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Summary

Bed resistance, i.e., the resistance to flow of the main channel bed of the river,
may consist of two components (e.g. Rouse, 1965; Yen, 2002): (1) grain fric-
tion, and (2) form drag due to bedforms. The objective of the present study
is to develop a form drag model applicable to bedform-dominated rivers under
subcritical flow conditions.

It is expected that variability in bedform geometry affects form drag. There-
fore, in order to incorporate variability in bedform geometry in a form drag
model, we need to quantify this variability. Variability in bedform geometry has
been studied using flume and field data of bedforms. It is found that the geo-
metric variables under consideration, i.e., bedform height, bedform length, crest
elevation, trough elevation, and lee face slope are best described by a positively
skewed probability density function, such as the Weibull distribution.

Variability in bedform geometry can be characterized using simple generic
relations. It appears that linear relations exist between standard deviation and
mean value for bedform height, bedform length, crest elevation, and trough
elevation if the ratio of width to hydraulic radius is larger than about ten.
A constant coefficient of variation can then be applied to quantify variability
in bedform geometry. For field data, the mean lee face slope is found to be
significantly smaller than for alluvial flume data.

The semi-analytical form drag model, which is developed in the present study,
consists of two components, i.e., (1) an analytically-based reference form drag
model, accounting for the energy loss associated with a deceleration of the flow
due to a sudden expansion of a free surface flow (i.e., the reference situation),
and (2) an empirical coefficient taking into account effects due to deviations
from the reference situation. The analytically-based reference form drag model
is an extension of the models proposed by Yalin (1964a), Engelund (1966), and
Karim (1999). The effect of nonuniformity of the velocity distribution over a
cross-section is accounted for via a calibration coefficient.

The empirical coefficient, which is called the total correction factor, is con-
structed as the product of four correction factors, each of these factors accounting
for an effect relevant to form drag due to bedforms. By doing so, it is assumed
that the four effects are independent. The following four effects relevant to form
drag that are not incorporated in the reference form drag are recognized:

1. the flow downstream of a bedform crest expands gradually rather than
abruptly (correction factor for lee face steepness),

2. the flow pattern over closely spaced bedforms differs from the pattern over
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a solitary bedform (correction factor for bedform interaction),

3. the height of the flow separation zone may deviate from the bedform height
(correction factor for flow separation zone height),

4. bedform geometry is irregular rather than regular (correction factor for
variability in bedform geometry).

For each of these effects an expression for a correction factor has been developed.
To analyze the effect of lee face steepness and bedform spacing on form drag,

the computational fluid dynamics software package Ansys CFX has been used.
A validation of the numerical model using laboratory data of flow over fixed
bedforms shows that Ansys CFX is well capable of predicting flow velocities,
form drag, and the free surface elevation.

Using numerical simulations in Ansys CFX an expression for the effect of lee
face steepness on form drag has been developed. The correction factor for lee
face steepness increases with increasing lee face angle and equals more or less
unity for lee face angles larger than about 50◦.

An expression for the effect of bedform interaction on form drag is found to
be a function of the ratio of bedform length to bedform height. The correction
factor for bedform interaction describes that for increasing values of this ratio,
the flow pattern over a bedform is less influenced by the flow pattern over the
upstream bedform.

The height of the flow separation zone, and thus form drag, decreases if the
flow separates at a brink point rather than at the highest point of the bedform.
The correction factor for flow separation zone height is found to be a function
of the ratio of flow separation zone height to bedform height, and describes that
the larger the flow separation zone height, the larger is the form drag.

Provided that the mean bedform height is the same, the energy loss due to
expansion is larger for the case of a series of irregular bedforms than for a series
of regular bedforms, as the relation between energy loss and bedform height is
a nonlinear one. The correction factor for variability in bedform geometry ac-
counts for the effect that form drag increases for increasing variability in bedform
geometry.

In the semi-analytical form drag model the four above-mentioned effects
and the effect of nonuniformity of the flow velocity profile are included. In
the so-called analytical form drag model these effects are not included. Both
models are applied to laboratory measurements of flow over uniform fixed and
alluvial bedforms. The results of the models are compared to those of existing
bed resistance models to analyze the performance of the analytical and semi-
analytical models.

For the uniform fixed bedform data, it is found that the present semi-
analytical model yields better results than the analytical and empirical models
considered. The empirical bed resistance models under consideration do not well
predict bed resistance of uniform fixed bedforms.

The form drag model of Yalin (1964a) and Engelund (1966) yields the best
results for the alluvial flume data. However, from data of flow over bedforms
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with small lee faces it appears that the semi-analytical form drag model yields
better predictions of form drag than the Yalin (1964a) - Engelund (1966) form
drag model. Therefore, for bedforms in the field, which are usually gentler
than in the laboratory, the semi-analytical model is expected to yield better
predictions of bed resistance than the Yalin (1964a) - Engelund (1966) model.

It is found that for the alluvial flume data the semi-analytical model, in
which the four mentioned effects and the effect of nonuniformity of the flow
velocity profile are included, does not yield better predictions of bed resistance
than the analytical model and the model of Yalin (1964a) and Engelund (1966),
in which these effects are not included. In the analytical model and the model of
Yalin (1964a) and Engelund (1966) the neglected effects appear to cancel out.
The assumption in the Yalin (1964a) - Engelund (1966) bed resistance model
that flow expansion downstream of the bedform crest can be represented by
expansion of a pipe flow rather than a free surface flow appears to be justified,
as the differences between the Yalin (1964a) - Engelund (1966) model and the
analytical model are small.

Based on the analysis performed in this thesis the author advises to apply the
semi-analytical form drag model, as (a) the model is expected to yield the best
results in field situations, and (b) an analytically-based model is preferred over
an empirical model. The author advises to apply the analytical Yalin (1964a)
- Engelund (1966) form drag model if a model is preferred that is more easy to
apply than the semi-analytical model.

For the case of compound bedforms, it is shown that summation of the energy
loss due to individual small-scale and large-scale bedforms yields a reasonably
good prediction of form drag.
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Samenvatting

Bodemweerstand, i.e., de weerstand die de stroming ondervindt van de rivierbo-
dem, bestaat uit de volgende twee componenten (e.g. Rouse, 1965; Yen, 2002):
(1) korrelwrijving, en (2) vormweerstand als gevolg van bodemvormen. Het doel
van dit onderzoek is het ontwikkelen van een vormweerstandsmodel dat toepas-
baar is op bodemvorm-gedomineerde rivieren onder subkritische stromingscon-
dities.

Verwacht wordt dat variabiliteit in bodemvormgeometrie de vormweerstand
bëınvloedt. Om variabiliteit in bodemvormgeometrie mee te kunnen nemen in
een vormweerstandsmodel, is het eerst nodig om deze variabiliteit te kwantifice-
ren. Variabiliteit in bodemvormgeometrie is bestudeerd met behulp van goot-
en velddata van bodemvormen. De beschouwde geometrische variabelen, i.e.,
bodemvormhoogte, bodemvormlengte, topniveau, trogniveau en helling van de
lijzijde blijken het beste te kunnen worden beschreven door een kansdichtheids-
functie met positieve scheefheid zoals de Weibull verdeling.

Variabiliteit in bodemvormgeometrie kan worden gekarakteriseerd met be-
hulp van eenvoudige generieke relaties. Het blijkt dat voor bodemvormhoogte,
bodemvormlengte, topniveau en trogniveau lineaire relaties bestaan tussen de
standaardafwijking en gemiddelde waarde als de verhouding tussen de rivier-
of gootbreedte en de hydraulische straal groter is dan ongeveer tien. Een con-
stante variatiecoëfficiënt kan in dat geval worden toegepast om variabiliteit in
bodemvormgeometrie te kwantificeren. De gemiddelde helling van de lijzijde
blijkt aanzienlijk kleiner te zijn voor velddata dan voor gootdata.

In dit onderzoek is een semi-analytisch vormweerstandsmodel ontwikkeld.
Dit model bestaat uit twee componenten, te weten (1) een referentie-vorm-
weerstandsmodel met analytische basis dat het energieverlies in rekening brengt
door vertraging van de stroming als gevolg van een abrupte expansie van een
vrij-oppervlak stroming (de referentiesituatie), en (2) een empirische coëfficiënt
die effecten door afwijkingen ten opzichte van de referentiesituatie in rekening
brengt. Het referentie-vormweerstandsmodel is een uitbreiding van de modellen
van Yalin (1964a), Engelund (1966) en Karim (1999). Een calibratiecoëfficiënt
brengt het effect van niet-uniformiteit van het stroomsnelheidsprofiel over een
dwarsdoorsnede in rekening.

De empirische coëfficiënt, die in dit onderzoek de totale correctiefactor wordt
genoemd, is opgebouwd als het product van vier correctiefactoren. Elk van de
vier correctiefactoren brengt een effect in rekening dat relevant is voor vorm-
weerstand als gevolg van bodemvormen. Aangenomen wordt dat de vier effecten
onafhankelijk van elkaar zijn. Voor elk van deze effecten is een uitdrukking voor
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de correctiefactor ontwikkeld. De vier effecten zijn:

1. de stroming benedenstrooms van een bodemvorm expandeert geleidelijk in
plaats van abrupt (correctiefactor voor steilheid van de lijzijde),

2. het stromingspatroon over een reeks bodemvormen verschilt van het stro-
mingspatroon over een solitaire bodemvorm (correctiefactor voor bodem-
vorm-interactie),

3. de hoogte van de loslaatzone kan afwijken van de bodemvormhoogte (cor-
rectiefactor voor hoogte van de loslaatzone),

4. bodemvormgeometrie is onregelmatig in plaats van regelmatig (correctie-
factor voor bodemvormgeometrie).

Om het effect van de steilheid van de lijzijde en de afstand tussen bodemvor-
men te analyseren, is het softwarepakket Ansys CFX ingezet. Een validatie van
het numerieke model met gebruikmaking van laboratoriummetingen van stro-
ming over uniforme vaste bodemvormen laat zien dat Ansys CFX goed in staat is
om stroomsnelheden, vormweerstand en het niveau van het vrije wateroppervlak
te voorspellen.

Een uitdrukking voor het effect van de steilheid van de lijzijde op vormweer-
stand is ontwikkeld met behulp van numerieke simulaties in Ansys CFX. De
correctiefactor voor steilheid van de lijzijde neemt toe met toenemende lijzijde-
hoek en is gelijk aan één voor lijzijdehoeken groter dan grofweg 50◦.

De correctiefactor voor bodemvorm-interactie blijkt een functie te zijn van de
verhouding tussen bodemvormlengte en bodemvormhoogte. De correctiefactor
beschrijft dat voor toenemende waarden van deze verhouding, het stromingspa-
troon over een bodemvorm minder wordt bëınvloed door het stromingspatroon
over de bovenstroomse bodemvorm.

De hoogte van de loslaatzone, en dus de vormweerstand, neemt af wanneer
de stroming loslaat bij een brinkpunt in plaats van bij het hoogste punt van de
bodemvorm. De correctiefactor voor hoogte van de loslaatzone is een functie
van de verhouding tussen hoogte van de loslaatzone en bodemvormhoogte, en
beschrijft dat hoe groter de hoogte van de loslaatzone, hoe groter de vormweer-
stand is.

Voor gelijkblijvende gemiddelde bodemvormhoogte is het energieverlies door
expansie groter in geval van een reeks onregelmatige bodemvormen dan in geval
van een reeks regelmatige bodemvormen, omdat de relatie tussen energieverlies
en bodemvormhoogte een niet-lineaire relatie is. De correctiefactor voor varia-
biliteit in bodemvormgeometrie brengt het effect in rekening dat vormweerstand
toeneemt voor toenemende variabiliteit in bodemvormgeometrie.

In het semi-analytische vormweerstandsmodel zijn de vier bovengenoemde
effecten en het effect van niet-uniformiteit van het stroomsnelheidsprofiel meege-
nomen. In het zogenaamde analytische vormweerstandsmodel zijn deze effecten
niet meegenomen. Beide modellen zijn toegepast op laboratoriummetingen van
stroming over uniforme vaste en alluviale bodemvormen. De resultaten van de
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modellen zijn vergeleken met die van bestaande bodemweerstandsmodellen om
de prestaties van het analytische en semi-analytische model te analyseren.

Het semi-analytische vormweerstandsmodel levert betere resultaten dan de
beschouwde analytische en empirische modellen voor de uniforme vaste bodem-
vorm data. De beschouwde empirische bodemweerstandsmodellen geven geen
goede voorspelling van de bodemweerstand bij uniforme vaste bodemvormen.

Het vormweerstandsmodel van Yalin (1964a) en Engelund (1966) levert de
beste resultaten voor de alluviale gootdata. Echter, voor stroming over bo-
demvormen met kleine lijzijdehoeken is gebleken dat het semi-analytische vorm-
weerstandsmodel betere voorspellingen van vormweerstand levert dan het Yalin
(1964a) - Engelund (1966) vormweerstandsmodel. Voor veldsituaties waarin
bodemvormen meestal flauwer zijn dan in het laboratorium is het daarom te
verwachten dat het semi-analytische model betere voorspellingen van bodem-
weerstand geeft dan het Yalin (1964a) - Engelund (1966) model.

Voor de alluviale gootdata is gebleken dat het semi-analytische model waarin
de vier genoemde effecten en het effect van niet-uniformiteit van het stroomsnel-
heidsprofiel zijn meegenomen geen betere voorspelling van de bodemweerstand
levert dan het analytische model en het model van Yalin (1964a) en Engelund
(1966), waarin deze effecten niet zijn meegenomen. In het analytische model
en het model van Yalin (1964a) en Engelund (1966) vallen de verwaarloosde
effecten klaarblijkelijk tegen elkaar weg. De aanname in het Yalin (1964a) - En-
gelund (1966) model dat stromingsexpansie benedenstrooms van de top van de
bodemvorm kan worden voorgesteld als expansie van een pijpstroming in plaats
van expansie van een vrij-oppervlak stroming blijkt gerechtvaardigd, omdat de
verschillen tussen het Yalin (1964a) - Engelund (1966) model en het analytische
model klein zijn.

Op basis van de analyse in dit proefschrift adviseert de auteur om ofwel het
semi-analytische vormweerstandsmodel toe te passen, omdat (a) van dit model
wordt verwacht dat het de beste resultaten geeft in veldsituaties, en (b) een
model met analytische basis wordt verkozen boven een empirisch model, ofwel
het analytische Yalin (1964a) - Engelund (1966) vormweerstandsmodel toe te
passen wanneer een model wordt geprefereerd dat eenvoudig toepasbaar is.

Voor een situatie met samengestelde bodemvormen is aangetoond dat som-
matie van het energieverlies als gevolg van individuele kleinschalige en grootscha-
lige bodemvormen een redelijk goede voorspelling van vormweerstand levert.
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Chapter 1

Introduction

1.1 Context

River management and model systems

Rivers, flowing downhill from their sources to their mouths at the sea, ocean,
or lake, transport water, sediments, and sometimes ice. For thousands of years,
rivers and their fertile floodplains are used for agriculture, drinking water supply,
and transport. Hence, since ages the surroundings of rivers are popular settling
areas for, for instance, farms and factories. River basins now have become
densely populated areas.

Nowadays, the main task of the river manager is to take care that water
and sediments in a river system are transported in such a way that, at the
same time, people are protected against flooding, and attention is paid to the
provision of navigation, floodplain agriculture, ecology, and recreation. The
river system needs to be developed, maintained, and cultivated so, that the
(sometimes conflicting) functions in the area are accommodated. In order to do
so, accurate predictions of water levels and bed levels in rivers are indispensable.
Reliable design of dikes that are high enough to protect surrounding areas from
flooding is essential during periods of high water levels (Figure 1.1a). During
periods of low water levels on the other hand, for navigation purposes a certain
channel width and water depth needs to be guaranteed (Figure 1.1b). It must
be prevented that navigation is hindered by local sedimentation or bedforms.

Hydraulic and morphodynamic model systems are important tools in the
prediction of water levels and bed levels. A morphodynamic model system
describes the movement of water and sediment, as well as morphological changes
through a set of mathematical equations. Examples of numerical model systems
are the one-dimensional model system SOBEK, the two-dimensional and three-
dimensional model system Delft3D of Deltares, and the MIKE model system of
the Danish Hydraulic Institute DHI.

The mathematical equations that are solved in a morphodynamic model sys-
tem describe the relevant physical processes in a river system. For instance,
water movement is described using (a simplified version of) the Navier-Stokes
equations, and the sediment mass balance using a form of the Exner equation.
Also flow resistance, acting in the opposite direction of the flow, needs to be
described in a model system. Here, flow resistance comprises all sources of re-
sistance to flow, such as vegetation resistance in the floodplains, resistance due
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(a) (b)

Figure 1.1: River management. (a) Protection against flooding during an extreme
high water period in the Netherlands. (b) Navigation needs to be guaranteed, also
during a low water period. Source: www.BeeldbankVenW.nl,Rijkswaterstaat.

to obstacles like groynes and bridge piers, resistance due to channel shape, me-
anders, or bends, and bed resistance (e.g. Knighton, 1998). In modeling river
flow and predicting water levels, it is of particular importance to understand
the processes that determine flow resistance, as the output of river-reach models
has appeared sensitive to flow resistance of the main channel and the floodplains
(e.g. Casas et al., 2006; Morvan et al., 2008). The accuracy of the output of
a model system (e.g. water levels) may increase if the descriptors of relevant
processes in the model system are improved. This thesis contributes to a bet-
ter understanding of the processes determining bed resistance and thus to the
prediction of water levels.

Bed resistance

Bed resistance, i.e., the resistance to flow of the main channel bed of the river,
may consist of two components (e.g. Rouse, 1965; Yen, 2002): (1) grain friction
due to individual grains protruding into the flow, (2) form resistance or form
drag due to bedforms.

The bed resistance of a plane bed consists of the grain friction component
only. When sediment transport starts, the bed may become unstable and bed-
forms (ripples or dunes) start to develop (e.g. Engelund and Hansen, 1967). The
bed resistance of a bed covered with bedforms consists of both the components
grain friction and form drag. In case bedforms are present, the contribution of
form drag is usually dominant over grain friction (e.g. Knighton, 1998; McLean
et al., 1999; Julien et al., 2002). Hence, an accurate estimate of form drag is
important for predicting bed resistance.
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For predicting bed resistance, distinction needs to be made between form
drag and grain friction. Einstein and Barbarossa (1952) distinguish between
bed shear stress due to grains and bed shear stress due to bedforms such that
the summation of both stresses equals the bed shear stress. It is usually assumed
that (i) the bed shear stress, (ii) the bed shear stress due to grains, and (iii)
the bed shear stress due to bedforms are caused by the same flow velocity, so
that it is found that the bed resistance coefficient equals the summation of the
resistance coefficient due to grain friction and that due to form drag (e.g. Alam
and Kennedy , 1969).

Form drag

For unidirectional subcritical flow (i.e., the Froude number is smaller than unity)
the shape of a bedform is characterized by a gentle stoss face, and a steeper
lee face (e.g. Nelson et al., 1993). On the stoss face the rising bed elevation
causes an acceleration of the flow, and a decrease in pressure; downstream of
the bedform crest, the flow decelerates, and the pressure increases (e.g. Vanoni
and Hwang , 1967) (Figure 1.2). The integration of the longitudinal component
of the pressure along the bedform results in a drag force, which is called form
drag (e.g. McLean et al., 1999).

The increasing pressure in the direction of the flow downstream of the bed-
form crest is called an adverse pressure gradient. If the adverse pressure gradient
is sufficiently large, i.e., if a bedform lee face becomes so steep that the flow can-
not follow the bed surface anymore, flow separation occurs resulting in a region
with recirculating flow (e.g. Hoerner , 1965) (Figure 1.2). An adverse pressure
gradient does not necessarily lead to flow separation (e.g. Fox and McDonald ,
1994). For a very gentle lee face or a bedform having a streamlined shape, the
adverse pressure gradient may be too small for the flow to separate, whereas it
may lead to a form drag component.

The size of the flow separation zone is a measure for the rate of energy
loss and of form drag. In general, the higher and steeper the bedform, the
larger are the flow separation zone and the form drag. It is known that form
drag is not only a function of bedform height and bedform steepness (defined
as the ratio of mean bedform height to mean bedform length), but is also a
function of the Froude number (Alam and Kennedy , 1969). Furthermore, the
shape of the bedform may affect the size of the flow separation zone (e.g. Parteli
et al., 2006) and thus the form drag. For instance, the angle of the bedform
lee face (e.g. Best , 2005), or the precise location at which the flow separates
from the bed surface (e.g. Schatz and Herrmann, 2006) affects the size of the
flow separation zone. The size of the flow separation zone is also affected by the
spacing between subsequent bedforms (e.g. Davies, 1980; Coleman et al., 2005).
Alluvial bedforms are highly irregular in size, shape, and spacing (e.g. Nordin,
1971), and it may be expected that this variability in bedform geometry also
affects form drag. We ground this hypothesis by drawing an analogy between
grain friction and form drag. Often the 65%, 84%, or 90% grain size is used as
a representative diameter of the grains in predicting the grain friction, as this
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Figure 1.2: (a) Flow separation zone downstream of a bedform and (b) pressure
distribution along the bedform (from Langhorne, 1978).

diameter is representative when determining its effect on the flow (Van Rijn,
1982). Analogously, a bedform that is higher, longer, or steeper than the median
or mean bedform height, bedform length, or bedform steepness, respectively,
may be representative with respect to its effect on form drag.

Prediction of form drag

Several physical and empirical models exist for predicting bedform geometry, i.e.,
bedform length, and bedform height, under steady flow conditions (e.g. Allen,
1978; Kennedy and Odgaard , 1991; Yalin, 1964b; Fredsøe, 1982; Van Rijn, 1984;
Julien and Klaassen, 1995). Such models, which are commonly an explicit
function of flow and sediment properties, usually predict the mean values of
bedform geometry. Models for predicting form drag (e.g. Engelund , 1966; Vanoni
and Hwang , 1967; Van Rijn, 1984; Karim, 1999) usually require mean bedform
height, bedform steepness, and mean water depth as model input.
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1.2 Problem description

For situations in which the flow is steady and uniform, and bedform geometry
and flow conditions are known, existing bed resistance models do not yield ac-
curate predictions of bed resistance, i.e., the scatter is large (e.g. Wilbers, 2004;
Jansen et al., 1979). The error between measured and computed bed resistance
may be larger than ±50%, and, as a result, the error between measured and
computed water depth may be larger than about ±20% (e.g. Karim, 1995; Yang
and Tan, 2008). As an example, Figure 1.3 illustrates the large scatter for the
bed resistance model of Van Rijn (1984), for the alluvial data of Guy et al.
(1966). The large scatter may indicate that the model does not capture all
relevant processes that determine bed resistance.

A form drag model that captures the relevant processes is required, as such
a model is expected to be widely applicable. For instance, a model in which the
relevant processes are captured may be applicable to an extreme flood situation
for which the model was not validated. De Vriend (2006) states that river flow
modeling still lacks generally applicable descriptions of bed resistance.

None of the existing form drag models consider the Froude number, angle of
the bedform lee face, size of the flow separation zone, or variability in bedform
geometry. We expect that incorporating these relevant quantities in a form drag
model leads to more accurate predictions of form drag, and thus of water depth.

1.3 Objective and research questions

The objective of the present study is to develop a form drag model applicable
to bedform-dominated rivers under subcritical flow conditions. In combination
with a grain friction model, the model provides a reach-averaged bed resistance
coefficient.

The focus will be on the following research questions:

Q1. How can variability in bedform geometry be quantified?

Q2. Which physical mechanisms are relevant to form drag?

Q3. Which physical quantities are relevant to form drag?

Q4. How do the relevant quantities affect form drag?

Q5. How can the relevant quantities be incorporated in a form drag model?

Q6. How does the new form drag model perform compared to (a) laboratory
data and (b) existing form drag models?

1.4 Methodology and thesis outline

Chapter 2: As described in Section 1.1, it is expected that variability in bed-
form geometry affects form drag. In order to incorporate variability in bedform
geometry in a form drag model, there is a need to quantify the variability. This
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Figure 1.3: Predicted bed resistance against measured bed resistance using the bed
resistance model of Van Rijn (1984), for the alluvial data of Guy et al. (1966).

chapter describes the results of a data analysis of variability in bedform geome-
try using laboratory and field data of bedforms (research question Q1 ).

Chapter 3: Literature on form drag is reviewed (research question Q2 ). Exist-
ing form drag models teach us which quantities are relevant (research question
Q3 ) and how these quantities affect the form drag (research question Q4 ).

An analytically-based form drag model is developed, which is based on the
analytical form drag models of Yalin (1964a), Engelund (1966), and Karim
(1999). An analytically-based form drag model is preferable above an empirical
model, as it is likely that an analytically-based model in which the dominant pro-
cesses are captured is more widely applicable than an empirical model. Relevant
quantities are incorporated in the form drag model (research question Q5 ).

In this chapter the new form drag model is validated against laboratory data
of flow over uniform bedforms (research question Q6 ).

Chapter 4: The form drag model is extended to situations with variability in
bedform geometry and so made applicable to alluvial bedforms. The model is
applied to laboratory data of flow over alluvial bedforms, and the model results
are compared to results of existing models (research question Q6 ).
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Chapter 5: This chapter discusses (as far as not already discussed in the
derivation of the model) assumptions made in the development of the form drag
model, and aspects that are not taken into account in the form drag model. The
chapter describes the fields of application of the form drag model, and how the
form drag model can be incorporated in a large-scale morphodynamic model
system.

Chapter 6: This chapter reflects on the research questions by presenting the
main conclusions of this thesis and providing recommendations for future re-
search.
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Chapter 2

Quantification of variability in bedform

geometry?

Abstract: We analyze the variability in bedform geometry in laboratory and field

studies. Even under controlled steady flow conditions in laboratory flumes, bedforms

are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our

purpose is to quantify the variability in bedform geometry. We use a bedform tracking

tool to determine the geometric variables of the bedforms from measured bed elevation

profiles. For each flume and field data set, we analyze variability in (1) bedform height,

(2) bedform length, (3) crest elevation, (4) trough elevation, and (5) slope of the

bedform lee face. Each of these stochastic variables is best described by a positively

skewed probability density function such as the Weibull distribution. We find that,

except for the lee face slope, the standard deviation of the geometric variable scales

with its mean value as long as the ratio of width to hydraulic radius is sufficiently

large. If the ratio of width to hydraulic radius is smaller than about ten, variability

in bedform geometry is reduced. An exponential function is then proposed for the

coefficients of variation of the five variables to get an estimate of variability in bedform

geometry. We show that mean lee face slopes in flumes are significantly steeper than

those in the field. The 95% and 98% values of the geometric variables appear to scale

with their standard deviation. The above described simple relationships enable us

to integrate variability in bedform geometry into engineering studies and models in a

convenient way.

2.1 Introduction

Bedforms such as river dunes or marine sand waves are rhythmic bed features
which develop because of the interaction between water flow and sediment trans-
port. Often bedforms are schematized as a train of regular features (e.g., a sinu-
soidal wave, a train of identical triangles or smoothly shaped asymmetric forms).
The purpose of such a simplification is, for instance, to explain the generation of
sand waves through stability analysis (e.g., Hulscher , 1996), or to numerically
(e.g., Yoon and Patel , 1996) or experimentally (e.g., Nelson et al., 1993; Lyn,
1993; McLean et al., 1999) analyze the turbulent flow structures over bedforms.

?This chapter has been published as: Van der Mark, C.F., A. Blom, and S.J.M.H. Hulscher
(2008), Quantification of variability in bedform geometry, J. Geophys. Res., 113, F03020,
doi:10.1029/2007JF000940.
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Bed elevation profiles from a laboratory flume or the field show that bedforms
are not regular (Figure 2.1), even under steady conditions and for well-sorted
sediment (e.g., Nordin, 1971; Paola and Borgman, 1991).

Previous studies have shown that variability in bedform geometry, i.e., size,
shape and spacing, is not the exception, but is the character of natural bed-
forms developing under and interacting with unidirectional flows (Jerolmack
and Mohrig , 2005a). Natural bedform topography continuously evolves, i.e.,
bedforms merge and split (Gabel , 1993), even under steady flow conditions
(Leclair , 2002). Bedform geometry under given flow conditions is modified by
variations in the sediment flux (Jerolmack and Mohrig , 2005a). A modification
in bedform geometry induces modification in flow acceleration, which in turn
induces modification in the sediment flux (Nelson et al., 1993). Jerolmack and
Mohrig (2005a) hold the nonlinear feedback between topography and sediment
transport responsible for the variability in bedform geometry. Jerolmack and
Mohrig (2005b) develop a surface evolution model for the topography of bed
load dominated sandy rivers. They add a noise term to the sediment flux to
account for local fluctuations in the sediment flux. Deterministic model simu-
lations in which the noise term is zero evolve toward a static steady pattern of
bedforms, i.e., uniform periodic bedforms. Model simulations in which the noise
term has a mean value of zero and is Gaussian distributed evolve toward a bed
topography that is continuously varying but in statistical sense homogeneous.

In several studies, we need information not only on the average geometric
variables of bedforms, but also on their stochastics. For example, dredging,
which is necessary to keep a navigational channel sufficiently deep, requires
information on the highest crest elevations. On the other hand, construction of
pipelines and cables buried in the sea bed, which may not be exposed to the
flow, demands information on the deepest trough elevations. Similarly, safety
against uplifting of a tunnel underneath a river bed needs to be guaranteed when
a deep trough migrates over the tunnel (Amsler and Garćıa, 1997).

Furthermore, variability in bedform geometry needs to be taken into account
when modeling (1) the thickness of cross-strata sets, (2) vertical sorting, or (3)
bed roughness. The first example is illustrated by the fact that the variability
in trough elevations is relevant in the reconstruction of the original heights of
bedforms from the thickness of cross-strata in preserved deposits as it mainly
determines the probability density function of cross-set thickness of preserved
bedforms (e.g., Paola and Borgman, 1991; Leclair , 2002). Second, the variability
in trough elevations affects the morphodynamic changes of the river bed when
vertical sorting within bedforms plays a role. A model predicting the variability
in trough elevations is required as a sub-model for a stochastic model for mass
conservation of sediment mixtures (Blom et al., 2008). The third example con-
cerns the effect of variability in bedform geometry upon form roughness. Form
drag due to the presence of bedforms results in a component of flow resistance
that is often called form roughness. As form roughness depends on the size,
shape, and spacing of the bedforms (e.g., Allen, 1983; Nelson et al., 1993), we
hypothesize that the variability in geometric variables of individual bedforms
within a reach affects the reach-averaged form roughness. We ground this hy-
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Figure 2.1: Bed elevation profile of the Waal branch of the Rhine River in the Nether-
lands. Measurements taken on December 11, 2006. Flow is from left to right.

pothesis by making an analogy between grain roughness and form roughness.
Often the 65%, 84%, or 90% grain size (D65, D84, or D90, respectively) is used
as a representative diameter of the grains in predicting the grain roughness, as
this diameter is representative in its effect on the flow (Van Rijn, 1982). Anal-
ogously, form roughness may also be determined by bedforms that are higher,
longer, or steeper than the median or mean bedform height, bedform length, or
bedform steepness, respectively.

The aim of this paper is to characterize variability in bedform geometry by
analyzing flume and field data. In earlier work, researchers have reported mean
values, standard deviations, and histograms of bedform height, bedform length,
and bedform steepness (defined as bedform height divided by bedform length)
for their own flume or field data set (e.g., Gabel , 1993; Wang and Shen, 1980).
In the present paper we analyze a number of data sets of both flume and field
experiments with a wide range of bedform heights and lengths and focus on
finding generic relations describing variability in five geometric variables: (1)
bedform height, (2) bedform length, (3) crest elevation, (4) trough elevation,
and (5) lee face slope. For each of these stochastic variables, we consider (a) its
probability density function, (b) its ratio of standard deviation to mean value
(coefficient of variation), and (c) its extreme values (95% and 98%). In our
data analysis, we process each data set in the same way using a new generally
applicable bedform tracking tool.
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2.2 Data

2.2.1 Flume data
We use laboratory flume data (Table 2.1) of Driegen (1986), Klaassen (1990),
Leclair (2002), and Blom et al. (2003). The experiments of Driegen (1986),
Klaassen (1990), and Blom et al. (2003) were conducted in the Sand Flume of
Delft Hydraulics in the Netherlands. Leclair (2002) performed a series of runs
under varying flow conditions at Binghamton University (BU), New York, USA.
We use the data from the BU runs in which no net aggradation occurs. We
consider measured data from the flume region unaffected by the entrance and
exit of the flume only. All measurements were taken under equilibrium (i.e.,
steady and uniform) conditions, which means that bedform geometry, flow, and
sediment transport rate varied around steady mean values. We refer to Table 2.1
for details on the experiments.

2.2.2 Field data
We consider field data from the Waal branch of the Rhine River in the Nether-
lands, as well as field data from the North Loup River, Nebraska, USA (Ta-
ble 2.1). The reaches are not influenced by river bends.

Multi-beam echo sounder measurements were made at two locations within
the main channel of the Rhine River branch by the Dutch Ministry of Trans-
port, Public Works and Water Management (Rijkswaterstaat). The first reach,
measured on December 11, 2006, is 6 km long and 250 m wide, the second reach,
measured in March 2007, is 200 m long and 60 m wide. Both reaches have a
sandy bed: D10 ≈ 0.4 mm, D50 ≈ 0.8 mm, D90 ≈ 3 mm (Ten Brinke, 1997).

