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Samenvatting

Om de stroming van een smeervloeistof tussen twee bijna in contact zijnde oppervlakken
te beschrijven, in bijvoorbeeld kogellagers, wordt er veelvuldig gebruik gemaakt van de
Reynolds vergelijking. Deze vergelijking kan afgeleid worden uit de Navier-Stokes ver-
gelijkingen, onder de aanname dat de spleet tussen de twee oppervlakken klein is en het
Reynolds getal laag is. In de meeste gevallen kan deze vergelijking de stroming van de
smeervloeistof in de dunne �lm goed beschrijven. Als de �lmdikte groot is t.o.v. de
ruwheid kan de invloed van de oppervlakte ruwheid verwaarloosd worden. Echter, met
afnemende �lmdikte zal de invloed van de oppervlakte ruwheid belangrijker worden, en
kan de Reynolds vergelijking aan geldigheid verliezen. In dit werk wordt onderzocht
onder welke omstandigheden de Reynolds vergelijking niet langer de stroming van de
smeervloeistof correct beschrijft. Om dit te doen wordt de veronderstelling dat de ratio
�lmdikte tot contact lengte klein is, losgelaten. De stroming wordt dan beschreven door
de Stokes vergelijkingen. Er wordt onderzocht hoe het verschil tussen de Stokes oplossing
en de Reynolds oplossing afhangt van de geometrie van de oppervlakken voor typische
problemen zoals de stroming tussen twee oppervlakken met op �e�en oppervlak een sinus
vormige uitstulping. Omdat er in het algemeen geen analytische oplossing is voor het
probleem is er eerst een numeriek algoritme ontwikkeld om de Stokes vergelijkingen op
te lossen. Voor verschillende oppervlakte geometrie�en is vervolgens het verschil tussen de
Stokes oplossing en de Reynolds oplossing gequanti�ceerd.

Niet alleen de geometrie van de loopvlakken in een hydrodynamisch gesmeerd contact
heeft invloed op de nauwkeurigheid van de Reynolds oplossing t.o.v. de Stokes oplossing,
maar ook de (mogelijke) druk afhankelijkheid van de dichtheid en de viscositeit kunnen
een rol spelen. Dit onderwerp is ook onderzocht. Een voorbeeld van een compressibel
smeermiddel is gas (lucht). Normaliter wordt voor gas smerings problemen de Reynolds
vergelijking gebruikt. In dit werk wordt de gas stroming onder een stap geometrie onder-
zocht om de Reynolds oplossing te valideren voor dit geval. Een ander voorbeeld waarin
de dichtheid druk afhankelijk is, doet zich voor bij de simulatie van cavitatie. Om tot een
realistisch model te komen van de stroming in een nauwe spleet, kan het meenemen van een
cavitatie model niet achterwege gelaten worden. Het weerhoudt de druk ervan om kleiner
te worden dan de damp druk. In dit werk wordt een twee fasen model ge��mplementeerd
in het numerieke algoritme om de Stokes vergelijkingen op te lossen.

Ten slotte, is de invloed van een druk afhankelijke viscositeit op de geldigheid van
de Reynolds vergelijking onderzocht voor de stroming in een kanaal met op �e�en van de
oppervlakken een sinus vormige uitstulping. Aan het eind van het proefschrift bevinden
zich de conclusies en de aanbevelingen voor vervolg onderzoek.
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Abstract

To describe the ow of a lubricant between two nearly contacting surfaces, in for example
bearings, frequently use is made of the Reynolds equation. This equation is deduced from
the Navier-Stokes equations under the assumptions that the gap between the surfaces,
and the Reynolds number is small. It has been used for the past one-hundred years
to analyze all kinds of hydro/aerodynamic lubrication problems. In most cases, it can
accurately predict the characteristics of the ow in the lubricant �lm. However, with de-
creasing �lm thickness in bearings, the roughness of the contacting surfaces becomes more
important and the Reynolds equation less appropiate. In this work it is studied under
which conditions the Reynolds equation no longer approximates the ow acurately. To
do so the assumption that the ratio �lm thickness to contact length is small, is dropped.
The ow can then be described by the Stokes equations. It is studied how the geome-
try of the contacting surfaces inuences the di�erence between the Stokes solution and
the Reynolds solution for the ow between two surfaces with on one surface a sinusoidal
feature. Because generally there is no analytic solution to the problem, �rst a numerical
algorithm was developed to solve the Stokes equations. This algorithm was subsequently
used to quantify the di�erence between the Stokes solution and the Reynolds solution for
di�erent con�gurations of the contacting surfaces.

Not only the geometry of the surfaces can result in a less accurate Reynolds solution,
relative to the Stokes solution, but also compressibility and piezo-viscous e�ects have an
impact on the accuracy of the Reynolds solution relative to the Stokes solution. This
subject is also studied. A clear example of a compressible lubricant is gas (air). Also
for gas lubrication problems the Reynolds equation is normally used. In this work the
ow under a step geometry is studied to investigate the validity of the Reynolds equa-
tion for this case. Another example of a pressure dependent density can be found in the
simulation of cavitation. In order to obtain a realistic model for the lubricant ow in a
narrow gap, a cavitation algorithm should be incorporated. It prevents the pressure from
dropping below the vapor pressure. In this work a two-phase model is implemented in
the numerical algorithm to solve the Stokes equations.

Finally, the inuence of a pressure dependent viscosity on the validity of the Reynolds
equation is studied for the ow in a channel containing a sinusoidal surface feature. The
thesis is concluded with conclusions and with some recommendations for future research.
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Notation

If the dimension is not stated the variable or parameter is dimensionless.

av speed of sound in vapor [m=s]
amin minimal speed of sound in mixture [m=s]
a1; a2; a3; a4; a5 parameters used in h(x)
a(k) contravariant base vector
a(k) covariant base vector
A amplitude wave [m]
Am amplitude wave
~D diagonal matrix of Lh

ehm error vector ehm = uhm � u

fb function needed in backtracking algorithm fb =
1
2
Lh � Lh

f right hand side vector
fe external force [N ]
fh right hand side vector for discretized problem
Fp force perpendicular to lower surface
Fw force tangent to lower surface
Frey force perpendicular to lower surface resulting from

Reynolds solution
F1
rey force perpendicular to lower surface resulting from high speed

Reynolds solutionp
g Jacobian of coordinate transformation

gkl metric tensor
gb(�b) backtracking function
G computational domain
G�� computational grid
h grid spacing �ne grid
h(x) �lm thickness function
h1(x) �lm thickness function lower surface [m]
h2(x) �lm thickness function upper surface [m]
H grid spacing coarse grid
H reference �lm thickness [m]
Htot �lm thickness function [m]
Hloc local �lm thickness [m]
IHh restriction operator
IhH prolongation operator

ix



x CONTENTS

J Jacobian of coordinate transformation J =
p
g

Jb Jacobian of Lh(uh)
L reference length [m]
L() di�erential operator
Lh matrix resulting from discretizing L()
~L lower triangular matrix resulting from Lh

[Lh] stencil representation of Lh

~Lh matrix appearing in SCGS
�Lh reduced ~Lh matrix
l1; l2; l3 parameters used in x-coordinate transformation
M number of unknowns
N number of cells in �i-direction (i = 1; 2) on square computational grid
Nc number of multi-grid cycles
p pressure, only in equations (2.1), (2.3), (2.67) and (2.69)

it has dimension [Pa] otherwise it is dimensionless
p0; p1; p2 perturbation pressures
~p1(x) pressure resulting from perturbation analysis
~p2(x) pressure resulting from perturbation analysis
pv vapor pressure [Pa]
�pv scaled vapor pressure �pv =

pvH
�0u0

pij discrete pressure
pw; pe pressure on inow/outow boundary
pr pressure resulting from Reynolds solution
ps pressure resulting from Stokes solution
pn Newton step in backtracking algorithm
ruhij discrete x-momentum residue
rwh

ij discrete z-momentum residue
rphij discrete continuity residue
rh discrete residue rh = fh � Lh(uh)
�R relative lift force
Rx(�) Auto-Correlation function x-direction [m2]
Ry(�) Auto-Correlation function y-direction [m2]
R(�) Auto-Correlation function [m2]
Re Reynolds number Re =

H�0u0
�0

Rg Gas constant
S iteration matrix
[S] stencil form iteration matrix
u velocity component in x-direction, only in equations (2.1), (2.2)

and (2.3) it has dimension [m=s] otherwise it is dimensionless
ur velocity component in x-direction resulting from Reynolds solution
us velocity component in x-direction resulting from Stokes solution
u0 reference velocity component in x-direction [m=s]
u0 reference velocity vector [m=s]
u1 lower surface speed
u2 upper surface speed



CONTENTS xi

u0 zeroth-order perturbation velocity component in the x-direction
u1 �rst-order perturbation velocity component in the x-direction
uij discrete x-direction velocity component
u vector of unknowns
uh vector of unknowns on grid with spacing h
uh0 initial approximation to uh

uhm mth approximation to uh

~uh old approximation to uh

�uh new approximation to uh

v velocity component in y-direction, only in equations (2.1), (2.2) and (2.3)
it has dimension [m=s] otherwise it is dimensionless

v0 reference velocity component in y-direction [m=s]
w velocity component in z-direction, only in equations (2.1), (2.2) and (2.3)

it has dimension [m=s] otherwise it is dimensionless
v velocity vector v = (u; v; w)T [m=s]
w0 reference velocity component in z-direction [m=s]
wr velocity component in z-direction resulting from Reynolds solution
ws velocity component in z-direction resulting from Stokes solution
w0 zeroth order perturbation velocity component in the z-direction
w1 �rst order perturbation velocity component in the z-direction
wij discrete z-direction velocity component
x; y; z space coordinates, only in equations (2.1), (2.2), (2.3) and in chapter (1)

it has dimension [m] otherwise they are dimensionless
� grid aspect angle
�p pressure viscosity coe�cient [1=Pa]
��p pressure viscosity coe�cient ��p =

��0u0
H

�a mass fraction (appendix B)
�a
min minimal mass fraction (appendix B)

� parameter in x-coordinate transformation
�� parameter in two phase cavitation model �� =

2�0u0
H�la

2
min

�� parameter in two phase cavitation model
 perturbation parameter  = �2

� boundary domain 

�� mesh spacing in square computational domain, �� = 1=N
��1 mesh spacing in computational domain in �1-direction
��2 mesh spacing in computational domain in �2-direction
�� parameter in two phase cavitation model [kg=m3] �� = 1

2
(�l � �v)

�p parameter in two phase cavitation model [Pa] �p = 1
2
�a2min��

�x parameter in x-coordinate transformation
��1 parameter in x-coordinate transformation
� ratio of domain size � = H

L

� viscosity, only in equation (2.1) it has dimension [Pas]
otherwise it is dimensionless

�0 reference viscosity [Pas]
��0 = �v
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Chapter 1

Introduction

Friction plays an important role in everyday life. It occurs in all situations where a force
is transmitted from one surface to another, e.g. in bearings. To control and minimize
the friction in order to reduce vibrations and wear it is common to introduce a lubricant
between the contacting surfaces.

1.1 Lubrication

In order to decrease the friction and wear between two contacting surfaces it is common to
separate both surfaces with a lubricant, a grease or a coating. The lubricant �lm should
ful�ll two requirements. Firstly, its shear strength should be low to be able to obtain a low
friction. Secondly, in the direction perpendicular to the surface, it should be su�ciently
strong to carry the entire load and prevent direct contact between the two surfaces. In
that case all shear takes place in the lubricant and the friction is determined by the shear
strength of the lubricant.

Often, not much is needed to create a lubricant �lm. The lubricant adheres easily
to the surfaces and the relative motion of these surfaces causes the entrainment of the
lubricant into the contact. In that case the thickness of the �lm that is formed depends on
the relative surface speeds, the shape of the surfaces and the properties of the lubricant,
especially the viscosity. This type of lubrication is called Hydrodynamic Lubrication (HL)
and in practice it results in �lm thicknesses of the order of micro meters and generated
pressures of the order of Mega Pascal's.

The fact that a lubricant �lm can form and carry a load was �rst recognized by Tower
[81] in his experiments. In response to his work Reynolds [65] developed the theory to
explain this �lm formation. Starting from the Navier-Stokes equations and assuming a
small �lm thickness relative to the contact length he derived an equation for the pressure
in the gap. The main ingredients of this equation are the shape of the gap and the surface
velocities. This equation is generally referred to as the Reynolds equation.

This equation turned out to be a very useful tool in bearing analysis and design. The
earliest examples of the application of the Reynolds equation to bearing design are the
tilting pad thrust bearing, patented by Michell [45], [46] and Kingsbury [42]. Much of
the early work was further invested in the analysis of the regular journal bearing, see
Sommerfeld [73]. For a detailed account of the history of lubrication the reader is referred

1



2 CHAPTER 1. INTRODUCTION

to the History of Tribology written by Dowson [21]. An overview of the analysis of many
Hydrodynamic Lubrication problems is given by Cameron [7].

One of the complications in the early years was to obtain the solutions to the Reynolds
equation for a given surface geometry with the available analytical tools. This situation
changed with the introduction of the digital computer and the algorithms that were devel-
oped for the numerical solution of the Reynolds equation. One of the earliest examples of
numerical analysis in tribology is the work of Sassenfeld and Walther [71] on the journal
bearing problem of �nite width.

Following the successful application of Reynolds' theory to journal bearings at the
beginning of the previous century Martin [44] and G�umbel [33] were the �rst to apply it
to the problem of the lubrication of gear teeth. The di�erence between this problem and
the previous bearing problems is that the surface geometries are non-conforming which
leads to a so-called concentrated contact. They assumed the gear teeth to be rigid and
the lubricant to be iso viscous. The predicted �lm thicknesses were very small compared
to the known surface roughness values of gears and it was concluded that the successful
operation of gears without wear observed in practice could not (yet) be accounted for by
the lubricant �lm.

It took about 30 years before the question was eventually answered and the two addi-
tional e�ects responsible for the �lm formation in concentrated contacts were recognized:
the elastic deformation of the surfaces due to the high pressures, and the increase of the
viscosity with increasing pressure. Keynote works in this sense are the works of Ertel
[28] and Grubin [32] followed by the �rst numerical solutions obtained by Petrusevich
[57]. By now the lubrication of concentrated contacts has evolved into a separate �eld:
Elasto-Hydrodynamic Lubrication.

As a result of the additional complication of surface deformation and piezo-viscous
e�ects EHL problems turned out to be much more di�cult to solve than HL problems
and here the role of the digital computer has been even larger. Dowson and Higginson
[23], [24] were the �rst to present a �lm thickness formula for EHL line contacts based on
numerical solutions, and Hamrock and Dowson [36], [37] did so for EHL point contacts.
These studies also showed that standard iterative techniques did not work very well for
EHL problems. Especially, the elastic deformation integrals caused two types of prob-
lems. Firstly computing time problems as the matrices of the discrete problem were full,
rather than sparse. Secondly the coupling between pressure and �lm shape by the elastic
deformation caused stability problems in the numerical algorithms. An important step
forward in this �eld was the introduction of multi-grid techniques. At present e�cient and
stable solution algorithms are available for EHL problems. For a detailed description the
reader is referred to [90]. At this point it is noted that in this �eld not only the numerical
techniques have reached a very high level but also experimental techniques have been
improved to a level which allows detailed validation of the predictions of the theoretical
models [8].

