waves, one running to the
left and the other running in opposite direction. In the rarefaction wave the pressure
decreases rapidly to the saturation pressure, but the vaporfractionα remains equal to
zero. Evaporation of the liquid takes place over the contactsurface near the center of
the domain. In the center region vapor is produced at constant temperature because
of the assumption of local equilibrium during phase change and thus the pressure re-
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mains constant at the saturation pressurepsat(T0).

Results for the pressurep, velocityu, void fractionα and speed of soundc are pre-
sented in figure 6.3 for timestN = 0+N∆twith ∆t = 0.9×10−4s andN = 0, . . . , 3.
All solutions are free of oscillations. At this early time the contact surfaces on either
side of the center are positioned in a very small region around the centerline. Note
the sharp transition in velocity fromu = −10 ms−1 to u = 10 ms−1 atx = 0.5m
and the dramatic decrease in speed of sound fromc ≈ 1540 ms−1 to c ≈ 6 ms−1 at
x = 0.5m.

For the same initial conditions, the exact solution for single phase water flow without
cavitation employing the Tait equation of state can be calculated. For single phase
water flow, the pressure in the center of the domain reaches almost−150 bar and the
velocity becomes equal to zero over a relatively large part of the domain.

6.3 Unsteady cavitating flow about 2D NACA0015 at6◦

To verify the present density-based numerical method a standard two-dimensional
test case of an unsteady cavitating flow is considered, see Sauer [162], Sauer &
Schnerr [163] and Schnerret al. [171]. At the presented conditions this test case
shows to good approximation a 2D periodic unsteady cavitating flow with character-
istic behavior such as the cyclic formation of a cavitation sheet, the formation of the
re-entrant jet and the shedding of a vapor cloud. In this section the results obtained
with the present numerical method are compared with the results of Schnerret al.
[171].

The two-dimensional test case is very well suited for numerical verification. Unfor-
tunately, validation with experiments is not possible, because of the lack of data for
the case of purely two-dimensional flow. As explained in section 2.3 the shedding on
a two-dimensional hydrofoil will never be completely two-dimensional. In his thesis
Sauer [162] refers to experiments for a two-dimensional hydrofoil of Keller & Arndt
for the same flow conditions. As is clear from experiments on two-dimensional hy-
drofoils, the sheet cavity is always influenced by alternating side-wall effects as well
as by the three-dimensional spherical propagation of shockwaves. The local collapse
along the closure line of the sheet cavity induces local side-flow resulting in random
collapse and shedding of vapor along the span-wise closure line of the cavity sheet.

The hydrofoil considered is a 2D NACA0015 hydrofoil at6◦ angle of attack with
chord lengthc = 0.13m. The solution for fully-wetted, i.e. single-phase water flow,
was presented in section 5.6. The computational domain is presented in figure 5.17.
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The inflow velocityU∞ is set to12 ms−1. For cavitating flow the free-stream pres-
surep∞ is chosen such that the cavitation number, defined in equation (2.1), is equal
to σ = 1.0 atT∞ = 293 K with psat(T∞) = 2, 321Pa, yielding for the initial pres-
surep∞ = 0.742 × 105Pa.

U∞ p∞ T∞ ρ∞ c∞ σ
[ms−1] [105 Pa] [K] [kgm−3] [ms−1] [-]

12 0.742 293 998.2 1537.6 1.0

TABLE 6.4: Conditions for cavitating flow about 2D NACA0015 hydrofoil at 6◦ angle
of attack with chord lengthc = 0.13m.

For the inflow the non-reflective boundary condition is employed. For the outflow
the asymptotic non-reflective pressure boundary conditionis applied with free-stream
pressurep∞. The top and bottom of the channel are slip solid walls and forthe slip
solid wall of the hydrofoil the curvature-corrected symmetry technique is used. The
results are obtained with the hybrid HLLC/AUSM flux scheme ofsection 4.7.2. A
CFL number of 0.8 is employed for all simulations.

In the following first- and second-order results are compared, with the second-order
results calculated with the limiter method of Venkatakrishnan employing the primi-
tive variables[ρ, u, v, w, e]T . When calculating the second-order results the first 50k
time-steps are performed applying the first-order reconstruction.

Furthermore, two hybrid quadrilateral/triangular grids are considered, a coarse and
a finer grid with 100 and 200 points on the surface of the hydrofoil, respectively. A
close-up of the hybrid meshes around the hydrofoil is presented in figure 6.4. For both
grids the total number of elements and total number of control volumes are presented
in table 6.5. For more details on the construction of the hybrid mesh see section 5.5.2.
For the chosenCFL number the corresponding numerical time step∆tcfl is approx-
imately equal to∆tcfl ≈ 1.4×10−7s for the coarse mesh and∆tcfl ≈ 3.9×10−8s
for the fine mesh.

mesh # points foil # quad’s # triangles # control ∆tcfl
surface volumes [10−7 s]

coarse 100 1,520 4,747 3,995 1.4
fine 200 6,080 8,339 10,401 0.39

extrafine 400 24,320 14,873 31,998 0.11

TABLE 6.5: Computational meshes for cavitating flow about 2D NACA0015 at 6◦

angle of attack.
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FIGURE 6.4: Close-up of foil with hybrid quadrilateral/triangular mesh for 2D
NACA0015 hydrofoil at6◦ angle of attack. (left) coarse mesh: 100 points on sur-
face of hydrofoil, 3,995 control volumes, 1,520 quadrilaterals, 4,747 triangles (right)
fine mesh: 200 points on surface of hydrofoil, 10,401 controlvolumes, 6,080 quadri-
laterals, 8,339 triangles.

6.3.1 Results for total vapor volume

The total vapor volumeVvap, defined in equation (6.2), is a convenient parameter for
understanding the transient evolution of the cavitating flow. The total vapor volume is
calculated at each time step. After the start-up phase the growth and shedding of the
vapor sheet and the collapse of the shed vapor cloud induce a self-oscillatory behav-
ior, which is approximately periodic in time. It takes approximately 0.2s in simulated
time until a repeatable pattern in the variation of total vapor volume with time is ob-
served. The time-histories of the total vapor volumeVvap during 4 cycles, sometime
after the start-up phase, are presented in figure 6.5. The results are obtained applying
the first- and second-order reconstruction on the coarse andfine mesh, respectively.

Applying the Fast Fourier Transform (FFT) on the time-history of the total vapor vol-
ume, the main frequency of the repeated pattern in the total vapor volume is found.
The frequencies for the first- and second-order results on the coarse and fine grid are
presented in table 6.6 together with the Strouhal number based on the chord length.
Also presented are the average of the total vapor volumeV̄vap and the extremum val-
ues in total vapor volume.

From figure 6.5 and table 6.6 it becomes clear that for first-order reconstruction the
mesh has a large influence on the frequency of the oscillationin the total vapor vol-
ume and thus on the calculated Strouhal number. The frequencies obtained for both
meshes using the second-order reconstruction method agreereasonably well with
each other.

The order of reconstruction and the mesh density have a largeinfluence on the time-
averaged value of the total vapor volume. When a higher orderreconstruction or a
finer mesh is employed, then the amount of vapor present abovethe hydrofoil in-
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FIGURE 6.5: Time-history of total vapor volumeVvap for unsteady cavitating flow
about 2D NACA0015 hydrofoil at6◦ angle of attack,σ = 1.0 with U∞ = 12 ms−1.
Four shedding cycles after start-up phase. Note the difference in scale of the vertical
axis. (a) first-order, coarse grid:T = 5.03×10−2 s (b) second-order, coarse grid:
T = 4.23×10−2 s (c) first-order, fine grid:T = 2.43×10−2 s (d) second-order, fine
grid: T = 4.13×10−2 s.

mesh order f Stc V̄vap max Vvap min Vvap
[Hz] [-] [10−2] [%] [%]

100 1 19.9 0.216 0.39 170 37
200 1 41.1 0.445 1.05 108 92
400 1 40.9 0.443 1.82 120 75
100 2 23.6 0.256 3.87 116 85
200 2 24.2 0.262 4.65 113 91

TABLE 6.6: Frequency, Strouhal numberStc, time-averaged total vapor volumēVvap
and extreme values in total vapor volume for time-dependenttotal vapor volume
for unsteady cavitating flow about 2D NACA0015 hydrofoil at6◦ angle of attack.
c = 0.13m, σ = 1.0 withU∞ = 12 ms−1.

creases up to a factor of 4. This finding is illustrated more clearly in section 6.3.3
where the solution for the void fraction for the first- and second order reconstruction
on the fine mesh during the cycles shown in figure 6.5 is presented.

Furthermore, from table 6.6 it is clear that employing the first-order reconstruc-
tion method a different shedding frequency is found compared with the result of the
second-order reconstruction method. The reason for this isnot clear. A possibility
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might be that due to the nonlinearity of the equations more solutions are possible. To
study this further the first-order solution is continued with the second-order recon-
struction and the second-order solution is continued with the first-order reconstruc-
tion. However, these additional calculations have not progressed far enough to draw
conclusions.

In his thesis Sauer [162] reports a numerically obtained frequency off ≈ 11 Hz.
Sauer used the pressure-based method CAVKA, which is first-order in space and time
for cavitating flow. Employing their compressible density-based method CATUM
Schnerret al. [171] calculated a frequency off ≈ 9 Hz both for a first-order method
on a coarse grid as well as for a second-order method on a fine grid. We remark that
our coarse grid is coarser than their coarse grid and that ourfine grid is finer than
their fine grid. Schnerret al. [171] refer to experiments of Keller & Arndt who found
an experimentally observed frequency off ≈ 16Hz. Based on table 6.6 we have
found a main frequency off ≈ 24Hz obtained with the second-order reconstruction
method. We do not know the reason for the difference in main frequency compared
to the one found by Schnerret al. [171].

Based on the findings in table 6.6 we conclude that the first-order results on the
fine mesh differ significantly from the one on the coarse mesh.To be able to obtain
grid-converged first-order solutions the grid needs to be refined further. A first-order
solution on a hybrid mesh with 400 points on the surface of thehydrofoil has been
calculated to verify the results of the first-order solutionon the fine mesh of table 6.6.
For this 400-mesh the frequency is found to be equal to 40.9Hz, which is close to
the value found with the first-order scheme on the 200-mesh.

We conclude that the second-order results on the fine mesh correspond much bet-
ter with the second-order results on the coarse mesh, than for the first-order results.
Thus, applying the second-order reconstruction, the solution appears to depend more
consistently on the mesh density. However, when using a finermesh a better reso-
lution in the shed vapor cloud and the sheet cavity is obtained and thus more local
events are resolved.

6.3.2 Results for lift and drag coefficients

The time-history of the lift and drag coefficients during 4 cycles sometime after the
start-up phase for the first- and second-order discretization on the coarse and fine grid
are presented in figures 6.6 and 6.7. In table 6.7 the time-averaged lift and drag coeffi-
cients as well as the extremum values are presented. As a reference the second-order
results on the fine mesh for single phase water flow are added. Due to cavitation a de-
crease by a factor of 1.5–1.7 in lift coefficient as well as a substantial drag is found.
These values correspond with the values found by Sauer [163], who mentions that
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this is in agreement with the experiments of Keller & Arndt. For the 400-mesh we
find the value of̄cd = 0.075 for the time-averaged drag coefficient, which is equal to
the value found by Sauer [163]. Applying the Fast Fourier Transform on the signal
of the lift and drag coefficient the same main frequencies arefound as in the time-
history of the total vapor volume.
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FIGURE 6.6: Time-dependent drag coefficientcd for unsteady cavitating flow about
2D NACA0015 hydrofoil at6◦ angle of attack,σ = 1.0 with U∞ = 12 ms−1. Pre-
sented are four shedding cycles after start-up phase. Note the difference in scale
of the vertical axis. (a) first-order, coarse grid:T = 5.03×10−2 s (b) second-
order, coarse grid:T = 4.23×10−2 s (c) first-order, fine grid: T = 2.43×10−2 s
(d) second-order, fine grid:T = 4.13×10−2 s.

During the time that the flow is periodic in terms of the total vapor volume, the lift
and drag coefficients show high frequency pulses, which result from resolved phys-
ical (pressure) waves, which are generated by the collapse of shed vapor structures.
Note that even for the first-order results obtained on the coarse mesh the lift coeffi-
cient becomes negative with values as low as−0.5c̄l. Schnerret al. [171] explain that
these negative lift pulses can be formed by either the formation of expansion waves
as reflections of shocks at phase boundaries with constant pressure or by the pressure
rise due to shocks impacting on the suction side of the foil. Both processes have been
found in the present numerical simulations discussed in section 6.3.6 and we support
the findings of Schnerret al. [171].

From table 6.7 it is clear that when the second-order reconstruction is employed,
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FIGURE 6.7: Time-dependent lift coefficientcl for unsteady cavitating flow about 2D
NACA0015 hydrofoil at6◦ angle of attack,σ = 1.0 withU∞ = 12 ms−1. Presented
are four shedding cycles after start-up phase. Note the difference in scale of they-
axis. (a) first-order, coarse grid:T = 5.03×10−2 s (b) second-order, coarse grid:
T = 4.23×10−2 s (c) first-order, fine grid:T = 2.43×10−2 s (d) second-order, fine
grid: T = 4.13×10−2 s.

flow mesh order c̄l min/max cl c̄d min/max cd
[-] [%] [-] [%]

cav 100 1 0.489 -58/ 148 0.080 -62/192
cav 200 1 0.484 -1250/ 341 0.066 -2302/267
cav 400 1 0.559 -1280/461 0.075 -2535/716
cav 100 2 0.515 -1051/757 0.108 -567/925
cav 200 2 0.546 -2864/ 791 0.109 -2270/1081

water 200 2 0.829 - 0.0035 -

TABLE 6.7: Averaged and extremum values for lift and drag coefficients for unsteady
cavitating flow about 2DNACA0015 hydrofoil at6◦ angle of attack. c = 0.13m,
σ = 1.0 with U∞ = 12 ms−1. The last line in the table is the numerical result for
single-phase water flow.

the time-averaged values increase slightly compared to thefirst-order results. Also,
a large increase in extremum values is observed. Schnerret al. [171] observed the
same large increase. It is clear that the loading of the hydrofoil changes dramatically
during a shedding cycle. Furthermore, comparing the coarsegrid results with those
obtained on the fine grid we observe that the time-averaged values do not change
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much. In contrast the extremum values again increase substantially, due to the col-
lapse of the small-scale vapor structures. In the limit of aninfinitesimally small mesh
size, these vapor structures become very small vapor bubbles. However, currently it
is impossible to combine the mesh resolution required to resolve these small-sized
bubbles with the scale of the hydrofoil. A good validation test case for small-scale
collapse might be the collapse of a single vapor bubble. However, at present the dif-
ficulty to resolve this testcase lies in the very large mesh density required to resolve
the final stages of the collapsing bubble and in the application of the non-reflective
boundary conditions to model far-field conditions.

6.3.3 Results during a cycle

In this section the cycles illustrated in figure 6.5–6.7 are considered. The solution
for the void fractionα above the hydrofoil is presented for a number of equidistant
time-intervals during the cycle. Furthermore, the time-history of the lift and drag
coefficients are compared to those of the total vapor volume to correlate the occurring
flow phenomena. To illustrate the dependence on the order of reconstruction both the
first-order and second-order results for the 200-grid are discussed.

First order results on 200-grid

In figure 6.8 the solution for the void fractionα at 10 equidistant time-instants are
presented, which illustrates the cyclic behavior of the vapor sheet and its shedding.
Time-instant⑩ is marked as the end or start of the shedding cycle. The periodT of
the cycle isT = 0.0243s andfcycle = 41.1 Hz with Stc = 0.445.

① The sheet cavity starts to grow at the leading edge of the hydrofoil. The shed va-
por region that has convected about half a chord length from the previous shedding
cycle is visible above the hydrofoil.② The sheet cavity continues to grow. The shed
vapor region is convected with the flow and starts to collapse. ③ The sheet cavity has
reached its maximum length. The shed vapor region has collapsed. The process of
the collapse of the vapor cloud is discussed in more detail insection 6.3.4. For the
first-order results, at the instant of the collapse of the shed vapor region, the sheet
cavity stops growing. It is an open question whether or not the sheet cavity stops
growing due to the collapse of the shed vapor region.④ A re-entrant flow develops at
the closure region of the cavity sheet. Note the small vortical flow region at the end of
the sheet.⑤ The re-entrant jet containing liquid water travels upstream along the sur-
face of the hydrofoil.⑥ The re-entrant jet hits the liquid-vapor interface, disturbing
the sheet cavity. The sheet is split into two regions, i.e. a large vapor structure around
which a circulatory flow pattern is generated and the remaining part of the vapor
sheet on the leading edge of the hydrofoil.⑦ A re-entrant jet develops at the closure
region of the remaining part of the vapor sheet causing this small sheet to collapse.
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FIGURE 6.8: Unsteady cavitating flow about 2D NACA0015 at 6◦ angle of at-
tack. First order solution on 200-mesh for void fractionα. σ = 1.0, U∞ = 12
ms−1, T = 0.0243s, fcyc = 41.1Hz ① t = 1T/10 ② t = 2T/10 ③ t = 3T/10
④ t = 4T/10 ⑤ t = 5T/10 ⑥ t = 6T/10 ⑦ t = 7T/10 ⑧ t = 8T/10 ⑨ t = 9T/10
⑩ t = T .

