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INTRODUCTION

1 Motivation

An important topic in fluid dynamics is multiphase flows. Multiphase flows can be
found in numerous fields in engineering, e.g. aerospace, biomedical, chemical, elec-
trical, environmental, mechanical, nuclear and naval engineering. There is an enor-
mous variation in applications, e.g. rocket engines, chemical reactors, contamination
spreading, multiphase mixture transport, cavitation, sonoluminescence, ink-jet print-
ing, particle transport in blood, crystallisation, multiphase cooling, fluidized beds,
drying of gases, air entrainment in oceans/rivers and anti-icing fluids. The number
of papers on multiphase flow in the field of fluid dynamics is enormous and still
growing. The diversity of flow types makes a general description almost impossi-
ble. This makes fundamental research necessary. Especially, controlled experiments
are needed for a better physical understanding and as test cases for numerical and
theoretical work.

In the group of L. van Wijngaarden and A. Biesheuvel one of the main sub-
jects is bubbly flows. The work performed in this group covers numerous topics
in this field. For negligible velocity differences between the phases equations for
one-dimensional flow were proposed by van Wijngaarden (e.g. 1968, 1972). More
general two-phase flow equations for a dilute dispersion of gas bubbles in liquid were
derived by Biesheuvel & van Wijngaarden (1984). However these equations did not
contain bubble interaction terms. The hydrodynamic interactions between gas bub-
bles in liquid were studied by van Wijngaarden (1976) and the effects on the main
rise velocity for pairwise interacting bubbles by van Wijngaarden (1993). Biesheuvel
(1984) and van Wijngaarden & Kapteyn (1990) focussed on the effects of bubble
interactions on the stability of concentrations waves at low gas volume concentra-
tions. Lammers & Biesheuvel (1996) examined the stability of bubbly flows and the
propagation of void fraction waves. Numerically dilute bubble mixtures were studied
by Bulthuis (1997). Duineveld (1994,1995) and Kok (1993a,b) performed experi-
ments on single bubbles and bubble pairs in pure water and water contaminated with
a well-defined amount of surfactants. The paths of the bubbles, observed in these
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2 CHAPTER I. INTRODUCTION

experiments, could not be explained and hence more research was necessary. Espe-
cially three dimensional information of the position and shape of the bubble and the
configuration of the wake behind the bubble was lacking. Another recent research
area in the group is bubbles in turbulence, e.g. Spelt & Biesheuvel (1997,1998) and
Poorte (1998). Closely related is the modification of turbulence by bubbles, often
called pseudo-turbulence (van Wijngaarden 1998).

From all previous research, the lack of knowledge about the relation between the
dynamics of a single bubble and its wake became obvious. Although many papers
have been published on this subject, the results contradict each other in many as-
pects. Perhaps because experimental data on bubble paths reported in literature (e.g.
Saffman 1956, Lunde & Perkins 1995, Aybers & Tapucu 1969a,b , Mercier, Lyrio &
Forslund 1973 and Ellingsen 1998) was gathered in contaminated water and/or with
a repetitive bubble production mechanism in which bubble paths are influenced by
the preceding bubbles. Indeed, even the release of the bubble from the needle was
not smooth in most experiments, forcing the bubble’s deformation at release.

Considering the fact that in contaminated water, bubbles behave as solid parti-
cles, the comparison of the wake of a bubble to that of a solid sphere seemed logical.
Dye visualisations by Lunde & Perkins (1997), Laser Doppler Anemometry (LDA)
measurements by Ellingsen & Risso (1998) and Particle Image Velocity (PIV) mea-
surements by Brücker (1999) claimed to prove that the wakes of bubbles and solid
spheres are similar. However, the experimental methods used indicate that these
measurements were performed in contaminated liquids. As long as visualisations
or measurements of the wake behind bubbles in pure water do not exist, the relevance
of these results to the case of pure water remains questionable. Similarly, the analogy
to the wake behind drops in liquids (Magarvey & Bischop 1961) is not obvious.

Numerical results of Blanco & Magnaudet (1995), Takagi, Matsumoto & Huang
(1997) and Ryskin & Leal (1984) show the wakes behind bubbles for axisymmetric
flows. Considering the fact that the standing eddy in the wake behind the bubbles
observed in these simulations occured first in a regime in which the path of the bub-
ble observed in experiments was already unstable, the wake instability has to be of a
different kind than for solids where the standing eddy becomes unstable. Numerical
simulations of the flow around bubbles are highly demanding by the accuracy needed
to resolve the shape of the bubble and the zero stress condition on the bubble’s sur-
face. The local curvature determines the pressure jump over the bubble interface and
as a result a strong coupling between flow and shape exists. For numerical work this
makes life complicated.

This thesis focuses on the dynamics of a single rising bubble in pure quies-
cent water. The main problems involved are the bubble production and release, the
unknown shape of the bubble, the path instability, the wake configuration and dynam-
ics, the purity of the water and the interactions with boundaries. To the best of our
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knowledge no research has been performed on bubble motion in pure water where si-
multaneously the three dimensional path, shape and wake of a bubble are visualised.
This study fills that gap. The production of pure water and of bubbles was the same
as described in Duineveld (1994). The visualisation technique is a two-way Schlieren
system using the refractive index differences between water and air and the tempera-
ture dependent refractive index of the water. Analysing both perpendicular views in
time results in the three dimensional position, velocity and shape of the bubble.

2 Outline

In chapter 2 the results of previous experimental, theoretical and numerical research
on bubble dynamics are summarised. The emphasis is on single bubbles. In chapter
3 the experimental Schlieren setup visualising both the bubble outline and wake is
described. The results for free rising bubbles are presented in chapter 4. A tentative
explanation for the zigzagging and spiralling of the bubbles is given which takes into
account the observed structures of the wake. In chapter 5 some aspects concerning the
shape of bubbles at release and free rising are discussed. Our numerical calculations
show the influence of the deformability of the bubble’s surface on the nature of the
wake.

In chapters 6 and 7 the results obtained for the single, free rising bubble are
used to explain a number of phenomena observed in multiphase flows. In chapter 6
experiments are reported for bubbles bouncing against a vertical wall. A model, based
upon potential flow theory, is used to explain the bouncing phenomena observed
in experiments. In chapter 7 a model for pseudo-turbulence is proposed based on
the results found for bouncing and free rising bubbles. The effect of the vorticity
produced by the bubbles, arranged in vortical regions, on the excess turbulent energy
is calculated.

The main conclusions are summarised in chapter 8 and a number of recommen-
dations for future work are given.
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PREVIOUS WORK

In this chapter the results of the references frequently used in this thesis are sum-
marised and put into perspective. A comparison between these references is given
and the main questions remaining are addressed. For a more extensive review of pre-
vious work Clift et al. (1978) and Magnaudet & Eames (2000) form good starting
points.

1 Dimensionless numbers

Consider a gas bubble rising in a liquid. Its behaviour, of course, will depend on the
physical properties of the surrounding liquid. These are the density ρ, the kinematic
viscosity ν and the surface tension coefficient σ. The bubble rises due to the buoyancy
force which is related to the gravitational acceleration g and the volume of the bubble
V ; with the latter an equivalent radius req can be associated, which is defined by

req =
(

3V
4π

)1/3

, (2.1)

i.e. the radius of a sphere with the same volume as the gas bubble.
It follows that the (mean) terminal rise velocity of the bubble UT is a function

of 5 variables,

UT = UT (req, g, ρ, ν, σ), (2.2)

and dimensional analysis then shows that 3 dimensionless groups, 2 independent
and 1 dependent, describe the phenomenon. As independent parameters the Morton
number Mo and the Eötvös number Eo are usually chosen. These are defined as

Mo =
gν4ρ3

σ3

Eo =
4ρr2

eqg

σ
(2.3)
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6 CHAPTER II. PREVIOUS WORK

The Morton number only contains physical properties of the fluid. Fluids can now
be arranged in two separate groups, those with high Morton numbers (Mo > 10−2)
and those with low Morton numbers (Mo < 10−6). Water has a Morton number of
1.1 · 10−11, so in this thesis we will only be concerned with the behaviour of bubbles
in low Morton number fluids.

The Eötvös number is basically a measure of the volume of the bubble, so that
a functional relationship between a parameter and the Eötvös number describes how
that parameter changes with the volume of the bubble.

The choice of the dependent parameter depends on what one is interested in.
The most common ways of defining a dimensionless rise velocity are e.g.
the Reynolds number

Re =
2UT req

ν
; (2.4)

the Weber number

We =
2ρU2

T req
σ

; (2.5)

the Froude number

Fr =
U2
T

2greq
; (2.6)

or the drag coefficient

CD =
8greq
3U2

T

. (2.7)

Of course, these numbers can be expressed in terms of the others:

Re = We1/2(Eo/Mo)1/4; We = 4
3Eo/CD;

Fr = We/Eo; CD = 4
3Fr = 4MoRe4

3We3 .
(2.8)

2 Flow around a bubble

Our interest is mainly in bubbles that rise in low Morton number fluids, such as water,
at high Reynolds numbers, between 200 and 900, say. In that case the bubbles have
an approximately spherical shape at the lower bound of the Reynolds number range,
while they rise in a rectilinear path. For the higher bound of the Reynolds number
range, the bubble shape is that of an oblate ellipsoid and bubbles rise in an irregular,
zigzagging or spiralling, fashion.

At these high Reynolds numbers, vorticity is confined to the thin boundary lay-
ers and wakes, and a good description for the flow field can be obtained from potential
flow theory.

Levich (1962) calculated the viscous dissipation in the potential flow around
a sphere to obtain a first approximation to the drag coefficient. This analysis was
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extended by Moore (1963, 1965) who (partially) solved the appropriate equations in
the rotational flow regions to obtain improved estimates for the drag coefficient of
spheres and oblate ellipsoids. Moore’s expansion reads

CD =
48
Re

G(χ)
[
1 +

H(χ)
Re1/2

+ O(
1

Re1/2
)
]
, (2.9)

with χ the aspect ratio of the bubble, and H(χ) and G(χ) functions that are given
in analytical or tabulated form in Moore’s papers. For a spherical shape, χ = 1, this
leads to CD = 48/Re.

Moore’s analysis shows that the flow in the boundary layer of thickness
O(Re−1/2) is described by a balance between convection along the streamlines of
the primary potential flow and viscous diffusion across these streamlines of a quan-
tity known as the ‘circulation density’ Ω = ω/m, i.e. the ratio between vorticity and
distance from the symmetry axis. In the part of the boundary close to the rear stagna-
tion point viscous effects become unimportant. The circulation density is then merely
convected, while being stretched, into a narrow wake of thickness O(Re−1/4). For
future reference we note that the vorticity in that part of the boundary layer around a
spherical bubble is given by

ω = −3mU

a2
erfc

(
3ym/a2

4
√

2

)
(2.10)

where a is the radius of the sphere, m is the distance from the symmetry-axis and
y = (r − a)/a, the dimensionless radial coordinate.

3 Path and shape instability

At low Reynolds numbers a bubble moves rectilinearly, while at higher Reynolds
numbers oscillatory motions, as spiralling and zigzagging, are observed. Further-
more, the shape of the bubble is said to be stable for low Weber number and becomes
oscillatory, or unstable, for larger Weber number (O(3)). The onset of path instabil-
ity and that of shape instability are, in general, and also for bubbles in pure water,
occurring at different stages.

The spiralling (also called helical) motions of axisymmetric solid bodies in a
perfect fluid are well understood and described by Lamb (1932). Solid bodies with
angular inertia about their axis of symmetry have an infinite range of possible helical
motions. Within a Hamiltonian description, a bubble in spiralling motion has to have
a non-zero impulsive couple. With the use of a variational characterisation the path
of bubbles can be determined within the Hamiltonian theory developed by Benjamin
(1987). In this theory it is assumed that the ideal-fluid theory is applicable for the
motion of bubbles including surface tension in liquids of small viscosity. In the region
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8 CHAPTER II. PREVIOUS WORK

in which the Weber number is decisive for stability, the ideal-fluid model has been
proven to be a valid assumption by e.g. Saffman (1956), Hartunian & Sears (1957),
Moore (1965) and Miksis et al. (1981).

After formulating the Hamiltonian, Benjamin (1987) describes several invari-
ants, e.g energy E, impulse I , impulsive couple L, volume V and virial W . When
the shape of the bubble becomes oscillatory the shape is said to be unstable. For
a steady motion the maximum Weber number for shape instability is found to be
Wemax = 3.271, with an aspect ratio of the bubble’s axes of χ = 3.722. This can
be compared with the numerical results of Miksis et al. (1981) (Wemax = 3.23 at
χ = 3.85). The expression for the Weber number of Benjamin (1987) is more ac-
curate than the results of Moore (1965) who satisfied the boundary conditions at the
poles and equator only. The maximum Weber number for shape instability is remark-
ably close to the experimentally determined critical Weber number (Wecr = 3.17)
for path instability by Hartunian & Sears (1957). Benjamin (1987) conjectured that
the maximum Weber is associated with a bifurcation from the class of axisymmetric
conditional extrema into non-axisymmetric ones. However, it has to be noted that
shape instability is not necessarily the trigger for path instability (Duineveld (1994)).

Moreover, Benjamin1 (1987) showed that the helical path to leading order in s
(s = sin(sec−1(χ))) is described by the translation velocity of the bubble, U , the
spiral radius, R, the pitch, 2πU/ΩB , and pitch angle, θ, as

R

req
=

√
3

10
s3 sin 2θ, (2.11)

U

ΩBreq
=

2
3
√

3
s. (2.12)

The initial motion of a bubble is rectilinear, i.e. without impulsive couple. For larger
bubbles this rectilinear motion becomes unstable resulting in a spiralling or zigzag-
ging motion. Benjamin’s Hamiltonian theory indicates that a spiralling motion can
exist if, and only if, a non-zero impulsive couple exists. As the impulsive couple
is an invariant there is a contradiction, which is addressed in chapter 4. Symmetry
breaking of the wake of the bubble plays an important role.

The onset of path instability is generally believed to occur at a critical Weber
number, Wecr, which depends on the fluid properties. Duineveld (1994), Tsuge &
Hibino (1977) and Maxworthy et al. (1996) found a lower critical We for lower Mo
number, which is also observed in our experiments (see Chapter 4) . A useful relation
is the increase of the critical Reynolds number for decreasing Morton number. Tsuge

1For a spiralling motion Benjamin (1987) found that there has to be an angle between the short
axis of the bubble and the direction in which the bubble is travelling. In experiments this angle has
never been observed, however, it might be present as it will be very small and its value could be within
measuring accuracy.
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§3. PATH AND SHAPE INSTABILITY 9

& Hibino (1977) determined these functions empirically as

Wecr = 21.5Re−0.32
cr , (2.13)

Recr = 9.0Mo−0.173, (2.14)

where Recr is the critical Reynolds number for the onset of path instability.
For low Morton numbers fluids like water, Maxworthy et al. (1996) showed that

the smallest drag coefficient of a bubble can be described by Cd = 11.1Re−0.71. For
Re < 60 (small bubbles) the drag coefficient is comparable to that of a solid sphere
with the same volume. Impurities may play an important role. For large Re (≈ 600)
the bubble can also have a drag coefficient larger than that of a solid sphere because
of deformation. So the drag coefficient can be influenced by impurities and shape
effects. From this the claim is sometimes made that a sufficient check for the purity
of the water would be the terminal rise velocity of the bubble. Although the drag
coefficient might be correct, the motion of the bubble, the mobility of the bubble
surface and the flow around the bubble might be influenced by a small amount of
impurities (see § 4).

For increasing Reynolds number, the drag coefficient is decreasing up to the
point where minimum drag coefficient is reached. This is followed by a constant We
regime, which starts at approximately the maximum of Fr2 and is associated with
Wecr for path instability. This is not to be confused with the Wemax for the shape
instability.

Hartunian & Sears (1957) studied, both experimentally and theoretically, the
path instability of small gas bubbles moving in various liquids and reported a stabil-
ity curve. They determined two separate criteria for the onset of path instability in
various liquids, Recr = 202 and Wecr = 3.17. The first criterion is for solid spheres,
bubbles in contaminated fluids, and bubbles in viscous liquids, and the second crite-
rion is for bubbles in clean liquids. Obviously this unique value of Wecr is not in
agreement with the dependence of Wecr on Mo (Equation 2.13 and 2.14). Further-
more, they determined that in liquids for which Mo > 10−4 the bubble path does
not become unstable. As for solid spheres and bubbles in pure water, different di-
mensionless numbers appear to indicate the transition; it is most likely that different
phenomena trigger this transition.

Saffman (1956) studied the path and the onset of path instability in detail and
observed that for req < 0.7 mm the path is straight, for larger radii up to req = 1.0
mm only zigzagging bubbles were found. For bubble radii larger than 1.0 mm both
spiralling and zigzagging were observed. Bubbles released rapidly after each other
followed each other’s path, however for req < 1.0 mm zigzagging bubbles always
zigzagged even when released in a spiralling bubble’s wake. Saffman determined
Recr = 400 for path instability. Furthermore, Saffman observed no difference in the
rise velocity of spiralling and zigzagging bubbles of equal size. As a trigger of the
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10 CHAPTER II. PREVIOUS WORK

Summary of observed path and transition criteria
straight spiral zigzag Remarks

Haberman & Re < 300 300 < Re < 3000 Re > 3000 no zigzag
Morton (1954) but rocking

Hartunian & Re < 202 Re > 202 Re > 202 solids/contaminated
Sears (1957) We < 3.17 We > 3.17 We > 3.17 pure, Mo < 10−4

Saffman req < 0.7 mm req > 1.0 mm req > 0.7 mm
(1956) Re < 400 ? Re > 400

Aybers & req < 0.67 mm 0.67 < req < 1.0 mm req = 1.00 mm
Tapucu (1969a,b) Re < 565 565 < Re < 880 880 < Re < 1350

Duineveld req < 0.91 - req > 0.91
(1994,1995) We < 3.3 - We > 3.3

Re < 662 - Re > 662

TABLE 2.1: Summary of previous results for the onset of path instability and the
regimes of the observations.

path instability Saffman proposed a shape instability at the front of the bubble. Later
this shape instability has been observed in numerical simulations, but this was always
claimed to be due to numerical instabilities.

Aybers & Tapucu (1969a,b) saw similar transition stadia as Saffman (1956);
however, they observed only spiralling bubbles for 0.67 mm < req < 1.0 mm, in-
stead of the zigzagging bubbles seen by Saffman. This certainly indicates something
peculiar is happening in this range, which deserves more attention. Furthermore, the
shape of the bubbles was found to be spherical up to req = 0.42 mm, ellipsoidal up to
1.0 mm, and for larger sizes shape oscillations were observed. The transition ranges
for the path were also characterised in terms of the Reynolds number: Re < 565
rectilinear; 565 < Re < 880 helical; 880 < Re < 1350 first zigzag then helical;
1350 < Re < 1510 zigzag and then rectilinear rocking motion. Shape oscillations
started at We = 3.7 or χ = 2.0.

More experimental work on bubble motion was performed by Haberman & Mor-
ton (1954). They observed rectilinear (Re < 300), helical and rocking motions. The
helical path could be either clockwise or counterclockwise, depending on the condi-
tions of generation. The major axis of the bubble is always directed perpendicular to
the direction of motion. Contamination of the water would lead to a solid-sphere-like
behaviour up to Re = 300. Minute particles are expected to concentrate on the bub-
ble’s surface immobilising it. The non-rectilinear motion was assumed to be caused
by a periodic vortex shedding, as in the case of solid spheres. However, in Chapter 4
it will be shown that no vortex shedding is observed for spiralling or for zigzagging
bubbles.

The simulations for axisymmetric flows of Ryskin & Leal (1984), using a
boundary-fitted coordinate system, were performed in the regime of Re < 200 and
We < 20, which means well outside the regime of path instability in water. They
did observe a standing eddy - a recirculation zone behind the bubble - in parts of
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§3. PATH AND SHAPE INSTABILITY 11

Observed shapes and onset of shape instability
spherical ellipsoidal instable

Aybers & Tapucu req < 0.42 mm req < 1.00 mm req > 1.00 mm
(1969a,b) χ > 2

We > 3.7

Haberman & Morton (1954) Re < 400 400 < Re < 5000

Miksis et al. We > 3.23
(1981) χ > 3.85

Ryskin & Leal contaminated liquids Re > 200
(1984a,b) pure liquids We > 3 − 4

Duineveld We > 4.2
(1994,1995) req > 1.34 mm

Benjamin We > 3.271
(1987) χ > 3.722

TABLE 2.2: Summary of results from previous work for the shape of the bubble and
the onset of shape oscillations.

the regime. The differences between solid spheres and bubbles were believed to
be associated to the large differences in the moments of inertia. They determined
Recr = 200 for contaminated liquids and solids and Wecr = 3 − 4 for pure liquids,
which is in agreement with the experimental results of Hartunian & Sears (1957).
They also argued that vortex shedding will only occur for a clean bubble when two
conditions are fulfilled: We > Wecr and a standing eddy is present.

Miksis et al. (1981) determined the deformation of an axisymmetric bubble or
drop in a uniform flow of constant velocity and determined Wecr = 3.23 at χ = 3.85
for shape instability. After Wecr is reached We starts decreasing and asymptotically
approaches We ≈ 2.3.

Lunde & Perkins (1995) proposed a method for analysing the path and shape of
a bubble obtained from experimental data using Fourier transformation of the outline
of the bubble. All necessary information of the bubble is directly available from
the determined Fourier Descriptors. They observed a mode-2 shape oscillation in
both perpendicular views separately and deduced a mode-2 shape oscillation for the
bubble. Later in this thesis it will be argued that they were probably misled by the
projection of the bubble in these views, and that a thorough analysis of the orientation
of the bubble would result in the disappearance of this mode-2 shape oscillation.
Time-resolved information on the path is necessary as it will be assumed that the
major axis of the bubble is directed perpendicular to the direction of motion at all
times. In addition to this, Lunde & Perkins (1997) visualised the bubble wake using
a dye. They concluded that there is a strong relation between the structure of the wake
and the observed path. The wake of spiralling bubbles was continuous while the wake
of zigzagging and rocking bubbles was intermittent. More about the observations in
the wakes of bubbles can be found in section 6. It has to emphasised that, although
for these large bubbles the influence of the contamination on the rise velocity is low,
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the water is contaminated by the dye.