It thus seems that at present all the theoretical and experimental tools are available
to answer most lubrication problems. This is not entirely true. When discussing the work
of Martin and G�umbel surface roughness was already mentioned. Technical surfaces are
never perfectly smooth and an important question is how to account for the e�ect of the
surface roughness on the �lm formation. Clearly if the surfaces are so smooth that the
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computed minimum �lm thickness for the given operating conditions is large compared
to the standard deviation of the surface roughness pro�le in the contact the e�ect of the
roughness will be negligible. However, if the roughness is comparable to the thickness of
the �lm one has to take into account its e�ect on �lm formation. The question of the
e�ect of surface roughness on �lm formation is not new and has been the subject of many
publications already as will be explained in section (1.3). However, before doing so �rst
a brief illustration of surface roughness is given in the next section.

1.2 Surface roughness

Realistic surfaces are non-smooth and contain surface roughness. Especially when the
surface roughness is of the order of the �lm thickness the non-smoothness of the surface
must be considered. In order to illustrate this, three di�erent type of bearings have been
studied. In �gures (1.1a), (1.3)(a) and (1.5) photographs of the bearings are shown. The
three bearings are: a ball bearing, a cylindrical roller bearing and a spherical roller bearing.
They are labeled with respectively A, B and C. An extension to this code indicates the
surface type: i labels for the inner raceway, o labels for the outer raceway and r labels
for the roller/ball. For these three bearings a surface study has been performed. This
study has been done for the inner, outer raceway and for the roller/ball. In �gures (1.1),
(1.2), (1.3), (1.4) and (1.6) the surface height maps of the di�erent bearing surfaces are
shown. In these �gures the colored bar on the left hand side in a picture translates a color
back to a surface height. The horizontal axis represents the x-axis (running direction)
and the line under an angle with the horizontal line represents the y-axis (transverse to
the running direction).

The surface height maps clearly show that the surfaces are not perfectly smooth. It is
also observed that some of them show a clear pattern. Figures (1.1b), (1.2a), (1.4a) and
(1.6a) show a pattern of ridges and furrows. This is not the case in �gures (1.2b), (1.3b)
and (1.6b). This kind of surface topography is the result of the manufacturing process
(grinding).

Not only in bearings the non-smoothness of the surface must be considered but also in
rolling. The rolling process takes place in the mixed lubrication regime. This means that
parts of the roller and the rolled sheet are in direct contact and other parts are lubricated.
Figures (1.7a) and (1.7b) show two surface height maps of rolled sheet after cold rolling
and after a post-rolling step. It is clear that the surfaces are non-smooth on this scale.

Besides visual inspection of the surface topography, one can study the surface height
map with statistical tools (for more on this subject see [96]). To characterize the surface it
is assumed that it can be described by an amplitude density function and an autocorrela-
tion function. The �rst function provides the probability density of the roughness heights
and the second function provides the information related to the roughness spacing. The
total �lm thickness can be written as the sum of the nominal �lm thickness (Hn) and the
roughness height (Hr)

Htot(x; y) = Hn(x; y) +Hr(x; y) ; (1.1)

with (x; y) surface coordinates along the �lm. The surface height maps in �gures (1.1),
(1.2), (1.3), (1.4), (1.6) and (1.7) can be represented by the function Hr(x; y) in equation
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(1.1). Now the Root Mean Square (RMS) roughness can be de�ned as:

�2 =
1

4L2

Z L

�L

Z L

�L
H2

r (x; y) dxdy : (1.2)

The Auto-Correlation Function (ACF) in x-direction is de�ned as:

Rx(�) =
1

4L2

Z L

�L

Z L��

�L
Hr(x; y)Hr(x+ �; y) dx dy ; 0 � � � L : (1.3)

and a similar expression for Ry(�). For many surfaces the ACF can be represented by the
equation

R(�) = �2e�(�=�l)
2

cos(
2�

�!
�) ; (1.4)

where �l is the correlation length and �! is the correlation wavelength. The proposed
R(�) can be �tted to the experimentally found Rx(�) and Ry(�), resulting in a correlation
length/wavelength in, respectively, the x and y direction. The cosine in equation (1.4)
indicates that there is some regularity in the surface, introduced by the manufacturing
process. The smallest of the two correlation lengths, �l and �!, de�nes the characteristic
roughness wavelength �c. It is now possible to analyze some real surfaces. This was
also considered in [27] where a table was constructed containing information about the
ratio H=�c. For di�erent bearings the same analysis will be conducted here. Because the
operating conditions are unknown, the �lm thickness is assumed to be H = 1:0 � 10�6[m].

In table (1.1) the � and �c have been collected for the di�erent bearings. The �c's
have been split up in a �x

c and a �y
c . They are calculated from �tting R(�) to the

experimentally found curves of Rx(�) and Ry(�), respectively. Furthermore, it was not
necessary to include the cosine term in equation (1.4), because if a regular pattern is
present, the �! is much longer than the �l. The bearing code corresponds to the code
given in �gures (1.1), (1.2), (1.3), (1.4) and (1.6). In table (1.1) also the statistical
parameters for the rolled sheets, shown in �gure (1.7), are collected.

Table (1.1) shows that H=�x
c and H=�y

c can reach values of the order of O(0:1) but
for a ten times smaller �lm thickness, not unusual in EHL, they are of the order O(0:01).
The �, a measure for the amplitude of the surface roughness, is of order O(1 �10�8)[m]. It
is observed that the � of the roll surfaces is much larger then the � of the bearing surfaces
but the �c is for both type of surfaces of the same order.

1.3 Reynolds versus Stokes

For a Newtonian uid the Navier-Stokes (NS) equations describe the conservation of
momentum. If the inertia terms are very small compared to the viscous terms, they reduce
to the Stokes equations. Assuming that H=L� 1 ,where H is the local �lm thickness and
L some typical length scale in the contact, it follows from the Stokes equations that the
pressure is independent of the cross-�lm coordinate. This simpli�es the Stokes equations
and an expression for the velocity �eld as a function of the unknown pressure can be
found. Substitution of the velocity �eld in the continuity equation and integrating it over
the �lm thickness results in the Reynolds [65] equation. This is an equation in which the
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Bearing � (10�8[m]) �y
c (10

�6[m]) �x
c (10

�6[m]) H
�yc

H
�xc

Ai 3:3 4:4 33:5 0:23 0:03
Ao 3:7 5:4 33:7 0:19 0:03
Ar 9:4 10:3 8:8 0:10 0:11
Bi 11:0 3:6 7:5 0:28 0:13
Bo 7:6 13:3 99:6 0:08 0:01
Br 6:1 8:2 35:7 0:12 0:03
Co 49:2 72:5 12:6 0:01 0:08
Cr 9:9 5:4 12:6 0:19 0:08
cold rolling 165:0 39:3 75:8 0:03 0:01
post-rolling 147:0 26:9 49:5 0:04 0:02

Table 1.1: Statistical parameters for di�erent bearing types and rolled sheet. Assumption
H = 1:0 � 10�6[m]

pressure is independent of the cross-�lm coordinate. The assumption H=L � 1 may no
longer hold in the case of non-smooth surfaces.

As mentioned in the previous section the trend in bearing design is towards more
extreme conditions which lead to smaller nominal �lm thickness values. At a certain
point obviously the amplitude of the surface roughness will be of the same order of the
�lm thickness and the question arises to what extend the Reynolds equation is still valid.
Based on the anticipated validity of the Reynolds equation one now distinguishes two
types of roughness: Reynolds roughness versus Stokes roughness, see Elrod [25]. They
are de�ned as:

� Reynolds roughness H=�c � 1.

� Stokes roughness H=�c � 1,

where �c represents the characteristic wavelength of the surface roughness. By charac-
teristic wavelength is meant the �c introduced in section (1.2). It was observed in table
(1.1) that ratios of H=�c � 0:1 can occur. So, in the case of Reynolds roughness, the
Reynolds equation appropriately describes the uid ow in a lubricated contact, otherwise
the Stokes equations should be used.

This separation between two types of roughness is rather academic. It only indicates
which type of modeling equation(s) can be used to analyze the problem. In practice
assuming Reynolds roughness simply means assuming that the �lm geometry is such that
both on a global as well as on a local scale its e�ect on �lm formation can be analyzed
by means of the Reynolds equation without justi�cation for this assumption being given.
Also, it is not clear where the border between Reynolds and Stokes roughness should be
drawn and how it is related to the problem parameters. As a result Reynolds roughness in
practice simply means that the models and numerical algorithms that have been developed
based on the Reynolds equation and assuming smooth surfaces are modi�ed or adapted
such that rough surface e�ects can be incorporated.
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Based on the way in which roughness e�ects are incorporated in a model (Stokes or
Reynolds) one can distinguish two approaches:

� Deterministic approach

� Statistic approach

These two approaches are related to the ways in which rough surfaces can be analyzed
as shown in the previous section. The deterministic approach is related to the exact
description of the surface geometry as a function of the coordinates, i.e. equation (1.1).
The �lm thickness given by this equation is used in the model, e.g. Reynolds' equation,
which is then solved. Originally this deterministic approach was not very popular. An
accurate description of a surface geometry on a local scale requires many grid points
and for a long time most numerical solution algorithms could not even deal e�ciently
with the smooth surface problem, let alone that it could be solved with so many grid
points that taking into account surface roughness or local features in a deterministic way
seemed feasible. This situation has changed in the past decades. Early examples of
deterministic studies in the �eld of EHL are [30], [31]. With the present generation of
stable and e�cient algorithms for the models based on Reynolds equation even transient
problems can be solved using many grid points on small scale computers. As a result
also the e�ects of surface features on �lm formation and performance of point contacts
can now be analyzed in a deterministic way. Examples of such studies are [91], [92] and
[97]. Quite encouragingly the agreement between the results of experiments using optical
interferometry [41] and the computed �lm shapes is very good. However, in the particular
case of an arti�cial ridge moving through the EHL contact discrepancies were observed
between the experimental [41] and theoretical [89] results that could not be explained.

The numerical simulation involves the solution of the time-dependent Reynolds equa-
tion. It was found that a uctuation of the height, for example induced by a ridge, will
pass through the contact with the average speed of the contacting bodies, independent
of the speed of the feature that induces it. In the numerical simulations the form of the
induced uctuation of the height does not change signi�cantly during the passage through
the contact region. In the experiments we can detect a spreading of the uctuation of the
height. This could indicate the limits of the Reynolds equation. More general we are led
to the question to what extent a surface feature leads to a �lm pressure dependent on the
cross-sectional position.

As explained in the previous section, instead of looking at surface height maps, one
can try to characterize a surface roughness pro�le by means of statistical parameters.
This way of looking at rough surfaces has led to the so-called statistic approach. In this
approach one does a number of assumptions regarding the statistical properties of the
roughness distribution. The statistical roughness description is then substituted in the
model problem and after an often lengthy analysis a generalized Reynolds or Stokes model
follows in which integrals of the surface roughness appear. The integrals can be recasted
in a form that contains the Auto-Correlation Function (ACF) of the surface roughness.
The resulting model is only slightly more complex then the model for the smooth surfaces
which obviously explains its popularity when fast numerical solution algorithms were not
yet available. The most dominant statistical quantity appearing in the equations are the
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Root Mean Square (RMS) value of the roughness and the auto-correlation length of the
surface roughness. In general it is observed that the occurrence of roughness yields a
larger load capacity then for the smooth surface case. Examples of this approach based
on Reynolds equation are the works of Tzeng and Saibel [84], [85], Christensen and co-
workers [13], [14], [15], [16], Elrod [25], [26] , Cheng and Dyson [10] and also [11], [12], Sun
[76], Phan Thien, [58], [60], [61], [62] and Prakash [63]. A related approach referred to as
'the ow factor method' is where the details of the roughness enter in coe�cients of the
Reynolds equation as so-called ow factors, see [54], [56], [78], [27], [82]. This ow factor
method is widely used in practice. It has been used in both Hydrodynamic Lubrication as
well as Elastohydrodynamic Lubrication problems. Examples of the latter are [70], [55],
[83].

Most likely because of the additional dimension and the associated additional problems
related to the analysis and numerical solution only very few studies exist in which the
Stokes problem or Stokes roughness is considered. Probably the earliest examples are the
work of Sun and Chen [77] using the statistical approach and of a later date [59]. Also in
[48] and [49] Stokes roughness was studied using a perturbation approach.

Only a few researchers [50], [72] have tried to solve numerically the Stokes equations
in the case of a hydrodynamically lubricated contact. In [50] a multi-grid solver was
developed to solve the Stokes equations on a highly anisotropic-rectangular domain. In
[72] the EHL problem is solved but now the uid ow is described by modi�ed Stokes
equations (some viscous terms have been omitted). Especially for sliding, the results show
di�erences between the Reynolds and the Stokes solution.

From the above it can be concluded that the geometry of the contact determines the
validity of the Reynolds equation but one has never shown the exact conditions on the
geometry. What about the other quantities that enter the Reynolds equation like the
density and the viscosity? Is it possible that a rapid change in these quantities limits the
validity of the Reynolds equation? This was pointed out by [1] in the case of a pressure-
dependent viscosity. It was shown analytically that a cross-�lm ow exists for a Stokes
ow between parallel plates. So, besides geometrically induced di�erences between the
Reynolds and the Stokes solution, it was found interesting to investigate the e�ect of a
pressure-dependent viscosity and/or density on the validity of the Reynolds equation. An
application of a pressure-dependent density can be found in gas bearings where one uses
the ideal gas law to describe the relation between pressure and density. The cavitation
of the oil in the outow region in bearings can be simulated with a pressure-dependent
density.

Besides the investigation of the limits of the Reynolds equation, it is also a challenge
to develop the necessary numerical tools. Some numerical di�culties are encountered
in solving the Stokes equations. For example: the strong anisotropy of the domain, the
curved boundary and the rapid change of density and viscosity. These problems may seem
small for CFD-oriented readers but are rather new in tribology.

In conclusion it can be said that the applicability of the Reynolds equation is ques-
tionable in two ways: extreme geometries, severe viscosity/density pressure relations.
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1.4 Outline of this thesis

In chapter (2) the Reynolds equation is derived. The uid momentum equations are
introduced and a perturbation approach is explained. Furthermore, some relation between
viscosity, density and pressure are introduced to model gas bearings and cavitation. In
chapter (3) the numerical techniques to solve the equations, introduced in chapter (2), are
explained. Also, in this chapter, the multi-grid performance and numerically accuracy of
the developed solvers will be illustrated. Chapter (4) contains the results of the numerical
and perturbation work for the di�erent types of surface features. In chapter (5) some
applications concerning a pressure-dependent viscosity and density are presented. And,
�nally, the conclusions and recommendations of the present work are presented.
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(a) (b)

Figure 1.1: (a): Photo of ball bearing A. (b): Surface heights of inner raceway of bearing
A.

(a) (b)

Figure 1.2: Surface heights of bearing A. (a): For the outer raceway. (b): For the ball.
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(a) (b)

Figure 1.3: (a): Photo of cylindrical roller bearing B. (b): Surface heights of inner
raceway of bearing B.

(a) (b)

Figure 1.4: Surface heights of bearing B. (a): For the outer raceway. (b): For the roller.
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Figure 1.5: Photo of spherical roller bearing C.

(a) (b)

Figure 1.6: Surface heights of bearing C. (a): For the outer raceway. (b): For the roller.