The large vapor structure slowly moves with the main flow.⑧ The remaining part of
the vapor sheet has collapsed resulting in a high pressure pulse on the leading edge of
the hydrofoil sometime between picture⑦ and⑧, which is illustrated in figure 6.9.
The maximum pressure just after the collapse at the leading edge is found to be equal
to 19.5bar occurring at the surface of the hydrofoil. This illustratesthe high local
pressure pulses on the foil due to the shedding of the sheet cavity. The disappearance
of the first part of the sheet cavity at the leading edge combined with the shock wave
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generates a second, small rotating vapor region as visible in picture⑧ of figure 6.8.
⑨. The second small vortical flow region catches up with the large vapor structure
shed earlier and the two regions merge.⑩ The large shed vapor region rotates and is
convected with the flow. Note the vertical extent of the vaporstructure in pictures⑩
and①. The nose of the hydrofoil is now free of vapor and a new vapor sheet starts to
grow. This process is repeated continuously.
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FIGURE 6.9: Pressure distribution just after the collapse of the shed cavity at the
leading edge between pictures⑦ and ⑧. The black line denotes the void fraction
equal toα = 0.001.

In figure 6.10 the first-order result for the total vapor volumeVvap during the cycle on
the 200-mesh is presented. Also the lift and drag coefficients are plotted. The total
vapor volume decreases between instants① and⑧ and increases between⑧ and①.
The increase is caused by the growth and rapid merging of the shed vapor regions.
The decrease starts with the collapse of the shed vapor region. The sharp increase
between instants② and③ is caused by the reaction of the sheet cavity to the pressure
pulse generated by the collapse of the shed vapor region as explained in more detail
in section 6.3.4.

The lift and drag coefficients show large fluctuations from instant⑦, corresponding
with the collapse of the small sheet cavity on the leading edge of the hydrofoil, to
instant④ which corresponds with the formation of the re-entrant jet at the closure
region of the large sheet cavity. From the disappearance of the sheet cavity at the
leading edge and the subsequent shedding between time-instants⑦ and⑩ result in
the disappearance and collapse of small vapor structures onthe front part of the hy-
drofoil sending high frequency pressure waves through the domain. From instant①,
corresponding with the start of the growth of the vapor sheet, to just before instant
③ the pressure pulses change in behavior. Instead of the random pulses during⑦–⑩
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FIGURE 6.10:Unsteady cavitating flow about 2D NACA0015 hydrofoil at6◦ angle of
attack.σ = 1.0, U∞ = 12 ms−1 . Solution for cycle indicated in figure 6.5 for first-
order reconstruction on fine grid.T = 0.0243s, f = 41.1Hz. ∆tcfl = 1.4×10−7 s.
(a) Total vapor volume (b) Lift coefficientcl (c) Drag coefficientcd.
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now the pressure pulses appear to be more structured in time.During the interval
from ⑩ to ② only parts of the large shed vapor cloud disappear. Between instants②
and③ the large shed vapor cloud collapses resulting in a high negative peak in the
lift and drag coefficient followed by a high positive peak. The minimum lift and drag
coefficient are equal tocl = −6.05 andcd = −1.52, respectively. Note that the scale
of the vertical axis in figure 6.10 does not cover the completerange. These peaks are
due to the collapse of the shed vapor cloud and its rebound, which is explained in
more detail in section 6.3.4. During the time-interval between instants④ and⑦ the
vapor volume decreases as well as the lift and drag coefficient. Also, the lift and drag
coefficient do not show many oscillations. During this time-interval the cavity sheet
has stopped growing in size and a re-entrant jet is moving upstream underneath the
vapor sheet.

Comparing figure 6.8 and figure 6.10 we observe that when the cavity sheet is be-
ing shed and the shed vapor region is convected with the flow, see pictures⑦-②,
high-frequency pulses are observed. Between pictures② and③ the shed vapor re-
gion collapses causing large peaks in the lift and drag coefficient. In the time that
the re-entrant jet is moving upstream underneath the sheet cavity and in the absence
of a shed vapor region, see pictures④-⑦, the lift and drag coefficient remain fairly
constant and they do not show high-frequency pulses. Furthermore, it is found that
the pressure on the foil at the location of the re-entrant jet, as visible in picture⑤ and
⑥, is equal to the saturation pressure. Therefore, we conclude that the re-entrant jet
is a flow of liquid at a pressure equal to the saturation pressure of 2.3 × 103Pa. Be-
tween time-instants⑦ and⑧ the vapor sheet near the leading edge of the hydrofoil
disappears, which is visible as the high peak in the drag coefficient, caused by the
high pressure acting on the forward facing part of the hydrofoil.

Second order results on fine grid

In figure 6.11 the void fractionα at 10 equidistant time-instants are presented for the
solution employing the second-order reconstruction on the200-mesh. Compared to
the first-order results much more vapor is produced and more complex vapor struc-
tures are observed. However, the main pattern of the shedding remains the same.
Time-instant⑩ is marked as the end or start of the shedding cycle. The periodT of
the cycle isT = 0.0413s andfcycle = 24.2 Hz.

① The sheet cavity starts to grow at the leading edge of the hydrofoil. The shed va-
por regions from the previous shedding cycle are visible above the hydrofoil at about
80% chord-length. The last vapor region visible is produced dueto flow around the
trailing edge.② The sheet cavity continues to grow. The shed vapor regions merge
and are convected with the flow. Behind the hydrofoil the vapor region starts to col-
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FIGURE 6.11: Unsteady cavitating flow about 2D NACA0015 at 6◦ angle of at-
tack. Second-order solution on 200-mesh for void fractionα. σ = 1.0, U∞ = 12
ms−1, T = 0.0413s, fcyc = 24.2Hz ① t = 1T/10 ② t = 2T/10 ③ t = 3T/10
④ t = 4T/10 ⑤ t = 5T/10 ⑥ t = 6T/10 ⑦ t = 7T/10 ⑧ t = 8T/10 ⑨ t = 9T/10
⑩ t = T .

lapse.③ The sheet cavity has reached its maximum length, which is longer than in
the result from the first-order reconstruction. The shed vapor region has almost com-
pletely collapsed. For the second-order results, at the instant of the collapse of the
shed vapor region, the sheet cavity stops growing, just likeas seen in the first-order
solution.④ A re-entrant flow develops at the closure region of the cavitysheet. Note
the small vortical flow region at the end of the sheet. Also, the vapor-liquid inter-
face oscillates due to the sudden stop of the growth of the sheet. ⑤ The re-entrant
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jet travels upstream along the surface of the hydrofoil. Small vapor structures are
shed from the main sheet cavity, which appears to break up in separate vapor regions.
⑥ The re-entrant jet hits the liquid-vapor interface, disturbing the sheet cavity. The
sheet is split into two main regions, i.e. large shed vapor structures around which a
circulatory flow is generated and the remaining part of the vapor sheet on the nose of
the hydrofoil.⑦ A re-entrant jet has developed at the closure region of the remaining
part of the vapor sheet causing this small sheet to collapse.The collapse causes small
vortical regions filled with vapor to emerge from the leadingedge. The large shed
vapor structures slowly move with the main flow. They rotate and merge into larger
vapor regions.⑧ The remaining part of the vapor sheet has completely collapsed
resulting in high pressure pulses on the nose of the hydrofoil between picture⑦ and
⑧. The disappearing of the first part of the sheet cavity at the leading edge combined
with the shock wave generates small rotating vapor regions,which catch up with the
larger shed vapor structures.⑨ The small vortical regions have merged with the large
shed vapor structures and they all merge into one larger, rotating vapor structure.⑩
The large shed vapor region rotates and is convected with theflow. Note the height
of the vapor structure in picture⑩. The nose of the hydrofoil is now free of vapor
and a new vapor sheet starts to grow. This process is repeatedcontinuously.

In figure 6.12 the second-order results for the fine grid for the total vapor volume
Vvap during the cycle is presented as well as the lift and drag coefficients. The total
vapor volume decreases between instants① and⑦ and increases between⑦ and①.
The increase is caused by the growth and rapid merging of the shed vapor regions.
The decrease starts with the collapse of the shed vapor region. The sharp increase
just after instant③ is caused by the reaction of the sheet cavity to the pressure pulses
generated by the collapse of the shed vapor region.

The lift and drag coefficients show large fluctuations from instant⑦, corresponding
with the collapse of the small sheet cavity on the leading edge of the hydrofoil, to
instant② which corresponds with the formation of the re-entrant jet at the closure
region of the sheet cavity. The disappearing of the sheet cavity at the leading edge
and its subsequent shedding between time-instants⑦ and⑩ result in the disappearing
and collapse of many smaller-scale vapor structures sending high frequency pressure
waves through the domain. Compared to the first-order results, the pressure pulses
are much higher in amplitude and they occur more randomly. The maximum and
minimum lift coefficient are now equal tocl = 2.1 and cl = −5.6, respectively.
From instant⑩, corresponding with the start of the growth of the vapor sheet, to just
after instant③ the pressure pulses change in behavior. Instead of the largerandom
pulses during⑦–⑩ now the pressure pulses appear to be more structured in time.
During the interval from⑩ to ② only parts of the large shed vapor cloud disappear.
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FIGURE 6.12: Unsteady cavitating flow about 2D NACA0015 hydrofoil at6◦

angle of attack.σ = 1.0, U∞ = 12 ms−1. Solution for cycle indicated in figure
6.5 for second-order reconstruction on fine grid.T = 0.0413s, f = 24.2Hz.
(a) Total vapor volume (b) Lift coefficientcl (c) Drag coefficientcd.
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Just after instant③ the large shed vapor cloud collapses resulting in a high negative
peak in lift and drag coefficient followed by a high positive peak. Compared to the
first-order results the maximum and minimum pressure pulse for the second-order
results are much less, because the collapsing vapor region is located far behind the
hydrofoil. During the time-interval between instants③ and⑥ the lift and drag coef-
ficient do not show as many oscillations. During this time-interval the sheet cavity
has stopped growing in size and a re-entrant jet is moving upstream underneath the
vapor sheet.

Comparing figure 6.11 and figure 6.12 we observe that when the cavity sheet is being
shed and the shed vapor region is convected with the flow, see pictures⑦-③, high
frequency pulses are observed. Just after picture③ the shed vapor region collapses
causing large peaks in the lift and drag coefficient. In the time that the re-entrant jet
is moving upstream underneath the sheet cavity and in the absence of a shed vapor
region, see pictures④-⑥, the lift and drag coefficient remain fairly constant, although
they do show some pressure pulses. Between time-instants⑥ and⑧ the vapor sheet
near the leading edge of the hydrofoil disappears, which is visible as the high peaks
in the lift and drag coefficients.

6.3.4 Collapse of convected vapor cloud

Between pictures② and③ of figure 6.8 the convected vapor region collapses near the
trailing edge of the foil. In this section the process of the collapse and the rebound of
the vapor region is discussed in more detail, see figure 6.13.The black line denotes a
void fraction equal toα = 0.001. Note that the scale of the pressure stops at 1.5bar
to better illustrate the occurring flow phenomena.

In figure 6.13(a) the convected vapor region reaches a regionwith higher pressure.
Inside the vapor region the pressure is equal to the saturation pressure. This pressure
difference induces a local flow field directed towards the center of the vapor region
and causes the vapor region to collapse. The inwards moving liquid impacts at the
center of the former vapor region and initiates an outward propagating circular shock
as presented in figure 6.13(b). The maximum pressure in figure6.13(b) is equal to
68.2bar.

The shock wave hits the vapor sheet to the left on the suction side of the foil. Due
to lower acoustic impedanceρc of the two-phase flow region compared to that of
the liquid∗, the shock wave is reflected as an expansion wave from the interface of

∗The acoustic impedanceZ is defined as:Z = ρc. The reflection coefficientR from an interface is
defined as

R =
Z2 − Z1

Z2 + Z1

, (6.5)
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FIGURE 6.13: Collapse of shed vapor region. Unsteady cavitating flow about 2D
NACA0015 at 6◦ angle of attack. First-order solution on 200-mesh for pressure.
The black line denotesα = 0.001. (a) t = t1: before collapse of vapor region (b)
t2 = t1 + 2.22×10−3 s: collapse of vapor region (c)t3 = t2 + 46×10−6 s: reflection
of shock wave from interface of sheet cavity (d)t4 = t3 + 74×10−6 s: rebound of
vapor region.

the sheet at which the pressure is constant. This process is illustrated figure 6.13(c),
where the shock and expansion wave are running radially outward from the vapor
sheet. The shock wave is visible as the circular region of high pressure. Above the
sheet the shock wave has not reflected from the vapor sheet, while in the center the
expansion wave is visible as the low pressure region. The shock wave is reflected
from the tunnel top wall as visible in figure 6.13(d), which explains the oscillatory
behavior observed in lift and drag coefficients in figure 6.10(b) and (c) between in-
stants③ and④.

At the location of the former vapor region the pressure againreturns to saturation
pressure causing the liquid to cavitate again as shown in figure 6.13(d). The black
line denotes a void fractionα = 0.001. This new vapor region also collapses resulting
in a second outward moving shock wave. The outward moving shocks interfere with
the remaining vapor sheet on the suction side of the foil and the sheet’s re-entrant jet.
During the collapse of the vapor cloud the vapor sheet stops growing and a re-entrant
jet is formed.

withZ1 =(ρc)liquid≈O(106) andZ2 =(ρc)two−phase≈O(102)-O(103). Note that whenZ2 << Z1

thenR →−1. Thus, most of the acoustic energy is reflected with a180◦ phase change.
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The maximum pressure in each control volume is calculated during the time-interval
between figure 6.13(a) and the time-instant just after the second collapse of the vapor
cloud. As presented in figure 6.14 the maximum pressure during this time-interval
is found to be equal to 81.2bar, which is the pressure peak at the time-instant of
the collapse of the vapor cloud. Note the relatively high pressures occurring near
the liquid-vapor interface of the sheet cavity, which indicates local collapse of vapor
from the cavity sheet. The maximum pressure on the surface ofthe hydrofoil is found
to be equal to 39.7bar illustrating the high local pressure peaks on the foil during
the collapse of the shed vapor cloud.

x [m]

y
[m

]

pmax[10
5 Pa]

FIGURE 6.14: Maximum pressure during the collapse and rebound of shed vapor
region between pictures② and③ of figure 6.8. The maximum pressure is found to be
equal to 81.2bar. Maximum pressure on surface of the foil is found to be equal to
39.8bar.

6.3.5 Influence of free-stream velocityU∞ at constantσ

To investigate the influence of the free-stream velocityU∞ on the characteristics of
the cavitating flow, a free-stream velocity ofU∞ = 50 ms−1 is chosen, but fixing
the value for the cavitation number, i.e.σ = 1.0 by increasing the reference pressure
p∞. The results are obtained on the 200-mesh presented in figure6.4 employing the
first- and second-order reconstruction method. The numerical time step∆cfl is equal
to ∆cfl ≈ 3.77× 10−8s. The initial conditions are presented in table 6.8.

The behavior of the cavitation during the shedding cycle appears to be similar com-
pared to the results forU∞ = 12 ms−1 at the same value ofσ. In figures 6.15 and
6.16 the total vapor volumeVvap, the lift and drag coefficientscl andcd are presented
for four periods in the periodic shedding phase. Applying a Fast Fourier Transform
(FFT) on the “signal” of the total vapor volume, the frequency and corresponding
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U∞ p∞ T∞ ρ∞ c∞ σ
[ms−1] [105 Pa] [K] [kgm−3] [ms−1] [-]

50 12.5 293 998.7 1540.0 1.0

TABLE 6.8: Conditions for cavitating flow about 2D NACA0015 hydrofoil at 6◦ angle
of attack with chord lengthc = 0.13m withU∞ = 50 ms−1 andσ = 1.0.

Strouhal number based on the chord length are calculated. These are presented in
table 6.9 together with the time-averaged and the extremum values.

order f Stc V̄vap min/max c̄l min/max c̄d min/max
[Hz] [-] [10−2] Vvap [%] [-] cl [%] [-] cd [%]

1 186 0.48 1.02 84/118 0.49 -217/175 0.063 -489/173
2 106 0.28 5.06 67/139 0.64 -412/307 0.119 -526/434

TABLE 6.9: Cavitating flow about 2D NACA0015 at6◦ angle of attack withU∞ = 50
ms−1, σ = 1.0. Fine mesh with 200 nodes on hydrofoil controur. Frequencyf ,
Strouhal numberStc, time-averaged total vapor volumēVvap, extreme values in total
vapor volume, time-averaged lift and drag coefficientsc̄l and c̄d and extreme values
in lift and drag coefficients.