Duineveld (1994,1995) studied the path and shape of bubbles (0.33 mm < r <
1.00 mm) experimentally. He found agreement with the theoretical results of Moore
(1963, 1965) for the functional relationship between the rise velocity and the equiva-
lent radius, provided the overestimation of the deformation in the theory is compen-
sated for. These studies reported a Wecr = 3.3 for path instability in clean water.
It is also emphasised that the agreement for the critical Weber number for path and
shape instability is a pure coincidence. The path instability sets in at req = 0.91 mm
and only zigzagging bubbles are observed in single-view recordings.

The results of several experimental, numerical and theoretical studies for the
onset of path and shape instabilities are summarised in Tables 2.1 and 2.2.

4 Contamination

The behaviour of bubbles changes significantly as soon as fluids become contami-
nated with surfactants. This change is related to the fluid properties and the type
and level of contamination. Haberman & Morton (1954) showed that for contami-
nated water the critical radius, where the first path instability sets in, decreases, as
does the maximum rise velocity and Recr. Hartunian & Sears (1957) and Ryskin
& Leal (1984a,b) showed that, for a contaminated system, the stability curve is not
determined by a critical Weber number but by Recr = 200, as is observed for solid
spheres. Bel Fdhila & Duineveld (1996) determined that the rise velocity of a bubble
stays roughly equal to its value for pure fluid up to a critical surfactant concentration.
Above this concentration the drag rapidly increases towards the solid sphere drag.
They also observed the transition for the path instability at Re = 203 for contami-
nated bubbles.

McLaughlin (1996) adapted the numerical method of Ryskin & Leal (1984) to
take into account contamination. For the pure water case comparison with Duineveld
(1995) was made and no attached wake was observed for Re=637 and We=3.17.
In none of the simulations for clean interfaces flow separation was observed. For
contaminated water a standing eddy is already observed for Re=110, We=0.166 and
flow separation is observed. This clearly shows the differences in the wake behind
bubbles in pure and contaminated water.

Most of the experiments mentioned in section 3 were performed in water that
was not perfectly clean. This is especially true for the experiments involving wake
visualisation. A logical consequence is that many results were similar to phenomena
observed for solid spheres. To clarify that for pure water totally different phenomena
play a role, some observations of solid spheres and drops are also summarised in
section 6.
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5 Bubble-bubble and bubble-wall interactions

The interaction between two bubbles has been studied by Biesheuvel & Van Wijn-
gaarden (1982), Kok (1993a,b) and Duineveld (1994). The last author determined a
critical Weber number for the transition between coalescence and bouncing, which is
Wecr = 0.18 based on the approach velocity. At a Wecr of 2.6, based on the rise ve-
locity, there is a transition between bouncing and bouncing followed by separation.
Duineveld observed coalescence, bouncing, and bouncing separation for different
bubble sizes. The minimum bubble size for bouncing separation (0.86 mm) is close
to the critical size for path instability (0.91 mm). He argued that this size could be
slightly lower because the large distortion at the bounce triggers vortex shedding,
which he assumed to be the cause of zigzag motion.

Van Wijngaarden (1993) performed potential flow calculations on a collection
of small spherical air bubbles. For this thesis especially the analysis of the relative
motion of two bubbles (Biesheuvel & Van Wijngaarden (1982)) is relevant. For two
rising bubbles with their centres horizontally aligned the relative motion can be de-
scribed by (

dR
dt

)2

=
3
16

r3
eqU

2∞
R3

m

[(
Rm

R

)3

− 1

]
, (2.15)

with 2Rm the initial distance of the bubbles, 2R the distance between the bubble
centres and U∞ the vertical velocity of a single bubble at t = 0. U∞ can be chosen
arbitrarily and determines the kinetic energy of the system. The maximum approach
velocity of each bubble will be

√
3/16U∞ ≈ 0.43U∞. The general equations of

motion of a pair of spheres are given by Kok (1993a, equations 28 and 29). These
equations are also applicable for the motion of a single spherical bubble close to a
wall (Chapter 6).

Experimental setups are necessarily bounded by walls. For bubbly flows there
can be a large region in which bubbles interact with walls. Tsao & Koch (1997)
studied the interaction of bubbles (0.5 − 0.7 mm) with a rigid wall. Bubbles were
observed to bounce several times against a horizontal wall. Collision dynamics can be
explained by the exchange of energy between the various forms, e.g. kinetic energy,
surface energy and potential energy.

For an inclined wall (10− 85◦ with respect to the horizontal direction) a critical
angle of 55◦ was observed. For an angle larger than 55◦ a bubble bounced repeat-
edly with constant bounce amplitude. This critical angle corresponds to a critical
Weber number based on the velocity parallel to the wall of 0.4. For smaller angles,
or smaller Weber number, the bubbles were observed to slide along the wall. At each
bounce typically 59% of the bubble’s energy was dissipated. For the sliding motion a
lift force, balancing buoyancy which pushes the bubble towards the wall, is expected.
Furthermore the coalescence of a bubble rising towards a stationary bubble was ob-
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served for We < 1.6. This critical Weber number based on the total velocity is not
in agreement with the bouncing criterion (We = 2.6) for horizontally aligned bub-
bles determined by Duineveld (1994), though Duineveld concluded that this criterion
might be lower for vertically aligned bubbles.

Very intriguing phenomena are observed for a bubble bouncing with a vertical
wall. With increasing size, a bubble tends to slide along a wall, to bounce repeat-
edly, to bounce once and never return, or to start a repetitive bounce again. The
bounce height can be larger than the initial separation. In this thesis experiments on
this subject will be presented and a model explaining these motions will be posed
(Chapter 6).

In many applications multiple bubbles are present. A free rising bubble swarm
of ellipsoidal bubbles was studied by Stewart (1995) in which the wake was observed
to be the driving force and the sole mechanism for binary bubble interactions. Bub-
bles approached each other in the wake and then the rear one overtook the front one.
For multiple bubble interaction the bubbles were observed to form clusters or chim-
ney like patterns. This latter may be the basic dynamics of flow regime transition and
excess energy dissipation in bubbly two-phase flow (Chapter 7).

The excess turbulent energy production by bubbles in turbulent flows was mea-
sured by various authors. Theofanous & Sullivan (1982) did experiments in the cen-
tre of a horizontal pipe and Lance & Bataille (1991) in grid turbulence in a vertical
pipe. In Chapter 7 the results concerning the excess turbulent for increasing void
fraction are shown to be comparable. The modification of turbulence by bubbles is
often called pseudo-turbulence. A first tentative explanation of this phenomenon was
based on the rise of isolated non-spherical bubbles described by potential flow theory
with the vorticity confined in thin boundary layers, and presented by van Wijngaarden
(1998). In Chapter 7 this model was extended to take into account vorticity confined
in the wake.

6 Wakes

Experimentally the study of bubble wakes has been mainly performed by dye visual-
isation (Lunde & Perkins 1997), LDA (Ellingsen & Risso 1998) or by PIV (Brücker
1999). In these studies, vortex shedding is observed for zigzagging bubbles, similar
as is observed for solid spheres. For spiralling bubbles, Lunde & Perkins (1997) ob-
served a double threaded wake and emphasised that this would consist of two counter-
rotating vortex filaments. To resolve the wake with these techniques a large amount
of particles/dye is needed. It is most likely that these techniques contaminate the wa-
ter; the validity of these results for clean water is questionable. Contamination might
explain the similarity of the wake structure for these zigzagging bubbles and that of
solid spheres.
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Numerically, especially the works of Ryskin & Leal (1984a,b), Takagi et al.
(1997), and Blanco & Magnaudet (1995) are interesting, because they all report on
the formation of an attached, or standing, eddy behind a strongly deformed bubble.
Ryskin & Leal concluded that for vortex shedding to occur with clean bubbles two
conditions have to be satisfied: i) a standing eddy behind the bubbles, and ii) We >
Wecr. From the numerical work of Blanco & Magnaudet (1995) and McLaughlin
(1996), however, it can be deduced that no standing eddy will exist behind a bubble
in the regime in which, experimentally, path instability occurs in pure water. This
leads to a contradiction since without a standing eddy, vortex shedding will not occur.
The experiments reported in this thesis will show that indeed another mechanism is
observed for zigzagging bubbles.

For a better understanding of the dynamics of wakes, and especially the be-
haviour of bubble wakes, the studies of wakes behind solid spheres and drops by
Achenbach (1974), Magarvey & Bischop (1961), Natarajan & Acrivos (1993) and
Johnson & Patel (1999) are very informative. However, one should be cautious in
applying these results to bubble dynamics as will be explained below.

The drag coefficient of solid spheres and drops is generally larger than for bub-
bles; this behaviour is related to the amount of vorticity produced. For larger bubbles,
though, the deformation might become so large that the drag coefficient will be larger
than the drag coefficient of a solid sphere of the same volume. Furthermore, it is ob-
served that the drag coefficient of light solid spheres differs from that of heavy solid
spheres (Karamanev et al. 1996). In this work light particles are observed to spiral in
a manner similar to some bubbles.

The experimental results of Magarvey & Bishop (1961) for the wake behind
drops come closest to what is observed for wakes behind bubbles. At low Reynolds
numbers, the wakes of drops and bubbles are very similar, consisting of a single
thread. For slightly larger Reynolds numbers, both feature a double threaded wake.
At very large Reynolds numbers, an intermittent wake is observed for both the drop
and the bubble. However, for the intermediate regime, in which path instability sets
in for bubbles in pure liquids, the observations of the wake behind bubbles, drops,
and solids are very different.

Natarajan & Acrivos (1993) reported on the stability of the axisymmetric flow
around solid spheres and disks obtained in numerical simulations. They concluded
that two different instabilities can occur at two distinct critical Reynolds numbers.
The first critical Reynolds number, observed for spheres and disks, was associated
with the instability of the near wake. The second critical value of the Reynolds num-
ber indicated a periodic instability or waviness of the far wake. They emphasised
that for different objects the second instability might be reached at a lower Reynolds
number than the first instability, and so the mechanism for the observed instability,
might change.
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7 Aim of thesis

This summary of previous work is far from complete. Nevertheless, it is obvious that,
even from this limited number of articles, many controversial results become evident
(see tables 2.1 and 2.2). Especially, the type of motions observed after the first path
instability has set in is remarkably different for all experiments. In this thesis the
main focus is on clarifying this point.

It is most likely that many of the experimental results discussed have been ob-
tained in contaminated liquids, especially when the wake is visualised. From these
results vortex shedding was claimed to be the mechanism for a zigzagging path of
the bubble, as is the case for solid spheres and drops. In this thesis a method is devel-
oped to visualise the wake of a bubble without affecting the purity of the water, and
another mechanism for the zigzag motion is found.

The relation between the wake of a bubble and its motion needs to be studied.
From this relation more information about the nature of the flow around the bubble
can be deduced. This information can be applied in modelling the motion of bubbles
in order for example to find the path of a single rising bubble, to study bouncing and
pseudo-turbulence in bubbly flows.

On the basis of the experimental results of Duineveld (1994), it is expected that
path instability sets in at a critical Weber number, while the shape of the bubble
is still very close to a stable oblate ellipsoid. Both spiralling and zigzagging can
commence immediately after the first instability sets in. The direction of the spiral
can be clockwise or anti-clockwise. As soon as path instability sets in, the wake
becomes non-axisymmetric. The path of the bubble is expected to be strongly related
to the wake the bubble produces.
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In the experimental study of paths and wakes of bubbles in pure water numerous
problems are encountered. Although most are trivial, it appears that in most experi-
mental studies not all problems have been solved. Especially the visualisation of the
wake of the bubble without endangering the purity of the water is a challenging prob-
lem, which has been solved in this chapter. A description of the experimental setup is
given and the analysis method to determine the shape and path of the bubbles using a
Fourier transform method of the outline of the projection is explained. The shape of
the bubble is assumed to be ellipsoidal and the minor axis is approximately directed
along the path.

1 Water tank and bubble generation

The experiments have been performed in a glass-walled water tank (15x15x50 cm,
wall thickness 18 mm). Prior to the experiments the tank was intensively cleaned
with soap, laboratory ethanol and rinsed with highly purified water. The latter was
produced in a three-step purification system consisting of a decalcifier, Millipore RO
60 and a Millipore Q plus. This resulted in water with the highest possible electrical
resistance (18.2 MΩcm) and less than 10 ppb organic particles. Contamination of the
water was avoided by the use of a closed system and by filling the tank from below. In
this way air contact and so the absorption of gases, in particular CO2, is minimised.
In addition to all these precautions to ensure the purity of the water, prior to each
experiment the rise velocity of some single bubbles at room temperature (20 ± 1◦C)
was determined to check the purity once more.

The bubbles were produced with a system similar to that described in Kok
(1993) and Duineveld (1994). It consists of an injector (Valco Ni4) and a switching
valve (Valco N6), syringe, pressurised clean air and a hyper clean water supply. A
volume with pressurised air determines the size of the bubble. The bubble is pushed
into a transparent silica tube (0.25 mm bore) with hyper-clean water. As a result pure
water is in front of and behind the bubble and a second measurement of the bubble
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FIGURE 3.1: The top-view of the experimental two-way schlieren setup. Both perpen-
dicular views are recorded on a single NAC high speed video. The reference system
is placed outside the water tank to avoid contamination of the water and interaction
with the bubbles.

volume can be made. Next the bubble was set on the top of the capillary and subse-
quently released from the needle by a sudden push of 0.1 µl of water. A third check
of the volume was performed by the analysis program explained later in this chapter.
The differences between the three determined equivalent radii resulted in an overall
accuracy of 2%.

2 Visualisation method

Most experimental techniques in bubble dynamics use the differences in refractive in-
dex of water and air to visualise the bubble. In a back lighting technique the refraction
of the light by bubbles is used, whereas in a side lighting technique the scattering of
the light by bubbles is used. With these techniques bubble dynamics can be studied,
but no information about the flow around the bubble can be obtained.

In previous studies dye or particles were added to the water to study the flow
around bubbles. However, their use is undesirable as it contaminates the water and
so changes the dynamics of the bubble, and the flow around it, significantly. With
a view to this it remains questionable whether Particle Image Velocimetry (PIV) is
applicable in studying the flow around bubbles in pure water. To overcome the prob-
lem of contamination and at the same time being able to visualise the flow around the
bubble a schlieren technique is used.

Schlieren optics is a well known technique often used to visualise density gra-
dients in compressible flows, e.g. shock waves. However, this technique is not vi-
sualising the density gradient, but the refractive index gradient. At constant ambient
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pressure the refractive index of water is temperature dependent and temperature dif-
ferences in water can be used to visualise water flows with schlieren. Fortunately the
schlieren technique is very sensitive as the refractive index difference of water be-
tween 20◦C and 30◦C is less then 0.1%, which is required for the present application.

A technique similar to schlieren would be the shadowgraph technique. However,
the schlieren technique visualises the temperature gradient while the shadowgraph vi-
sualises spatial gradient in the temperature profile. Although the shadowgraph system
is much simpler as no gradient filter is needed, the main drawback is that there is no
directional sensitivity. By the placement of the gradient filter two important features
occur: schlieren visualises the horizontal temperature gradient and in the vertical di-
rection the shadowgraph technique visualises the spatial gradients in the temperature
profile.

In our application the water in the tank is heated from above by infrared light,
which resulted in a constant stable temperature gradient (1.1◦C/cm) in the region
between 30 and 40 cm above the needle in the water. The colder water, dragged in
the wake of the bubble, is visualised. In this way no contamination in the form of
particles and/or dye is introduced. Apart from that, this visualisation method is able
to capture the bubble’s outline simultaneously as the refractive index of air and water
is different. With help of a two-way schlieren setup the position, the wake and the
orientation of an air bubble are determined simultaneously.

In Figure 3.1 a schematic overview of the two-way schlieren setup and the water
tank is shown. The three mirrors make it possible to record two, mutually perpen-
dicular, views on a single NAC high speed video recorder (500 frames/s). Reference
points outside the water tank make it possible to determine the world-coordinates
on each frame, which is necessary as the frames on the tape tend to be misaligned
up to about 10 pixels. With the position of the reference points on each frame this
misplacement can be compensated for.

The optical path lengths of both views of the bubble and the reference system
were different, but a focal depth of more than 20 cm allows sharp recordings of
bubble and reference system in both views. The different magnification factors of the
reference system and of the bubble in each view is taken into account when analysing
the images.

3 Temperature gradient effects

The effect of the temperature gradient on the terminal rise velocity can only be
checked by a comparison to results in the absence of a temperature gradient. In
the literature most experiments are performed at a temperature of about 20◦C and so
thus the present results of the bubble rise velocity in water of 20◦C are compared with
the results reported by Clift et al. (1978). Figure 3.2 is taken from Clift et al. (1978).

PATH AND WAKE OF A RISING BUBBLE
TWENTE

UNIVERSITY



20 CHAPTER III. EXPERIMENTAL METHOD AND ANALYSIS TOOLS

FIGURE 3.2: The rise velocity of a bubble vs diameter, taken from
Clift et al. (1978) in water held at20◦C.
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FIGURE 3.3: Experimental data for the rise velocity vs bubble
radius in pure water held at28◦C. The ’lines’ are empirically
determined by Cliftet al. (1978).
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An empirical curve for bubbles in clean water (top line), determined from this data at
20◦C, is

UT =

√
2.14σ
2ρreq

+ 1.100greq , for req > 0.75 mm. (3.1)

Duineveld (1994), also using the present purification system, showed that in the
present experiments the water can be considered clean based upon the terminal rise
velocity of the bubbles. However, after heating the water the average temperature
in the measuring volume becomes approximately 28◦C, which does have an effect
on the terminal rise velocity. Although Figure 3.2, taken from Clift et al. (1978),
pretends to include only data in water held at 20◦C, experimental data of Aybers &
Tapucu (1969b, ✷) is included in water held at 28◦C. The terminal velocity of Aybers
& Tapucu is observed to be larger than that for clean water at 20◦C, at least for small
bubbles.

The main aim of this section is to test the effect of a temperature gradient on
the rise velocity of the bubble. The temperature of the water in the centre of the
measuring volume was approximately 28◦C; with a constant temperature gradient of
1.1◦C/cm. Experiments (Figure 3.4) clearly show an extra increase of the terminal
rise velocity arising from this gradient. The viscosity is determined from the empiri-
cal relationship from Grigoriev & Meilikhov (1997)

log
(
ηT
η20

)
=

1.3272(20 − T ) − 0.001053(T − 20)2

T + 105
, (3.2)

which indicates a difference of about 20% of the viscosity of water at 20◦C and that
at 28◦C.

As a result the imposed temperature gradient, needed for the use of schlieren,
has an undesired effect on the rise velocity of a bubble. The rise velocities, measured
in the temperature gradient with a mean temperature of the surrounding liquid of
28◦C, were above the rise velocities in water with a uniform temperature at 28◦C
(compare Figures 3.3 and 3.4). This can be explained by solving the equation of
motion utilising a temperature-dependent viscosity in Levich’s (1962) expression for
the drag, i.e.

1
2
m

d2z

dt2
+ 12πµ(T )req

dz

dt
= gm (3.3)

where z the height in the tank, g the acceleration of gravity and m = 4ρπr3eq/3, twice
the added mass of a bubble. The surface tension differs less than 1% between 28◦C
and 20◦C and thus the Marangoni effect can be neglected. Equation (3.3) is solved
numerically and the effect of the temperature dependent viscosity on the rise velocity
of the bubble (req = 1.0 mm) is shown in Figure 3.5. The initial conditions for
the uniform temperature of 28◦C are, z = 0.30 m, dz/dt = 0.328 m/s, T = 28◦C.
For the gradient the initial conditions are z = 0.30 m, dz/dt = 0.328 m/s, T =
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FIGURE 3.4: The effect of a temperature gradient on the bubble rise velocity. The
’lines’ are the same as in Figure 3.3 and the measurements are the rise velocities in
a linear temperature field around28◦C. The velocity in the gradient is about 7%
higher than without the gradient.

20◦C, dT/dz = 1.1◦C/cm. It shows a significant effect of the temperature gradient
on the rise velocity of a bubble.

The horizontal solid line in Figure 3.5 shows the rise velocity of a bubble in
water held at a uniform temperature of 28◦C. The temperature is indicated with the
horizontal dotted line. The rise velocity of a bubble in a temperature gradient of
1.1◦C/cm is given by the dotted curve. The region of 28◦C is reached at about 37.3
cm above the capillary. In this region the terminal rise velocity is already reached.
The velocity in the gradient is increasing only slightly after reaching the point 32 cm
above the release point, where the temperature is only about 22.2◦C. As a result all
measurements in the temperature gradient were performed for a bubble which already
reached its ’final’ velocity 5cm lower, which is a good indication that the final state
of bubble shape, path and wake was already obtained.

Although the rise velocity of a bubble has only a small dependence on the tem-
perature, there is a large effect of a temperature gradient. The extra acceleration term
for a bubble (req =1.0mm) moving in a temperature gradient resulted in a 6% higher
rise velocity (Figure 3.4), which is in agreement with the 7% increase in velocity
measured in experiments.

Another effect of the temperature gradient is the motion of the wake due to the
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FIGURE 3.5: The effect of a temperature gradient on the rise velocity of a bubble
(req = 1.0 mm), taking into account the Levich drag with temperature dependent
viscosity of water. It can be seen that the bubble in a temperature gradient has a
higher velocity at 28◦C than in a uniform temperature of 28◦C.

density differences. This effect is negligible, provided that

√
∆ρgreq
ρU2

T

	 1. (3.4)

In our case this fraction is approximately 0.01 and thus the buoyancy effect on the
wake due to the temperature gradient can be neglected with respect to the velocity of
the rising bubble.

4 Image analysis

For the analysis of the images a Fourier transform method of the bubble outline was
used as described in Lunde & Perkins (1995). The images were digitised and the
mapping coefficients between world and pixel-coordinates were determined by the
reference system. An intensity threshold, determined in each image, defined the
bubble outline. Subsequently this outline was re-mapped to permit the use of Fast
Fourier Transforms. Finally all parameters, such as position, shape (and so volume
and equivalent radius) and velocity, together with the dimensionless numbers, were
calculated assuming an ellipsoidal shape of the bubble with equivalent volume.