The measured bed elevations are projected on a regular grid of 1× 1 m2 by
averaging the available bed elevation measurements (at least 10) within each grid
cell. The effect of the averaging procedure on bedform geometry is negligible as
the grid size is small with respect to bedform height and length (Appendix A).

The topographic data of the braided North Loup River (Figure 2.2) are
derived from low-altitude aerial photography (Mohrig , 1994; Mohrig and Smith,
1996). The river bed consists of sand with median grain diameter D50 = 0.31 mm
(Mohrig and Smith, 1996). We consider observations taken on two days (July
13 and 22, 1990), taken with an interval of 2 minutes and 1 minute, respectively,
for a period of 2 hours and 40 minutes, respectively. The considered river reach
is 30 m long and 15 m wide. Approximately constant river stage ensured that
flow was essentially steady over the observation period (Jerolmack and Mohrig ,
2005b).

2.3 Data processing

2.3.1 Grouping of streamwise bed elevation profiles
In the assessment of the variability in bedform geometry we analyze the original
bed elevation profiles (BEPs). We only use series of bed elevations measured
along a transect, and no time series. In the flume experiments BEPs were
measured in streamwise direction. For the field measurements we convert the
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Figure 2.2: Bed elevation measurements of a part of the North Loup River taken on
July 22, 1990 (Mohrig , 1994; Mohrig and Smith, 1996; Jerolmack and Mohrig , 2005b).
Flow is from left to right.

original bed elevation profiles in X and Y co-ordinates to bed elevation profiles
in the streamwise direction.

Within a data set we can distinguish two types of sets of BEPs (Figure 2.3):
(1) a set of BEPs measured at the same transect (e.g., in the center of a flume)
at various moments in time, and (2) a set of BEPs measured at the same time,
but at different transects (e.g., one BEP measured in the center, one BEP left
from the center, and one BEP right from the center of a flume). All BEPs from
the flume experiments of Leclair (2002) are of type 1. The BEPs from the Waal
branch data measured in December 2006 belong to type 2. All other flume and
field BEPs are of both type 1 and type 2.

It is allowed to group together bedform geometry derived from BEPs that are
statistically homogeneous in both space and time (Paola and Borgman, 1991).
In that case, the statistics of the BEPs as a whole are equal, although individual
migrating bedforms continuously merge, split, and thus change in shape and
size. We use a spatial scaling technique (Nikora and Hicks, 1997; Jerolmack and
Mohrig , 2005b) to verify which BEPs within a data set are statistically homo-
geneous in space and/or time. The spatial scaling technique treats a series of
bed elevations in a profile as a random function (see Nikora et al., 1997) instead
of identifying individual bedforms in a profile. A measure of the variability in
bed elevations is the standard deviation of bed elevations, sometimes referred
to as the interface width (Barabási and Stanley , 1995; Jerolmack and Mohrig ,
2005b). For a dune-covered bed, interface width grows as a power law with
increasing domain length or window size. This power law growth holds for small
window sizes. The power exponent characterizes the scaling of elevation fluc-
tuations (Barabási and Stanley , 1995; Dodds and Rothman, 2000). There is a
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Figure 2.3: Two types of sets of bed elevation profiles are available: (1) time-
dependent bed elevation profiles, and (2) space-dependent bed elevation profiles.

gradual rollover of the interface width as the window size increases. We may
characterize the location of rollover, i.e., the window size at which the rollover
occurs, as a characteristic bedform length (Jerolmack and Mohrig , 2005b). The
interface width associated with the location of rollover provides a characteristic
bedform height. We consider a set of BEPs within a data set as statistically
homogeneous if the characteristic bedform length, characteristic bedform height
and the power exponent of the BEPs are equal.

Within each flume and field data set, we group together BEPs of type 1 as,
according to the spatial scaling technique, these BEPs are statistically homoge-
neous.

In the flume experiments of Driegen (1986), Klaassen (1990), and Blom et al.
(2003), BEPs were measured in the center of the flume, as well as left and right
from the center. The spatial scaling technique shows that BEPs measured in the
center deviate statistically from BEPs measured left and right from the center,
which can be explained by sidewall influences. Therefore, for these experiments,
we did not group together BEPs measured in the center with BEPs measured
left and right from the center. Table 2.1 illustrates how for each experiment we
have m×n sub data sets of statistically homogeneous flume BEPs. As a result,
we obtain 168 flume sub data sets.

Within the Waal branch reach measured in December 2006 the flow condi-
tions and thus bedform geometry varies in space. For instance, near the banks
the flow velocity and bedform geometry deviate from those in the center. Fig-
ure 2.4 shows interface width against window size for 3 transects along the Waal
branch of the Rhine River. The location of gradual rollover of the 3 BEPs is
different, indicating that these BEPs are not statistically homogeneous. The
spatial scaling technique enables us to divide the reach into smaller reaches in
which the BEPs are statistically homogeneous. This procedure results in 15 ho-
mogeneous sub data sets for the Waal data of December 2006, one homogeneous
sub data set for the Waal data of March 2007, and two homogeneous sub data
sets for the North Loup River data.
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Figure 2.4: Interface width against window size for bed elevation profiles at 3 tran-
sects along the Waal branch of the Rhine River.

2.3.2 Bedform geometry from bed elevation profiles
There exist several methods to find crest and trough locations and determine the
geometric characteristics of individual bedforms. Examples of methods are (1)
the manual selection of crests and troughs, (2) the selection of local maxima and
minima and next the use of threshold values for bedform height and/or bedform
length for selecting which of the maxima and minima are considered as crests and
troughs, respectively, and (3) the selection of crests and troughs between zero
upcrossings and zero downcrossings. Other matters that require consideration in
the analysis of bedform geometry are how to detrend the BEPs (e.g., by fitting
a linear line or by applying a moving average), and how to define the geometric
variables. For instance, some authors define bedform length as the distance
between two successive bedform troughs (e.g., Wang and Shen, 1980), others
use the distance between two successive zero upcrossings (e.g., Annambhotla
et al., 1972), or the distance between two crests (Crickmore, 1970).

The method to find crest and trough locations and the above considerations
may influence the resulting bedform geometry (Prent , 1998). Choices are usually
made subjectively on the basis of the whole bed configuration (Crickmore, 1970).
In order to compare various sets of measurements, we need to use the same
method to find crests and troughs and to use the same definitions of geometric
variables for each data set. Therefore it is generally not desirable to compare
bedform data of different researchers if the original BEPs are lacking (Crickmore,
1970).

Van der Mark and Blom (2007) have developed a bedform tracking tool
which determines the geometry of the individual bedforms from original BEPs
(Appendix B). The code has been applied to marine sand wave data (Van der
Mark et al., 2008a, Appendix C), flume data, and river data. Appendix 2.A
shortly describes the details of the bedform tracking tool. Figure 2.5 illustrates
the definitions of geometric variables in the detrended BEP. In developing the
bedform tracking tool, subjective decisions have been avoided as much as possi-
ble. The numerical code can easily be applied to various data sets, without the
necessity to ‘tune’ the code to a data set or to define threshold values.

We now have 186 sub data sets containing bedform geometry taken from the
BEPs. The number of bedform heights, bedform lengths, crest elevations, and
trough elevations in one sub data set equals at least 50, and on average, about
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900.

2.4 Probability density functions

2.4.1 Results
We analyze whether the five geometric variables are distributed according to a
known probability density function. For each sub data set we determine the
Exponential, Gamma, Gaussian, Gumbel, Log-normal, Rayleigh, Weibull, and
Uniform distributions for each geometric variable. The distributions are deter-
mined using the mean and standard deviation of the geometric variable for each
sub data set.

Figure 2.6 shows an example of imposed probability density functions (PDFs)
for dimensionless bedform heights and lengths measured in one of the flume
experiments. Dimensionless bedform height is defined as the bedform height
divided by the mean bedform height of the sub data set. For each sub data
set we determine the goodness of the PDFs using an expression for the relative
error EX∗ , which is equal to the integral of the absolute value of the difference
between the measured and imposed PDF:

EX∗ =
∫ ∞

0

| [pm(X∗)− pi(X∗)] | dX∗ (2.1)

where X∗ denotes the dimensionless geometric variable, pm(X∗) denotes the
measured PDF, and pi(X∗) denotes the imposed PDF. By definition, the inte-
grals of the imposed PDF and measured PDF are equal to 1. If the measured
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Table 2.2: Average error values EX∗ for the goodness of the imposed PDF for the
following dimensionless geometric variables (X∗): bedform height δ∗, bedform length
λ∗, crest elevation η∗c , trough elevation η∗t , and lee face slope S∗l .

Gauss- Gam- Ray- Wei- Expo- Log- Gum- Uni-
ian ma leigh bull nential normal bel form

δ∗ 0.28 0.28 0.39 0.29 0.87 0.32 0.42 0.74
λ∗ 0.41 0.32 0.41 0.34 0.82 0.32 0.61 0.95
η∗c 0.33 0.36 0.32 0.28 0.59 0.48 0.47 0.55
η∗t 0.35 0.32 0.37 0.28 0.55 0.44 0.51 0.70
S∗l 0.47 0.53 0.52 0.43 0.73 0.63 0.50 0.52

PDF and imposed PDF are equal, the error is 0, whereas if the measured PDF
and imposed PDF do not overlap at all, the error is 2. For each of the imposed
PDFs we determine the average error EX∗ by averaging over all sub data sets.
The imposed PDF with the smallest average error corresponds to the best ap-
proximation of the data. Table 2.2 presents the average error values for each
imposed PDF for each geometric variable. In finding the best approximation,
we have not fitted the PDFs to the data. We have imposed the mean value and
the standard deviation of the specific geometric variable from the specific sub
data set to the distribution.

We find that for bedform height the Gaussian, Gamma, and Weibull distribu-
tions provide the best approximations. The Gamma, Log-normal, and Weibull
distributions provide the best approximations for bedform length. For crest ele-
vation, trough elevation, and lee face slope we find that the Weibull distribution
yields the best approximation. It appears that for all five geometric variables,
the Weibull distribution performs well. Depending on its shape parameter, k,
the Weibull distribution can be both positively skewed (k < 2.6), negatively
skewed (k > 3.7), or not/hardly skewed (2.6 < k < 3.7). All sub data sets
appear to have shape parameters in the range 1.8–2.7, which means that the
imposed Weibull distributions are positively skewed.

Many phenomena can be approximated well by the Gaussian distribution
(e.g., Jenkins and Watts, 1968). It appears that, except for the Gaussian distri-
bution, the distributions yielding the best approximations are positively skewed.
The reason we find positively skewed distributions to be good approximations
of the data, may be that, by definition, in our analysis the five geometric vari-
ables are positive values (Figure 2.5). We recommend the Weibull, Gamma, or
Log-normal distributions rather than the Gaussian, Gumbel, or Uniform distri-
butions, as the latter distributions admit negative values.

2.4.2 Discussion
Previous researchers have assigned several types of probability density func-
tions to bedform heights and bedform lengths as found from BEPs of flume and
field experiments. For instance, bedform height is identified as following the
Rayleigh distribution (Ashida and Tanaka, 1967; Nordin, 1971), the Weibull
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distribution (Wang and Shen, 1980), the Exponential distribution (Annamb-
hotla et al., 1972), the Gamma distribution (Leclair et al., 1997), the Gaussian
distribution (Mahmood and Ahmadi-Karvigh, 1976), and the Beta distribution
(Prent and Hickin, 2001). We mention four reasons why different types of opti-
mal PDFs have been found: (1) differences in the preprocessing of the measured
bed elevation profiles (e.g., different methods to remove outliers, to detrend the
BEPs, or to filter the BEPs), (2) differences in the methods to determine the
locations of crests and troughs, (3) differences in the definition of geometric
variables, and (4) differences with respect to the types of imposed PDFs used in
the analysis. For instance, Mahmood and Ahmadi-Karvigh (1976) compare their
bedform length data to Gaussian, Exponential, Cauchy, Uniform, and Rayleigh
distributions and not to, for example, the Weibull distribution.

2.5 Coefficient of variation

2.5.1 Results
In the present study we focus on finding generic relations describing variability
in the five geometric stochastic variables. We study the variability in each
geometric variable X by determining for each sub data set the mean value µX ,
the standard deviation σX , and the coefficient of variation CX , which is defined
as the ratio of the standard deviation to the mean value:

CX =
σX

µX
(2.2)

in which X denotes the geometric stochastic variable (i.e., bedform height, bed-
form length, crest elevation, trough elevation, or lee face slope).

For bedform height, Figure 2.7a shows the standard deviation as a function
of the mean value. Figure 2.7a shows that a more or less linear relation exists
between the standard deviation of bedform height and the mean bedform height.
Figures 2.7b, 2.7c, and 2.7d show that such linear relations also exist for bedform
length, crest elevation, and trough elevation, respectively.

Figure 2.7e shows the standard deviation against the mean value for the lee
face slope. The scatter is large and no linear relation exists between the standard
deviation and the mean value for the lee face slope, especially for mean lee face
slopes larger than 0.2. Roughly, we may see a linear trend in the field data.
The standard deviation of the flume data roughly varies between 0.13 and 0.22,
which appears to be independent of the mean lee face slope. The fact that lee
face slopes cannot become much steeper than the natural angle of repose of the
sediment may explain why the linear trend disappears for increasing lee face
slope. It appears that lee faces in the flume are significantly steeper than those
in the field, which is also found by Best and Kostaschuk (2002).

We have seen that a more or less linear relation exists between standard
deviation and mean geometric variable, which means that the coefficient of vari-
ation is a more or less constant value. We now analyze the effects of the ratio
of flume or river width to hydraulic radius on the coefficient of variation in Fig-
ure 2.8. The hydraulic radius of the flume experiments is corrected for sidewall
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Figure 2.7: Standard deviation against mean value for (a) bedform height, (b) bed-
form length, (c) crest elevation, (d) trough elevation, and (e) lee face slope. The solid
lines represent Eq. (2.4).

roughness using the method of Vanoni and Brooks (1957). For the five geo-
metric variables, Figure 2.8 shows that their coefficients of variation decrease
with decreasing ratio of flume width to hydraulic radius for ratios smaller than
about ten. For each geometric variable we fit the following exponential function
through the data points:

CX = AX

[
1− exp

(−W/R

BX

)]
(2.3)

in which CX denotes the coefficient of variation of geometric variable X, W
denotes the flume or river width, R denotes the hydraulic radius, and AX and
BX denote constants. Table 2.3 presents the constants AX and BX for each
geometric variable X. The exponential function simply expresses that for rel-
atively narrow flume widths the variability in bedform geometry is restricted.
For ratios of width to hydraulic radius larger than about ten, the coefficient of
variation of stochastic variable X becomes:

CX = AX (2.4)
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Figure 2.8: Coefficient of variation against the flume or river width divided by hy-
draulic radius for (a) bedform height, (b) bedform length, (c) crest elevation, (d) trough
elevation, and (e) lee face slope. The solid lines represent Eq. (2.3).

In Figure 2.7, the solid lines represent Eq. (2.4). We can see that for field
conditions, where ratios of width to water depth are usually larger than ten,
Eq. (2.4) can be used to get an estimate of the variability in bedform geometry.
Figure 2.8 shows that variability in bedform geometry in flume experiments is
comparable to variability in field measurements if the ratio of width to hydraulic
radius is larger than ten.

Williams (1970) has shown that the flume width influences the mean geo-
metric bedform variables. Also Crickmore (1970) reports an increase of both
mean bedform length and bedform height for increasing values of the ratio of
width to water depth for the same specific discharge. We have shown that bed-
form variability decreases with decreasing ratio of width to water depth. These
results are confirmed with respect to bedform length by the findings of Van Rijn
and Klaassen (1981). For a relatively narrow flume, the flow separation behind
a dune will be more or less uniform over the width of the flume and the recir-
culation will be stable. A relatively wider flume may result in a recirculation
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Table 2.3: Constants AX and BX in Eq. (2.3) and coefficients relating the 95% and
98% values of geometric bedform variables to their standard deviations.

X AX BX CX95 CX98

δ 0.47 2.4 1.7 2.2
λ 0.55 2.5 1.9 2.6
ηc 0.57 1.2 1.7 2.0
ηt 0.63 1.8 1.8 2.3
Sl 0.66 3.7 - -

pattern that is unstable in lateral direction, which may restrict the width of a
bedform. As a result, more than one bedform may occur over the width of a
flume, which may result in more variability.

Figure 2.8 shows that some sub data sets have more regular bedform ge-
ometry (i.e., a relatively small coefficient of variation) than other sub data sets
having similar ratios of width to hydraulic radius. Sediment sorting processes
may explain differences in bedform variability between sub data sets. For in-
stance, the presence of a coarse layer underneath migrating bedforms reduces
the variability in trough elevations (Wilcock and Southard , 1989; Blom et al.,
2003; Leclair and Blom, 2005). Figure 2.9 shows the coefficient of variation
of trough elevation against the flume or river width divided by hydraulic ra-
dius, and we distinguish between sub data sets with uniform sediment and sub
data sets with nonuniform sediment. A nonuniform sediment mixture is here
defined as a mixture with a geometric standard deviation (σg =

√
D84/D16)

larger than 1.6 (Diplas and Sutherland , 1988). From Figure 2.9, it appears that
roughly the coefficient of variation for uniform sediment experiments is larger
than for nonuniform sediment experiments in which a coarse layer underneath
the bedforms may develop.

However, it may be better to have a criterion based on partial transport
rather than the above criterion in order to distinguish between experiments
with and without the formation of a coarse layer. Partial transport is here
defined as the condition in which the coarsest grain sizes in the mixture are
not (significantly) entrained or transported by the flow (Blom et al., 2003). For
many of the flume and field experiments studied here data on partial transport
is unavailable. We therefore recommend further research on this topic.

2.5.2 Discussion
We have seen that, for sufficiently large ratios of width to hydraulic radius, the
standard deviation of bedform height increases linearly with the mean bedform
height. Often a relationship exists between the standard deviation and the mean
of a sample, such that the larger the mean, the larger the standard deviation
(Sincich, 1985). For instance, daily maximum wind speed analyzed at several
locations in several months satisfies this condition (Yan et al., 2002).

For the Calamus River, Nebraska, USA, Gabel (1993) finds values for the
coefficient of variation of bedform height Cδ varying between 0.34 and 0.53,
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Figure 2.9: Coefficient of variation of trough elevation against the flume or river width
divided by hydraulic radius. Distinction is made between uniform and nonuniform
sediment experiments.

with a mean coefficient of variation of 0.44, which is close to the proposed value
(Cδ = Aδ = 0.47). Also the flume data by Wang and Shen (1980) (W/h ≈ 8,
Cδ ranges between 0.41 and 0.50) and Leclair et al. (1997) (W/h ≈ 5, Cδ ranges
between 0.39 and 0.48) agree to the proposed coefficient of variation of bedform
height.

The proposed value of the coefficient of variation of bedform length, Cλ =
Aλ = 0.55, appears to be somewhat larger than the one found by Gabel (1993)
for the Calamus River. Smaller coefficients of variation of bedform length are
also found by Wang and Shen (1980) and Leclair et al. (1997), also when taken
into account the reduction in variability due to the flume width effect. This
is probably due to the fact that they remove small scale bedforms from their
analysis, which results in a larger mean bedform length and a smaller standard
deviation of bedform length.

Some of the considered reaches of the Waal branch consist of (secondary)
bedforms superimposed on larger (primary) bedforms. We have analyzed the
coefficients of variation of geometric variables for the primary and the secondary
bedforms separately. There appear to be no significant differences between the
coefficients of variation for primary and secondary bedform geometry.

Figure 2.8 shows that, although the coefficients of variation of bedform ge-
ometry are more or less constant for ratios of width to hydraulic radius larger
than about ten, there is quite some scatter. Some sub data sets have somewhat
more regular bedform geometry than other sub data sets. It appears that if
bedform heights are relatively regular, bedform lengths, crest elevations, and
trough elevations are relatively regular, as well.
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2.6 Extreme values

2.6.1 Results
We analyze the 95% and 98% values for bedform height, bedform length, crest
elevation, and trough elevation, in order to get insight in the extreme values of
the distribution. We only consider the sub data sets in which the sample size is
larger than 100 in order to have a sufficiently accurate estimate of the 95% and
98% values.

Figure 2.10a shows the relative 95% bedform height, i.e., the 95% bedform
height minus the mean bedform height (δ95− µδ), as a function of the standard
deviation of bedform height. For bedform height we find that

Cδ95 =
δ95 − µδ

σδ
= 1.7 (2.5)

where the coefficient Cδ95 is a constant relating the 95% bedform height to the
standard deviation of bedform height. This means that we can predict the 95%
bedform height from the mean bedform height and the measured or predicted
standard deviation:

δ95 = Cδ95 σδ + µδ (2.6)

With Eq. (2.2) this becomes

δ95 = µδ (Cδ95 Cδ + 1) (2.7)

or, in generic form
X95 = µX (CX95 CX + 1) (2.8)

This means that we can determine the 95% value if the mean value is predicted
using some submodel for mean bedform height and using the proposed coeffi-
cients in Table 2.3. Similar to Eq. (2.5), for bedform length Cλ95 equals 1.9,
for crest elevation Cηc95 equals 1.7, and for trough elevation Cηt95 equals 1.8
(Table 2.3).

Figure 2.10b shows the relative 98% bedform height, i.e., the 98% bedform
height minus the mean bedform height (δ98− µδ), as a function of the standard
deviation of bedform height. Table 2.3 shows the coefficients Cδ98, Cλ98, Cηc98,
Cηt98, relating the 98% values for bedform height, bedform length, crest eleva-
tion, and trough elevation to their respective standard deviations. Given these
coefficients, we are able to predict the 98% value of the geometric variable, X,
from the mean value, µX , and the measured or predicted standard deviation of
the geometric variable, σX :

X98 = CX98 σX + µX (2.9)

Or, with Eq. (2.2) this becomes

X98 = µX (CX98 CX + 1) (2.10)
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Figure 2.10: (a) Relative 95% bedform height, δ95 − µδ, against standard deviation
of bedform height, σδ. (b) Relative 98% bedform height, δ98 − µδ, against standard
deviation of bedform height, σδ.

2.6.2 Discussion
Theoretically it can be shown that CX95 equals 1.64 and CX98 equals 2.05 if
the stochastic variable X follows a Gaussian distribution, independent of the
values of µX and σX . A value of CX95 or CX98 that is larger than the value
of 1.64 or 2.05 indicates that the extreme value is more remote from the mean
value than in the case of a Gaussian distribution. This confirms the finding in
Section 2.4 that geometric bedform variables are distributed according to a type
of distribution that has a longer tail for the higher values.

2.7 Conclusions

We have studied the stochastics of bedform geometry for both flume and field
data. The five geometric variables bedform height, bedform length, crest eleva-
tion, trough elevation, and lee face slope are best described using a positively
skewed probability density function. The Weibull distribution performs well for
the considered geometric variables.

The stochastics of bedform geometry can be characterized using simple generic
relations. Linear relations exist between standard deviation and mean value for
bedform height, bedform length, crest elevation, and trough elevation if the ratio
of width to hydraulic radius is larger than about ten. As such, a constant coef-
ficient of variation can be applied to quantify variability in bedform geometry.
For field conditions, a constant coefficient of variation is a good approximation.
If the ratio of width to hydraulic radius is smaller than about ten, variability
in bedform height, bedform length, crest elevation, and trough elevation is re-
stricted, which may be represented by an exponential function for the coefficient
of variation.

For field data, the mean lee face slope is significantly smaller than for flume
data, and the standard deviation scales with the mean lee face slope. For flume



2.A. Bedform tracking tool 45

data the standard deviation does not scale with the mean lee face slope, as the
slope cannot become much steeper than the natural angle of repose.

The 95% and 98% values of the geometric variables scale with their stan-
dard deviation, so that we are able to predict the extremes using the proposed
relations and given the mean values for the geometric variables.

The proposed relations between mean geometric variables and their standard
deviations, and 95% and 98% values are useful for, for instance, engineering
studies. The relations can be applied to determine an estimate of the extremes
in crest elevation in a navigational channel, or to determine the optimal depth
of a tunnel or trench to place a pipeline in.

2.A Bedform tracking tool

Van der Mark and Blom (2007) have developed a bedform tracking tool which
determines the geometric variables of individual bedforms from the original bed
elevation profiles (BEPs). In short, the procedure of the bedform tracking tool
is as follows:

1. For each BEP we find and replace outliers.

2. For each BEP we determine the trend line. We choose either a linear trend
line or a weighted moving average trend line. As all flume experiments
were conducted under steady and uniform conditions (i.e., no spatial vari-
ations), the trend line is best described by a linear fit to the measured bed
elevations. For the field measurements, the trend line is rather represented
by a moving average.

3. We detrend the BEP using the trend line so that the detrended BEP
fluctuates around the zero line.

4. We apply a weighted moving average filter which yields a filtered BEP.
The filtered BEP is only used to avoid the effect of small fluctuations in
the BEP around the zero line on the resulting zero up- and downcrossings.

5. We determine zero upcrossings and zero downcrossings in the filtered BEP.

6. We determine crests and troughs in the original BEP. A crest is located at
the maximum value between a zero up- and zero downcrossing. A trough is
located at the minimum value between a zero down- and zero upcrossing.

7. We determine the geometry of individual bedforms in the detrended BEP
(bedform height, δ, bedform length, λ, crest elevation, ηc, trough elevation,
ηt, and lee face slope, Sl, see Figure 2.5). We define crest elevation as the
vertical distance from crest to zero line, and trough elevation as the vertical
distance from trough to zero line. Bedform height is defined as the vertical
distance between crest and downstream trough. Bedform length is defined
as the horizontal distance between two consecutive crests. The lee face
slope is defined as the vertical distance divided by the horizontal distance
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of a distinct part of the lee face. To determine the lee face slope we exclude
a distance of one sixth of the bedform height below the crest and a distance
of one sixth of the bedform height above the trough as these regions are
usually transitional areas.

2.B Notation

AX constant, dimensionless.
BX constant, dimensionless.
CX coefficient of variation of stochastic variable X, dimensionless.
CX95 coefficient relating the 95% value of stochastic variable X minus the

mean of X to the standard deviation of X, dimensionless.
CX98 coefficient relating the 98% value of stochastic variable X minus the

mean of X to the standard deviation of X, dimensionless.
Dx particle diameter for which x% of the material is finer, mm.
EX∗ error value for the goodness of an imposed PDF relative to the mea-

sured PDF of dimensionless stochastic variable X∗, dimensionless.
EX∗ error value for the goodness of an imposed PDF relative to the mea-

sured PDF of dimensionless stochastic variable X∗, averaged over all
considered experiments, dimensionless.

d water depth, m.
k shape parameter of Weibull distribution, dimensionless.
L flume length, m.
m number of transect locations, dimensionless.
n number of flume experiments, dimensionless.
N sample size, dimensionless.
pi(X) imposed probability density function of stochastic variable X, unity

as for X−1.
pm(X) measured probability density function of stochastic variable X, unity

as for X−1.
R hydraulic radius, m.
Sl slope of the lee face of a bedform (Sl = δs/λs), dimensionless.
U average flow velocity, m/s.
W flume or river width, m.
X stochastic variable, unity as for the variable. In this study: bed-

form height, bedform length, crest elevation, trough elevation, lee
face slope.

X∗ dimensionless stochastic variable.
X95 95% value of stochastic variable X, unity as for X.
X98 98% value of stochastic variable X, unity as for X.
δ bedform height, m.
δs part of bedform height that is used to determine lee face slope, m.
ηc crest elevation, m.
ηt trough elevation, m.
λ bedform length, m.
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λs part of bedform length that is used to determine lee face slope, m.
µX mean value of stochastic variable X, unity as for X.
σg geometric standard deviation of sediment mixture, dimensionless.
σX standard deviation of stochastic variable X, unity as for X.
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Chapter 3

A semi-analytical form drag model:

application to uniform bedforms?

Abstract: A new semi-analytical form drag model is presented. The basis of the

model is an analytically-based submodel that describes form drag due to an abrupt

expansion of a free surface flow. We combine this analytically-based submodel with

correction factors in order to account for (1) a non-abrupt expansion, (2) bedform

interaction, and (3) deviation of the flow separation zone height from the bedform

height. The analytically-based submodel is an extension of the form drag model of

Yalin (1964a) and Engelund (1966), in which it is assumed that the effects of a bedform

on the flow are described by an abrupt expansion of a pipe flow. The results of the new

semi-analytical form drag model are compared to laboratory data of flow over uniform

bedforms. The predicted form drag agrees well to the measured one. In Chapter 4,

the model is extended to the case of nonuniform bedforms and is applied to alluvial

and compound bedforms.

3.1 Introduction

Bed resistance is the total bed drag force exerted on the flow by the bed (e.g.
Vanoni and Hwang , 1967). Bed resistance can be divided into two components
(Einstein and Barbarossa, 1952; Julien et al., 2002): (a) grain friction, resulting
from resistance to flow due to the shear stress applied on individual grains on
the river bed, and (b) form drag, resulting from resistance to flow due to the
pressure gradient and energy loss in the flow separation zone located on the lee
side of bedforms.

Bed resistance is a key factor in predicting the water level as a function of
discharge (e.g. Alam and Kennedy , 1969; Van Rijn, 1984). An accurate predic-
tion of water levels, especially during floods, is essential for preventing rivers
from flooding or dikes from breaching. Form drag often accounts for the major-
ity of the bed resistance (e.g. Julien and Klaassen, 1995; McLean et al., 1999).
Hence, an accurate estimate of form drag is important.

There exist both empirical and (semi-)analytical models to calculate form
drag. The empirical models can be divided into implicit and explicit methods.

?This chapter has been submitted to J. Geophys. Res. as: Van der Mark, C.F., A. Blom,
W.S.J. Uijttewaal, S.J.M.H. Hulscher, and H.W.M. Hoeijmakers, A semi-analytical form drag
model: application to uniform bedforms.
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Implicit models (Engelund and Hansen, 1967; Wright and Parker , 2004) are
form drag models in which the grain friction and bed resistance are related em-
pirically, so that form drag is not explicitly solved using the bedform geometry.
Examples of explicit empirical models include the models of Van Rijn (1982,
1984) and Vanoni and Hwang (1967). These models determine form drag based
on predicted or measured water depth and bedform geometry, i.e., bedform
height and length.

An example of an analytical model is the form drag model developed by
Yalin (1964a) and Engelund (1966). Both authors independently developed the
same model (Yalin and Da Silva, 2001). In the analytical form drag model of
Yalin (1964a) and Engelund (1966) it is assumed that the effects of a bedform
on the flow are described by a sudden expansion of a pipe flow. Energy loss due
to a sudden pipe flow expansion is determined applying the one-dimensional
momentum and energy conservation equations over the expansion region, i.e.,
the Borda-Carnot equation (e.g. Borda, 1766; Daugherty and Franzini , 1965).
In the semi-analytical form drag model of Karim (1999), which is an extension
of the Yalin (1964a) and Engelund (1966) model, the effect of a bedform on the
flow is assumed to be represented by a sudden expansion of a free surface flow
rather than a pipe flow.

An analytically-based form drag model is preferable above an empirical form
drag model as we expect that an analytically-based model in which the relevant
processes are captured is more widely applicable than an empirical model. An
empirical model is only applicable within the ranges of flow conditions and
bedform geometry for which the empirical coefficients in the model are derived.

Form drag is known to be a function of (1) the Froude number (Alam and
Kennedy , 1969), (2) the steepness of the bedform lee face (e.g. Best , 2005), (3)
the spacing between bedforms (e.g. Davies, 1980; Coleman et al., 2005), and (4)
the size of the flow separation zone (e.g. Schatz and Herrmann, 2006; Parsons
et al., 2004). As far as known to the authors, none of the existing form drag
models are a function of the Froude number, steepness of the lee face, or the
size of the flow separation zone. The objective of this chapter is to present a
new semi-analytical form drag model applicable to subcritical flows. The model
is an extension of the form drag models of Yalin (1964a) - Engelund (1966) and
Karim (1999). We apply the model to laboratory data of flow over uniform fixed
bedforms. In Chapter 4 we apply the model to more realistic bedforms.