From table 6.9 we conclude that the Strouhal numberStc based on the chord length
found for a free-stream velocityU∞ = 50 ms−1 for first- and second-order recon-
struction on the 200-mesh are approximately equal to the values found forU∞ = 12
ms−1 presented in table 6.6. Thus, keeping the same value forσ results in the same
characteristics of the shedding of the cavity sheet. However, for U∞ = 50 ms−1 the
formation and shedding of vapor is much faster in time than for U∞ = 12 ms−1,
which is illustrated by the higher value for the frequency. Furthermore, the time-
averaged total vapor volumēVvap is approximately equal forU∞ = 50 ms−1 and
U∞ = 12 ms−1. The maximum and minimum total vapor volume forU∞ = 50
ms−1 are slightly higher and lower, respectively, than forU∞ = 12 ms−1. Thus, to
obtain the same shedding behavior, calculation time can be saved by taking a higher
value for the free-stream velocity keeping the cavitation numberσ the same. Further-
more, the periodic behavior is reached earlier in time resulting in a shorter start-up
phase of the simulation.

Compared to the results forU∞ = 12 ms−1 the values for the time-averaged drag
coefficient appears to be similar. However, the time-averaged lift coefficient for the
second-order results is much higher forU∞ = 50 ms−1 compared to the one for
U∞ = 12 ms−1. The extremum values of the lift and drag coefficients appearto be
less than forU∞ = 12 ms−1.
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As is illustrated in figures 6.15 and 6.16 the patterns of the total vapor volume, the
lift and drag coefficient are found to follow the same global behavior as forU∞ = 12
ms−1 as presented in figures 6.10 and 6.12. We have compared the results for the
void fraction forU∞ = 50 ms−1 with the results for the void fraction withU∞ = 12
ms−1 illustrated in figures 6.8 and 6.11. Globally, the solutionsfor the void fraction
appear to be similar, therefore, the solution for the void fraction forU∞ = 50 ms−1

is omitted in this section.

6.3.6 Remark on development of cavitating flow after start-up

In this section the simulation of cavitating flow has been started from uniform water
flow. A large number of time-steps need to be taken before the shedding of the sheet
becomes periodic. Basically, at start-up of the simulationthe uniform water flow hits
the hydrofoil followed by a shock wave running from the leading edge of the foil
in upstream direction until it leaves the domain through theinlet boundary. At the
suction side of the foil and around the trailing edge an expansion wave is generated
causing immediate evaporation of the water resulting in a vapor pocket. The left run-
ning shock wave and right running expansion wave are reflected back and forth from
the top and bottom walls of the channel and from the hydrofoilbefore they disappear
through the non-reflective in- and outlet.

Due to the ambient higher pressure the vapor pocket on the back of the hydrofoil
disappears causing pressure waves to run through the domain. The pressure on the
suction side of the foil becomes equal to the saturation pressure and a vapor sheet
develops. This sheet grows in time until a re-entrant jet is formed causing the shed-
ding of the vapor sheet. In the start-up phase of the calculation the transient pressure
waves influence the speed and movement of the re-entrant jet and of the cavity sheet.

The processes described above are repeated continuously. After a certain time the
initial pressure waves resulting from the start-up from uniform flow conditions have
disappeared and the cavitating flow on the hydrofoil is allowed to grow and shed
freely. On the fine grid presented in figure 6.4 about 2.5 million time steps have to
be taken before this repeatable behavior is reached and thusit becomes clear that un-
steady cavitating flow problems must be calculated for a longtime before the initial
flow disturbances disappear.

It is also possible to start from a steady-flow solution for single-phase water flow
at the same free-stream conditions. The start-up phase is then reduced but it still
takes many time steps before the periodic shedding behavioris observed. Applying
the same free-stream conditions the same periodic behavioris predicted when started
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FIGURE 6.15: Unsteady cavitating flow about 2D NACA0015 hydrofoil at6◦ an-
gle of attack. σ = 1.0 U∞ = 50 ms−1. First-order reconstruction on fine grid.
T = 5.38×10−3 s, f = 186Hz, Stc = 0.48. (a) Time-dependent vapor volume (b)
Lift coefficientcl (c) Drag coefficientcd.



6.3. UNSTEADY CAVITATING FLOW ABOUT 2D NACA0015AT 6◦ 159

(a)

V
v
a
p

[-
]

T 2T 3T 4T

(b)

c l
[-

]

T 2T 3T 4T

(c)

c d
[-

]

T 2T 3T 4T

FIGURE 6.16: Unsteady cavitating flow about 2D NACA0015 hydrofoil at6◦ angle
of attack. σ = 1.0 U∞ = 50 ms−1. Second-order reconstruction on fine grid.
T = 9.43×10−3 s, f = 106Hz, Stc = 0.28. (a) Time-dependent vapor volume (b)
Lift coefficientcl (c) Drag coefficientcd.
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from an uniform flow solution or from a steady-flow solution for single-phase water
flow.

To speed up the calculation towards the periodic cavitatingflow, it might be worth-
while to investigate methods such as multi-grid, preconditioning and/or implicit time-
integration, which allow larger numerical time steps to be taken. However, care
should be taken that the larger numerical time steps still resolve the high-frequency
pressure pulses, which we believe to have a major influence onthe self-oscillatory
behavior of the sheet cavity and its shedding.
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6.4 Unsteady cavitating flow about 3D Twist11 hydrofoil

The unsteady cavitating flow about the 3D Twist11 hydrofoil at −2◦ angle of attack
with chord lengthc = 0.15 m is calculated, to compare the results obtained with
the present edge-based numerical method with the experiments of Foeth [67]. Foeth
carried out experiments for cavitating flow with steady and unsteady inflow. Here,
only steady inflow is considered at the cavitation numberσ = 1.1. An overview of
the characteristics of the experiments has been provided insection 2.3. The focus in
this section is on comparing the numerical results for the behavior and structure of
the vapor sheet with the experiments of Foeth [67].

The geometry of the hydrofoil is presented in section 5.7.1 together with the compu-
tational domain as presented in figure 5.24. The geometry is symmetric with respect
to the mid-span plane. It is assumed that the flow is also symmetric about this plane.
Therefore, in order to save computational time only the starboard-half of the test sec-
tion and the foil is considered. This assumption of the hydrodynamic symmetry is
supported by the experimental findings, see Foeth [67], where it is shown that small
scale structures are symmetric with respect to the mid-spanplane. The solution for
fully-wetted (single-phase) water flow has been presented in section 5.7.

To speed-up the formation and shedding of the cavity sheet inthe numerical sim-
ulations, calculations are performed at a free-stream velocity of U∞ = 50 ms−1

at the same cavitation numberσ = 1.1 as in the experiments of Foeth [67]. The
free-stream conditions are presented in table 6.10.

U∞ p∞ T∞ σ
[ms−1] [105 Pa] [K] [-]

50 13.75 297 1.1

TABLE 6.10: Free-stream conditions for cavitating flow about 3D Twist11hydrofoil
at−2◦ angle of attack.

For the inflow the non-reflective boundary condition is employed. For the outflow
the asymptotic non-reflective pressure boundary conditionis applied. The in- and
outflow boundary conditions are an approximation of the flow conditions, since the
cavitation tunnel does not have a prescribed flow at the in- and outlet. We have ex-
tended the computational domain compared with the cavitation tunnel to ensure that
the in- and outflow are located away from regions with cavitation. The top and bot-
tom of the channel are slip solid walls treated with the symmetry technique and for
the slip solid wall of the hydrofoil the curvature-corrected symmetry technique is
applied. The results are obtained with the second-order hybrid HLLC/AUSM flux
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scheme of section 4.7.2 with the limiter method of Venkatakrishnan employing the
primitive variables[ρ, u, v, w, e]T .

Two grids are considered as presented in table 6.11: a coarsetetrahedral grid with
68k control volumes and a finer tetrahedral grid with 205k control volumes. The
coarse tetrahedral mesh has been considered in section 5.7 for the single-phase wa-
ter flow calculations. Employing the first-order reconstruction on the coarse mesh,
the sheet cavity is found to become steady for this mesh. For the second-order recon-
struction method on the coarse mesh we find that the resolution of the cavity sheet and
its shedding is not adequate. The coarse mesh is too coarse toresolve the re-entrant
jet and the shed vapor structures properly. The re-entrant flow is captured within one
computational control volume and the sheet cavity occasionally sheds vortical vapor
regions, which quickly dissipate.

To improve the resolution in the region with cavitation, thefiner mesh is obtained
by refining the region along the suction side of the hydrofoilto approximately 10%
chord length in normal direction to ensure that the sheet cavity is located in this re-
fined region. With the use of prismatic layers on top of the hydrofoil the resolution
of the mesh near the surface of the hydrofoil can be improved even further in order
to capture the re-entrant and side-entrant flows more accurately. However, for the
global behavior of the shedding of the sheet cavity this is not found necessary. The
first-order solution on the coarse grid has been used as the initial solution for the nu-
merical solutions performed on the fine grid by employing thesolution-interpolation
method Grid2Grid, see Hospers [98].

A close-up of the fine mesh around the hydrofoil is presented in figure 6.17. The
total number of elements and number of tetrahedrons for bothmeshes are presented
in table 6.11 along with the corresponding numerical time step∆tcfl for the chosen
CFL number of 0.8.

mesh # control # tetrahedrons ∆tcfl
volumes [10−8 s]

coarse 69,365 356,638 2.65
fine 205,520 1,095,685 1.01

TABLE 6.11:Number of control volumes, number of tetrahedrons and numerical time
step∆tcfl for cavitating flow simulations withCFL = 0.8.

To accelerate the calculations the numerical method has been parallelized by decom-
posing the computational mesh in 8 equal-sized blocks. The results indicate that the
obtained speed-up is almost linear with the number of processors. However, the par-



6.4. UNSTEADY CAVITATING FLOW ABOUT 3D TWIST11 HYDROFOIL 163

FIGURE 6.17: Close-up of fine tetrahedral mesh for 3D Twist11 hydrofoil at−2◦

angle of attack. 205,520 control volumes, 1,095,685 tetrahedrons.

allelization needs to be optimized further.

On a Quad-Core Xeon X5460 3.16GHz /2x6MB cache, 1333 FSB, 8GB memory
computer and employing the parallelization for 8 processors it takes approximately
1h to calculate 500 time steps using the second-order reconstruction method on the
fine mesh. This corresponds with5×10−6 s in simulation time. In this case the small
tetrahedral elements at the leading edge of the foil restrict the numerical time step.
These small elements are necessary to resolve the high curvature of the nose of the
NACA0009 hydrofoil. A thicker hydrofoil such as the NACA0015 as presented in
section 6.3 would allow for larger elements to be used at the leading edge of the foil.

6.4.1 Total vapor volume

The transient evolution of the cavitating flow can be illustrated with the total vapor
volume as defined in equation (6.3) as a function of time. In figure 6.18 the total va-
por volume is presented for the present numerical simulation which progressed up to
10ms. From Foeth [67] it follows that the shedding cycle takes about 38ms at a free
stream velocity of6.58ms−1. For the present case of50ms−1 this would correspond
with a shedding cycle of 5ms.

Figure 6.18 clearly indicates that the time period covered does not contain shedding
cycles. The flow is not yet periodic in time and the calculation should be continued
further. In this section the formation of re-entrant flow andthe formation of a cavi-
tating horse-shoe vortex is discussed. Both phenomena are quite similar to the ones
observed in the experiments of Foeth [67].
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FIGURE 6.18: Total vapor volume 3D Twist11 hydrofoil at−2◦ angle of attack,
σ = 1.1. Fine grid, second-order hybrid HLLC/AUSM flux scheme. Points 1–6 cor-
respond with figure 6.19(1)–(6) and with figure 6.20(1)–(6).Point 8 corresponds
with figure 6.21. Pointshi correspond with the solutions of the cavitating horse-shoe
vortex presented in figures 6.22(1)–(6) and pointh3 corresponds with figure 6.23.

The black dots refer to the solutions presented in figures 6.19–6.23. The points 1–6
correspond with figure 6.19(1)–(6) and 6.20(1)–(6). Point 8corresponds with figure
6.21. The pointshi correspond with figure 6.22(1)–(6) and pointh3 corresponds with
figure 6.23.

6.4.2 Re-entrant flow

In this section the re-entrant flow on the surface of the hydrofoil and the onset of
shedding of the sheet cavity is illustrated for the first shedding cycle. During the
growth of the sheet, a re-entrant flow is already moving upstream underneath the va-
por sheet, which is confirmed by the experimental results of Foeth [67].

As illustrated in figure 6.18 by the points 1–8 we select a number of time-instants
tN during the part of the cycle in which the sheet cavity grows toits longest ex-
tent. Here,tN = t0 + N∆, wheret0 approximately corresponds with the start of
the growth of the sheet. Furthermore,N = 1, 2, . . . and∆t = 4.0×10−4 s, which
corresponds to 40k numerical time-steps.

In the left pictures of figure 6.19 two iso-contours of the void fraction, i.e.α = 0.05
andα = 0.5 are presented. In the right pictures of figure 6.19 the streamlines on the
surface of the hydrofoil are shown colored by value of the void fractionα. The vec-
tors indicate the direction of the flow. The time-interval between each picture (1)–(6)
is ∆t=4.0×10−4 s. The total time presented in figure 6.19 is2.4×10−3 s.

At the time-instants of figure 6.19, the left pictures of figure 6.20 gives the contours
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FIGURE 6.19: Re-entrant flow for 3D Twist11 hydrofoil at−2◦ angle of attack,σ =
1.1. Fine grid, second-order hybrid HLLC/AUSM flux scheme.∆t between rows:
∆t = 4.0 × 10−4 s. Pictures (1)–(6) correspond with points 1–6 in figure 6.18.(left)
iso-contoursα = 0.05 andα = 0.5. (right) streamlines on surface of the hydrofoil
colored by value of the void fraction.
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of the y-component of the vorticityωy/ (U∞/c) at the plane of symmetry. They-
direction is pointing into the picture. Two contours of the void fraction, i.e.α = 0.05
andα = 0.5, are indicated with the thick black lines. The streamlines on the plane of
symmetry are given by the thin black lines to visualize the flow pattern. In the right
pictures of figure 6.20 the pressure on the surface of the hydrofoil and the plane of
symmetry is presented together with two iso-surfacesα = 0.05 andα = 0.5 of the
void fraction.

In figure 6.19(1) the vapor sheet is at the leading edge of the foil and growing. Shed
vapor structures produced earlier are still visible. Around these vapor structures a
circulatory flow is generated as illustrated in the right picture by the reversed flow
region on the surface of the hydrofoil underneath the vapor regions. The circulatory
flow region around the shed vapor structures is clearly visible in the left picture of
figure 6.20(1). Furthermore, at the closure of the sheet cavity a region with high
vorticity has developed, which will drive the re-entrant flow. As shown in the right
picture of figure 6.20(1) the pressure underneath the vapor sheet is equal to the satu-
ration pressure approximately equal topsat(T )≈ 3, 000Pa atT = 297K. Also, the
low pressure around the shed vapor structures is visible.

In picture 6.19(2) the earlier shed vapor regions have disappeared and the region with
circulatory flow is convected with the flow. At the same time a re-entrant flow is start-
ing to develop at the closure line of the sheet cavity as illustrated in pictures 6.19(2)
and 6.19(3) starting as a side-entrant jet. The pressure pulse due to the collapse of
the vapor structures is not visible due to the large time-interval between pictures (2)
and (3), i.e.∆t=4.0×10−4 s†.

In pictures 6.19(4)–6.19(6) the re-entrant jet moves upstream underneath the sheet
cavity. This flow is mainly a flow of liquid indicated by the blue color of the stream-
lines. The vortical flow regions are convected further downstream with the flow. In
picture 6.19(3) the re-entrant flow appears to be directed outward from the plane of
symmetry. In picture 6.19(4) a small side-entrant flow has developed at the outline
of the sheet cavity. In picture 6.19(6) the re-entrant flow isfully developed and side-
entrant flow is visible. The re-entrant flow presented in the left pictures of figures
6.19(4)–6.19(6) show very close agreement with figure 5.14 of the thesis of Foeth
[67].