The experiments were recorded on an NAC high speed (500 frames/sec.) video
recorder and then digitised using a Unix frame grabber. The digital videos collected
in this way were checked on missing or double frames and errors due to conversion
from NTSC to PAL, and subsequently the data was converted to Raw Pixel Gray Map
(RPGM) format on which the analysis was performed.
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A reference system outside the water tank is used to determine the world co-
ordinates. It is essential that the reference system be recorded on each image as the
position of the images on the tape tends to ’flutter’ over several pixels on consecutive
frames. The effects of this motion can be eliminated by determining the displacement
of the reference points. The positions of the reference points are also used to adjust
for the misalignment of both perpendicular views. The determination of the linear
mapping coefficients between world and pixel coordinates can be described with

xw = axp + byp + c, yw = dxp + eyp + f. (3.5)

The 6 coefficients (a − f ) are determined by a least-squares method. For this a
minimum 3 reference points in each view are needed, but we used up to 6 to be able
to correct for translation, rotation and simple distortion of the image. Our reference
points were little holes in accurate adjustable rulers. The position of each hole on the
images was determined in a similar way as the centre of the bubble, which will be
discussed later.

A problem with the determination of the world coordinates of the reference
points and of the bubble is the difference in the optical magnification factor. This
problem arises from the differences between the two object distances as the reference
system is placed outside the water tank. The magnification factors can be determined
by simple optics (Hecht, 1974). For each lens the following formula can be used:

1
f

=
1
so

+
1
si

(3.6)

M = − si
so

(3.7)

where so and si are the object and image distances, f the focal length of the lens
and M the magnification factor. For the first lens the object distance is known and
the image distance can be calculated. From this the object distance for the next lens
can be calculated and so on. For all these lenses a magnification factor is determined
and all together lead to the overall magnification factor. In these calculations the
differences in optical path length of glass, water and air are taken into account.

A coordinate system X, Y, Z (see Figure 3.1) is defined, where Z is in the ver-
tical direction. Four different magnification (reference points and bubble XZ-plane
and YZ-plane) can be determined in this way. From these the images have been cali-
brated. The differences in magnification factor have been verified with measurements
of solid spheres of known size. The difference in the magnification factor between
reference system and bubble is 0.902 in the XZ-plane and 0.886 in the YZ-plane.

The image analysis is based on the method developed by Lunde & Perkins
(1995), with some modest improvements and adjustments for the schlieren images.
Numerical image analysis tools like edge detection filters, gradient filters or other
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standard filters cannot distinguish between the wake and the bubble. A better method
is to determine the intensity threshold of the bubble outline. An extra problem arises
from the vertical intensity gradient in the images caused by the schlieren method. So
successive images have different intensities near the bubble and need different thresh-
olds for analysis. This problem has been solved by determining the threshold from
a weighted average of the intensity in an area inside and an area around the bubble.
The outline is then re-mapped so that the fast Fourier transformation can be used.
The outline can be expressed as a complex function of its arc-length,

B(l) = x(l) + iy(l), 0 ≤ l ≤ L, (3.8)

which is an L-periodic function. The Fourier representation of B is then

B(l) = x(l) + iy(l) =
∞∑

n=−∞
An e(−2πinl/L). (3.9)

This will only work with an analytical expression, but not with a discrete represen-
tation of B(l) and discrete Fourier transformation has to be used on the re-sampled
discretised bubble outline for estimating the Fourier descriptors:

An =
1
K

K∑
k=0

[x(k) + iy(k)] e(2πink/K),
−K

2
≤ n ≤ K

2
. (3.10)

From the latter a continuous expression for the bubble outline can be determined

B(k) = x(k) + iy(k) =
K/2∑

n=−K/2

An e(−2πink/K), 0 ≤ k ≤ K, (3.11)

where x(k) and y(k) are periodic functions

x(k) =
∞∑

n=−∞

[
an cos

(
2πnk
K

)
+ bn sin

(
2πnk
K

)]
,

y(k) =
∞∑

n=−∞

[
bn cos

(
2πnk
K

)
− an sin

(
2πnk
K

)]
. (3.12)

Under the assumption that the bubble is ellipsoidal, it can be shown that the centre
of one projection outline gives two coordinates of the centre of the bubble. From
the second projection the third one can be determined and the z-coordinate is double
checked. The centre of the outline is the mean position of the outline and is conse-
quently covered in the A0 term of the Fourier descriptors. For example, in the XZ
view: x = �(A0) and y = �(A0). From the A±1 a first approximation of the major
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and minor axes and the direction can be determined. These quantities determine the
primary ellipse of the bubble.

The orientation of the (primary) ellipse is given by the phase angles of A±1; the
orientation of the major axis is (φ1 + φ−1)/2 (±π), where φn = arctan(bn/an).
The minor axis is perpendicular to the major axis. The lengths of the major and minor
axis of the primary ellipse are 2(|A−1|+ |A1|) and 2(|A−1|− |A1|), respectively. For
small bubbles these are equivalent with the exact major and minor axes. For larger
bubbles the direction of the axis remain equivalent, but the length of the axis will
change. These lengths are recalculated by determining the intersection of the axes, in
the specified direction, with the outline of the projections.

Path analysis

From consecutive images the path of the bubble is determined. From the path the
velocity could be derived by applying the technique of central differences. However,
this would lead to large error bars on the velocity. A better estimate is found by curve
fitting the path. In this way measuring errors are averaged, although systematic errors
will remain. From the experiments it appeared that all the paths could be described
with:

X(t) = X0 + Cx cos(ωxt + φx)
Y (t) = Y0 + Cy cos(ωyt + φy)
Z(t) = Z0 + Cy cos(ωzt + φz) + UT t, (3.13)

where X0, Y0 and Z0 are constants, the frequencies are denoted by ωx, ωy and ωz, and
the phase shifts by φx, φy and φz . The amplitudes are Cx, Cy and Cz . From fitting
these curves with the experimental data, the path and velocity of the bubble was
accurately determined. Furthermore, this makes analysis of the observed paths easy.
For example, the resulting top view (X,Y) can be classified as an ellipse. Assuming
that ωx = ωy = ω, which is a valid assumption as the observed top-views are ellipses,
the top-view of (3.13) can be rewritten in the form of a quadratic equation:

X(t) −X0 = Cx cos(ω t + φx) = Cx cos(ω t) cos(φx) − Cx sin(ω t) sin(φx)
Y (t) − Y0 = Cy cos(ω t + φy) = Cy cos(ω t) cos(φy) − Cy sin(ω t) sin(φy),

(3.14)

These equations can be rewritten in quadratic from by solving for cos(ω t) and
sin(ω t) to find

1
Cx

2Q2
X̃2 − 2CxCy cos(φy − φx)

Cx
2Q2Cy

2 X̃Ỹ +
1

Cy
2Q2

Ỹ 2 = 1, (3.15)
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with Q = −sin(φy − φx) and X̃ = X(t) − X0 and Ỹ = Y (t) − Y0. Although
mathematically speaking it is possible that Q becomes zero (φy − φx = nπ), phys-
ically this would mean that the motion is a zigzag and thus the top-view no longer
a ellipse but a straight line. Equation 3.15 is a general quadratic curve of the form
ax2 + 2bxy + cy2 = 1. Under rotation of the coordinate system

[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
, (3.16)

over such an angle (in anti-clockwise direction) that the axis of the ellipse coincide
with the coordinate axis, the curve is rewritten in a simple form for analysis

t1x
′2 + t2y

′2 = 1 (3.17)

This describes an ellipse with the lengths of the semi-axes are 1/
√
t1 and 1/

√
t2, so

t1 and t2 must both be positive. The aspect ratio of the ellipse is

ζ =

√
t1
t2
. (3.18)

Bubble shape

The shape of small bubbles is spherical. For slightly larger bubbles it can be shown
that the shape is an ellipsoid. A further increase in size results in a loss of the fore-aft
symmetry of the bubble as shown by Duineveld (1994). For the analysis an ellipsoidal
shape is assumed. For the bubbles of the size used in the experiments this assumption
is valid.

One of the properties of an ellipsoid is that the projections are ellipses. Further-
more, it can be shown that with three orthogonal projections the ellipsoid is uniquely
defined. The shape of an ellipsoidal bubble cannot be determined immediately from
only two projections. However, as the short axis is almost perfectly directed along
the path, the orientation of an ellipsoidal bubble can be determined from the path.
With two perpendicular views and the orientation, the ellipsoid is uniquely defined.

The general description of an ellipsoid is a quadratic equation

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz = 1, or (3.19)

1 = (x y z)


 a d e

d b f
e f c




 x

y
z


 = rTMr (3.20)

If the three eigenvalues of M exist and are all positive the quadratic equation de-
scribes an ellipsoid. The axes are along the eigenvectors and the length is the square
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root of the eigenvalue. Under these conditions, the projection onto a plane, in this
example the XZ-plane, can then be found from solving

F (x, y, z) = rTMr − 1 (3.21)
dF (x,y,z)

dy = 2by + 2dx + 2fz = 0. (3.22)

Although there exist two solutions to equation 3.21, the outline, projected in the XZ-
plane, is again a unique quadratic equation

a
(−ax2b + d2 + 2 dfz + f2z2 − cz2b− 2 exzb + b

)
e2b− abc + af2

= 0, (3.23)

which can be shown to be an ellipse and the minor and major axis can be derived in a
similar way as explained for the top view of the path. The solution a = 0 is not valid
as in that case equation 3.19 no longer describes an ellipsoid.

The objective is not the axes in the projection, but the axes of the ellipsoid itself.
From the two projections eight variables can be determined and from the assump-
tion that the minor axis of the ellipsoid is, approximately, in the direction of motion,
another variable can be determined. As a result the 9 parameters (three centre coordi-
nates, the lengths of three axes and the direction of three axes; the six parameters a-f,
and the three coordinates of the centre) necessary to uniquely describe an ellipsoid
are determined. However, this inverse problem is based on the fitted shape of the pro-
jections. The errors made in these projections would lead to errors in the determined
ellipsoid. An iteration procedure is necessary to determine the shape of the ellipsoid
for which the error in the outline of the projections is minimised.

The projection of the ellipsoid in the YZ-plane can be determined in a similar
way as shown above. Minimising the differences in contours of these projections and
the contours of the projections obtained experimentally will give the best approxi-
mation of the ellipsoidal bubble. Fortunately, the shape in consecutive time steps is
almost equal so that a small number of iterations is required.
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erFREE RISING BUBBLES IN

QUIESCENT WATER

The path of a rising bubble in hyper-clean water is correlated with the wake behind
the bubble. A double-threaded wake occurs for bubbles moving in a non-rectilinear
path. The non-rectilinear path, both spiralling and zigzagging, is in our view main-
tained by a lift force and not by vortex shedding, as is observed for solid spheres
and for bubbles in contaminated water. The strength of this lift force is indirectly
determined. For the zigzag, the lift force changes sign in the mean position of the
zigzag.

1 Introduction

Above a certain volume, bubbles rising in clean water perform unsteady irregular mo-
tions. For solid spheres a similar behaviour is observed, although at lower Reynolds
numbers (Re≈200) than for bubbles (Re≈600). The main differences between bub-
bles and solid spheres are the conditions at the boundary: no-slip and rigid for solids,
zero-tangential-stress and deformable for bubbles. These differences influence the
vorticity production at the surface and the drag. Contamination of the water may
result in solid-sphere like behaviour of the bubble.

Moore (1963, 1965) analysed the effects of shape and boundary layer on the rise
velocity of bubbles in a liquid of low viscosity. Many researchers have studied the
path of free rising bubbles experimentally, but Maxworthy et al. (1996) showed that
none of these were performed in perfectly clean fluids. Consequently, in our opinion,
the contamination of the fluids in most experiments is the reason for the differences
in the parameters indicating the transition between the occurrence of straight-rising,
spiralling and zigzagging path of bubbles.

The aim of this study is to simultaneously visualise, in a three dimensional way,
the path and wake of a free rising air bubble in hyper clean water. Although the
wake and the path of a rising air bubble are related, this relationship has hardly ever
been studied. The main reason is that most visualising or measuring techniques con-
taminate the fluid. In recent work of Lunde & Perkins (1997) a salted dye solution
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was used. Their conclusion was that vortex shedding is the mechanism for a bubble
performing a zigzagging path in clean water. It is shown here that this conclusion is
questionable.

In this chapter the experimental results for the three observed paths are pre-
sented: i) straight rising, ii) zigzagging and iii) spiralling. Based upon the experi-
mental results a wake model is developed that explains the path of the bubble. In
this model a lift force is employed. The magnitude of this lift force is indirectly
determined in several ways.

2 Results and Discussion

Experiments for bubbles with equivalent radii of 0.4-1.1 mm showed a clear transition
from a rectilinear path to a zigzag or spiral path. This transition occurred for bubbles
with equivalent radii of 0.81 mm or Reynolds number Re=740. After the transition
both zigzagging and spiralling bubbles were observed (cf. Saffman 1956). In the
present study it was observed that the majority of the zigzagging bubbles were found
to be of the size of 0.81-0.88 mm and 1.00-1.10 mm.

The angular motion of the spiral has no preferred direction; clockwise or anti-
clockwise and the top view of the path is an ellipse and not necessarily a circle. A
zigzag motion appears to be a special case of a spiral; one axis of the top view has
zero length. Although a spiral and a zigzag path are fundamentally the same, both
are separately mentioned to explain the differences in the development of the wake.

For a rectilinear path the wake consists of a single-threaded wake. After a path
instability sets in, a double-threaded wake is observed (Figure 4.2 and 4.8). The
initial disturbance of the wake determines the rate of growth of the instabilities in the
wake (§ 3).

2.1 Straight rising bubble

It is well known that a small bubble rises along a rectilinear path. In our experiments
this occurs for equivalent radii less than about 0.81 mm, Wecr < 2.7 and Re <740,
which is in agreement with the results of e.g Tsuge & Hibino (1977) and Benjamin
(1987), taking into account the temperature effects (Morton dependence of critical
Weber and Reynolds number, equation 2.13 and 2.14). The schlieren visualisation of
a straight rising bubble is presented in Figure 4.1. It shows the single-threaded wake
behind the bubble in pure water; on the left the XZ view and on the right the YZ view
as defined in Figure 3.1.

In Figure 4.1 the two perpendicular projections of the bubble and its wake are
visible. It is obvious that this bubble is straight rising as in both views the path
is straight. The black areas on the side of both projections belong to the reference
system. The reference points are the lighter spots. The vertical distance between
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FIGURE 4.1: The single-threaded wake behind a rectilinear rising bub-
ble (req = 0.79 mm). On the left the XZ view and on the right the YZ
view. The black areas are part of the reference system outside the water
tank. The walls of the tank and the mirror inside the tank are over 20
bubble radii away from the bubble.

these points is 0.5 cm. It can be seen in Figure 4.1 that the reference points between
the two perpendicular views are displaced vertically, which indicates that both views
are not perfectly aligned. This misalignment is compensated for in the analysis. The
reference system is placed outside the water tank and therefore will not influence the
motion of the bubble. The walls of the water tank and the mirror placed inside the
tank are over 50 bubble radii away from the bubble. As a consequence the motion is
not influenced by wall effects.

Although it is not (clearly) visible in the images, there exists a vertical temper-
ature gradient in the water column. The bubble drags some colder water in its wake.
For reference purposes, denote the direction from left to right in both projections as
positive. In a horizontal plane the temperature changes with position in both projec-
tions: i.e., from left to right, in the plane outside the wake warm, inside the wake
colder and outside the wake again warmer. A negative temperature gradient in hori-
zontal direction, or in other words a positive gradient in refractive index, is visualised
with a positive gradient in the intensity (a lighter area). A positive gradient in the
temperature results in a darker area. As a consequence the single-threaded wake is
visible as a lighter and a darker streak. The relation between grey scale and tem-
perature gradient is connected to the orientation of the schlieren gradient filter. The
schlieren images clearly show the stable single-threaded wake.
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In the vertical direction hardly any change in brightness is observed. This clearly
indicates that the present schlieren setup is only visualising the horizontal tempera-
ture gradient. It has to be noted, however, that in the vertical direction the measure-
ment technique only detects the curvature of the temperature profile. This implies
that the imposed temperature gradient is indeed constant.

Furthermore, it can be observed that the shape of the bubble is not spherical. In
fact it is nearly ellipsoidal, with the short axis aligned along the direction of motion.
In all experimental work for bubbles of the sizes studied in this thesis, this alignment
of the bubble, within measuring accuracy, is observed. So also for spiralling and
zigzagging bubbles. This fact is used to determine the orientation of the bubble from
the information on the path.

The configuration of the wake behind drops was extensively studied by Magar-
vey & Bischop (1961) and for small drops they also observed a single-threaded wake.
The transition towards a double-threaded wake occurs already at Re =210, which is
comparable to the critical Reynolds number for solid spheres. However, for both
drops and solid falling spheres no path instability has been observed. This is prob-
ably caused by the difference in the moments of inertia (Ryskin & Leal 1984). The
rotation of the wake of a solid light sphere (Achenbach 1974) eventually induces the
sphere to follow a spiralling path and to reduce the terminal rise velocity (Karamanev
et al. 1996).

Similarly for bubbles the local maximum of the terminal rise velocity (Fig-
ure 3.4) determines the transition between the rectilinear and the oscillatory motions.
In the present case this transition occurs for: UT = 36.5 cm/s; req = 0.81 mm;
or equivalently Re = 740 or We = 2.7, where the fluid properties of water at
T = 28◦C are taken (ρ = 996 kg/m3, ν = 0.8 × 10−6 m2/s and σ = 0.071 N/m).
The large difference in the critical Reynolds number for drops/solid spheres on one
hand and bubbles on the other hand is a strong indication that different mechanisms
might determine the onset of path instability.

2.2 Zigzagging bubble

As a path instability sets in, a bubble can either zigzag or spiral. For both cases a
double-threaded wake is observed. It is illustrative to analyse the zigzagging bubble
as a separate case. As the motion is in one plane a two dimensional flow analysis is
possible. The results this analysis will also explain the apparent differences between
the wake of a spiralling bubble and the wake of a zigzagging bubble.

In Figure 4.2 the two perpendicular views of a zigzagging bubble (req = 1.00
mm) can be seen. The motion of the bubble is in a single plane (two dimensional); by
coincidence this plane coincides with one of the projection planes in this experiment.
The sequence of images of the zigzag motion can be seen in Figures 4.4 and 4.5.
Clearly the path in the right view looks like a straight line and that in the left view
sinusoidal. Unfortunately, during a large part of the recording the bubble was behind
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FIGURE 4.2: The double-threaded
wake behind a zigzagging bubble
(req = 1.00 mm). By coincidence the
plane of the zigzag coincides with one
of the views.

FIGURE 4.3: An enlargement and en-
hancement of the wake behind the
zigzagging bubble in Figure 4.2. Es-
pecially the twist and the interaction of
the filaments further downstream can
be observed.

the reference system. However, this was the only recording in which the plane of
motion coincided with one of the projection planes, clearly showing the zigzagging
motion in a plane.

The shape of the bubble appears to change significantly in the right view (com-
pare t = 12 with t = 56 ms). This is not necessarily a shape oscillation as from
the other view it is clear that the bubble can be moving towards or away from the
observer, which for a flattened ellipsoid results in a change of the projection. In the
left image the shape of the bubble is also changing (compare t = 52 with t = 68
ms). This cannot be a result of the projection. It is concluded that there is a shape
oscillation for zigzagging bubbles. In the experiments this shape oscillation appeared
to have the same frequency as that of the path. It is conjectured that the shape is
related to the orientation and the nature, single- or double-thread, of the wake.

Especially the wake shows very interesting phenomena. Just behind the bubble a
double-threaded wake is visible in the YZ view of Figure 4.2 (enlarged in Figure 4.3).
The left view of Figure 4.2 only shows a single thread, caused by the projection;
one thread blocks the view of the other thread. This is the general picture behind a
zigzagging bubble: a double-threaded wake. However, when the bubble passes its
’mean’ position (t=28ms in Figure 4.4), or in other words, when the curvature of the
path becomes zero, in both views only a single thread is observed. It is observed that
the double-threaded wake only exists when the curvature of the path is nonzero. This
is in agreement with the single-threaded wake observed for straight rising bubbles.

The patterns observed in the wake, several bubble diameters behind the bubble,
are a result of the instability of the double-threaded wake. This is not vortex shedding,
as was assumed by other researchers, e.g. Lunde & Perkins (1997) and Brücker
(1999). For the bubbles in the present regime of interest, vortex shedding is not
observed . In § 4 it is shown that the instability of the double threaded wake (two
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t=0ms t=4ms t=8ms t=12ms

t=16ms t=20ms t=24ms t=28ms

t=32ms t=36ms t=40ms t=44ms
FIGURE 4.4: Successive schlieren images of a bubble (req = 1.00 mm) in zigzagging
motion. Each pair of images contains the XZ and YZ view, respectively. Note that in
the YZ-view the path is straight while it is sinusoidal in the XZ-plane. Furthermore,
the wake of the bubble is a double-threaded wake, unless the curvature of the path is
zero (starts att ≈ 24 ms) in the mean position of the zigzag. The wake reconnects
and in the following the occurrence of an instability is observed in the wake. It is
clear that the zigzag isNOT maintained by vortex shedding at the maximum of the
sinus in the XZ-plane (t ≈ 64 ms).
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t=48ms t=52ms t=56ms t=60ms

t=64ms t=68ms t=72ms t=76ms
FIGURE 4.5: Continuation of schlieren images of a zigzagging bubble

counter rotating vortex filaments) is in fact the Crow instability (Crow 1970). In
general this instability corresponds with the instability of the trailing vortices behind
airplanes.

Modelling the zigzag motion

In this section the zigzag motion is analysed by applying momentum conservation
principles. Furthermore, an explanation for the appearance and disappearance of the
double-threaded wake is given.

Denote a reference system moving with the bubble. As long as the bubble rises
rectilinearly, the fluid far from the bubble has a velocity Uf = −UTk in vertical
direction. A straight rising bubble carries bound vorticity with only an azimuthal
component, which is confined to the boundary layer of the bubble and the wake. The
horizontal component of the momentum is zero.

Suppose that the bubble, without changing shape or orientation, has a horizontal
velocity as well. Because of the no-tangential-stress condition at the bubble’s surface,
there is now a meridional vorticity component ωθ. Since vorticity is conserved, the
vorticity lines leaving the bubble, now have a vertical vorticity as well. This vertical
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component of the vorticity will form a double-threaded wake. As a bubble is unable
to change its shape or orientation instantaneously, for these bubble sizes a double
threaded wake will occur for all curved paths.