In Section 3.2 we will introduce the basic model which consists of two com-
ponents, and in the Sections 3.3 and 3.4 we will elaborate on each of these two
components. In the derivation of the present model we will indicate the dif-
ferences between the present model and the form drag model of Yalin (1964a)
and Engelund (1966), and the one of Karim (1999). Section 3.5 presents a val-
idation of the new form drag model using laboratory data of flow over uniform
bedforms.
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3.2 Basic Model for Form Drag

For steady and uniform flow, the total boundary shear stress, τT , balances with
the component of the gravitational force per unit area in the flow direction (e.g.
Einstein, 1950):

τT = ρgRS (3.1)

in which ρ denotes the water density, g the gravitational acceleration, R the hy-
draulic radius, and S the energy slope. We apply the following relation between
the total boundary shear stress and the mean flow velocity, U (e.g. Henderson,
1966):

τT ≡ cf,T ρU2 (3.2)

in which cf,T denotes a dimensionless resistance coefficient expressing the total
resistance, and the mean flow velocity, U , equals the flow velocity averaged over
a cross-sectional area. Combination of equations (3.1) and (3.2) yields (e.g.
Henderson, 1966)

cf,T =
gRS

U2
(3.3)

The energy slope, S, over a channel section of length L is equal to the total
energy loss, ∆HT , i.e., ∆HT = SL (e.g. Daugherty and Franzini , 1965; Fox and
McDonald , 1994), so that equation (3.3) becomes

cf,T =
gR∆HT

LU2
(3.4)

The total resistance in a straight bedform-dominated channel consists of
three sources of resistance, namely grain friction, form drag due to bedforms,
and sidewall friction. In this study the bed shear stress, τb, is determined from
the total boundary shear stress, τT , using the sidewall correction procedure of
Vanoni and Brooks (1957). We follow the decomposition proposed by Einstein
and Barbarossa (1952), in which the bed shear stress is divided into a contribu-
tion due to grain friction, τ ′, and a contribution due to form drag, τ ′′:

τb = τ ′ + τ ′′ (3.5)

If it is assumed that the bed shear stress, τb, the bed shear stress due to grain
friction, τ ′, and the bed shear stress due to form drag, τ ′′, are caused by the
same mean flow velocity, it is found that the resistance coefficient related to the
bed, cf,b, equals the summation of the resistance coefficient due to grain friction
and the one due to form drag:

cf,b = c′f + c′′f (3.6)

in which c′f denotes the grain friction coefficient and c′′f the form drag coefficient.
The proposed semi-analytical form drag model describes the drag of the flow

over bedforms by providing an expression for the form drag coefficient, c′′f . The
energy slope, S, is partitioned into an energy slope due to grain friction, S′, and
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an energy slope due to form drag, S′′ (Meyer-Peter and Müller , 1948), which
yields for the form drag coefficient

c′′f ≡
τ ′′

ρU2
=

gdS′′

U2
=

gd∆H ′′

LU2
(3.7)

in which d denotes the mean water depth and ∆H ′′ the energy loss due to form
drag (compare with equations (3.3) and (3.4), and also see Appendix 3.A).

The basic model for form drag consists of two components, i.e., (1) an
analytically-based expression for the form drag coefficient in a reference situ-
ation, c′′f,ref , and (2) an expression taking into account effects due to deviations
from the reference situation, i.e., the total correction factor, γT :

c′′f = γT c′′f,ref (3.8)

In Section 3.3 we will describe the reference situation and will derive an ex-
pression for the reference form drag coefficient, c′′f,ref , which is based on the ana-
lytical expression for the energy loss due to a sudden expansion of a free surface
flow using the one-dimensional momentum and energy conservation equations
in the expansion region (also see Appendix D). In Section 3.4 we will elaborate
on the total correction factor, γT .

3.3 Reference Form Drag Model

3.3.1 Reference Situation
Figure 3.1 shows the reference situation for the analytically-based reference form
drag model: (a) the flow is steady; (b) the bed is horizontal; (c) the lee face
angle of the bedform, θ, equals 90◦, i.e., downstream of the crest the flow expands
abruptly; (d) the flow pattern over a bedform is not affected by upstream and
downstream bedforms; (e) the bedform crest is horizontal and extends over such
a reach that streamlines above the crest are parallel to the bed; (f) the height of
the flow separation zone downstream of the bedform, δf , is equal to the bedform
height, δ; (g) grain friction is absent in the expansion region. The latter is
allowed as energy loss due to a change in cross-sectional area predominates over
a short region (e.g. Fox and McDonald , 1994; Chaudhry , 2008). Please note
that we do not neglect grain friction, c′f , as grain friction is accounted for using
a grain friction model. A horizontal bed may be assumed, as the effect of the
bed slope on the flow expansion downstream of the bedform is negligible (e.g.
Henderson, 1966).

3.3.2 One-Dimensional Momentum Conservation Equation Applied
to Reference Situation

We consider the flow expansion occurring downstream of the bedform crest to be
the dominant process for predicting form drag. In order to derive an analytical
expression for the energy loss due to sudden expansion of a free surface flow, we
apply the one-dimensional momentum and energy conservation equations in the
expansion region.
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Figure 3.1: Reference situation for the reference form drag model.

We consider a free surface flow as sketched in the reference situation. Two
cross-sections are defined (Figure 3.2); cross-section 1 is located immediately
downstream of the bedform, and cross-section 2 is located at such a distance
downstream of the flow separation zone that the flow is fully recovered from the
expansion, which means that the streamlines are parallel to the bed. Energy is
dissipated in the wake downstream of the bedform, i.e., between cross-sections
1 and 2. Here we apply the conservation equation for the component of the
momentum in x-direction (e.g. Fox and McDonald , 1994):

∂

∂t

∫∫∫

V

ρ u dV +
∫∫

A=∂V

ρ u ~u · ~n dA =

[∫∫∫

V

ρ ~f dV

]
· ~ex −

[∫∫

A=∂V

(p− pa) ~n dA

]
· ~ex (3.9)

in which ~u = [u v w]T denotes the velocity vector and u denotes the x-component
of the velocity. V and A = ∂V denote the fixed control volume and its bounding
surface, respectively, ~n denotes the outward pointing unit normal vector, ~f the
external volume force, ~ex the unit vector in x-direction, p the pressure, pa the
atmospheric pressure, and t time. The first term on the left-hand side represents
the change in momentum within the control volume per unit time and the second
term on the left-hand side represents the net outgoing momentum flux at the
boundary of the control volume. The terms on the right-hand side represent
the acting forces. The first term represents the external volume forces or body
forces acting on the control volume and the second term represents the pressure
forces acting on the boundary of the control surface. The surface forces due
to viscous stresses are left out here as we neglect grain friction in the control
volume.

In the reference situation the external volume force, i.e., gravitation, equals
zero in x-direction, since the channel is horizontal. Flow conditions are steady,
so that the first term on the left-hand side of equation (3.9) equals zero. Equa-
tion (3.9) now reduces to

∫∫

∂V

ρ u ~u · ~n dA = −
[∫∫

∂V

(p− pa) ~n dA

]
· ~ex (3.10)

Pressure forces act at the inlet (cross-section 1) and outlet (cross-section 2).
As streamlines are parallel at cross-sections 1 and 2 and the velocity in the flow
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Figure 3.2: Definition sketch of free surface flow over the reference bedform.

separation zone is small, the pressure can be assumed to be hydrostatic both at
cross-sections 1 and 2:

dp

dz
= −ρg (3.11)

in which z denotes the upward normal coordinate from the bed. By integrating
and evaluating the constant of integration using the condition of atmospheric
pressure at the water surface, it follows from equation (3.11) that

p(x, z) = pa + ρg [d(x)− z] (3.12)

in which d(x) denotes the local water depth. By integrating the right-hand side
of equation (3.10) over the water depth and channel width, W , at cross-sections
1 and 2, equation (3.10) now becomes

∫∫

∂V

ρ u ~u · ~n dA =
1
2
ρgW

[
d2
1 − d2

2

]

=
1
2
ρgW

[
(df + δf )2 − d2

2

]
(3.13)

in which the subscripts 1 and 2 refer to cross-sections 1 and 2, respectively. In
equation (3.13) we apply that the water depth at cross-section 1, d1, is equal
to the water depth at the location where the flow separates, df , plus the flow
separation zone height, δf . In the reference situation, the water depth at the
location where the flow separates equals the water depth at the bedform crest,
dt (Figure 3.2).

The left-hand side of equation (3.13) represents the momentum flux across
the boundary of the control volume. As the streamlines are parallel to the bed
at cross-sections 1 and 2, the flow field is directed in x-direction only, so that
|~u| = u. Elaborating the left-hand side term for both cross-sections 1 and 2 in
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equation (3.13) results in

−
∫∫

A1

u2
1 ρ dA +

∫∫

A2

u2
2 ρ dA =

1
2
ρgW

[
(df + δf )2 − d2

2

]
(3.14)

The momentum flux through cross-section 1 occurs over the distance df

(Figure 3.2). As such, for cross-section 1 we integrate over the domain from
z = δf to z = δf + df , so that equation (3.14) becomes

ρ

[
−

∫ W

0

dy

∫ df +δf

δf

u2
f dz +

∫ W

0

dy

∫ d2

0

u2
2 dz

]
=

1
2
ρgW

[
(df + δf )2 − d2

2

]
(3.15)

in which uf denotes the velocity in x-direction at the crest of the bedform.
We express the velocity in terms of the average velocity U = 1

A

∫∫
A

udA, i.e.,
averaged over the cross-sectional area. As such, the momentum flux terms in
equation (3.15) are expressed as

∫∫

A

ρu2dA ≡ βρU2A (3.16)

in which β = u2/U2 denotes the momentum coefficient which corrects for the fact
that u2 is not equal to U2 if the velocity distribution is not uniform over the cross-
section (e.g. Chow , 1959). For natural channels, β has a value within the range
1.05–1.17 (Chow , 1959). Incorporation of equation (3.16) in equation (3.15)
yields

ρW
(−β1U

2
f df + β2U

2
2 d2

)
=

1
2
ρgW

[
(df + δf )2 − d2

2

]
(3.17)

By dividing by the channel width, W , expressing the velocity in terms of
the specific discharge, q = Ufdf = U2d2, and rearranging, equation (3.17) now
becomes (e.g. Chanson, 2004)

1
2
ρg(df + δf )2 + β1ρ

q2

df
=

1
2
ρgd2

2 + β2ρ
q2

d2
(3.18)

Equation (3.18), with df = dt and δf = δ, is the one-dimensional momentum
conservation equation applied to the reference situation.

Also Yalin (1964a) and Engelund (1966) apply the momentum conservation
equation in developing their form drag model, but assume a pipe flow rather
than a free surface flow. As such, the pressure is assumed to be constant over
a cross-section rather than hydrostatically distributed. The one-dimensional
momentum conservation equation applied by Yalin (1964a) and Engelund (1966)
then becomes

p1 (df + δ) + β1ρ
q2

dt
= p2d2 + β2ρ

q2

d2

∣∣∣
YE

(3.19)

in which YE denotes that the equation was derived by Yalin (1964a) and En-
gelund (1966).
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3.3.3 Reference Energy Loss
Next, we derive an expression for the energy loss due to the sudden expansion
in the reference situation (i.e., the reference energy loss). Energy loss due to the
expansion results from energy dissipation between cross-sections 1 and 2, which
can then be expressed as the difference in energy head between cross-sections 1
and 2 (∆H ′′

a ):
∆H ′′

a = H1 −H2 (3.20)

in which the subscript ‘a’ refers to the analytically derived energy loss due to
expansion based on the one-dimensional energy conservation equation. We call
∆H ′′

a the analytical energy loss. H denotes the energy head averaged over the
cross-section. For a free surface flow with a hydrostatic pressure distribution
and a horizontal bed, energy head is defined as (e.g. Henderson, 1966; Fox and
McDonald , 1994)

H = zb + d + α
U2

2g
(3.21)

in which zb denotes the bed elevation above datum. The first term on the
right-hand side is known as the datum head, the second term as the pressure
head, and the third term as the velocity head. Datum head plus pressure head
are called the piezometric head. The piezometric head represents the potential
energy, whereas the velocity head represents the kinetic energy (e.g. Chaudhry ,
2008). The kinetic energy coefficient, α, is introduced so that in equation (3.21)
the section-averaged velocity can be applied. α = u3/U3 takes into account the
effect on the velocity head of the nonuniformity of the velocity distribution. For
natural channels, the kinetic energy coefficient is of the order of 1.15–1.50 (Chow ,
1959). Combining equations (3.20) and (3.21) and expressing the velocity in
terms of the specific discharge, equation (3.20) becomes

∆H ′′
a = δf + df − d2 +

q2

2g

(
α1

d2
f

− α2

d2
2

)
(3.22)

where we apply that the depth at cross-section 1, d1, equals d1 = δf + df and
bed elevations at cross-sections 1 and 2 are equal (zb,1 = zb,2) since the bed is
horizontal.

For simplicity, from now on we apply

α1 = 1, α2 = 1, β1 = 1, β2 = 1 (3.23)

We now suppose that the reference energy loss, ∆H ′′
ref , i.e., the energy loss

due to the expansion in a free surface flow in the reference situation, equals the
measured energy loss due to expansion in a free surface flow in the reference
situation, ∆H ′′

meas. Laboratory experiments of an abrupt expansion in a free
surface flow conducted by Bloemberg (2001) show that the analytical energy
loss, ∆H ′′

a , deviates from the measured energy loss due to expansion, ∆H ′′
ref .

Therefore, we introduce a calibration coefficient, c1, which relates the reference
energy loss, ∆H ′′

ref , to the analytical energy loss, ∆H ′′
a :

∆H ′′
ref = ∆H ′′

meas = c1∆H ′′
a (3.24)
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Figure 3.3: Reference energy loss, ∆H ′′
ref , against analytical energy loss, ∆H ′′

a . Data
are from Bloemberg (2001).

The value of the calibration coefficient, c1, is determined using laboratory ex-
periments of flow over a single bedform with a lee face angle of 90◦ performed by
Bloemberg (2001). Figure 3.3 shows the energy loss due to expansion computed
using the analytical one-dimensional approach (∆H ′′

a ) against the measured en-
ergy loss due to expansion (∆H ′′

ref). The analytical energy loss is computed from
the measured specific discharge, q, the measured water depth downstream of the
influence zone of the bedform, d2, and by applying equations (3.18), (3.22), and
(3.23). We corrected the measured energy loss for sidewall effects and for grain
friction (see Appendix 3.A). Figure 3.3 shows that c1 is equal to 2.0. If we would
have applied α1 = 1.5, α2 = 1.5, β1 = 1.17, and β2 = 1.17 (Chow , 1959) rather
than equation (3.23), Figure 3.3 shows that the calibration coefficient is equal
to about unity. From Figure 3.3 we conclude that the calibration coefficient
accounts for the effect that the flow velocity distribution is not uniform over the
cross-section at the cross-sections 1 and 2, i.e., the coefficient corrects for the
fact that we apply the four equations provided by (3.23) (also see Section 3.6).

For a pipe flow expansion, as considered by Yalin (1964a) and Engelund
(1966), the analytical energy loss due to expansion becomes (e.g. Henderson,
1966)

∆H ′′
a

∣∣∣
YE

=
q2

2g

(
1
df
− 1

d2

)2

(3.25)

This equation is known as the Borda-Carnot equation (Borda, 1766). Also here
α1, α2, β1, and β2 equal unity.

Yalin (1964a) and Engelund (1966) do not distinguish between the analytical
energy loss and reference energy loss, so that

∆H ′′
ref

∣∣∣
YE

= ∆H ′′
a

∣∣∣
YE

(3.26)

where ∆H ′′
a

∣∣∣
YE

is given by equation (3.25).
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3.3.4 Reference Form Drag
We now rewrite the reference energy loss in terms of the reference form drag
coefficient. We assume that the energy loss of a series of N subsequent identical
bedforms equals N times the loss of a single bedform. This assumption is al-
lowed, as in the reference situation we define the distance between two bedforms
to be so large that the flow patterns over subsequent bedforms do not interact.
The total energy loss of a series of N reference bedforms, ∆H ′′

ref,T , becomes:

∆H ′′
ref,T = N∆H ′′

ref (3.27)

in which N denotes the number of bedforms. We refer to section 3.4.3 for the
description of the method of including the effects of bedform interaction on form
drag.

The energy slope due to form drag, S′′, equals the total energy loss due to
expansion over a series of bedforms divided by the length of the reach under
consideration, L:

S′′ =
∆H ′′

ref,T

L
(3.28)

For a series of bedforms, the length of the reach under consideration, L, is equal
to the number of flow expansions times the distance between two flow expansions,
i.e., the distance between two subsequent bedform crests, λ (L = Nλ), so that
equations (3.28) and (3.27) result in

S′′ =
∆H ′′

ref

λ
(3.29)

By combining equations (3.7) and (3.29) we obtain the following formulation for
the reference form drag coefficient:

c′′f,ref =
gd∆H ′′

ref

U2λ
(3.30)

Then, by combining equations (3.22), (3.23), (3.24), and (3.30), and applying
q = Ud, we find the following expression for the reference form drag coefficient:

c′′f,ref =
c1gd3

q2λ

[
δf + df − d2 +

q2

2g

(
1
d2

f

− 1
d2
2

)]
(3.31)

Equation (3.31) describes the form drag in the reference situation, i.e., a sit-
uation of abrupt expansion of a free surface flow. Grain friction and sidewall
friction are accounted for separately (also see Appendix 3.A).

By combining equations (3.25), (3.26), and (3.30), and applying q = Ud, the
form drag model developed by Yalin (1964a) and Engelund (1966) becomes

c′′f,ref

∣∣∣
YE

=
d3

2λ

(
1
df
− 1

d2

)2

(3.32)
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3.3.5 Mean Water Depth Equation
The reference form drag model, equation (3.31), is a function of the water depth
at the bedform crest, dt = df , the water depth downstream of the influence
zone of the bedform, d2, and the mean water depth, d. The one-dimensional
momentum conservation equation for the reference situation, equation (3.18),
relates the water depths df and d2. In this section we provide an additional
equation relating the mean water depth, d, to dt in order to be able to compute
the reference form drag, c′′f,ref , in equation (3.31) as a function of the mean water
depth.

By definition, the mean water depth, d, equals

d =
1
L

∫

L

d(x) dx (3.33)

For a bedform-dominated river reach we now assume that the following approxi-
mation of equation (3.33) provides a suitable relation for the mean water depth:

d = dt +
1
2
δ (3.34)

Yalin (1964a) and Engelund (1966) also apply equation (3.34)

d
∣∣∣
YE

= dt +
1
2
δ (3.35)

and use the following additional relation:

d
∣∣∣
YE

= d2 − 1
2
δ (3.36)

3.3.6 Solution to Reference Form Drag
We are able to determine the reference form drag, c′′f,ref , if the specific dis-
charge, q, the bedform height, δ = δf , and one of the water depths (d, df = dt,
or d2) are known. First, the two unknown water depths are solved using equa-
tions (3.18), (3.23) and (3.34) (i.e., two equations and two unknowns). To this
end, we rewrite this set of two equations into a cubic equation. Using Cardano
(1545)’s classical solution (e.g. Korn and Korn, 1968), we solve this cubic equa-
tion (see Appendix 3.B). Finally, the reference form drag is determined from
equation (3.31).

The form drag model developed by Yalin (1964a) and Engelund (1966) be-
comes, by combining equations (3.32), (3.35), and (3.36)

c′′f,ref

∣∣∣
YE

=
d3

2λ

(
δ

d2 − 1
4δ2

)2

(3.37)

Finally, Yalin (1964a) and Engelund (1966) neglect the term 1
4δ2 in equa-

tion (3.37) as they assume that 1
4δ2 ¿ d2, so that equation (3.37) reduces

to

c′′f,ref

∣∣∣
YE

=
δ2

2λd
(3.38)
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Equation (3.38) is the form drag model as proposed by Yalin (1964a) and En-
gelund (1966). The model describes the form drag in a situation of abrupt
expansion of a pipe flow, and is derived from the one-dimensional momentum
and energy conservation equations for pipe flow expansion.

Karim (1999) applies the same assumptions as Yalin (1964a) and Engelund
(1966) in deriving his form drag model, but applies the expression for the energy
loss due to expansion of a free surface flow. As such, Karim (1999)’s derivation
starts with the same form drag coefficient as we do (equations (3.31) and (3.23)):

c′′f,ref

∣∣∣
K

=
C1gd3

q2λ

[
δ + df − d2 +

q2

2g

(
1
d2

f

− 1
d2
2

)]
(3.39)

in which C1 denotes a dimensionless parameter equal to 0.85, and K refers to
Karim’s model. It is assumed that the depth at the crest, dt = df , is equal to
the mean depth, d, minus half a bedform height, δ, i.e., equation (3.35), and that
the water depth downstream of the influence zone of the bedform, d2, is equal to
the mean depth plus half a bedform height, i.e., equation (3.36). Equation (3.39)
now becomes

c′′f,ref

∣∣∣
K

=
C1gd3

q2λ

[
q2δd

g
(
d2 − 1

4δ2
)2

]
(3.40)

By neglecting the term 1
4δ2 in equation (3.40), the following reference form drag

model is obtained:

c′′f,ref

∣∣∣
K

= C1
δ

λ
(3.41)

Please note that by applying both equations (3.35) and (3.36) to a free surface
flow, the momentum conservation equation over the flow expansion region in a
free surface flow (i.e., equation (3.18)) does not hold anymore.

3.4 Correction Factors

3.4.1 Introduction
As (fixed) bedforms in a laboratory flume and especially alluvial bedforms in
the field deviate from the reference situation, we introduce a total correction
factor, γT , which takes into account the effects on the form drag of deviations
from the reference situation (see equation (3.8)). Alluvial bedforms are different
from the reference situation with respect to the fact that

(a) the flow expansion is gradual rather than abrupt,

(b) the flow pattern over a bedform is affected by upstream and downstream
bedforms,

(c) the flow separation zone height may deviate from the bedform height, and

(d) bedform geometry is variable rather than regular.
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We now assume that the total correction factor, γT , is the following func-
tion of four independent correction factors each representing one of the above-
mentioned four effects on the form drag:

γT = γs γi γf γv (3.42)

where γs, γi, γf , and γv denote the correction factors for the four above-
mentioned respective effects. If an effect does not affect the form drag, its
correction factor equals 1. Please note that we assume that the four effects do
not interact with each other.

With equation (3.42), the new semi-analytical form drag model in equa-
tion (3.8) becomes

c′′f = γs γi γf γv c′′f,ref (3.43)

In this chapter we derive formulations for the effect on form drag of a gradual
flow expansion (γs), of bedform interaction (γi), and of the flow separation zone
height deviating from the bedform height (γf ). In Chapter 4 we study the effect
of variability in bedform geometry on form drag (γv).

Yalin (1964a) and Engelund (1966) do not incorporate the above-mentioned
effects in their form drag model, so that

c′′f
∣∣∣
YE

= c′′f,ref

∣∣∣
YE

(3.44)

Comparing equation (3.38) to the measured form drag for laboratory data of
Guy et al. (1966), Engelund (1977) introduces the calibration coefficient, cE ,
into equation (3.38):

c′′f
∣∣∣
E

= cE
δ2

2λd
(3.45)

in which

cE = 2.5 exp
(−2.5δ

d

)
(3.46)

and subscript E refers to the form drag model of Engelund (1977). Please note
that the calibration coefficient, cE , represents a combination of effects on the
form drag due to: (a) simplifications leading to the model proposed by Yalin
(1964a) and Engelund (1966), i.e., equation (3.38), for instance the assumption
of pipe flow rather than a free surface flow, (b) the difference between the mea-
sured energy loss and the analytical energy loss (compare equations (3.24) and
(3.26)), and (c) the four effects represented by equations (3.8) and (3.42).

Karim (1999) introduces the loss coefficient, K1, which is a function of the
dimensionless bedform height and length. The form drag model proposed by
Karim (1999) becomes

c′′f
∣∣∣
K

= K1 c′′f,ref

∣∣∣
K

(3.47)

in which K1 = 0.55
(

δ
d

)0.375 (
λ
d

)−0.2
for the dune, ripple, and transitional (washed

out dune) regime.
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3.4.2 Lee Face Steepness

The reference form drag describes the form drag due to an abrupt expansion of
the free surface flow downstream of the bedform crest. In other words, the angle
of the lee face is 90◦ in the reference situation. As such, the correction factor for
lee face steepness, γs, by definition equals 1 if the lee face angle is 90◦. Alluvial
bedforms in a laboratory flume or the field typically have lee face angles in the
order of 5◦ to 30◦ (e.g. Best and Kostaschuk , 2002). We expect that the smaller
the lee face angle, the smaller is the amount of energy that is dissipated (e.g.
Gibson, 1912; Henderson, 1966).

We analyze the correction factor for lee face steepness, γs, by performing nu-
merical simulations in which we vary the angle of the lee face. These numerical
simulations have been performed using the commercial computational fluid dy-
namics (CFD) software package Ansys CFX (release 11.0). The set of equations
solved by Ansys CFX are the Navier-Stokes equations for three-dimensional un-
steady flow. The equations that are solved are the Reynolds-averaged equations
using an element-based finite-volume method (Ansys CFX , 2006). Ansys CFX
offers various turbulence models.

In Appendix 3.C we validate models set up in Ansys CFX of free surface
flow over a series of bedforms by comparison of predicted results with measured
data. The agreement between simulations and experiments is good.

In the numerical simulations there is a single bedform in the computational
domain having a horizontal crest and a varying lee face angle (Figure 3.4). The
bedform height, δ, in all simulations is 0.04 m, and the length of the bedform
stoss face, λs, is 1 m. The length of the computational domain equals 5 m, and
the height 0.7 m. We apply an unstructured hexahedral mesh with grid cell size
of 2 mm. At the upstream inflow boundary we impose a logarithmic velocity
distribution. At the downstream boundary we impose the water depth, d2. The
bed is defined as a rough wall having a Nikuradse roughness height of 0.5 mm.
We perform free surface simulations using the homogeneous multiphase model,

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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ο
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ο

θ=70
ο

λsc o m p u t a t i o n a l d o m a i na i rw a t e r d 2
δ

Figure 3.4: Set-up of the numerical simulations for deriving an expression for the
correction factor for lee face steepness, γs.
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which is an option within Ansys CFX to simulate both water and air. The k− ε
turbulence model is applied in all simulations, as this model yields good results
for our case (Appendix 3.C).

We perform simulations in which θ = 10◦, θ = 30◦, θ = 50◦, θ = 70◦, and
θ = 90◦ (Figure 3.4). Besides the lee face angle, we vary the ratio of bedform
height to water depth downstream of the influence zone of the bedform (δ/d2 =
0.13, δ/d2 = 0.22, δ/d2 = 0.33), and the Froude number at the downstream
boundary (Fr2 = 0.1, Fr2 = 0.2, Fr2 = 0.3, Fr2 = 0.4). In total, we perform 55
simulations. Simulations in which the flow is critical at the crest are excluded
from the analysis, as application of the present form drag model is limited to
subcritical flows. This limitation to subcritical flow is applied, as flow expansion
may not be the relevant mechanism for form drag in the situation of supercritical
flow (also see Chapter 5).

All correction factors except the one for lee face steepness, γs, are equal to 1 in
the simulations: γi = γf = γv = 1. The form drag coefficient in equation (3.43)
now reduces to

c′′f = γs c′′f,ref (3.48)

Expressing the correction factor for lee face steepness in terms of the energy
loss, equation (3.48) with equations (3.7), (3.24) and (3.30) becomes

γs =
c′′f

c′′f,ref

=
∆H ′′

∆H ′′
ref

=
∆H ′′

c1∆H ′′
a

(3.49)

Figure 3.5 shows the analytical energy loss due to an abrupt expansion, ∆H ′′
a ,

against the predicted energy loss due to an abrupt expansion in the numerical
simulations in which the lee face angle equals 90◦. We introduce a calibration
coefficient, c2, which relates the numerically derived energy loss to the analytical
energy loss:

∆H ′′
a = c2∆H ′′ CFX

θ=90◦ (3.50)
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where c2 = 0.79 (Figure 3.5) and the superscript CFX indicates that this en-
ergy loss is computed numerically. Using equation (3.50), equation (3.49) now
becomes

γs =
∆H ′′

∆H ′′
ref

=
∆H ′′

c1 c2 ∆H ′′ CFX
θ=90◦

(3.51)

The reference energy loss and the numerically derived energy loss are related
through the coefficients c1 and c2. We now assume that the energy loss due
to gradual expansion, ∆H ′′ in equation (3.51), and the numerically derived
energy loss due to gradual expansion, ∆H ′′ CFX, are equally related through the
coefficients c1 and c2. As such, equation (3.51) becomes

γs =
c1 c2∆H ′′ CFX

c1 c2∆H ′′ CFX
θ=90◦

=
∆H ′′ CFX

∆H ′′ CFX
θ=90◦

(3.52)

The numerical simulations now enable us to analyze the correction factor for lee
face steepness using equation (3.52).

Figure 3.6 shows the correction factor for lee face steepness, γs, against the
lee face angle, θ, for all simulations. For lee face angles smaller than about
50◦ the correction factor decreases for decreasing lee face angle, which indicates
that the form drag decreases compared to the reference situation. The number of
data points is small, so we are only able to give the following first approximation
for the expression of the correction factor for lee face steepness (Figure 3.6):

γs = tanh
[
1.6 tan

(
θπ

180◦

)]
(3.53)
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where the lee face angle, θ, is in degrees.
The correction factor for lee face steepness increases with increasing lee face

angle and is even somewhat larger than unity for lee face angles larger than
about 50◦. The experiments of Gibson (1911, 1912) support the results of our
numerical simulations, as for flow expansion in pipe flows the same behavior is
observed (see Figure 3.7).

3.4.3 Bedform Interaction
In the reference situation (Section 3.3.1), the flow pattern over a bedform is not
affected by upstream and downstream bedforms, and so the effect of bedform
interaction on form drag is not incorporated. This means that individual losses
of bedforms are simply added to obtain the total energy loss of bedforms (see
equation (3.27)). We need to incorporate the effect of bedform interaction on
form drag, as numerical simulations of Schatz and Herrmann (2006) have shown
that the effect of bedform interaction on form drag is significant. The correction
factor for bedform interaction, γi, equals 1 if there is no bedform interaction,
and is expected to be smaller than 1 in cases where bedform interaction becomes
relevant.

Schatz and Herrmann (2006) show that a bedform that is part of a series
of bedforms behaves differently from a solitary bedform with respect to flow
separation and thus energy loss. They perform simulations of airflow over both
solitary bedforms and a series of nine bedforms using the CFD software package
Fluent. The simulation of flow over a series of nine bedforms shows that the
length of the flow separation zone on the lee side of the bedforms decreases
and converges towards the downwind end of the computational domain. The
separation zone length of the most upstream bedform in the series appeared to
be comparable to the one of a solitary bedform under the same flow conditions.
Schatz and Herrmann (2006) conclude that the separation zone length of a
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bedform in a series is about 25% smaller than the separation zone length of a
solitary bedform. A bedform as part of a series of bedforms causes less form
drag than a solitary bedform, as a bedform being in the lee of an upstream
bedform is exposed to lower velocities than a solitary bedform.

We develop an expression for the correction factor for bedform interaction,
γi, using numerical simulations of water flow. The software package Ansys CFX
allows us to determine form drag of individual bedforms in a series of bedforms
by integrating the bed pressure over the length of the bedform:

F ′′ =
∫ λ

0

p
dη

dx
dx (3.54)

in which F ′′ denotes form drag and η the bed elevation.
First, we simulate flow over uniform bedforms in the flume experiments

of Van Mierlo and De Ruiter (1988) and McLean et al. (1999) (also see Ap-
pendix 3.C). The flow conditions and bedforms imposed in the numerical simu-
lations are equal to the ones imposed in the laboratory experiments. Figure 3.8
shows the form drag for a series of 16 bedforms divided by the form drag expe-
rienced by the most upstream bedform. We find that form drag decreases and
converges towards the form drag of the downstream bedforms, like Schatz and
Herrmann (2006) find for the separation zone length in case of airflow.

Next, we perform simulations of both solitary bedforms and series of bed-
forms in which the bedform geometry and flow conditions are equal. We find
that, under the same flow conditions, form drag of a solitary bedform is equal
to the form drag of the most upstream bedform in a series of bedforms. We
consider the form drag of the most downstream bedform in the series to be
the form drag of a bedform experiencing bedform interaction. As such, the
correction factor for bedform interaction, γi, equals the form drag of the most
downstream bedform divided by the form drag of the most upstream bedform.
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For the numerical simulations, equation (3.43) reduces to

γi =
c′′f

γs c′′f,ref

(3.55)

as γf = 1 and γv = 1 in all simulations. In equation (3.55) c′′f = c′′f |int,θ

denotes the form drag of a bedform in a series with a lee face angle, θ, and the
subscript ‘int’ denotes ‘interaction’. We combine equations (3.52) and (3.55),
as well as the equations ∆H ′′

ref = c1 c2 ∆H ′′ CFX
θ=90◦ (see equation (3.51)) and

∆H ′′/∆H ′′
ref = c′′f/c′′f,ref (see equation (3.49)), and apply the same assumption

as used for the correction factor for lee face steepness, i.e., ∆H ′′ = c1c2∆H ′′ CFX,
so that we obtain

γi =
c′′f,int,θ

γs c′′f,ref

=
c′′ CFX
f,int,θ

c′′ CFX
f,sol,θ

=
c′′ CFX
f

∣∣
16th bedform

c′′ CFX
f

∣∣
1st bedform

(3.56)

in which ‘sol’ denotes ‘solitary bedform’ or ‘no interaction’.
Figure 3.9 shows the correction factor plotted against the ratio of bedform

length, λ, to bedform height, δ, both for the square ribs in experiments of
Coleman et al. (2005) and for the numerical simulations of the series of bedforms.
The correction factor for bedform interaction, γi, appears to be a function of the
ratio of bedform length to bedform height, like the laboratory data on square
ribs by Coleman et al. (2005). We suggest to describe the correction factor
for bedform interaction as an exponential function having asymptote 1, as the
ribs of Coleman et al. (2005) support an exponential behavior. Based on the
numerical simulations, we suggest the following expression for the correction
factor for bedform interaction:

γi = 1− 1.4 exp
[−λ/δ

12.75

]
(3.57)

We suppose that the shift between the results for the ribs and those for the
bedforms in Figure 3.9 is due to the large difference in shape between ribs and
bedforms and its effect on the resulting flow pattern.
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3.4.4 Flow Separation Zone Height
The size of the flow separation zone affects the energy loss and so the form
drag (e.g. Best , 2005). The correction factor for flow separation zone height,
γf , accounts for the effect on form drag in the case that the height of the flow
separation zone deviates from the one in the reference situation, i.e., the bedform
height (see Section 3.3.1).