In the surface streamline pattern in the right pictures of figure 6.19 a region with
retarded flow is seen. The location of this region on the surface corresponds with the

†Note that during this time the pressure pulse has traveled approximately1540 × 4.0 · 10−4 m =
0.616m. The chord length of the foil isc = 0.15m.
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(1) ωyc/U∞ p [bar]

(2) ωyc/U∞ p [bar]

(3) ωyc/U∞ p [bar]

(4) ωyc/U∞ p [bar]

(5) ωyc/U∞
p [bar]

(6) ωyc/U∞ p [bar]

FIGURE 6.20: 3D Twist11 hydrofoil at−2◦ angle of attack,σ = 1.1. Fine grid,
second-order hybrid HLLC/AUSM scheme.∆t between rows:∆t = 4.0 × 10−4 s.
Pictures (1)–(6) correspond with points 1–6 in figure 6.18. (left) streamlines on
symmetry plane. Contours ofy-component of vorticityωyc/U∞. y-axis is pointing
into the picture. Thick black lines denote contoursα = 0.05 andα = 0.5. (right)
pressure on surface of hydrofoil and on symmetry plane. Iso-contoursα = 0.05 and
α = 0.5.
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location of the large vortical structure in figure 6.20.

As visible in the left picture of figure 6.20(4) by the streamlines on the symmetry
plane, a small vortical region is created at the closure region of the sheet cavity. This
vortical region becomes stronger and larger as visible in the left pictures of figures
6.20(5) and (6). This results in the cut off of the first vapor structures, which is indi-
cated by the separated region at the closure of the sheet cavity denoted by the thick
black line representing a void fraction equal toα = 0.5.

In figure 5.19 of the thesis of Foeth [67] the cut-off of the first vortical structure
at the closure line of the sheet cavity is discussed in detail. The sketch from the re-
sults of the experiments corresponds fairly well with the left picture in figure 6.20(6).
The re-entrant jets have met at mid-span. Then, they are reflected outward and are
impinging through the sheet cavity above the re-entrant flowas sketched in figure
2.8(b) in chapter 2 of this thesis. The fluid impinging on the interface isolates a re-
gion of vapor as visible in the left picture of figure 6.19(6).Around this vapor region
a circulatory flow pattern is observed as illustrated by the streamlines in the left pic-
ture of figure 6.20(6). This region with circulatory flow is detached from the sheet
cavity and advected with the flow. Thus, the impingement and detachment of the
vapor structure is captured in the present numerical simulations based on the Euler
equations. This suggests that these phenomena appear to be inertial in nature.

Note that in figure 6.19(6) a sharp interface between the liquid in the re-entrant jet
and the vapor in the cavity above the re-entrant flow does not appear to be present
in the numerical simulation. The interface between the liquid and vapor is captured
within 2–3 computational cells. Refining the grid close to the surface of the hydrofoil
by employing prismatic layers will improve the accuracy of capturing the re-entrant
flow.

Figure 6.21 presents the solution at time-instantt8, which corresponds with point 8
in figure 6.18 and which is2∆t later than the results shown in figures 6.19(6) and
6.20(6). Presented are the outline of the sheet cavity, the streamlines and the pressure
on the surface of the hydrofoil. Compare figures 2.8(b)–(d) with figures 6.21(a)–
(b). In figure 6.21(a) it is shown that the vapor in the center of the hydrofoil is now
detached from the main sheet cavity. Also, two side-lobes ofthe sheet cavity have
formed. In figure 6.21(b) the re-entrant flow is clearly moving towards the leading
edge of the foil. Note the sharp transition from liquid to vapor at the mid-span of the
hydrofoil.

In figure 6.21(c) the pressure on the surface of the hydrofoiltogether with the two
iso-contoursα = 0.05 andα = 0.5 are given. Note that at mid-span between the
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(a)

(b)

(c) p [bar]

FIGURE 6.21: 3D Twist11 hydrofoil at−2◦ angle of attack.σ = 1.1, T = 297K,
psat(T ) = 0.03bar. Fine grid, second-order hybrid HLLC/AUSM scheme. Time-
instantt8, which corresponds with point 8 in figure 6.18. (a) Iso-surfacesα = 0.05
andα = 0.5 (b) Streamlines on surface of hydrofoil colored by the valueof the void
fraction. (c) pressure on surface of hydrofoil and on symmetry plane. Iso-contours
α = 0.05 andα = 0.5.
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detached vapor structure and the main sheet cavity a “hole” in the vapor appears.
Here, at the edge of the sheet cavity and the edge of the shed vapor structure pressure
pulses are observed due to the collapse of (small) vapor regions.

6.4.3 Formation of a cavitating horse-shoe vortex

A very distinct feature of the shedding of the sheet cavity onthe 3D Twist11 hydro-
foil is the formation of a cavitating horse-shoe vortex at the center of the hydrofoil.
See for instance the experimental results of Foeth [67] reported in figures 2.7(c)–(k).

In figure 6.22(1)–(6) the formation and convection of such a cavitating horse-shoe
vortex in the numerical simulation is illustrated. Presented are a top view and a side
view of the hydrofoil, the sheet cavity and the horse-shoe vortex. The time-instants
presented correspond with pointsh1–h6 in figure 6.18.

In figure 6.22(1) the shed vapor region in the center of the foil detaches from the
sheet cavity and forms a horse-shoe vortex. The center of thevortex is convected
upward, primarily by its self-induced velocity.

The horse-shoe vortex is convected with the flow and is about to collapse in figure
6.22(6). The height of the horse-shoe vortex is clearly visible in figure 6.22(3) and
(4). It reaches up to 2–3 times the thickness of the sheet cavity. In the experiments of
Foeth the height of the shed vapor cloud is found to be an important feature.

The sheet cavity at the center of the hydrofoil starts to growagain. The side-lobs
of the sheet are clearly visible. The shape of the remaining of the sheet cavity cor-
respond very well with the experimental results. Refer to the sketches of the sheet
presented in figure 2.8(c) and (d).

As comparison a picture of the experimental results is presented in figure 6.23(b).
Foeth [66] reports that the conditions for this picture wereslightly different, i.e.
α = −1◦ andσ = 1.13. However, the effects of the slight increase in angle of
attack are counteracted by the slight increase in cavitation number and thus, the two
conditions are very similar. Foeth [66] mentions that the overall shedding of the sheet
cavity did not change much compared to the conditions presented in this section, i.e.
α = −2◦ andσ = 1.1.

Figure 6.23 illustrates that the calculated shape of the sheet cavity and of the cav-
itating horse-shoe vortex are quite similar to the experimental observations.
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FIGURE 6.22: Formation of a horse-shoe vortex on 3D Twist11 hydrofoil at−2◦

angle of attack,σ = 1.1. Fine grid, second-order hybrid HLLC/AUSM scheme. Time
step between rows is equal to∆t = 5.0 × 10−4 s, which corresponds to 50k time
steps. Figures (1)–(6) corresponds with pointsh1–h6 in figure 6.18. Iso-contours of
void fraction equal toα = 10−3 andα = 0.5. (left) Top view (right) side view.
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(a)

(b)

FIGURE 6.23: Cavitating horse-shoe vortex on 3D Twist11 hydrofoil. (a) Numerical
result at−2◦ angle of attack,σ = 1.1. Fine grid, second-order hybrid HLLC/AUSM
scheme. Iso-surfacesα = 10−3 andα = 0.5 (b) Experimental result obtained from
Foeth [67], angle of attack−1◦, σ = 1.13.

6.4.4 Conclusions 3D Twist11 hydrofoil

In this section the numerical results for the cavitating flowabout the 3D Twist11 hy-
drofoil at −2◦ angle of attack are presented. We have shown that the shape ofthe
sheet cavity and the outline of the closure region as predicted by the results of the
present numerical method compare quite well with the experimental results of Foeth
[67].

The development of a re-entrant flow is predicted in close agreement with that seen
in the experiments of Foeth. During the growth of the sheet, are-entrant jet is already
moving upstream underneath the vapor sheet, as is observed in the experiments. The
predicted re-entrant flow is a flow of liquid.
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The impingement of the re-entrant flow on the cavity interface and the detachment
of the first vortical structure is captured in the present numerical simulations based
on the Euler equations. This suggests that these phenomena appear to be inertial of
nature.

The formation of a cavitating horse-shoe vortex and its advection with the flow is
captured in the present numerical simulations. The numerical results agree quite well
with the experimental observations.

At present the calculation times are too long to investigatethe shedding of the sheet
cavity on 3D configurations for long enough times. The total number of computa-
tional cells should be reduced drastically without losing the required grid resolution.
Employing prismatic elements or hexahedral elements closeto the surface of the hy-
drofoil might help since then larger aspect ratios for the computational cells can be
chosen than for tetrahedral elements.

To speed up the calculation towards the periodic cavitatingflow, it might be worth-
while to investigate methods such as multi-grid, preconditioning and/or implicit time-
integration, which allow larger numerical time steps to be taken. However, the
larger admissible numerical time steps should still resolve the high-frequency pres-
sure pulses, which we believe to have a major influence on the self-oscillatory behav-
ior of the sheet cavity and its shedding.
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6.5 Cavitating flow about 3D Elliptic 11 Rake hydrofoil

In the cavitation tunnel at Delft University of Technology van der Hout [204] has
carried out cavitating flow experiments on a three-dimensional finite-span skewed
hydrofoil of elliptic planform. The purpose was to investigate the interaction be-
tween sheet and vortex cavitation for steady and unsteady inflow conditions. Here,
the interest is in steady, cavitating flow solutions at uniform inflow conditions. The
objective of this section is to show that the outline and shape of the sheet cavity on
a complex three-dimensional geometry can be predicted withthe present edge-based
numerical method employing the equilibrium cavitation model. In our group this 3D
elliptic hydrofoil has been studied by Ton [193] to investigate the numerical method
of vorticity confinement in compressible flow of a perfect gas.‡

6.5.1 Geometry of 3D Elliptic 11 Rake hydrofoil

The hydrofoil considered is the so-called Elliptic 11 Rake hydrofoil. The section
of the hydrofoil is a NACA0009 section defined in equation (5.7) with thickness
t = 0.09. The chord lengthc(ȳ) is a function of the dimensionless span-wise coordi-
nateȳ defined by the expression

c(ȳ) =
√

C2
R(1 − ȳ2) + ȳ2C2

T , (6.6)

whereȳ = y/s with s the semi-span of the hydrofoil,CR is the chord-length of the
root section of the hydrofoil, i.e. at̄y = 0, andCT is the chord length at the tip of the
hydrofoil at ȳ = 1. The hydrofoil has a swept leading edge, i.e. a translation of the
leading edge of the section inx-direction. Thex-coordinate of the midpoint of the
local section chord-line, denoted asx0, is defined as

x0(ȳ) = −c(ȳ) + CR. (6.7)

The hydrofoil is twisted by a rotation around the mid-chord-point x = x0(ȳ) of the
local section. The twist angle is defined as,

α(ȳ) = αT

(
eγa ȳ − 1

eγa − 1

)

ȳ + β, (6.8)

whereβ is the global rotation angle, equivalent to the angle of attack of the hydrofoil
at its root section. In this section the foil has an angle of attack ofβ = 3◦. αT is the
local rotation angle at the tip andγa is a twist-distribution shape parameter. Finally,

‡The computational meshes in this section have been providedby Ton, for which the author would
like to express his gratitude.
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the foil is given rake, i.e. a translation along thez-axis, by defining thez-coordinate
of the midpoint of the local chord-line, denoted asz0, as

z0(ȳ) = RT ȳ

(
eγRȳ − 1

eγR − 1

)

, (6.9)

whereRT is the rake at the tip andγR is a rake-distribution shape parameter. In table
6.12 the parameters used by Van der Hout for this foil are presented. In figure 6.24 a
3D view, a top view, a side view and a front view of the hydrofoil are presented.

parameter value parameter value
s 0.2 m RT 0.02m
CR 0.15m γa 7.0
CT 0.05m γR 1.0
αT 11◦

TABLE 6.12:Parameters for 3D Elliptic 11 Rake hydrofoil.

(a)

XY

Z

(b)

X

Y Z

(c)
X Y

Z (d)
XY

Z

FIGURE 6.24: 3D Elliptic 11 Rake hydrofoil atβ = 3◦ angle of attack, flow is in
x-direction. (a) 3D view (b) top view (c) side view (d) front view.

6.5.2 Computational domain and mesh

The computational domain fits the test-section of the cavitation tunnel at Delft Uni-
versity of Technology. For numerical purposes the test-section has been extended
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from a length of 0.6m to a length of 0.9m. Thus, the computational domain is a
rectangular box with dimensions 0.9m×0.3m×0.3m, i.e.6× 2× 2 chord lengthsCR.
The origin of the domain is taken as the midpoint of the chord-line of the hydrofoil
at the root section of the foil. The foil is mounted to the tunnel wall and the tip of
the foil is located at2/3 of the width of the tunnel. The computational domain is
presented in figure 6.25.

2CR

2CR

2CR

CR

3CRFlow

xy
z

Inlet

OutletSlip solid walls

FIGURE 6.25: Computational domain for 3D Elliptic 11 Rake Hydrofoil at3◦ angle
of attack. The flow is from left to right. The walls of the channel are slip solid walls,
the left and right side are the in- and outflow, respectively.The surfaces of the foil
are solid slip walls.

Two computational meshes have been constructed utilizing the software package
ICEM-CFD: a coarse grid containing 270k tetrahedral elements and a finer grid con-
sisting of 567k tetrahedrons. The coarse grid is only used toobtain a suitable initial
solution for the numerical simulations performed on the finegrid and is not discussed
further.

In figure 6.26 the fine mesh for the complete domain is presented. Note that the com-
putational domain is rotated compared with the view shown infigure 6.25. The fine
grid features a cylindrically refined region with its axis located along the expected
path of the tip vortex. This cylindrical region is visible infigure 6.26 at the outflow
boundary. In figure 6.27 a close-up of the surface mesh in the tip region of the hydro-
foil is shown. The grid is refined in the regions around the trailing edge, the wing tip
and the leading edge.
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FIGURE 6.26: Surface mesh of the fine grid for 3D Elliptic 11 Rake Hydrofoilat
β = 3◦ angle of attack. Note the cylindrical refined region in the expected path of the
vortex. This cylindrical regions starts at the tip of the foil.
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FIGURE 6.27: Surface mesh of the fine grid in the region around the tip of the3D
Elliptic 11 Rake Hydrofoil atβ = 3◦ angle of attack.

6.5.3 Flow conditions and numerical set-up

To compare the numerical results with the results of the experiments of Van der Hout
[204] the case chosen is for a cavitation number ofσ = 0.68 and a free-stream
temperatureT∞ = 293K. To speed up the formation of the sheet cavity the free-
stream velocity is set toU∞ = 50 ms−1 yielding a free-stream pressure equal to
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p∞ =8.51×105Pa, a free-stream density ofρ∞ = 998.6 kgm−3 and a free-stream
speed of sound equal toc∞ = 1539.2 ms−1.

For the inflow the non-reflective boundary condition is employed. For the outflow
the asymptotic non-reflective pressure boundary conditionfor water flow is applied
as in this simulation it is expected that the tip vortex will not cavitate when it reaches
the outflow boundary. The conditions at the walls of the channel are slip solid walls
treated by the solid wall symmetry technique. The conditions at the slip solid walls of
the hydrofoil are treated by the curvature-corrected symmetry technique. The results
are obtained with the hybrid HLLC/AUSM flux scheme of section4.7.2.

Although a steady-flow solution is pursued, the results are obtained time-accurately.
We have found that applying local time-stepping to this cavitating flow problem did
not result in a converging solution. The differences in the time step taken for the
different control volumes become too large due to the large difference in speed of
sound for a control volume completely filled with water compared to that of a control
volume containing some vapor, i.e.cliq ≈ 1500 ms−1 andcα=0.5 ≈ 5 ms−1.

The route towards the final solution is the following. The first-order solution on
the coarse grid is calculated for 50k time steps and then continued with the second-
order spatial reconstruction method with the limiter of Venkatakrishnan applied to the
primitive variables[ρ, u, v, w, e]T . When the flow solution has become reasonably
steady, this solution is then interpolated to the finer grid using the solution interpola-
tion program Grid2Grid, see Hospers [98]. This initialization route reduces the time
necessary for the flow field to develop. The calculation is then continued on the fine
grid by employing the second-order spatial reconstruction.

6.5.4 Forces and total vapor volume

In the experiments of Van der Hout [204] the cavitating flow for σ = 0.68 about the
3D Elliptic 11 Rake Foil was found to be fairly steady except for a slow oscillating
motion of the cavitating trailing vortex. The mesh further away from the hydrofoil is
still too coarse to resolve the cavitation in the trailing vortex accurately, so a steady-
flow solution is obtained. The total vapor volume, as defined in equation (6.3) withc
taken equal toCR, reaches a constant value equal toVvap = 0.23.