(a) (b)

Figure 1.7: Surface heights of rolled sheet. (a): After cold rolling. (b): After a
post-rolling step.
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Chapter 2

Theory

As explained in the previous chapter, technical surfaces are never perfectly smooth. For
thinner �lms the inuence of the roughness on the performance will increase. If the
roughness is such that the gap is still locally narrow, its e�ects may still be predicted
accurately from the Reynolds equation. However, the question is what criteria regarding
amplitude, wavelength etc. should be satis�ed. The investigation of the validity of the
narrow gap assumption forms the topic of this thesis.

As a start, in this chapter a description of the ow between the surfaces is given,
based on the Stokes equations. The Stokes equations are written in a boundary �tted
coordinate system to handle non-rectangular domains. The transformed momentum and
continuity equations are rather involved, but the implementation of boundary conditions
is easy. It is shown how the Reynolds equation is deduced from the Stokes equations.
In particular, with a perturbation analysis of the Stokes equations it is shown that the

Reynolds equation is the zeroth order perturbation solution. Not only geometry limits
the validity of the Reynolds equation but also a pressure dependent viscosity or density.
A pressure dependent density will be used to simulate gas lubrication and cavitation. To
simulate real lubrication problems, cavitation must be included, to prevent the pressure
from being lower then the vapor pressure. It is mentioned that special care must be taken
if one computes the lift force, in the Stokes case, because certain terms do not drop. The
lift force can be used to quantify the di�erence between the Reynolds solution and the
Stokes solution.

2.1 Stokes model

The motion of a Newtonian uid can be described by the Navier-Stokes (N-S) equations.
In Cartesian coordinates they are given by:

@(�v)

@t
+r � (�v 
 v + p�1� �� ) = �fe ; (2.1)

where for i; j = 1; 2; 3 and (x1; x2; x3) = (x; y; z) 2 


(�1)ij = �ij ;

13
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(��)ij = �(
@vj

@xi
+

@vi

@xj
)� 2

3
�(r � v)�ij ;

� = viscosity ;

� = density ;

v = (u; v; w)T velocity vector ;

fe = external force �eld :

In the following it will be assumed that there are no external forces. The density and the
velocity have to satisfy the continuity equation:

@(�v)

@t
+r � (�v) = 0 : (2.2)

Although, in a thin �lm, thermal e�ects can play an important role, throughout this
thesis isothermal conditions are assumed. This implies that the energy equation is not
required in the mathematical model of the ow. However, this does not imply that the
lubricant properties are constant. Generally the viscosity and the density depend on the
pressure. In this thesis only two-dimensional ow problems will be studied. Figure (2.1)
shows a typical con�guration of a lubricated contact between two surfaces. The boundary
conditions for the ow in the gap will be given in terms of the velocity of the surfaces
and the pressure at the inlet and outlet of the �lm. A pressure boundary condition at the
inow/outow is needed because, generally, the velocity pro�les on these boundaries are
not known.

�3

�2
�4

�1

x

z

o

h2(x)

h1(x)

Figure 2.1: The domain 
.

The boundary conditions are:

�1 : v = u0 ;
�2 : u = 0; w = 0 ;
�3 : p = 0; w = 0 ;
�4 : p = 0; w = 0 :

(2.3)
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The pressure on the boundaries �3 and �4 is taken to be zero because in a hydrodynam-
ically lubricated contact the pressure is large, compared to the ambient pressure. In this
thesis only steady ow situations are considered. This implies that the surface on which
a feature is present (�2 in �gure (2.1)) has zero velocity.

To analyze the equations, dimensionless variables have been introduced according to
[49]. Assuming a characteristic speed u0, a characteristic length L in the x-direction, a
characteristic height H in the z-direction, a characteristic density �0 and a characteristic
viscosity �0, the variables can be transformed according to:

u ! u0u ;
w ! �u0w ; � = H

L
;

x ! Lx ;
z ! Hz ;
� ! �0� ;
� ! �0� ;
p ! �0u0

H
p :

(2.4)

Substitution of (2.4) leads to the dimensionless momentum equations:
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and the equation of continuity:

@(�u)

@x
+
@(�w)

@z
= 0 ; (2.7)

where Re = H�0u0
�0

represents the Reynolds number based on �lm height. The above
equations will henceforth be referred to as the \Navier-Stokes model". If surface roughness
does not play a role (the surface heights are small compared to the �lm thickness) then in
for example EHL contacts � = O(0:001) and Re = O(0:001). In that case the convective
terms and certain viscous terms can be neglected in equation (2.5) and (2.6). These
simpli�ed equations then lead to the Reynolds equation as is explained in section (2.1.2).
Otherwise, if surface roughness is considered, locally the parameter � may not be small
(take for H the local �lm thickness and for L the characteristic roughness wavelength)
and certain viscous terms in equations (2.5) and (2.6) do not drop. So the viscous terms
are of order one and still Re� 1. This means that the convective terms can be dropped.
In [48] it has been demonstrated with a series expansion in the parameters � and Re
of the dependent variables in equations (2.5), (2.6) and (2.7) that for a ow between
a geometry like in �gure (2.1) and boundary conditions (2.4), the pressure correction
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resulting from the convective terms is much smaller then the pressure correction from the
viscous terms. In their study the wavelength of the harmonic surface roughness was of
the order of the �lm thickness, the amplitude was 0:75 times the �lm thickness, � = 0:003
and Re = 0:001. Therefore, as a �rst step, in this work convective terms are neglected.
In that case, equations (2.5), (2.6), (2.7) reduce to:
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@z
= 0 : (2.10)

Equations (2.8), (2.9) and (2.10) will henceforth be referred to as the \Stokes model".
For an incompressible ow these equations further reduce to:
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@z
= 0 : (2.13)

If � is also constant (� = 1) the momentum equations are of elliptic type and simplify to:
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+
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If � is a function of p and the density is not, then they can be fully elliptic, partially
parabolic or partially hyperbolic, depending on the value of (d�

dp
)2[(@u

@z
+ @w

@x
)2�4@u

@x
@w
@z
]�1,

see [1] and appendix (A).
An important quantity, often used to visualize the ow �eld, is the stream function

�(x; z) de�ned by:
@�

@z
= �u ;

@�

@x
= ��w : (2.17)

It can be calculated according to

�(x; z) =
Z z

0
�u dz0 : (2.18)

The streamlines are de�ned by the lines of constant �.
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2.1.1 Curvilinear coordinates

To handle non-rectangular boundaries it is convenient to introduce a transformation of
the independent variables from Cartesian coordinates to curvilinear coordinates. The
advantage is that the implementation of boundary conditions is much easier and also that
the domain on which the problem is to be solved transforms into a rectangular domain on
which it is easier to discretize. In our tribological context there will be no steep gradients
in the grid lines, i.e., � is small. As a result it is su�cient to transform only the x- and
z- coordinate and there is no real need to transform the velocity vector too. This has the
advantage that the di�cult task of discretizing Christo�el symbols [93], resulting from
the velocity transformation, does not arise. This idea of �rst transforming the momentum
equations from the physical domain to the computational domain and then discretizing
the equations on a rectangular grid is based on the work of Oosterlee [51].

Let the relation between the physical coordinates x = (x1; x2) = (x; z) 2 
 and the
computational coordinates (�1; �2) 2 G be given by:

x = x(�1; �2) ; (2.19)

see �gure (2.2) for an illustration. It is demanded that the inverse transformation exists,
so the Jacobian J of the transformation:

J =

 
@x
@�1

@z
@�1

@x
@�2

@z
@�2

!
: (2.20)

has a non-zero determinant. Subsequently, with the contravariant base vectors, the co-
variant base vectors and the relations between these, the Stokes equations, can be trans-
formed from the physical domain into the computational domain. Contravariant base
vectors a(k); k = (1; 2) are de�ned as vectors normal to the �k = constant lines,

a(k) = r�k : (2.21)

Covariant base vectors a(k) are de�ned as vectors tangential to the coordinate lines �k:

a(k) =
@x

@�k
: (2.22)

In this coordinate system a vector is de�ned as:

u = u1a(1) + u2a(2) : (2.23)

As an example the covariant vectors a(i) are shown in �gure (2.2). In the following the
Einstein summation convention1 will be used. Using the metric tensor gkl

gkl = a(k) � a(l) ; (2.24)

the following holds:

det(J) = det(gkl) =
p
g = a1(1)a

2
(2) � a1(2)a

2
(1) : (2.25)

1Summation over repeated subscript/superscript indices, for example uiui = �iu
iui
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�1

�2

a(1)

a(2)

x1

x2

Figure 2.2: Curvilinear coordinates �1; �2 with covariant base vectors.

Introducing the de�nition of the gradient:

r = a(k)
@

@�k
(2.26)

and using the geometrical conservation law:

@

@�k
(
p
ga(k)) = 0 ; (2.27)

leads to the following expressions of equations (2.8), (2.9) and (2.10), transformed to
curvilinear coordinates in a conservative form:
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The equations (2.11), (2.12) and (2.13) transform to:

2�2
@

@�k

"
�
p
ga

(k)
1 a

(l)
1

@u

@�l

#
+

@

@�k

"
�
p
ga

(k)
2

 
�2a

(l)
1

@w

@�l
+ a

(l)
2

@u

@�l

!#
=

= �
@

@�k
(
p
ga

(k)
1 p) ; (2.31)



2.1. STOKES MODEL 19

@

@�k

"
�
p
ga(k)1

 
�a(l)2

@u

@�l
+ �3a(l)1

@w

@�l

!#
+ 2�

@

@�k

"
�
p
ga(k)2 a(l)2

@w

@�l

#
=

=
@

@�k
(
p
ga

(k)
2 p) ; (2.32)
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In these equations the contravariant base vectors a(k)l appear. However, because x =
x(�1; �2), it is more convenient to use the covariant base vectors instead. The two types
of base vectors form an orthonormal set,

a(k) � a(l) = �kl : (2.34)

From this it follows that:

a(1) =
1p
g

 
a2(2)

�a1(2)

!
; a(2) =

1p
g

 �a2(1)
a1(1)

!
: (2.35)

2.1.2 Reynolds equation

From equations (2.8), (2.9) and (2.10) the Reynolds equation (see [65]) can be derived.
Let the upper and lower surface be de�ned by z = h1(x) and z = h2(x), see �gure (2.1),
and it is assumed that � = �(p); � = �(p). If in equation (2.8) the terms containing �2

are omitted and if in equation (2.9) the terms containing � and �3 are omitted, it follows
that:

�
@p

@x
� @

@z
(�
@u

@z
) = 0 ; (2.36)

@p

@z
= 0 ; (2.37)

@(�u)

@x
+
@(�w)

@z
= 0 : (2.38)

From equation (2.37) it follows that p(x; z) = p(x). Integrating equation (2.36) twice with
respect to z using the boundary conditions u(x; z = h1(x)) = u1 and u(x; z = h2(x)) = u2
gives:

u(x; z) =
�

2�

dp

dx
(z2 � z(h1 + h2) + h1h2) + z

(u2 � u1)

h2 � h1
+
h1u2 � h2u1
h1 � h2

: (2.39)

Because the pressure is now invariant under a z-coordinate transformation z ! z � h1
and h = h2 � h1, the above equation can be transformed into:

u =
�

2�

dp

dx
(z2 � zh) + z

(u2 � u1)

h
+ u1 : (2.40)
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Integrating the continuity equation with respect to z,

Z h(x)

z=0

@(�u)

@x
dz +

Z h(x)

z=0

@(�w)

@z
dz = 0 ; (2.41)

leads to
d

dx

Z h(x)

z=0
(�u)dz � �u(x; h(x))

dh

dx
+ �w(x; h(x))� �w(x; 0) = 0 : (2.42)

where use has been made of the \Leibniz" rule2. Substitution of u from equation (2.40) and
the boundary values for u,w together with w(x; h(x)) = u(x; h(x))dh

dx
gives the Reynolds

equation for this speci�c problem (see �gure (2.1)):

d
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h3 + �h

(u1 + u2)

2

#
= 0 : (2.43)

So, in the Reynolds case the domain can be transformed to the height function h(x).
Summarizing, if �� 1 the pressure will not depend on z. As a result, solving p, u, w as
a function of x, z can be replaced by solving p(x) from (2.43) with the gap function h(x)
given and appropriate boundary conditions. The velocity u(x; z) can then be obtained
from equation (2.40). Finally, the velocity pro�le w(x; z) follows from the equation of
continuity:
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@(�u)

@x
dz : (2.44)

After substitution of (2.40) in (2.44) and using (2.43) to eliminate d2p
dx2

an expression for
w follows:
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(2.45)

So, if � is small, rather then solving a two-dimensional ow problem, it su�ces to solve a
one-dimensional ow problem. However, if � is not small, the assumption that p = p(x)
will no longer be valid and the complete system of equations must be solved on a two-
dimensional domain.

2.2 Perturbation

For small �, the Reynolds equation is expected to yield accurate results. For large �,
Stokes must be solved. However, one may expect that there is an intermediate regime in
which a \corrected" Reynolds solution can be useful. In particular, is it possible to pro-
duce a better approximation than the Reynolds solution, in the tribologically interesting

2 d
dx
(
R h2(x)
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g(x; z)dz) = g(x; h2(x))
dh2
dx

� g(x; h1(x))
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+
R h2(x)
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@g
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dz
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operating range? Such a solution can indeed be obtained from a perturbation analysis.
This analysis is presented below.

A regular expansion in �2 for the dependent variables in equations (2.14), (2.15) and
(2.16) was used, as proposed in [49]. The parameter �2, occurring in these equations, must
be small to give a convergent expansion. However, even for small �2 the expansion can
break down when the gradient in the surface is too large, which may be due to a local
surface feature. After introduction of the parameter  = �2, the Stokes equations can be
written as:

�
@p

@x
� @2u

@z2
� 

@2u

@x2
= 0 ; (2.46)

�
@p

@z
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@2w

@z2
� 2

@2w

@x2
= 0 ; (2.47)

@u

@x
+
@w

@z
= 0 : (2.48)

These are the same as equations (2.14), (2.15) and (2.16), only equation (2.15) is multiplied
by �. So e�ectively a new variable is introduced, namely �p. If another scaling had been
used, like p! �0u0L

H2 p, then equations (2.14), (2.15) and (2.16) would only contain  and
2 and series expansion in  would be obvious. For  = 0 they give equations (2.36),
(2.37) and (2.38) (with � = 1 and � = 1), which lead to the Reynolds equation. The
following expansion of the dependent variables will be substituted in the above equations:

u(x; z) = u0(x) + u1(x; z) +O(2) ;
w(x; z) = w0(x; z) + w1(x; z) +O(2) ;
p(x; z) = p0(x) + p1(x; z) +O(2) :

(2.49)

Equating equal orders in , gives to zeroth-order:
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@p0
@x

� @2u0
@z2

= 0 ; (2.50)

�
@p0
@z

= 0 ; (2.51)

@u0
@x

+
@w0

@z
= 0 : (2.52)

Upon integration of equation (2.50) twice, with respect to z and using the velocity bound-
ary conditions u0(x; 0) = 1, u0(x; h) = 0, it follows that

u0 =
�

2

dp0
dx

z(z � h)� z

h
+ 1 : (2.53)

After substitution of u0 in equation (2.52) and integration with respect to z, the Reynolds
equation for p0(x) results:

d

dx

"
6h(x)� �h3(x)

dp0
dx

#
= 0 : (2.54)
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With the help of equation (2.45) an expression for w0 can be deduced:

w0 =
z2(z � h)dh

dx
(�h2 dp0

dx
� 2)

2h3
: (2.55)

The equations for the �rst-order terms are the same as the equations given above,
however, now the right-hand side is not zero but formed by derivatives of the zeroth-order
solution.
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; (2.56)
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@z2
; (2.57)

@u1
@x

+
@w1

@z
= 0 : (2.58)

The set of equations (2.56), (2.57) and (2.58) can be solved in a similar way as the set of
equations (2.50), (2.51) and (2.52). The integration of equation (2.57) with respect to z
gives an expression for the pressure correction,

�p1 =
@w0

@z
+ ~p1(x) : (2.59)

The double integration of equation (2.56) with respect to z results in an expression for
u1. The unknown variable p1 in the equation for u1 follows from equation (2.59). After
integration of equation (2.58) with respect to z and substitution of the expression for u1
and the correct boundary values, an equation for ~p1 follows:
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(6c1�+ 28h(x)) +
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dx2
h(x)(c1� + 4h(x)) �10h(x)3d~p1
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#
= 0 : (2.60)

where c1 is an integration constant3 resulting from integration of equation (2.54). As
p0 = p0(x) it is clear that the z-dependency in the �rst-order correction comes from @w0

@z

which is already known when the Reynolds solution is available. The ~p1(x) gives an overall
correction. Hence, to �rst order in , the z-dependency can be easily found. So a local
surface feature does not only a�ect the pressure locally, but also globally.