Realistic bedforms in the field may have a brink point, defined as the location
where the flow separates, and which is located downstream of and lower than
the highest point of a bedform, i.e., the bedform crest (e.g. Wilbers, 2004).
According to this definition, a brink point does not always have to be present,
and, if present, is located between a crest and the downstream trough. Most
bedforms in the study reach in the Paraná River, Argentina, have a brink point
downstream of and lower than the bedform crest (Parsons et al., 2005). The
height of the flow separation zone (FSZ height) is smaller than the bedform
height if a brink point is present. As such, form drag is affected by the presence
and height of the brink point (e.g. Wilbers, 2004).

For uniform triangular-shaped laboratory bedforms, the FSZ height is larger
than the bedform height (e.g. Parsons et al., 2004; Schatz and Herrmann, 2006;
Dong et al., 2007). The numerical simulations of flow over triangular-shaped
bedforms by Parsons et al. (2004) show that the flow separation zone becomes
larger for larger stoss face angles as the stream lines at the stoss have a larger
upward vertical component. Numerical simulations by Schatz and Herrmann
(2006) indicate that the ratio of FSZ height to bedform height may be as large
as 1.2. Wind tunnel experiments by Dong et al. (2007) in which the stoss face
angle is varied illustrate that the ratio of FSZ height to bedform height increases
for increasing stoss angle until a maximum of 1.5 for a stoss face angle of 15◦.

In order to derive an expression for the correction factor for FSZ height, we
perform analytical computations in which effects of lee face steepness, bedform
interaction and variability in bedform geometry are absent (γi = 1, γs = 1,
γv = 1), so that the form drag coefficient in equation (3.43) reduces to

c′′f = γf c′′f,ref (3.58)

In the analytical computations we determine the analytical energy loss due to
expansion for a situation in which the FSZ height, δf , deviates from the bedform
height. Expressing the form drag in terms of the analytical energy loss using
equations (3.24) and (3.30), equation (3.58) becomes

γf =
c′′f

c′′f,ref

=
∆H ′′

a (δf )
∆H ′′

a (δf = δ)
(3.59)

For a given Froude number, Fr, and ratio of bedform height to mean water
depth, δ/d, the analytical energy loss for the situation that the FSZ height
equals the bedform height, ∆H ′′

a (δf = δ), is computed using equations (3.18),
(3.22), (3.34), (3.23), and df = dt.

We determine the analytical energy loss due to expansion for the situation
that the FSZ height is not equal to the bedform height (Figure 3.10) by assuming
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Figure 3.10: Definition sketch of free surface flow over a bedform having a brink
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that (1) energy loss due to expansion results from energy dissipation between
cross-sections 1 and 2 only, just as we did for the reference energy loss, and that
(2) energy is conserved between the bedform crest and the location where the
flow separates, i.e., the energy head at the bedform crest, Ht, equals the energy
head at cross-section 1, H1, or

δ + dt +
q2

2gd2
t

= δf + df +
q2

2gd2
f

(3.60)

For given Froude number, Fr, and ratio of bedform height to mean water depth,
δ/d, the analytical energy loss for the situation that the FSZ height may deviate
from the bedform height, ∆H ′′

a (δf ) in equation (3.59), is now computed using
equations (3.18), (3.22), (3.34), (3.23), and equation (3.60).

In the analytical computations, we vary the ratio of FSZ height to bedform
height, the Froude number, and the ratio of bedform height to mean water
depth. We determine the correction factor using equation (3.59). Figure 3.11
shows for a selection of results of analytical computations the correction factor
for FSZ height, γf , plotted against the ratio of FSZ height to bedform height,
δf/δ. The ratio of bedform height to mean water depth and the Froude number
appear not to significantly affect the correction factor for FSZ height. Based on
the results of the analytical computations, we propose the following expression
for the correction factor for FSZ height (Figure 3.11):

γf = 0.2
(

δf

δ

)2
[
4 +

(
δf

δ

)2
]

(3.61)

According to Wilbers (2004), the ratio of brink point height, δb = δf , to
bedform height, δ, is about 0.8 for alluvial bedforms. In that case, the correction
factor for FSZ height, γf , equals 0.6.

Laboratory experiments of flow over a series of uniform bedforms by Korn-
man (1995), in which the brink point height is varied, confirm that a smaller
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ratio of brink point height to bedform height yields a smaller form drag. A
quantitative comparison between these experiments and our expression for the
correction factor for FSZ height is not performed, as the flow in the Kornman
(1995) experiments was not uniform over the length of the flume.

3.5 Validation of Form Drag Model

In this chapter we consider flume data of flow over uniform fixed bedforms to
analyze the performance of the new semi-analytical form drag model. Flume
size, flow conditions, and bedform shape differ between the experiments. Aal-
berts (2007) studies flow over sawtooth-shaped concrete bedforms. Shen et al.
(1990) analyze flow over triangular bedforms made of plastic, aluminium, or
plastered with sand. Venditti and Bennett (2000) analyze flow over triangular
bedforms made of steel. Van Mierlo and De Ruiter (1988), McLean et al. (1999),
and Coleman et al. (2007) consider dune-shaped bedforms with a cosine-shaped
stoss face. Ogink (1989) studies flow over rounded triangular-shaped bedforms
plastered with sand. In total, we consider 157 laboratory experiments. The
data on flume width, bedform geometry, flow conditions and energy slope as
presented in the references enable us to determine the measured bed resistance,
cmeas
f,b (see Appendix 3.A). We apply the procedure of Vanoni and Brooks (1957)

to correct for sidewall friction (Appendix 3.A).
We compare predicted to measured bed resistance instead of form drag as

(a) the “measured” bed resistance is closer to the measured total resistance
(only sidewall friction is corrected for) than the “measured” form drag (sidewall
friction and grain friction need to be corrected for), and (b) empirical coefficients
in the form drag models of Engelund (1977) and Karim (1999) depend on the
applied grain friction model.

We obtain the predicted bed resistance, cmodel
f,b , by summation of the pre-

dicted form drag coefficient, c′′f , and predicted grain friction coefficient, c′f . Form
drag and grain friction are predicted using the measured flow conditions (mean
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water depth and specific discharge), measured bedform geometry, and grain
diameter. We apply the following form drag and grain friction models:

a. the Yalin (1964a) - Engelund (1966) form drag model (equations (3.38)
and (3.44)) and the grain friction model of Yalin (1964a),

b. the Yalin (1964a) - Engelund (1966) form drag model (equations (3.38)
and (3.44)) and the grain friction model of Engelund (1966),

c. the form drag model of Engelund (1977) (equations (3.45) and (3.46)) and
the grain friction model of Engelund (1966),

d. the form drag model of Karim (1999) (equations (3.41) and (3.47)) and
the grain friction model of Karim (1999),

e. the present analytical form drag model (equations (3.8), (3.18), (3.23),
(3.31), and (3.34) with γT = 1 and c1 = 1) and the grain friction model of
Engelund (1966),

f. the present semi-analytical form drag model (equations (3.8), (3.18), (3.23),
(3.31), (3.34), (3.42), and c1 = 2.0) and the grain friction model of En-
gelund (1966). We apply equations (3.53), (3.57), and (3.61) to determine
γs, γi, and γf , respectively. Note that γv = 1 in all considered experi-
ments, as the bedform geometry is regular. For the triangular bedforms
we apply a ratio of flow separation zone height to bedform height of 1.2
(Schatz and Herrmann, 2006) (Section 3.4.4).

In this chapter we only consider (semi-)analytical form drag models. As
purely empirical models are usually calibrated using alluvial data, we apply the
empirical models in Chapter 4.

Figure 3.12 shows the predicted bed resistance coefficient against the mea-
sured one for the 157 laboratory experiments. For each model we determine the
mean relative error as follows:

E =




√√√√ 1
n

n∑

i=1

(
cmodel
f,b − cmeas

f,b

cmeas
f,b

)2

× 100% (3.62)

in which ‘model’ refers to the predicted bed resistance and ‘meas’ to the mea-
sured bed resistance. Table 3.1 presents the mean relative error for each of the
six models under consideration. Table 3.1 illustrates that assuming a free surface
flow expansion (model e in Table 3.1) does not yield an improvement compared
to the model in which a pipe flow expansion is assumed (model b).

The introduction of the calibration coefficient proposed by Engelund (1977)
does not yield an improvement of the model results compared to the Engelund
(1966) model (compare models b and c in Table 3.1). The Engelund (1977)
calibration coefficient is calibrated on the alluvial bedform data set of Guy et al.
(1966), and, appears not to perform well for uniform fixed bedforms.
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Table 3.1: Mean relative error, E, following from equation (3.62) for each bed resis-
tance model under consideration.

Model E (%)
a. Yalin (1964a) model 26
b. Engelund (1966) model 21
c. Engelund (1977) model 38
d. Karim (1999) model 97
e. present analytical model 22
f. present semi-analytical model 17
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Figure 3.12: Predicted bed resistance using the models of (a) Yalin (1964a), (b)
Engelund (1966), (c) Engelund (1977), (d) Karim (1999), (e) the present analytical
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Table 3.1 shows that incorporation of the effects due to lee face steepness,
bedform interaction, flow separation zone height, and nonuniformity of the flow
velocity profile yields a small improvement (compare models e and f).

Table 3.1 illustrates that the Yalin (1964a) - Engelund (1966) form drag
model in combination with the grain friction model of Engelund (1966) yields
better results than the grain friction model of Yalin (1964a) (compare models a
and b). The Yalin (1964a) model predicts smaller values of the bed resistance,
which is due to the fact that the grain friction model of Yalin (1964a) only
accounts for energy loss due to grain friction over the stoss face of the bedform.

The bed resistance model of Karim (1999) yields the least accurate results of
the models considered. This may be due to the momentum not being conserved
over the region of the flow expansion (see Section 3.3.6).

3.6 Discussion

In the derivation of the present semi-analytical form drag model we apply a cal-
ibration coefficient, c1 = 2.0, relating the reference energy loss to the analytical
energy loss. The calibration coefficient accounts for the effect that the velocity
distributions at cross-sections 1 and 2 are not uniform. If we would have ap-
plied values for the kinetic energy and momentum coefficient somewhat larger
than unity rather than values equal to unity (equation (3.23)), the value of the
calibration coefficient would be between 1 and 2 (see Figure 3.3). For simplicity,
we have chosen here to apply equation (3.23) (and thus c1 = 2.0), as (a) the
values of the kinetic energy and momentum coefficient are not known well (e.g.
Chaudhry , 2008) for a bedform-dominated channel or for a situation as defined
by the reference situation, and (b) it is unclear if and how α1 (at the bedform
crest) deviates from α2 (downstream of the influence zone of the bedform) and
likewise if and how β1 deviates from β2.

We have assumed that the four effects that are represented by the correction
factors are independent. We expect that the effects on form drag described by
the values of the correction factors are more significant than potential effects on
form drag due to dependency between the correction factors (also see Chapter 5).

We have assumed that the total correction factor, γT , is equal to multiplicat-
ing the correction factors of the four effects that affect the reference form drag
(equation (3.42)), such that a factor equals unity if its effect is absent. However,
this is just one possible method to incorporate the four effects. For instance, we
could also have chosen for a model in which the effects are summed rather than
multiplied, e.g. γT = 1 + γ̂s + γ̂i + γ̂f + γ̂v.

The expressions for the correction factors for lee face steepness, bedform
interaction, and flow separation zone height represent first onsets for the incor-
poration of the effects on form drag, as at this point we have only few data
available to analyze each of the effects.

As can be seen from Figures 3.6 and 3.11, the correction factors γs and
γf may not only be a function of the bedform geometry, but also of the flow
conditions, characterized by the Froude number and ratio of bedform height to
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mean water depth. At the moment, the dependency of flow conditions is not
incorporated in the expressions for the correction factors.

The derived correction factor for flow separation zone height is a function
of the height of the flow separation zone. However, the correction factor may
also be a function of the length of the flow separation zone. If a brink point is
present, the streamlines at the brink point have a vertical component in down-
ward direction. The larger the vertical component in downward direction, the
smaller is the length of the flow separation zone (e.g. Schatz and Herrmann,
2006), and the smaller the form drag. Further research is required to analyze
whether the correction factor can be improved by incorporating (a model for)
the length of the flow separation zone.

We include four relevant effects affecting form drag in the semi-analytical
form drag model. Effects on form drag of suspended sediment, three-dimensionality
of bedforms, and bedform migration are not incorporated in the form drag
model:

◦ Suspended sediment load tends to dampen turbulence (Vanoni and Nomi-
cos, 1960), and thereby reduces resistance to flow (e.g. Richards, 1982;
Khullar et al., 2007).

◦ Bedforms in the field are often three-dimensional (e.g. Nordin, 1971). Mad-
dux et al. (2003a,b) and Venditti (2007) show that the bed resistance of
three-dimensional bedforms may differ from the bed resistance of two-
dimensional bedforms.

◦ The effect of bedform migration on form drag is expected to be negligible,
as the migration rate is relatively small and not expected to affect the flow
expansion.

Presently we are not able to evaluate to what extent these effects contribute
to the form drag, and for now we do not incorporate these effects in our form
drag model. In Chapter 4 the effect of variability in bedform geometry in stream-
wise direction is included in the model, and the effect of three-dimensionality is
discussed.

River flood plains can contain obstacles, e.g. levees, spillways, groynes, or
spur dikes, which affect the flow and its conveyance capacity. Training works
such as groynes or spur dikes are constructed to prevent erosion of the banks
and to keep the main channel navigable. If the discharge is high enough these
obstacles are submerged. We expect that the approach followed in the develop-
ment of the semi-analytical form drag model, i.e., a reference form drag times
correction factors accounting for deviations from the reference situation, may be
useful for determining the resistance to flow due to groynes or other obstacles
(also see Chapter 5).

3.7 Conclusions

We present a new semi-analytical form drag model predicting form drag due to
bedforms in rivers under subcritical flow conditions. The new form drag model
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consists of two components, i.e., (1) an analytically-based reference form drag
model, accounting for energy loss associated with the deceleration of the flow
due to a sudden expansion of a free surface flow, and (2) an empirical coefficient
taking into account effects due to deviations from the reference situation. The
analytically-based reference form drag model is an extension of the model pro-
posed by Yalin (1964a) and Engelund (1966). The empirical coefficient takes
into account that (a) the flow expansion downstream of the bedform crest is
gradual rather than sudden, (b) the flow pattern over closely spaced bedforms
differs from the pattern over a solitary bedform, (c) the flow separation zone
height may deviate from the bedform height, and (d) bedforms are irregular in
height and length. In this chapter, we propose expressions for the first three
effects. The fourth effect is elaborated on in Chapter 4. We assume that the
four effects do not interact with each other.

To analyze the effect of lee face steepness and bedform interaction on form
drag, we use the CFD software package Ansys CFX. A validation study of the
numerical model to laboratory data of flow over uniform bedforms shows that
Ansys CFX is well capable of predicting flow velocities, form drag, and the free
surface elevation.

Using numerical simulations we develop an expression for the effect of lee face
steepness on form drag. The correction factor for lee face steepness increases
with increasing lee face angle and equals approximately unity for lee face angles
larger than about 50◦.

The flow pattern over closely spaced bedforms differs from the pattern over
a solitary bedform. A bedform as part of a series of bedforms causes less form
drag than a solitary bedform. An expression for the effect of bedform interaction
on form drag is found to be a function of the ratio of bedform length to bedform
height. The expression describes that for increasing values of this ratio, the
flow pattern over a bedform is less influenced by the flow patterns over the
surrounding bedforms.

The height of the flow separation zone may deviate from the bedform height,
which affects the form drag. An expression taking into account this effect is
found to be a function of the ratio of the flow separation zone height to the
bedform height. The expression describes that the larger the flow separation
zone height, the larger is the form drag.

The expressions accounting for the effects of lee face steepness, bedform
interaction, and flow separation zone height are first onsets, as at this point
only few data are available for their derivation.

In this chapter the semi-analytical form drag model is applied to laboratory
experiments of flow over uniform fixed bedforms. We find that the model yields
better results than the Yalin (1964a) - Engelund (1966) model, as the present
model is able to take into account that (1) a gentler lee face angle, (2) the
interaction between flow patterns over subsequent bedforms, and (3) a smaller
flow separation zone height yield a smaller form drag.
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3.A Derivation of Bed Resistance from Measured Data

In this appendix we explain how we derive bed resistance from measured flume
data. The measured total resistance in a straight flume consists of three sources
of resistance: grain friction, form drag due to bedforms, and sidewall friction.
We correct the measured total resistance for sidewall friction to find an estimate
of the bed resistance from the measured data.

The total energy loss, ∆HT , over a channel section of length L is equal to

∆HT = SL (3.63)

The energy loss in a straight flume under bedform-dominated conditions can be
divided into energy loss due to grain friction, ∆H ′, due to form drag, ∆H ′′, and
due to sidewall friction, ∆H ′′′, as the total energy loss of a flow system is the
direct summation of the component energy losses (e.g. Daugherty and Franzini ,
1965)

∆HT = ∆H ′ + ∆H ′′ + ∆H ′′′ (3.64)

We now consider the force balance of a channel with width W and a small bed
slope, so that S = tan ϕ ≈ sin ϕ, in which ϕ denotes the bed slope angle:

−F ′ − F ′′ − F ′′′ + LdWρgS = 0 (3.65)

in which F ′ denotes the force due to grain friction, F ′′ denotes the force due to
form drag and F ′′′ the force due to sidewall friction. Equation (3.65) expresses
that all resistance forces balance the component of the gravitational force in the
flow direction. If we combine equations (3.63), (3.64), and (3.65) by eliminating
the term SL, we obtain

∆H ′ + ∆H ′′ + ∆H ′′′ =
F ′

ρgdW
+

F ′′

ρgdW
+

F ′′′

ρgdW
(3.66)

We divide equation (3.66) into three parts, as we assume that individual energy
losses are due to their corresponding friction force terms only. The forces in
equation (3.66) are rewritten into shear stresses times the wetted area at which
these forces work (F ′ = τ ′WL, F ′′ = τ ′′WL, F ′′′ = τ ′′′2dL), and shear stresses
are rewritten in resistance coefficients (τ ′ = c′fρU2, τ ′′ = c′′fρU2, τ ′′′ = c′′′f ρU2).
We obtain

∆H ′ =
F ′

ρgdW
=

τ ′WL

ρgdW
= c′f

LU2

gd

∆H ′′ =
F ′′

ρgdW
=

τ ′′WL

ρgdW
= c′′f

LU2

gd
(3.67)

∆H ′′′ =
F ′′′

ρgdW
=

τ ′′′2dL

ρgdW
= c′′′f

2LU2

gW

in which c′′′f denotes the sidewall friction coefficient and τ ′′′ the boundary shear
stress due to sidewall friction.



3.B. Solution to Cubic Equation 77

By substituting the equations (3.4) and (3.67) into (3.64), we obtain

cf,T
LU2

gR
= c′f

LU2

gd
+ c′′f

LU2

gd
+ c′′′f

2LU2

gW
(3.68)

Dividing by LU2/gdW , substituting the hydraulic radius R by R = Wd/(W +
2d), replacing c′f + c′′f by the bed resistance cf,b yields

cf,b = cf,T +
2d

W

(
cf,T − c′′′f

)
(3.69)

Equation (3.69) is the method for sidewall correction proposed by Vanoni and
Brooks (1957).

The resistance coefficient due to sidewall friction, c′′′f , is estimated as (Cheng
and Chua, 2005)

c′′′f =
1
8

[
20(Re/8cf,T )0.1 − 39

]−1
(3.70)

in which Re denotes the Reynolds number (Re = 4UR/ν, where ν denotes the
kinematic viscosity).

We are now able to determine the measured bed resistance, cf,b, from equa-
tions (3.3), (3.69), and (3.70), if bed slope, S, channel width, W , mean water
depth, d, and mean velocity, U , are measured.

3.B Solution to Cubic Equation

The reference form drag given by equation (3.31) is a function of (1) the mean
water depth, (2) the water depth at the bedform crest, and (3) the water depth
downstream of the influence zone of the bedform. If the water density, bedform
height, specific discharge, momentum coefficients, and one of the three water
depths are known, we are able to solve the remaining two water depths using
equations (3.18) and (3.34). Namely, we have two equations to solve for two
unknown variables.

By eliminating one of the two remaining unknown water depths from equa-
tions (3.18) and (3.34), we obtain a cubic equation. Cardano (1545)’s method
provides an analytical solution to a cubic equation (e.g. Korn and Korn, 1968)
of the general form

x3 + a1x
2 + a2x + a3 = 0 (3.71)

in which a1, a2, a3 are real coefficients. The three solutions of the cubic equation
are (e.g. Korn and Korn, 1968)

x = −a1

3
+ Ik 3

√
−qc

2
+
√

D + I−k 3

√
−qc

2
−
√

D (3.72)

in which k = [0, 1, 2], complex number I = − 1
2 + 1

2

√
3i, discriminant D =

(qc/2)2 + (pc/3)3, pc = a2 − (a2
1)/3, and qc = 2(a1/3)3 − (a1a2)/3 + a3.

Next, we will explain how equations (3.18) and (3.34) can be solved for the
remaining unknown water depths, provided that (a) the mean water depth, d,
is known, or (b) the water depth at the bedform crest, dt, is known, or (c) the
water depth downstream of the influence zone of the bedform, d2, is known.
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(a) Solving for dt and d2

Rewriting equation (3.18) yields

d3
2 + a1d

2
2 + a2d2 + a3 = 0 (3.73)

with

a1 = 0

a2 = −(δ + dt)2 − 2β1q
2

gdt
(3.74)

a3 =
2β2q

2

g

We first solve dt using equation (3.34), and then d2 in equation (3.73) using
equations (3.72) and (3.74). Equation (3.73) has three solutions. We need to
use k = 0, as k = 1 and k = 2 yield a value of d2 smaller than 0 and a Froude
number downstream of the influence zone of the bedform, Fr2 = q/(d2

√
gd2),

larger than 1, respectively.

(b) Solving for d and d2

We solve d2 in equation (3.73) using equations (3.72) and (3.74) and d using
equation (3.34). We need to use k = 0, as k = 1 and k = 2 yield a value of d2

smaller than 0 and a Froude number downstream of the influence zone of the
bedform, Fr2 = q/(d2

√
gd2), larger than 1, respectively.

(c) Solving for d and dt

Rewriting equation (3.18) yields

d3
t + a1d

2
t + a2dt + a3 = 0 (3.75)

with

a1 = 2δ

a2 = δ2 − d2
2 −

2β2q
2

gd2
(3.76)

a3 =
2β1q

2

g

We first solve dt in equation (3.75) using equations (3.72) and (3.76) and then
d using equation (3.34). We need to use k = 0, as k = 1 and k = 2 yield a
value of dt smaller than 0 and a Froude number at the crest, Fr1, larger than 1,
respectively.

Please note that the three solutions of a cubic equation given by equa-
tion (3.72) may be (1) all real values, or (2) one real value and two complex
values (conjugated). The type of solution depends on the value of the discrim-
inant, D. For values of D > 0, there exist one real and two complex roots.
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For values of D ≤ 0, only real roots exist. The solutions represent water depth
values that are not be complex. We find that for flow conditions within the
range Fr < 1 and δ/d < 0.8, the discriminant, D, is always negative, and thus
there is only one real-valued solution.

3.C Validation of Numerical Model

We use the CFD software package Ansys CFX to analyze the effects of lee face
steepness and bedform interaction on form drag. In this appendix we validate
the prediction that follows from Ansys CFX using laboratory data.

We have carried out numerical simulations of experiments 2–7 of McLean
et al. (1999) and the experiments T5 and T6 of Van Mierlo and De Ruiter
(1988). These experiments focused on flow over bedforms in a laboratory flume.
In the numerical simulations, 16 bedforms in a series (λ = 1.6m) were consid-
ered. We have performed simulations in which we varied the mesh density, the
Nikuradse grain roughness height, and the turbulence model. The k − ε turbu-
lence model and shear stress transport (SST) turbulence model (Ansys CFX ,
2006; Menter , 1994) were tested. The SST model was designed to give more
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Figure 3.13: (a) Horizontal flow velocities as predicted by the numerical model and
measured data of Van Mierlo and De Ruiter (1988), and (b) bedform shape and lo-
cations along the bedform where velocities were measured indicated by the vertical
lines.
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Figure 3.14: (a) Measured and predicted water level elevation over a bedform. Mea-
sured data are from Van Mierlo and De Ruiter (1988). (b) Bedform shape.

accurate predictions of the extent of flow separation due to adverse pressure
gradients (Ansys CFX , 2006). It has been shown that the SST model may yield
a major improvement in terms of flow separation predictions compared to the
k− ε turbulence model (e.g. Bardina et al., 1997). In our simulations, however,
the k − ε turbulence model showed the best results and is used in the simula-
tions considered in this thesis. A reason that in the present application the SST
model does not perform better than the k − ε model may be that the option of
a rough bottom is not yet possible, so that simulations using the SST model are
performed with a smooth bottom. Figure 3.13 shows horizontal flow velocities
measured at 16 locations over a bedform in experiment T6 of Van Mierlo and
De Ruiter (1988) together with horizontal flow velocities as predicted by the
numerical model. The measured and predicted velocities agree well. Figure 3.14
shows the measured and predicted water level elevation over the bedform, and
illustrates that the numerical model is able to reproduce the decrease in water
level at the bedform crest.

In the flume experiments bed pressure along the bedform was measured, so

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

measured bed shear stress due to form drag, τ" (N/m2)

si
m

ul
at

ed
 b

ed
 s

he
ar

 s
tr

es
s

du
e 

to
 fo

rm
 d

ra
g,

 τ
" 

(N
/m

2 )

line of perfect agreement
data

Figure 3.15: Predicted bed shear stress due to form drag against measured bed shear
stress due to form drag. Measured data are from McLean et al. (1999).
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that the measured form drag is determined by integrating the bed pressure over
one bedform length (Table 2 of McLean et al., 1999). Figure 3.15 compares the
measured and predicted form drag per bedform length and per flume width.
The agreement between predictions and experiments is satisfactory.

3.D Notation

A cross-sectional area, m.
a1 real coefficient in cubic equation, m.
a2 real coefficient in cubic equation, m2.
a3 real coefficient in cubic equation, m3.
cE calibration coefficient in form drag model of Engelund (1977), dimen-

sionless.
c′f grain friction coefficient, dimensionless.
c′′f form drag coefficient, dimensionless.
c′′′f sidewall friction coefficient, dimensionless.
cf,b bed resistance coefficient, dimensionless.
c′′f,ref reference form drag coefficient, i.e., form drag for the reference situa-

tion, dimensionless.
cf,T total resistance coefficient, dimensionless.
C1 parameter in form drag model of Karim (1999), dimensionless.
c1 calibration coefficient relating the reference energy loss to the analyt-

ical energy loss, dimensionless.
c2 calibration coefficient relating the numerically derived energy loss to

the analytical energy loss, dimensionless.
D discriminant for solving cubic equation, m6.
d mean water depth, m.
df water depth at the location where the flow separates, m.
dt water depth at the bedform crest, m.
d(x) water depth as a function of x coordinate, m.
d1 water depth at cross-section 1, i.e., immediately downstream of the

bedform, m.
d2 water depth at cross-section 2, i.e., downstream of the influence zone

of the bedform, m.
E mean relative error between measured and predicted bed resistance,

dimensionless.
~ex unit vector in x-direction, dimensionless.
~f external volume force, N/kg.
F ′ grain friction, N.
F ′′ form drag, N.
F ′′′ sidewall friction, N.
Fr Froude number, dimensionless.
g gravitational acceleration, m/s2.
H energy head averaged over a cross-section, m.
I complex number for solving cubic equation, dimensionless.
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K1 parameter in form drag model of Karim (1999), dimensionless.
k = [0, 1, 2], parameter for solving cubic equation, dimensionless.
k turbulence kinetic energy, defined as the variance of the fluctuations

in velocity, m2/s2.
L flume length or length of channel section, m.
N number of bedforms, dimensionless.
n sample size, dimensionless.
~n outward pointing unit normal vector, dimensionless.
p pressure, N/m2.
pa atmospheric pressure, N/m2.
pc parameter for solving cubic equation, m2.
q specific discharge, m2/s.
qc parameter for solving cubic equation, m3.
R hydraulic radius, m.
Re Reynolds number, dimensionless.
S energy slope, equal to bed slope under uniform conditions, dimension-

less.
S′ energy slope due to grain friction, dimensionless.
S′′ energy slope due to form drag, dimensionless.
t time, s.
U mean flow velocity, i.e., averaged over cross-sectional area, m/s.
u component of the flow velocity in x-direction, m/s.
~u flow field, m/s.
V volume, m3.
v component of the flow velocity in y-direction, m/s.
W channel width, m.
w component of the flow velocity in z-direction, m/s.
x horizontal coordinate in streamwise direction, m.
y horizontal coordinate in lateral direction, m.
z vertical coordinate, m.
zb bed elevation above datum, m.
α kinetic energy coefficient, dimensionless.
β momentum coefficient, dimensionless.
γf correction factor for flow separation zone (FSZ) height, dimensionless.
γi correction factor for bedform interaction, dimensionless.
γs correction factor for lee face steepness, dimensionless.
γT total correction factor taking into account effects due to deviations

from the reference situation, dimensionless.
γv correction factor for variability in bedform geometry, dimensionless.
∆H ′ energy loss due to grain friction, m.
∆H ′′ energy loss due to form drag, m.
∆H ′′′ energy loss due to sidewall friction, m.
∆H ′′

a analytical energy loss, i.e., energy loss due to expansion based on the
analytical one-dimensional approach, m.

∆Hpipe
a analytical energy loss for pipe flow expansion, m.

∆Hpipe
meas measured energy loss for pipe flow expansion, m.
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∆H ′′
meas measured energy loss, i.e., measured energy loss due to expansion in

the reference situation, m.
∆H ′′

ref reference energy loss, i.e., energy loss due to expansion in the reference
situation, m.

∆H ′′
ref,T total energy loss due to expansion of a series of reference bedforms,

m.
∆HT total energy loss, m.
δ mean bedform height, m.
δb brink point height, m.
δf height of the flow separation zone, m.
ε turbulence eddy dissipation (the rate at which the velocity fluctua-

tions dissipate), m2/s3.
η bed elevation, m.
θ mean angle of bedform lee face, ◦.
θp angle of conicity of diverging circular pipe, ◦.
λ mean bedform length, i.e., the distance between two subsequent bed-

form crests, m.
λs length of the bedform stoss face, m.
ν kinematic viscosity, m2/s.
ρ water density, kg/m3.
τ ′ bed shear stress due to grain friction, N/m2.
τ ′′ bed shear stress due to form drag, N/m2.
τ ′′′ boundary shear stress due to sidewall friction, N/m2.
τb bed shear stress, N/m2.
τT total boundary shear stress, N/m2.
ϕ bed slope angle, ◦.
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Chapter 4

A semi-analytical form drag model:

application to alluvial and compound

bedforms?

Abstract: Following on the development of a semi-analytical form drag model by

Van der Mark et al. (2009), we extend the model by developing an expression for a

correction factor for variability in bedform geometry. The correction factor accounts

for the effect that a larger variability in bedform height and length yields a larger

form drag. The resulting semi-analytical model is validated against alluvial labora-

tory data and its predictions are compared to results of other (semi-)analytical and

empirical bed resistance models. The analytical form drag model of Yalin (1964a)

and Engelund (1966) appears to yield the best results of the considered models for

the alluvial laboratory data. Although the semi-analytical form drag model does not

show an improvement for the alluvial bedform data compared to the Yalin (1964a) -

Engelund (1966) form drag model, for lee face angles representative for the field the

semi-analytical model shows promising results. We therefore advise to apply either

the semi-analytical model or the Yalin (1964a) - Engelund (1966) form drag model.

The authors would like to underline the large value of all analytical models tested in

this research. In the case of compound bedforms summation of the energy loss due to

individual small-scale and large-scale bedforms yields a reasonably good prediction of

the form drag.

4.1 Introduction

Bed resistance is an important parameter in predicting water levels in rivers.
It consists of two components, i.e., form drag, which is the resistance due to
bedforms, and grain friction, which is the resistance due to grains (Einstein and
Barbarossa, 1952).

An accurate estimate of form drag is important, as form drag often accounts
for the majority of the bed resistance (e.g. Julien and Klaassen, 1995; McLean
et al., 1999). To calculate form drag both empirical and (semi-)analytical models
exist. Examples of explicit empirical models are the models of Van Rijn (1982,

?This chapter will be submitted to J. Geophys. Res. as: Van der Mark, C.F., A. Blom,
S.J.M.H. Hulscher, and H.W.M. Hoeijmakers, A semi-analytical form drag model: application
to alluvial and compound bedforms.
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1984) and Vanoni and Hwang (1967). These models determine form drag based
on predicted or measured water depth and bedform geometry. Implicit empirical
models (e.g. Engelund and Hansen, 1967; Wright and Parker , 2004) are form
drag models that are not an explicit function of the bedform geometry. In the
analytical form drag model of Yalin (1964a) and Engelund (1966) it is assumed
that the energy loss due to form drag can be described by a sudden expansion
of a pipe flow and as such can be determined using the Borda-Carnot equation
(e.g. Borda, 1766; Daugherty and Franzini , 1965). The semi-analytical form
drag model of Karim (1999) is an extension of the Yalin (1964a) and Engelund
(1966) model; the effect of a bedform on the flow is assumed to be represented
by a sudden expansion of a free surface flow rather than a pipe flow.