Figure 6.28 presents the force coefficients for the cavitating flow about the hydro-
foil. The force coefficients are calculated with equations (2.10) and (2.11) with the
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FIGURE 6.28: Cavitating flow about 3D Elliptic 11 Rake Hydrofoil at3◦ angle of
attack. Fine mesh, 567k tetrhahedrons.σ = 0.68. Force coefficientsCx, Cy andCz
on the foil.

projected surface areaS equal to

S = s

1∫

0

c(ŷ)dŷ, (6.10)

which evaluates toS = 0.024584 m2. Due to computer problems with writing of the
data files the information for the first 60k iterations or approximately10−3 s is lost.
This did not influence the calculation. When the solution became steady at approxi-
matelyt≈0.015s, the second-order solution on the coarse grid has been interpolated
to the fine grid, which is visible as the peaks in the plot of theforce coefficients. Then
the second-order calculation is continued on the fine grid and the values for the force
coefficients become constant.

data Cx [-] Cy [-] Cz [-]

Numerical result 0.0137 −0.067 0.277
Experiments Van der Hout [204] 0.0336 −0.0276 0.269

TABLE 6.13:Force coefficients for 3D Elliptic 11 Rake hydrofoil at3◦ angle of attack,
σ = 0.68.

The calculated force coefficients and the measured values ofVan der Hout are pre-
sented in table 6.13. It is shown that the lift coefficientCz is predicted to within 3%
from the experimental result. The predicted drag coefficient Cx and the side force
coefficientCy show a deviation up to 250% compared with the experiments. The
reason for these large differences is not known.
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6.5.5 Flow solutions

Van der Hout [204] reported that the sheet cavity near the tipof the foil is approxi-
mately steady. Besides some small disturbances, the appearance of the cavity does
not change much in time and the shedding of vapor clouds is absent. In figure 6.29
the iso-contour of the computed void fractionα = 0.01 is presented together with an
experimental result of van der Hout [204] for cavitating flow.

FIGURE 6.29: 3D Elliptic 11 Rake Hydrofoil at3◦ angle of attack. σ = 0.68,
T =293K. Left: Numerical solution. Iso-contour ofα= 0.01. Right: Experimental
result Van der Hout [204], photograph taken from [204]. The dashed box denotes the
outline of the picture on the right.

The dashed box denotes the outline of the photograph of the experimental result. As
can be seen in figure 6.29 the outline and shape of the sheet cavity are reasonably
well predicted. Thus, this demonstrates that the present numerical method is capable
of predicting the shape of a sheet cavity on a complex three-dimensional geometry.

However, in the numerical result the amount of vapor presentin the tip vortex is
not enough to obtain a value for the void fraction larger or equal toα = 0.01. There-
fore, in the region where the tip vortex is located, there is not an iso-surfaceα = 0.01
of the void fraction visible. Due to numerical dissipation the vorticity distribution in
the core of the vortex is not compact enough to generate a sufficiently high enough
azimuthal velocity to result in a larger region with the pressure equal to the saturation
pressure.
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Within the scope of this research Ton [193] has investigatedthe so-called “Vorticity
Confinement” method to improve the prediction of the vorticity distribution within
the vortex core and to capture the vortex core over a much longer distance behind the
foil. The confinement technique might be an alternative for local grid adaption. Ton
showed that it is indeed possible to improve the numerical result for a given mesh.
However, it was also concluded that the vorticity confinement method requires fine-
tuning for every new case. It is therefore not robust nor user-friendly and this method
needs further exploration.

FIGURE 6.30: 3D Elliptic 11 Rake Hydrofoil at3◦ angle of attack. σ = 0.68,
T =293K. Numerical solution. Iso-contourωx/ (U∞/CR) = 2 of the component in
x-direction of the vorticity.

In figure 6.30 the iso-contourωx/ (U∞/CR) = 2 of the component inx-direction
of the vorticity is presented, clearly indicating the region of the tip vortex. As can
be seen in figure 6.30 the vortex core can be distinguished about three chord lengths
CR downstream of the trailing edge, so almost up to the outflow boundary. However,
apparently the magnitude of the vorticity in the core is not high enough to reduce the
pressure to the saturation pressure.

In this section numerical solutions for steady cavitating flow about the 3D Elliptic
Rake hydrofoil have been presented. Van der Hout also conducted experiments for
unsteady inflow conditions by placing two hydrofoils with oscillating trailing edge
flaps upstream of the Rake hydrofoil. In the present study a numerical simulation of
such an unsteady forcing case has not been pursued.

On ship propellers sheet cavitation and tip vortex cavitation occur simultaneously
and interact with each other, while simultaneously subjectto unsteady inflow. In the
future research should be carried out both numerically as well as experimentally to
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investigate the interaction between sheet cavitation and a(cavitating) tip vortex. In
this section we have shown that the present numerical methodis capable of accu-
rately predicting the outline of the sheet cavity. Currently the main difficulty lies in
predicting the cavitating trailing vortex.

6.6 Conclusions cavitating flow calculations

In this chapter numerical solutions for cavitating flow havebeen considered for 1D,
2D and 3D flow problems. We have shown that the present numerical method em-
ploying the equilibrium cavitation model is able to:

• predict the formation of cavitation in one-dimensional flowproblems, such as
the “Closing Valve problem” and the cavitating Riemann problem featuring
two expansion waves;

• predict the periodic unsteady cavitating flow about a 2D NACA0015 at6◦ angle
of attack at a cavitation numberσ = 1.0 with characteristic behavior such as
the cyclic formation of a sheet cavity, the formation of the re-entrant jet and
the shedding of a vapor cloud;

• predict the collapse of a vapor cloud and the subsequent highpressure pulses
on the surface of the hydrofoil, which is important for the prediction of erosion
and noise;

• predict the unsteady loading of the hydrofoil due to the dynamics of the cavi-
tating flow about the hydrofoil and due to the collapse of shedvapor structures;

• predict the shape of the sheet cavity and the outline of the closure region on
the 3D Twist11 hydrofoil at−2◦ angle of attack. This result correlates to the
experiments of Foeth [67];

• predict the onset of shedding of the sheet cavity on the 3D Twist11 hydrofoil at
−2◦ angle of attack, i.e. the development of a re-entrant jet andthe subsequent
shedding of a cavitating horse-shoe vortex. These predicted phenomena show
close agreement with the experiments of Foeth [67];

• predict the shape of the sheet cavity on a complex 3D geometry, such as the
3D Elliptic Rake hydrofoil. This result compares favorablywith the results of
the experiments of Van der Hout [204];

• predict the lift coefficientCz to within 3% compared to the experiments of Van
der Hout [204] for the cavitating flow about the 3D Elliptic Rake Hydrofoil.
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The calculation times required by the present numerical method for the shedding of
a cavity sheet on a three-dimensional geometry such as the Twist hydrofoils are so
demanding that parallelization of the numerical method is required to speed up the
calculations. Preliminary results of a parallelization ofthe method indicate that an
almost linear speed-up with the number of processors can be obtained. The paral-
lelization of the numerical method needs to be optimized further.

We have presented the onset of the shedding of the sheet cavity on the 3D Twist
hydrofoil. With the parallelization of the numerical method implemented, the calcu-
lations performed in this thesis for the 3D Twist hydrofoil need to be continued on a
grid with a higher resolution near the surface of the hydrofoil in order to capture the
formation and direction of the re-entrant jet more accurately. To save computational
resources prismatic elements close to the surface of the hydrofoil or hexahedral ele-
ments can be employed. Furthermore, the numerical prediction of the dynamics of
the shedding should be compared one-to-one with the experiments of Foeth [67] to
further validate the numerical method.

For two-dimensional cavitating flow the strong pressure pulses generated due to the
collapse of shed vapor structures are predicted with the numerical method. In section
6.3.3 we have illustrated that at the instant of the collapseof the shed vapor region,
the sheet cavity stops growing. It is an open question if the sheet cavity stops growing
due to the collapse of the shed vapor region. The influence of the pressure pulses on
the shedding mechanism should be investigated both numerically as well as experi-
mentally, especially the influence on the formation of the re-entrant jet.

The numerical method might be validated for the collapse of shed vapor structures
and resulting pressure pulses by investigating the collapse of a single vapor bubble.
Currently, the difficulty lies in the very fine grid resolution needed for the final stages
of the collapse of the bubble and in the application of the non-reflective boundary
conditions to model far-field conditions.
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In this chapter the conclusions of the present research are formulated and recom-
mendations are given for future work. The conclusions and recommendations are
discussed chapter by chapter of this thesis.

7.1 Physical aspects of cavitation

This research has been conducted in close collaboration with the Department of Mar-
itime Technology at Delft University of Technology. Withinthis collaboration a num-
ber of hydrofoil configurations have been designed employing numerical simulations
and experiments. The 3D Twist11 hydrofoil has been designedto have a clear and
controllable three-dimensional sheet cavity. It has been shown that the shape of the
cavity and the closure line of the cavity determine the direction of the re-entrant flow
and that the re-entrant flow from the sides dictates the behavior of the shedding cycle.
Therefore, the shedding of a sheet cavity is governed by the direction and momentum
of the re-entrant and side-entrant jets and their impingement on the cavity surface.
These effects are inertia driven.

The dynamics of sheet cavitation generate strong pressure pulses due to the collapse
of shed vapor structures. Within experiments it is a difficult task to capture and/or
visualize these pressure pulses and the associated unsteady loading of the foils. In the
present numerical results for cavitating flows these pressure pulses are predicted in
detail. In order to further validate the numerical method itis important to gain more
knowledge experimentally on the strength of the pulses in combination with unsteady
sheet cavitation. Furthermore, the influence of the pressure pulses on the shedding
mechanism should be investigated both numerically as experimentally, especially the
influence on the formation of the re-entrant jet.

The present research focussed on sheet cavitation on a stationary hydrofoil located
in uniform inflow conditions. Foethet al. [67] conducted experiments on hydrofoils
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placed behind two stacked hydrofoils with oscillating flapsgenerating an unsteady
inflow. Currently research is conducted within our group to model these oscillating
hydrofoils employing so-called “transpiration” boundaryconditions. This research
should be extended to numerically investigate the influenceof unsteady inflow on the
shedding of the cavitation sheet and compare the results to those of the experiments
of Foeth. Besides the oscillating hydrofoils placed upstream of the cavitating hydro-
foil, numerical investigations can be carried out for a cavitating hydrofoil oscillating
in pitch and/or heave.

In section 6.5 steady-flow numerical solutions for cavitating flow about the 3D Ellip-
tic Rake hydrofoil have been presented. Van der Hout [204] conducted experiments
on the 3D Elliptic Rake hydrofoil for steady and unsteady inflow conditions. On ship
propellers sheet cavitation and tip vortex cavitation occur simultaneously and interact
with each other. Future work should be carried out both numerically as well as exper-
imentally, to investigate the interaction between the sheet cavity and the (cavitating)
vortex.

7.2 Mathematical models for cavitating flows

In chapter 3 the mathematical model is discussed for a compressible homogeneous
water-vapor mixture at equilibrium saturation conditions. This model does not have
any empirical free parameters for phase-transition and thus offers a general applica-
ble model for cavitation. It is shown that with the employed equations of state for the
three phases, the experimental data for the density, pressure and speed of sound are
accurately represented.

Concerning the equation of state for compressible water it is shown that the mod-
ified Tait equation of state proposed by Saurelet al. [166] agrees accurately with
experimental data. The stiffened gas equation of state for water has also been inves-
tigated. It is shown that close to saturation conditions thestiffened gas equation of
state does not agree with experimental data.

We have also investigated a barotropic model for cavitationas well as non-equilibrium
cavitation models employing a transport equation for the void fraction and source
terms for phase transition, see appendices F and G. We recommend to investigate the
possibility to include in the present numerical method an additional transport equa-
tion for the volume or mass fraction of vapor to be able to include non-equilibrium
effects through source terms.

The non-equilibrium models offer more flexibility to describe phase transition in cav-
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itation and to include thermodynamic effects. However, in the existing (incompressible-
flow) models this flexibility comes at the prize of user-defined free parameters in par-
ticular in the source terms. These empirical parameters must be chosen very carefully.
More research should be conducted to obtain the adequate values for these parame-
ters in order to enable prediction of cavitation with smaller uncertainty. Source terms
without empirical parameters such as proposed by Senocak & Shyy [173] or source
terms based on thermodynamic considerations as proposed byIbenet al. [100] should
be considered in order to remove the dependency on user-defined free parameters.
Furthermore, in the present numerical method we experienced numerical instabilities
when the density ratioρl/ρv was increased to a value exceeding 100. One of the
possibilities for these instabilities might be the JST flux scheme, which we have used
in combination with the non-equilibrium models. Employinga different flux scheme
such as the HLLC flux scheme as described in chapter 4 might reduce the numerical
instabilities.

Besides the difficulty of accurately describing some type offinite-rate production
and/or destruction source term, a major challenge lies in the fact that when a fully
compressible water-vapor medium is considered, the hyperbolicity needs to be pre-
served. When both water and vapor are present in one computational control volume
two different pressures need to be accounted for through appropriate equations of
state. Furthermore, the pressure in the liquid phase will become “negative”, i.e. a
tensile stress. So when returning to a positive pressure in the vapor phase an inflec-
tion point is created in thep-v-diagram resulting in complex-valued eigenvalues.

Concerning the barotropic model for cavitation we concludethat this simple descrip-
tion reduces the computational effort. However, as discussed in section 3.1 the baro-
clinic production term in the vorticity transport equation(proportional to∇ρ ×∇p)
is not present in this model since the gradient in pressure isparallel to the gradient in
density. Furthermore, we have found that for steady-flow solutions too much cavita-
tion is predicted due to the assumed smooth transition of thedensity of the fluid from
the liquid density to the vapor density. Steepening the transition curve improves the
results, but numerical instabilities occur when the transition is chosen too steep. At
present it is expected that the instabilities are caused by the JST flux scheme, which
has been employed for the barotropic method. Combining the barotropic model with
a different flux scheme such as the HLLC flux scheme as presented in chapter 4
might reduce the numerical instabilities. Furthermore, wehave employed the dual-
time stepping technique to extend the barotropic cavitation model to unsteady flows.
For design purposes this model can be developed further, since it gives a simple and
reasonable first estimate of cavitating flows.
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7.3 Numerical methods

In the present research an edge-based finite-volume method has been developed.
Within the scope of this project we extended the in-house mesh-preprocessing pro-
gram Favomesh, such that it can handle 2D and 3D grids consisting of any element
type, i.e. quadrilaterals and/or triangles in 2D and hexahedrons, prisms, tetrahedrons
and/or pyramids in 3D. This enabled the improvement of the grid-resolution close to
hydrofoils where cavitation occurs, see the MSc. thesis of Hospers [98]. This offers
great flexibility in constructing meshes of good quality with locally refined regions
to be used to simulate cavitating flows about complex 3D geometries.

In the numerical steady-flow results small numerical oscillations in the solution are
experienced at the trailing edge of the hydrofoils. These turned out to be due to the
treatment of the trailing edge in constructing the median dual mesh by the mesh-
prepocessing program Favomesh. The control volume around the trailing edge is not
properly shaped. Refining the grid around the trailing edge does improve the nu-
merical results somewhat. However, a solution to this problem is to split the control
volume in an upper and lower control volume corresponding tothe upper and lower
side of the hydrofoil. This solution has been investigated in our group by Hospers
[98]. At present the splitting of the control volume in Favomesh has been automated
for general 3D meshes by H. de Vries. Another possibility might be to employ a
cell-centered dual mesh, for which the control volumes for the numerical method are
formed by the elements of the mesh.

It has been found that the JST flux scheme is not suited for simulating cavitating
flows due to numerics-induced under- and overshoots at contact surfaces. These nu-
merical oscillations result in a negative value of the density in case the density ratio
ρl/ρv across the contact surface becomes too large.

The HLLC and the AUSM family of flux schemes have been investigated for cav-
itating flows. Following the research of Schmidtet al. [169] it was found that for
steady low-Mach number liquid flows these flux schemes do not produce accurate
results. Following Schmidtet al. a hybrid HLLC/AUSM flux scheme has been im-
plemented, which improves the numerical results for flows atlow Mach number.
With the present implementation of the hybrid flux scheme on an unstructured mesh
solutions at low-Mach numbers could be obtained. For structured meshes, however,
Schmidtet al. [170] obtained excellent results at even lower Mach number.

Besides the adaptation of the flux scheme, preconditioning can be employed to simu-
late low-Mach number flows. We have developed a preconditioning method for cavi-
tating flows based on the method of Weiss & Smith [218]. However, it was found that
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for unsteady cavitating flows this method becomes inefficient due to the small phys-
ical time step that needs to be taken in order to capture the unsteady flow phenomena.

We investigated and implemented a MUSCL-type reconstruction method for unstruc-
tured grids. The limiter of Venkatakrishnan is employed forsteady and unsteady flow
simulations. It was found that this limiter stalls the convergence towards the steady-
state flow solution. More research needs to be carried out to improve the convergence
towards a steady-flow solution. A possible solution might beto implement one of the
limiting methods described in the thesis of Bramkamp [28]. For unsteady flow cal-
culations the limiter of Venkatakrishnan works satisfactorily, under- and overshoots
are not observed at sharp gradients or discontinuities in the flow.