If for some reason (e.g. instability in wake, surface instability) the bubble starts
to move to the right, there has to be an opposite rate of change of fluid impulse in
the wake of the bubble. Let the added mass of the bubble be a tensor M, which for
an ellipsoidal bubble only has diagonal components. The component M11 then is
associated with the added mass in the direction of the minor axis and M22 along both
major axes. The velocity of the bubble is UTk + Ub, where Ub is the horizontal
velocity component.

For a control volume of fluid enclosing both the bubble and the wake, the re-
sultant force is the external force, in the present case this is the buoyancy force. The
buoyancy force acts only in the vertical direction. Therefore the rate of change of
the fluid impulse due to the horizontal deflection, d(M22Ub)/dt, must be equal and
opposite to the rate of change of momentum of the wake in horizontal direction.

The change of the momentum of the wake is accomplished by the formation of
the double threaded wake, or in other words the trailing vortex filaments (Figure 4.6).
The normal to the plane through the filaments close to the bubble is aligned along
ds × l. In a cross section of the wake the ds × l-component of the momentum I
of infinitely long, straight, counter rotating vortex filaments of strength Γ is, see for
example Saffman (1992), p. 102,

I = ρΓl (4.1)

Per unit time the length of the wake grows with UTk+Ub m. The change of momen-
tum per unit time in the wake is ρΓ(UTk + Ub) × l. The change of fluid momentum
(If ) per unit time is, adding the added mass term and the wake term,

dIf
dt

=
d(M · (UTk + Ub))

dt
+ ρΓ(UTk + Ub) × l (4.2)

The change of the horizontal fluid momentum component should be balanced
by a change of the horizontal bubble momentum component of opposite sign. The
change of bubble momentum per unit time, or in other words the force on the bubble,
thus becomes

dI
dt

= −d(M · (UTk + Ub))
dt

− ρΓ(UTk + Ub) × l (4.3)

Furthermore, the drag force D and the buoyancy force B = −ρgV act on the bubble.
The force balance on the bubble becomes

−d(M · (UTk + Ub))
dt

− ρΓ(UTk + Ub) × l− ρgV + D = 0. (4.4)
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From (4.4) it follows that the bubble acquires a velocity in the horizontal plane
and the velocity vector inclines towards this plane. In other words, from momentum
conservation an opposite rate of change of momentum on the bubble to that of the
wake, will force the bubble in a curved path.

At this point is is worthwhile to review the inviscid spiralling of bubbles as
described by Benjamin (1987). In the spiralling motion, in which both linear and an-
gular impulse are conserved, it is essential that there is a small angle (η in Benjamin’s
paper) between the velocity vector of the bubble and the minor axis of the ellipsoid,
which is a good approximation of the instantaneous shape of the bubble.

In work on bubbles it is reported by various authors (e.g. Ellingsen 1998, Duin-
eveld 1994 and Lunde & Perkins 1997) that the shape of the bubble can be describe
as an ellipsoid, however with the velocity vector directed along the minor axis. It is
quite possible that the small angle η is within the experimental measuring accuracy.

On the basis of this analysis, it is plausible that either this misalignment exists
or a non axisymmetric shape is present. This point is certainly a good subject for
future research. In inviscid spiralling the bubble spins about the major axis. Whether
such spinning motion is present experimentally, can not be concluded on the basis of
the present experiments, although the orientation is definitely changing. On the basis
of the present experiments no conclusive argument can be given for either, although
there is a strong indication that the shape is no longer axisymmetric for zigzagging
bubbles (Figures 4.4- 4.7).

The second term on the left hand side of (4.4) is a lift force on the bubble related
to the wake. As long as Ub = 0, there is no Γ either. Just before the onset of path
instability, the acceleration of the bubble is negligible and buoyancy and drag balance
each other. Since g = −gk the drag then is D = −ρgV . At the first instant after
path instability has set in, (4.4) becomes

d(M22Ub)
dt

= −ρΓUTk × l, (4.5)

Which implies an acceleration of the bubble in the horizontal direction, as soon as a
double threaded wake is formed. Subsequent production of vorticity on the bubble’s
surface will maintain the strength of the vortex filaments and so the magnitude of
the lift force. When Ub increases, and the force includes the contribution of this
lateral motion, the lift force remains normal to the trajectory of the bubble. The
bubble’s trajectory is bent more and more. However, when the path is no longer
along k, buoyancy will decrease the effect of the lift force and the curvature of the
path decreases. This is clearly visible in the figures of Figure 4.4, where the curvature
of the path is decreasing towards the horizontal mean position. Ultimately, at t ≈ 28
ms, the effect of the lift force on the deflection will be balanced with the component
of buoyancy perpendicular to the path and the motions becomes rectilinear again.
However, this rectilinear motion is not aligned with k.
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ds

l
Γ

Γ Γ

Γ
Γ

FIGURE 4.6: The left three images are the XZ, YZ and 3D view of path and related
wake. The lowest part is the straight rising part, approximately 4 cm exactly above
the capillary. Note the intermittent wake behind the zigzagging bubble. The most
right image is the model of the bubble and wake as a lifting line with trailing vortices.

As a result the vorticity production on the bubble’s surface becomes purely az-
imuthal again and a single-threaded wake is formed; the two counter-rotating vortex
filaments have reconnected. Now the lift force becomes negligible. Buoyancy will
deflect the bubble towards k. This deflection causes that the vorticity on the bubble
is no longer azimuthal with the new direction of motion and a double-threaded wake
is formed. The whole process starts again, now with an opposite sign of the lift force
(Figure 4.7). Clearly this leads to a zigzagging motion.

It is easy to show that the whole argument is similar when not an initial hor-
izontal displacement, but the formation of the double-threaded wake is assumed as
the first onset of the instability. The nature of the instability is arbitrary as long as it
can be associated with a change in the horizontal component of the momentum of the
bubble and an opposite sign in that of the fluid.

The general picture of the bubble wake and the nature of the lift force is sketched
in Figure 4.6. Vortex lines are closed and hence there is a circulation around the
bubble. In this sketch this is modelled as a line vortex crossing the bubble generating
the described circulation. This makes a comparison to a lifting line theory possible.

It has to be stated, that the motion that arises from this model has obtained a
mean horizontal displacement dx of the bubble, Figure 4.6. In other words, the mean
horizontal position of the zigzagging bubbles is not straight above the capillary. This
needs to be verified experimentally. In the present setup the position of the capillary
relative to the reference system could not be determined accurately as the measure-
ments were performed approximately 30 cm above the capillary. If this horizontal
displacement is the case, however, it can explain the lack of reproducibility of the
experiments as the direction of this displacement is arbitrary. Often, as shown in the
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FIGURE 4.7: The direction of the forces,
the added mass force not included, on
a zigzagging bubble near the equilibrium
position. The wake-induced lift forceL is
perpendicular to the path and of constant
strength as long as the curvature is non-
zero. Buoyancy,B, is always directed up-
wards and the Drag,D, is always along
the path. When buoyancy balances the lift
force the curvature becomes zero. For a
zero curvature the lift force is zero. Buoy-
ancy deflects the path and the lift force
changes sign.

experimental results presented in Figure 4.2, parts of the path are behind the reference
system, although a previous, similar-sized, bubble stayed in between of the two sides
of the reference system. This is a strong indication that indeed the mean horizontal
displacement is present.

In fact, we expect that any experimental setup studying bubble dynamics in this
regime and giving reproducible measurements has to be a poor experiment in the
sense that a preferred direction of the initial displacement is posed. A very probable
cause for these imperfections is the bubble production and release (Chapter 5). In
the present experiments care was taken to manufacture accurate capillaries. Using
a microscope the capillary edge was checked for imperfections due to cutting and
polishing.

In summary the zigzagging path is maintained by a lift force directed perpendic-
ular to the path of the bubble and is related to the double-threaded wake. This wake is
fed by the vorticity production on the bubble’s surface as soon as the curvature of the
path is non-zero. A good approximation is a constant strength of the wake and thus
the lift force, except for the equilibrium region. In this region a single-threaded wake
is observed. In the model this point on the path is assumed to be a singular point at
which the lift force changes sign abruptly.

This wake-induced lift force should not be confused with the shear-induced lift
force observed for bubbles. As in the present experiments the liquid is quiescent there
is no shear-induced lift force.

2.3 Spiralling bubble

The path of a spiralling bubble is hardly ever a perfect spiral. Observed from above
the perfect spiral path would be a circle. Otherwise ellipses are observed (Figure 4.12.
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FIGURE 4.8: The two perpendicular views, XZ and YZ, of a double-threaded wake
behind a nearly perfectly spiralling bubble (req = 1.01 mm).

For every spiralling bubble a double-threaded wake was observed (Figure 4.8). When
spiralling bubbles are small or close to perfectly spiralling this is a stable wake.
For large bubbles and ellipsoidal top views of large aspect ratio (tendency towards
zigzag), this wake is unstable close to the bubble. Although even for the perfectly
spiralling bubble the wake becomes unstable a long time after the bubble has left the
frame of view, we will call this wake stable.

For a stable bubble wake in both views it might appear that the filaments are
twisting but this is a result of the projection. Care has to be taken in identifying
spiralling or zigzagging from just one side view. Two views are needed, because
often in one view a motion might look like a spiral, but appears to be a perfect zigzag.

From the separate views (Figure 4.9) a mode-2 axisymmetric shape oscillation
appears to be present. However, after the bubble shape and orientation is recalculated
with the analysis program, no shape oscillations of the bubble is found. For zigzag-
ging bubbles (§ 2.2) a mode-2 oscillation has been observed and has been related to
the orientation and the nature of the wake. Contrary to zigzagging bubbles, the wake
consists of a double-threaded wake at all times. For a spiralling bubble the orientation
of the filaments is not changing relative to the orientation of the bubble. The bubble
has a fixed shape, but the orientation changes in such a way that the minor axis is
directed along the path.

The apparent mode-2 oscillation appears to be caused by the projection of the
outline of the bubble in a single view. Lunde & Perkins (1995) did mention this
mode-2 shape oscillation, however they observed this in each view separately and
did not analyse the shape and orientation in detail. Probably, they were misled by the
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projection of the bubble. Ellingsen (1998) noted this projection effect and concluded
that no mode-2 shape oscillation was present for spiralling bubbles. Even for a solid
ellipsoid in a spiralling path, with the minor axis directed along the path, the periodic
change in angle of view will show this apparent mode-2 oscillation in a single view.
Obviously, there is no shape oscillation for a solid ellipsoid.

In Figures 4.9- 4.11 it can be seen that the wake is positioned asymmetrically
behind the bubble. At t = 72 ms the wake in the XZ view is positioned on the right
side of the bubble. As a consequence the shape of the bubble is no longer perfectly
ellipsoidal, but we believe that this has limited influence on the observed motion.
Furthermore it might appear that the views, XZ and YZ, were not taken at the same
time as the height of the bubble appears to differ in both views. In fact this is a
misalignment of both projections. From the recordings of the reference system (see
also Figure 4.8) this misalignment is compensated for in the analysis.

The most plausible explanation of the horizontal motion is the force on the bub-
ble resulting from the wake, as was hypothesised for the zigzagging motion. From the
successive images it is observed that the wake consists of two counter rotating vortex
filaments. Similar to the zigzagging motion, see §2.2, this is related to a lift force on
the bubble. This wake-induced lift force is directed towards the central position of
the spiral perpendicular to the path. Thus maintaining the spiralling motion.

However, the question of the onset of the spiralling motion from the rectilinear
path is still unanswered. One possible explanation is that an impulsive wrench in
vertical direction occur as a first instability. Such an impulsive wrench is hard to
imagine for the most likely instabilities. However, according to Benjamin’s (1987)
theory an impulsive wrench has to be present for a spiralling motion.

Another way to explain the spiralling motion is that a second instability of the
zigzagging path occurs. After the first instability a zigzagging motion occurs and
then an instability on the zigzagging path takes place. A type of instability that might
occur is a rotation of the plane through the filaments relative to the bubble, or a similar
instability as observed for the transition from rectilinear to zigzag path. If the initial
displacement is not in the same plane as the zigzag, a helical motion is most likely to
take place. This can be deduced from similar arguments used to explain the zigzag
motion. Furthermore the direction a second instability can explain the appearance
of both clockwise and anti-clockwise helical motions, depending on the direction of
rotation of the plane through the filaments of the threads relative to the bubble, or the
direction of the second displacement.

For this it is necessary that the orientation of the wake changes gradually.
This reorientating wake can be associated with the appearance of an impulsive
wrench, which is in agreement with the Hamiltonian theory for a spiralling bubble
by Benjamin (1987). The wake-induced lift force remains perpendicular to the path
and gradually a perfectly spiralling motion is formed. In the intermediate regime
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t=4ms t=8ms t=12ms

t=16ms t=20ms t=24ms

t=28ms t=32ms t=36ms

t=40ms t=44ms t=48ms
FIGURE 4.9: Successive images, XZ and YZ views, of a bubble (r = 1.01 mm) in spi-
ralling motion. The wake consist of a double-threaded wake, which becomes unstable
far behind the bubble (not visible).
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t=52ms t=56ms t=60ms

t=64ms t=68ms t=72ms

t=76ms t=80ms t=84ms

t=88ms t=92ms t=96ms
FIGURE 4.10: Successive images of spiralling motion req = 1.01 mm (continued).
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t=100ms t=104ms t=108ms
FIGURE 4.11: Successive images of spiralling bubbles req = 1.01 mm (continued)

non-perfectly spiralling motions will exist, which explains the often observed non-
perfectly spiralling motions (top view ellipses, Figure 4.12).

The appearance of a second instability indicates that the height above the release
point is essential. Close to the release point mainly zigzagging and very flattened he-
lical motions will are expected. High above the release mainly perfectly spiralling
motions are expected. Also the previously mentioned perfectly zigzagging bubbles
are expected to follow a perfectly spiralling path high above the capillary. Experi-
ments by Ellingsen (1998) do show these trends.

The typical horizontal (u = ẋ, v = ẏ) and vertical (w = ż) velocity components
for an almost perfectly spiralling bubble can be seen in Figure 4.13. The velocity
components are calculated from the path description found from the best fit to the
experimental data,

x(t) = 3.39 + 0.42 sin(33.0t − 1.07),
y(t) = 3.86 + 0.32 sin(32.5t + 0.62),
z(t) = −0.32 + 0.02 sin(54.2t + 1.44) + 31.3t, (4.6)

where x, y and z are the Cartesian coordinates and all distances are in cm. From
this it can be concluded that the velocity magnitude, Utot =

√
u2 + v2 + w2, and the

vertical velocity are not exactly constant. It appears that this results from the small
deviation from a perfectly spiralling motion; the amplitudes of the horizontal dis-
placements are not equal. In this case the mean terminal rise velocity was UT = 31.3
cm/s. It is expected that both the vertical velocity component and the velocity magni-
tude become constant as soon as the bubble was in a perfectly spiralling motion; top
view of path is a circle.

The path of all spiralling and zigzagging bubble can be described by:

x(t) = X0 + A sin(ωxt + φx)
y(t) = Y0 + B sin(ωyt + φy)
z(t) = Z0 + C sin(ωzt + φz) + UT t, (4.7)
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FIGURE 4.14: XZ and YZ views of experimentally observed path and the fitted path
(equations 4.5) for the spiralling bubble of Figures 4.8-4.10.

where UT is the mean terminal rise velocity. As was already seen in (4.6) in general
A �= B and C << A,B. φx and φy are the phase angles; |φx − φy| = π/2 for
a perfectly spiralling path. The frequencies, ωx and ωy, are not necessarily equal,
resulting in rotating ellipsoidal top views. Unfortunately, no detailed information of
this rotation could be gathered as the length of the observation view are was limited.
However this rotation has been observed by Ellingsen (1998). That A �= B results in
non perfectly spiralling motion. This can also be concluded from the fact that there
is an oscillation on the vertical velocity, C �= 0.

Note that the path of spiralling bubbles observed in the present experiments
cannot be described by the predictions of the Hamiltonian theory of Benjamin (1987)
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FIGURE 4.15: The Crow insta-
bility of the trailing vortices in
the wake of a B-47 at cruising
speed and altitude. (Taken from
Smith & Beesmer, 1959)

FIGURE 4.16: The most unstable wavelength
versus vortex core size. On the horizontal the
core size over the initial core distance is plot-
ted.W is the ratio of axial and swirl velocity.
Taken from Widnall et al. (1971).

(Equation 2.11). According to this equations the radius of the spiral will be smaller
than can

√
3/10 ≈ 0.17 times the equivalent radius of the bubble. In the present

experiments a typical factor of the radius is 4 times the equivalent bubble radius is
obtained.

For the zigzagging bubble we described a model based on the equation of mo-
tion 4.4. This equation is also valid for spiralling bubbles and the lift force can be
associated with the path described by the bubble. This will be eluded on in §4.

3 Wake

Close to the bubble the spiralling and zigzagging wake (Figures 4.8 and 4.2) are in
general similar, although they show great differences in their subsequent behaviour.
The wake of zigzagging bubbles is unstable on a short time-scale, whereas the insta-
bility of the wake of a spiralling bubble sets approximately 2s later. The instability
in the wake can be explained by the tendency of the counter-rotating vortex filaments
to become unstable. In case the structure of the bubble wake is comparable with the
wake of an airplane, the wake of the bubble is susceptible to the Crow instability.
In Crow (1970) pictures of the pair of counter rotating trailing vortices of an air-
plane in cruise (Figure 4.15) are shown. In these pictures the instabilities are clearly
observable.

Extensive research (e.g. Widnall et al. 1971) showed that an initial small pertur-
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bation is the onset of this instability. For a zigzagging bubble the initial perturbation,
the reconnection of the vortex filaments, is larger than for a spiralling bubble with a
regular wake. Therefore the instability develops much quicker and is already visible
close to the bubble. For the spiralling bubble this instability occurs about 2s after the
the vortex pair was generated on the bubble. This is equivalent to about 300 bub-
ble diameters behind the bubble. Similarly for airplanes this instability would set in
several hundreds of wing-spans behind the airplane.

The present observations of the zigzagging wake do not agree with the observa-
tions of other researchers, e.g. Lunde & Perkins (1997) and Brücker (1999). These
authors observed vortex shedding and they related this to the mechanism for main-
taining the zigzag motion. This vortex shedding would occur at the maximum ampli-
tude of the zigzag, whereas we observed a stable double-threaded wake at this point.
In the present experiments the reconnection of the wake for zigzagging bubbles takes
place at the point where the bubble passes through the equilibrium position. Cer-
tainly both mechanism are very different. The vortex shedding is probably related to
the dyes and/or particles added to the water. These contaminations were necessary
for the visualisation techniques employed by Lunde & Perkins (1997) and Brücker
(1999).

Extensive research by Ellingsen & Risso (1998) shows interesting phenomena
far (40 bubble radii) behind a zigzagging bubble (req = 1.25 mm). For a horizontal
distance of 8 bubble radii from the point at which the bubble passes through the
measuring volume the vertical liquid velocity component peaks at about 5.0 cm/s
(15% of UT ). We believe that this velocity peak is associated with the vortical regions
formed by the Crow instability of the trailing vortex filaments. For these vortical
regions we determined a mean displacement velocity of about 10-20% of UT .

Admittedly, a striking difference between the instability of the wake behind an
aircraft and a bubble is the observed wavelength. For an airplane Crow concluded that
the wavelength is 8.6 times the initial distance of the vortex cores, b. In the wake of a
(zigzagging) bubble this wavelength is approximately 5b (Figure 4.3). This difference
can be explained by adding an axial velocity component in the vortex filaments. This
was studied by Widnall et al. (1971) and the wavelength depends on the ratio of the
maximum axial and the maximum swirl velocity components, W (Figure 4.16).

The observed wavelength for the instability, 5b, is much shorter than the wave-
length of the zigzag, which is approximately 60b. As a result the instabilities seen in
the wake of a zigzagging bubble can not explain the periodic motion of the bubble.
Furthermore, the frequency found in the wake is not coupled with any frequencies of
shape oscillations of the bubble, but is in fact the wavelength of the Crow instability
with axial velocity.
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4 Strength of the wake

FIGURE 4.17: The wake configuration of two
counter-rotating filaments. The self-induced hor-
izontal velocity isUf and distance between the
threads isl

From the wake visualisations only the streaks can be made visible. The strength
of the vortex filaments forming the wake can not be determined directly. In the fol-
lowing possible methods are given to indirectly determine the strength of the wake.
One method is based on the self-induced motion of the wake. Another method is re-
lated to the force balance on a bubble. Further methods are related with the measured
path.

In the experiments of zigzagging or spiralling bubbles the horizontal motion of
the wake is determined. Since the wake of nearly perfectly spiralling bubble path is
more stable, it gives the best reliable results. As the wake consists of two counter-
rotating vortex filaments, the self-induced motion is related to the strength of vortices
in the wake (Figure 4.17). The self-induced velocity, Uf of the filaments, and the
distance l between them, can be determined. The self-induced velocity is determined
in a single projection near the maximum amplitude of the path. The circulation Γ of
a vortex filament can now be estimated from

Γ = 2πUf l. (4.8)

As already describe in the derivation of (4.5) it follows that the horizontal component
of the lift force is estimated by

L = ρΓlUT = 2πρUf l
2UT . (4.9)

For a typical experiment the following values were found:

Uf ≈ 3.0 cm/s,

l = b ≈ 0.6req ≈ 0.6 mm,

UT ≈ 31.6 cm/s,

req = 1.0 mm. (4.10)
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This results in a horizontal component of the lift force Lxy = 2.1 · 10−5 N. Note
that the bubble path and thus the wake are at an angle to the horizontal. The total lift
force can be determined from this pitch angle α with the horizontal of the spiral. For
the spiralling bubble described in § 2.3 this angle is 29◦. The total wake-induced lift
force than becomes L = 2.5 · 10−5 N.

A second method of estimating the lift force on the bubble can be obtained from
the balance of the buoyancy force component perpendicular to the path and the lift
force as soon as the curvature of a zigzagging bubble becomes zero (Figure 4.4 t = 28
ms) as explained in the proposed model (§ 2.2). It appears that the angle which the
path makes with the vertical is about 36◦. Taking ρ = 1000 kg/m3, g = 9.81m/s2

and V = 4
3πr

3
eq, the buoyancy force component balancing the lift force is Fgn =

|ρgV sin(36)| = 2.4 · 10−5 N. This is in remarkable agreement with the lift force
determined directly from the wake.