Finally, to show that even for small  the perturbation series and hence the Reynolds
equation loses its validity, the Stokes equations have been written out with a1(1) = 1,

a2(2) = h(�1) and a2(1) = �2 dh
d�1

in the transformed coordinate system. For the u-momentum
equation it follows that:
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For the w-momentum equation it follows that:
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For the continuity equation one obtains:
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#
= 0 : (2.63)

For the equations (2.61),(2.62) and (2.63) to reduce to the Reynolds equation it is nec-
essary that the terms with  and 2 in the above equations are small. However, these
terms also contain factors like 1

h
, dh
d�1

and d2h
d(�1)2

. Now, for a small  a product like  dh
d�1

can nevertheless be large and the terms containing these factors can not be omitted as
was done in the derivation of the Reynolds equation. If the contact surface is considered
to be built up out of Fourier components, a function for h, consisting of a single wave,
could look like:

h(�1) = 1� Am sin
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!
; (2.64)

where � is a typical wavelength. And the factors which can counteract for a small  look
like:
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So, even for surface features with a small amplitude, if the wavelength is su�ciently small,
the Reynolds equation is not appropriate.

2.3 Pressure-dependent viscosity and/or density

Not only the geometry of the domain determines if the Reynolds approximation is valid
but also the functional dependence of the density and the viscosity on the pressure. For
mineral oils which are commonly used as lubricant, the viscosity may increase exponen-
tially with pressure. It has been pointed out in [1] that this rapid change of viscosity as
function of pressure can have a bad inuence on the validity of the Reynolds equation.
What about a pressure dependent density?

To study the validity of the Reynolds equation in the case of a pressure dependent
density the simulation of gas lubrication will be used. For this purpose the model will be
extended with an equation of state.

Finally, some kind of a cavitation algorithm is needed to prevent the pressure from
dropping below the vapor pressure. A more realistic lift force can then be calculated. In
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this work the cavitation is modeled with a two-phase model. In this model the density,
as function of the pressure, changes abruptly, in the neighborhood of the vapor pressure,
from the liquid density to the vapor density.

2.3.1 Piezo viscosity

In the �eld of lubrication the most widely used equations for a pressure-dependent vis-
cosity are exponential: the Barus law [2] and the Roelands law [68]. To study the e�ect
of a pressure-dependent viscosity on the validity of the Reynolds equation, in this thesis
the Barus law has been used. In scaled variables it reads:

� = e��pp ; (2.66)

where ��p = �p�0u0=H. So, at the inow/outow boundary where p = 0, the un-scaled
viscosity equals �0, the ambient viscosity.

2.3.2 Gas lubrication

In the �eld of gas lubrication the Reynolds equation is also widely used. Generally, a
constant viscosity is assumed. For the density the ideal gas law is assumed to be valid ,

p = �RgT ; (2.67)

where Rg is the gas constant. The Reynolds equation is then deduced from the Navier-
Stokes equations in the same way as was done in section (2.1.2). See [17] for an extensive
discussion. Here we directly give the Reynolds equation:

d

dx
[
��p
12

dp

dx
h3 + ph

(u1 + u2)

2
] = 0 : (2.68)

This is a nonlinear equation containing e�ectively only one parameter (u1 + u2)=�. An
intermediate model between the N-S equations and the Reynolds equation is formed by
the Stokes equations. The use of the ideal gas law in the Stokes equations does not lead
to an extra parameter in the Stokes equations. If the pressure is put equal to unity on the
in- and outow boundaries (p = 0 is unrealistic in a physical sense) and the velocity of the
upper surface u2 is taken zero, the solutions of the Stokes equations for di�erent velocities
of the lower surface are independent of each other. The solutions to the problem are then
governed by two parameters � and u1. This is in contrast to the Reynolds equation, where
for the case u2 = 0 only one parameter u1=� remains.

2.3.3 Cavitation model

In the following it is assumed that the pressure at the inow/outow boundary is equal to
the ambient pressure. This ambient pressure is taken equal to zero because it is, compared
to the large pressure in a hydrodynamically-lubricated contact, very small. Furthermore
it is assumed that the contact is fully ooded. So, there can be no air sucked in from
the inow/outow boundaries. To quantify the di�erence between the Stokes solution for
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the ow in a narrow gap and the Reynolds solution, the force exerted by the uid on
the surfaces can be used. However, for the case of Stokes ow, zero pressure boundary
and a symmetric height function, there will be no net force on the boundary. To obtain
a realistic result cavitation must be incorporated. In that case the pressure pro�le is no
longer anti-symmetric and there will indeed be a net force.

Next, some more details concerning the treatment of cavitation in this work are given.
The pressure is allowed to drop below the saturation pressure because it is assumed there
is no gas dissolved in the uid. The only mechanism that introduces bubbles or gas cavities
in the �lm, is the \vaporization" of the liquid when the pressure drops below the vapor
pressure. For this situation it is experimentally found [22] that there is a vapor/gas bubble
downstream of the narrowest gap (see �gure (2.3)). On the surface which is moving, there
is still a layer of uid.

Assuming a single cavity two major descriptions exist: (a) consider the boundary of
the bubble as a free surface. In the cavity the pressure equals the vapor pressure and
the velocity is zero. There is no ow in or out of the cavity. In [9] a numerical scheme
has been developed to calculate this free surface. Especially in the region where the
cavity closes there are some di�culties; (b) to describe the bubble with a two-phase (TP)
model. There is no distinction between the cavitated region and the non-cavitating region,
in the sense that there is no distinct boundary. The advantage of this model is that it
is easier to implement in a computational method. It may not correctly describe the
physical reality, but it will e�ectively prevent the pressure from dropping below the vapor
pressure. In a tribological context it does not seem strange to take the same pressure
(zero) for the ambient pressure, the saturation pressure as well as the vapor pressure,
because the pressure in the contact is usually high compared to these three pressures.

~n

Figure 2.3: Cavitation bubble in downstream part of the contact.

The model that will be explained here, is based on the work described in [19] and
[39]. The ow of the mixture is described by equations (2.8), (2.9) and (2.10). The vapor
and the liquid move at the same speed, otherwise for each state separate equations with
interaction terms would be needed. The dependent variables now refer to the mixture.
An equation of state is used to complete the system of equations.
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� =

8><
>:

�l if p > pv +�p ;
�v if p < pv ��p ;
�v +��[1 + sin( p�pv

��a2min)
]

; (2.69)

where
pv = vapor pressure ;
�l = density liquid ;
�v = density vapor ;
�� = 1

2
(�l � �v) ;

�p = 1
2
�a2min�� ;

amin = minimal speed of sound in mixture :

(2.70)

Figure (2.4) gives a graphical representation of �(p). The parameter amin can be approxi-
mated by amin � 2av

q
�v
�l
if �l � �v with av the sound of speed in the vapor (for derivation

see appendix (B)). For water at standard conditions it follows that amin = 25[m/s]. There
is still discussion about the correct relation between viscosity and pressure when the pres-
sure approaches the vapor pressure. In [43] di�erent options are mentioned, for example,
a constant viscosity or a viscosity that exhibits the same behavior as the density as a
function of the pressure, i.e., (2.69) with �l replacing �l and �v replacing �v. Numerical
results for both models will be given in the present work.

�

�l

�v
ppv

�p

d�
dp

= 1
a2min

Figure 2.4: Pressure-density diagram for the liquid/vapor mixture.

After scaling according to (2.4) it follows that

�� =

8>><
>>:

1 if �p > �pv +
�
2��
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��0 if �p < �pv � �
2��

;

��0 +
1
2
(1� ��0)[1 + sin(��(�p� �pv))] if �pv � �

2��
� �p � �pv +
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2��

; (2.71)

where
��0 = �v

�l
;

�� = 2�0u0
H�la

2
min

;

�pv = pvH
�0u0

:

(2.72)

For convenience the bars on the scaled quantities will be dropped from now on.
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To show that a model of this form yields the same satisfactory behavior as a cavita-
tion model, usually applied in tribology, we consider its implementation in the Reynolds
equation for a model problem: the ow in a parabolically shaped gap.

In table (2.1) the two-phase (TP) model and the Reynolds cavitation model (RR) are
summarized. In the RR model, cavitation is modeled through the condition, if p > pv the
Reynolds equation is valid, otherwise p = 0. This means that when a zone cavitates it
remains cavitated. In the present model problem, the boundary is in the cavitated region.
In the two-phase model the outow boundary condition in the cavitated region is dp

dx
= 0

because the exact value for the pressure is unknown.

h(x) = (1� �)x2 + �
u1 = 1; u2 = 0

TP RR
d
dx
[���

�
dp
dx
h3 + 6h�] = 0 if p > pv :

d
dx
[�� dp

dx
h3 + 6h] = 0

if p � pv : p = 0

p(x = �1) = 1; dp
dx

���
x=1

= 0 p(x = �1) = 1; p(x = 1) = 0

Table 2.1: Description of the two models.

The two models, TP and RR have been solved numerically, with an upwind discretiza-
tion for the TP model, see section (3.4), and second-order central discretization for the
RR model. For the viscosity the same relation has been used as for the density, equation
(2.71), but now with � replaced by �. The following values have been used: � = 0:01,
� = 0:2 and �0 = 0:01; �0 = 0:01. In �gures (2.5) and (2.6) the results are shown.
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Figure 2.5: (a): Pressure for di�erent �� = ��. (b): Pressure and density for di�erent
�� = ��.

First, �gure (2.5) shows p as a function of x for di�erent values of �� = ��. The �gure
shows that a change in the parameter �� hardly inuences the pressure pro�le; in �gure
(2.5a) all curves coincide. Only near the vapor pressure (= 0) a di�erence between the
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solutions occurs see �gure (2.5b). For increasing �� the TP pressure approaches the RR
pressure. The density is nearly the same for all ��.

With the TP model it is also possible to simulate a cavitated region inside the contact.
The RR model can not be used for this situation because in the cavitated zone continuity
is not ful�lled and a return to the liquid phase is not possible without adding a special
condition. In the following the same parameters have been used, but now with p = 0 at
the outow boundary and with pv = �50 and �� = �� = 50. The results are shown in
�gure (2.6).
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Figure 2.6: (a): Pressure for two-phase model (pTP ), for Reynolds without cavitation
(prey) and pressure gradient for two-phase model. (b): Pressure and density for
two-phase model.
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Figure 2.7: Dotted lines represent �0 = 1:0, �0 = 0:01 and solid lines represent �0 = 0:01,
�0 = 1:0. (a): Pressure and gradient of the pressure. (b): Pressure, density and viscosity.

From �gure (2.6a) it can be seen that the gradient in the pressure is discontinuous in the
condensation point near x = 0:9. In the cavitation zone the density is not the same as
the vapor density. After condensation the pressure is the same as the pressure for the
Reynolds solution without cavitation (dot-dashed line in �gure (2.6a)). Because p is a
function of x and � is a function of p it is clear that � < 1 implies a vaporization of the
uid over the entire �lm thickness.
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Further investigation shows that a constant viscosity gives the same result as in �gure
(2.6). Only if the density is constant and the viscosity pressure dependent, the solution
changes radically. In �gure (2.7) the case �0 = 1:0, �0 = 0:01 and the case �0 = 0:01,
�0 = 1:0 have been plotted. In the constant-density case dp

dx
jumps at two locations, which

is in contrast with the constant-viscosity case. It is also observed that the pressure can
drop below pv.

The results look promising enough to use equations (2.71) for the density and a con-
stant viscosity together with the equations (2.8), (2.9), (2.10) for the uid motion, to
describe cavitation in the non-Reynolds case.

2.4 Lift force

The uid moving through the channel exerts a force on the walls. This force can be
calculated for the Stokes solution as well as for the Reynolds solution. It can be used
to quantify the di�erence between both solutions. The lift force can also serve as a
computational check. The force on the upper and the lower surface must be the same.
However, it should be noted that the lift force should be calculated in a di�erent way
from what is normally done in tribology. This is because the assumption leading to the
Reynolds equation does not hold anymore (that terms with �2 or higher order are small in
the viscous part of the Stokes equations). In this section the lift force will be calculated.
In general the following holds:

Z


r � (�p�1 + ��)d
 =

4X
i=1

Z
�i
(�p�1 + �� ) � nids = 0 ; (2.73)

where the �i boundaries are depicted in �gure (2.1). Expressed in scaled variables, ac-
cording to (2.4) for the viscous compressible case this gives:
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Referring to �gure (2.1) and taking the lower boundary horizontal, for the x-component
in equation (2.74) one obtains:Z
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For the z-component in equation (2.74) it follows that:Z
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Assuming that the ow properties at inow (�3) and at outow (�4) are the same, the
x-component simpli�es to:
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And the z-component simpli�es to:
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Equations (2.77) and (2.78) show that the forces on the di�erent surfaces (�1 and �2)
balance each other. From equations (2.77) and (2.78) the total force vector on the lower
plane can be assembled,

F =

 R
�1
(��(�3 @w

@x
+ �@u

@z
)dsR

�1
(p� 2��@w

@z
+ 2

3
��r � u)ds

!
: (2.79)

Finally, in a Reynolds approximation (� small) the force on the lower surface can be
described by the following vector:

F =

 R
�1
(��� @u

@z
)dsR

�1
(p)ds

!
: (2.80)

Comparing (2.80) with (2.79) shows that in this case only the pressure determines the lift
force. In the case of an incompressible ow and a horizontal lower surface, the expression
for the vertical force exerted on the lower plane is simply the integral over the pressure
(in equation (2.79) r�u = 0 and @w

@z
= �@u

@x
= 0 on �1).