Besides bedform height and bedform steepness (defined as the ratio of mean
bedform height to mean bedform length), form drag is known to be a function
of the Froude number (Alam and Kennedy , 1969), the steepness of the bedform
lee face (e.g. Best , 2005), the spacing between bedforms (e.g. Davies, 1980;
Coleman et al., 2005), and the size of the flow separation zone (e.g. Schatz and
Herrmann, 2006; Parsons et al., 2004). As none of the existing explicit form
drag models are a function of the Froude number, steepness of the lee face, or
the size of the flow separation zone, Van der Mark et al. (2009) have developed
a semi-analytical form drag model in which these quantities are incorporated.

The semi-analytical form drag model developed by Van der Mark et al. (2009)
consists of two components, i.e., (1) an analytically-based reference form drag
model, accounting for the energy loss associated with the deceleration of the flow
downstream of a sudden expansion in a free surface flow, and (2) an empirical
coefficient taking into account effects due to deviations from the reference situ-
ation. The empirical coefficient takes into account that (a) the flow expansion
downstream of the bedform crest is gradual rather than sudden, (b) the flow
pattern over a bedform is influenced by the flow patterns over the surrounding
bedforms, (c) the flow separation zone height may deviate from the bedform
height, and (d) bedforms are irregular in height and length. Each of these four
effects are accounted for through a correction factor.

In Chapter 3, the semi-analytical model is applied to fixed bedform data in
which bedforms are identical in height and length. Hence, the correction factor
for variability in bedform geometry equals unity for these uniform bedform data.
Alluvial bedforms, however, are irregular in size, shape and spacing (e.g. Nordin,
1971), which is expected to affect the form drag. In this chapter we derive an
expression for the correction factor for variability in bedform geometry to be
applied to the semi-analytical form drag model by Van der Mark et al. (2009).
The extended semi-analytical model is applicable to alluvial bedforms which
show variability in height and length.

Field measurements have shown that smaller scale bedforms can be super-
imposed on larger scale bedforms (e.g. Julien et al., 2002; Parsons et al., 2005;
Best , 2005). Knowledge on bed resistance in case of compound bedforms is
important as in many rivers bedforms of different scales occur. In this chapter
we analyze whether in case of compound bedforms form drag can be predicted
by summation of the energy loss due to flow expansion downstream of both the



4.2. Semi-Analytical Form Drag Model 87

small-scale and large-scale bedforms.
The objective of this chapter is (a) to extend the semi-analytical form drag

model to situations with variability in bedform geometry and so make it appli-
cable to alluvial bedforms, (b) to validate the resulting semi-analytical model
using alluvial laboratory data, (c) to compare the model results to results of
other (semi-)analytical and empirical models, and (d) to analyze whether the
concept of summation of individual flow expansions is applicable to the case of
compound bedforms.

In Section 4.2 we will briefly describe the semi-analytical form drag model
developed by Van der Mark et al. (2009), and in Section 4.3 we will derive
an expression for the correction factor for variability in bedform geometry. In
Section 4.4 we will apply the model to alluvial laboratory data and compare the
results to those of other models. Section 4.6 describes the analysis of compound
bedforms.

4.2 Semi-Analytical Form Drag Model

In this section we summarize the form drag model presented by Van der Mark
et al. (2009). Van der Mark et al. (2009) develop a semi-analytical form drag
model and apply it to laboratory data of flow over uniform fixed bedforms. The
form drag model consists of two components, i.e., (1) an expression for the form
drag coefficient in a reference situation, c′′f,ref , and (2) an expression taking into
account effects due to deviations from the reference situation, γT :

c′′f = γT c′′f,ref (4.1)

where c′′f denotes the form drag coefficient, and γT denotes the total correc-
tion factor, i.e., a dimensionless coefficient taking into account effects due to
deviations from the reference situation. The reference situation is defined as
a situation in which (a) the flow is steady, (b) the bed is horizontal, (c) the
lee face angle of the bedforms, θ, equals 90◦, i.e., downstream of the crest the
flow expands abruptly, (d) the flow pattern over a bedform is not affected by
upstream and downstream bedforms, (e) the bedform crest is horizontal and
extends over such a reach that streamlines above the crest are parallel to the
bed, (f) the height of the flow separation zone downstream of the bedform, δf , is
equal to the bedform height, δ, and (g) grain friction is absent in the expansion
region. The latter is allowed as energy loss due to a change in cross-sectional
area dominates over a short region (e.g. Fox and McDonald , 1994; Chaudhry ,
2008). Please note that grain friction is not neglected; we will describe how it is
accounted for in Section 4.4.2. The reference form drag of a series of N bedforms
equals

c′′f,ref =
c1gd3∆H ′′

a,T

q2L
(4.2)

=
c1gd3∆H ′′

a

q2λ
(4.3)
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in which ∆H ′′
a denotes the analytical energy loss due to expansion of a free sur-

face flow, ∆H ′′
a,T denotes the total analytical energy loss over the series of N

bedforms (∆H ′′
a,T = N∆H ′′

a ), c1 denotes a calibration coefficient relating the an-
alytical energy loss to the real or measured energy loss in the reference situation
(c1 = 2.0), d denotes the mean water depth, g the gravitational acceleration, q
the specific discharge, λ the bedform length, and L the length of the considered
reach (L = Nλ). The calibration coefficient accounts for the effect that the flow
velocity distribution is not uniform over the cross-section.

The analytical energy loss, ∆H ′′
a , is defined as the difference in energy head

over the expansion region, i.e., the energy head immediately downstream of the
bedform crest minus the energy head downstream of the influence zone of the
bedform, and equals (e.g. Chanson, 2004)

∆H ′′
a = δ + dt − d2 +

q2

2g

(
1
d2

t

− 1
d2
2

)
(4.4)

in which dt and d2 denote the water depth at the bedform crest and the water
depth downstream of the influence zone of the bedform, respectively. If the mean
water depth, d, or one of the water depths dt or d2 are known, the remaining two
unknown water depths can be determined using the one-dimensional momentum
conservation equation over the expansion region downstream of the bedform
(equation (4.5)) and a relation between the mean water depth and the water
depth at the bedform crest (equation (4.6)):

1
2
ρg(dt + δ)2 + ρ

q2

dt
=

1
2
ρgd2

2 + ρ
q2

d2
(4.5)

d = dt +
1
2
δ (4.6)

Bedforms are different from the reference situation with respect to the fact
that (a) the flow expansion is gradual rather than abrupt, (b) the flow pattern
over a bedform is also affected by surrounding bedforms, (c) the flow separation
zone height may deviate from the bedform height, and (d) bedform geometry is
variable rather than regular. The total correction factor, γT , in equation (4.1)
is the following function of four correction factors each representing the four
above-mentioned effects on the form drag:

γT = γs γi γf γv (4.7)

where γs, γi, γf , and γv denote the correction factors for the four above-
mentioned respective effects. Van der Mark et al. (2009) derive the following
expressions for the correction factors:

γs = tanh
[
1.6 tan

(
θπ

180◦

)]
(4.8)

γi = 1− 1.4 exp
[−λ/δ

12.75

]
(4.9)

γf = 0.2
(

δf

δ

)2
[
4 +

(
δf

δ

)2
]

(4.10)
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in which θ denotes the bedform lee face angle in degrees and δf the height of
the flow separation zone.

The semi-analytical is given by equations (4.1) and (4.3). In the so-called
analytical form drag model the four above-mentioned effects and the effect of
nonuniformity of the flow velocity profile on form drag are not accounted for,
i.e., the total correction factor, γT , and the calibration coefficient, c1, both equal
unity.

Van der Mark et al. (2009) apply the analytical and semi-analytical form
drag models to series of fixed bedforms in which bedforms are identical. For
such cases, the correction factor for variability in bedform geometry, γv, equals
unity and does not play a role. In the next section we will derive a formulation
for this correction factor for variability in bedform geometry.

4.3 Correction Factor for Variability in Bedform Geome-
try

Alluvial (laboratory) bedforms are highly irregular in size, shape, and spacing
(e.g. Nordin, 1971). Van der Mark et al. (2008b) show that bedform height can
be described by a positively skewed Weibull distribution, and that the coefficient
of variation of bedform height, Cδ, which is defined as the ratio of the standard
deviation to the mean value of the bedform height, equals about 0.47.

Under the condition that the mean bedform height is the same, the total
analytical energy loss due to expansion, ∆H ′′

a,T , is larger for the case of irregular
bedform geometry than for the case of regular geometry, as the relation between
energy loss and bedform height (equation 4.4) is nonlinear. The correction factor
for variability in bedform geometry that we will derive in this section accounts
for this increase in total energy loss for irregular bedforms relative to regular
bedforms.

To derive an expression for the correction factor for variability in bedform
geometry, we perform analytical computations in which the correction factors
for bedform interaction and flow separation zone height equal unity, i.e., the
flow over a bedform is not affected by upstream and downstream bedforms
and the flow separation zone height equals the bedform height (Figure 4.1).
Equation (4.1), with Equation (4.7), can now be written as

γv =
c′′f

γs c′′f,ref

(4.11)

The form drag of a single bedform (c′′f = c′′f
∣∣
irreg

) is determined using equa-
tion (4.2). The total analytical energy loss of a series of N irregular bedforms
is obtained by summation of the individual analytical energy losses of the N
bedforms:

∆H ′′
a,T = ∆H ′′

a,T

∣∣
irreg

= N

N∑

i=1

p(δi) γs ∆H ′′
a,i (4.12)
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in which p(δi) denotes the probability mass function for (the discrete random
variable) bedform height, which is distributed according to a Weibull distribu-
tion (inset in Figure 4.1), and i is a subscript referring to the bedform number
in the series. By definition,

∑N
i=1 p(δi) = 1. The analytical energy loss of the

ith bedform is determined using

∆H ′′
a,i = δi + dt,i − d2,i +

q2

2g

(
1

d2
t,i

− 1
d2
2,i

)
(4.13)

(compare with equation (4.4)) in which dt,i and d2,i denote the water depths at
the crest and downstream of the influence zone of bedform i, respectively. The
water depths, dt,i and d2,i, are determined from the momentum conservation
equation over the expansion region of a free surface flow, and a relation between
the depth at the crest and the mean water depth (compare with equations (4.5)
and (4.6)):

1
2
ρg(δi + dt,i)2 + ρ

q2

dt,i
=

1
2
ρgd2

2,i + ρ
q2

d2,i
(4.14)

d = dt,i +
1
2
δi (4.15)

Under equilibrium conditions bedform length and bedform height of individ-
ual bedforms are positively correlated (e.g. Wang and Shen, 1980), and we apply
the following linear relation between bedform length, λi, and bedform height, δi

(Blom and Parker , 2004):

λi =
λ

δ
δi (4.16)

where λ and δ denote the mean bedform length and height, respectively. As
such, the domain length, L, in equation (4.2) becomes

L = L
∣∣
irreg

= N

N∑

i=1

p(λi) λi =
λ

δ
N

N∑

i=1

p(δi) δi (4.17)

We are now able to determine the correction factor for variability in bed-
form geometry using equations (4.11)–(4.17) and equation (4.2) when the Froude
number, Fr, the ratio of mean bedform height to mean water depth, δ/d, the
mean bedform height, δ, and a Weibull distribution of bedform heights charac-
terized by the coefficient of variation, Cδ, are known. For simplicity, we assume
that the angle of the lee face, θ, has the same value for each individual bedform
(Figure 4.1). As such, the correction factor for lee face steepness disappears by
division (equation (4.11)), and its value becomes irrelevant.

For a selection of analytical computations, Figure 4.2 shows the correction
factor for variability in bedform geometry, γv, against the ratio of mean bedform
height to mean water depth, δ/d. As a fit to the analytical results, we propose
the following exponential function for the correction factor for variability in
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Figure 4.2: Correction factor for variability in bedform geometry, γv, against the
ratio of mean bedform height to mean water depth, δ/d, for analytical computations
in which Froude number, Fr, and coefficient of variation of bedform height, Cδ, are
varied. Solid lines represent equation (4.18).



4.4. Application to Alluvial Bedforms 93

bedform geometry, as an exponential function appears to yield the best fit to
the analytical results (Figure 4.2):

γv = G + J exp
[
K

δ

d

]
(4.18)

in which

G = C2
δ − 0.010Cδ + 1.0

J = 0.010Cδ

K = 15Cδ + 2.3

Please note that equation (4.18) is not dependent on the Froude number, as
the Froude number was found to only slightly affect the correction factor for
variability in bedform geometry (Figure 4.2).

For a coefficient of variation of Cδ = 0.47 (Van der Mark et al., 2008b),
equation (4.18) reduces to

γv = 1.2 + 0.0047 exp
[
9.4

δ

d

]
(4.19)

For bedforms having a ratio of mean bedform height, δ, to mean water depth,
d, of 0.2 (e.g. Allen, 1984), the correction factor for bedform geometry equals

γv = 1.23 (4.20)

Please note that the analysis presented in this section is necessary to derive
the expression for the correction factor for variability in bedform geometry based
on analytical calculations. In practice, only equation (4.18), (4.19), or (4.20)
is necessary.

4.4 Application to Alluvial Bedforms

4.4.1 Measured Bed Resistance
We now consider laboratory data of the flow over alluvial bedforms to analyze
the performance of both the analytical and semi-analytical form drag model. We
also compare the results of the analytical and semi-analytical models to results
of existing (semi-)analytical and empirical bed resistance models (Table 4.1 and
Appendix 4.A).

We compare predicted to measured bed resistance rather than form drag
as (1) some of the existing models do not distinguish between a grain friction
and form drag coefficient explicitly, (2) a “measured” bed resistance is closer
to the measured total resistance (only sidewall friction is corrected for) than a
“measured” form drag (sidewall friction and grain friction needs to be corrected
for), and (3) a form drag model needs to be applied with the grain friction model
with which it was derived, as empirical coefficients in various form drag models
depend on the applied grain friction model.
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We consider the experimental data of Guy et al. (1966), Vanoni and Hwang
(1967), Williams (1970), Wang and Shen (1980), Driegen (1986), Klaassen
(1990), and Blom et al. (2003). All considered data belong to the lower flow
regime (i.e., ripple or dune regime) according to the bedform classification dia-
gram of Simons and Richardson (1966). Hence, none of the original data belongs
to the upper flow regime (i.e., transition or antidune regime).

The original bed elevation profiles of the data of Driegen (1986), Klaassen
(1990), and Blom et al. (2003) are used to determine mean bedform height,
mean bedform length, mean angle of the bedform lee face, and variability in
bedform height. Guy et al. (1966), Vanoni and Hwang (1967), Williams (1970),
and Wang and Shen (1980) report measured mean bedform height and mean
bedform length. Wang and Shen (1980) also report variability in bedform height.

Measured bed resistance, cmeas
f,b , is determined by correcting the measured

total resistance, cf,T , for sidewall friction, c′′′f , using the procedure of Vanoni
and Brooks (1957):

cmeas
f,b = cf,T +

2d

W

(
cf,T − c′′′f

)
(4.21)

in which W denotes flume width. The sidewall friction coefficient, c′′′f , is esti-
mated as (Cheng and Chua, 2005)

c′′′f =
1
8

[
20(Re/8cf,T )0.1 − 39

]−1
(4.22)

where Re denotes the Reynolds number (Re = 4UR/ν, with U the mean flow
velocity, R the hydraulic radius, and ν the kinematic viscosity).

4.4.2 (Semi-)Analytical Bed Resistance Models

The predicted semi-analytical bed resistance, i.e., the bed resistance as pre-
dicted using the semi-analytical form drag model (indicated with model A2 in
Table 4.1), is obtained by summation of the grain friction coefficient, c′f , and
the semi-analytical form drag coefficient, c′′f :

cf,b = c′f + c′′f (4.23)

where c′′f is given by equations (4.1)–(4.7). The correction factor for variability
in bedform geometry, γv, in equation (4.7) is determined using equation (4.18).
We determine the correction factors for lee face steepness, γs, for bedform in-
teraction, γi, and for flow separation zone height, γf , in equation (4.7) using
equations (4.8), (4.9), and (4.10), respectively. To determine the four correc-
tion factors, we apply the measured mean bedform height, δ, measured mean
bedform length, λ, and, if available, the measured mean lee face angle, θ, and
measured variability in bedform height, Cδ. If the lee face angle was not mea-
sured or reported, we apply a lee face angle, θ, of 22◦, which is about the average
of the measured lee face angles in the data of Driegen (1986), Klaassen (1990),
and Blom et al. (2003). If variability in bedform height cannot be determined
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from the data, we apply the model for variability in bedform height developed
by Van der Mark et al. (2008b):

Cδ = 0.47
[
1− exp

(−W/R

2.4

)]
(4.24)

The ratio of flow separation zone height to bedform height, δf/δ, is taken equal
to unity in the alluvial experiments, as we assume that the bedform crest of
alluvial bedforms is parallel to the mean bed elevation and extends over such a
reach that streamlines above the crest are parallel.

The grain friction, c′f , is determined using the grain friction model of En-
gelund (1966, 1977):

c′f =

[
6 +

1
κ

ln

(
u′2f

gSks

)]−2

(4.25)

in which κ denotes the Von Kármán constant (κ = 0.4), u′f the shear velocity
due to grain friction, S the energy slope, and ks the Nikuradse grain roughness
height. The grain roughness height equals ks = 2D65, where D65 denotes the
grain diameter for which 65% of the sediment is finer. We apply ks = 2D50 if
D65 is unknown, where D50 denotes the median diameter of the sediment. We
apply this grain friction model, so that differences in predicted bed resistance
using the models A1, A2, A4, and A5 (Table 4.1) can be attributed to the form
drag models.

In Section 4.4.4 we will compare the results of the analytical and semi-
analytical bed resistance models to the analytical models of Yalin (1964a) and
Engelund (1966) (models A3 and A4 in Table 4.1) and the semi-analytical mod-
els of Engelund (1977) (model A5) and Karim (1999) (model A6). Below we
describe these models.

The form drag model of Yalin (1964a) and Engelund (1966) (YE form drag
model) is based on the momentum and energy conservation equations applied
to the expansion of a pipe flow, i.e., the Borda-Carnot equation (e.g. Borda,
1766; Daugherty and Franzini , 1965), rather than to the expansion of a free
surface flow. It is assumed that (a) the depth at the crest is equal to the mean
depth minus half a bedform height, and (b) the water depth downstream of the
influence zone of the bedform is equal to the mean depth plus half a bedform
height.

The form drag model of Engelund (1977) is equal to the YE form drag model
except for an additional calibration coefficient, cE , which was determined based
on the alluvial laboratory data of Guy et al. (1966).

Karim (1999) applies the expression for the energy loss due to expansion of
a free surface flow rather than a pipe flow, and applies the same water depth
equations as in the YE form drag model. Please note that by applying two water
depth equations, the momentum conservation equation over the flow expansion
region does not hold anymore.

Bed resistance is obtained by summation of the form drag coefficients of
Yalin (1964a) - Engelund (1966), Engelund (1977), and Karim (1999) and the
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grain friction coefficients using the grain friction models as proposed by Yalin
(1964a), Engelund (1966), Engelund (1977), and Karim (1999), respectively (see
Table 4.1 and Appendix 4.A). The grain friction model of Yalin (1964a) only
accounts for energy loss due to grain friction along the stoss face of the bedform.
As such, Yalin (1964a) uses a submodel to determine the length of the stoss face.

4.4.3 Empirical Bed Resistance Models

In Section 4.4.5 we will compare the results of the (semi-)analytical models to
the ones of the empirical models. In this section, the empirical models of Vanoni
and Hwang (1967), Van Rijn (1984), Engelund and Hansen (1967), Wright and
Parker (2004), and Haque and Mahmood (1983) are described (see Table 4.1
and Appendix 4.A).

The models of Engelund and Hansen (1967) and Wright and Parker (2004)
predict bed resistance based on an empirical relation between grain friction and
bed resistance. As such, form drag is not predicted explicitly. The Engelund
and Hansen (1967) model was calibrated using laboratory data and the Wright
and Parker (2004) model was calibrated using field data only.

For predicting bed resistance using the models of Engelund and Hansen
(1967) and Wright and Parker (2004), one needs to determine the dimension-
less bed shear stress. For some experiments, however, the dimensionless bed
shear stress becomes complex-valued, which is due to taking the square root of
a negative value. This negative value occurs if the dimensionless grain shear
stress is smaller than an empirical constant in these models (see Appendix 4.A).
Apparently, these models are not suitable for circumstances in which the grain
shear stress is small.

Although physically incorrect, the Van Rijn (1984) model sums Nikuradse
grain roughness height and equivalent bedform roughness height (i.e., ks,vR =
k′s + k′′s ) rather than grain friction and form drag coefficients. The form drag
model of Haque and Mahmood (1983) is based on numerical simulations in which
bed pressure is integrated along a bedform.

Vanoni and Hwang (1967) determine the value of the grain friction, c′f , from
a graph of the friction factor against Reynolds number for several values of the
relative roughness (i.e., the Moody diagram). To obtain bed resistance, we apply
the following expression for the grain friction (Colebrook , 1939), which yields the
same values of the grain friction for their data as the Moody diagram:

c′f =
1
8

[
1.8 log

(
Re

7

)]−2

(4.26)

Haque and Mahmood (1983) apply the following grain friction model (K.
Mahmood, pers. comm., 2009):

c′f =
[
5.75 log

(
12.27R

D65

)]−2

(4.27)
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4.4.4 Results of the (Semi-)Analytical Models
Figure 4.3 shows predicted bed resistance against measured bed resistance for
the (semi-)analytical bed resistance models A1 through A6. Table 4.1 shows the
total relative error between measured and predicted bed resistance, E:

E =




√√√√ 1
n

n∑

i=1

e2


× 100% (4.28)

in which

e =
cmodel
f,b − cmeas

f,b

cmeas
f,b

(4.29)

The experiments in which the dimensionless bed shear stress becomes complex-
valued are excluded from the analysis in order to be able to determine the
total relative error for the models of Engelund and Hansen (1967) (12% of
the experiments excluded) and Wright and Parker (2004) (4% of the experi-
ments excluded). In this section we discuss Figure 4.3 and the results of the
(semi-)analytical models in Table 4.1.

For the uniform fixed bedform data (Van der Mark et al., 2009) the analytical
model (model A1), semi-analytical model (model A2), and the YE form drag
model (models A3 and A4) yield comparable results. The results of the model
of Engelund (1977) show that incorporation of the calibration coefficient, cE ,
worsens the prediction of bed resistance for the uniform bedform data.

All (semi-)analytical models yield poor results for the alluvial bedform data
compared to the uniform data, which is expressed by the scatter around the
lines of perfect agreement in Figure 4.3.

The YE form drag model in combination with the grain friction model of
Engelund (1966) (model A4) yields the best results for the alluvial flume data.
It appears that, for the alluvial bedform data, the semi-analytical model yields
slightly worse results than the analytical model (Figures 4.3g, h, and Table 4.1).
The inclusion of additional physical effects, i.e., the effect of nonuniformity of the
flow velocity profile, and the effects of lee face steepness, bedform interaction,
deviation of flow separation zone height, and variability in bedform geometry on
form drag, appears not to improve the model results. In the discussion section
we will come back to this topic.

Figure 4.4 shows the relative error between measured and predicted bed
resistance, e, of the analytical model (model A1) and the YE form drag model
(model A4) against the ratio of bedform height to mean water depth, δ/d, for
the alluvial bedform data. The differences in model results between the YE form
drag model and the analytical form drag model appear to be small (Table 4.1
and Figure 4.4), especially for ratios of the bedform height to the mean water
depth, δ/d, smaller than 0.33, which are conditions realistic for the field (e.g.
Knighton, 1998). Hence, the assumptions of Yalin (1964a) and Engelund (1966)
that (a) flow expansion downstream of a bedform crest may be represented by
expansion of a pipe flow rather than a free surface flow and that (b) the term
1
4δ2 can be neglected appears to be justified.
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Figure 4.4: Relative error in predicted bed resistance, e (equation (4.29)), using the
analytical model (model A1) and the YE form drag model in combination with the
Engelund (1966) grain friction model (model A4) for the alluvial bedform data against
the ratio of bedform height to mean water depth, δ/d.

Figure 4.4 shows that the relative error is relatively large (i.e., the models
underestimate the bed resistance) for small values of the ratio of bedform height
to mean water depth. Both models overestimate the bed resistance for values of
the ratio of the bedform height to the mean water depth, δ/d, larger than 0.33.
Under these conditions, which are not realistic for the field, it appears that the
relative error is smaller for the YE form drag model that is based on expansion
of a pipe flow compared to the analytical model that is based on expansion of a
free surface flow.

The YE form drag model yields slightly better predictions of the bed resis-
tance than the one of Engelund (1977) for the alluvial bedform data (models A4
and A5). Optimization of the calibration coefficient, cE , in the Engelund (1977)
model by the authors based on a more extensive alluvial flume data set than
the one of Engelund (1977) (i.e., the alluvial data set presented in Section 4.4.1)
has not led to an improvement.

The bed resistance model of Karim (1999) (model A6) yields the worst results
of the (semi-)analytical models both for the uniform and the alluvial bedform
data (Figures 4.3f, l). This is probably due to the fact that momentum is not
conserved over the region of flow expansion in this model.

The Yalin (1964a) - Engelund (1966) form drag model in combination with
the grain friction model of Engelund (1966) yields better results than the grain
friction model of Yalin (1964a) (models A3 and A4) both for the uniform and
the alluvial bedform data. The Yalin (1964a) model predicts smaller values of
the bed resistance, which may be due to the fact that the grain friction model of
Yalin (1964a) only accounts for energy loss due to grain friction along the stoss
face of the bedform.

4.4.5 Results of the Empirical Models
Figure 4.5 shows predicted bed resistance against measured bed resistance for the
empirical bed resistance models E1 through E5 (see Section 4.4.3 and Table 4.1).
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In this section we discuss the results presented in Figure 4.5 and Table 4.1.

The empirical bed resistance models have more problems predicting the bed
resistance for the uniform bedform data than the (semi-)analytical models. This
may be because the coefficients in the empirical models are calibrated purely on
alluvial bedform data.

The bed resistance models of Vanoni and Hwang (1967) and Haque and
Mahmood (1983) (models E1 and E5) yield the best results of the empirical
models considered. For the uniform bedform data the models of Haque and
Mahmood (1983) and Karim (1999) show roughly the same behavior (Figures
4.3f and 4.5e). A mathematical explanation lies in the fact that in both form
drag models the powers corresponding to bedform length and bedform height
are of the same order of magnitude, whereas in, for instance, the YE form drag
model the power corresponding to bedform height is twice as large as the one
corresponding to bedform length.

The empirical model of Van Rijn (1984) (model E2) tends to underestimate
the bed resistance for large values of the bed resistance and to overestimate for
small values, especially for the uniform bedform data.

It appears that the empirical bed resistance models that need bedform ge-
ometry as input yield better results than the implicit models, i.e., the empirical
models of Engelund and Hansen (1967) and Wright and Parker (2004).

The empirical model of Wright and Parker (2004) (model E4) is based purely
on field data, and is a function of the Froude number. Froude numbers under
a dune regime in the flume can be up to 0.6, whereas Froude numbers under a
dune regime in rivers are usually smaller than 0.3 (e.g. Simons and Richardson,
1961). The reason for the relatively bad performance of this model (Figures
4.5d, i) may be the application of the model outside its range of calibration, i.e.,
to flume data with relatively large Froude numbers.

4.5 Application to Lee Face Angles Representative for the
Field

There is evidence that lee face angles in the field may be much smaller than
in a flume (e.g. Best , 2005; Van der Mark et al., 2008b). Alluvial bedforms
in a laboratory flume typically have lee face angles in the order of about 25◦,
whereas lee face angles of bedforms in the field may be much smaller than 20◦

(e.g. Best and Kostaschuk , 2002). In this section we will study the quality of
the predictions of the YE form drag model and the semi-analytical model for
such small lee face angles. Figure 4.6 shows that the semi-analytical model
yields significantly better predictions of bed resistance than the YE form drag
model in the case of small lee face angles. Figure 4.6a illustrates this for three
numerical simulations using the computational fluid dynamics (CFD) software
package Ansys CFX (release 11.0), and Figure 4.6b for laboratory experiment
T4-1 of Ogink (1989). See Chapter 3 for a validation of simulations of free
surface flow over a series of bedforms set up in Ansys CFX using measured
data. In the three numerical simulations we simulate the flow over a series of
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Figure 4.6: (a) Predicted form drag, c′′model
f , using the semi-analytical model and

Yalin (1964a) - Engelund (1966) form drag model against simulated form drag using
Ansys CFX, c′′ CFX

f . Lee face angle, θ, varies between the numerical simulations, and

flow conditions are kept constant. (b) Predicted bed resistance, cmodel
f,b , using the

semi-analytical model and Yalin (1964a) - Engelund (1966) form drag model against
measured bed resistance, cmeas

f,b . Data are from experiment T4-1 of Ogink (1989). Lee
face angle, θ, was kept constant (θ = 5.5◦), and flow conditions were varied.

uniform fixed bedforms. The bedform length, height, and flow conditions do
not vary between the simulations, while the lee face angle does vary (θ = 10◦,
θ = 20◦, θ = 30◦). The YE form drag model yields equal results for the three
simulations, as the model does not account for differences in the lee face angle.
Ogink (1989) performed measurements of flow over a series of uniform fixed
bedforms for which the lee face angle was θ = 5.5◦. The water depth and
discharge were varied in the experiments. Based on the results presented in
Figure 4.6, we expect that in field situations the semi-analytical model yields
better predictions of form drag than the YE form drag model.

4.6 Application to Compound Bedforms

4.6.1 Compound Form Drag Model

The stoss face of river bedforms may be covered with smaller-scale bedforms
(e.g. Best , 2005). The semi-analytical form drag model developed by Van der
Mark et al. (2009) is based on the concept of summation of the individual energy
losses due to the expansion of flow over bedforms. In this section we apply this
concept of summation to the case of compound bedforms.

According to the authors, Yalin and Lai (1985), Ogink (1989), and Julien
et al. (2002) were the first to apply a summation of form drag coefficients of
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the small- and large-scale bedforms to determine the form drag coefficient for
compound bedforms. Ogink (1989) introduces a coverage degree of small-scale
bedforms, Dc, which indicates which percentage of the large-scale bedform is
covered with small-scale bedforms:

Dc =
Nλs

λl
(4.30)

in which N denotes the number of small-scale bedforms per large-scale bedform,
λs denotes the length of the small-scale bedform, and λl the length of the large-
scale bedform.

For predicting bed resistance in case of compound bedforms, Van Rijn (2007)
suggests to quadratically sum the Nikuradse roughness height values correspond-
ing to ripples, ks,r, to dunes, ks,d, and to megaripples, ks,m:

ks,c =
√

(ks,r)2 + (ks,m)2 + (ks,d)2 (4.31)

Van Rijn (2007) determines the bed resistance using the compound roughness
height value, ks,c:

cf,b = g

[
18 log

(
12d

ks,c

)]−2

(4.32)

As mentioned earlier (Section 4.4.3), from a physical point of view it is incorrect
to sum roughness height values.

We now propose the following form drag model in case of a series of large-
scale bedforms with small-scale superimposed bedforms:

c′′f,c = bl c′′f,l + Dc bs c′′f,s (4.33)

in which the subscripts c, l, and s refer to compound bedforms, large-scale and
small-scale bedforms, respectively, and Dc denotes the coverage degree of small-
scale bedforms. The calibration coefficient, bl, accounts for the effect that the
energy loss of a large-scale bedform on which small-scale bedforms are super-
imposed may deviate from the energy loss of such a large-scale bedform under
the same flow conditions without small-scale bedforms. Likewise, calibration
coefficient, bs, accounts for the effect that the energy loss of a small-scale bed-
form superimposed on a large-scale bedform may deviate from the energy loss of
such a small-scale bedform without large-scale bedforms. Please note that c′′f,l

in equation (4.33) describes the form drag of the large-scale bedforms in case
small-scale bedforms are not present. c′′f,s for small-scale bedforms is defined
likewise.

In equation (4.33) we now simply assume that the mean water depth, and
thus energy loss, is equal for each of the N small-scale bedforms superimposed
on a large-scale bedform. This assumption does not agree with reality, but is
made to keep the model, i.e., equation (4.33), simple. We will come back to
this in Section 4.6.2. By assuming so, the total analytical energy loss due to
the small-scale bedforms equals N times the analytical energy loss due to a
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Figure 4.7: Bedform geometry in the laboratory experiments of Ogink (1989). Flow
is from left to right.

single small-scale bedform: ∆H ′′
a,T,s = N ∆H ′′

a,s. Equation (4.33) becomes, by
combining equations (4.1), (4.3), (4.30), and (4.33):

c′′f,c =
c1gd3

q2λl

[
γT,l bl ∆H ′′

a,l + γT,s bs N∆H ′′
a,s

]
(4.34)

4.6.2 Calibration of Compound Form Drag Model
We analyze the calibration coefficients bl and bs in equation (4.33) using the lab-
oratory experiments of Ogink (1989). Ogink (1989) performed measurements
of the flow over both single and compound uniform bedforms of concrete (Fig-
ure 4.7). For each of the four configurations, Ogink (1989) performed eight
measurements in which mean water depth and discharge varied. Below we will
study the values of the calibration coefficients in equation (4.33), as the remain-
ing parameters in equation (4.33) are available from the measured data. We
define the total relative error, Ec, as

Ec =

√√√√ 1
n

n∑

i=1

(
c′′model
f,c − c′′meas

f,c

c′′meas
f,c

)2

(4.35)

in which n denotes the number of measurements (n = 32). We determine the
optimal values for the calibration coefficients, bl and bs, by searching for the
minimum value of the total relative error, Ec. We find that the values bl = 0.9
and bs = 1.2 yield the minimum total relative error, Ec.