Since the velocity magnitude of a spiralling and zigzagging bubble of the same
size are about equal and the shape is similar, it can be deduced that the amount of
vorticity produced by the bubble is about equal. And thus the lift force should have
a comparable value. The lift force needed to maintain the spiralling motion is deter-
mined, for example for a 1.0 mm bubble as described in § 2.3. Now equation (4.4)
needs to be solved for the determined spiralling path. The pitch angle of the spiralling
motion can be determined from the experiments, αp = 29◦. From this a vertical com-
ponent of the lift force can be determined, Lz = Fg sinαp = 2.0 · 10−5 N. The total
wake-induced lift force is L = Fg tanαp = 2.3 · 10−5 N.

The horizontal component of the bubble velocity is Uh = 0.17 m/s. The spiral
radius R = 3.7 mm and the added mass M or M22 is 2.2 · 10−6 kg, when a spherical
shape is assumed. Now the centripetal force Fc on the bubble can be calculated which
should be balanced by the horizontal component of the lift force.

Lxy = Fc = MU2
h/R = 1.7 · 10−5 N (4.11)

and thus L = Lxy/cos(29◦) = 2.0 ·10−5 N. This is slightly lower than the values de-
termined in other ways as described above. The reason for this is that the added mass
is underestimated by the assumption of a spherical shape instead of an ellipsoidal
shape.

5 Conclusions

A path and wake visualisation method has been developed that does not affect the
purity of the water. It was found that the wake of spiralling and zigzagging bubbles
consists of two counter-rotating vortex filaments. Both motions are in many aspects
similar and can occur for roughly the same experimental conditions.
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The differences seen in the configuration of the wake far behind the bubbles
can be explained by an instability of the system of the two counter-rotating vortex
filaments. As the initial disturbance of the wake for a zigzagging bubble is larger
than for a perfectly spiralling bubble, this instability is observed closer to the bubble.
The wavelength of this instability is much smaller than the wavelength of the bubble’s
motion. Consequently, this instability cannot be the explanation for the zigzag motion
of a bubble in pure water.

As soon as the curvature of the path becomes non zero the wake consists of
a double-thread vortex system. This double-thread is shown to be associated with
a lift force on the bubble. The perfect two dimensional motion for a zigzag can
be explained by taking the lift force into account. The lift force is always directed
perpendicular to the path.

The wake of zigzagging bubbles consists of a double-threaded wake as long as
the curvature is non zero. When the curvature becomes zero the vortex filaments
reconnect and successively a double-threaded wake of consisting of two counter-
rotating vortex filaments of opposite sign is formed.

A lift force can be associated with the double-threaded wake. The strength of
this lift force can be obtained from the self-induced motion of the wake, the force
needed to maintain the spiralling motion, or from a balance between buoyancy and
lift force as soon as the curvature of the path becomes zero for a zigzagging bubble.

Since all experiments reported by other authors concluded that vortex shedding
(similar to the case of solid spheres) is the mechanism for the zigzag motion, the
purity of the water used in their experiments is questionable. Yet, in many cases the
water was still considered clean, based on measurements of the rise velocity of the
bubble. Consequently a better indicator for the purity of the water should be used. A
temperature gradient has an effect on the rise velocity of the bubble, nonetheless it
does not affect the purity of the water.

Furthermore, shape oscillations have not been observed for spiralling bubbles.
The mode-2 shape oscillation claimed by other researchers, is in fact, a result of the
limited information on the bubble’s shape when considering only a single projection.
A more detailed analysis employing two projections shows no shape oscillations. For
zigzagging bubbles a shape oscillation is observed and is related with the disappear-
ance and reappearance of the double-threaded wake.
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SHAPE EFFECTS

The way a bubble is produced can be very important for its subsequent behaviour.
Especially bubble shape oscillations at the moment of release of bubbles should be
avoided. Furthermore, small deviations of the exact shape can have a tremendous
effect on the flow around the bubble.

1 Introduction

For the study of path stability it is desirable to eliminate as many sources of distur-
bances as possible. Possible source of disturbances are volume and shape oscillations
triggered at the production and release of the bubble. These can be eliminated. The
bubble production apparatus used in the present experiments is developed for accu-
rate, reproducible bubble sizes in a large range of sizes, and it has the advantage that
initial bubble shape oscillations are not observed. In our experiments the needles
(capillaries) are small and well polished, which has a positive effect on the smooth-
ness of the release.

Duineveld (1995) showed that for bubbles larger than req = 0.6 mm, the bub-
ble no longer has fore-aft symmetry. In spite of this the bubble is assumed to be
ellipsoidal in many parts of this thesis. These assumptions have to be discussed.

The shape and the orientation of the bubble can have significant effects on the
flow around the bubble. Numerically it will be shown that a small deviation of the
bubble’s ellipsoidal shape delays the formation of a standing eddy. Furthermore the-
ses numerical simulations indicate that at the onset of path instability in experiments,
a standing eddy does not exist behind a bubble.

2 Bubble release

For the study of path instability of a free rising bubble, external factors influencing
the stability should be eliminated. One very important factor is the bubble formation
and its release. This should be as smooth as possible. Ideally the aim is to release
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FIGURE 5.1: Neck-breaking process of a bubble produced in a conventional way.
Taken from Manasseh et al. (1998). Subsequently large shape oscillations are ob-
served for the accelerating bubble.

a single exactly spherical bubble, without any shape oscillations, in totally quiescent
pure water.

Unfortunately, the most widely used method for bubble formation is a continu-
ous airflow through a needle, which does not fulfil this criterion. The main drawback
of this method is the neck-breaking process when the bubble detaches (see figure
5.1). The formation of the neck is associated with the surface tension between water
and air (Longuet-Higgins et al. 1991). Just after neck-breaking the rear of the bubble
features a cusp. After detachment this tip of the bubble is rapidly retracted and forms
a jet inside the bubble. Occasionally even a water droplet is formed inside the bubble
(Manasseh et al. 1998). Obviously undesirable large shape oscillations will appear.

A typical damping time scale, τs for shape oscillations, applied to the case of
spherical bubbles, can be obtained from art. 355 in Lamb (1932),

τs =
1

(n + 2)(2n + 1)
r2
eq

ν
, (5.1)

with n the mode number of the oscillation. The least damped mode is the n = 2
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FIGURE 5.2: Spherical release of bubbles produced in the experiments. Subsequently
the bubble accelerates and adapts its shape smoothly.

mode, leading to

τs =
r2
eq

20ν
. (5.2)

The typical time scale for a spherical bubble to reach the point at which path insta-
bility sets in is comparable to the relaxation time of the bubble. It is approximately

τp =
r2
eq

18ν
. (5.3)

Both time scales are of the same order. Therefore shape deformations and oscil-
lation caused by the formation and release of bubbles are not completely damped
at the point of the onset of path instability. These shape deformations might affect
the instability. Hence the formation and release of bubbles should be as smooth as
possible.

Another problem encountered in the ‘old fashioned’ bubble formation process is
the continuous production of bubbles. This will result in an influence of the wake of
the preceding bubble on the following bubble. As it is generally observed that bubbles
will follow the path of a preceding bubble, clearly the observed path instability is
influenced. This certainly will lead to reproducible measurements of consecutively
produced bubbles. But it doubted that path instability, especially the initial deflection
direction, of a single free rising bubble in quiescent water is reproducible (see chapter
4).

The bubble production mechanism used in the present experiments does not
have these drawbacks. An adjustable volume of air determines the size of the bubble.
As soon as the bubble is on the top of the capillary, it is almost completely surrounded
by liquid. Even within the capillary water is present. For that reason the bubble is
always released spherically. Furthermore, the time difference between successive
bubble releases can be chosen arbitrarily large. In fact, only one bubble is produced
in an experiment. Thus there is no effect of the wake of a preceding bubble.

The nice spherical shape of the bubble at release can be seen in figure 5.2. A
trivial consequence of the spherical bubble release without shape and volume oscil-
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FIGURE 5.3: The effect of deformability on the configuration of the wake for a bubble
of Re=166 and aspect ratio of 1.75. In the upper half of the image the computed
velocity profile (arrows) and the stream lines for a fully deformable axisymmetric
bubble show no attached wake. Contrary to this, a similar calculation for a fixed,
ellipsoidal shape with an identical aspect ratio does show an attached wake (lower
half).

lations is the absence of an acoustic signal. In many methods the Minnaert frequency
(Minnaert 1933) associated with volume oscillations is used to determine the bub-
ble size. In the author’s opinion it is more logical to associate this frequency with a
poorly produced bubble. If one is able to determine the size of a bubble from the Min-
naert frequency, then these bubbles are not suitable to study the fundamental nature
of path instability.

3 Shape effects on the flow pattern

The consequences of the shape deformation on the flow around the bubble can be
considerable. In the present study numerical simulations, using the code of Takagi et
al. (1994), have been performed. The simulations are grid independent. In Figure
5.3 two results are presented. Both calculations, with equally sized bubbles, are
performed taking into account a zero tangential stress condition at the bubble surface.
In the upper half the bubble shape is fully adjustable and in the lower half the bubble
shape remains an ellipsoid. The differences in both shapes are so small that they
are not discernible in Figure 5.3. Nevertheless the effects on the flow around the
bubble are large. For the fully adjustable, axisymmetric shape no recirculation zone
is observed, whereas for the fixed ellipsoidal shape such a zone is clearly visible.
It is concluded that calculations assuming a fixed, ellipsoidal shape do not lead to
physically correct velocity fields.

A comparison of the present numerical results with those by Blanco & Mag-
naudet (1995), for the parameter range in which the standing eddy can occur, is
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FIGURE 5.4: Plot of Reynolds number versus aspect ratio of the bubble with regimes
in which a standing eddy is observed and the point at which path instability sets in.
Note that the Reynolds number is based on the major axis instead of the equivalent
radius. The curves are the numerical results for fixed and free bubble shapes, respec-
tively. To the right of the curves a standing eddy is observed in the numerical results.
Clearly path instability occurs in a regime for which a standing eddy is not observed.

presented in figure 5.4. The present results agree well for a fixed shape (this line
is for both Blanco & Magnaudet (1995) and the present calculations). For a bubble
that is free to adapt its shape, the formation of the standing eddy, while keeping the
Reynolds number fixed, occurs at a larger value of the aspect ratio of the bubble.

It is observed that, indeed, experimentally path instability for bubbles in pure
water occurs in a regime in which a standing eddy is not observed behind a bubble.
Care has to be taken in comparing wake instabilities observed behind solid spheres
with those observed behind bubbles. It is generally accepted that for solid spheres
a standing eddy is formed which becomes unstable at a certain Reynolds number.
Consequently the origin of the wake instability has to be of another type then that
observed behind solid spheres.

Obviously, after the formation of the double-threaded wake the shape of the
bubble can no longer be ellipsoidal. In the present simulations it is shown that a minor
change of the shape can give a dramatic change of flow pattern. As the change of
shape is only minor, the assumption of an ellipsoidal shape of the bubble to determine
the position, orientation, drag, etcetera as used in the image analysis program is still
valid. Numerically, however, any calculation based upon either fixed or axisymmetric
shape may not lead to physically correct velocity fields.
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Bubbles bouncing against vertical walls have been studied experimentally. Many
experiments reported in this chapter are performed in water of 20◦C, and thus only
the path of the bubbles is recorded. Furthermore, experiments with a temperature
gradient are reported to indicate the observations in the wake and during bouncing.
Based on the experimental results a model is proposed to explain the variety of ob-
served bubble paths. Crucial for this model are the bouncing criteria and for larger
bubbles wake effects similar as the ones discussed in the previous chapter.

1 Introduction

The motion of two interacting bubbles has been studied extensively by Kok (1989,
1993a,b) and Duineveld (1994). Two bubbles tend to align horizontally and attract
each other. At close approach there are various possibilities: i) coalescence, ii) re-
peated bouncing followed by coalescence or iii) bouncing followed by separation.
The observed motions depend on the fluid properties, the initial distance and the size
of the bubbles. Duineveld (1994) determined experimentally the critical Weber num-
ber for the transition from one type to the other. The motion of the bubble pair after
bouncing could not be explained satisfactorily.

In inviscid flow theory, the effect of a wall on a bubble can be modelled by
mirror-imaging the bubble in the wall, i.e. leading to a bubble pair. Coalescence does
not occur for a bubble bouncing against a vertical wall. Also the boundary layer,
built up during bouncing, is different from the situation for a bubble pair. However,
experimentally a bubble-wall interaction is more convenient because the ’bubbles’ are
necessarily identical and aligned horizontally. In potential flow theory the attraction
is captured, but the remarkable bouncing phenomena observed in experiments are not
predicted.

Depending on the size of the bubble and the initial distance to the wall, the
bubble may slide along the wall, perform multiple rebounds or rebound once without
returning to the wall. Often the rebound amplitude is larger than the initial distance
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to the wall. Although energy is dissipated by drag, the amplitude of the rebounds will
not damp for multiple bounds.

One of the few studies on bubbles interacting with walls was performed by Tsao
& Koch (1997). They focussed on surface energy and the effect of deformation of
a bubble rising underneath an inclined or horizontal plate. They claim that at the
collision immediately up to 95% of the energy contained in the initial kinetic and
surface energy is converted in surface deformation. After the rebound a significant
fraction (up to 59%) of the bubble’s energy is lost and most of this loss occurred just
after the collision. They proposed two mechanisms: acoustic radiation and, just after
the collision, separation of the boundary layer at the wall.

In this chapter it is suggested that the vorticity built up in the wake of the bubble
plays an important role. To study this a similar setup and visualisation technique
as described in chapter 3 is used and a model is proposed to explain the motion of
the bouncing bubble. The global path of the bubble is experimentally studied with a
diffusive side lighting technique.

2 Experimental setup

The experimental setup to study bubble bouncing with a vertical glass wall is com-
parable with the setup used for the free rising bubbles. A wall (Figure 6.1) is placed
in the middle of the water tank with the lower edge at 10 cm above the bottom of the
tank. This lower edge was at least 4 cm above the capillary to ensure that the bub-
ble reaches its terminal rise velocity before the lower edge is reached. Note that the
horizontal and vertical direction are x and y, respectively. The velocity components
are u and v, respectively. The horizontal and vertical distance of the capillary to the
bottom of the wall is adjustable.

Although detailed information on the flow around the bubble at bouncing is
necessary to understand the motion, many experiments reported in this chapter have
been performed without a temperature gradient in the water. This was necessary
because a larger viewing area than possible with the schlieren technique is essential
to study the path after bouncing. For this purpose a diffusive side lighting technique
is used. The bubbles appear as white dots. Using stroboscopic lighting, the position
of the bubble at consecutive times are recorded on a single photograph and are then
analysed. This results in figures as presented in Figure 6.2.

With such a large viewing area the spatial resolution was too low to determine
the shape and wake of the bubble. Furthermore, this large area made it impossible to
use of the schlieren setup as the intensity of light was too low, and the viewing area
was limited by the size of the lenses (10 cm) to produce a parallel beam.

While the strength of the diffusive side lighting technique is in visualising the
global path of the bubble, the schlieren technique is useful in visualising the flow
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FIGURE 6.1: Experimental bounce setup. The vertical dis-
tance of the lower edge of the vertical wall is at least 4cm
above the capillary. The horizontal distance of the cap-
illary and the wall, si, is adjustable. The horizontal and
vertical coordinates are x and y, respectively. The associ-
ated velocity components are u and v.

locally. For this reason both experimental techniques are used to study the path and
wake of bouncing bubbles.

In the diffusive side lighting technique the illumination is from the side through
a diffusive screen. As a result the background is black and the bubble reflects some
light into the camera and the position of the bubble can be determined. However,
flow visualisation is not possible with the side lighting technique. Schlieren is used
to visualise the flow around the bubble just before, at and after bouncing.

A problem arises in the schlieren visualisation of the flow very close to the wall.
This is due to the the mirror being placed inside the tank (Figure 3.1) and the wall
stretches over the width of the tank. In this way it can not be avoided that a small gap
exists between the mirror and the wall and the parts very close to the wall can not be
visualised. This problem can be avoided by placing the mirror outside the water tank
(or only recording a single view).

Another option is the use of a narrower wall, which allows space for the mirror
to be placed next to the wall. This might be pursued in the future. From two perpen-
dicular views it has been observed that the motion is in a single plane perpendicular
to the vertical wall and as a result a single view is sufficient.

The wall is aligned with a plumb line outside the water tank and checked after
refilling and cleaning of the tank. Over a length of 25 cm the distance from this plumb
line and the wall was determined with a camera, accurate to 3 pixels overall. This
implies that the maximum error of misplacement of the wall was 0.2 mm or 0.2◦.
Even this small error in the angle can have a large effect on the experimental results,
as will be shown in § 4. The distance of the capillary to the wall was measured as
the distance to the plumb line. Next to this the size of the bubble is determined as
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FIGURE 6.2: Bubbles of different size bouncing against a vertical wall at an initial
distance si = 1.16 mm. dT is the time interval in milliseconds between recordings
of the bubble. On the left sliding bubbles, in the middle bouncing bubbles and on the
right bouncing followed by separation is observed

described in chapter 3. The same precautions and checks as mentioned in chapter 3
on the purity of the water and the accuracy of the capillary are taken.

3 Experimental results

3.1 Path of bouncing bubbles

The behaviour of bubbles bouncing against a vertical wall observed in pure water of
homogeneous temperature is remarkable. Depending on the initial distance (si) to
the wall and the bubble size (req), bubbles are observed either to slide along the wall,
to rebound repeatedly, to rebound once and separate from the wall, or to rebound
repeatedly at very large amplitudes (up to 3 times si). For several si the bubble
size is varied to check which parameter dominates the transition from one type of
bouncing to the other.

In Figure 6.2 si = 1.16 mm and the bubble radius increases from left to right.
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The vertical axis denotes the distance, H, from the lower edge of the vertical wall and
the horizontal axis is the distance to the wall. Note that the axes have different scales.
The smallest bubble, req = 0.40 mm, rebounds several times and then slides along
the wall. This bubble appears to perform an elastic collision, meaning that the vertical
velocity is maintained and the horizontal velocity changes sign. The amplitude of the
bounds is reduced after each bounce and after a number of bounces the bubble slides
along the wall.

Increasing the bubble size only slightly to req = 0.43 mm changes the behaviour
significantly. The bubble continues to bounce at a constant amplitude. For a bubble
with req = 0.46 mm a similar behaviour is observed, but now the amplitude of the
bounds is larger than the initial distance to the wall and a much larger bound length in
vertical direction. Furthermore, it is noticed that for both bubbles the collision is no
longer perfectly elastic. The vertical velocity is reduced significantly to about 10%
of UT .

The parameter distinguishing these two motions, sliding and multiple bounc-
ing, appears to be the Weber number, Wecr, based on twice the bubble horizontal
velocity component (approach velocity of the line of centres of bubble and image
bubble). This approach velocity is taken to be twice the horizontal velocity to en-
able comparison with Wecr found for a bubble pair, distinguishing coalescence and

bouncing. Duineveld (1994) empirically determined Wecr = 2ρrequ2

σ = 0.18 above
which bubbles bounce, with u the approach velocity.

Determining the approach velocity from the results presented in Figure 6.2 is not
recommendable because the time interval between the recordings of the bubbles is too
large, 20-35 ms. Because of this the bubble closest to the wall can be the last bubble
just before bouncing or the first after bouncing and the estimates of the approach
velocities are not accurate. The average velocity over a time interval of 20-35 ms is
not a good indication for the horizontal velocity at bouncing. However, high-speed
recordings of the bubbles bouncing with a vertical wall provided good estimates of
the approach velocity, ≈ 0.12 m/s. The transition from sliding to multiple bouncing
is observed for bubbles of req ≈ 0.42 mm and Wecr = 0.165. It is remarkable
that a more or less equal bouncing criterion for a pair of bubbles and a single bubble
bouncing against a wall is found. This certainly is a strong indication for the analogy
of both systems.

It has to be kept in mind that Duineveld (1994) proposed a model for coales-
cence based on the rate of film thinning between two bubbles. From the above results
it appears that the present sliding case is comparable to the coalescence case. For a
bubble approaching a wall similar arguments of film thinning can be used and there-
fore one may expect comparable results.

Finally for req = 0.60 mm the bubble bounces only once and separates from the
wall. The attraction force quickly decreases with increasing distance to the wall, but
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FIGURE 6.3: Bubbles of different size bouncing with a vertical wall at an initial
distance si = 1.57 mm. No sliding bubbles are observed.

never becomes zero. Therefore a repulsive force is expected, which will be shown to
be a component of gravity.

For an initial distance si = 1.57 mm, Figure 6.3 shows a very similar behaviour,
except for the very small and very large bubble sizes. Small bubbles do not bounce
against the vertical wall, but move away from the wall. Since in potential flow the
only force in the horizontal direction is an attraction force something strange is hap-
pening here. From the results of the model (see section 4) a possible explanation for
this bouncing-separation is a slightly tilted wall. Even a tilt within the experimen-
tal accuracy of 0.2 degrees appears to be sufficient to explain these motions. For a
straight rising bubble such a tilt in the wall will result in an increasing distance to the
wall. Or in other words, there will be a component of gravity perpendicular to the
wall compensating for the attraction force or even driving the bubble away from the
wall.

This effect also explains the bouncing-separation seen for example in Figure 6.3
for req = 0.50 and 0.60 mm and Figure 6.2 for req = 0.50 mm. As the bubble
bounce amplitude is large, the attraction force becomes small. In some cases this
force is equal or smaller than the component of gravity driving the bubble away from
the wall. As a result the bubble is observed to bounce only once.

Presumably bubbles bouncing only once and then moving almost parallel to the
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FIGURE 6.4: Small bub-
bles at a large initial dis-
tance si = 2.17 mm.

FIGURE 6.5: Large bubble at an initial
distance si = 1.57 mm. For very large
bubbles the multiple bounces reappear.
These bounces have very large ampli-
tudes compared to their initial distance
to the wall.

wall, is a result of a small misalignment of the wall. Unfortunately this misalignment
is within the accuracy of the alignment procedure. On purpose misalignment of
the wall resulted, as expected, in either never bouncing bubbles or always multiple
bounces depending on the direction of the misalignment.

In Figure 6.4 the distance si = 2.17 mm is even larger, confirming the previous
observations, and no new phenomena are observed. However, when the bubble size
is increased further, for a fixed si = 1.57 mm, than already seen in Figure 6.3, a
new phenomenon is observed. In Figure 6.5 the smallest bubble bounces only once,
which phenomenon is already explained. However, for the larger bubbles multiple,
very large bounds are observed. The bounds lengths and amplitudes are no longer
constant, but can even grow for consecutive bounds: for example the bound after the
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FIGURE 6.6: The first bounce for a bubble (req = 0.84 mm and si = 1.5 mm)
with a vertical wall. The bubbles are obtained from separate frames with 4 ms time
difference. The bubble shapes can be seen on the left, on the right are plots of the
position and velocity of the bubble’s centre, respectively.

fourth bounce for req = 0.92 mm.