As mentioned above, to quantify the di�erence between the Stokes and the Reynolds
model the generated lift force can be used. In the tribological context the pressure rise
is extreme but also the pressure drop. In principle, it is therefore necessary to have a
cavitation algorithm to prevent the pressure to drop below vapor pressure. Otherwise,
for the case of a symmetric feature on the upper boundary and zero pressure on the inlet
and the outlet, the lift force is zero. In view of the cavitation issue a quantity to measure
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the di�erence between the Stokes and the Reynolds solution, coupled to the lift force, can
now be formulated like:

�R =

R
~�1
pS(x; z = 0)dx� R~�1 pR(x)dxR

~�1
pR(x)dx

; (2.81)

where the tilde in ~� indicates that the pressure is only integrated for positive values.
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Chapter 3

Numerical solution

Equations (2.11), (2.12) and (2.13) will be discretized in a boundary-�tted domain. The
dependence of the viscosity on the spatial coordinates will be incorporated for later use. As
dependent variables the Cartesian velocity components and the pressure have been chosen.
The velocity components will not align with the grid lines. For not too steep grid lines
there will be little loss of numerical accuracy. When contravariant velocity components
are used as in [51], the discretization is more accurate, but also more complex because of
the occurrence of Christo�el symbols. At this point it seems not necessary to use such an
advanced discretization. A �nite-volume (FV) discretization has been used to discretize
equations (2.31), (2.32) and (2.33). A straightforward discretization with the variables in
the cell centers would lead to an unstable discretization. The method of [66] ensures a
stable discretization for cell-centered variable arrangement. An alternative, proposed in
[38], where the velocity variables are placed on cell faces and the pressures on cell centers
also ensures a stable discretization. This so-called staggered grid arrangement has been
used in this work. Subsequently, to solve the resulting system of equations multi-grid
techniques will be used. The performance of the developed solver is illustrated with some
examples.

3.1 Discretization (Stokes equations)

In this section the discretization of the Stokes equations in two dimensions with constant
viscosity and density is worked out. Only the continuity equation needs some revision in
the case of a pressure-dependent density. The physical domain 
 is bounded by four sides.
So, in the transformed space G each line with �i = 0; 1 corresponds to one of the sides
of 
. The transformed equations are discretized on a uniform grid. This computational
grid is de�ned by G�� = f(�1i�1=2; �2j�1=2) = ((i � 1)��1; (j � 1)��2); (i; j) = 1; :::; N +

1; ��1; ��2 = 1=Ng and the coordinates of the cell centers are (�1i ; �
2
j ) = ((i� 1=2)��1; (j�

1=2)��2); (i; j) = 1; :::; N). From the de�nition of G�� it is clear that (��
1 = ��; ��2 = ��)

but for clearness the notation (��1; ��2) is used. For our discretization, the geometrical
functions, a(k), will be required in the grid points de�ned by G��=2.

A stable discretization is ensured by a staggered grid arrangement of the variables, as
shown in �gure (3.1). The pressure is de�ned in the cell center, the u-velocity component

33
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Figure 3.1: Finite volume for the x-momentum equation on a staggered grid. Location
variables: horizontal lines u-velocity, vertical lines w-velocity and dots cell centers
pressure.

on the vertical cell face and the w-velocity on the horizontal cell face. Integration of the
momentum and continuity equations has been carried out over the corresponding �nite
volumes. In �gure (3.1) the �nite volume (FV), corresponding to ui� 1

2
j is shown. For the

x-momentum equation (2.31), using the Gauss theorem, gives:
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where �u is the boundary of the FV for the x-momentum equation and nk the k
th com-

ponent of the unit normal, directed outward of this FV. Taking the dependent variables
constant over the cell faces, when integrating over the cell faces, leads to:
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where ��1 and ��2 are the length of the cell faces in the �1- and �2-direction, respectively.
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A �nite volume for the integration of the continuity equation is centered around pij,
see �gure (3.1). The integration gives:
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p
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l ul]nk ds = 0 ; (3.3)

where �p is the boundary of the FV for the continuity equation and nk is the k
th component

of the unit normal directed outward of the FV for the continuity equation (this FV is
de�ned by the four points (�1
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the dependent variables constant over the cell faces, when integrating over the cell faces,
the discretization of equation (3.3) leads to:
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Because the transformation is from (�1; �2) to (x; y), the covariant base vectors will be
required instead of the contravariant base vectors, see equation (2.35).

The discretization of the partial derivatives in equation (3.2) is carried out by taking
the average of the partial di�erential over a control volume 
. In the viscous part of (3.2)
there are two types of terms. First, those where the variables are de�ned at the location
where they are needed. For example:
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where it is assumed that within 
 ui+ 1
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j is constant along �

2. Second, those where
the variables are not de�ned at the location where they are needed. For example:
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We take uij+ 1
2
= 1
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2
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2
j) and the shifted similar expression

for uij� 1
2
. Regarding the pressure terms in (3.2), a similar approach is used, i.e., if the

value of p is needed in a point at which it is not de�ned, it is determined by interpolation
from the surrounding values. This gives for linear interpolation:
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The viscosity in, for example, the point, (i� 1
2
; j + 1

2
) can be calculated with an analytic

expression. If it is dependent on the pressure, a weighted average of the four neighboring
points will be used. In the discretization of the other equations we do not encounter any
di�culties. A more convenient notation is to write uij for ui� 1

2
j and wij for wij� 1

2
. One

cell then contains �ve variables: uhij, u
h
i+1j, w

h
ij, w

h
ij+1, p
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The discretization of (3.2) can now be written in the following form:
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For the z-momentum equation a similar expression exists:
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For the continuity equation the stencil looks like:

C1
iju

h
ij + C2

iju
h
i+1j + C3

iju
h
ij+1 + C4

iju
h
i+1j+1 + C5

iju
h
ij�1 + C6

iju
h
i+1j�1 + C7

ij�1w
h
ij +

C8
ijw

h
ij+1 + C9

ijw
h
i�1j + C10

ij w
h
i�1j+1 + C11

ij w
h
i+1j + C12

ij w
h
i+1j+1 = 0 : (3.10)

The stencils have di�erent forms at the boundaries where also the right-hand side is not
zero. Next, for a pressure boundary as described in equation (2.3), a detailed description
of the discretization of the �3 boundary (see �gure (2.1)) for the x-momentum equation
will be given. After integration of equation (2.31) over the �nite volume de�ned in �gure
(3.2), it follows that:
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To calculate the partial derivatives, the surface average of the quantity will be used as in
equation (3.5). For the pressure simple interpolation will give:
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(3.12)
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Figure 3.2: FV volume for the x-momentum equation on a boundary where w = 0 and
p = pw.

Linear interpolation will be used to approximate variables in points where they are not
de�ned. For example:
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All the others can be calculated in a similar way. Special care must be taken with the
discretization of @u

@�1
on the boundary. Normally ui� 1

2
j is known, but in a tribological

context a pressure boundary is expected,
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where uij is approximated by (3ui+ 1
2
j � ui+ 3

2
j)=2 and not by (ui+ 1

2
j + ui� 1

2
j)=2, because

then the discretization of @2u
@�12

on the boundary will be equal to zero. The other boundary

elements can be discretized in a similar fashion. The discretization of the other equations
at the boundaries is straightforward and is done in the same manner as explained for the
x-momentum equation.

The covariant base vectors, a(k), can be calculated directly if the analytic expressions
for x; z as function of �1; �2 are known. But then the following identity will not hold in a
transformed coordinate system:
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where u is a constant vector �eld. The transformation is assumed to be of the form:

x = x(�1) ;
z = �2h(�1) ;

(3.16)

thus
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This so-called \scaling on the height" will be used in the rest of this thesis.
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Figure 3.3: A cell in a Cartesian and in a transformed coordinate system.

To compute the contour integral in equation (3.15) in the transformed coordinate system,
the line integral between A and B (see �gure (3.3)) is evaluated, as
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where the cell-face midpoint value is used for the integrand. Using this approximation,
the remaining terms in equation (3.15) can be calculated, resulting in:
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���i+ 1
2
;j

i� 1
2
;j
��2 � a2(1)

���i;j+ 1
2

i;j� 1
2

��1
�
+ u2

�
�a1(2)

���i+ 1
2
;j

i� 1
2
;j
��2 + a1(1)

���i;j+ 1
2

i;j� 1
2

��1
�

:

(3.19)
The second term on the right side of equation (3.19) is zero because a1(2) = 0 and a1(1) does

not depend on �2. The remaining term is then:

u1
 
��2(hi+ 1

2
� hi� 1

2
)� ��1��2

(
dh

d�1

)
i

!
: (3.20)

A Taylor expansion of h gives:

hi+ 1
2
� hi� 1

2
= ��1

(
dh

d�1

)
i

+
1

24
(��1)3

(
d3h

d(�1)3

)
i

+O(��1)4 : (3.21)
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Substituting this into the remaining term, term (3.20), gives

u1
"
1

24
(��1)3

(
d3h

d(�1)3

)
i

+ ��2O(��1)4
#
: (3.22)

From this, it is clear that for large d3h
d(�1)3

the contour integral in equation (3.15) is su�-

ciently small if ��1 is su�ciently small. On the other hand, if a numerical approximation
is used for the geometrical functions, the contour integral in equation (3.15) will be ex-
actly zero. In the following, these approximations will be presented. Because x is only a
function of �1 and z is scaled with the height h(�1), there are two types of approximations
for each covariant base vector,

n
a1(1)

o
i
=

(xi+ 1
2
� xi� 1

2
)

��1
;
n
a1(1)

o
i� 1

2

=
(xi+ 1

2
� xi� 3

2
)

2��1
: (3.23)

For a2(1) the approximation is found to be:

n
a2(1)

o
i;j
= �2j

(hi+ 1
2
� hi� 1

2
)

��1
;
n
a2(1)

o
i� 1

2
;j
= �2j

(hi+ 1
2
� hi� 3

2
)

2��1
: (3.24)

And for a2(2) the expression is:

n
a2(2)

o
i
=

1

2
(hi� 1

2
+ hi+ 1

2
);

n
a2(2)

o
i� 1

2

= hi� 1
2
: (3.25)

It can be veri�ed easily that the contour integral in equation (3.15) is exactly zero with
the above approximations for the covariant base vectors.

It can be shown, by Taylor expansion of the variables, that the described discretization
of the transformed Stokes equations approximates the continuous transformed Stokes
equations up to a truncation error of O((��)2) (taking ��1 = ��; ��2 = ��, as an example,
is in appendix (D) the truncation error of the discretized continuity equation derived).
This means the scheme is consistent. Furthermore, a �nite di�erence discretization of
the Stokes equations on a staggered Cartesian grid is stable, see [38]. It is assumed
that this also holds for the transformed Stokes equations. Consistency and stability of
the scheme ensures convergence of the discrete solution of the problem to the solution
of the continuous problem, see [67], i.e. the di�erence between these two solutions, the
discretization error, decreases with decreasing mesh size. In fact, for a linear di�erential
operator the truncation error and the discretization error are of the same order in ��. For
more information on consistency, stability and convergence see for example [35].

3.2 Solving

The linear system, resulting from the discretization of equations (2.11), (2.12) and (2.13),
consists of 3N2 unknowns in the case of a pressure boundary like in equation (2.3).
Direct solution methods are time consuming. For example Gaussian elimination requires
a number of computations of the order of b2N2 (where b is the bandwidth of the matrix).
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So for the solution of a large system a method based on iterative techniques is required.
Two of the most e�cient methods are: Conjugate Gradient methods (CG) and Multi-
Grid (MG) methods. For an overview of CG methods see [69]. In this work the MG
method will be used. Below a short description of the method will be given. For proofs of
statements in this section and for deeper explanation of MG and basic iterative methods
see [5], [6], [34], [40], [95] and [75].

3.2.1 Multi-grid: general description

For simplicity, consider the linear di�erential operator L working on the unknown u,

Lu = f ; (3.26)

on a domain 
 with appropriate boundary conditions. Suppose that after discretization
on a grid with a mesh size h a linear system of equations is obtained that can be written
as:

Lhuh = fh ; (3.27)

uh being the vector with unknowns and fh the vector with right-hand-side values. Now,
assume some initial approximation uh0 to u

h is given. Subsequently, a sequence of succes-
sive iterates uhm is computed for m = 1; 2; ::;uh0 ! uh1 ! uh2 ! ::uh1 ! ::uh where the
arrow indicates the rule of the process. A general way to describe iterative processes is
to introduce a splitting of the matrix Lh:

Lh = Mh �Nh : (3.28)

Restricting ourselves to processes where uhm+1 is computed using uhm only, the algorithm
used to compute uhm+1 given u

h
m can be written as:

uhm+1 = uhm + (Mh)�1rhm; rhm = fh � Lhuhm : (3.29)

To analyze the behavior of the process, it is convenient to introduce the error in the
iterant, de�ned as:

ehm = uhm � uh : (3.30)

From substitution of (3.30) in (3.29) it follows that:

ehm+1 = (1� (Mh)�1Lh)ehm = Sehm : (3.31)

From this equation it follows that the sequence uh0 ; ::;u
h
m will only converge to uh for

m!1 if the spectral radius1 �spec of the matrix S satis�es the requirement: �spec(S) < 1.
This is, for example, the case if the splitting (3.28) is regular2 and Lh is an irreducible K
matrix:

1�spec(S)=maxfj�j : � eigenvalue of Sg
2For Mh and Nh in (3.28) holds (Mh)�1 � 0 and Nh � 0 elementwise
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De�nition 1 A matrix Lh is called a K-matrix if

(Lh)ii > 0; 8i;

(Lh)ij � 0; 8i; j with i 6= j ;

and X
j

(Lh)ij � 0; 8i;

with a strict inequality for at least one i.

Typical examples of iteration methods are Gauss-Seidel and Jacobi withMh = ~D+ ~L and
Mh = ~D, respectively, where ~D is the diagonal matrix of Lh and ~L is the lower-triangular
matrix of Lh.

Obviously, the e�ciency of the iterative method as a solution technique for the system
of equations (3.27) depends on the rate of convergence. The closer the spectral radius is
to unity, the larger the number of iterations, needed to obtain an approximation to uh

with an error smaller than some pre-set value. To analyze the e�ciency of the process,
the eigenvalues of S need to be determined. In general this may be a cumbersome task.
However, for operators resulting from the discretization of partial di�erential equations
often there is a high regularity in S, i.e., each row has the same entries, except for some
rows representing the equation at points near the boundary. A good approximation of
the behavior of the process can now be obtained by analyzing the matrix S excluding the
boundary terms. E�ectively this means that the system is analyzed as if it is given with
periodic boundary conditions. In that case the eigenvalues of S can be computed easily.
The resulting type of analysis is referred to as \local-mode analysis".

For simplicity, assume a two-dimensional in�nite square grid with grid spacing h.
Functions on this grid can be expressed as Fourier series. Eigenfunctions of S can be
expressed in the form eI k�� where k = fk1; k2gT with ki 2 f0;�1;�2; :::;�1g and �=
f�1; �2gT with �� < �i < �. By de�nition, the eigenfunctions satisfy:

X
l

(S)kl e
I l�� = �(�)eI k�� ;

X
m

(S)kk+m eIm�� = �(�) ;

if (S)kk+m = [S]m then �(�) =
X
m

[S]me
Im�� : (3.32)

In equation (3.32) [S] denotes the stencil representing S. A stencil is a geometric repre-
sentation of an equation at a grid point by the weight with which the variables located
at grid points appear in an equation. As an example, the stencil representation for the
second-order discretized Poisson equation is:

[Lh]m =
1

h2

2
64 0 1 0
1 �4 1
0 1 0

3
75 ; (m)i = (0;�1) (3.33)
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The use of periodic boundary conditions result in a �nite-dimensional matrix S. The
frequencies are then reduced to the discrete points:

� =
�
�n1
N

;
�n2
N

�T
; �N < ni < N ; (3.34)

where (2N + 1)2 is the number of grid points. Equation (3.32) can be rewritten in the
form:

�(�) =

P
k[N ]ke

I k��P
k[M ]keI k�

�
; (3.35)

the ampli�cation factor of an error component eI k�� due to one iteration is de�ned as:

� = j�(�)j : (3.36)

The continuous spectrum of eigenvalues found by local-mode analysis can now be studied
to illustrate the details of the convergence behavior of the iterative process in terms of
the reduction, given to each Fourier component of the error by one step of the process.
This is best shown by means of an example. For Gauss-Seidel iteration applied to the 2D
Poisson problem, where Lh is given by equation (3.33), one obtains

� =

����� ei�1 + ei�2

4� e�i�1 � e�i�2

����� : (3.37)
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Figure 3.4: The ampli�cation factor for the Poisson problem with Gauss-Seidel iteration.