In section 4.8 non-reflective in- and outflow boundaries for arbitrary equations of
state have been developed and implemented in the present numerical method. These
boundary conditions allow waves in the flow solution to leavethe computational do-
main without any reflection at the boundary of the computational domain. This is
necessary to avoid that spurious reflected waves interfere with the time-dependent
cavitating flow solution. Furthermore, the non-reflective boundary conditions im-
prove the convergence to the steady-flow solution.

The development and implementation of the Curvature-Corrected Symmetry Tech-
nique for the solid walls with slip conditions improves the numerical solution of the
flow near the surfaces.

7.4 Single-phase flow calculations

In chapter 5 the single-phase flow of water has been considered for 1D, 2D and 3D
flow problems. It is was judged to be essential to show that thenumerical method
is able to accurately calculate single phase water flow before attempting to calculate
cavitating flows. In chapter 5 it is shown that the present numerical method is able
to:

• accurately predict time-accurate wave and shock dynamics in liquid flow prob-
lems such as the “Water Hammer” problem and the Riemann problem for liquid
flow;

• accurately calculate steady-state low-Mach number liquidflow, without the use
of preconditioning methods, by employing a hybrid HLLC/AUSM flux scheme
such as developed by Schmidtet al. [169, 170];

• accurately calculate the steady-state water flow about two-dimensional hydro-
foils;
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• accurately predict the lift coefficient for steady-state water flow about the 3D
Twist11 hydrofoil at−2◦ angle of attack;

• accurately predict the pressure coefficientCp on the surface of the 3D Twist
hydrofoil at−2◦ angle of attack in comparison to experimentally obtained sur-
face pressure data.

Furthermore, we conclude that the numerical method employing the MUSCL-type
reconstruction method and the limiter of Venkatakrishnan is close to second-order
accuracy for the single phase water flow about two-dimensional hydrofoils.

7.5 Cavitating flow calculations

In chapter 6 numerical results for cavitating flows are presented for 1D, 2D and 3D
flow problems. It is shown that the present numerical method employing the equilib-
rium cavitation model is capable to:

• accurately predict the formation of cavitation for one-dimensional flow such
as the so-called “Closing Valve” problem in 1D and the cavitating Riemann
problem of two outward running expansion waves;

• predict the periodic unsteady cavitating flow about a 2D NACA0015 at6◦ angle
of attack at cavitation numberσ = 1.0 with characteristic behavior, such as the
cyclic formation of a sheet cavity, the formation of the re-entrant jet and the
shedding of a vapor cloud;

• predict the collapse of a shed vapor structure and capture the subsequent pres-
sure wave dynamics in the liquid and on the surface of the hydrofoil, which is
important for the prediction of erosion and noise;

• predict the unsteady loading of the hydrofoil due to the dynamics of the cavi-
tating flow and due to the collapse of shed vapor structures;

• accurately predict the shape of a sheet cavity and the outline of the closure
region on the 3D Twist11 hydrofoil at−2◦ angle of attack compared to the
experiments of Foeth [67];

• predict the onset of shedding of a cavity sheet on the 3D Twist11 hydrofoil at
−2◦ angle of attack, i.e. the development of a re-entrant jet andthe subsequent
shedding of a cavitating horse-shoe vortex. These predicted phenomena show
close agreement with the experiments of Foeth [67];

• predict the shape of the sheet cavity on a complex 3D geometry, such as the 3D
Elliptic Rake hydrofoil compared to the experiments of Van der Hout [204];
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• predict the lift coefficientCz to within 3% compared to the experiments of Van
der Hout [204] for the cavitating flow about the 3D Elliptic Rake Hydrofoil.

Currently, the calculation of unsteady cavitating flows about 3D geometries requires
too long calculation times. Work has been started to developa parallelized version
of the numerical method. Preliminary results indicate thatthe implementation in the
parallelization results in a speed-up that is almost linearwith the number of proces-
sors. This speed-up is necessary to validate the present numerical method with the
experiments of Foeth. The parallelization of the numericalmethod needs to be opti-
mized further. Other accelerating techniques such as multi-grid methods and implicit
time-integration methods should be investigated.

We have presented the onset of the shedding of the sheet cavity on the 3D Twist
hydrofoil. With the parallelization of the numerical method implemented, the calcu-
lations performed in this thesis for the 3D Twist hydrofoil need to be continued on
a grid with a higher resolution near the surface of the hydrofoil in order to capture
the formation and direction of the re-entrant jets more accurately. Furthermore, the
numerical prediction of the dynamics of the shedding shouldbe compared one-to-one
with the experiments of Foeth to further validate the numerical method.

For two-dimensional cavitating flow the strong pressure pulses generated due to the
collapse of shed vapor structures are predicted with the numerical method. In section
6.3.3 we have illustrated that at the instant of the collapseof the shed vapor region,
the sheet cavity stops growing. It is an open question whether or not the sheet cav-
ity stops growing due to the collapse of the shed vapor region. The influence of the
pressure pulses on the shedding mechanism should be investigated both numerically
as well as experimentally, especially the influence on the formation of the re-entrant
jet.

The numerical method could be validated for the collapse of shed vapor structures
and resulting pressure pulses by investigating the collapse of a single vapor bubble.
Currently, the difficulty lies in the very fine grid resolution needed for the final stages
of the collapse of the bubble and in the application of the non-reflective boundary
conditions to model far-field conditions.

7.6 Future research

Besides the recommendations stated in the above sections the following subjects
should be investigated further in order to increase the knowledge on cavitating flows,
to improve the current mathematical model and numerical method and to extend the
numerical method to other research fields:
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• Investigate methods such as preconditioning and implicit time-integration for
cavitating flows. Questions to be addressed are: can the start-up phase in nu-
merical simulations of cavitating flows towards (semi)-periodic shedding be
accelerated? Can unsteady flow phenomena in compressible liquids such as
pressure wave-dynamics be captured efficiently? Can the quasi-periodic shed-
ding cycles and the pressure wave-dynamics generated by collapsing vapor
structures be simulated efficiently?

• Investigate the interaction between sheet cavitation and a(cavitating) tip vor-
tex. One of the difficulties lies in accurately predicting the internal structure of
the (cavitating) vortex. Within the scope of this research Ton [193] has inves-
tigated the so-called “Vorticity Confinement” method. It was shown that it is
indeed possible to improve the numerical results for tip vortices. However, it
was also concluded that the vorticity confinement method is not yet robust and
needs to be explored further.

• Extend the numerical method to the flow in rotating fluid machinery. Many
cavitating flows occur in rotating devices such as pumps and ship propellers
and it is recommended to extend the present investigation tothese interesting
flow problems.

• Investigate the collapse of a single vapor bubble to validate the numerical
method for the collapse of shed vapor structures and resulting pressure pulses.
An interesting flow problem to be investigated is the collapse of a single or of
multiple vapor bubbles close to a solid wall. This enables topredict the pres-
sure pulses on the wall and to relate these pulses to susceptibility for erosion.
Currently, the difficulty lies in the very fine grid resolution needed for the final
stages of the collapse of the bubble and in the application ofthe non-reflective
boundary conditions to account for far-field conditions.

• Investigate effects of viscosity. In the current numericalmethod the flow is
assumed to be an inviscid flow. For the shedding of the sheet cavity viscosity
does not play a role. However, effects of viscosity do play a role in flows
close to solid walls. Therefore, effects due to viscosity can be included in the
mathematical model. A possible difficulty lies in implementing an appropriate
turbulence model for compressible two-phase flow.
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IXTIME-DEPENDENT

BOUNDARY CONDITIONS

In this appendix the time-dependent boundary conditions for the 3D unsteady Euler
equations are derived. The method of Thompson [189, 190] fortime-dependent non-
reflecting boundary conditions is generalized for arbitrary equations of state and for
arbitrary orientation of the boundary.

Consider the three-dimensional Euler equations in partialdifferential conservation
form

∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
+
∂Fz(U)

∂z
= 0, (A.1)

whereU = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved variables, withρ the den-
sity, ~u = [u, v,w]T the velocity vector,E = e+ 1

2~u·~u the specific total energy,e the
specific internal energy, and whereFx(U), Fy(U) andFz(U) form the components
of the vector of fluxes in thex-, y- andz-direction, respectively, defined by

Fx(U) =









ρu
ρu2 + p
ρuv
ρuw
ρuH









, Fy(U) =









ρv
ρvu

ρv2 + p
ρvw
ρvH









, Fz(U) =









ρw
ρwu
ρwv

ρw2 + p
ρwH









,

whereH = E + p/ρ = h + 1
2~u·~u is the specific total enthalpy. Equations of state

are required to close the system, e.g.p = p(ρ, T ) ande = e(ρ, T ). Here we choose
as equations of stateρ = ρ(p, T ) andh = h(p, T ) [142].

The conservation laws can be converted to an equivalent set of wave equations, which
represent nonlinear waves propagating at characteristic speeds. These speeds are
functions of the local solution and may vary in space and time. Unfortunately, in
multi-dimensional problems no unique direction of propagation exists, because the
coefficient matrices involved are not simultaneously diagonalizable [91]. Fortunately,
the boundary condition analysis only requires that any one coordinate direction be di-
agonizable at a time, i.e. the coordinate directed along theoutward unit normal vector
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~n on the boundary considered.

First, adopt a local coordinate system(x̂, ŷ, ẑ) with x̂ the coordinate directed along
the outward unit normal vector~n and wherêy, ẑ are coordinates in mutually orthogo-
nal tangential directions along the boundary. Equation (A.1) can be rewritten in terms
of the rotated conserved variablesÛ = [ρ, ρû, ρv̂, ρŵ, ρE]T by multiplying with the
rotation matrixT as defined in equation (4.21) yielding

∂Û

∂t
+
∂F̂x̂(Û)

∂x̂
+
∂F̂ŷ(Û)

∂ŷ
+
∂F̂ẑ(Û)

∂ẑ
= 0. (A.2)

In the present study the wave-speed analysis is carried out using the primitive vari-
ablesQ̂ = [p, û, v̂, ŵ, T ]T rather than the conserved variables. Then we may write

∂Û

∂t
= P

∂Q̂

∂t
, (A.3)

with P the matrix with elementsPij = ∂Ûi

∂Q̂j
. The matrixP is given by

P =









ρp 0 0 0 ρT
ûρp ρ 0 0 ûρT
v̂ρp 0 ρ 0 v̂ρT
ŵρp 0 0 ρ ŵρT

Hρp − 1 + ρhp ρû ρv̂ ρŵ ρTH + ρhT









, (A.4)

where we used thatρE = ρ(h+ 1
2~u · ~u) − p and whereρp =

(
∂ρ
∂p

)

T
, ρT =

(
∂ρ
∂T

)

p
,

hp =
(
∂h
∂p

)

T
andhT =

(
∂h
∂T

)

p
.
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The inverse of matrixP is denoted byP−1 and is given by

P−1 =































ρhT + ρT (H − ~̂u · ~̂u)

φ
û
ρT
φ

v̂
ρT
φ

ŵ
ρT
φ

−ρT
φ

− û
ρ

1

ρ
0 0 0

− v̂
ρ

0
1

ρ
0 0

− ŵ
ρ

0 0
1

ρ
0

−ρp(H − ~̂u·~̂u) + 1 − ρhp
φ

−ûρp
φ

−v̂ ρp
φ

−ŵρp
φ

ρp
φ































,

whereφ is defined by
φ = ρρphT + ρT (1 − ρhp). (A.5)

Note that,~̂u·~̂u = ~u·~u. Similarly to equation (A.3), we may write

∂F̂x̂
∂x̂

= Ã1
∂Q̂

∂x̂
, (A.6)

∂F̂ŷ
∂ŷ

= Ã2
∂Q̂

∂ŷ
, (A.7)

∂F̂ẑ
∂ẑ

= Ã3
∂Q̂

∂ẑ
, (A.8)

where the Jacobian matrices̃A with elementsÃij = ∂F̂i

∂Q̂j
are given by

Ã1 =









ûρp ρ 0 0 ûρT
û2ρp + 1 2ρû 0 0 û2ρT
ûv̂ρp ρv̂ ρû 0 ûv̂ρT
ûŵρp ρŵ 0 ρû ûŵρT

ûHρp + ρûhp ρH + ρû2 ρûv̂ ρûŵ ρT ûH + ρûhT









, (A.9)

Ã2 =









v̂ρp 0 ρ 0 v̂ρT
ûv̂ρp ρv̂ ρû 0 ûv̂ρT

v̂2ρp + 1 0 2ρv̂ 0 v̂2ρT
v̂ŵρp 0 ρŵ ρv̂ v̂ŵρT

v̂Hρp + ρv̂hp ρûv̂ ρH + ρv̂2 ρv̂ŵ ρT v̂H + ρv̂hT









, (A.10)
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Ã3 =









ŵρp 0 0 ρ ŵρT
ûŵρp ρŵ 0 ρû ûŵρT
v̂ŵρp 0 ρŵ ρv̂ v̂ŵρT

ŵ2ρp + 1 0 0 2ρŵ ŵ2ρT
ŵHρp + ρŵhp ρûŵ ρv̂ŵ ρH + ρŵ2 ρT ŵH + ρŵhT









. (A.11)

Transforming the conservation form (A.2) into primitive form and multiplying by
P−1 gives:

∂Q̂

∂t
+ A1

∂Q̂

∂x̂
+ A2

∂Q̂

∂ŷ
+ A3

∂Q̂

∂ẑ
= 0, (A.12)

with Ak = P−1Ãk equal to

A1 =























û
ρ2hT
φ

0 0 0

1

ρ
û 0 0 0

0 0 û 0 0

0 0 0 û 0

0
ρ(1 − ρhp)

φ
0 0 û























, A2 =























v̂ 0
ρ2hT
φ

0 0

0 v̂ 0 0 0

1

ρ
0 v̂ 0 0

0 0 0 v̂ 0

0 0
ρ(1 − ρhp)

φ
0 v̂























,

A3 =























ŵ 0 0
ρ2hT
φ

0

0 ŵ 0 0 0

0 0 ŵ 0 0

1

ρ
0 0 ŵ 0

0 0 0
ρ(1 − ρhp)

φ
ŵ























.

Now consider the wave speeds associated with the Jacobi matrix of the flux in normal
directionx̂. Therefore, rewrite equation (A.12) as

∂Q̂

∂t
+ A1

∂Q̂

∂x̂
+ C = 0, (A.13)
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with

C = A2
∂Q̂

∂ŷ
+ A3

∂Q̂

∂ẑ
. (A.14)

The 5 left and right eigenvectorsLi andRi of matrixA1 satisfy

LTi A1 = λiL
T
i and A1Ri = λiRi, (A.15)

respectively, where the eigenvaluesλi are derived from

|A1 − λI| = 0. (A.16)

The characteristic polynomial is found to be:

(û− λ)3
[

(û− λ)2 − ρhT
φ

]

= 0. (A.17)

The eigenvalues are real, orderedλ1 < λ2 = λ3 = λ4 < λ5 and read

λ1 = û− c, λ2 = û, λ3 = û, λ4 = û, λ5 = û+ c, (A.18)

where the speed of soundc is given by

c2 =
ρhT
φ

=
ρhT

ρρphT + ρT (1 − ρhp)
. (A.19)

Defining

ψ =
1 − ρhp
hT

, (A.20)

and using equation (A.19) the matricesAk become

A1 =









û ρc2 0 0 0
1
ρ û 0 0 0

0 0 û 0 0
0 0 0 û 0
0 ψc2 0 0 û









,A2 =









v̂ 0 ρc2 0 0
0 v̂ 0 0 0
1
ρ 0 v̂ 0 0

0 0 0 v̂ 0
0 0 ψc2 0 v̂









,

A3 =









ŵ 0 0 ρc2 0
0 ŵ 0 0 0
0 0 ŵ 0 0
1
ρ 0 0 ŵ 0

0 0 0 ψc2 ŵ









.
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The left and right eigenvectors of matrixA1 follow from equation (A.15) with some
specific choices for the degrees of freedom including the onedue to the multiplicity
of the eigenvalueλ = û:

L1 =









1
−ρc
0
0
0









, L2 =









−ψ
ρ

0
0
0
1









, L3 =









0
0
1
0
0









, L4 =









0
0
0
1
0









, L5 =









1
ρc
0
0
0









,

R1 =










1
2

− 1
2ρc

0
0
ψ
2ρ










, R2 =









0
0
0
0
1









, R3 =









0
0
1
0
0









, R4 =









0
0
0
1
0









, R5 =










1
2
1

2ρc

0
0
ψ
2ρ










.

Note that with the choices made, the left and right eigenvectors are bi-orthonormal,
i.e.