The reappearance of the multiple bounds can not be explained by any oblique-
ness of the wall. This reappearance occurs for bubble sizes at which a free rising
bubble, see Chapter 4, would perform a zigzagging or spiralling motion. With help
of flow visualisations it will be shown that for these large bouncing bubbles, as for the
spiralling and zigzagging bubbles, a double-threaded wake plays an important role in
the motion of the bubble. This remarkable bouncing for large bubbles is not seen for
small initial distances as the critical approach Weber number is not reached at the
first bounce and the bubbles will slide along the wall. For a large bubble with a small
initial distance, the distance of the bubble surface to the wall is very small. Conse-
quently there is only a short time to build up horizontal velocity and the approach
velocity is too low to reach the bouncing regime.

Zooming in on the region of the first bounce gives more details of the shape and
the path of the bubble. In Figure 6.6 the bubble behaviour is displayed by placing
bubbles from frames with 4 ms time differences in one figure. The first bubble (low-
est, t = 466 ms) shows the shape of the bubble just before hitting the wall. This
bubble has a strongly deformed stable shape and a large velocity. The shape is an
oblate ellipsoid. Experiments show that the minor axis coincides with the direction
of motion of the bubble. Without any calculations this already indicates the large
ratio of the vertical and horizontal velocity components at bouncing. Calculating
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FIGURE 6.7: Formation of a vortical region for a bouncing bubble (req = 0.85 mm).
The time intervals between the pictures are 26 ms and 60 ms, respectively. Clearly
visible the vertical motion of the vortical region.

the velocity of the bubble by numerically differentiation of the path gives a vertical
velocity of 32 cm/s and a horizontal velocity of -6 cm/s just before bouncing.

Only 4 ms later, the bubble’s shape has changed significantly and has become
nearly spherical. In this stage the bubble appears to be sliding along the wall and
the vertical velocity component is decreasing. However, the lowest vertical velocity
component occurs after the bubble has bounced.

Just after bouncing (t=474 ms), the bubble quickly increases the distance to the
wall and the vertical velocity component drops from 23 cm/s to about 6 cm/s. At
t ≈ 482 ms the bubble motion becomes vertical. Then the bubble’s distance to the
wall is decreasing slightly and the vertical velocity is still small. Subsequently, the
rising bubble accelerates more and moves away from the wall.

The errors made in the numerical determination of the velocity components
(Figure 6.6) is estimated to be 10%. All other experiments for medium sized and
large bubbles confirmed the trends reported here. From the plots the drop in the ver-
tical velocity is striking. This drop in vertical velocity occurs after the bubble has left
the wall and as such can not be a direct wall effect. It is as if the bubble reaches a
down-flow area, as discussed in § 3.2.

3.2 Flow visualisation of bouncing bubble

For the flow visualisation the previously mentioned schlieren technique, with linear
temperature gradient, is used. From the results reported in the previous section it
is clear that something remarkable happens at bouncing of medium sized bubbles.
Since for an initial distance of si = 1.57 mm all phenomena occur, depending on the
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FIGURE 6.8: Formation of a vortical region for a bouncing bubble (req = 0.90 mm)
and si = 1.57 mm. The time intervals are not identical, the total time from left to
right is 80 ms.

bubble size, the schlieren images were performed for si = 1.57 mm and the results
presented here can be related to Figures 6.3 and 6.5.

The schlieren images in Figure 6.7 show the formation of a vortical region,
which is observed for medium and large bubbles. This vortical region appears to con-
sist of the vorticity accumulated at the rear of the bubble, which is shed as the bubble
bounces, and the vorticity in the wake impinging on the wall. This vortical region is
expected to affect the motion of the bubble. Furthermore, as the bubble approaches a
boundary layer is formed along the wall. This may influence the bouncing.

After the bubble has bounced, the vortical region still further develops and forms
a spherical blob. The blob then moves upwards with an initially increasing velocity.
From this it can be expected that the motion of this vortical blob is self-induced. The
final rise velocity of this vortical blob is about 0.2UT , where UT the terminal rise
velocity of the bubble.

Although the exact configuration of the vortical blob is unknown, it hypothe-
sised here that this spherical vortical blob, together with its image, is a Hill’s spheri-
cal vortex. In the model to be discussed the vortical region is modelled as such. As
the size of the blob is comparable with the size of the bubble the strength of the Hill’s
spherical vortex can be determined (see section 5). In the real situation the configu-
ration of the vortical blob is probably not exactly a Hill’s spherical vortex, however
this will not lead to large differences in the results of the model.

The flow visualisation of the first bounce in Figure 6.8 is related to the case
of multiple bouncing in Figure 6.5. In Figure 6.8 a double-threaded wake can be
observed, especially in image g. Before the bubble bounces with the wall the plane of
the two threads is parallel to the wall (only one is visible). The two threads have been
observed in experiments visualisations in the perpendicular direction. After bouncing
the double-threaded wake has disappeared for some time, and the attached vorticity
was shed at bouncing. Like for a free rising bubble, the attached vorticity is built
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up again, before any vorticity is transported into the wake. Then again the double-
threaded wake is formed which initially lies in the view plane (Figure 6.9). Quickly
the wake reorientates to the orientation it had before bouncing (Figure 6.10). This
final orientation of the vortex filaments is associated with a lift force perpendicular
to the wall.

From the momentum conservation principles as discussed in Chapter 4 the di-
rection of the lift force can be deduced. Note that for the bubble sizes req > 0.80 mm
a double-threaded wake is observed, and free rising bubbles perform a zigzagging or
spiralling motion. The bubble sizes used in this section are related to zigzagging and
spiralling motions, and thus a double-threaded wake is expected.

Just after bouncing no double-threaded wake is observed, but soon a double-
threaded wake evolves. The initial orientation just after bouncing is arbitrary, but in
most experiments it is observed that the plane of the filaments is perpendicular to the
wall. However, as the initial motion is horizontal and the bubble is accelerated due
to buoyancy, there is a deflection of the path upwards. It is this curvature of the path
towards the wall which reorientates the double-threaded wake. This orientation is
associated with a lift force directed towards the wall (Chapter 4.2.2).

The previous analysis of the orientation of the double-threaded wake is given
between two consecutive bounces. The reason for this is that the trajectory of a path-
unstable bubble before the first bounce cannot be predicted beforehand. From the
experiments of a free rising bubble (Chapter 4) it is clear that the path of the bubble
is not reproducible. Especially the direction of the first deflection is arbitrary. Thus
the mean position of the zigzag is not directly above the capillary. The capillary is
placed at a horizontal distance from the wall. Then two extreme cases can occur for
a zigzagging bubble: i) an initial displacement of about 2 mm towards the wall, ii) an
initial displacement of about 2 mm away from the wall.

In the first case for all bouncing experiments reported in this thesis the central
position falls within or behind the wall. Depending on the phase of the zigzag the
bubble may bounce against the back of the wall, against the lower edge of the wall
or against the front side of the wall. Only the last case is used for the present anal-
ysis. The orientation of the wake just before bouncing results in a lift force directed
towards the wall.

The second case would lead to a zigzagging bubble relatively far from the wall.
At the point at which the bubble is ’closest’ to the wall, maximum of the zigzag,
the lift force associated with the zigzagging motion is directed away from the wall.
As long as this repelling lift force is larger than the attraction force of the wall, the
bubble will maintain its zigzagging motion. However, the attraction force of the wall
is responsible for the fact that the mean position of the zigzag comes closes to the
wall.

In due time the distance from the wall reduces up to the moment that the max-
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FIGURE 6.9: The path and wake of a bubble req = 0.97 mm and si = 1.57 mm
just after the first bounce. Clearly visible the instability of the wake and the vertical
motion of the vortical region formed at bouncing.

imum attraction force, is larger than the lift force originating from the wake. Then
the curvature of the path will change and the lift force on the bubble will become
directed towards the wall. Although bubbles will bounce much later against the wall,
the wake has a similar orientation as in the first case and results in a lift force directed
towards the wall. Both cases indicate that before every bounce the plane through the
filaments is approximately parallel to the wall.

Furthermore, the previously observed small velocity reduction as the bubble
slides along the wall (Figure 6.6, t = 466 − 474 ms), and the subsequent horizontal
displacement, can be caused by the inertia of the wake of the bubble. Although one
would expect that the vertical velocity of the bubble would drop significantly at the
time the bubble slides along the wall, the largest reduction in the vertical component
of the velocity occurs after this sliding region. The wake is observed to first push
the bubble forward sliding along the wall, and after the bounce the wake moves in
between the wall and the bubble, thereby displacing it horizontally. This is clearly
seen in Figure 6.8 (e-g), where the vortical region is formed and moves upwards.
This vortical region pulls the bubble, which causes the drop in vertical velocity.

The subsequent negative horizontal velocity (t = 486 ms) can be explained by
the nature of the development of the vortical blob near the wall. This vortical region
has an effect on the motion of the bubble. This effect is comparable to the reduction
of the vertical velocity component for a bubble in a horizontally aligned, rising bubble
pair.

As in chapter 4, a double-threaded wake is observed to become unstable (Fig-
ures 6.9 and 6.10). In Figure 6.9 the wake instability is shown just after the first
bounce. The wake clearly reorientates and the two threads align to a plane perpen-
dicular to the viewing plane, thus parallel to the wall. In this way only one thread
is observed. Starting from image c the instability is developing and clearly showing
similar patterns as observed for the free rising zigzagging bubble as in Figure 4.3.
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FIGURE 6.10: The path and wake of a bubble req = 0.98 mm just before the second
bounce. Clearly visible the reorientation of the wake into vortical regions.

Especially in the last image the reorientation of the double threads is seen to form
dipole, or ring vortex, like structures.

The time scale for the appearance of the instability of the double-threaded wake
differs from the time scale observed for spiralling bubbles (Figure 4.11). In the lat-
ter the Crow instability has not appeared yet. If we compare the time scale in the
present case with that observed for zigzagging bubbles a good agreement is found.
For zigzagging this short time scale was due to the large disturbance of the filaments
by reconnection followed by reappearance of the double-threaded wake with oppo-
site sign. This would indicate that there is also a large disturbance in the bouncing
case.

One disturbance is the vortical region formed at bouncing. The development of
this vortex blob at the wall can be observed. The final image shows a spherical shape
of this vortical blob as well as the onset of the self induced motion of this vortical
blob. This is exactly as seen in Figure 6.7.

Another disturbance can be seen in Figure 6.8 image f. Just after bouncing
the double-threaded wake has disappeared. In the successive image, g, the double-
threaded wake is formed again. This is very comparable to the disturbances observed
for zigzagging bubbles; a double-threaded wake forms out of a single thread.

Note that for two bouncing bubbles (req > 0.86), close to the critical size, req =
0.91 mm, for path instability of a free rising bubble, Duineveld (1994) observed
bouncing followed by separation for a bubble pair. Duineveld suggested that the
bounce would trigger the instability of the wake and the shedding of vortices. In
the present experiments vortex shedding has not been observed. Although in the
present experiments bubbles with a size slightly smaller than the critical size for path
instability show bouncing separation, for bubbles larger than this critical size the
reappearance of multiple bounces is observed. The question now remains, why these
multiple bounces have not been observed for a bubble pair.

In Figure 6.10 bubble path and wake between first and second bounce are shown.
The curvature of the path is larger than observed in Figure 6.9. The instability in the
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wake is observed to occur even closer to the bubble. It appears that the time scale of
instability reduces for increasing curvature of the path. Still the observed instabilities
are similar to those observed just after bouncing. Especially the last image really
shows the dipole-shaped vortices. The frequency of the formation of these dipoles
is comparable to that observed far behind zigzagging bubbles. These structures are
indeed related to the Crow instability.

These dipole-shaped vortices will have a large effect on the motion in the water
behind the bubble. Contrary to the present production method, a continuous bubble
injector system based on a constant air flux through a needle will produce a bubble at
least every 5 seconds. As soon as bubbles are continuously produced these vortices
will influence the motion of the next bubbles. As the lifetime of these vortices is
in the order of seconds, they can not be neglected. As a result the motion of the
bubble will be influenced by the previous bubble and the development of the wake
will change.

Furthermore, it is expected that similar vortex structures will be formed by bub-
bles in turbulent bubbly flows. This is a possible explanation for the modification of
turbulence by bubbles. Some of the aspects involved will be discussed in Chapter 7.

In Figure 6.11 the shape deformations of a bouncing bubble are clearly visi-
ble. Just before bouncing the bubble is ellipsoidal and just after the bounce shape
oscillations are observed. In the last image of Figure 6.8 the shape of the bubble is
ellipsoidal again. In this regime the bubble is still accelerating, but near its maximum
vertical velocity resulting in an ellipsoidal shape.

In Figure 6.12 the image a and b show a stable wake. The first bubble
(req = 0.78 mm) is just below the size for which a free rising bubble would per-
form zigzagging or spiralling motion and a stable wake is expected. Although the
curvature of the path, and the herewith related production of vorticity, could have
triggered the formation of a double-threaded wake for a smaller bubble, this is never
observed. Note that the angle at which this bubble hits the wall is small.

In image b a probably path unstable bubble (req = 0.84 mm) is shown, but still
with a stable wake on the short time scale is observed. After the bounce no double-
threaded wake is observed. Observation for equal sized bubbles on the perpendicular
view show the double-threads. Also later images show the onset of the wake insta-
bility. From those observation a double-threaded wake is expected.

An important question is whether the information of a double-threaded wake
can be obtained from image b itself? The answer is yes. A bubble with a double-
threaded wake bouncing against a wall has a lift force added to the attraction force
of the wake. From a larger attraction force a larger horizontal velocity is expected
at bouncing. This larger horizontal velocity is visible. The angle between the wake
and the wall just before bouncing, for both image a and b, is larger than observed for
bubbles with a single-threaded wake (image a). So images a and b should have, and
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a b c

FIGURE 6.11: Close up of the path and
wake in the bouncing regime (req =
0.99 mm).

a b c

FIGURE 6.12: Differences in the devel-
opment of the wake for different sizes
of bubbles. a) Stable wake req = 0.78
mm, b) stable wake req = 0.84 mm,
and c) unstable wake req = 0.93 mm.

have, double-threaded wakes.
In image b the plane through the filaments after bouncing is aligned parallel to

the wall, whereas the vortex filaments in image c are in the view plane. Another
difference between image b and c, except the size, is the time scale at which the wake
instability sets in. The bubble of the last image is larger an so the strength of the
vortex filaments is larger. This is a possible explanation for the time scale at which
the instability sets in.

This larger strength of the vortex filaments is visible in another difference in
the images. The angle between the wake and the wall of the bounce in image c
is slightly larger, although a smaller angle was expected, as there is less time for
a larger bubble to develop its horizontal velocity. Another example of a short time
scale stable double-threaded wake can be seen in Figure 6.8 a-g. Again observe the
larger angle of the bounce. In this image the double-threaded wake is visible after
bouncing.

In conclusion the rate at which instabilities of a double-threaded wake develops
is dependent on the strength of the vortex filaments, the disturbance on these filaments
and the curvature of the path. The behaviour of bubbles of different size seen in these
experiments are distinguished by the bouncing criterion based on the approach Weber
number, the vertical alignment of the wall and the configuration and strength of the
wake. In the following section these aspects will be captured in a model.

4 Model

Small bubbles, up to 0.60 mm in radius, have been observed to remain spherical. In
the experiments with these small bubbles remarkable bouncing was observed. A gen-
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eral description, using Lagrange’s formalism, of the equation of motion of bubbles in
a low viscosity liquid is given by Kok (1993a). The drag forces are derived from the
rate of viscous dissipation and the effect of hydrodynamical interaction is taken into
account. These general equations of motion can be adapted to calculate the bounc-
ing behaviour of two rising spherical bubbles, with the line of centres in a horizontal
plane. The picture is comparable with a bubble bouncing with a vertical wall. This
model could accurately reproduce the attraction to the wall. However, the peculiar
bouncing phenomena cannot be described with this model. Equations (28) and (29)
in Kok (1993a) are the general equations of motion of a pair of spheres, or spherical
bubbles. In the case of a bubble bouncing with a vertical wall, these equations reduce
to

ρV
dMy ẏ

dt
= Fy,

ρV
dMxẋ

dt
=

1
2
ρV

[
ẏ2 dMy

dx
+ ẋ2 dMx

dx

]
+ Fx, (6.1)

where x is the distance from the wall, y is the vertical height above the lower edge
of the wall, V is the volume of the sphere, Mx and My the added mass coefficients
and Fx and Fy the external forces acting on the pair of spheres. Furthermore, the
horizontal and vertical velocity components are u and v, respectively. In the first
instance the external forces are buoyancy and drag D acting on the bubble pair. From
Kok (1993a), taking only the contributions of dipoles into account,

Mx = 1 +
3
8

(
req
x

)3

, (6.2)

My = 1 +
3
16

(
req
x

)3

, (6.3)

Fx = −Dx, (6.4)

Fy = 2ρgV −Dy, (6.5)

Dx = −24πνreqẋ

(
1 +

1
4

(
req
x

)3
)
, (6.6)

Dy = −24πνreqẏ

(
1 +

1
8

(
req
x

)3
)
. (6.7)

The above equations are for spherical bubbles, which simplifies the calculation
and allows to obtain a qualitative picture of what happens, also for ellipsoidal bub-
bles.

In particular this model gives qualitatively the correct behaviour for small bub-
bles, which end up sliding along the wall. However, the bouncing phenomenon could
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not be captured in this very simple model. From the present experiments it can be
concluded that for bouncing bubbles the velocity component tangential to the wall (v)
becomes very small or even vanishes (e.g. Figure 6.6). The transition between the
regimes of sliding along the wall and bouncing is determined by the critical Weber
number based on the approach velocity.

The Weber number obtained from the model for a req = 0.42 mm bubble at an
si = 1.16 mm is We = 0.165. Experimentally this bubble size was observed to
be the first bouncing bubble. The Weber number is in excellent agreement with the
value We = 0.163 found in experiments (Figure 6.6) and in good agreement with the
critical Weber number Wecr = 0.18 for the bouncing of a bubble pair determined by
Duineveld (1994) (see also § 3.1). Wecr = 0.165 is used as transition parameter for
all calculations with this model.

In the present experiments the drop in tangential velocity was observed over the
first 20 ms after the collision (see Figure 6.6 t=466-486 ms). This velocity drop is
related with the vortical blob seen in the experiments (e.g. Figure 6.2). To catch this
vortical region in any calculations the full Navier-Stokes equations for a deformable
bubble bouncing with a vertical wall should be solved. This is far beyond the numer-
ical possibilities. However, in the model the interest is in the qualitative behaviour of
bouncing only. In the model this velocity drop is assumed to occur instantaneously
at the time of collision.

In case of bouncing, We >= Wecr = 0.165, the bounce is modelled as an
elastic collision in the perpendicular direction. A no-slip condition holds in tangential
direction (u → −u, v → 0). It can be shown that this results in up to 97% kinetic
energy loss at bouncing. For the bouncing bubble presented in Figure 6.6 the kinetic
energy just after bouncing would reduce to u2/(u2 + v2) ≈ 4% of the value just
before bouncing. In case of sliding, We < Wecr = 0.165, the bounce is modelled
as an elastic collision in both direction (u → −u, v → v). The bounce amplitude is
quickly damped by dissipation and u → 0.

The attractive force of the mirror bubble, is proportional to the velocity of the
bubbles, squared, and becomes therefore smaller when the velocity is reduced at
bouncing. In the present experiments it is observed that the velocity tangential to
the wall becomes very small or even vanishes and the component perpendicular to
the wall changes sign for bouncing bubbles. However the magnitude of the hori-
zontal velocity is unchanged and with a smaller force to slow down the bubble upon
separation a larger bounce amplitude can be made plausible. In principle this mech-
anism explains how, remarkably, a loss of kinetic energy can explain a larger bounce
amplitude.

In the present calculations several phases have to be described: free rising and
attraction to wall, collision and after collision. These will be discussed separately.
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4.1 Free rising and attraction to wall

The bubble is released in a quiescent liquid with zero velocity. The forces acting on
the bubble are buoyancy and drag. As soon as the acceleration of the bubble becomes
negligible a vertical wall is placed with the lower edge in x = 0, y = 0, with the
bubble in x=si, y=0. Then this system is similar to a bubble pair at an initial distance
of 2si and the equations of motion for a bubble pair (6.1) can be used.

Physically speaking the mirror image of the bubble will induce a velocity in the
bubble resulting in an attraction of the bubble towards the wall. The acceleration of
the bubble is now determined by buoyancy, drag and this attraction force. The latter
is in the equations of motions captured in the terms with the gradients of the added
mass coefficient.

4.2 Collision

In the experiments the vertical velocity drop for bouncing bubbles is observed to oc-
cur in a few milliseconds. In the model this drop is assumed to occur instantaneously.

As soon as the bubble hits the wall (x ≤ req) the Weber number based on the ap-
proach velocity is calculated, which determines the type of bounce: for We < Wecr
sliding along wall (u → −u, v → v), for We ≥ Wecr, bouncing (u → −u, v → 0).
In the first case the potential flow solution, including drag, of a bouncing bubble is ap-
plicable; soon the bounce amplitude is damped by dissipation. In the bouncing case,
the vertical velocity component becomes very small (in the model zero) which im-
mediately decreases the bubble attraction force, which is proportional to the velocity
squared. In general v >> u just before bouncing.

The bouncing case may be interpreted as a mass-spring system consisting of
many equivalent springs. Initially the springs are stretched and the velocity of the
mass is zero. Subsequently the mass accelerates till the springs reach their rest length.
At that moment the mass is moving with a velocity of u and bounces elastically
with a wall. The velocity becomes −u. At that time the springs are cut all but
one. This results in a lower spring constant and enables a larger stretch of the spring
than the initial one. After a while all the springs are reconnected to the mass and
thus the spring constant is increasing. The rest length has not changed. The bubble
returns towards the rest length and at that moment the same bounce occurs again.
Without drag the velocity at this time is larger than u and the consecutive stretching
is increased again and again. With drag the maximum stretch length is bounded as
is the bounce amplitude of a bubble bouncing with a vertical wall. For the bouncing
bubble the attraction force is changing in a similar way as the force for the different
springs. Admittedly the springs are very peculiar as the force each spring exerts on
the mass is decreasing as the spring is further stretched.
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FIGURE 6.13: The results of the model for several sizes of bubbles for si = 1.16
mm. Note the different scaling of the axes. The transition between sliding and bounc-
ing is qualitatively comparable to the experiments, but for larger bubbles bouncing
separation was not observed.