Figure (3.4) shows � as a function of (�1; �2). From this �gure, it can be seen that for
(j�1j; j�2j) � (�; �); (�; 0); (0; �) the ampli�cation factor � � 0:3 whereas for (j�1j; j�2j) �
(0; 0) the ampli�cation factor � � 1; 0. As the set of components (j�1j; j�2j) with j�1j � �
or j�2j � � by de�nition represents \high-frequency" components and (j�1j; j�2j) � (0; 0)
\low-frequency" components, the �gure shows that apparently the iterative process is
very e�ective in reducing high-frequency components, whereas low-frequency components
are hardly a�ected. For these components � � 1�O(h2) if h is the mesh size of the grid.
Consequently on �ne grids many iterations will be needed. This explains the ine�ciency
of many iterative methods. It also implies that the asymptotic speed of convergence of the
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process is determined by the reduction given to the low-frequency components. Moreover
the situation of a poor reduction of low-frequency components aggravates going to �ner
and �ner grids.

The idea behind multi-grid algorithms now is to utilize this speci�c convergence behav-
ior to obtain a much more e�cient process. As the high-frequency components converge
quickly, after a few iterations the remaining error will be dominated by low-frequency
components, and thus it will be smooth. Consequently one does not need a �ne grid
to describe it accurately. The idea is now to introduce a coarser grid and rather than
continuing the iterative process solving uh on the �ne grid, to compute an approximation
to eh on the coarser grid. Generally this must also be done iteratively. However, as will
be shown later, the equation from which eh must be solved is the same as the original
equation. Hence, the same iterative procedure can be used, but, because now it is used
on a coarser grid, by de�nition solving an approximation eH can be done more e�ciently.
Firstly, because the number of nodes is smaller and thus each iteration requires less work.
Secondly, because the convergence rate on this grid will be higher. Once an approxima-
tion for the error on this grid is obtained, it can be used to correct the original �ne grid
approximation. Let H (typically H = 2h) denote the mesh size on the coarse grid. The
entire process is depicted in the following template:

�1 relaxation sweeps Lh~uh = fh

Restriction of the residual rH = IHh r
h = IHh (f

h � Lh~uh)

Solving coarse grid equation LHeH = f̂H = rH

Prolongation �uh = ~uh + IhHe
H

�2 relaxation sweeps Lh�uh = fh

(3.38)

For the case of a non-linear problem the so-called Full Approximation Scheme (FAS) can
be used:

�1 relaxation sweeps Lh(~uh) = fh

Restriction of the residual rH = IHh r
h = IHh (f

h � Lh(~uh))

Solving coarse grid equation LH(ûH) = f̂H = LH(ÎHh ~uh) + rH

Prolongation �uh = ~uh + IhH(û
H � IHh ~uh))

�2 relaxation sweeps Lh(�uh) = fh

(3.39)

The FAS reduces to the linear MG scheme if Lh is a linear operator. In this work FAS is
used. To communicate between the di�erent grids, use is made of the restriction operator
IHh and of the prolongation operator IhH .

The steps in (3.39) yield an e�cient solver only if the coarse grid problem can e�ciently
be solved as well. However, if the �ne grid has many points, also a coarse grid withH = 2h
will still be dense and the iterative process applied on the coarse grid will converge slowly.
The natural step is then to use recurrence, i.e., to apply the algorithm recursively. Thus,
to solve the coarse grid problem an even coarser grid is introduced. This can be repeated
until a coarse grid is reached at which the problem can be solved with only a small amount
of work. Based on the sequence in which coarser grids are used one can now distinguish
di�erent types of coarse grid correction or multi-grid cycles (see �gure (3.5)).

As can be veri�ed easily, the total work involved in a cycle going from a �ne to a coarse
grid and back again will be O(M) ifM is the number of unknowns. The gain in e�ciency
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h

2h

4h

Figure 3.5: V- and W-cycle, circle represents relaxation and lines represent inter-grid
operators.

resulting from the use of coarser grids compared with relaxation on a single grid becomes
clear from the analysis of the performance of the cycle in terms of error reduction. To
estimate this performance the so-called \smoothing rate" is de�ned as:

� = max f�(�) : � 2 [��;��=2)� (�=2; �]g : (3.40)

It tells something about how e�ective the relaxation method is in smoothing the high
frequency error components which are not visible on the coarse grid. For the 2D Poisson
problem the smoothing rate has the value 0:5. The error reduction per MG cycle is
estimated by: ��1+�2 with �1 and �2 the number of relaxation sweeps before and after the
coarse grid computation with a value of � = 0:5 for �1 = 2 and �1 = 1 an error reduction
of a factor 8 is attained per cycle independent of the mesh size. As the total work of the
cycle is only a little larger than the work of the �1 + �2 relaxations actually performed
on the �nest grid, the gain in e�ciency is large. Assuming that the problem is solved
when the numerical error is smaller than the discretization error that is made anyway,
the total work needed to solve the problem using cycles is O(M log(M)). The log(M)
can be removed if a good �rst approximation is used. This is achieved through the Full
Multi-Grid (FMG) process. In addition to using the coarser grids for the acceleration of
convergence of the solution on the �ner grid, the coarser grids are used for the generation
of an accurate �rst approximation. If FMG is used, eventually only O(M) operations are
used to solve the problem to an error comparable to the discretization error. In FMG
the starting point is the coarsest grid (see �gure (3.6)). To go for the �rst time from a
coarse grid to a �ner grid a prolongation operator of the order of the truncation error of
the di�erential operator is needed. This is indicated in �gure (3.6) by double lines.

h

2h

4h

Figure 3.6: Full Multi Grid, circle represents relaxation and lines represent inter-grid
operators.

A FMG process is often needed in non-linear problems to obtain an initial estimate on the
�ne grid that is close to the solution on that �ne grid. Otherwise convergence problems
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may occur in the relaxation step.

Finally, the convergence estimate ��1+�2 is only accurate for small �1 + �2, because it
neglects the e�ect of the inter-grid transfers. A more accurate estimate can be obtained
from a \two-level analysis" which also takes into account the e�ects of the restriction,
prolongation and coarse grid operator. Regarding this coarse-grid operator there are
several choices. The most elegant is probably the use of Galarkin coarsening LH =
IHh L

hIhH . The more easy way followed in this thesis is to take the same operator as used
for the �ne grid but with h ! H. The �rst method has the advantage of representing
fast varying coe�cients on a coarse grid. In the second method it must be ensured that
there are enough points on the coarsest grid to represent the original problem.

This completes a summary of MG techniques. In the following section details of the
implementation for the present problem are discussed, e.g. relaxation, restriction and
prolongation.

3.2.2 Relaxation

A prerequisite for a MG solver is a relaxation scheme that e�ciently reduces high-
frequency error components. For a discrete system of equations resulting from the dis-
cretization of a single equation (elliptic PDE) �nding, such a process is not di�cult, as
Lh often is a K-matrix. However, if Lh is the result of the discretization of a system
of partial di�erential equations this may not be the case. In particular, the matrix Lh

resulting from (3.8),(3.9) and (3.10) is not a K-matrix, due to the zero diagonal elements
of equation (3.10). A suitable relaxation can now be derived as follows. Post-multiply Lh

with Bh

LhBhvh = fh; uh = Bhvh ; (3.41)

in such a way that the splitting

LhBh = Mh �Nh (3.42)

is convergent. The prescript to compute uhm+1 given a uhm now becomes:

uhm+1 = uhm +Bh(Mh)�1rhm; rhm = fh � Lhuhm : (3.43)

This is a so-called distributive method because the Bh in (3.43) distributes the result
(Mh)�1rhm over part of the vector uhm. The choice of Bh determines if it is a coupled
method or an un-coupled method. Examples of un-coupled methods are Distributed
Gauss Seidel (DGS) [4], SIMPLE [53] and distributed ILU [98]. As is shown in [98] they
can all be written in the form (3.43). An example of a coupled method is Symmetric
Coupled Gauss Seidel (SCGS) [87]. In [99], it has been shown that also SCGS can be
put in the form (3.43). In this thesis a line SCGS method will be used. It is a robust
smoother with good smoothing properties. In the next section SCGS will be explained.
Subsequently by means of a smoothing analysis it will be shown that for small � the line
version of SCGS is needed.



46 CHAPTER 3. NUMERICAL SOLUTION

SCGS

For simplicity the method will not be explained in the general notation of the equations
(3.41), (3.42) and (3.43) but in a way that directly shows how to implement it in a
computer code. First it is explained how the method works for one grid cell (see [87]). In
�gure (3.7) a grid cell with a staggered-grid arrangement is shown.

u
ij u

i+1j

w
ij

w
ij+1

p
ij

Figure 3.7: Variable arrangement for SCGS.

SCGS now involves scanning the grid cells in some prescribed order at each cell simulta-
neously solving all �ve unknowns of the cell from the associated �ve discretized equations.
Thus the relaxation step for each cell involves:

�uh = ~uh + (~Lh)�1rh ; (3.44)

where uh = fuhij; uhi+1j; wh
ij; w

h
ij+1; p

h
ijgT , ~uh old approximation to uh, �uh new approxima-

tion to uh and ~Lh is the 5�5 matrix resulting from equations (3.8), (3.9) and (3.10). The
vector rh de�nes the residual for ~uh calculated with (3.8), (3.9) and (3.10). The matrix
~Lh is given by:

~Lh =

0
BBBBBB@

A1
ij A2

ij A11
ij A10

ij A22
ij

A7
i+1j A1

i+1j A13
i+1j A12

i+1j A23
i+1j

B10
ij B11

ij B1
ij B2

ij B22
ij

B12
ij+1 B13

ij+1 B7
ij+1 B1

ij+1 B23
ij+1

C1
ij C2

ij C7
ij C8

ij 0

1
CCCCCCA

: (3.45)

Fortunate it is not needed to invert this full matrix at each step. It has been shown [99]
that the reduced matrix

~Lh =

0
BBBBBB@

A1
ij 0 0 0 A22

ij

0 A1
i+1j 0 0 A23

i+1j

0 0 B1
ij 0 B22

ij

0 0 0 B1
ij+1 B23

ij+1

C1
ij C2

ij C7
ij C8

ij 0

1
CCCCCCA

(3.46)

already gives as good multi-grid convergence rates as the full matrix representation of
~Lh. This matrix can be easily inverted. For problems with � = O(1) this SCGS works
well. However, with decreasing � its e�ciency to reduce high-frequency components with
respect to the z-direction diminishes. This can be overcome by using the relaxation in its
line relaxation variant, see [79]. Instead of solving the system of equations for one grid
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cell all equations of a column of grid cells in the z-direction are solved simultaneously.
See �gure (3.8) for the arrangement of the variables. As the resulting system is a band
matrix, this can still be solved quickly.

pi,N

ui,N ui+1,N

Wi,N

ui,1
pi,1

ui+1,1

Figure 3.8: The arrows indicate the arrangement of the variables in the equation .

In the paragraph (Local mode analysis) it will be shown that this line-SCGS is a good
smoother for small �. The vector of unknowns is uh = fuhiN ; phiN ; uhi+1N ; wh

iN ; ::; u
h
ij; p

h
ij;

uhi+1j; w
h
ij; ::; u

h
i1; p

h
i1; u

h
i+11gT . The matrix ~Lh is a diagonal matrix. It has been solved

exactly with a band diagonal matrix solver.

Local mode analysis

As mentioned above, to obtain an e�cient MG solver for small �, SCGS relaxations must
be used in a line manner. This is illustrated below by means of a Fourier analysis of
the x-momentum equation. This analysis will also give an indication for the conditions
for which smoothing problems will be encountered. The study of a single equation is
justi�ed because the problems with small � are independent of the problems, related to
the coupling, when solving a system of equations.

In Cartesian coordinates the x-momentum equation is:

�
@p

@x
� 2�2

@

@x

"
�
@u

@x

#
� @

@z

"
�(�2

@w

@x
+
@u

@z
)

#
= 0 : (3.47)

To simplify the procedure, the variables p, w and � are assumed to be constant. Equation
(3.47) can be transformed to a curvilinear coordinate system. Taking a1(2) = 0 (see �gure
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Figure 3.9: The physical domain with covariant base vectors.

(3.9)), as will be the case in actual computations in the next chapter, it follows that:

�2�2 @

@�1

2
4a2(2)
a1(1)

@u

@�1
� a2(1)
a1(1)

@u

@�2

3
5+

�2�2 @

@�2

2
4�a2(1)

a1(1)

@u

@�1
+

(a2(1))
2

a1(1)a
2
(2)

@u

@�2

3
5 +

� @

@�2

2
4a1(1)
a2(2)

@u

@�2

3
5 = 0 : (3.48)

De�ning:

g1 = g1(�
1) =

a2
(2)

a1
(1)

; g2 = g2(�
1; �2) = �a2

(1)

a1
(1)

; g3 = g3(�
1; �2) =

(a2
(1)

)2

a1
(1)

a2
(2)

; (3.49)

where g1 6= 0 8 �1 2 G, equation (3.48) can be transformed into

�2�2g1 @2u

@(�1)2
�
 
2�2g3 +

1

g1

!
@2u

@(�2)2
� 4�2g2

@u

@�1@�2
+

�2�2
 
@g1
@�1

+
@g2
@�2

!
@u

@�1
� 2�2

 
@g2
@�1

+
@g3
@�2

!
@u

@�2
= 0 : (3.50)

Only the anisotropic di�usion part of equation (3.50) will now be analyzed. This means
that it is assumed that changes of g1, g2 and g3 in a cell are minimal. This leads to the
following model problem: Solve u from

� @2u

@(�1)2
� g4

@2u

@(�2)2
� g5

@2u

@�1@�2
= 0 ; (3.51)

where

g4 =
�
a2
(1)

a2
(2)

�2
+ 1

2�2

�
a1
(1)

a2
(2)

�2
; g5 = �2a

2
(1)

a2
(2)

: (3.52)



3.2. SOLVING 49

α

δξ1 a2(1)

δξ1 a1(1)

δξ2 a2(2)

Figure 3.10: Cell geometry.