A value of bl = 0.9, i.e., a value smaller than unity, indicates that the con-
tribution of the energy loss of the large-scale bedform to the total energy loss
is smaller than without small-scale bedforms. In order to further analyze the
difference in energy loss between the case with and without small-scale bed-
forms, we have performed (a) a numerical simulation of flow over a series of
bedforms without small-scale bedforms and (b) a simulation of flow over a series
of bedforms with superimposed small-scale bedforms using Ansys CFX. The
two simulations, with bedform shapes similar to experiments T4-2 and T3-1
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l
l( a )

( b )
Figure 4.8: Schematization of numerical results using Ansys CFX. In case (b) the
length of the flow separation zone becomes smaller than in case (a) as the stream lines
at the crest of the large-scale bedform have a larger vertical component in downward
direction due to the presence of small-scale bedforms. l denotes the length of the flow
separation zone.

of Ogink (1989), show that the length of the flow separation zone downstream
of the large-scale bedform with superimposed small-scale bedforms is smaller
than the one of the bedform without small-scale bedforms. This is because the
streamlines at the crest of the large-scale bedform with small-scale superimposed
bedforms (case b) have a larger vertical component in downward direction than
without small-scale bedforms (case a) (Figure 4.8). This may explain a value
smaller than unity for bl. Please note that this experimental (flume) and numer-
ical result may depend on the chosen configuration, and that the result may not
be generally valid. The position of the most downstream small-scale bedform
on the stoss face of the large-scale bedform affects the flow pattern (see e.g.
Fernandez et al., 2006).

The optimal value of calibration coefficient bs appears to be equal to 1.2. A
value larger than unity indicates that the contribution of the energy loss of the
small-scale bedforms to the total energy loss is larger than without the large-scale
bedforms. This may be due to our assumption that all small-scale bedforms are
exposed to the same (mean) water depth and so yield equal energy loss. In fact,
the small-scale bedforms are located on the sloping stoss face of the large-scale
bedform and therefore experience a decreasing water depth from the trough to
the crest of the large-scale bedform. Due to the nonlinear dependency of the
energy loss on water depth and flow velocity, the total energy loss is larger for
small-scale bedforms superimposed on large-scale bedforms than for small-scale
bedforms on a flat bed under flow conditions with equal mean water depth.

Figure 4.9 shows the measured bed resistance for the experiments with com-
pound bedforms, as well as the bed resistance predicted using equation (4.33)
in combination with Engelund (1966)’s grain friction model. The results are
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Figure 4.9: Bed resistance, cf,b, against mean water depth, d, for the laboratory
experiments of Ogink (1989): (a) T2-2, (b) T2-3, (c) T3-1, (d) T3-2. The legend in
figure (c) applies to all subfigures and indicates the various types of measured bed
resistance. The legend in figure (d) applies to all subfigures and indicates the various
types of predicted bed resistance using the compound form drag model in equation
(4.33).

given as function of the mean water depth, d, rather than the dimensionless
bedform height, δ/d, as in a compound situation the bedform height is not un-
ambiguous. Summation of the components due to small-scale and large-scale
bedforms appears to yield a reasonably good prediction of the bed resistance in
case of compound bedforms, both in the case that the contribution of large-scale
bedforms is larger than the one of small-scale bedforms (T2-2 and T2-3) and
in the case that the contribution of small-scale bedforms is larger than the one
of large-scale bedforms (T3-1 and T3-2). The improvement of the predictions
is small when using bl = 0.9 and bs = 1.2 rather than bl = 1 and bs = 1. We
therefore suggest to simply apply bl = 1 and bs = 1.

Figure 4.9 shows that for decreasing water depth the increase in measured
bed resistance is larger than the increase in predicted bed resistance. Yalin and
Lai (1985) also find an underestimation for relatively small mean water depths
in their flume experiments. We expect that this is due to the assumption that
all small-scale bedforms on a large-scale bedform experience the same water
depth, and thus yield the same energy loss. This assumption is less valid for
decreasing mean water depth. Predicted bed resistance may improve if one
applies a varying water depth over the stoss face rather than a constant water
depth for the contributions of the small-scale bedforms.
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4.7 Discussion

4.7.1 Alluvial Bedforms

For the alluvial laboratory data, it appears that the inclusion of additional
physical effects, i.e., the effect of nonuniformity of the flow velocity profile via the
calibration coefficient, c1, the effects of lee face steepness, bedform interaction,
deviation of flow separation zone height, and variability in bedform geometry
on form drag via the total correction factor, γT , does not improve the model
results (compare models A1 and A2). This may be due to the fact that (a) the
assumption that the correction factors are independent of each other is not valid,
(b) the submodels for the physical effects, i.e., the derived expressions for the
correction factors, do not capture all relevant processes, for instance, because of
insufficient data, (c) the form drag model does not capture all relevant processes,
or (d) multiplication of correction factors may not be optimal. Further research
is recommended on these topics in order to improve the semi-analytical form
drag model.

Processes that are not incorporated in the present model, but may be relevant
(also see Chapter 3), are the effects on form drag of (1) suspended load, (2)
bedform migration, (3) three-dimensionality, and (4) bedform sequence. The
latter two processes will be explained in the next two paragraphs.

Bedforms in the field are often three-dimensional (e.g. Nordin, 1971). Three-
dimensional bedforms must be defined in three dimensions, whereas two-dimen-
sional bedforms can be adequately described by one transect parallel to the flow
(Ashley , 1990). Maddux et al. (2003a,b) show that bed resistance coefficients
for three-dimensional bedforms are about 50% larger than for two-dimensional
bedforms. Venditti (2007) concludes that bed resistance for three-dimensional
bedforms may be smaller or larger than for two-dimensional bedforms depending
on the shape of the three-dimensional bedforms. A feature of three-dimensional
bedforms may be that they exhibit variability in height in lateral direction
(Allen, 1984). Using laboratory and field data, Van der Mark et al. (2008b)
determined variability in bedform geometry in streamwise direction, which was
characterized as the coefficient of variation of, for instance, bedform height. If
variability in lateral and variability in streamwise direction appear to be posi-
tively correlated, this coefficient of variation of bedform height may be a proxy
for the variability in bedform geometry in lateral direction. If this is true, the
correction factor for variability in bedform geometry, γv, may incorporate the
effect of variability in bedform geometry in lateral direction via the coefficient of
variation of bedform height. It is recommended to continue research on the ef-
fect on form drag of variability in bedform geometry in lateral direction, and on
the correlation between variability in bedform geometry in lateral and stream-
wise direction, as at the moment these effects are not well understood. Another
feature of three-dimensional bedforms may be that crestlines are curved or dis-
continuous (e.g. Venditti et al., 2005). The effect of crest curvature or sinuosity
on form drag also needs to be further investigated.

A relatively large bedform in a series of irregular bedforms may be followed,
for instance, by a smaller bedform downstream or by another relatively large
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bedform downstream. In the derivation of the correction factor for variability
in bedform geometry, we do not account for possible effects on form drag of the
specific sequence of irregular bedforms.

The expression for the correction factor for variability in bedform geometry
derived from analytical computations, accounts for the fact that form drag in-
creases if the variability in bedform height increases. Unfortunately, it is difficult
to validate this expression based on measured data, as the variability in bedform
height has a more or less constant value (Van der Mark et al., 2008b). In order
to analyze the effect of variability in bedform height on form drag from data,
numerical or laboratory experiments of the flow over fixed bedforms should be
performed. However, problematic in such numerical or laboratory experiments
is that the number of bedforms in a series has to be so large that the histogram of
bedform heights is representative for a probability density function with imposed
coefficient of variation of bedform height.

Based on the comparison of the analytical and empirical bed resistance mod-
els applied to uniform and alluvial data in Chapter 3 and this chapter, we
advise to apply the semi-analytical form drag model for two reasons: (1) a
(semi-)analytical model is preferred above an empirical model, as it is plausible
that an analytically-based model in which the dominant processes are included
is more widely applicable than an empirical model, and (2) we expect that in
field situations, for which lee face angles are often smaller than in the flume,
the semi-analytical model yields the best results of the models considered. We
recommend to apply the YE form drag model in case a simpler model than the
semi-analytical model is preferred, as (1) it yields the best results for the alluvial
flume data, and (2) it is easier to apply than the semi-analytical model.

Users of the YE form drag model or analytical form drag model should be
aware of the fact that relevant physical effects, i.e., the effect of nonuniformity
of the flow velocity profile (calibration coefficient, c1) and the effects of lee face
steepness, bedform interaction, deviation of flow separation zone height, and
variability in bedform geometry on form drag (total correction factor, γT ) are
not incorporated. It appears that the neglected effect of nonuniformity of the
flow velocity profile (c1 is of the order of 2) is more or less canceled out by the
neglected effects described by the total correction factor (γT is of the order of
0.5 for the alluvial flume data). It is important to realize that in the YE form
drag model and analytical form drag model, coincidentally, the neglected effects
cancel out. Both models yield results comparable to the semi-analytical form
drag model, in which more physical effects are included.

The YE form drag model is easier to apply than the (semi-)analytical model,
as for the latter a cubic equation needs to be solved. As it is useful to apply a
model that is as simple as possible, we recommend to investigate whether the
YE form drag model in combination with correction factors yields better results
than (1) the YE form drag model and (2) the semi-analytical form drag model.

A form drag model that consists of empirical calibration coefficients should
always be applied in combination with the grain friction model that was used
to determine these calibration coefficients. The semi-analytical model consists
of one calibration coefficient for which a grain friction model was needed, i.e.,
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the calibration coefficient, c1, in equation (4.3).
The YE form drag model does not contain empirical calibration coefficients,

so that the user is free to apply the grain friction model that he/she prefers.
Although for most experiments the form drag is dominant over grain friction,
the choice of the grain friction model does affect the bed resistance (compare
for instance models A3 and A4, which only differ in the grain friction model).

4.7.2 Water Depth Prediction
In engineering practice an accurate prediction of bed resistance is important in
order to correctly predict the water depth in rivers. Figure 4.3 shows that the
predicted bed resistance may well be 50% smaller or larger than the measured
bed resistance. In this section we analyze the effect of an error in predicted bed
resistance on the water depth prediction.

For measured energy slope, Smeas, water depth, dmeas, and specific discharge,
qmeas, the measured bed resistance equals

cmeas
f,b =

gd3
measSmeas

q2
meas

(4.36)

Using a bed resistance model and measured bedform geometry, sediment prop-
erties, and flow conditions, the bed resistance can be predicted (i.e., cmodel

f,b ).
Using the following relations, we find the effect of an incorrectly predicted bed
resistance on the predicted water depth compared to the measured water depth:

dmodel = 3

√
cmodel
f,b q2

meas

gSmeas
(4.37)

We express the relative error in the predicted bed resistance, e, as e = (cmodel
f,b −

cmeas
f,b )/cmeas

f,b (compare with equation (4.29)). The relative error in predicted wa-
ter depth, ed, equals ed = (dmodel− dmeas)/dmeas. Equation (4.37) now becomes

(1 + ed)dmeas = 3

√
(1 + e)cmeas

f,b q2
meas

gSmeas
(4.38)

Combining equations (4.36) and (4.38) yields

ed = 3
√

(1 + e)− 1 (4.39)

Equation (4.39) expresses that if the predicted bed resistance is 50% smaller
than the measured bed resistance (e = −0.5), the water depth is underestimated
by 20% (ed = −0.2). Likewise, if the prediction of bed resistance is 50% larger,
the water depth is overestimated by 15%. This means that, for the alluvial data
in Figures 4.3 and 4.5 located between the −50% and +50% error lines, the
error in the predicted water depth would be between −20% and +15%. It is
important that the river manager is aware of this error.
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4.8 Conclusions

In this chapter we present an expression for the effect of variability in bedform
geometry on form drag to be applied to the semi-analytical form drag model pro-
posed by Van der Mark et al. (2009). The expression accounts for the effect that
form drag increases for increasing variability in bedform height and length, and
makes the model of Van der Mark et al. (2009) applicable to alluvial bedforms.

We have applied the semi-analytical model to alluvial laboratory data, and
have compared the results of the model to those of existing bed resistance models
to analyze the performance of the semi-analytical model. The Yalin (1964a) -
Engelund (1966) form drag model yields the best results for the alluvial flume
data, but is expected to overestimate the bed resistance for field data. It may
be expected that, for field situations in which lee face angles are often smaller
than in the flume, the semi-analytical form drag model yields the best results
of the considered models, as the model accounts for a decrease in form drag as
the lee face angle decreases.

All considered bed resistance models yield poor results for the alluvial bed-
form data compared to the uniform fixed laboratory data, which is expressed by
the scatter around the lines of perfect agreement. The relative error in the pre-
dicted bed resistance may well be ±50%, which results in an error in predicted
water depth between −20% and +15%.

In contrast to the uniform fixed data, we find that, for the alluvial data, the
semi-analytical model, in which effects of lee face steepness, bedform interaction,
flow separation zone height, and variability in bedform geometry, and the effect
of nonuniformity of the flow velocity profile on form drag are included, does
not yield better predictions of bed resistance than the analytical model and
the model of Yalin (1964a) and Engelund (1966), in which these effects are not
included. In the analytical model and the model of Yalin (1964a) and Engelund
(1966) the neglected effects appear to cancel out.

The assumption in the Yalin (1964a) - Engelund (1966) bed resistance model
that flow expansion downstream of the bedform crest can be represented by
expansion of a pipe flow rather than a free surface flow appears to be justified.

Based on the analysis we suggest to apply the semi-analytical form drag
model, as (a) the model is expected to yield the best results for field situations,
and (b) an analytically-based model in which the dominant processes are incor-
porated is expected to be more widely applicable than an empirical model. The
analytical Yalin (1964a) - Engelund (1966) form drag model in combination with
the Engelund (1966) grain friction model is recommended if a model is preferred
that is easier to apply than the semi-analytical model.

If a form drag model consists of empirical calibration coefficients, it is im-
portant to apply the grain friction model that was used when determining these
coefficients together with the form drag model. Although the semi-analytical
consists of one calibration coefficient (i.e., c1) that depends on the applied grain
friction model, the correction factors for lee face steepness, bedform interac-
tion, flow separation zone height, and variability in bedform geometry in the
semi-analytical model do not depend on a grain friction model.
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For the case of compound bedforms, we have shown that a summation of
the energy loss due to individual small-scale and large-scale bedforms yields a
reasonably good prediction of form drag.

In order to improve the semi-analytical form drag model we recommend fur-
ther research on the reasons why inclusion of additional physical effects does not
improve the model results. Furthermore, we recommend to investigate whether
the YE form drag model in combination with correction factors yields better
results than both the YE form drag model and the semi-analytical form drag
model. The effects of three-dimensionality of bedforms on form drag also needs
further analysis.

4.A Bed Resistance Models

This appendix describes the applied bed resistance models. Except for the bed
resistance models of Van Rijn (1984), Engelund and Hansen (1967), and Wright
and Parker (2004), bed resistance, cf,b, is determined by summation of grain
friction, c′f , and form drag, c′′f :

cf,b = c′f + c′′f (4.40)

Yalin (1964a) Bed Resistance Model (Model A3)
The grain friction model of Yalin (1964a) is

c′f =
λst

λ

[
1
κ

ln
11d

ks|Y

]−2

(4.41)

in which λst denotes the length of the bedform stoss face, λ the mean bedform
length, d the mean water depth, κ = 0.4 the Von Kármán constant, and ks|Y =
D50 the Nikuradse grain roughness height as applied by Yalin (1964a). D50

denotes the median grain diameter. The ratio of bedform stoss face length to
mean bedform length in equation (4.41) is determined using

λst

λ
= 1− δ

λ
cot θ (4.42)

in which δ denotes the mean bedform height and θ the angle of the bedform lee
face.

The form drag model of Yalin (1964a) and Engelund (1966) is

c′′f =
δ2

2dλ
(4.43)

Engelund (1966) Bed Resistance Model (Model A4)
In the grain friction model of Engelund (1966) first the grain shear velocity, u′f ,
is found by solving the following equation (Engelund , 1966):

U

u′f
= 6 +

1
κ

ln

(
u′2f

gSks|E

)
(4.44)
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in which U denotes mean flow velocity, g the gravitational acceleration, and S
the energy slope. The Nikuradse grain roughness height equals ks|E = 2D65,
where D65 denotes the grain diameter for which 65% of the sediment is finer (we
use D50 if D65 is unknown from measured data). Grain friction, c′f , then equals

c′f =
(

u′f
U

)2

(4.45)

Like Yalin (1964a), Engelund (1966) uses equation (4.43) to determine the
form drag.

Engelund (1977) Bed Resistance Model (Model A5)
Engelund (1977) applies the same grain friction model as Engelund (1966) (equa-
tions (4.44) and (4.45)).

Engelund (1977) extends the form drag model of Yalin (1964a) and Engelund
(1966) with a calibration coefficient, cE :

c′′f = cE
δ2

2dλ
(4.46)

in which cE = 2.5 exp (−2.5δ/d).

Karim (1999) Bed Resistance Model (Model A6)
The grain friction model of Karim (1999) is

c′f = 0.016875
(

D50

d

)0.33

(4.47)

and his form drag model is

c′′f = K1C1
δ

λ
(4.48)

in which K1 = 0.55
(

δ
d

)0.375 (
λ
d

)−0.2
for the dune, ripple, and transitional regime,

and C1 = 0.85.

Vanoni and Hwang (1967) Bed Resistance Model (Model E1)
Vanoni and Hwang (1967) determine the value of the grain friction, c′f , from a
graph of the friction factor against Reynolds number for several values of the
relative roughness (i.e., the Moody diagram). We apply the following expression
for the grain friction (Colebrook , 1939), which yields the same values of the grain
friction for their data as Vanoni and Hwang (1967) determined from the Moody
diagram:

c′f =
1
8

[
1.8 log

(
Re|V H

7

)]−2

(4.49)



114 Chapter 4. Application to alluvial and compound bedforms

in which Re|V H = 4URb/ν denotes the Reynolds number, Rb the hydraulic
radius related to the bed, and ν the kinematic viscosity. The hydraulic radius
related to the bed equals (Vanoni and Brooks, 1957)

Rb = R
cf,b

cf,T
(4.50)

in which cf,T denotes the total resistance coefficient.
The form drag model of Vanoni and Hwang (1967) is

c′′f =
1
8

[
3.3 log

(
Rbλ

δ2

)
− 2.3

]−2

(4.51)

Van Rijn (1984) Bed Resistance Model (Model E2)
The empirical model of Van Rijn (1984) is based on a physically incorrect sum-
mation of Nikuradse grain roughness height and bedform roughness height:

ks|R = 3D90 + 1.1δ

[
1− exp

(−25δ

λ

)]
(4.52)

in which D90 denotes the grain diameter for which 90% of the sediment is finer.
Bed resistance is then determined using

cf,b = g

[
18 log

(
12Rb

ks|R

)]−2

(4.53)

Engelund and Hansen (1967) Bed Resistance Model (Model E3)
In the Engelund and Hansen (1967) bed resistance model first the water depth
due to grain friction, d′, is found by solving the following equation:

U√
gd′S

= 9.45
(

d′

ks|EH

)1/8

(4.54)

in which ks|EH = 2.5D50. This equation is an approximation of equation (4.44)
(Engelund and Hansen, 1967). Dimensionless grain shear stress, τ ′∗, is then
determined using

τ ′∗ =
d′S

(ρs/ρ− 1)D50
(4.55)

in which ρ denotes the water density and ρs the sediment density. Dimensionless
bed shear stress, τ∗, now follows from

τ∗ =

√
τ ′∗ − 0.06

0.4
(4.56)

Please note that the dimensionless bed shear stress becomes complex-valued if
the dimensionless grain shear stress is smaller than 0.06. The grain friction, c′f ,
and bed resistance coefficient, cf,b, equal, respectively

c′f =
τ ′∗g(ρs/ρ− 1)D50

U2
(4.57)
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and

cf,b =
τ∗g(ρs/ρ− 1)D50

U2
(4.58)

Wright and Parker (2004) Bed Resistance Model (Model E4)
The bed resistance model of Wright and Parker (2004) is an extension of the
Engelund and Hansen (1967) model. The water depth due to grain friction, d′,
is first found by solving the following equation:

U√
gd′S

=
8.32
αs

(
d′

ks|WP

)1/6

(4.59)

in which ks|WP = 3D90 and αs denotes a stratification coefficient for which we
apply αs = 1, as information on sediment concentration is not available. A value
of αs = 1 corresponds to the situation that the total sediment concentration at
5% of the water depth above the bed equals zero. The dimensionless grain shear
stress, τ ′∗, is then determined using equation (4.55). The dimensionless bed shear
stress, τ∗, follows from

τ∗ =

(
τ ′∗−0.05

0.7

)5/4

Fr0.7
(4.60)

in which Fr denotes the Froude number. The grain friction, c′f , and bed resis-
tance coefficient, cf,b, are determined using equations (4.57) and (4.58), respec-
tively.

Haque and Mahmood (1983) Bed Resistance Model (Model E5)
Haque and Mahmood (1983) apply the following grain friction model (K. Mah-
mood, pers. comm., 2009):

c′f =
[
5.75 log

(
12.27R

D65

)]−2

(4.61)

and the form drag model of Haque and Mahmood (1983) is

c′′f = 0.6125
(

0.8δ

λ

)1.477 (
0.8δ

d− 1
2δ

)0.176

(4.62)

4.B Notation

bl calibration coefficient accounting for the effect of deviating energy
loss of a large-scale bedform due to presence of small-scale bedforms,
dimensionless.

bs calibration coefficient accounting for the effect of deviating energy
loss of a small-scale bedform due to presence of large-scale bedforms,
dimensionless.
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cE calibration coefficient in form drag model of Engelund (1977), dimen-
sionless.

c′f grain friction coefficient, dimensionless.
c′′f form drag coefficient, dimensionless.
c′′′f sidewall friction coefficient, dimensionless.
cf,b bed resistance coefficient, dimensionless.
c′′f,ref reference form drag coefficient, i.e., form drag for the reference situa-

tion, dimensionless.
cf,T total resistance coefficient, dimensionless.
C1 parameter in form drag model of Karim (1999), dimensionless.
c1 calibration coefficient relating the reference energy loss to the analyt-

ical energy loss, dimensionless.
Cδ coefficient of variation of bedform height, dimensionless.
d mean water depth, m.
d′ water depth due to grain friction, m.
Dc coverage degree of small-scale bedforms, dimensionless.
dt water depth at the bedform crest, m.
Dx grain diameter for which x% of the sediment is finer, m.
d2 water depth at cross-section 2, i.e., downstream of the influence zone

of the bedform, m.
D50 median grain diameter, m.
E total relative error between measured and predicted bed resistance,

dimensionless.
e relative error between measured and predicted bed resistance, dimen-

sionless.
Ec total relative error between measured and predicted bed resistance for

the compound bedform data, dimensionless.
ed relative error between measured and predicted water depth, dimen-

sionless.
Fr Froude number, dimensionless.
G parameter in expression for γv, dimensionless.
g gravitational acceleration, m/s2.
H energy head averaged over a cross-section, m.
i subscript referring to the bedform number in a series, dimensionless.
J parameter in expression for γv, dimensionless.
K1 parameter in form drag model of Karim (1999), dimensionless.
K parameter in expression for γv, dimensionless.
ks Nikuradse grain roughness height, m.
L flume length or length of channel section, m.
l length of the flow separation zone, m.
N number of bedforms, dimensionless.
n sample size, dimensionless.
p(Xi) probability mass function for discrete random variable X, dimension-

less.
q specific discharge, m2/s.
R hydraulic radius, m.
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Rb hydraulic radius related to the bed, m.
Re Reynolds number, dimensionless.
S energy slope, equal to bed slope under uniform conditions, dimension-

less.
U mean flow velocity, i.e., averaged over cross-sectional area, m/s.
u′f shear velocity due to grain friction, m/s.
W channel width, m.
αs stratification coefficient in form drag model of Wright and Parker

(2004), dimensionless.
γf correction factor for flow separation zone (FSZ) height, dimensionless.
γi correction factor for bedform interaction, dimensionless.
γs correction factor for lee face steepness, dimensionless.
γT total correction factor taking into account effects due to deviations

from the reference situation, dimensionless.
γv correction factor for variability in bedform geometry, dimensionless.
∆H ′′

a analytical energy loss, i.e., energy loss due to expansion based on the
analytical one-dimensional approach, m.

∆H ′′
a,T total analytical energy loss of a series of bedforms, m.

δ mean bedform height, m.
δf height of the flow separation zone, m.
δl height of large-scale bedform, m.
δs height of small-scale bedform, m.
θ mean angle of bedform lee face, ◦.
κ Von Kármán constant, dimensionless.
λ mean bedform length, i.e., the distance between two subsequent bed-

form crests, m.
λl length of large-scale bedform, m.
λs length of small-scale bedform, m.
λst length of the bedform stoss face, m.
ν kinematic viscosity, m2/s.
ρ water density, kg/m3.
ρs sediment density, kg/m3.
τ∗ dimensionless bed shear stress, dimensionless.
τ ′∗ dimensionless grain shear stress, dimensionless.
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Chapter 5

Discussion

In this chapter we discuss (as far as not already discussed in the previous chap-
ters) the assumptions made in the derivation of the form drag model and aspects
that are not taken into account in the form drag model (Section 5.1). Section
5.2 describes the possible fields of application of the form drag model. In Section
5.3 we describe how the semi-analytical form drag model can be incorporated
in a large-scale morphodynamic model system.

5.1 Assumptions and neglected aspects

5.1.1 Independency of correction factors
In the derivation of the form drag model we have assumed that the four correc-
tion factors are independent. Although not analyzed in the present study, the
following aspects may give rise to a dependency of the correction factors:

1. Let us consider case A in which a series of bedforms is present with a
certain lee face angle. Case B is equal to case A except for its significantly
larger bedform length. The horizontal length of the stoss face in case A is
smaller, and thus steeper, than the one in case B, as bedform height and
lee face angle are equal for both cases. In case A the flow separation zone
may be restricted in its size, as the stoss face is steeper. This may imply
that the correction factors for lee face steepness and flow separation zone
height are related to the correction factor for bedform interaction.

2. Let us consider a series of closely spaced bedforms that vary in size. A
bedform just downstream of a relatively large bedform causes less energy
loss than the same bedform just downstream of a relatively small bedform.
Our expression for the correction factor for bedform interaction does not
account for this potential relation with the correction factor for variability
in bedform geometry.

In this study we have neglected the above aspects. We expect, however,
that the effects on form drag of the (independent) correction factors are more
significant than the effects of the dependency between the correction factors. It
is recommended to further investigate if the effects of potential relations between
the correction factors are significant and, if so, how they can be incorporated in
the model.
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5.1.2 Hydrostatic pressure distribution
The equation for the analytical energy loss due to a sudden expansion of a free
surface flow downstream of a bedform, ∆H ′′

a , which is applied to determine the
reference form drag, is the equation for energy loss due to a sudden expansion
downstream of a broad-crested weir. A broad-crested weir is a structure of
which the flat crest extends in downstream direction for such a length that the
streamlines at the crest are parallel to the crest. As such, in the equation for
energy loss the pressure at the weir crest may be assumed to be distributed
hydrostatically (e.g. Henderson, 1966). Likewise, in the derivation of the form
drag model, we assume that the bedform crest extends over such a reach that
streamlines above the crest are parallel to the bed, so that the pressure at the
crest of the bedform is distributed hydrostatically.

Results of the numerical simulations which are described in Sections 3.4.2 and
3.C have shown that the pressure is approximately distributed hydrostatically at
the bedform crest. Also Blom (1993) concludes from his numerical simulations of
flow over a sill with varying crest length and stoss and lee faces that the pressure
distribution may be approximated by a hydrostatic pressure distribution, even
for steep stoss and lee faces and for high Froude numbers. We therefore expect
that the assumption of hydrostatic pressure at the crest of a bedform is justified.

In the reference form drag model, a hydrostatic pressure distribution is also
imposed downstream of the influence zone of the bedform, i.e., at cross-section
2 (Section 3.3.2). This is indeed allowed for a solitary bedform for which the
flow pattern is not affected by surrounding bedforms. The correction factor for
bedform interaction, γi, accounts for the effect that the flow pattern around a
bedform is affected by its surrounding bedforms.

5.1.3 Grain size distribution
The grain size distribution of the sediment affects the form drag in two ways:

1. The grain size distribution of the bed surface and flow conditions together
affect the rate and grain size distribution of the transported sediment
and so the bedform geometry. Models for bedform length and height are a
function of a transport parameter and the median diameter of the sediment
(e.g. Van Rijn, 1984). Bedform geometry affects the form drag, so that,
indirectly, the grain size distribution affects the form drag. Please note
that in this thesis the focus is not on the derivation of a model for bedform
geometry, but on the derivation of a form drag model provided that the
bedform geometry is known. As such, it is not needed to incorporate the
indirect effect of the sediment properties on form drag in the form drag
model since this effect is already expected to be included in the bedform
geometry known from predictions or measurements.

2. Form drag is affected by suspended sediment, since suspended sediment
load tends to dampen turbulence (Vanoni and Nomicos, 1960), and thereby
reduces the resistance to flow (e.g. Richards, 1982; Khullar et al., 2007).
We have not incorporated this effect in the form drag model. Also the



5.1. Assumptions and neglected aspects 121

potential effect on form drag of bedform migration is neglected in the
derivation of the form drag model, as we expect that the effect is not sig-
nificant. Further research is needed to analyze the effect of suspended load
and potential effect of bedform migration on form drag, as these effects
are not yet well understood.

5.1.4 Boundary shear stress
In the derivation of the semi-analytical form drag model in Chapters 3 and 4,
we apply the assumption that the total boundary shear stress, τT , is related to
the squared mean flow velocity, U2 (see equation (3.2)) as follows:

τT = cf,T ρ U2 (5.1)

Please note that, for instance in the research field of engineering fluid dynamics,
usually τT = 1

2 c̃f,T ρ U2 is applied (cf,T = 1
2 c̃f,T ) rather than equation (5.1).

Equation (5.1) is a generally applied assumption in the shallow water equations
which originates from the analogy with equilibrium turbulent boundary layers
(e.g. Vreugdenhil , 1994). All considered form drag models apply this assump-
tion. In shallow water flows such as river flows, the boundary layer thickness
is usually of the order of the water depth, so that shallow water flows are clas-
sified as boundary-layer type flows, for which the above assumption is justified
(Vreugdenhil , 1994).

5.1.5 Water temperature, viscosity, and Reynolds number
Water temperature and viscosity, which is a function of the water tempera-
ture, affect the bedform geometry (e.g. Haushild et al., 1961; Hubbell and Al-
Shaikh Ali , 1961; Franco, 1968; Southard and Boguchwal , 1990). As the bedform
geometry affects the form drag, the water temperature, indirectly, affects the
form drag. This indirect effect is not incorporated in the form drag model, as
the focus is not on the derivation of a model for bedform geometry.

The Reynolds number, which is a function of viscosity, may not only affect
form drag via the indirect effect of temperature and viscosity on bed configura-
tion, but may also affect form drag directly. From laboratory data it is known
that the drag coefficient, Cd, which is a dimensionless quantity often used to
quantify the resistance of an object in a fluid, is a function of the Reynolds
number related to the characteristic length of the object, ReL (e.g. Hoerner ,
1965; Fox and McDonald , 1994). Experimental data of flow around obstacles
(e.g. cylinders or spheres) show that for increasing Reynolds numbers the drag
coefficient becomes nearly constant (e.g. Hoerner , 1965; Fox and McDonald ,
1994). The effect of the Reynolds number on form drag is not accounted for in
the semi-analytical form drag model, as we expect that the effect is not signifi-
cant.