4.3 After collision

After the bounce the motion of the bubble can again be described by the equations of
motion (6.1). In case of sliding the bounce height will become zero almost instanta-
neously. For a bouncing bubble the vertical velocity is reduced significantly and thus
the attraction force becomes negligible. The bubble bounces away from the wall and
gravity will accelerate the bubble again towards its terminal velocity. The attraction
force is increased and the bubble will experience another bounce. The maximum
distance to the wall can be larger than the initial distance to the wall.

Results obtained with this model are shown in figure 6.13 for various bubble
sizes and an initial distance to the ’wall’ (half the distance between the two bubbles)
of 1.16 mm. The approach velocity at bouncing is predicted accurately; experiments
for a req = 0.84 mm bubble (Figure 6.6) give u = 6 cm/s, the model predicts
u = 6.1 cm/s. The critical Weber number based on the approach velocity is chosen
in such a way that the transition between sliding and bouncing occurs for bubbles of
0.42 mm, as observed in experiments. It was shown that a value of Wecr = 0.165
is appropriate. The sliding motion of small bubbles (req < 0.42 mm) is predicted
accurately.

The motion of the slightly larger bubbles does show the multiple bounces, but
the amplitude of the bounces is lower than observed experimentally (Figure 6.2) and
the bounce length is of by a factor 10 (model: ≈ 10 mm, experiment: ≈ 100 mm).
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FIGURE 6.14: Results of the model for several bubble sizes for si = 1.57 mm. The
multiple bounces for the medium sized bubbles is found. But unlike the experiments
small bubbles appear to slip and reappearance of multiple bounces has not been
observed.

For the bubbles of 0.6 mm the amplitude is accurately predicted, but the model always
shows multiple bounces with large bounds lengths, whereas the experiments show
bouncing followed by separation. The long bounds length do indicate that there is
a tendency towards separation. However, in the model, the attraction force might
become very small for large separations, but will never become zero. Physically,
this attraction force cannot vanish in the model and thus multiple bounces are to be
expected. It will be shown below that a possible explanation for these differences is
the misalignment of the wall.

In Figure 6.14 the initial distance is increased to si = 1.57 mm, the distance at
which most experiments have been performed. Note the qualitatively good agreement
between the results of the model and the experimental results presented in Figures 6.3
and 6.5. The same critical Weber number Wecr = 0.165 as was determined for the
previous initial distance (si = 1.16 mm) was used.

The behaviour of the smallest bubbles (0.41 and 0.43 mm) is very different from
what was observed experimentally. Experimentally the bubble did not collide against
the wall and in the model the bubble collides and subsequently slides along the wall.
Again, a small misalignment of the wall can explain these discrepancies (see § 4.4).

For the slightly larger bubbles the bouncing behaviour is reproduced, but again
the amplitude and the bounce length are underestimated. The bouncing separation
behaviour for req = 0.50 − 0.70 mm is not reproduced, but can be shown to oc-
cur when a misalignment of the wall is included. The reappearance of the multiple
bounces in the experiments for req > 0.80 mm is not predicted by the model. How-
ever, from the experiments it is known that the wake consists of a double-threaded
wake. It is also shown that the threads are aligned corresponding to a lift force that is
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an attraction force. This is not included in the model.
On the basis of simple mechanics the most logical shape of the bounces would

be symmetrical. However, in the experiments an almost horizontal separation after
bouncing and a curved approach just before bouncing is observed; the shape of the
bounds looks like a profile of a nose. Note that, in spite of some shortcomings of the
model, there is a similarity between these ’nose-like’ shapes of the rebounds in the
model and that of the experiments. The model does predict several features, e.g. the
transition between sliding and bouncing motion, the increase of bounce amplitude
and the shape of the bounds. But the model is not able to predict the bouncing sep-
aration, the bounds amplitude and length, and the reappearance of multiple bounces
with short bound length for very large bubbles. In the following, these features are
addressed and the model is adapted.

4.4 Adaptions to the model: misalignment and lift

The model including the bouncing criterion can explain several aspects of the bounc-
ing. Here we adapt it further to take into account the vertical misalignment of the
wall and the effect of the lift force on the bubble.

First we will introduce the misalignment of the wall. In the model this can be
included by setting the direction of gravity at an angle α with the wall. Now there is
a component of the buoyancy force along the wall and a component perpendicular to
the wall. The latter will act as a repulsion force on the bubble. The external forces
Fx and Fy in the equations of motion (6.1) now become

Fy = 2ρgV cosα−Dy, (6.8)

Fx = 2ρgV sinα−Dx. (6.9)

The experimental accuracy of the alignment of the wall is ±0.2◦. For an angle of
α = 0.1 degrees the results of the model for the initial separation of si = 1.57 mm
are shown in figure 6.15. Especially for the small and medium sized bubbles (0.40-
0.80mm) the effect is qualitatively in a closer agreement with the experimentally
observed bouncing behaviour (Figure 6.3). The bound amplitudes are reproduced
very well, but the bound lengths are not. The bouncing separation is reproduced,
but for the experiments this already occurs for a bubble req = 0.50 mm, whereas in
the model a bubble of this size is found to perform multiple bounces. Next to the
bouncing separation also the behaviour for req = 0.41 and 0.43 mm is captured. The
bubbles of these sizes were observed never to bounce against the wall. However, for
larger bubbles the reappearance of the multiple bounces is not captured. This is not
remarkable as we expect these to be related to the lift force.

This lift force needs to be taken into account only for bubbles which perform
spiralling and zigzagging motions when free rising. For pure water held at 20◦ C this
means that the lift force plays a role for bubbles with an equivalent radius larger than
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FIGURE 6.15: Results of model for si = 1.57 mm and an angle 0.1 degree of the
wall with respect to the vertical. Up to about 0.80 mm the behaviour of the bubbles is
qualitatively in agreement with the experiments. For larger bubbles the reappearance
of multiple bounces, as observed in the experiments, was not captured.

0.80 mm. For these bubbles the lift force should be included in the external forces,
which components then become:

Fy = 2ρgV cosα + 2L cos β −Dy, (6.10)

Fx = 2ρgV sinα− 2L sin β −Dx, (6.11)

where β is the angle of the path with the horizontal. The factors two arise from
the fact that the forces act on the bubble pair. The lift force is estimated by
L ≈ πρU2

T r
2
eq/13 (see equation (4.9), with Uf ≈ 0.1UT and l ≈ 0.6req). The

results for the model taking into account the bouncing criterion, the misalignment of
the wall (α = 0.1 degrees) and the lift force are given in Figure 6.16 for si = 1.57
mm. These results should be compared with the experimental results presented in
Figure 6.5. Qualitatively the results are in agreement. The reappearance of the multi-
ple bounces and the bounce height are predicted, however the bounce lengths cannot
be reproduced accurately.

One other aspect neglected in this model which might play a very important role
for large bubbles is the shape. This will change the drag and the added mass signif-
icantly. It can be shown that the drag will increase and thus the velocity magnitude
will decrease. The lift force is proportional to the square of the velocity magnitude
and will decrease. As a result the bounce height and length are expected to be larger
when shape effects are taken into account.
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FIGURE 6.16: Results of model for large bubbles with a wake induced lift force at
si = 1.57 mm and an angle=0.1 degrees. The reappearance of multiple bounces is
captured.

5 Vortex and bubble near wall

Before the bounce, there is accumulation of vorticity in the wake of the rising bubble.
Due to the encounter with another bubble, or in this case, the wall, vorticity from the
wake is released (Figure 6.7). The effect of this vorticity on the motion of the bubble
is checked below. However this force will only be important just after bouncing.

The amount of vorticity that is being left behind can be estimated by calculating,∫ ∫ ∫ π

θ= π
2

ωdV (6.12)

over the boundary layer of thickness O(Re−1/2) at the rear part of the bubble. We
take ω as the vorticity (see 2.10) at the rear of the bubble,

ω = −3UT sin θ

req
erfc

(
3y sin θ

4
√

2

)
. (6.13)

Using this we obtain

∫ ∫ ∫
ωdV = 4

√
2π2

√
1
Re

r2
eqUT . (6.14)

Now we assume that this amount of vorticity is shed instantaneously and comprised
in a vortex blob represented as a Hill’s Spherical Vortex (HSV) with radius req. This
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FIGURE 6.17: Coordinate system bubble and vortical blob

vortex is (Saffman 1992) characterised by

ωθ = ω = 0, outside HSV, r > req,

ω = Ar, inside HSV, r <= req. (6.15)

The coefficient A is determined in such a way that the total amount of vorticity inside
the HSV equals the amount of vorticity shed by the bubble∫

HSV
Ardv = 4

√
2π2

√
1
Re

r2
eqUT . (6.16)

The result for A is

A = 16

√
2νUT

r5
eq

. (6.17)

The flow outside the HSV can be modelled as a potential flow due to a sphere moving
with velocity UH ,

UH =
2r2

eqA

15
. (6.18)

For the vortical region formed at bouncing of a req = 0.85 mm bubble (Figure 6.7)
this would result in a velocity UH ≈ 5.7 cm/s. From the measurements UH ≈ 6 cm/s
is retrieved, which is in good agreement.

The system of bubble and HSV can be described by a system of two dipoles, with
strength m2 and m1, respectively. The potential Φ of the HSV induces a velocity on
the bubble. The resultant force is dependent on both the angle (ψ) and distance (s) of
the bubble to the HSV and the angle (ψ2) of the direction of the motion of the bubble.
The force on the bubble by the HSV is,

F = −4π∇m2 · ∇Φ (6.19)

with m2 · ∇Φ = −m1 · m2

r3
+ 3

(m1 · r)(m2 · r)
r5

(6.20)
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The component normal to the wall of this force, the attraction force, and the tangential
component for a bubble in s become

Fn =
12πm1m2

r4
(− sinψ cosψ2 + 4 sinψ cosψ cos(−ψ + ψ2)

− cos2 ψ sin(−ψ + ψ2)
)
, (6.21)

Ft =
12πm1m2

r4

(
cos(−ψ + ψ2) + 2 cos2 ψ cos(−ψ + ψ2)

− sinψ cosψ sin(−ψ + ψ2) − cosψ cosψ2)) , (6.22)

respectively. The vertical velocity of the bubble will quickly increase the distance
between the bubble and the HSV. Therefore the force is negligible except just after
bouncing. From the experiments (Figure 6.8e) it looks as if at that moment ψ = 90◦

and ψ2 = 0◦. Although the vortical blob is not fully developed, the attraction force
will be of the same order of magnitude. At that time the total force is attractive with a
negligible vertical component. The magnitude of the attraction force, associated with
the vortical blob, is comparable to the maximum of the attraction force of the image
bubble. This can explain the reduction of horizontal velocity or even the negative
horizontal velocity as for example observed in Figure 6.6. However, the subsequent
increase of the horizontal distance to the wall cannot be explained.

The exact values of the force on the bubble due to the vortical blob cannot be
given. This force only has significant values as long as the distance between the
bubble and the vortical blob is very small. During this time the vortical blob is still
developing. Assuming the vortical blob is instantaneously formed the magnitude of
this force is up to 20 times the attraction force by the mirror bubble.

However, we did not take this force into account in the model as the influence of
this force is limited to the first milliseconds after bouncing. It might even be that this
force is the reason for the velocity drop in the vertical direction at bouncing. Then
this force is already included in the assumed instantaneous drop in velocity.

6 Discussion and conclusions

Bouncing phenomena can be approximately described by a model based upon poten-
tial flow, taking into account bouncing criteria and wake effects. The larger bounce
amplitude than the initial distance to the wall can be explained with this model. The
attraction force of a bouncing bubble reduces significantly as the bubble vertical ve-
locity component drops. At bouncing the horizontal momentum is conserved. The
combination of both makes a larger bounce possible or can compensate for the energy
loss by dissipation.
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One of the questions still remaining is the slowing down of the bubble after
bouncing. At present it is assumed that the wake of the bubble and its vorticity,
first pushes itself in between the wall and the bubble. The further development of
the wake shows a down-flow region near the bubble, which is probably causing the
bubble to slow down. Furthermore, the vortical blob formed will have an attraction
force, being able to hold the bubble near the wall. This force quickly drops to zero
as the distance between the bubble and vortical blob increases. But the subsequent
increase in horizontal distance to the wall cannot be explained.

It is observed that as soon as ellipsoidal bubbles hit the wall they immediately
become spherical. More research is needed to estimate the effects of deformation on
the bouncing phenomena, especially for the large bubbles. Although the lift force
related to the wake can explain the rebounds and the amplitude of the bounce, the
path of the bouncing bubble can not be reproduced accurately for the large bubbles.
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Bubbles rising in turbulent flows will affect this flow and introduce velocity fluctua-
tions. This phenomenon is called “ pseudo-turbulence” . Following the first tentative
explanation of van Wijngaarden (1998) based on potential flow theory around non-
spherical bubbles with thin boundary layers, we model Hill’s Spherical Vortices as
an extra source of turbulence. These vortices are assumed to be shed from the rising
bubbles ’hitting’ turbulent regions in a similar way as observed in our experiments
on a bubble bouncing against a vertical wall. A significant contribution of these vor-
tices is observed. Furthermore this model is extended to take into account the effects
of the rearrangement of vorticity in the wake of the bubble.

1 Introduction

In bubbly flows there is a two-way coupling between bubbles and turbulence. Tur-
bulence affects the trajectories of the bubbles and bubble motion introduces velocity
fluctuations, and therefore Reynolds stresses, in the liquid. This process is called
pseudo-turbulence. The term turbulence refers to the fluctuating character of the flow,
the term “pseudo” indicates that the origin of the turbulence is an induced motion by
the bubbles.

The importance of pseudo-turbulence is emphasised by experiments of Lance
& Bataille (1991; hereinafter referred to as LB) and Theofanous & Sullivan (1982;
referred to as TS). An indicator is the extra turbulent energy arising from the bubbles,

u′2
E = u′2 − u′2

0 , (7.1)

where u′ represents the measured turbulent velocity fluctuations and u′0 is the corre-
sponding value in the absence of bubbles. A first tentative explanation of this phe-
nomenon was presented by van Wijngaarden (1998; hereinafter referred to as LvW),
which was based on the rise of isolated bubbles, whereby the flow around the bub-
ble is described with potential flow theory coupled with thin boundary layers. The

PATH AND WAKE OF A RISING BUBBLE



84 CHAPTER VII. PSEUDO-TURBULENCE IN BUBBLY FLOWS

turbulent excess energy was found to be,

u′2
E = αBU

2
T

[
1 + 12

u′2
0

U2
T

]
(7.2)

with αB = 4
3πr

3
eqn the void fraction of bubbles, n the number density, req the equiv-

alent bubble radius and UT the terminal rise velocity of the bubbles. In experiments,
however, a much steeper rise of u′2

E with αB , for a given turbulence level, is measured
(Figure 7.2).

The aim of the present research is to incorporate vorticity effects. In this chap-
ter, vorticity rearranged as Hill’s spherical vortices (HSV) in the wake of bubbles
is proposed as an extra source of turbulent excess energy. This model is based on
our observation of vortex blob formation for bubbles bouncing against a vertical wall
(Chapter 5).

2 Volume fraction of Hill’s spherical vortices

The amount of vorticity on a spherical bubble can be estimated by Ω =
∫
ωdV =

4
√

2π2
√

1
Rer

2
eqUT (6.14), where the integration is over the volume of the boundary

layer. The vorticity production is even larger for non-spherical bubbles.
As a first estimate the vorticity advected in the wake of the bubble is neglected

and an HSV is formed at every sudden acceleration of the bubble. Or in other words,
an HSV is formed each time a bubble ’hits’ a turbulent eddy. A similar HSV will be
formed as observed for the bouncing bubbles (6.18): UH = 2r2

eqA/15 ≈ 0.2UT with

A = 16
√

2νUT /r5
eq. The flow outside the HSV is equivalent to the potential flow

due to a solid sphere moving with velocity UH .
It is hard to estimate the number of vortex blobs produced in this way per unit

time. An upper limit is found by considering that before another blob can be formed,
vorticity has to be generated at the bubble surface again. The time needed for this is
of the order 2req/UT , so that each bubble produces at most UT /2req blobs per unit
time. For the bubbles discussed in this thesis this is of the order of a few hundred Hz.

A lower limit is obtained by considering bubbles that have zigzagging trajecto-
ries when freely rising. Since they are, in this model, supposed to form a vortical
blob, accumulated at the rear, each time the path curvature changes sign, a lower
bound is twice the natural frequency of the path of a free rising bubble. In the present
experiments this frequency is: 4.5 Hz for bubbles of req = 0.80 mm and 6.5 Hz for
req = 1.1 mm. In this chapter comparison is made with experiments for bubble sizes
of req = 1.5 mm. The lower bound for the frequency of shedding is then f ≈ 14 Hz.

In this research the interest is in determining whether these HSV may play an
important role, and thus the lower bound of HSV production is taken. The number
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of vortex blobs produced in a unit volume of the flow per unit time is nf . The vortex
blobs are dissipated by viscous diffusion, their lifetime can be estimated therefore as
r2
eq/4ν. N denotes the number density of vortex blobs, to be represented as HSVs,

the growth of N per unit time, with initial condition (t = 0, N = 0) is

dN

dt
= nf − 4Nν

r2
eq

, N =
r2
eq

4ν

(
1 − e−4νt/r2eq

)
nf. (7.3)

Hence the equilibrium number density of HSVs is N = nfr2eq/4ν . For req = 1.5
mm and ν = 10−6 m2/s we get N ≈ 0.56nf and the corresponding volume fraction
of the HSVs is,

αH ≈ 8αB . (7.4)

The value obtained for αH with the upper bound 2req/UT for the frequency of vorti-
cal blob generation is about 50αB (for UT =0.3m/s). This is well above the estimate
given in (7.4).

Note that although the void fractions are small and bubble-bubble interactions
(α2

B terms) can be neglected, we should not neglect beforehand bubble-HSV interac-
tions (αBαH terms) as a bubble will interact with the HSVs shed by previous bubbles.

3 Turbulent excess energy

The excess turbulent energy is calculated following the method and notation of LvW.
The coordinate system is defined in Figure 7.1. In the derivation the subscript B is
used for the bubble terms and H for HSV terms, P denotes the probability density.
PB(r)d3r denotes the probability of finding a bubble centre in the volume d3r around
r. Similarly PH(y)d3y denotes the probability of finding an HSV centre in a volume
d3y centred around y. Furthermore, a is used as the equivalent radius of the bubble
and the HSV. The velocity, induced at x by a bubble at x + r and under the influence
of an HSV at x + y is indicated with q∗B . The velocity induced at x by an HSV at
x + y, by q∗

H . Consequently the total velocity fluctuation in x can be written as,

u′(x) = u′
0(x) + q∗

B(x,x + r,x + y) + q∗
H(x,x + y). (7.5)

Averaging over all possible values of r and y gives

qB(x) =
∫
r>a

∫
all y

q∗
BPB(x + r)PH(x + y)d3rd3y. (7.6)

q∗
B can be derived from a potential φB . Restricting ourselves to dipoles the potential

of the bubble for dilute mixtures can be written as

φB = − [vrela
3] · r

2r3
, (7.7)
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x

r

y

y-r

bubble

HSV

FIGURE 7.1: A bubble in x+r and an
HSV in x+y inducing velocity fluctua-
tions in x

where vrel, the relative velocity of the bubble, can be written as

vrel = UTk + 2u′
0 + 2q∗

H , (7.8)

with k the unit vector in the vertical direction. Now we insert (7.8) in (7.7) and in
evaluating q∗

B = ∇φB we distinguish between the direct contributions of bubbles to
qB(x), qBB , and the contributions from the HSV through the bubbles, qBH . In a
similar fashion we define qBB = ∇φBB and qBH = ∇φBH . Then qB(x) in (7.6)
can be written as

qB(x) = qBB(x) + qBH(x)

=
∫
r>a
−(UTk + 2u′

0)a3

2r3
+

3a3(UTk + 2u′
0) · r

2r5
rPBd

3r

+
∫
r>a

∫
y
−q∗

H(y − r)a3

r3
+

3a3q∗
H(y − r) · r

r5
rPBPHd3rd3y (7.9)

Turning to q∗
H , we observe that this is given inside the HSV by a stream function

ψH = ψHk, and outside by a potential φH = −a3UHk·y
2y3 . Similar to qB we define,

qH(x) =
∫

q∗
HPHd3y =

∫
y≤a

∇×ψHPH(x+y)d3y +
∫
y>a

∇φHPH(x+y)d3y

(7.10)
Subsequently, twice the average energy in the fluctuations can be written as, <>

denoting time averaging,

<u′ · u′> = <u′
0 · u′

0> +2 <u′
0 · qB> +2 <u′

0 · qH> + <qB · qB>

+ 2 <qB · qH> + <qH · qH>= A + B + C + D + E + F. (7.11)

The excess turbulent energy is defined as 1
2 [< u′ · u′ > − < u′

0 · u′
0 >]. As a result

A does not need to be calculated. All terms will be rewritten in terms involving only
the bubble terms or HSV terms in order to make use of the results of LvW.

B = 2 < u′
0 · qB >= 2 < u′

0 · qBB > +2 < u′
0 · qBH >

= E1 (see LvW) + 2 < u′
0 · qBH > (7.12)
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The last term in (7.12) is zero because there is no correlation between the HSV and
the turbulence. In a similar way it can be proven that

C =< u′
0 · qH >= 0. (7.13)

D is solved using LvW, including the velocity induced by the HSV on the bubble.