LTi Rj = 0 for i 6= j (A.21)

LTi Rj = 1 for i = j. (A.22)

A diagonalizing similarity transformation may be generated for A1 by forming the
matrix S such that its columns are the right eigenvectors and its inverseS−1 whose
rows are the left eigenvectors. The matrixS and its inverse are therefore given by

S =










1
2 0 0 0 1

2
− 1

2ρc 0 0 0 1
2ρc

0 0 1 0 0
0 0 0 1 0
ψ
2ρ 1 0 0 ψ

2ρ










, S−1 =









1 −ρc 0 0 0

−ψ
ρ 0 0 0 1

0 0 1 0 0
0 0 0 1 0
1 ρc 0 0 0









. (A.23)

The similarity transformation is then

S−1A1S = Λ, (A.24)

whereΛ is the diagonal matrix of the eigenvalues. Applying this transformation to
equation (A.13) gives

S−1∂Q̂

∂t
+ ΛS−1 ∂Q̂

∂x̂
+ S−1C = 0. (A.25)

Alternatively, the component form is obtained by multiplying equation (A.13) with
LTi :

LTi
∂Q̂

∂t
+ λiL

T
i
∂Q̂

∂x̂
+ LTi C = 0, for i = 1, .., 5 (A.26)



219

Defining the column vectorL with componentsLi as

Li = λiL
T
i

∂Q̂

∂x̂
, (A.27)

gives

L1 = λ1

(
∂p

∂x̂
− ρc

∂û

∂x̂

)

(A.28)

L2 = λ2

(

−ψ
ρ

∂p

∂x̂
+
∂T

∂x̂

)

(A.29)

L3 = λ3
∂v̂

∂x̂
(A.30)

L4 = λ4
∂ŵ

∂x̂
(A.31)

L5 = λ5

(
∂p

∂x̂
+ ρc

∂û

∂x̂

)

, (A.32)

or writing in terms of∂Q̂∂x̂

∂p

∂x̂
=

1

2

(
L5

λ5
+

L1

λ1

)

(A.33)

∂û

∂x̂
=

1

2ρc

(
L5

λ5
− L1

λ1

)

(A.34)

∂v̂

∂x̂
=

L3

λ3
(A.35)

∂ŵ

∂x̂
=

L4

λ4
(A.36)

∂T

∂x̂
=

L2

λ2
+
ψ

2ρ

(
L5

λ5
+

L1

λ1

)

. (A.37)

Equation (A.26) can now be written as

LTi
∂Q̂

∂t
+ Li + LTi C = 0. (A.38)

The problem of implementing boundary conditions is now reduced to the problem of
computing the appropriate values for theLi terms. Given the values forLi equation

(A.25) can be solved for∂Q̂∂t by multiplying byS giving:

∂Q̂

∂t
+ SL + C = 0, (A.39)
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where

SL =










1
2 (L1 + L5)

1
2ρc (−L1 + L5)

L3

L4
ψ
2ρ (L1 + L5) + L2










=









d1

d2

d3

d4

d5









. (A.40)

Written in full the primitive form (A.39) becomes

∂p

∂t
+ d1 + v̂

∂p

∂ŷ
+ ŵ

∂p

∂ẑ
+ ρc2

(
∂v̂

∂ŷ
+
∂ŵ

∂ẑ

)

= 0 (A.41)

∂û

∂t
+ d2 + v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= 0 (A.42)

∂v̂

∂t
+ d3 + v̂

∂v̂

∂ŷ
+ ŵ

∂v̂

∂ẑ
+

1

ρ

∂p

∂ŷ
= 0 (A.43)

∂ŵ

∂t
+ d4 + v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ
+

1

ρ

∂p

∂ẑ
= 0 (A.44)

∂T

∂t
+ d5 + v̂

∂T

∂ŷ
+ ŵ

∂T

∂ẑ
+ ψc2

(
∂v̂

∂ŷ
+
∂ŵ

∂ẑ

)

= 0, (A.45)

where thedi‘s are defined in equation (A.40). The spatial derivatives innormal direc-
tion in the definitions ofLi in equations (A.28)-(A.32) are calculated by employing
a first order forward discretizaton

∂φ

∂x̂
=
φg − φi

∆x̂
, (A.46)

whereφg denotes the value of variableφ in the ghost cell at the previous time-level
and∆x̂ is the distance between the ghost cell and the center of gravity of the control
volume, which is equal to the characteristic lengthℓ of the control volume defined as
the diameter of the smallest inscribed sphere of the controlvolume. The time deriva-
tives in equations (A.41)–(A.45) are calculated with the time integration method de-
scribed in section 4.4 to obtain the new rotated primitive variablesQ̂+

g in the ghost
cells yielding:

Q̂+
g = Q̂g − ∆t (d + C) , (A.47)

with d andC defined in equations (A.40) and (A.14), respectively. The new rotated
primitive variablesQ̂+

g are then rotated back to(x, y, z) coordinates by multiplying
with the inverseT−1 of the rotation matrix defined in equation (4.21). The new con-
served variablesU+

g in the ghost points can then be obtained through the appropriate
equations of stateρ+

g = ρ(p+
g , T

+
g ) andh+

g = h(p+
g , T

+
g ).

The dependance of the characteristics on an arbitrary equation of state turned out
to be reduced to the formulation of the two variablesc, the speed of sound defined in
equation (A.19), andψ defined in equation (A.20).
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OF 3D EULER EQUATIONS

The rotational invariance property of the Euler equations is a well known property
and is formulated as:

~F(U) · ~n = T−1Fx(TU), (B.1)

with ~F(U) and Fx(U) defined in equation (4.2),T the rotation matrix andT−1

its inverse to be defined later on and~n the unit normal vector. Toro [194] pre-
sented the proof for the rotational invariance property forthe Euler equations for two-
dimensional flow. Billet & Toro [23] stated this property forthree-dimensional flow
in terms of the unit normal vector~n = [cosα cos β, sinα cos β, sin β]T as well as the
hyperbolicity property of the Euler equations employing the perfect gas equation of
state. In this appendix the proof of the rotational invariance of the Euler equations
for three-dimensional flow is presented in terms of the unit vector~n = [nx, ny, nz]

T

without making a specific choice for the tangential unit vectors. This approach is
very practical for implementation in the numerical method and provides a general
description for the rotational invariance property.

x

yz

α

β

~t1

~t2

~n

FIGURE B.1: General unit normal vector~n = [nx, ny, nz]
T in three-dimensional

domain in(x, y, z)-space with tangential vectors~t1 and~t2. The anglesα and β
rotate the original coordinates(x, y, z) about thez-axis andy-axis, respectively.
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B.1 Proof of the rotational invariance property

The Euler equations for three-dimensional flow satisfy the rotational invariance prop-
erty:

Fx(U)nx + Fy(U)ny + Fz(U)nz = T−1Fx(TU), (B.2)

for all unit vectorsn = [nx, ny, nz]
T and vectorsU with Fx, Fy andFz the three

components of the flux vector defined in equation (4.2) and withT the rotation matrix
andT−1 its inverse, namely

T =









1 0 0 0 0
0 nx ny nz 0
0 t1,x t1,y t1,z 0
0 t2,x t2,y t2,z 0
0 0 0 0 1









, T−1 =









1 0 0 0 0
0 nx t1,x t2,x 0
0 ny t1,y t2,y 0
0 nz t1,z t2,z 0
0 0 0 0 1









, (B.3)

where the unit vectors~n,~t1 and~t2 form a orthogonal system, i.e.~n·~t1 = 0, ~n·~t2 = 0
and~t1 ·~t2 = 0. Note that~n = ~t1 × ~t2.

Proof. First we calculatêU = TU:

TU = [ρ, ρû, ρv̂, ρŵ, ρE]T , (B.4)

with û = ~u · ~n = unx + vny + wnz, v̂ = ~u · ~t1, and ŵ = ~u · ~t2. Note that

u = (~u·~n) ~n +
(

~u·~t1

)

~t1 +
(

~u·~t2

)

~t2 = û~n + v̂~t1 + ŵ~t2. The vectorFx(TU)

now reads

Fx(TU) =









ρû
ρû2 + p
ρûv̂
ρûŵ

û(ρE + p)









. (B.5)

Rotating the vectorFx(TU) back to(x, y, z) coordinates yields:

T−1Fx(TU) =









ρû
ρû(ûnx + v̂t1,x + ŵt2,x) + pnx
ρû(ûny + v̂t1,y + ŵt2,y) + pny
ρû(ûnz + v̂t1,z + ŵt2,z) + pnz

û(ρE + p)









. (B.6)

Substitutingû, v̂ andŵ and collecting the terms inu2, uv, uw, v2, vw, w2 yields

T−1Fx(TU) = Fx(U)nx + Fy(U)ny + Fz(U)nz . (B.7)
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L INEAR ACOUSTICS FOR

WATER HAMMER PROBLEM

In section 5.2 the Joukowsky equation, an approximation of the solution for the “Wa-
ter Hammer” problem is presented. The Joukowsky equation isderived using lin-
earized acoustic theory [181]. As presented in section 5.2 the pressure change∆p
across the shock wave in water is of the order of 15bar. This would suggest that
it is inappropriate to apply linearized acoustics to this problem. In this appendix the
validity of the linearization is verified.

The Euler equations for one-dimensional isentropic flow read:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (C.1)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0, (C.2)

p = f(ρ). (C.3)

Consider the situation that the acoustic wave propagates through an uniform flow field
with densityρ0, velocityu0 and pressurep0. Assume that the solution for the density
ρ, velocityu and pressurep of the Euler equations can be written as a perturbation to
the uniform flow solution:

ρ(x, t) = ρ0 + ρ0ρ
′, (C.4)

u(x, t) = u0 + c0u
′, (C.5)

p(x, t) = p0 + ∆p, (C.6)

where the primed variables denote the dimensionless perturbations to the initial states.
Substitution in the Euler equations (C.1) and (C.2) yields

ρ0

(
∂ρ′

∂t
+ c0

∂u′

∂x
+ u0

∂ρ′

∂x
+ c0ρ

′∂u
′

∂x
+ c0u

′∂ρ
′

∂x

)

= 0,

ρ0c0

(
∂u′

∂t
+ u0

∂u′

∂x
+ ρ′

∂u′

∂t
+
∂u′

∂x

(
u0ρ

′ + u′ + ρ′u′
)
)

+
∂(∆p)

∂x
= 0.
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Assuming thatρ′ = O(ǫ) andu′ = O(ǫ) and linearizing yields

∂ρ′

∂t
+ c0

∂u′

∂x
+ u0

∂ρ′

∂x
= 0, (C.7)

∂u′

∂t
+ u0

∂u′

∂x
+

1

ρ0c0

∂(∆p)

∂x
= 0. (C.8)

To write the pressure perturbation in terms of the density perturbation we can start
from equation (C.3):

p0 + ∆p = f(ρ0 + ρ0ρ
′) = f(ρ0) + ρ0f

′(ρ0)ρ
′ + ... (C.9)

Sincep0 = f(ρ0) andf ′(ρ0) = c20 we find

∆p

p0
=
ρ0c

2
0

p0
ρ′. (C.10)

we recognize that small perturbations in the density resultin perturbations in the pres-
sure that have an amplification factor ofρ0c

2
0/p0. For the flow of a perfect gas this

amplification factor is equal toγ, which for air is equal toγ = 1.4. For the flow of
water the amplification factor is of the order of2.25×104, illustrating the large pres-
sure pulses possible in water flow even for small perturbations in density and velocity.

Eliminating∆p in equations (C.7) and (C.8) with equation (C.10) yields

∂

∂t

[
ρ′

u′

]

+

[
u0 c0
c0 u0

]
∂

∂x

[
ρ′

u′

]

= 0. (C.11)

The eigenvalues are:
λ1 = u0 + c0, λ2 = u0 − c0, (C.12)

and the corresponding left eigenvectors satisfy:

L1 =

[
1
1

]

, L2 =

[
−1
1

]

. (C.13)

The compatibility relations are obtained from

LTi
d

dsi

[
ρ′

u′

]

= 0 along
dx

dt
= λi, (C.14)

which yields in terms of∆p

1

ρ0c20
∆p+ u′ = constant, along

dx

dt
= u0 + c0, (C.15)

− 1

ρ0c20
∆p+ u′ = constant, along

dx

dt
= u0 − c0, (C.16)

Equation (C.16) is written in dimensionless form. In dimensional form we recognize
the Joukowksy equation (5.3) along the characteristicdx

dt = u0 − c0.
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IXL IFTING L INE THEORY FOR

3D TWIST HYDROFOIL

For the fully wetted flow around the Twisted hydrofoil Prandtl‘s classical lifting-line
theory is applied to estimate the spanwise distribution of the local effective angle of
attack of the foil. This local effective angle of attack determines to a large extent the
pressure distribution on the foil and thus the sheet cavitation on the foil. In the lifting
line theory a finite wing is modeled by a single spanwise lifting line along which the
circulationΓ(y) varies as presented in figure D.1. A system of vortices with strengths
γ = dΓ/dy trails from the lifting line in downstream direction, representing the wake
of the foil. This wake induces a down- or upwash at the liftingline, lowering or in-
creasing the local effective angle of attack of the foil.

x

yz

Γ0

~γ = dΓ
dy~ex

U∞

y = −b/2

y = b/2

FIGURE D.1: The lifting line model of a finite wing and its wake.

The circulation distributionΓ(y) is determined from Prandtl‘s lifting line theory
[150], see e.g. Anderson [12]. The semi-infinite trailing vortex sheet induces a down-
washw at a pointy0 located at the lifting line given by

w(y0) = − 1

4π

b/2∫

−b/2

dΓ
dy (y)

y0 − y
dy, (D.1)
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with b the span of the foil. For small angles of attack the induced angle of attackαi
is

αi ≈ −w(y0)

U∞
=

1

4πU∞

b/2∫

−b/2

dΓ
dy (y)

y0 − y
dy. (D.2)

The lift ℓ(y0) of a local section follows from the Kutta-Joukowski theoremas

ℓ(y0) = ρ∞U∞Γ(y0), (D.3)

which in Prandtl‘s lifting-line theory is expressed as

ℓ(y0) =
1

2
ρ∞U

2
∞c(y0)cl(y0), (D.4)

with c(y0) the chord of the section aty0. The lift coefficientcl(y0) is given by

cl(y0) = 2παeff (y0), (D.5)

where the effective angle of attackαeff is equal to

αeff (y0) = α(y0) − αi(y0) − αℓ=0(y0), (D.6)

with α(y0) the geometric angle of attack andαℓ=0(y0) the zero-lift angle of the sec-
tion. Equating equation (D.3) and (D.4) then results in Prandtl‘s fundamental integral
equation of lifting line theory for the circulation distribution Γ(y)

α(y0) =
Γ(y0)

πU∞c(y0)
+ αℓ=0(y0) +

1

4πU∞

b/2∫

−b/2

dΓ
dy (y)

y0 − y
dy. (D.7)

This integral equation is solved iteratively for givenα(y0), αℓ=0(y0), c(y0), andU∞.
OnceΓ(y0) is computed,cl(y0) follows from equations (D.3) and (D.4) as

cl(y0) =
2Γ(y0)

U∞c(y0)
, (D.8)

while from equations (D.5) and (D.6) we then find the induced angle of attackαi(y0)
as

αi(y0) = α(y0) − αℓ=0(y0) −
cl(y0)

2π
. (D.9)

The Twist hydrofoil is not a finite foil, but it extends to the channel walls, i.e. in
effect it is an infinite-span foil with periodically varyingtwist. Furthermore, the foil
is located in a hexahedron with a square cross-section. The influence of all tunnel
walls on the flow around the hydrofoil can be accounted for by introducing a series
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of images of the model of the lifting line. The influence experienced by the foil in
the channel is the induced velocity from the vortex systems of these images. For a
square tunnel of widthb a doubly infinite series of images is required, situated at the
points(y = mb, z = nb), wherem andn assume all positive and negative integers.
The induced angle of attack in equation (D.2) can now be written as

αi(y0) =
1

4πU∞

∞∑

m=−∞

∞∑

n=−∞

b/2+mb∫

b/2−mb

dΓ
dy (ym)(y0 − ym)

(y0 − ym)2 + (z0 − zn)
2 dym. (D.10)

The solution of equation (D.7) forΓ(y0) is obtained by discretizing the integral in
equation (D.7) and solving the set of discretized equationsiteratively as described
in Anderson [12]. The resulting circulation distributionΓ

(y
c

)
for the Twist08 at0◦

angle of attack and Twist11 hydrofoil at−3◦ angle of attack in the test section are
presented in figure D.2.

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

y/c [-]

Γ
(y

)

Twist08,0◦
Twist11,−3◦

FIGURE D.2: Circulation distributionΓ(y) as a function of the spanwise coordi-
nate y

c for the Twist08 foil at0◦ angle of attack (solid) and the Twist11 foil at−3◦

(dashed).