5.1.6 Summary of neglected effects
In Chapters 3, 4 and the present chapter, we have discussed a number of effects
that the present semi-analytical model does not account for. Recapitulating,
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the following aspects need further investigation with respect to their effects on
form drag:

◦ the effect on form drag of assuming that correction factors are independent

◦ the effect of suspended load on form drag

◦ the effect of three-dimensionality (e.g., variability in bedform geometry in
lateral direction, crest sinuosity) on form drag

◦ the potential effect of bedform migration on form drag

◦ the potential effect of bedform sequence on form drag

5.2 Fields of application of the form drag model

5.2.1 Bedforms under unidirectional flow
The following bedform regimes may occur in case of a subcritical unidirectional
flow (Fr < 1) depending on flow and sediment properties: ripple regime, regime
of dunes with ripples superimposed, dune regime, washed-out dunes or transi-
tion regime (Simons and Richardson, 1961). Standing waves and antidunes may
occur under a supercritical unidirectional flow (Fr > 1) (Simons and Richard-
son, 1961). In the case of standing waves or antidunes, the bed undulations
are in phase with the free surface undulations (Figure 5.1), so that streamlines
are more or less parallel to the bed. Under this condition the flow separation
zone and form drag are much smaller compared to the situation of equal bedform
height and a Froude number smaller than unity (Simons and Richardson, 1961).
The semi-analytical form drag model as presented in Chapters 3 and 4 describes
the energy loss in situations in which the Froude number is smaller than unity,
and also the formulations for the correction factors are derived for situations
in which the Froude number is smaller than unity. As such, the present semi-
analytical form drag model is not applicable to situations in which the Froude
number is larger than unity. It is not clear whether the model can be easily
extended to situations with Froude numbers larger than unity. First, it needs
to be analyzed whether a form drag model based on flow expansion is a suitable
basis for supercritical flow, as flow expansion may not be the relevant mecha-
nism for form drag in this situation. However, such an analysis is beyond the
scope of this thesis.

It may be expected that the semi-analytical form drag model is applicable
to unidirectional flow over desert sand dunes originated by wind, as these dunes
may have the same asymmetric shape as the bedforms considered in this thesis,
and may cause flow separation (e.g. Bristow et al., 2000).

5.2.2 Bedforms under bi- or multidirectional flow
The semi-analytical form drag model is developed and validated for situations
of unidirectional flow over bedforms. Bedforms under bidirectional flow (e.g.
wave-dominated ripples, megaripples, sand waves, sand banks in a marine or
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s t a n d i n g w a v e sd u n e s( a ) ( b )
Figure 5.1: Schematic representation of (a) dunes and (b) standing waves (from
Richardson et al., 1962).

estuarine environment) may cause energy loss due to flow expansion in the lee
side of the bedform, of which the location alternates with the direction of the
flow. Provided that flow conditions and (models for) bedform geometry are
available, we expect that the semi-analytical form drag model may be capable
of predicting the energy loss in the lee side of the bedform under bidirectional
flow conditions. The following two aspects are, however, important:

1. The time that is needed for a bedform to adapt after a flow reversal with
respect to the period between two successive flow reversals is an important
parameter for assessing whether the semi-analytical form drag model can
be applied.

A relatively small value of the ratio of adaptation time to flow reversal
period means that an equilibrium bedform shape may quickly be reached,
and that the bedform shape does not change during some time. It may then
be possible to apply the form drag model using the equilibrium bedform
geometry.

A relatively large value of the ratio of adaptation time to flow reversal
period means that an equilibrium bedform shape may never be reached,
and that the bedform shape is constantly evolving. The semi-analytical
form drag model can be applied for each time step if the bedform shape is
known for each time step.

Please note that, also for situations of unidirectional unsteady flow, bed-
forms need to adapt to changed flow conditions. In rivers, flow conditions
usually change slowly, so that it may be allowed to assume that bedforms
are in equilibrium shape each time step. If flow conditions change more
rapidly, it may be required to apply a bedform evolution model.

2. In developing the semi-analytical form drag model we have assumed that
energy loss only occurs downstream of the bedform crest, as bedforms
under unidirectional flow usually have a gentle stoss and steeper lee face.
If a bedform has such an asymmetric shape, and the flow reverses, the new
stoss face may be so steep that energy loss also occurs at the stoss face.
Furthermore, because of the relatively steep stoss face, the flow separation
zone downstream of the bedform becomes larger, as the stream lines at the
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stoss have a larger vertical component in upward direction (see Chapter
3). The correction factor for flow separation zone height accounts for this
effect. A model for the ratio of flow separation zone height to bedform
height is then needed, which is based on, for instance, the stoss face angle.

5.2.3 Groynes
Flood plains of rivers can contain a variety of obstacles, e.g. levees, spillways or
spur dikes, which affect the flow and its conveyance capacity. Training works
such as groynes or spur dikes are constructed to prevent erosion of the banks and
to keep the main channel navigable. Under flood conditions obstacles as groynes
may be submerged which may have an effect on the conveyance capacity of the
river. The resistance to flow of obstacles such as groynes can be determined
using (Yossef , 2005) (a) a drag force formulation (e.g. Aya et al., 1997; Yossef ,
2005) or (b) by representing the groyne as a submerged weir (e.g. Mosselman
and Struiksma, 1992). Both approaches contain an empirical coefficient, the
drag coefficient and the discharge coefficient, respectively, accounting for site-
specific aspects such as the length of the groynes with respect to the river width,
the stoss and lee face angles of the obstacle, the orientation with respect to the
mean flow direction, or the material of the obstacle.

We expect that the approach followed in the derivation of the semi-analytical
form drag model, i.e., a reference form drag times correction factors accounting
for deviations from the reference situation, may be useful for determining the
resistance to flow of groynes or other obstacles. The reference form drag may be
determined from the analytical expression for abrupt expansion, comparable to
the approach of Mosselman and Struiksma (1992), and the site-specific aspects
may be represented by correction factors. Comparing energy loss of a series of
groynes to energy loss of bedforms, the groynes have the advantage that they
are fixed, the geometry is relatively clearly defined, and they usually do not vary
in geometry. We recommend further research on the potential applicability of
the semi-analytical model to (series of) groynes.

5.3 How to apply the form drag model in a morphody-
namic model system

Morphodynamic model systems are important tools in the prediction of water
depths and flow velocities, for instance during a flood event, for given (specific)
discharge, bed slope, river width, and grain size distribution. Here we define a
morphodynamic model system as a system that couples modules for calculating
the flow, sediment transport, and morphodynamic changes.

To analyze the large-scale and long-term hydrodynamic and morphodynamic
behavior of a river reach, the micro-scale morphodynamic behavior of individual
river bedforms is not explicitly solved in the morphodynamic model system be-
cause of the required large computational effort. The effect of bedform geometry
on the bed resistance is incorporated in such a model system by calculating for
each spatial and temporal step the bedform geometry, bed resistance, and flow
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conditions based on the known conditions of the previous temporal and spatial
step. Calculation of bedform geometry and bed resistance is done iteratively,
as (a) bedform geometry depends on the flow conditions, (b) flow conditions
depend on the bed resistance, and (c) bed resistance depends on the bedform
geometry.

The semi-analytical form drag model can be incorporated in a morphody-
namic model system. In the calculation it is assumed that the resistance relation
for steady flow is also applicable to unsteady flow (e.g. Stelling and Verwey ,
2005), for instance a flood. Upstream and downstream boundary conditions,
for instance, the upstream discharge as a function of time and the downstream
water depth, need to be known, just as the initial flow conditions for each spa-
tial step. The following steps need to be followed for each spatial and temporal
step in case the semi-analytical form drag model is applied in a morphodynamic
model system:

1. Provide a first estimate of the water depth based on the conditions in
previous spatial and temporal steps.

2. Determine the type of bedform regime using an existing bedform classifi-
cation diagram.

3. Determine bedform geometry, i.e., equilibrium bedform height and equi-
librium bedform length using existing bedform predictors.

4. Determine the actual bedform height and bedform length using an existing
bedform evolution model. Such a model may be needed, as there may
exist a time-lag between changing flow conditions and changing bedform
geometry, so that bedform geometry is not always in equilibrium state. A
bedform evolution model is not needed if it is assumed that for each time
step the bedform geometry is in equilibrium.

5. Estimate the bedform lee face angle based on, for instance, the information
in Section 2.5.1 and Figure 2.7e. Estimate the ratio of flow separation zone
height to bedform height based on, for instance, information in Section
3.4.4. Estimate variability in bedform geometry using equation (4.24).

6. Determine the form drag coefficient using equations (4.1)–(4.7), and equa-
tions (4.18), (4.8), (4.9), and (4.10). Equations (4.5) and (4.6) are needed
to solve the water depths at the bedform crest and downstream of the
influence zone of the bedform. The two equations can be rewritten into
a cubic equation that can be solved analytically using Cardano’s method
(Section 3.B).

7. Determine the grain friction using an existing grain friction model.

8. Determine the bed resistance by summation of grain friction and form
drag.

9. Determine the flow velocity, U , from the momentum conservation relation
and the mass conservation equation.
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10. Determine the water depth from the discharge and mean flow velocity
(d = q/U). This water depth is the new estimate of water depth.

11. Repeat the steps 2–10 until the water depth of step 10 does not evolve
anymore.

The steps may differ from the steps above if another bed resistance model
is applied. For instance, if the bed resistance model of Engelund and Hansen
(1967) is applied, bedform geometry and form drag (steps 3–6) do not need to
be determined as this model predicts form drag indirectly based on a relation
between grain friction and bed resistance.

The list of steps illustrates which additional submodels are needed in case
the semi-analytical form drag model is applied for prediction of water levels, for
instance during a flood. The following additional models are needed: (1) a grain
friction model, (2) a model that predicts what type of bed configuration occurs
(e.g. plane bed, dunes), (3) models that predict equilibrium bedform geometry
if bedforms are present, i.e., bedform height, bedform length, lee face steepness,
variability in bedform height, brink point height, and (4) if chosen, a model for
evolution of bedform geometry.

If the equations are solved numerically, and if a suitable numerical scheme,
mesh and time step are applied, iteration may not be needed (K. Sloff, pers.
comm., 2009). Please note that we do not include details on numerical aspects
such as the numerical scheme, the possibility to distinguish between a hydraulic
and morphological time scale in the computation, or the discretization of the
equations, as our purpose here is to provide a conceptual description of what
aspects needs to be considered when implementing the form drag model in a
morphodynamic model system.

As discussed in Section 5.1, the bed resistance relates the bed shear stress
to the mean velocity. A depth-averaged velocity is needed to be able to apply
the form drag model in the morphodynamic model system.
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Conclusions and recommendations

In Section 6.1 answers will be given to the research questions. In Section 6.2 the
author will recommend on topics that require further investigation.

6.1 Conclusions

Q1. How can variability in bedform geometry be quantified?

Using laboratory flume and field data of bedforms, it is found that bedform
height, bedform length, crest elevation, trough elevation, and lee face slope are
best described by a positively skewed distribution such as the Weibull distribu-
tion.

Linear relations exist between standard deviation and mean value for bed-
form height, bedform length, crest elevation, and trough elevation, if the ratio of
width to hydraulic radius is larger than about ten. As such, a constant coefficient
of variation can be applied to quantify variability in bedform geometry.

The extreme values of the geometric variables (the 95% and 98% values
are considered in this study) scale with the specific standard deviation of the
geometric variable, so that, if the mean values for the geometric variables are
known, we are able to predict the extremes using the proposed scaling relations.

Q2. Which physical mechanisms are relevant to form drag?

Form drag equals resistance to flow due to the pressure gradient along a bed-
form. Downstream of the bedform crest the flow expands, and thus decelerates.
This leads to an increase in pressure downstream of the bedform. The physical
mechanism relevant to form drag is the flow expansion, or the deceleration of
the flow, downstream of the bedform.

The deceleration of the flow downstream of a bedform and increase in pres-
sure may give rise to flow separation and a recirculation of the flow downstream
of the bedform. Energy loss occurs in the flow separation zone. The size of the
flow separation zone therefore is a measure for the rate of form drag. Please
note that form drag may, however, also be present if the flow does not separate,
for instance due to water surface fluctuations. This is also found in numerical
simulations in which the flow does not separate due to the very gentle lee face
angle of 10◦ (Chapter 3).
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Q3. Which physical quantities are relevant to form drag?
Quantities affecting form drag are those quantities that affect the rate of flow
expansion downstream of bedforms:

1. mean bedform height,

2. bedform steepness,

3. water depth,

4. Froude number,

5. angle of the bedform lee face,

6. bedform shape parameters that affect the height of the flow separation
zone with respect to the bedform height,

7. bedform spacing,

8. variability in bedform geometry in streamwise direction,

9. three-dimensionality of bedforms,

10. suspended sediment load.

All (semi-)analytical and explicit empirical form drag models as considered
in Chapter 4 are a function of only the first three quantities. The implicit
empirical form drag models of Engelund and Hansen (1967) and Wright and
Parker (2004) relate grain friction to bed resistance, and therefore are not a
function of bedform geometry.

Q4. How do the relevant quantities affect form drag?
The above-mentioned quantities affect form drag, as they determine the rate of
flow expansion, and (if present) the size of the flow separation zone downstream
of a bedform.

The larger the bedform height, the more the flow is disturbed, and the more
energy loss occurs (quantity 1). An increasing ratio of mean bedform height to
mean water depth (quantities 1 and 3) or an increasing Froude number (quantity
4) yields an increase in form drag. The larger the bedform steepness (quantity
2), which is defined as the ratio of bedform height to bedform length, generally
the less streamlined is the bedform, and the larger is the form drag.

It has been shown that, for lee face angles smaller than about 50◦, a decrease
in lee face angle yields a decrease in form drag, and, for lee face angles between
about 50◦ and 90◦, the form drag is roughly independent of the lee face angle
(quantity 5).

The shape of the bedform may be such that the height of the flow separation
zone differs from the bedform height. A brink point, in this thesis defined as the
point where the flow separates from the bed surface and which is located between
the bedform crest and trough, may be present. The flow separation zone height
is smaller than the bedform height if a brink point is present (quantity 6).
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For a very large bedform spacing, the flow pattern over a bedform is not or
hardly affected by the flow patterns over surrounding bedforms. If the bedform
spacing decreases, flow patterns over subsequent bedforms influence each other,
and the form drag decreases (quantity 7).

The equation for energy loss due to an abrupt flow expansion based on the
momentum and energy conservation equations is a nonlinear function of the
expansion height, such that, under the condition that the mean bedform height
is the same, the total energy loss is larger for a series of irregular bedforms than
for regular bedforms. As such, for increasing variability in bedform geometry in
streamwise direction the form drag increases (quantity 8).

In developing a new form drag model, the effects on form drag of suspended
load (quantity 9) and three-dimensionality of bedforms (quantity 10) are not
incorporated. Also potential other effects on form drag due to bedform migra-
tion and bedform sequence are not incorporated in the form drag model. The
mentioned effects on form drag are not incorporated, as they are not yet well
understood.

Q5. How can the relevant quantities be incorporated in a form drag
model?
A new semi-analytical form drag model has been developed, which is based on
the analytical form drag models of Yalin (1964a) and Engelund (1966), and
Karim (1999). An analytically-based form drag model is preferable above an
empirical model as an analytically-based model in which the dominant processes
are incorporated is likely to be wider applicable than an empirical model.

The semi-analytical form drag model consists of two components:

1. an analytically-based reference form drag model, accounting for the energy
loss associated with a deceleration of the flow downstream of the bedform
due to a sudden expansion of a free surface flow. The analytically-based
reference form drag model is a function of the ratio of mean bedform height
to mean water depth, the bedform steepness, and the Froude number. The
effect of nonuniformity of the flow velocity profile is accounted for through
the calibration coefficient, c1.

2. an empirical coefficient, i.e., the total correction factor, taking into account
effects on form drag of (a) the angle of the lee face, (b) the deviation of
the flow separation zone height from the bedform height, (c) the bedform
spacing, and (d) variability in bedform geometry. The total correction
factor is a function of four correction factors, each accounting for one of
the four effects. The effects of the four correction factors on form drag are
assumed to be independent of each other.

The numerical software package Ansys CFX has been used to analyze the
effect of lee face steepness and bedform spacing on form drag. A validation
of the numerical model to laboratory data of the flow over uniform fixed bed-
forms shows that Ansys CFX is well capable of simulating flow velocities, form
drag, and the free surface elevation. The correction factor for lee face steepness
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incorporates the effect that the flow downstream of a bedform crest expands
gradually rather than abruptly. It increases with increasing lee face angle and
equals more or less unity for lee face angles larger than about 50◦.

The correction factor for bedform interaction, accounting for the effect that
the flow pattern over a bedform is influenced by the flow patterns over surround-
ing bedforms, is found to be a function of the ratio of bedform length to bedform
height.

The correction factor for flow separation zone height, describing the effect
that for increasing flow separation zone height, the form drag increases, is found
to be a function of the ratio of flow separation zone height to bedform height.

The correction factor for variability in bedform geometry accounts for the
effect that form drag increases for increasing variability in bedform geometry in
streamwise direction.

The semi-analytical form drag model consists of the quantities 1 through 8.

Q6. How does the new form drag model perform compared to (a)
laboratory data and (b) existing form drag models?
For the uniform fixed bedform data, the semi-analytical model yields better re-
sults than the Yalin (1964a) - Engelund (1966) model. The considered empirical
bed resistance models do not well predict bed resistance for the uniform fixed
bedform data.

The Yalin (1964a) - Engelund (1966) form drag model appears to yield the
best results of the models under consideration for the alluvial flume data. For
the alluvial flume data, the semi-analytical model, in which the four mentioned
effects and the effect of nonuniformity of the flow velocity profile are included,
does not yield better predictions of bed resistance than the analytical model and
the model of Yalin (1964a) and Engelund (1966), in which these effects are not
included. In the analytical model and the model of Yalin (1964a) and Engelund
(1966) the neglected effects appear to cancel out.

The assumption in the Yalin (1964a) - Engelund (1966) bed resistance model
that flow expansion downstream of the bedform crest can be represented by
expansion of a pipe flow rather than a free surface flow is justified.

For uniform fixed laboratory data of bedforms with small lee face angles the
semi-analytical model yields better predictions of bed resistance than the other
considered models. Also numerical simulations in which the lee face angle was
varied show that the semi-analytical form drag model yields better predictions
of form drag than the Yalin (1964a) - Engelund (1966) form drag model for
small lee face angles. Therefore, for bedforms in the field, which are usually
gentler than in the laboratory, the semi-analytical model is expected to yield
better predictions of bed resistance than the other considered models.

Based on the analysis the author advises to apply the semi-analytical form
drag model, as (a) the model is expected to yield the best results in field situa-
tions, and (b) an analytically-based model is preferred over an empirical model.
The author advises to apply the analytical Yalin (1964a) - Engelund (1966) form
drag model if a model is preferred that is more easy to apply than the semi-
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analytical model. Users of the Yalin (1964a) - Engelund (1966) model should
be aware of the fact that relevant physical effects are not incorporated in the
model.

All bed resistance models show large scatter around the line of perfect agree-
ment when measured and predicted bed resistance are compared. The error
between measured and predicted bed resistance may be as large as ±50%. As a
result, the error in water depth prediction is between −20% and +15%.

If a form drag model consists of empirical calibration coefficients, this model
should always be applied in combination with the grain friction model that was
used to determine the calibration coefficients.

For the case of compound bedforms, a summation of the energy loss due to
individual small-scale and large-scale bedforms yields a reasonably good predic-
tion of form drag.

6.2 Recommendations

The author recommends future research on the following topics:

◦ In this study, laboratory data are used to analyze the performance of the
bed resistance models under consideration. The study on the performance
of the semi-analytical model and other bed resistance models needs to be
extended with an analysis of field data, for which generally lee face angles
are smaller than for the laboratory data.

◦ It is assumed that the four correction factors are independent. It should be
further investigated if the potential effects due to dependency between the
correction factors are significant and, if so, how they can be incorporated
in the semi-analytical model.

◦ Compound bedforms generally occur during floods (e.g. Julien et al., 2002).
The prediction of form drag in the case of compound bedforms needs to
be further analyzed.

◦ It has been discussed that the approach followed in the development of
the semi-analytical form drag model, i.e., a reference form drag times
correction factors, may also be useful for determining the resistance to
flow of marine or estuarine bedforms (ripples, megaripples, sand waves),
bedforms caused by wind, groynes or other obstacles in the flow. Future
research on the potential applicability of the form drag model to these
fields is advised.

◦ The proposed expressions for the correction factors for lee face steepness,
bedform interaction, flow separation zone height, and variability in bed-
form geometry are first onsets, as at this point only few data for their
derivation are available. More laboratory and numerical data are needed
in order to derive more accurate expressions.
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◦ In the momentum and energy conservation equations it is assumed that
the flow velocity distributions are uniform over the cross-section at the
cross-sections 1 and 2 (i.e., the kinetic energy coefficients and momentum
coefficients are chosen equal to unity). As a result, the calibration coeffi-
cient relating the analytical energy loss to the measured energy loss, c1,
accounts for the nonuniformity of the flow velocity profiles. It is recom-
mended to further analyze the relation between the value of the calibration
coefficient and the values of the kinetic energy coefficients and momentum
coefficients at both the cross-sections 1 and 2.

◦ It is recommended to study the effect on form drag of variability in bedform
geometry in lateral direction, and on the correlation between variability in
bedform geometry in lateral and streamwise direction, as at the moment
these effects are not yet well understood. The effect on form drag of other
features of three-dimensionality of bedforms, such as crestline sinuosity,
also needs to be further analyzed.

◦ It is suggested to analyze the performance of the Yalin (1964a) - Engelund
(1966) model in combination with (possibly adapted) correction factors
and calibration coefficient, c1, as it is advisable to apply a model that is
as simple as possible.

◦ In the numerical model system Delft3D, empirical bed resistance models
are implemented (Deltares, 2008). The author recommends to implement
an analytically-based model.

◦ The effect on form drag of suspended load, and potentially bedform migra-
tion and bedform sequence are neglected. It is recommended to analyze
if (and how) these effects need to be incorporated in the semi-analytical
form drag model.

◦ The correction factor for flow separation zone height accounts for a devi-
ation in flow separation zone height with respect to the bedform height.
If a brink point is present, not only the height of the flow separation zone
height is smaller compared to the situation that no brink point is present,
also the length of the flow separation zone may be smaller. As such, the
correction factor for flow separation zone height may also be a function
of the length of the flow separation zone. It is recommended to analyze
whether the correction factor can be improved by incorporating (a model
for) the length of the flow separation zone.

◦ The semi-analytical form drag model is applicable to situations of sub-
critical flow. It is recommended to analyze whether the form drag model,
which is based on flow expansion, is suitable to apply to situations of
supercritical flow.
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Appendix A

The effect of postprocessing multibeam

echosounding data on bedform geometry

A.1 Multibeam echosounding measurements

Multibeam echosounding (MBES) is a survey technique that provides a rapid
means of determining the bathymetry of a sea or river bed. An echosounder
placed underneath a sailing vessel determines depths, i.e., distances between
the echosounder and the bed, from observation of travel time of acoustic waves
(De Jong et al., 2002). The vessel usually sails tracks in streamwise direction of
the river. As such, the sailing direction is roughly perpendicular to the bedform
crest lines. If the vessel sails in lateral direction, (a) the vessel would need to
turn more often, and (b) no measurements would be obtained close to the banks
due to the vessel’s turning circle.

In a swath multibeam system multiple acoustic beams are produced from a
single echosounder (De Jong et al., 2002). Rijkswaterstaat, i.e., the directorate
for public works and water management in the Netherlands, uses a swath multi-
beam system. A swath system transmits an acoustic pulse in a wide fan in one
direction (Figures A.1a and A.1b). This results in a wide footprint in that direc-
tion. A lane of soundings rather than a single line of soundings is obtained from
a single vessel’s track. Each individual beam is projected as a circle at the bed.
The circle of a beam at a large swath angle has a larger diameter as the distance
to the bed is larger (Figure A.1c). Therefore accuracy decreases for increasing
swath angle (De Jong et al., 2002). The survey line spacing dx (Figure A.1a)
and the vessel speed are chosen such that neighboring swaths are overlapping in
order to avoid gaps and to enhance reliability (De Jong et al., 2002).

The following aspects are relevant for interpreting data that are obtained
from multibeam measurements:

◦ The echosounder records the earliest return from its transmission, i.e., the
echo having traveled the shortest distance (Figure A.2). The earliest return
is set to be the depth corresponding to beam width, β. The larger the beam
width, the larger the error may become, as the diameter of the circle is
larger. For multibeam measurements the beam width, β, nowadays is so
small that this effect does not occur in practice (L. Dorst, pers. comm.,
2008). As the echosounder records the earliest return, depth measurement
errors may occur when an echo returns from a target other than the bed
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Figure A.1: Definition sketch of multibeam echosounding: (a) swath in river cross-
section, (b) footprint in plan view, (c) three-dimensional view of two individual beams.
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Figure A.2: Depth measurement error due to beam width.
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Figure A.3: Sufficient overlap between neighboring swaths prevents that no measure-
ments are taken in the shadow zone.

(e.g. a fish or sediment in suspension).

◦ For steep bed gradients in lateral direction of the river and for large swath
angles a shadow zone may occur, i.e., a zone where beams cannot reach
the bed (Figure A.3). If there is sufficient overlap between neighboring
swaths (i.e., survey line spacing, dx, is sufficiently small), measurements
will also be obtained in the shadow zone. Note that bed gradients due
to bedforms (the bedform stoss and lee faces) are gradients in streamwise
direction rather than in lateral direction, which means that shadow zones
behind lee and stoss faces of bedforms will generally not occur.

◦ The measurements are corrected for the motions of the vessel, i.e., roll,
pitch, heave, and yaw (De Jong et al., 2002).
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Figure A.4: A continuous signal representing a bed elevation profile is projected on
a regular grid by assigning (a) the mean elevation, (b) the lowest elevation, (c) the
highest elevation within each grid cell to this cell.

A.2 Postprocessing of MBES data

A.2.1 Projection of bed elevations on a regular grid

The measured bed elevations are postprocessed as the set of elevation data
may contain erroneous measurements, and the elevation data are not regularly
spaced. The bed elevation data of the Rhine River measured in December 2006
are projected on a regular grid of 1×1 m2 by averaging the available bed elevation
measurements (at least 10) within each grid cell (A. Wagener, pers. comm.,
2007). It is also possible to assign the highest or lowest elevation within each
grid cell to this cell rather than the mean elevation. The highest bed elevation is
usually applied for navigational charts (L. Dorst, pers. comm., 2008). Figure A.4
illustrates the effect of applying the mean, lowest, or highest bed elevation when
projecting bed elevation data on a regular grid. Projecting a continuous signal,
which represents a streamwise bed elevation profile, on a regular grid by using
the mean, lowest, or highest bed elevation within each grid cell, results in a
projected bed elevation profile that is smoothed, shifted upstream or shifted
downstream, respectively (Figure A.4).
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A.2.2 Effect of grid projection on bedform geometry
Figure A.4a shows that assigning the mean bed elevation to a grid cell smooths
the resulting bed elevation profile. This may affect bedform geometry derived
from the projected bed elevation profile. The ratio of grid size to bedform size,
or in other words the number of bed elevation data per bedform, determines
to what extent the geometry is affected. For a series of identical bedforms
we vary the ratio of grid size to bedform length, assign the mean, lowest, and
highest value within each grid cell to this cell, and determine bedform height,
bedform length, crest elevation, trough elevation, and lee face slope using the
bedform tracking tool (Appendix B). Figure A.5 shows that if (a) the ratio of
grid size to bedform length is equal to or smaller than 0.1 (i.e., the number of
bed elevation data per bedform length is equal to or larger than 10) and if (b)
mean bed elevations are assigned to the grid cells, bedform geometry is only
slightly affected (see Table A.1). The ratio of grid size to bedform length in the
multibeam measurements of the Rhine River taken in December 2006 is equal
to or smaller than 0.1. This means that we may conclude that the effect of the
averaging procedure as applied for the Rhine River on bedform geometry is not
significant as the grid size is sufficiently small with respect to bedform length.

Table A.1: Underestimation of bedform geometry (in %) for ratios of grid size to
bedform length smaller than 0.1 in case the mean elevation within a grid cell is assigned
to this cell.

bedform parameter %
bedform height 0–5
bedform length 0
crest elevation 0–3
trough elevation 0–3
lee face slope 0

Figure A.5e shows that no lee face slopes are determined for ratios of grid
size to bedform length larger than 0.025. This is because the bedform tracking
tool only determines lee face slopes if the number of bed elevation data within
the considered lee face reach is equal to or larger than 3.

It is possible to correct for the underestimation of bedform height, crest
and trough elevation. In this research project we have not corrected for the
underestimation presented in Table A.1, as we expect that the effect on the
results is small.
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Figure A.5: Bedform parameter as determined by the bedform tracking tool divided
by the imposed bedform parameter plotted against the ratio of grid size to bedform
length: (a) bedform height, (b) bedform length, (c) crest elevation, (d) trough eleva-
tion, (e) lee face slope.



Appendix B

A new and widely applicable tool for

determining bedform geometry?

B.1 Introduction

In order to study the variability in geometry of measured bedforms, we need
a method that determines the locations of crests and troughs in a measured
bed elevation profile and then determines the geometric properties of individual
bedforms. This report presents a method (a bedform tracking tool) to locate
bedforms and determine their geometry.

In this research project all data sets have to be processed using the same
method or code in order to compare bedform geometry determined from various
data sets. There exists a considerable number of methods or numerical codes
(e.g. Wilbers, 2004; Blom et al., 2003; Leclair , 2002; Knaapen, 2005) that de-
termine bedform geometry from laboratory or field data. An objective method
that is applicable to both flume and field data (river and marine data), however,
is not available.

The aim of this report is to present a method that determines the bedform
geometry from measured bed elevation profiles as objectively as possible.

B.2 Method for determining bedform geometry

We have developed a bedform tracking tool by writing a numerical code in Mat-
lab (version 7 R14) that enables us to study the variability in bedform geometry.
The tool automatically selects crest and trough locations in measured bed eleva-
tion profiles (BEPs) and determines bedform geometry. The bedform tracking
tool (BTT) is developed such that (1) as few as possible subjective choices have
to be made and (2) the tool is applicable to field and flume measurements.

B.2.1 Procedure of the bedform tracking tool
The procedure of the bedform tracking tool consists of eight steps. Below, each
of the steps is explained in closer detail.

?This appendix is a shortened version of: Van der Mark, C.F. and A. Blom (2007), A new
and widely applicable tool for determining the geometric properties of bedforms, CE&M Re-
search Report 2007R-003/WEM-002 ISSN 1568-4652, 57 pp., University of Twente, Enschede,
Netherlands.
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Figure B.1: A minimum (outlier) is incorrectly specified as a trough.

Step 1. Removing outliers

In step 1 we find outliers in each BEP and replace them. When a BEP consists
of outliers (e.g. measuring errors), it may happen that maxima or minima are
incorrectly specified as crests or troughs, respectively (Figure B.1). Therefore,
we need to remove outliers before we start determining crests and troughs.

The procedure is as follows. The BTT loads the raw data. The absolute
vertical distances, dz, between all consecutive measured points in the BEP under
consideration are computed. The mean value of all vertical distances, dzm, is
then used to find outliers in the BEP. An outlier is defined as a point that
differs more than +5dzm with its previous point and −5dzm with its next point
or that differs more than −5dzm with its previous point and +5dzm with its next
point (as in Figure B.1). The user is asked whether he/she wants to replace the
point(s) with point(s) determined by linear interpolation or wants to keep the
point(s).

Step 2. Determining equilibrium trend line

In step 2 we determine a trend line. We ask the user whether he/she prefers (a)
a linear trend line or (b) a weighted moving average trend line.

(a) In a laboratory flume, an experiment is often run until the flow and trans-
port reach an equilibrium stage. Several BEPs may be measured during
equilibrium conditions. We consider these BEPs as statistically homoge-
neous. The trend lines of these individual BEPs can deviate from each
other, because a BEP can consist of incomplete bedforms or only a few
bedforms. Especially in short flumes the trend lines of individual BEPs can
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fluctuate considerably. Therefore the equilibrium trend line is determined
by taking the average trend line of the individual BEPs.

(b) For field measurements, a linear trend line may not be suitable as the mean
elevation of the river bed is usually rather represented by a fluctuating
line than a linear line. In such situations the user can choose to apply a
weighted moving average filter for determining the trend line. A weighted
moving average filter smooths data by replacing each data point with the
weighted average of the neighboring data points defined within a given
span. The span defines the number of neighboring points that are used to
take the weighted average. The span must be an odd number in order to
prevent a phase shift.

We determine the trend line span, P0, in case (b) as follows:

◦ For each trend line span value, P0, varying from 3 data points through
N data points, we determine a weighted moving average trend line of
the BEP under consideration. Here N denotes the total number of
data points the BEP consists of.

◦ We subtract the moving average trend line from the original BEP
which yields a detrended BEP.

◦ We use a spectral density function to find the peak bedform length
in the detrended BEP.

◦ We plot the peak bedform length against the trend line span, P0.

The graph of the peak bedform length against the trend line span shows
which bedform lengths are present in the original BEP. The user can spec-
ify which bedform lengths he/she is interested in. The trend line span
corresponding to these bedform lengths is used for determining the trend
line.

Step 3. Detrending the bed elevation profile

In step 3 we detrend the BEP by subtracting the trend line from the original
BEP. The detrended BEP now fluctuates around the zero line.

Step 4. Weighted moving average filter

In step 4 we determine a filtered BEP using a weighted moving average technique
in order to determine zero crossings. In this way not every small disturbance
that crosses the zero line is specified as a zero crossing (also see Figure B.2). An
important choice is the filter span value, P , that is used in creating the filtered
BEP. A small filter span results in a signal that is almost equal to the original
BEP. In that case crossings with the zero line will wrongly be interpreted as
up- or downcrossings of a bedform. On the other hand, a large filter span will
smooth out the bedforms. The filter span depends both on the length of the
bedforms of interest in the BEP and on the distance between two consecutive
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Figure B.2: A filter is needed to prevent that a small disturbance that crosses the
zero line is considered to be a bedform. The dashed line indicates the filter. Crests
and troughs are indicated with circles and squares, respectively.

data points. We apply a weighted moving average filter with a filter span, P ,
equal to P = 1

6 (λav/s + 1), in which λav denotes the mean bedform length of the
BEP under consideration determined by its zeroth and first spectral moments
(λav = m0/m1), and s denotes the horizontal distance between two consecu-
tive data points. Please note that the filter is used only to determine up- and
downcrossings of the BEP.