The coe�cients g4 and g5 can be linked to the geometry of a cell in the physical domain,
see �gure (3.10). Two parameters can be identi�ed: �l as a measure for the angle �, and
�l as a measure for the ratio of the lengths of the sides of the cell. It is assumed that the
step size in the computational domain in both directions is equal (��1 = ��; ��2 = ��) and
that there is a uniform grid spacing in the x- direction, thus a1(1) = c. This gives:

�l = tan(�) =
a2
(1)

c
; �l =

a2
(2)q

c2+(a2
(1)

)2
: (3.53)

The coe�cients g4 and g5 are then:

g4 =
2�2�2

l
+1

2�2�2
l
(1+�2

l
)
; g5 =

�2�l
�l
p

1+�2
l

: (3.54)

where g4 > 0 and g5 2 IR.
A �nite-di�erence discretization of equation (3.51), which resembles the stencil result-

ing from the FV discretization of the Stokes equations, leads to the following stencil

[Lh] =
1

(��)2
[�1 2 � 1] +

g4
(��)2

2
64 �12
�1

3
75+ g5

4(��)2

2
64 1 0 �1

0 0 0
�1 0 1

3
75 : (3.55)

The same result can be found with an FV discretization of equation (3.48) and taking the
values of the geometrical coe�cients at the cell center. A Gauss-Seidel splitting results
in the following stencils for Mh and Nh.

h
Mh

i
=

2
64

g5
4
ls �g4ls 0
�1 2 + 2g4 0
�g5

4
�g4 (1� ls)

g5
4

3
75 ;

h
Nh

i
=

2
64 �

g5
4
(1� ls) g4(1� ls)

g5
4

0 0 1
0 0 �ls g54

3
75 ; ls = 0; 1 : (3.56)
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For ls=0 the above splitting corresponds to Gauss-Seidel pointwise relaxation. For ls = 1
it corresponds to a vertical line Gauss-Seidel relaxation. Because of the term g5=4 in
equation (3.55), Lh is not a K-matrix. This means that it is not certain whether there is
a splitting of Lh which leads to a convergent iterative method. Nevertheless, it can be a
good smoother.

To study the quality of the smoother, the ampli�cation factor has been calculated,
according to equation (3.36): For the Gauss-Seidel pointwise case this gives

� =

�����
g5
4
(ls � 1)eI(�2��1) + g4(1� ls)e

I�2 + g5
4
eI(�1+�2) + eI�1 � g5

4
lse

I(�1��2)

2 + 2g4 +
g5
4
eI(�2��1) � g4lseI�2 � e�I�1 � g5

4
e�I(�1+�2) � g4e�I�2 +

g5
4
(1� ls)eI(�1��2)

����� :
(3.57)

0 < �l < 1 �l = 1 �l > 1

�l = 0

�l > 0

Figure 3.11: Types of cells. If �l = 1 than � = 45o.

To interpret this result, six di�erent types of cells, which can occur on a grid, have
been depicted in �gure (3.11). For realistic computations the cells with 0 < �l � 1 and
�l � 0 are interesting. In table (3.1) the dependence of the smoothing rate of point GS
and line GS is shown for various cases.

� �(ls = 0) �(ls = 1)
1 0:57 0:50
0:1 0:96 0:45
0:01 1:00 0:45
0:001 1:00 0:45

�l �(ls = 0) �(ls = 1)
1:0 0:70 0:54
2:0 0:71 0:55
3:0 0:72 0:56
4:0 0:72 0:57

�l �(ls = 0) �(ls = 1)
0:01 1:00 0:60
0:4 0:84 0:59
0:6 0:73 0:58
0:8 0:67 0:56

Table 3.1: Smoothing factor for point and z-line relaxation on equation (3.51). Left :
�l = 0, �l = 1; Center: � = 1:0, �l = 1:0; Right : � = 1:0, �l = 2:0.

The following trends can be observed. Firstly, for a given �l and �l, with decreasing � the
smoothing rate of point GS deteriorates, approaching unity for very small �. This value
indicates that some oscillatory components are not reduced at all. These are the com-
ponents that are smooth in the �2-direction and oscillatory in the �1-direction. However,
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the �2-line GS relaxation (relaxing all equations of a line at constant �1 simultaneously)
remains an excellent smoother, tending to � = 0:45 for small �.

Secondly, for a given � and �l it can be seen that the smoothing rates of both the point
GS and the �2-line GS relaxation are not very sensitive to the value of �l. However, also
in this case clearly the �2-line GS relaxation is a more e�cient smoother. Finally, for a
given � and �l it can be seen that the smoothing factor of point GS deteriorates with
decreasing �l, whereas, when its �2-line variant is used, acceptable smoothing is obtained
even for small �l.

In conclusion, from the study of the model problem (3.51), which is representive for
the x-momentum equation in the full Stokes system, it is concluded that in order to
obtain good smoothing for small � for a wide range of practical cell con�gurations a �2-
line relaxation is needed. For the full Stokes equations this then leads to the proposed
�2-line SCGS process.

3.2.3 Prolongation and Restriction

After transformation of the Stokes equations to a boundary-�tted domain, the prolonga-
tion and restriction operators, given in [86] for a staggered Cartesian grid can be used.
For the restriction of the dependent variables a simple operator like:

uHij = 1
2
(uh2i�1;2j + uh2i�1;2j�1) ;

wH
ij = 1

2
(wh

2i;2j�1 + wh
2i�1;2j�1) ;

pHij = 1
4
(ph2i�1;2j + ph2i�1;2j�1 + ph2i;2j + ph2i;2j�1)

(3.58)

is su�cient. The restriction of residuals is done with a weighting operator:

ruHi;j = 4[1
8
(ruh2i�2;2j + ruh2i�2;2j�1 + ruh2i;2j + ruh2i;2j�1) +

1
4
(ruh2i�1;2j + ruh2i�1;2j�1)] ;

rwH
i;j = 4[1

8
(rwh

2i;2j�2 + rwh
2i�1;2j�2 + rwh

2i;2j + rwh
2i�1;2j) +

1
4
(rwh

2i;2j�1 + rwh
2i�1;2j�1)] ;

rpHi;j = 4[1
4
(rph2i�1;2j + rph2i�1;2j�1 + rph2i;2j + rph2i;2j�1)] :

(3.59)
The factor 4 in the right-hand sides in the above equations results from the requirement
that the system of equations on the �ne grid is consistent with the system of equations
on the coarse grid. This is the so-called scaling rule ([95], pp. 71):

X
j

[IHh ] j = (
H

h
)d ; (3.60)

where [IHh ] j represents the stencil for the restriction operator and d = 2 the dimension.
Prolongation is done with a bilinear operator. For uh the prolongation operator is:

uh2i�1;2j+1 = 1
4
(uHi;j + 3uHi;j+1) ;

uh2i;2j+1 = 1
8
(uHi;j + 3uHi;j+1 + uHi+1;j + 3uHi+1;j+1) ;

uh2i�1;2j = 1
4
(3uHi;j + uHi;j+1) ;

uh2i;2j+1 = 1
8
(3uHi;j + uHi;j+1 + 3uHi+1;j + uHi+1;j+1) :

(3.61)
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For wh the prolongation operator is:

wh
2i+1;2j�1 = 1

4
(wH

i;j + 3wH
i+1;j) ;

wh
2i+1;2j = 1

8
(wH

i;j + wH
i;j+1 + 3wH

i+1;j + 3wH
i+1;j+1) ;

wh
2i;2j�1 = 1

4
(3wH

i;j + wH
i+1;j) ;

wh
2i;2j = 1

8
(3wH

i;j + 3wH
i;j+1 + wH

i+1;j + wH
i+1;j+1) :

(3.62)

For ph the prolongation operator is:

ph2i;2j = 1
16
(9pHi;j + 3pHi+1;j + 3pHi;j+1 + pHi+1;j+1) ;

ph2i+1;2j = 1
16
(3pHi;j + 9pHi+1;j + pHi;j+1 + 3pHi+1;j+1) ;

ph2i;2j+1 = 1
16
(3pHi;j + pHi+1;j + 9pHi;j+1 + 3pHi+1;j+1) ;

ph2i+1;2j+1 = 1
16
(pHi;j + 3pHi+1;j + 3pHi;j+1 + 9pHi+1;j+1) :

(3.63)

At boundaries the prolongation operator is adapted to the Dirichlet boundary conditions.

3.3 Results

To conclude this chapter, the performance of the above numerical solution procedure for
the Stokes equations will be demonstrated. Firstly in section (3.3.1) an example is given
which illustrates the convergence of the discrete solution to a pre-set continuous solution of
the Stokes equations. Next the performance of the multi-grid algorithm is demonstrated
in section (3.3.2).

3.3.1 Model problem

An arti�cial model problem is created to illustrate that for this speci�c model problem
the discretization error is of second order in ��. Because of the linearity of the Stokes
equations in this particular problem, the truncation error is of the same order in �� as
the discretization error.

On a domain
x = 2�1 � 1 ;
z = �2h(�1) ;

h(x) = 1� a3
p
2e

a4
xe

�x2

a2
4 ;

(3.64)

the following velocity and pressure pro�les are taken:

u = 1� �2 ;
w = �1�2(1� �1)(1� �2) ;
p = pw(1� �1) ;

(3.65)

and with boundary conditions (2.3). Substitution in the Stokes equations (2.31), (2.32)
and (2.33) shows that for (3.65) to be the solution the zero righthand side of the Stokes
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equations, should be replaced with:

fu = ��pwh(�1)� �2�2 d2h
(d�1)2

+ 2�2�2( dh
d�1

)2(h(�1))�1 � �2(1� 2�1)(1� 2�2)+

+�2�1(1� �1)(1� 4�2) dh
d�1

(h(�1))�1 ;

fw = 1
2
�3�2(2h(�1)(1� �2) + dh

d�1
(4�1 � 2)(2�2 � 1) + �1 dh

d�1
(1� 2�2)(1� �1)+

�( dh
d�1

)2�1(1� �1)(2� 6�2)=h(�1))� � dh
d�1

=h(�1) + �8�1(1� �1)=h(�1) ;

f p = dh
d�1

�2 + 2�1(1� �1)(1� 2�2) :

(3.66)
Consequently, with (3.66) as a righthand side in the numerical solver, the discrete solution
uh, wh, ph should converge to u, w, p given by (3.65). This is illustrated below. For the
case � = 0:1, pw = 100, u0 = 1, a3 = 0:5 and a4 = 0:2 table (3.2) shows the L1 norm of
the discretization error in uh, wh and ph as a function of the mesh size of the grid. The
norm is de�ned as: ���p� ph

��� = 1

N2

NX
i;j=1

���p� phij
��� : (3.67)

The solutions were computed on uniform grids. Each row in the table represents a result
obtained on a grid with a mesh spacing that is twice as small as the previous row. The
table shows that with decreasing mesh spacing the value of the L1-norm decreases, i.e.,
uh, wh, ph indeed converge to u, w, p. Moreover, the ratio of the norms taken on two
consecutive grids converges to a factor four. This illustrates that the discretization error���u� uh

��� etc. is of second order in this particular example.

N
���u� uh

��� ���w � wh
��� ���p� ph

��� jp�pHj
jp�phj

16 9:95 � 10�3 6:68 � 10�3 5:31 � 10�1 �
32 2:75 � 10�3 1:41 � 10�3 1:53 � 10�1 3:5
64 7:28 � 10�4 3:33 � 10�4 4:06 � 10�2 3:7
128 1:84 � 10�4 8:22 � 10�5 1:03 � 10�2 3:9
256 4:62 � 10�5 2:04 � 10�5 2:59 � 10�3 4:0
512 1:16 � 10�5 5:10 � 10�6 6:48 � 10�4 4:0

Table 3.2: Order of discretization.

3.3.2 Multi-grid convergence

To illustrate the performance of the MG solution algorithm, a model problem is taken
that is characteristic for the problems to be studied: the ow in a gap with a geometrical
\defect" on one of the surfaces. The problem is again given by equation (3.64). In the
paragraph (Local mode analysis) the smoothing factor � of the relaxation was estimated
as � � 0:5. This implies that a coarse-grid correction cycle with �1 pre-relaxations and �2
post-relaxations should give an error reduction of a factor (0:5)�1+�2 per cycle, independent
of the mesh size. Below it is shown to what extend grid-independent convergence of the
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solution process is obtained and how the obtained error reduction compares with the
theoretical estimate as a function of the problem parameters.
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Figure 3.12: The residual of the continuity equation as function of the number of MG
cycles; (a): For di�erent number of grid points. (b): For di�erent � and N = 256.

Firstly, for a given � = 0:1, a3 = 0:5 and a4 = 0:2, �gure (3.12a) shows the L2-norm of the
residual of the continuity equation (rp) as a function of the number (Nc) of coarse-grid
correction cycles and the mesh size of the grid. In the calculations W(2,2) cycles were
used. The �gure shows that the convergence behavior is indeed grid-independent. The
error reduction per cycle is roughly a factor 16 until machine precision is reached. For the
grid with N = 256, �gure (3.12b) shows the inuence of � on the speed of convergence.
Clearly, also for small � the convergence behavior is very good, as was predicted in the
paragraph (Local mode analysis).

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

x

�1

�x

��1

Figure 3.13: Two kinds of x-coordinate transformation.

In that paragraph it was explained that the smoothing behavior depends on the type
of grid cells. This can be illustrated by monitoring the convergence as a function of the
parameters a3 and a4. Increasing a3 and decreasing a4 is predicted to have a negative e�ect
on the convergence performance because this change in a3; a4 coincides with increasing
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�l and decreasing �l in table (3.1). This can indeed be seen in �gures (3.14a) and (3.15a)
where N = 256 and � = 0:01.
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Figure 3.14: The residual of the continuity equation as function of the number of MG
cycles with a3 = 0:5; (a): For di�erent a4 without x-re�nement. (b): For di�erent a4
with x-re�nement.
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Figure 3.15: The residual of the continuity equation as function of the number of MG
cycles with a4 = 0:02; (a): For di�erent a3 without re�nement. (b): For di�erent a3 with
re�nement.

The obvious remedy is to avoid the occurrence of cells with extreme shape, which can be
achieved by re�nement of the mesh along the x-axis in the vicinity of the local feature.
One can, e.g. take a transformation given by:

l1 = �x� 4��1 +�x��1 ;
l2 = �1 + ��1 ;
l3 = 1 +��1 ;

x(�1) = 2��1(�2+�x)�1�l1
2��1l2

+ �(�x�2��1)
��1l2

ln(1+e
(l3�2�

1)=(2�)

el2=(2�)+e��
1=�

) :

(3.68)



56 CHAPTER 3. NUMERICAL SOLUTION

Unless stated otherwise, the following values have been used:

��1 = 0:8 ;
�x = 1:5 a3 ;
� = 0:025 :

(3.69)

In �gure (3.13) this x-coordinate transformation has been depicted. The � determines
the abruptness of the transition between the region with a small grid spacing and that
with a large grid spacing. The �x con�nes the region with a small grid spacing and ��1

determines the step length in the re�ned region. Figures (3.14b) and (3.15b) show the
positive e�ect on the MG-convergence. This re�nement also gives a smaller truncation
error in the kink region than for the case without re�nement. The error-reduction factors
can be compared with factors found in the literature. A mean value can be calculated
from:

�MG =

 
rp(Nc = 8)

rp(Nc = 2)

! 1
6

(3.70)

For the calculation performed with x-re�nement it is found that �MG � 0:0625. When �
is very small compared to a4, meaning that the gradients in the �2 = constant lines in
the physical domain are small, a �MG � 0:04 can be found. In [51] also a line version
of SCGS is used to numerically solve the incompressible Navier-Stokes equations. The
order of sweeping was: even horizontal lines, odd horizontal lines, even vertical lines, odd
vertical lines. This is a little bit di�erent from the procedure followed in our case: from
left to right vertical lines and from right to left vertical lines. Nevertheless, a comparison
is made. In [51] page 83 in table (4.3) for the driven cavity with Re = 100 a �MG = 0:055
was found.