The effect of the foil extending up to the channel walls is clearly seen in thatΓ(y)
near the wall is no longer varying as the square root of the distance from the wall,
while also at the wall the circulation is not zero. The wall boundary condition implies
thatdΓ/dy = 0 at the walls.
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Note that for the Twist11 hydrofoil at−3◦ Γ(y) has a lower value over the com-
plete span than the Twist08 foil. So for the Twist11 foil alsothe local value ofcl(y)
will be lower along the whole span, especially near the wall.The latter is important,
because we want to avoid cavitation. Also, note that compared to Twist08Γ(y) has a
more 3D shape for the Twist11 hydrofoil at−3◦ angle of attack. The geometric angle
of attackαgeom and the effective angle of attackαeff for the Twist08 at0◦ angle of
attack and the Twist11 foil at−3◦ angle of attack are presented in figure D.3(a) and
(b), respectively.

(a)

−1 −0.5 0 0.5 1

−2

0

2

4

6

8

y/c [-]

α
[◦

]

αgeom
αeff

(b)

−1 −0.5 0 0.5 1

−2

0

2

4

6

8

y/c [-]

α
[◦

]
αgeom
αeff

FIGURE D.3: Geometric angle of attackαgeom (solid) and effective angle of attack
αeff (dashed) for (a) Twist08 at0◦ angle of attack (b) Twist11 at−3◦ angle of attack.

In Table 1 the effective angle of attack at the tunnel walls and at midspan are pre-
sented for five different configurations. Note that the effective angle of attack at the
tunnel wall and at midspan is linearly dependent on the incidence of the foil as a
whole.

Due to the spanwise varying lift distribution of the hydrofoil the associated vorti-
cal wake generates downwash in the central part of the hydrofoil and upwash near
the tunnel walls. For the Twist08 hydrofoil at0◦ angle of attack the effective angle
of attack at the center is lowered from8◦ to about5◦, while at the tunnel wall it
is increased from0◦ to almost3◦. So in order to prevent the cavity from reaching
the tunnel wall, the geometric angle of attack of the hydrofoil has to be decreased
in order to have a zero effective angle of attack near the tunnel wall. In the central
part of the hydrofoil this then results in a much lower effective angle of attack than
the geometric angle of attack and consequently in a cavity that is smaller than desired.

The Twist11 foil design results in a more three dimensional distribution of the ef-
fective angle of attack, which will produce a more triangular shaped cavitation sheet.
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Foil angle of αgeom αeff αgeom αeff
attack [◦] wall [◦] wall [◦] mid-span [◦] mid-span [◦]

Twist08 0 0 2.8 8.0 5.1
Twist08 -3 -3 -0.2 5.0 2.1
Twist11 0 0 3.9 11.0 7.0
Twist11 -2 -2 1.9 9.0 5.0
Twist11 -3 -3 0.9 8.0 4.0
Twist14 0 0 4.9 14.0 9.0
Twist14 -5 -5 -0.1 9.0 4.0

TABLE 4.1: Effective angle of attack at tunnel walls and at midspan for the Twist08,
Twist11, and Twist14 foils at various angle of attack.

Furthermore with incidence−3◦, the effective angle of attack at the tunnel wall will
be small refraining the cavitation sheet of reaching the tunnel walls, while at midspan
the effective angle of attack is still around4◦, which is high enough for a substantial
cavity sheet.
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THERMODYNAMICS

The classical Maxwell relations of thermodynamics in termsof the independent vari-
ables specific volumev = 1/ρ and temperatureT read

(
∂e

∂T

)

v

= cv(T, v),

(
∂e

∂v

)

T

= −p+ T

(
∂p

∂T

)

v

,

(
∂h

∂T

)

v

= cv(T, v) + v

(
∂p

∂T

)

v

,

(
∂h

∂v

)

T

= T

(
∂p

∂T

)

v

+ v

(
∂p

∂v

)

T

,

(
∂S

∂T

)

v

=
1

T
cv(T, v),

(
∂S

∂v

)

T

=

(
∂p

∂T

)

v

,

wheree(v, T ) is the specific internal energy,p(T, v) the pressureh(T, v) the specific
enthalpy defined byh = e + p/ρ, S(T, v) the entropy andcv(T, v) the specific
heat constant at constant volume, assumed to be given. Taking and equating cross
derivatives fore(v, T ) yields:

(
∂cv(T, v)

∂v

)

T

= T

(
∂2p

∂T 2

)

v

. (E.1)

In terms of the independent variablesp andT the Maxwell relations yield:

(
∂e

∂T

)

p

= cp(T, p) − p

(
∂v

∂T

)

p

,

(
∂e

∂p

)

T

= −T
(
∂v

∂T

)

p

− p

(
∂v

∂p

)

T

,

(
∂h

∂T

)

p

= cp(T, p),

(
∂h

∂p

)

T

= v(T, p) − T

(
∂v

∂T

)

p

,

(
∂S

∂T

)

p

=
1

T
cp(T, p),

(
∂S

∂p

)

T

= −
(
∂v

∂T

)

p

,
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wherecp(T, p) is the specific heat constant at constant pressure, assumed to be given.
Taking and equating cross derivatives fore(T, p) yields:

(
∂cp(T, p)

∂p

)

T

= −T
(
∂2v

∂T 2

)

p

. (E.2)

From above expressions it can be derived that

cp(T, p) − cv(T, v) = T

(
∂p

∂T

)

v

(
∂v

∂T

)

p

. (E.3)

To derive the value of a quantityf(x, y) of two variablesx andy the partial deriva-
tives can be integrated using either one of the following expressions with(xref , yref )
some reference state

f(x, y) =

x∫

xref

(
∂f

∂x

)

y

(x̂, y)dx̂+

y∫

yref

(
∂f

∂y

)

x

(x, ŷ)dŷ (E.4)

−
x∫

xref

y∫

yref

(
∂2f

∂x∂y

)

(x̂, ŷ)dŷdx̂+ f(xref , yref ),

f(x, y) =

x∫

xref

(
∂f

∂x

)

y

(x̂, yref )dx̂+

y∫

yref

(
∂f

∂y

)

x

(x, ŷ)dŷ + f(xref , yref ),

f(x, y) =

x∫

xref

(
∂f

∂x

)

y

(x̂, y)dx̂+

y∫

yref

(
∂f

∂y

)

x

(xref , ŷ)dŷ + f(xref , yref ).
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IXBAROTROPICMODEL FOR

CAVITATING FLOW

Delannoy & Kueny [58] were among the first to model cavitatingflows by adopting a
barotropic equation of stateρ = ρ(p), directly coupling the pressure with the density.
In this model it is further assumed that the vapor and the liquid share the same velocity
and pressure. Furthermore, the effects of viscosity and heat conduction are neglected.
Note that with the barotropic equation of state the equationfor the total energy of
the mixture is not needed anymore. Under these assumptions the two-phase flow is
described by the following (Euler) equations for the mixture:

∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
+
∂Fz(U)

∂x
= 0, (F.1)

whereU = [ρ, ρu, ρv, ρw]T is the vector of conserved variables andFx(U), Fy(U)
andFz(U) are the flux vectors given as

F =
[

Fx(U) Fy(U) Fz(U)
]

=







ρu ρv ρw
ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p







, (F.2)

respectively, whereρ is the density of the mixture,~u = [u, v,w] the velocity vector
and p the pressure. The barotropic equation of state for cavitating flows is such
that the mixture density equals the liquid densityρl when the pressure is above the
saturation pressurepsat and equals the vapor densityρv when the pressure is below
the saturation pressure. Between these two states there is asmooth transition region.
An appropriate equation of state is, see Koopet al. [113] and Veldhuis [207]:

ρ(p)

ρl
=

1

2

[

∆+ + ∆− tanh

(
Cp + σ

∆−

U2
∞

a2

)]

, (F.3)

with ∆+ and∆− given by

∆+ =
ρl + ρv
ρl

, ∆− =
ρl − ρv
ρl

, (F.4)
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and whereU2
∞ is a reference velocity and parametera is directly related to the mini-

mum speed of sound in the vapor/liquid mixture(dp/dρ)min = a2/∆−. The pressure
coefficientCp is given by

Cp =
p− p∞
1
2ρlU

2
∞

, (F.5)

and the cavitation numberσ by

σ =
p∞ − psat

1
2ρlU

2
∞

, (F.6)

with p∞ a reference pressure andpsat the saturation pressure at a reference tempera-
ture. A plot of the above equation of state is presented in figure F.1 using a reference
temperatureT = 300 K at which the densities for the vapor and liquid are equal to
ρl = 996.5 kgm−3 andρv = 0.0256 kgm−3, respectively and at which the satura-
tion pressure is equal topsat = 3, 537 Pa.
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FIGURE F.1: Barotropic equation of state forU∞/a equal to 1.5 (dotted), 5 (dashed)
and 20 (solid), respectively atT = 300K. The saturation liquid and vapor densities
are equal toρl = 996.5 kgm−3 and ρv = 0.0256 kgm−3, respectively and the
saturation pressure ispsat = 3, 537 Pa. (a) Density ratioρ/ρl as a function of
σ + Cp. (b) Densityρ as a function of pressurep.



G A
P

P
E

N
D

IX

NON-EQUILIBRIUM MODEL

FOR CAVITATING FLOW

Within the scope of the present research we have investigated non-equilibrium mod-
els for cavitation. We followed conventional approaches byassuming that the liquid
and vapor phase have a constant density. To solve the governing equations we have
applied the JST flux scheme [106] and the pre-conditioner method of Weiss & Smith
[218]. As discussed in section 3.5 we encountered some difficulties with the JST
scheme and drawbacks of the conventional cavitation models. In this appendix we
present the non-equilibrium models considered. Results are not presented, more re-
search needs to be carried out to obtain satisfactory results.

To account for non-equilibrium effects an additional equation for either the vapor
mass or liquid mass is to be introduced. Define the void fraction α as the fraction
of vapor volumeVv and the volumeVcv of the control volume, i.e.α = Vv

Vcv
. Fur-

thermore, define the vapor mass fractionµ as the fraction of vapor massmv within a
computational control volume and the total massmcv within the control volume, i.e.
µ = mv

mcv
. Then the continuity equation for the vapor mass can be written in one of

the following equivalent forms:

∂αρv
∂t

+ ∇·(αρv~u) = Mv, (G.1)

or
∂µρ

∂t
+ ∇·(µρ~u) = Mv. (G.2)

Note that,αρv = µρ = mv/Vcv and thatρ = αρv + (1 − α)ρl whereρv andρl
denote the densities of pure liquid and pure vapor, respectively, which are assumed
to be constant within the scope of this model. Assuming the temperature to remain
constant, then the energy equation is decoupled from the other equations and we have
the following set of equations:

∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
+
∂Fz(U)

∂z
= S, (G.3)
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whereU = [ρ, ρu, ρv, ρw, αρv ]
T is the vector of conserved variables,Fx(U), Fy(U)

andFz(U) are the flux vectors given by

F =
[

Fx(U) Fy(U) Fz(U)
]

=









ρu ρv ρw
ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p
αρvu αρvv αρvw









, (G.4)

and whereS is the source term given byS = [0, 0, 0, 0,Mv ]
T . The source termMv

describes the rate of change of the vapor mass due to vaporization and condensation.
In this section we describe the model of Kunzet al. [117] based on mass transfer
rates and the model of Sauer [162], Sauer & Schnerr [163] and Yuan & Schnerr [224]
based on bubble dynamics.

G.1 Source term of Kunzet al. [117]

Kunzet al. [117] modeled the source termMv based on the (empirical) mass transfer
rates of Merkleet al. [139]. Many authors have adopted these mass transfer ratesin
various forms using different values for the empirical constants in the model. Here
we follow the notation of Kunzet al. [117].

The source termMv is written as

Mv = Mlv −Mvl. (G.5)

For transition of liquid to vaporMlv is modeled as being proportional to the liquid
volume fraction1 − α and the difference of the pressure with the saturation pressure

Mlv = Cprod
ρv(1 − α)
1
2ρlU

2
∞t∞

min(0, p − psat), (G.6)

whereCprod is an empirical constant,U∞ is the mean flow velocity andt∞ is a mean
flow time-scale taken equal tot∞ = 1.0s or t∞ = U∞/c. Note that, both options are
used in the literature. For the transfer from vapor to liquida simplified form of the
Ginzburg-Landau potential [117] is employed:

Mvl = Cdest
ρv(1 − α)2α

t∞
. (G.7)

Here also,Cdest is an empirical constant. Various authors have adopted these source
terms for the production and destruction of vapor. As presented in table 7.1 these
authors use different values for the empirical constantsCprod andCdest. Wikström
[220] mentions thatCprod andCdest must be set as high as possible in order to simu-
late almost instant transition.
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Article Cprod Cdest

Kunzet al. (1999) [117] 0.2 0.2
Kunzet al. (2000) [118] 100 100

Medvitz et al. (2002) [137] 100 1000
Wikströmet al. (2003) 1000 1000

Lindauet al. (2002) [129] 100,000 200
Huuva (2008) [99] 1000 1000

TABLE 7.1: Employed values forCprod andCdest found in the literature.

G.2 Source term of Sauer [162]

Kubotaet al. [116] were among the first to model the two-phase fluid as a dispersed
mixture of an incompressible liquid and tiny vapor bubbles,which grow or collapse
according to their surroundings, i.e. the local pressure and temperature. Sauer [162],
Sauer & Schnerr [163] and Yuan & Schnerr [224] adopted this approach within a
Volume of Fluid (VoF) framework. It is their model [162] for the source termMv

that is described in this section.

The fluid is considered as a dispersed two-phase flow with vapor bubbles which grow
and collapse and thus change the void fraction in a computational control volume.
The void fraction is defined as the fraction of the volume of vaporVv within a control
volume with volumeVcv = Vv+Vl and it may be written in terms of the total volume
of the bubbles within a control volume:

α ≡ Vv
Vv + Vl

=
Nbubbles

4
3πR

3

Nbubbles
4
3πR

3 + Vl
=

n0Vl · 4
3πR

3

n0Vl · 4
3πR

3 + Vl
=

n0 · 4
3πR

3

n0 · 4
3πR

3 + 1
,

whereVv andVl are the volumes occupied by the vapor and the liquid, respectively.
All bubbles in the control volume are assumed to have the sameradiusR. Nbubbles

is the number of bubbles within the control volume and it is equal to the bubble
concentrationn0 per unit volume of pure liquid times the volumeVl occupied by the
liquid within the control volume. The rate of changeMv of the vapor mass due to
phase transition does now depend on the number of bubbles percontrol volume times
the volume change of a single bubble:

Mv = ρv
n0

1 + 4
3πn0R3

d

dt

(
4

3
πR3

)

. (G.8)

Under the assumption that effects of bubble-bubble interactions and bubble coales-
cence can be neglected and that the bubbles remain spherical, the Rayleigh-Plesset
equation, see eg. Brennen [29], is adopted to describe the bubble growth and collapse:

R
d2R

dt2
+

3

2

(
dR

dt

)2

=
p− p∞
ρl

− 2σ

ρlR
− 4µ

ρlR

dR

dt
, (G.9)
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whereσ is the surface tension andµ is the viscosity of the liquid. Neglecting viscos-
ity, the surface tension and second-order terms, the Rayleigh equation results, which
may be considered for the so-called inertia-controlled bubble growth:

dR

dt
=

√

2

3

(
p− p∞
ρl

)

, (G.10)

wherep is the pressure in the liquid at the bubble boundary andp∞ is the pressure in
the liquid at a large distance from the bubble. Within the scope of this modelp is set
equal to the saturation pressurepsat andp∞ to the pressure in the control volume. To
account for the collapse of the bubble as well, the rate of change of the bubble radius
can be written as:

dR

dt
= sign(psat − p)

√

2

3

|psat − p|
ρl

. (G.11)

Finally, the source termMv reads

Mv = sign(psat − p)
ρvn0 · 4πR2

(
1 + n0 · 4

3πR
3
)

√

2

3

|psat − p|
ρl

. (G.12)

G.3 Remark on extension to compressible flows

In the formulation above it is assumed thatρl andρv remain constant and that the
temperature remains constant. To obtain a fully compressible flow formulation these
assumptions must be relaxed. In addition to the system of equations in equation
(G.3), the equation for conservation of total energy and appropriate equations of state
for water, two-phase mixture and vapor must be formulated. Assuming that the two-
phase mixture is allowed to be in non-equilibrium, we must account for two pressures,
i.e. a liquid pressure and a vapor pressure, within a computational control volume. As
discussed in section 3.5 a major challenge lies in preserving the hyperbolicity of the
system of equations. The pressure in the liquid phase will become “negative”, i.e.
a tensile stress. When returning to a positive pressure in the vapor phase from a
negative pressure in the liquid phase an inflection point is created in thep-v-curve
resulting in complex eigenvalues. The question is which equation of state can be
used for this regime. The acoustic eigenvalues for the Sanchez-Lacombe equation of
state, see Edwards & Liou [63], for densities between the spinodal values or the Van
der Waals equation of state are complex-valued, implying that the system of Euler
equations coupled with these equations of state is not hyperbolic. The equations of
state discussed in section 3.3 need to be accompanied with anappropriate equation
of state for the vapor phase.
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