D = < qB · qB >=< qBB · qBB > +2 < qBB · qBH > + < qBH · qBH >

= E2 (see LvW) + 2 < qBB · qBH > + < qBH · qBH > . (7.14)

The third term on the right hand side of the of the last line in Equation (7.14), i.e. the
effect of a velocity of the HSV through the bubble, is much smaller than the direct
effect of the HSV in x and can be neglected. Additionally, UH ≈ 0.2UT and so the
second term is always much larger than the third. An extra effect which decreases the
influence of the HSV in the third term is that the distance from the HSV to the bubble
and then to the point, is always larger than the direct distance from the bubble to the
point. The second term, however, has to be estimated, which is done as follows. The
probability of finding an HSV in x + y, being a bubble in x + r is, assuming the
probabilities to be uncorrelated,

P (x + y,x + r) =

{
PB(x + r)PH(x + y) = PBPH |y − r| ≥ 2a
0 |y − r| < 2a

. (7.15)

Then
<qBB · qBH>=

∫ ∫
〈∇rφBB · ∇rφBH〉PBPHd3rd3y (7.16)

=

∫ ∫ 〈
∇rφBB ·

[
−

a3∇(y−r)φH

r3
+

3a3∇(y−r)φH · r
r5

r

]〉
PBPHd

3
rd

3
y. (7.17)

All terms are of the same order. Therefore we make an estimate of the first term,
resulting in

<qBB ·qBH>≈
∫ ∫〈

∇rφBB · −a3∇yφH

r3

〉
PBPHd3rd3y

= a3
∫
r>a
d3r

PB(x + r)∇φBB(r)
r3

·
∫
y
d3(y)∇φH(y)PH (x + y).

The last integral is not uniformly convergent. To overcome this difficulty the tech-
nique proposed by Batchelor (1972), and used in bubble dynamics by van Wijngaar-
den (1976), is used. This technique is based on the fact that the averaged effect of
bubbles, and thus of the HSV, on the mass flux should be zero. This means∫

all configurations
uPHd3y = 0, or (7.18)∫

0<y≤a
unHd3y +

∫
a<y≤2a

unHd3y +
∫
y>2a

unHd3y = 0 (7.19)
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The HSV vortices move with a velocity, UHk, and their concentration by volume
is, αH , so the first integral on the left hand side of (7.19) is equal to αHUHk. The
second and third integrals are zero and equation (7.18) becomes

< qBB · qBH > ≈ −αHa3UHk ·
∫ ∇φBB

r3
PBd

3r

= −αHa3UHk ·
(
n

∫
∇
(
φBB

r3

)
d3r + 3n

∫
φBB

r4

r
r
d3r
)

= −αHUHna3
[
−20

9
πUT +

4
3
UT

]

=
2
3
αBαHUHUT ≈ α2

BU
2
T = O(α2

B) (7.20)

which can be neglected because α2
B is a bubble interaction term which is also ne-

glected. Since all other neglected terms are of order α2
B , term D becomes

D ≈ E2 (see LvW) + O(α2
B) ≈ E2 (7.21)

Likewise,

E = 2 < qBqH >= 2
∫ ∫

∇φBB · nH∇φHd3rd3y = O(α2
B) (7.22)

Up to now all parts including effects of the HSV could be neglected and only the
effects already determined by LvW remain. Finally the term F , describing the energy
of the HSVs, has to be determined. Using the results of Synge & Lin (1943),

F =< qHqH >= nH
10
7
πa3U2

H ≈ αHU2
H ≈ 0.35αBU2

T , (7.23)

where we used UH = 0.2UT and αH = 8αB . In conclusion it appears that only the
energy of the HSV and the effects already given by van Wijngaarden (1998) have to
be taken into account. The excess turbulent energy finally becomes,

u′2
E = αBU

2
T

[
1.35 + 12

u
′2
0

U2
T

]
as lower bound (7.24)

This lower bound is larger than the result obtained in LvW and closer to the experi-
mental lines.

For the size of bubbles used in the above analysis, a double threaded wake is
observed for free rising bubbles in quiescent water (Chapter 4). As this double thread
is shown to become unstable on short time scales for large perturbations, a similar
behaviour is expected in turbulence. In principle all the vorticity produced on the
bubbles is transported in the wake and will affect the turbulence. If all the vorticity
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FIGURE 7.2: Excess turbulent energy vs void fraction: Experiments of Theofanous & Sul-
livan (1982) for u′

0/UT = 0.088 and Lance & Bataille (1991) for u ′
0/UT = 0.085. The

grey area indicates the range of the present model, bounds defined by (7.24) and (7.25). The
dashed line indicates the result of the present model, based on the wavelength of the instabil-
ity (7.26)

in the wake is rearranged into HSVs and the strength and size of the HSVs are as
described above. Then the volume fraction of HSVs can grow up to 50αB , which is
the upper bound.

Although many assumptions made in the model are no longer valid for these
large volume fractions of HSVs, a good approximation for the excess turbulent en-
ergy can be given by just taking into account the energy of the HSVs and the terms
already obtained by van Wijngaarden (1998). The upper bound for the excess turbu-
lent energy is approximately

u′2
E = αBU

2
T

[
3.1 + 12

u
′2
0

U2
T

]
as upper bound. (7.25)

It is hypothesised here that a good measure of the volume fraction of HSVs
can be obtained from the wavelength of the instabilities observed in the wake. In
Chapter 4 it is observed that for a free rising zigzagging bubble the wavelength of the
Crow instability was about 5b ≈ 3req . With a rise velocity of 30 cm/s and req = 1.5
mm, the frequency of the “Crow” instability would be f = 0.30/0.0045 = 67 Hz.
Then the volume fraction of HSVs would become about 40αB . The excess turbulent
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energy then becomes

u′2
E = αBU

2
T

[
2.6 + 12

u
′2
0

U2
T

]
as present model, (7.26)

which is in very good agreement with the experimentally observed values.

4 Conclusions

The present analysis shows the considerable effect of vorticity generated by the bub-
bles on the excess turbulent energy. The experimental results of Lance & Bataille
(1991) and Theofanous & Sullivan (1982) are within the upper and lower bound of
the model (Figure 7.2). The lower bound of this model is given by the natural fre-
quency of a single rising bubble in quiescent water. The upper bound is given by
the maximum amount of vorticity produced on the surface of the bubble in quiescent
water.

In the model the vorticity is concentrated in Hill’s spherical vortices. Admit-
tedly, this is not necessarily so in the real situation. Therefore more research has to
be performed to determine a better estimate of the produced vorticity distribution. It
is expected, however, that the excess energy will be of the same order of magnitude
as estimated in the present analysis.
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RECOMMENDATIONS
The main purpose of this study was to gain more fundamental knowledge on bub-
ble dynamics. In particular to understand the causes of the remarkable disagree-
ments between previous experimental results on the type of motions observed for
path-unstable bubbles. The expectation was that the path of the bubble is strongly
correlated with the wake behind the bubble. The latter is obviously correlated to the
shape of the bubble and the purity of the water. The main problem was to visualise
the wake without affecting the purity of the water.

A further fundamental question was how the path of bubbles bouncing against
a vertical wall can be explained. The hypothesis was that there is again a strong cor-
relation between the wake and the observed motion. Also we wanted to investigate
whether a bouncing criterion holds, similar to that occurring for a colliding bubble
pair. In addition to these questions, we wanted to understand the motion of the bub-
bles by constructing a simplified, generic model. This model should capture the most
important features of the motion.

The main experimental tool is the schlieren visualisation method which allows
to visualise the wake without affecting the purity of the water. For free rising bub-
bles a double-threaded wake occurs when the curvature of the path is non-zero. This
double-threaded wake is shown to exist of two counter-rotating vortex filaments. This
results in a lift force affecting the path of the bubble. The different methods to indi-
rectly determine the strength of this lift force agree perfectly.

The bubble-production technique used in the present experimental study is
shown to have several advantages, e.g. the accuracy of the bubble size, the spher-
ical shape at release and the large time between consecutive bubbles. The latter en-
sures that bubbles are not affected by preceding bubbles. This contrary to the, most
widely used, conventional bubble-production method. Furthermore, the conventional
bubble-production method triggers shape, or volume, oscillations of the bubble. To
study the path instability of free rising bubbles all disturbances should be avoided.

It should be stressed that the onset of path instability cannot be triggered by
an instability of the standing eddy, as is observed for solid spheres. In the region
where path instability sets in, a standing eddy has not been observed experimentally
or is expected numerically. At the front of the bubble the curvature of its surface
is relatively small. This means that the stabilising effect of the surface tension is
relatively small. One possibility is that an instability sets in and travels as a wave to
the side of the bubble and then triggers the wake to become non-axisymmetric. The
double-threaded wake is formed and sets in the non-rectilinear motion. Unfortunately
we were not able to observe such a wave in any of our experiments.
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The double-threaded wake ‘far’ behind the bubble becomes unstable. This in-
stability is very similar to Crow instability. In general this is associated with the
instabilities observed for the trailing vortices behind airplanes. As a result vortical
regions are formed.

The zigzagging motions is not maintained by vortex shedding at the point at
which the horizontal velocity component of the bubble switches sign, but is associ-
ated with the sign change of the lift force as soon as the bubble’s curvature changes
sign. The latter coincides with the mean position of the zigzag. The curvature of the
path becomes zero as the lift force is balanced by the component of the buoyancy
force normal to the path.

The model explaining the path of bubble, based on a lift force directed towards
the inward curvature of the path, gives qualitatively correct results. The lift force is
zero for a zero curvature of the path. This also agrees with the experimental obser-
vations for a zigzagging bubble where a single-threaded wake is observed as soon as
the curvature of the path is zero.

The experimentally observed interactions of bubbles bouncing against a vertical
wall can be split into four types: i) sliding along the wall, ii) multiple bounces, iii)
bouncing separations and iv) multiple bounces with large amplitudes.

The parameter determining the transition between the first two interaction types
is a critical Weber number (Wecr = 0.165) based on the approach velocity. This
is in good agreement with the critical Weber number (Wecr = 0.18) determined
by Duineveld (1994), in his bubble-bubble interaction study, for the transition from
coalescence to bouncing. In the present experiments it was observed that for bounc-
ing bubbles (types ii-iv) the vertical velocity component drops drastically and the
horizontal velocity component changed sign at bouncing. The explanation for the ap-
pearance of the large amplitude of the bounces is that the attraction force of the wall
just after bouncing is reduced significantly compared to the force just before bounc-
ing. The reason for this is that this attraction force is proportional to the velocity
magnitude squared.

The parameter for the transition from the third to the fourth type of bouncing is
the same as the parameter used for the occurrence of path instability for a free rising
bubble, i.e. the Weber number based on the velocity magnitude. And thus the lift
force is assumed to play a very important role. From the curvature of the path in the
bouncing regime, it was shown that the lift force is always attractive, explaining the
reappearance of the multiple bounces with very large amplitudes for larger bubbles.

The results of the bouncing model, based on the equations of motion for a bubble
pair given in Kok (1993a), including a bouncing criterion, gives qualitatively results
similar to those observed in the present experiments. The ’nose-like’ shape of the
bubble path during bouncing is reproduced and the bounce amplitudes were in good
agreement. The shortcomings of the model became obvious for the large bubbles.
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Clearly for these bubbles the assumption of a spherical shape is no longer valid.
The model for the modification of turbulence by bubbles gives promising results.

The experimental results of Theofanous & Sullivan (1982) and Lance & Bataille
(1991) for the excess turbulence energy fall in between of the lower and upper bounds
of the model. For the lower bound the frequency of vortical regions is associated with
the natural frequency of a zigzagging bubble. The frequency for the upper bound is
associated with the rearrangement of all vorticity produced on the bubble into vortical
regions.

Summarising these conclusions we can state that the bubble motion and the
wake are strongly related. For large bubbles a lift force is observed. The main bounc-
ing phenomena are understood. Based on the vorticity production on the bubble’s
surface good predictions of the modification of turbulence can be obtained.

Recommendations
One essential part not understood in bubble dynamics is the trigger of the path insta-
bility. We suggest the trigger is a perturbation of the shape at the front of the bubble,
but no evidence can be given at this time.

The model predicts a horizontal displacement of the mean position, with respect
to the release point, of both spiralling and zigzagging bubbles. It should be checked
whether this indeed takes place.

Another remaining question is the orientation of the bubble. For the analysis it
is sufficient to assume that the short axis is in the direction of motion. This orienta-
tion, however, is in contradiction with a curvature in the path. The bubble cannot be
aligned in this way or the bubble has no longer a perfect ellipsoidal shape. Certainly
detailed experiments studying the shape and orientation of the bubble are necessary.
Furthermore, it would be interesting to theoretically estimate the necessary misalign-
ment or deformation.

For the bouncing bubbles many questions remain, although the fundamental
physics are understood. The main focus at this moment should be the cause of the
drop in vertical velocity. We expect that a combination of the boundary layer, the
wake effect and the shape of the bubble can explain the observed phenomena. Fur-
thermore an attempt should be made to determine the added mass coefficients and
drag coefficients for an ellipsoidal bubble pair. Especially for the larger bubbles this
can have import effects.

The model for the modification of turbulence by incorporating vorticity reori-
entation is far from complete, but gives promising results. More research should
be performed on determining more precisely the configuration of the vorticity dis-
tribution. Furthermore, more experiments should be performed giving more data to
compare with. These experiments should cover a wider field, e.g. bubble radii and
turbulence intensities.
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SUMMARY

Bubbly flows are very common in both industrial and natural environments. In gen-
eral bubbly flows are very complex. Detailed knowledge about all phenomena in-
volved should be obtained to predict the behaviour of the bubbles and the implica-
tions on the flow. In this thesis the focus is on the motion and the flow around a single
bubble in quiescent water.

One part of this thesis concerns the study of the path and the path instability of a
single bubble. Although in general liquids are contaminated, the present experiments
are performed in pure water to eliminate as many sources of disturbances as possible.
A three dimensional schlieren visualisation technique has been developed to study the
path of and the flow around a bubble without affecting the purity of the water. The
shape oscillations generally observed at the bubble release have not been observed
for the present bubble-generation method.

Based upon the experimental observations, a model is proposed to explain the
spiralling and zigzagging motion of free rising bubbles. It was found that a lift force
is crucial for the dynamics of these free rising, path unstable bubbles. The path of a
zigzagging bubble appears not to be maintained by a periodic shedding of vorticity,
but by a reconnection of vorticity in the wake. Subsequently a change of sign of
the strength of the trailing vortex filaments, as a consequence of the change of the
direction of the lift force. At the onset of path instability no standing eddy was
observed experimentally nor appeared numerically.

Most (bubbly) flows are bounded by solid walls. Therefore also the interaction
of a single bubble with a solid wall is studied. Some peculiar phenomena have been
observed for a bubble near a vertical wall. Four distinct types of interactions were
observed as bubble sizes increase: i) sliding along the wall, ii) ’nose-like’ shapes
of multiple bounces, iii) bouncing followed by separation and iv) reappearance of
multiple bounces of symmetric appearance. In several cases the bounce amplitude
was observed to increase. A comparison has been made with the observations and
transition parameters for a bouncing bubble pair, investigated by Kok (1993a, b) and
Duineveld (1994).

Based upon these experiments a bouncing criterion is determined and a model is
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proposed which captures the most important phenomena. In addition to the bouncing
criterion, it appears that again the wake again plays a crucial role. Furthermore the
’nose-like’ type of bounces have been associated with a strong reduction of the at-
tractive force of the wall just after collision. At bouncing a vortical region is formed
near the wall, which develops into a spherical shape and has a self-induced vertical
motion.

The observations for the single bubbles have resulted in a model for the modifi-
cation of turbulence by bubbles. This model is based on vorticity shedding from the
bubbles. A lower and upper bound was determined for the excess turbulent energy.
These results have been compared to experimental data found in literature.
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Bellenstromingen komen veel voor in industriële en natuurlijke omgeving. In het
algemeen zijn bellenstromingen erg complex. Gedetailleerde kennis over alle aan-
wezige fenomenen is nodig om het gedrag van de bellen en de implicaties voor de
stroming te voorspellen. In dit proefschrift wordt vooral aandacht besteed aan de
beweging van, en de stroming om, een enkele opstijgende bel in stilstaand water.

Een deel van dit proefschrift richt zich op het bestuderen van de baan en de baan
instabiliteit van een enkele vrij opstijgende bel. Alhoewel in het algemeen vloeistof-
fen verontreinigd zijn, zijn de huidige experimenten in puur water verricht om zoveel
mogelijk verstoringen uit te sluiten. Een drie dimensionale optische meettechniek,
schlieren, is gebruikt voor het visualiseren van het zog achter een opstijgende bel.
Hiertoe is er een temperatuur gradient aangebracht in de waterbak. Doordat de brek-
ingsindex van water een functie van de temperatuur is, kan naast de contour van de
bel ook het zog zichtbaar gemaakt worden. De zuiverheid van het water is door het
gebruik van deze meetmethode niet aangetast.

De grootte van de bellen wordt geregeld door middel van het volume en/of de
druk van zuivere lucht. De bel wordt langzaam door een smalle buis geduwd met
behulp van zuiver water. Het uiteinde van deze buis bevindt zich in de waterbak.
De bel wordt op deze buis gezet en de de bel is op dit moment bolvormig. Overal
om de bel heen, ook binnen in de buis, bevint zich nu zuiver water. Bij het loslaten
van de bel is deze dus bolvormig; zonder volume of oppervlakte oscillaties. Deze
oscillaties zijn in het algemeen wel aanwezig in eerdere onderzoeken en blijken een
grote invloed te kunnen hebben op de baan van de bel.

In de huidige experimenten stijgt elke bel eerst recht op. Kleine bellen stijgen in
stilstaand water altijd recht op. Als het volume van de bel echter een bepaalde grootte
overschrijdt, blijken de bellen ook in de horizontale richting te gaan bewegen. Deze
bellen kunnen een spiraalbaan of een zigzagbaan beschrijven. Een zigzagbaan is een
beweging in één vlak. Uit de experimenten is gebleken dat het zog van kleine, recht
opstijgende, bellen een enkele draad is. Het zog van spiraliserende en zigzaggende
bellen is opgebouwd uit twee draden, zolang de baan geen buigpunt vertoont. Verd-
wijnt de kromming, dan kan de baan echter ook weer lokaal rechtlijnig bewegen. Op
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dat moment is het zog weer opgebouwd uit een enkele draad.

Uit de dynamica van het dubbele zog en de instabiliteiten van dit zog, blijkt dit
zog grote overeenkomsten te vertonen met het zog achter een vliegtuig. Het zog is
opgebouw uit twee tegen elkaar indraaiende wervelbuizen en kan gerelateerd wor-
den aan een lift kracht. Voor een spiraliserende bel is deze lift kracht van constante
sterkte, geleidelijk veranderend van richting. Voor een zigzaggende bel verdwijnt
deze liftkracht op het moment dat de baan rechtlijnig wordt. Uit de analyse volgt
dat op dat moment de enige kracht loodrecht op de baan een component van de
zwaartekracht is. Hierdoor kan er weer een kromming in de baan komen en er weer
een dubbel zog ontstaan. Echter de draairichting van de wervelbuizen is nu tegen-
steld en dus is de liftkracht van teken veranderd. Met behulp van het invoeren van de
liftkracht kunnen de spiraal en zigzag baan van een bel verklaard worden.

Er is echter nog geen verklaring gevonden voor het onstaan van de baan insta-
biliteit. Er is wel aangetoond dat deze niet veroorzaakt kan worden door het instabiel
worden van een aangesloten zog achter een bel. Dit aangesloten zog is nooit gezien
in onze experimenten en uit numerieke berekeningen blijkt dat dit aangesloten zog
pas ontstaat in een parameter regime waarin de baan van een enkele opstijgende bel
in zuiver stilstaand water al instabiel is. De baan instabiliteit van één bel is dus anders
dan die van een vaste bol en rechtvaardigt daarmee de behoefte van experimenten in
zuiver water, daar het gedrag van een bel in voldoende vuil water identiek is aan het
gedrag van een vaste bol. Naar aanleiding van het huidige onderzoek zijn er twee
mogelijk kandidaten voor het ontstaan van baan instabiliteit: een oppervlakte golf en
symmetrie breking van het zog.

In de meeste (bellen) stromingen zijn wanden aanwezig. Daarom is er in dit
proefschrift ook aandacht besteed aan het gedrag van een bel bij een vertikale wand.
Hierbij zijn er enige erg interessante verschijnselen geobserveerd: i) glijden langs
de wand, ii) ’neusvormige’ banen tussen opeenvolgende stuits , iii) enkele stuit, iv)
hoge, opeenvolgende, symmetrische stuits. De hoogte van de stuit kan groter zijn dan
de initiële afstand van de wand, en groter zijn dan de hoogte van de voorgaande stuit.

Deze verschijnselen hebben grootte overeenkomsten met gedrag van een bellen-
paar. Dit is niet verwonderlijk daar, in de limiet van een potentiaal stroming, een bel
dicht bij een wand opgevat kan worden als een bellenpaar: de bel en zijn spiegel-
beeld. In dit proefschrift zijn dan ook de bewegingsvergelijking van een bellenpaar
gebruikt om de banen van de stuiterende bellen te verklaren. Uit de experimenten
bleek dat er een botsingcriterium, Wecr = 0.165, bestaat dat de overgang tussen gli-
jden en botsen typeert. Voor glijdende bellen (snel uitdovende stuits) kan de botsing
opgevat worden als een elastische botsing (u → −u, v → v); voor stuiterende bellen
(u → −u, v → 0). Deze voorwaarde, het onttrekken van kinetische energie voor
een stuiterende bel, kan verklaren waardoor de amplitude van een stuit kan groeien.
Dit komt doordat de aantrekkende kracht van de wand recht evenredig is met het
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kwadraat van de totale snelheid. Voor een stuiterende bel kan de aantrekkende kracht
vlak na de stuit significant kleiner zijn dan vlak voor de stuit en kan deze met dezelfde
horizontale impuls verder van de wand komen. Ook kan hiermee de neusvormige
baan verklaard worden.

Voor grote stuiterende bellen zijn de banen niet rechtstreeks te beschrijven met
het model. In overeenstemming met de vrij opstijgende bellen, blijkt dat er ook nu
weer een dubbel zog gevormd wordt. De hieraan gerelateerde liftkracht blijkt altijd
aantrekkend te zijn. Door deze, voor grote bellen, mee te nemen in het model kunnen
de banen van stuiterende bellen kwalitatief beschreven worden.

Met de waarnemingen voor enkele bellen is een model opgesteld om de invloed
van vele bellen in een turbulente stroming op de turbulente energie te bepalen. Dit
model berust op het feit dat de vorticiteit geproduceerd aan het bel oppervlak zich
herorienteerd in bolvormige vorticiteits gebieden. Op deze manier zijn een onder
en een boven grens voor de extra turbulente energie geschat. De resultaten zijn in
overeenstemming met experimentele resultaten uit de literatuur.
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