Step 5. Determining zero crossings

In step 5 we determine zero upcrossings and zero downcrossings in the filtered
BEP. A zero upcrossing is located where the filtered BEP crosses the zero line
in upward direction. Likewise, a zero downcrossing is located where the filtered
BEP crosses the zero line in downward direction.

Step 6. Determining crests and troughs

In step 6 we determine the locations of crests and troughs. A crest is located
between a zero upcrossing and zero downcrossing. A trough is located between
a zero downcrossing and a zero upcrossing. We determine the crest and trough
locations from the original detrended BEP, but we first use the filtered BEP to
find the rough locations of the crests and troughs. A local disturbance could
wrongly be selected as crest or trough if we would just take the highest or lowest
data point between two zero crossings in the original detrended BEP as the crest
or trough location, respectively (as illustrated in Figure B.3). Therefore, for
determining the crest location, we first determine the location of the maximum
value of the filtered BEP between a zero up- and zero downcrossing. Then,
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Figure B.3: If we would define the highest value of the original detrended BEP as the
crest location, a small disturbance could be selected as the crest, indicated with the
circle. Therefore, a crest is defined as the highest point of the original detrended BEP
within the filter span of the maximum value of the filtered BEP (indicated with the
arrow) between a zero upcrossing and a consecutive zero downcrossing. The dashed
line indicates the filter.

the crest is located at the maximum value of the original BEP within the filter
span, P , of the maximum value of the filtered BEP. Likewise, for determining
the trough location, we determine the location of the minimum value of the
filtered BEP between a zero down- and zero upcrossing. The trough is located
at the minimum value of the original BEP within the filter span of the minimum
value of the filtered BEP.

Step 7. Crests and troughs at the boundaries of the bed elevation
profile

In step 7 we determine crests and troughs at the boundaries of the BEP. At the
start and end of a BEP a crest or trough may be present that is not characterized
as such in case the BEP does not cross the zero line. Especially in short BEPs
it is desirable to take into account as many crests and troughs as possible.
Figure B.4 shows that close to X ≈ 4300cm a trough is located, but it is not
characterized as such as it is not located between two zero crossings. In step
7 we look for additional crests and/or troughs at the boundaries of the BEP.
There are four possibilities (Figure B.5):

a) a crest is located before the first zero downcrossing;

b) a crest is located after the last zero upcrossing;

c) a trough is located before the first zero upcrossing;
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Figure B.4: A trough is located at the boundary of the BEP, indicated with the
arrow. This trough is not recognized as such, as it is not surrounded by two zero
crossings.

d) a trough is located after the last zero downcrossing.

We are only able to characterize a maximum as a crest or a minimum as a trough
if there are enough data points before (a and c) or after (b and d) the extreme
values. As such, we specify an extreme value as a crest or a trough if the number
of data points before or after the extreme value is larger than or equal to half
the filter span, 0.5P (see shaded areas in Figure B.5).

Step 8. Determining bedform geometry

In this study we are specifically interested in the stochastic properties of bedform
geometry. The BTT saves all individual crest and trough locations, bedform
heights and lengths in order to analyze the stochastics of the bedform geometry
in more detail. Furthermore, mean values and standard deviations of bedform
geometry and the equilibrium trend line are saved. The following bedform ge-
ometry is determined in the detrended BEP and saved (Figure B.6):

symbol name description
ηc crest elevation vertical distance from crest to equilibrium

trend line
ηt trough elevation vertical distance from trough to equilib-

rium trend line
δs height of stoss face vertical distance between crest and up-

stream trough
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δl height of lee face vertical distance between crest and down-
stream trough

λs length of stoss face horizontal distance between crest and up-
stream trough

λl length of lee face horizontal distance between crest and
downstream trough

λc bedform length between
crests

horizontal distance between two consecu-
tive crests

λt bedform length between
troughs

horizontal distance between two consecu-
tive troughs

λupcr bedform length between
zero upcrossings

horizontal distance between two consecu-
tive zero upcrossings

λdowncr bedform length between
zero downcrossings

horizontal distance between two consecu-
tive zero downcrossings

Sl slope of lee face of bedform vertical distance divided by horizontal dis-
tance of a part of the lee face

For determination of the slope of the lee face of a bedform, we do not consider
the whole lee face region between crest and its subsequent trough. We exclude
a distance of one sixth of the bedform height below the crest and a distance of
one sixth of the bedform height above the trough as in these regions the slope is
flatter due to the crest and trough. We fit a linear line through the data points
for determining the slope. We exclude lee face slopes consisting of a region where
the slope is subsequently negative, positive and negative (see the dashed line in
Figure B.7).

Built-in checks

We have built in some checks to check whether the output of our code is correct.
We check if both the zero upcrossings and zero downcrossings and the troughs
and crests are found alternately. As a result of the chosen method for crest and
trough tracking, crests are located above the zero line and troughs below the
zero line. This is checked for all crests and troughs. Finally, each BEP, together
with the selected crests and troughs, is plotted and screened visually.

B.2.2 Evaluation of the procedure
Consequences of the zero crossing method

We have chosen to apply a zero crossing method for the determination of crests
and troughs. This choice has some consequences.

◦ Bedform A in Figure B.8 is not characterized as a bedform since the crest
is not located above the zero line. This has consequences for the bedform
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Figure B.5: Sketches of the four possibilities for extreme values at the boundaries
of a BEP. If the number of data points in the shaded areas is larger than or equal to
half the filter span, the maximum or minimum is considered as a crest or a trough,
respectively.
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Figure B.6: Definitions of the determined bedform geometry in a detrended BEP.
See the text for an explanation of the symbols. The rectangle illustrates which part of
the lee face is used for determining the slope of the lee face of the bedform. Flow is
from left to right.
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Figure B.7: Determination of the slope of the lee face. The bold lines indicate the
slopes. The dashed line is excluded from the analysis.
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Figure B.8: Bedform A is not characterized as a bedform since it does not cross the
zero line.

geometry, mainly for the bedform length. Mean bedform length would be
smaller if bedforms such as A would be characterized as bedforms.

◦ In the neighborhood of the zero line sometimes a small bedform is charac-
terized as a bedform (Figure B.9).

◦ A characteristic of a moving average filter is that, due to averaging, the
amplitude of the filtered signal is slightly smaller than the amplitude of
the original signal. As a result, the original detrended BEP may cross the
zero line, whereas the filtered BEP does not. As a result, this bedform is
not characterized as such (Figure B.10).

Use of the weighted moving average trend line

The trend line span, P0, which is needed for determining the moving average
trend line in step 2 is determined by first plotting a graph of the peak bedform
length against the trend line span. With the help of this graph, the user can
select the bedform length of his/her interest. The corresponding trend line span
is then used for determining the trend line and detrending the data. Creating the
graph of peak bedform length against trend line span takes some computational
time. It takes roughly 3 minutes to plot such a graph for a BEP of 3000 data
points (on a Pentium 4 computer).

Applicability of the bedform tracking tool

The BTT is a one-dimensional tool, which means that the input of the tool are
longitudinal BEPs. The original data have to be converted into longitudinal
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Figure B.9: Small bedforms fluctuating around the zero line are characterized as
bedforms.

BEPs perpendicular to the bedform crest lines before the user can apply the
BTT. This conversion is not included in the BTT. Two aspects are important
in determining the longitudinal BEPs.

◦ In flumes or straight rivers, the longitudinal direction is parallel to the
direction of the flume or river axis; the crest lines of the bedforms are
roughly perpendicular to the flume or river axis. However, in river bends,
the bedform crest lines may not be perpendicular to the river axis. To
find the direction perpendicular to the crest lines, we suggest to use a part
of the ‘Digipol’ interpolation procedure. The Dutch Ministry of Trans-
port, Public Works and Water Management (Rijkswaterstaat) uses this
procedure for interpolating depth measurements. A part of the procedure
determines the direction of the crest lines. De Koning (2007) applied this
method to find the direction of sand wave crest lines in the North Sea.

◦ Measurements may consist of several BEPs taken at different times but at
the same location and/or BEPs taken at different locations at the same
time. If several longitudinal BEPs are grouped together in order to study
the bedform geometry, these BEPs need to be statistically homogeneous in
both space and time. A spatial scaling technique (Barabási and Stanley ,
1995; Jerolmack and Mohrig , 2005b) can be used to verify whether the
BEPs are statistically homogeneous.

In the development of the BTT, we have tried to avoid subjective decisions,
such as values for threshold values, as much as possible. Nevertheless, the pro-
posed method consists of four quantitative choices:

1. the criterion of five times the mean value of all absolute vertical distances
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Figure B.10: A bedform is not characterized as such, as the filtered BEP (dashed
line) does not cross the zero line.

between consecutive data points within a BEP for the outlier selection
(±5dzm),

2. the trend line span, P0, corresponding to a dominant bedform length to
detrend the BEP in case a weighted moving average trend line is used,

3. the filter span constant C = 1/6 for determining the filter span, P , for the
filtered BEP,

4. half the filter span value (0.5P ) for the selection of crests and troughs at
the boundaries of the BEP.

We wrote the numerical code such that it can be applied to each data set,
without the necessity to tune the code to each data set. At the moment, we
applied the code successfully to river data, marine sand wave data (De Koning ,
2007) and flume data. It has appeared that there was no need to change the
quantitative choices. We expect that the BTT can be applied to all kinds of
BEPs.

Limitations of the bedform tracking tool

It is important to mention that the BTT can only be applied to data sets in
which bed elevations are measured on a uniformly spaced grid (s = const).

In the case of Barchan dunes or solitary bedforms (Figure B.11) bedform
length is sometimes defined as the horizontal distance between the stoss toe
and lee toe, as Carling et al. (2000) sketched in their definition diagram (their
Figure 5). The bedform length between stoss toe and lee toe is smaller than the
horizontal distance between two crests. This bedform length between two toes
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Figure B.11: Bedform length defined as the distance between the stoss toe and lee toe
in case of solitary bedforms is smaller than the bedform length defined as the distance
between two crests.

is not determined, as we do not estimate the locations of the stoss and lee toe
in the BTT.

B.3 Conclusions

We have developed a numerical code, called the bedform tracking tool (BTT),
which selects crests and troughs in a measured bed elevation profile and de-
termines the bedform geometry of individual bedforms, as well as mean values
and standard deviations. The BTT has been used successfully in determining
bedform geometry of various sets of flume experiments, field measurements in
river and marine environments.

The BTT determines whether there is more than one dominant bedform
length present in the bed elevation profile. Subsequently, it determines the
bedform geometry of more than one bedform length of interest.

The BTT is developed such that as few as possible subjective choices have to
be made in determining bedform geometry. There are four quantitative subjec-
tivities in the code for which values are proposed. For the data sets we analyzed
so far, these four values have been used satisfactorily.

We have used the output of the BTT for analyzing bedform geometry of
laboratory flume data. We recommend to use the vertical distance between
a crest and its downstream trough as a definition of bedform height. It is
recommended to use the horizontal distance between two crests as a definition
of bedform length.
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Appendix C

Variability in bedform geometry of sand

waves in the North Sea?

C.1 Introduction

For pipeline laying and operations on the bed of the North Sea, the industry
needs information on the average geometric properties of sand waves and their
variability. Németh et al. (2003) outlined how important it is to have more
insight into sand wave behavior. Illustrated here is the importance of sand wave
variability using two of their examples.

1. Pipelines sometimes have to cross a sand wave field. Migrating sand waves
can form a threat if they expose a pipeline. Free spans may develop,
causing stresses in the pipeline due to gravity and water flow. The pipeline
may start vibrating due to turbulence generated under the free span. This
may cause the pipeline to bend or break. Once exposed, a pipeline can
be damaged by a ship anchor or fishing gear. Knowledge on the deepest
troughs that may occur in a sand wave field helps us in determining how
deep a pipeline should be buried.

2. Navigational channels often need to be dredged so as to be wide and deep
enough for ships to pass safely. Nautical charts provide, among other
things, information on the areas with the shallowest water depths. Infor-
mation on the highest sand waves or highest crest elevations which can
occur in a sand wave field may result in a more efficient monitoring and
dredging strategy.

The objective of the study was to get more insight into the variability of sand
wave characteristics in the North Sea. We performed a data analysis to inves-
tigate probability density functions, coefficients of variation and extreme values
of the following geometric properties: sand wave length, sand wave height, crest
elevation, trough elevation, and sand wave asymmetry.

?This chapter has been published as: Van der Mark, C.F., M.F. de Koning, A. Blom,
S.J.M.H. Hulscher, and A. Stolk (2008), Sea bed sand waves studied to help pipeline planners,
Pipeline Gas J., 235(4), pp. 78–81.
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Figure C.1: Locations of bathymetric data sets in the North Sea.

C.2 Data processing

We used multi-beam measurements of three fields in the North Sea in which
sand waves occur (Figure C.1). We considered six areas in the Noordhinder
sand wave field (Figure C.2), two areas in the Twin field, and the area Ecomorf3
(Figure C.3). Figure C.2 shows a three-dimensional sand wave pattern, whereas
Figure C.3 shows a two-dimensional sand wave pattern in which the crest lines
are more or less parallel. We classified the sand waves of the Noordhinder area
and also the Twin area as short-crested sand waves and the ones in the Ecomorf3
area as long-crested sand waves.

In order to draw longitudinal bed elevation profiles from these measurements,
we first determined the orientation of the sand wave field using a part of the
digipol method (RIKZ , 1997, chapter 4). For each orientation (from 0 - 180
degrees) we determined the gradient in bed elevation. The angle at which the
highest gradient is found is assumed to correspond best with the direction per-
pendicular to the crest lines and is assumed to be the orientation of the sand
wave field.

Given the orientation of the sand wave field, longitudinal bed elevation pro-
files are processed using the bedform tracking tool (BTT) of Van der Mark and
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Figure C.2: Bathymetric map of the sand wave area Noordhinder 5B. Data from
North Sea Directorate of the Ministry of Transport, Public Works, and Water Man-
agement.

Blom (2007). The BTT determines geometric properties of sand waves from the
measured bed elevation profiles as objectively as possible. We analyzed sand
wave length, λ, sand wave height, δ, crest elevation, ηc, trough elevation, ηt, and
sand wave asymmetry, A, in the detrended bed elevation profiles (Figure C.4).
Sand wave asymmetry is computed as A = (λ1 − λ2)/λ.

C.3 Probability density functions

We determined the probability density function (PDF) of measured trough el-
evations in one area. We imposed Normal, Gamma, Rayleigh, Weibull, Expo-
nential, Log-normal, and Gumbel distributions for each area using the mean
and standard deviation of the trough elevations in each area. Figure C.5 shows
an example of imposed distributions for trough elevations occurring in one of
the Noordhinder areas. The appropriateness of the imposed distributions was
determined for the probability density function of trough elevations. We plotted
probability density functions for all nine sand wave fields, and for each geo-
metric property. For sand wave height, crest elevation, and trough elevation
we found that the Weibull distribution provides the best approximation. For
sand wave length the Log-normal or Weibull distributions yield the best approx-
imation. For sand wave asymmetry the Normal distribution provides the best
approximation.
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Figure C.3: Bathymetric map of the sand wave area Ecomorf3. Data from North Sea
Directorate of the Ministry of Transport, Public Works, and Water Management.

C.4 Coefficients of variation

For each geometric sand wave property the coefficient of variation was deter-
mined. The coefficient of variation C is defined as C = σ/µ, in which σ denotes
the standard deviation, and µ the mean value of the geometric sand wave prop-
erty. Figure C.6 shows the relationship between standard deviation of sand wave
length and the mean sand wave length. It appears that the long-crested sand
waves of Ecomorf3 have more regular sand wave lengths than the short-crested
sand waves of the other areas. This is also the case for sand wave height, crest
elevation, trough elevation, and sand wave asymmetry. Furthermore, if we only
consider the short-crested areas, we find that the coefficients of variation of sand
wave length, sand wave height, crest elevation, and trough elevation are more or
less constant values, while the coefficient of variation of sand wave asymmetry is
not. The coefficient of variation of sand wave length Cλ equals more or less 0.55
(Figure C.6). The coefficients of variation of sand wave height, crest elevation,
and trough elevation are Cδ = 0.49, Cηc = 0.59, and Cηt = 0.64, respectively.
The standard deviation of sand wave asymmetry appears to be more or less
constant (σA ≈ 0.35), independent of the mean sand wave asymmetry.

A constant coefficient of variation of sand wave length means that the stan-
dard deviation in sand wave length can be estimated if the mean sand wave
length and the coefficient of variation for sand wave length, Cλ, are known. The
same holds for sand wave height, crest elevation, and trough elevation.

C.5 Extreme values

We analyzed the 5% highest and 5% longest sand waves, the 5% deepest troughs
and 5% highest crests. For short-crested sand waves we found that, for sand wave
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Figure C.4: Definitions of the sand wave properties in a detrended bed elevation
profile: λ denotes sand wave length, δ denotes sand wave height, ηc and ηt denote
crest elevation and trough elevation, respectively. λ1 and λ2 are used to determine
sand wave asymmetry. Crests and troughs are indicated with circles and squares,
respectively. Note that the vertical axis is exaggerated with respect to the horizontal
axis.

length, sand wave height, crest elevation, and trough elevation, the 95% values
are linearly related to the mean value. For instance, for sand wave length we
found that the 95% coefficient for sand wave length Cλ,95 = (λ95−µλ)/µλ = 1.1
(Figure C.7). Likewise, we found that the 95% coefficients for sand wave height,
crest elevation, and trough elevation are Cδ,95 = 0.9, Cηc,95 = 1.0, and Cηt,95 =
1.2, respectively. This means that we can estimate the extreme geometric sand
wave properties, given the 95% coefficient and the mean value. Note that the
given coefficients of variations and 95% coefficients are only valid for short-
crested sand waves.

C.6 Planning pipelines

Knowledge on the variability of sand waves may help us, for instance, in de-
termining the optimal depth of a pipeline trench. The optimal depth depends
on factors such as dredging costs, pipeline construction costs, monitoring costs,
and risk (Németh et al., 2003). Consider, for instance, a sand wave field through
which a pipeline has to be constructed. Assume that it is known from pre-
vious monitoring surveys that the sand waves are short-crested, and that the
sand waves migrate, but do not grow or decay, as there are no dredging activ-
ities and net currents are more or less constant. We also know from a previ-
ous survey that the mean sand wave height is more or less four meters. Our
data analysis shows that mean crest elevation is smaller than the correspond-



170 Appendix C. Variability in bedform geometry of sand waves

−1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimensionless trough elevation (−)

pr
ob

ab
ili

ty
 d

en
si

ty
 (

−
)

Data
Exponential
Gamma
Gaussian
Gumbel
Log−normal
Rayleigh
Weibull
Uniform

Figure C.5: Probability density function of dimensionless trough elevation (trough
elevation divided by mean trough elevation) for one of the sand wave fields under
consideration. The lines indicate the imposed probability distributions.

ing mean trough elevation such that a sand wave height of four meters corre-
sponds to a mean trough elevation of 2.5 meters and a mean crest elevation
of 1.5 meter. From our analysis we may conclude that the standard deviation
in trough elevations is: σηt = Cηt µηt = 1.6 m. The 95% trough elevation is:
ηt,95 = (Cηt,95 + 1) µηt = 5.5 m. This means that in an area of more or less
100 sand waves, five of these sand waves will have a trough elevation that is equal
to or larger than 5.5 meters. Taking into account the risk one is willing to accept
(which may depend on the type of liquid that is transported), one may decide
to place the pipeline at a depth of more or less 5.5 meters below the mean bed
elevation. If the pipeline is exposed by one of these five deep migrating troughs,
this trough will probably not be much deeper than 5.5 meters, and the free span
length will be small. As this example illustrates, our simple relationships may
help in getting a first estimate for the optimal depth of a pipeline.
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Figure C.6: Standard deviation of sand wave length versus mean sand wave length.
Cλ denotes the coefficient of variation of sand wave length fitted through the short-
crested data points.
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Appendix D

Derivation of mass, momentum, and

energy conservation equations from

integral formulations

In Chapter 3 the reference form drag model is derived using the momentum
and energy conservation equations applied to the reference situation. In this
appendix the applied conservation equations are derived from the integral for-
mulations of the mass, momentum, and energy conservation equations.

D.1 Continuity equation or the law of conservation of mass

The integral form of the conservation of mass reads (e.g. Kundu and Cohen,
2004)

∂

∂t

∫∫∫

V

ρ dV +
∫∫

∂V

ρ [(~u− ~u∂V ) · ~n] dA = 0 (D.1)

The first term represents the time rate of change of mass within the control
volume, and the second term the flux of mass out of the control volume. For an
incompressible fluid and a fixed control volume, equation (D.1) reduces to (e.g.
Kundu and Cohen, 2004)

∫∫

∂V

ρ (~u · ~n) dA = 0 (D.2)

The differential form can be obtained by transforming the surface integral in
equation (D.2) to a volume integral by means of the divergence theorem, which
yields for equation (D.2) (e.g. Kundu and Cohen, 2004)

∫∫∫

V

~∇ · (ρ ~u) dV = 0 (D.3)

Equation (D.3) holds for any volume, which can be possible only if the integrand
vanishes at each point (Kundu and Cohen, 2004). This requires

~∇ · (ρ ~u) = 0 (D.4)

which is called the differential form of the continuity equation.
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D.2 Newton’s second law of motion or law of conservation
of momentum

Newton’s second law of motion describes that the total rate of change of momen-
tum within a control volume is equal to the sum of acting forces. The general
form of the equation of momentum in integral form reads (e.g. Hirsch, 2002)

∂

∂t

∫∫∫

V

ρ ~u dV +
∫∫

∂V

ρ ~u [(~u− ~u∂V ) · ~n] dA =

∫∫∫

V

ρ ~f dV −
∫∫

∂V

p ~n dA +
∫∫

∂V

¯̄τ ~n dA (D.5)

in which V denotes an arbitrary control volume, A = ∂V the surface bounding
the control volume, ~n(~x, t) the outward pointing unit normal vector, ~u(~x, t) the
velocity of the fluid, ~u∂V (~x, t) the velocity of boundary ∂V , ρ(~x, t) the density
of the fluid, ~f the external densimetric volume force (i.e., force per unit mass),
p the pressure, and ¯̄τ the Cauchy stress tensor. The position vector ~x equals
[x y z]T , the velocity vector ~u equals [u v w]T , and the unit normal vector equals
~n equals [nx ny nz]T . The stress tensor is symmetric and equals (e.g. Batchelor ,
1967)

¯̄τ =




τxx τyx τzx

τxy τyy τzy

τxz τyz τzz


 (D.6)

The first term on the left-hand side of equation (D.5) represents the time rate
of change of momentum within the control volume, the second term the net
outgoing momentum flux at the boundaries of the control volume. The terms
on the right-hand side represent the acting forces. The first term represents the
external volume forces or body forces acting on the control volume, the second
and third represent the surface forces acting on the control surface, i.e., pressure
and viscous forces, respectively.

It is allowed to subtract the atmospheric pressure, pa, from the pressure, p,
in equation (D.5), as for any closed surface the following holds:

∫∫

∂V

~n dA = 0 (D.7)

As such, equation (D.5) becomes

∂

∂t

∫∫∫

V

ρ ~u dV +
∫∫

∂V

ρ ~u [(~u− ~u∂V ) · ~n] dA =

∫∫∫

V

ρ ~f dV −
∫∫

∂V

(p− pa) ~n dA +
∫∫

∂V

¯̄τ ~n dA (D.8)

If the component of the momentum in x-direction is considered, equation
(D.5) becomes

∂

∂t

∫∫∫

V

ρ u dV +
∫∫

∂V

ρ u [(~u− ~u∂V ) · ~n] dA =
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[∫∫∫

V

ρ ~f dV

]
· ~ex −

[∫∫

∂V

(p− pa) ~n dA

]
· ~ex +

[∫∫

∂V

¯̄τ ~n dA

]
· ~ex (D.9)

The body force, here equal to the gravitational force, i.e., ~f = ~g (Batchelor ,
1967), equals zero in x-direction, since the channel is chosen to be horizontal in
the reference situation. We assume flow conditions to be steady, so that the first
term on the left-hand side of equation (D.9) equals zero. The control volume is
fixed, so that ~u∂V = 0. Equation (D.9) now reduces to

∫∫

∂V

ρ u ~u · ~n dA =
[
−

∫∫

∂V

(p− pa) ~n dA

]
· ~ex +

[∫∫

∂V

¯̄τ ~n dA

]
· ~ex (D.10)

We assume that in the control volume, i.e., in the expansion region, the
viscous force term is negligible, so that equation (D.10) reduces to

∫∫

∂V

ρ u ~u · ~n dA =
[
−

∫∫

∂V

(p− pa) ~n dA

]
· ~ex (D.11)

Please note that neglecting the viscous stress in the development of the form
drag model does not mean that we neglect grain friction. We use an existing
grain friction model to predict the bed resistance (i.e., predicted bed resistance
equals the sum of predicted form drag and predicted grain friction).

At the inlet (cross-section 1) and outlet (cross-section 2) pressure forces act.
As streamlines are parallel at cross-sections 1 and 2 and the velocity in the
flow separation zone is small, we are allowed to assume that the pressure has a
hydrostatic distribution both at cross-sections 1 and 2:

dp

dz
= −ρg (D.12)

in which z denotes the upward normal coordinate from the bed. By integrating
and evaluating the constant of integration under the condition of atmospheric
pressure at the water surface, it follows from equation (D.12) that

p(x, z) = pa + ρg [d(x)− z] (D.13)

in which d(x) denotes the local water depth. By integrating the pressure over
the water depth and channel width, W , the pressure force at cross-section 1
becomes

Fp,1 =
[
−

∫∫

A1

(p− pa) ~n dA

]
· ~ex =

∫∫

A1

[ρg(d1 − z)] dA =

W

∫ d1

0

[ρg(d1 − z)] dz =
1
2
ρgd2

1 W (D.14)

Likewise, the pressure force at cross-section 2 becomes

Fp,2 = −1
2
ρgd2

2 W (D.15)
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Subscripts 1 and 2 refer to cross-sections 1 and 2, respectively. Equation (D.11)
now reduces to ∫∫

∂V

ρ u ~u · ~n dA =
1
2
ρgW

[
d2
1 − d2

2

]
(D.16)

In Section 3.3.2 it is shown that equation (D.16) reduces to

1
2
ρg(df + δf )2 + β1ρ

q2

df
=

1
2
ρgd2

2 + β2ρ
q2

d2
(D.17)

in which q denotes the specific discharge, df the water depth at the location
where the flow separates, δf the height of the flow separation zone, and β the
momentum coefficient which corrects for the fact that the velocity distribution
is not uniform over the cross-section (e.g. Chow , 1959). Equation (D.17) is the
one-dimensional momentum conservation equation for the reference situation
(e.g. Chanson, 2004).

D.3 First law of thermodynamics or the law of conserva-
tion of energy

The first law of thermodynamics describes that the total rate of change of the
total energy in the control volume is equal to the rate of work done on the fluid
by the acting forces plus the rate at which heat is added to the control volume.
The general form of the equation of energy in integral form reads (e.g. Hirsch,
2002; Kundu and Cohen, 2004)

∂

∂t

∫∫∫

V

ρ E dV +
∫∫

∂V

ρ E [(~u− ~u∂V ) · ~n] dA =

∫∫∫

V

ρ
[
~f · ~u

]
dV +

∫∫∫

V

Q̇h dV−
∫∫

∂V

p [~u · ~n] dA +
∫∫

∂V

[(¯̄τ ~n) · ~u] dA−
∫∫

∂V

[~qh · ~n] dA (D.18)

in which
E = e +

1
2
|~u|2 (D.19)

Here, E denotes the total energy per unit volume, which equals the internal
energy, e, plus the kinetic energy, Q̇h denotes the rate of volumetric heating,
and ~qh the rate of heat conduction through boundary ∂V . The first term on the
left-hand side represents the time rate of change of the total energy within the
control volume, the second term the total energy flux over the control surface
out of the control volume. The first term on the right-hand side represents the
rate of work done by the external force field, the second the rate of volumetric
heating, the third and fourth terms represent the rate of work done by surface
forces (i.e., pressure and viscous forces), and the fifth term represents the rate
of heat conduction through the control surface into the control volume.
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The flow is steady, so that the first term on the left-hand side of equa-
tion (D.18) equals zero. The control volume is fixed, so that ~u∂V = 0. We
assume an adiabatic process, i.e., no heat is transferred to or from the work-
ing fluid, so that the second term on the right-hand side equals zero. Also the
fifth term on the right-hand side equals zero, as the effect of heat conduction is
ignored. Equation (D.18) now becomes

∫∫

∂V

ρ E (~u · ~n) dA =

∫∫∫

V

ρ ~f · ~u dV −
∫∫

∂V

p [~u · ~n] dA +
∫∫

∂V

[(¯̄τ ~n) · ~u] dA (D.20)

The integrand in the first term on the right-hand side of equation (D.20) is
rewritten using ~f = −~∇(gz) (e.g. Kundu and Cohen, 2004) as follows:

ρ ~f · ~u = −ρ ~u · ~∇(gz) = −~∇ · (ρ~ugz) +»»»»»»:= 0
gz ~∇ · (ρ~u) (D.21)

The last term equals zero as this term equals the continuity equation (equa-
tion (D.4)). Using the divergence theorem, the first term on the right-hand side
of equation (D.20) becomes

∫∫∫

V

ρ ~f · ~u dV = −
∫∫∫

V

~∇ · (ρ~ugz) dV = −
∫∫

∂V

(ρ~ugz) · ~n dA (D.22)

Equation (D.20) now becomes by using equation (D.22)
∫∫

∂V

ρE (~u · ~n) dA =
∫∫

∂V

[(¯̄τ ~u) · ~n] dA−
∫∫

∂V

(p + ρgz) (~u · ~n) dA (D.23)

placing the second term on the right-hand side on the left-hand side yields
∫∫

∂V

(ρE + p + ρgz) (~u · ~n) dA =
∫∫

∂V

[(¯̄τ ~u) · ~n] dA (D.24)

In a fluid flow with constant temperature, the internal energy, e, will be
constant as well (e.g. Kundu and Cohen, 2004), and equation (D.24) becomes

∫∫

∂V

ρg

( |~u|2
2g

+
p

ρg
+ z

)
(~u · ~n) dA =

∫∫

∂V

[(¯̄τ ~u) · ~n] dA (D.25)

If the component of the energy flux in x-direction is considered, each of the
terms are elaborated for the cross-sections 1 and 2, and the atmospheric pressure
is subtracted from the pressure just as done in the momentum conservation
equation, equation (D.25) becomes

−ρg

∫∫

A1

u1

(
u2

1

2g
+

p− pa

ρg
+ z

)
dA + ρg

∫∫

A2

u2

(
u2

2

2g
+

p− pa

ρg
+ z

)
dA =
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−
∫∫

A1

τxxu1 dA +
∫∫

A2

τxxu2 dA (D.26)

The terms on the left-hand side represent the energy fluxes, P , at the cross-
sections 1 and 2, respectively (e.g. Fox and McDonald , 1994; Chaudhry , 2008).
We indicate the difference in energy flux between cross-sections 1 and 2 as ∆P =
P1 − P2. The pressure has a hydrostatic distribution both at cross-sections 1
and 2 (equation (D.13)), so that equation (D.26) becomes

ρg

∫∫

A1

u1

(
u2

1

2g
+ d1

)
dA− ρg

∫∫

A2

u2

(
u2

2

2g
+ d2

)
dA = ∆P (D.27)

We express the velocity in terms of the section-averaged velocity U = 1
A

∫∫
A

udA
(i.e., averaged over the cross-sectional area). We introduce the kinetic energy
coefficient, α, which is equal to

α =

∫∫
1
2ρu3dA

1
2ρU3A

=
u3

U3
(D.28)

where the overbar indicates averaging over the cross-sectional area. Equa-
tion (D.27) becomes after integrating and combining with equation (D.28)

[ρ

2
α1U

3
1 A1 + ρgd1U1A1

]
−

[ρ

2
α2U

3
2 A2 + ρgd2U2A2

]
= ∆P (D.29)

By applying that the water discharge, Q, equals Q = U1A1 = U2A2, equa-
tion (D.29) becomes

ρgQ

[
α1U

2
1

2g
+ d1

]
− ρgQ

[
α2U

2
2

2g
+ d2

]
= ∆P (D.30)

or [
α1U

2
1

2g
+ d1

]
−

[
α2U

2
2

2g
+ d2

]
=

∆P

ρgQ
(D.31)

or in terms of the energy head, H (e.g. Chanson, 2004)

H1 −H2 = ∆H (D.32)

where H denotes the energy head averaged over a cross-section, and ∆H denotes
the energy head loss expressed in units of length. For a free surface flow with
a hydrostatic pressure distribution and a horizontal bed, energy head, H, is
defined as (e.g. Henderson, 1966; Fox and McDonald , 1994; Chaudhry , 2008)

H = zb + d + α
U2

2g
(D.33)

Equations (D.32) and (D.33) have been applied in Section 3.3.3 to derive the
reference form drag model.
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