3.4 Pressure-dependent viscosity and/or density

In section (2.3) the additions to the ow model necessary, to incorporate a pressure
dependent viscosity and/or density have been described. This extended model is necessary
for problems with pressure-dependent density (cavitation, gas lubrication) and/or piezo-
viscosity. These features require modi�cations of the numerical solution procedure too.
The required changes are briey discussed in this paragraph. Firstly, it is noted that
a pressure-dependent viscosity and/or density can change the character of the problem
locally from an elliptic into a hyperbolic problem. In that case the standard second-order
discretization used so far can lead to a system of equations that is not a K-matrix. As
a result, for the nonlinear problem, convergence problems may occur. To avoid these
problems the discretization of the momentum equations and the equation of continuity
needs to be changed.

The change of character of the problem and the required modi�cation to the discretiza-
tion, related to a pressure-dependent density, can already be seen from studying a much
simpli�ed model problem. Consider the Reynolds equation with a pressure-dependent
viscosity and density in a uniform �lm, i.e., the Two-Phase model of chapter (2) table
(2.1), with � = � and h(x) = 1. The equation is linearized by taking the Taylor expansion
of � around p0 and omitting the term �(p0), since it only introduces a right-hand side.
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A cell-centered FV discretization on a uniform grid with grid spacing �x and a mean
value for the pressure on cell faces results in:

pi�1

2
4� �

�x
� 3

d�

dp

�����
p=p0

3
5 + pi

�
2�

�x

�
+ pi+1

2
4� �

�x
+ 3

d�

dp

�����
p=p0

3
5 = 0 : (3.71)

For d�
dp

���
p=p0

> 0 the third term in equation (3.71) can destroy the K-matrix conditions

given in section (3.2.1) De�nition 1. However, an upwind discretization gives:

pi�1

2
4� �

�x
� 6

d�

dp

�����
p=p0

3
5 + pi

2
4 2�
�x

+ 6
d�

dp

�����
p=p0

3
5 + pi+1

�
� �

�x

�
= 0 ; (3.72)

in which case the resulting system of equations does satisfy the K-matrix condition. The
lesson taught by this model problem implies that also in the full Stokes problem with
pressure-dependent density the discretization of the continuity equation should be taken
upwind. The details are given in section (3.4.1).

A good upwind discretization for the viscosity appears to be di�cult, see equation
(A.7), and was omitted. For moderate gradients in the viscosity this is acceptable.

Next the relaxation procedure requires modi�cation. So far, the system of equations
to be solved for a given line was a linear system. The pressure dependence of viscosity and
density introduces non-linearity. This requires the introduction of a non-linear iterative
procedure for the system. The most obvious choice is the use of one or more Newton
steps. The advantage of this method is that in the vicinity of the solution it converges
fast. However, when the initial guess is far away from the solution it may not converge
at all. A convenient way to overcome this problem is to use the Newton process with
\backtracking". This approach is also described below in section (3.4.2.).

3.4.1 Discretization

The discretization of equations (2.28), (2.29) and (2.30) is carried out in the same manner
as in section (3.1). Only the discretization of the continuity equation is changed in the case
of a pressure-dependent density. In order to obtain a stable discretization, the continuity
equation is discretized along the characteristics which are calculated in appendix (A):
dz
dx

= w
u
, so along the streamlines. To overcome convergence problems in the relaxation

method, the use of an upwind scheme in mixed problems (hyperbolic, elliptic) was also
used in, for example, the full-potential equation for transonic ow, see [95], page 223 and
[94]. The FV discretization of the continuity equation is given by:

��2
n
�a2(2)u

o
i� 1

2
j
� ��2

n
�a2(2)u

o
i+ 1

2
j
+

��1
n
�(a1(1)w � a2(1)u)

o
ij+ 1

2

� ��1
n
�(a1(1)w � a2(1)u)

o
ij� 1

2

= 0 : (3.73)

The sign of the contravariant velocity components a2(2)u and a1(1)w� a2(1)u determines the

direction of the ow perpendicular to the cell face on which it is de�ned. So, if a1(1)w �
a2(1)u > 0 in the point (i; j � 1

2
), the local ow is into the physical cell centered around
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(ij). This means that one should take �(pij) for �ij� 1
2
to have an upwind discretization.

The unknown density values can then be calculated according to:

f�ugi� 1
2
j =

(
�i�1jui� 1

2
j if ui� 1

2
j > 0 ;

�ijui� 1
2
j if ui� 1

2
j < 0

(3.74)

and a similar expression for � in the cell face ij � 1
2
:

n
�(a1(1)w � a2(1)u)

o
ij� 1

2

=

8><
>:

�ij�1
n
(a1(1)w � a2(1)u)

o
ij� 1

2

if
n
(a1(1)w � a2(1)u)

o
ij� 1

2

> 0 :

�ij
n
(a1(1)w � a2(1)u)

o
ij� 1

2

if
n
(a1(1)w � a2(1)u)

o
ij� 1

2

< 0 .

(3.75)
The resulting scheme is a conservative discretization because the � on the cell faces is
calculated in the same way in adjacent cells.

A disadvantage is that the scheme is no longer second-order but only �rst-order. Con-
sequently it is less accurate. In particular, the results should be interpreted carefully due
to the possible e�ects of arti�cial \viscosity". However, such e�ects can be identi�ed when
comparing solutions obtained on di�erent grids. Alternatively \defect-correction" can be
used to attain second-order accuracy [95]. This approach is not used here.

3.4.2 Line solver

As mentioned above, the equations on a vertical line of cells are now non-linear. They
can be solved by a Newton procedure. Let the system of equations for one line be given
by:

Lh(uh) = 0 ; (3.76)

where Lh represents the discretized momentum and continuity equations, and uh the
unknown velocity and pressure components. A Newton step consists of:

uhn+1 = uhn � J�1b Lh(uhn) ; (3.77)

where uhn is a �rst (or current) approximation and Jb, the Jacobian, is de�ned as:

Jb =
@Lh

@uh

�����
uh=uhn

: (3.78)

When the �rst approximation is close to the solution, the Newton process converges
quadratically, see [20]. However, if the �rst guess is too far away, divergence may occur. A
remedy is to use backtracking in combination with line searching, see [20]. This approach
implies that instead of solving equation (3.76), one tries to �nd the minimum of

fb =
1

2
Lh � Lh : (3.79)

The minima of equation (3.79) correspond to the zeros of equation (3.76). Only minima
with fb = 0 are roots of equation (3.76). To solve equation (3.76) the following iterative
process is used:

uhn+1 = uhn + �bpn; 0 < �b � 1 : (3.80)
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For pn the Newton step is taken:

pn = �J�1b Lh(uhn) : (3.81)

The vector pn represents a descent direction, meaning that fb(u
h
n+1) < fb(u

h
n). Now there

are two possible drawbacks: (a) fb is decreasing too slowly, relative to the step pn; (b)
the step pn is too small, relative to the initial rate of decrease of fb. The �rst problem
can be overcome by requiring:

fb(u
h
n+1) � fb(u

h
n) + �brfb(uhn) � (uhn+1 � uhn) : (3.82)

The second problem can be overcome by requiring:

rfb(uhn+1) � (uhn+1 � uhn) � �brfb(uhn) � (uhn+1 � uhn); �b > �b : (3.83)

�b = 1 � 10�4 is often used in literature [64]. Line searching now consists of looking for a
�b which satis�es both requirements. In the routine used in this work, which is described
in [64], too small steps are avoided by a lower bound on the step length. So, to ful�ll the
requirement in equation (3.82), the minimum of

gb(�b) = fb(u
h
n + �bpn) (3.84)

is searched for. This is carried out by approximating gb(�b) by a quadratic function with
the use of gb(0) and g0b(0). If, with this new �b, equation (3.82) does not hold, a new �b is
computed but now gb is approximated by a cubic. The last step is repeated until equation
(3.82) holds. So, backtracking consists of �rst trying a Newton step (�b = 1). If this does
not satisfy equation (3.82), a �b that minimizes gb is searched for in the above described
iterative way. A successful application of this method in combination with FMG, can be
found in [80]. In the next section the results of some tests with this backtracking method
in combination with multi-grid will be demonstrated.

3.4.3 Model problem

To illustrate the convergence of the discretization error for this particular example, a
model problem is created in the same way as is done in section (3.3.1). The domain
is de�ned as in equation (3.64) with a3 = 0:2, a4 = 0:2 and � = 0:1. The boundary
conditions from equation (2.3) are used with u0 = (1; 0)T . The righthand sides for the
di�erent equations are chosen such that the solution is:

u = 1� �2 ;
w = 0 ;
p = �1�2(1� �1)(1� �2) :

(3.85)

For the density and the viscosity the following functions have been used:

� = e��p ;
� = e��p :

(3.86)
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As in section (3.3.1) for the iso-viscous incompressible case, the norm of the di�erence
between the exact solution and the discrete solution can be monitored as a function of the
mesh size on a uniform grid. First consider the case with a pressure-dependent density
but with constant viscosity. Table (3.3) shows the L1-norm of the error as a function of
the mesh size. The table shows that the discretization is convergent. The ratio of the
error on two consecutive grids shows that it is of �rst order. This is as expected because
of the �rst order upwind discretization of the continuity equation.

N
���u� uh

��� ���w � wh
��� ���p� ph

��� jp�pHj
jp�phj

32 1:58 � 10�3 3:56 � 10�3 3:29 � 10�2 �
64 7:55 � 10�4 1:88 � 10�3 1:62 � 10�2 2:0
128 3:64 � 10�4 9:49 � 10�4 8:02 � 10�3 2:0
256 1:77 � 10�4 4:71 � 10�4 3:94 � 10�3 2:1
512 8:73 � 10�5 2:35 � 10�4 1:95 � 10�3 2:0

Table 3.3: Order of discretization for �� = 3:0 and �� = 0:0 in equation (3.86).

Next, table (3.4) shows the results obtained, assuming an incompressible uid (�� = 0)
with pressure-dependent viscosity. For this case the discretization should still be second
order as the table indeed shows.

N
���u� uh

��� ���w � wh
��� ���p� ph

��� jp�pHj
jp�phj

32 1:13 � 10�3 1:60 � 10�3 1:97 � 10�2 �
64 3:11 � 10�4 4:57 � 10�4 5:43 � 10�3 3:6
128 7:97 � 10�5 1:13 � 10�4 1:40 � 10�3 3:9
256 2:02 � 10�5 2:87 � 10�5 3:53 � 10�4 4:0
512 5:04 � 10�6 7:54 � 10�6 8:86 � 10�5 4:0

Table 3.4: Order of discretization for �� = 4:0 and �� = 0:0 in equation (3.86).

3.4.4 Multi-grid convergence

Finally, the convergence behavior of the complete MG solver for the pressure-dependent
viscosity or density is studied. The domain is de�ned as in equation (3.64) with a3 = 0:2,
a4 = 0:2 and � = 0:1. The boundary conditions from equation (2.3) are used with
u0 = (1; 0)T . The solver was used with W(2,2) cycles. The inter-grid operators used are
the same as used for the incompressible iso-viscous ow.

First the case of � = �(p) is investigated. For this purpose the cavitation model
described in section (2.3.3) is used. The density pressure equation (2.71) is used, with
��0 = 0:01. In the relaxation process, when relaxing a given line, a few Newton steps
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(mostly one or two) are applied to each line for minimizing fb in equation (3.79). In this
step a full Jacobian is used. The lines are visited one by one in downstream direction.
However, in some cases where the gradient in the pressure changes rapidly problems occur.
Typically, the backtracking algorithm cannot �nd a solution when at a line the gradient in
the pressure changes rapidly. This happens at lines at which the density changes between
a constant value and a variable value. This problem can partly be overcome by returning
to the line upstream of the line where the relaxation process did not converge. This step
may have to be repeated several times. However, for very large values of �� this approach
also breaks down. This does not need to concern us for the present study, but is certainly
a subject of attention for future research. As the value of �� to be taken is not exactly
known anyway and the purpose of our approach is mainly to model ow continuity in a
cavitated region, rather than exactly modeling the details of the ow, it can be assumed
that �� is not too large.

As long as this is the case, the performance of the solver is as illustrated in �gure
(3.16). Figure (3.16a) shows the residual of the continuity equation as a function of the
number of cycles. Clearly the solver converges. However, the speed of convergence is not
grid-independent. This may be attributed to the strong non-linearity in the problem as
it is also observed in [80] where also a FMG algorithm is combined with a backtracking
algorithm. Nevertheless, from a practical point of view, the rate of convergence on a given
grid, even up to quite considerable values of ��, is still very good, see �gure (3.16b).
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Figure 3.16: The residual of the continuity equation as function of the number of MG
cycles; (a): �� = 1:0, for di�erent number of grid cells. (b): N = 256, for di�erent ��.

Secondly, consider the case � = constant and � = �(p) de�ned by equation (2.66). For
this case the performance of the MG solver is not that good. As in the previous case the
convergence is not grid-independent, see �gure (3.17a). Also the convergence rate is less
good. Typically a factor three per cycle is obtained. This still means that in two cycles
an error reduction of an order of magnitude is obtained which is acceptable for practical
use. Another drawback is that the relaxation procedure does not converge for large ��p
(��p > 0:03 in this particular case). Probably the incorporation into the discretization of
the direction of the characteristics found in equation (A.7) could result in a convergent
relaxation. However, comparing it to the performance for the other cases indicates that
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further study is needed.
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Figure 3.17: The residual of the continuity equation as function of the number of MG
cycles; (a): ��p = 0:01, for di�erent number of grid cells. (b): N = 256, for di�erent ��p.

For both cases the standard inter-grid operators seem to be correct. The case of com-
pressible iso-viscous ow gives a good MG performance, only the case of incompressible
piezo-viscous ow needs some more attention in the future. This ends the testing part
of the two developed solvers. In the following chapters the results obtained with these
solvers, are presented.

3.5 Conclusion

In this chapter a numerical solution procedure for the incompressible iso-viscous Stokes
equations has been presented. The developed solver can handle domains with small � very
well. It was checked whether the discretization converges second-order accurately to a
preset solution. It has been shown in �gures (3.14), (3.15) that the MG method as used
reaches good multi-grid convergence even for high grid line-aspect ratios.

For example, the angle between a grid line �2 = constant and a horizontal line in the
physical domain for a3 = 0:5, a4 = 0:01 and � = 0:01 in equation (3.64) gives:

tan(�) = �
dh

dx

�����
x=0

= �a3
a4

p
2 e� ; (3.87)

thus � � 50o where �MG = 0:064. As a result the solver is expected to be very well
suited to investigate the Stokes e�ects in the iso-viscous incompressible ow in narrow
�lms induced by surface imperfections.

Finally, the solver was extended to allow for a pressure-dependent density and/or
viscosity. For the variable density the multi-grid convergence looks promising, with �MG =
0:089, but the variable viscosity case needs some more attention in the future: �MG = 0:31.



Chapter 4

Results for Stokes

In the previous chapter the development and testing of the algorithm for the numerical
solution of the Stokes equations was described. In this chapter results are presented
for problems representative for the ow in lubricated contacts. For each problem the
solution is discussed in detail and compared with the solution of Reynolds' equation. In
particular the magnitude of the relative di�erence between the Stokes solution and the
Reynolds solution is measured as a function of characteristic geometry parameters such as
an \amplitude" and a \wavelength" of surface imperfections. The objective of the study
is to obtain a \rule of thumb" for practical use, indicating when the Reynolds solution is
su�ciently accurate and when a better solution is needed. This better solution can either
be the Stokes solution but, as is shown in this chapter, to some extent the corrected
solution based on a perturbation approach can be used.

4.1 Geometry

The problems discussed in this chapter can all be written in the same form, i.e. as the
ow through a channel with dimensionless geometry given by the function

h(x) = (1� a1)x
a2 + a1 � R0(x) (4.1)

where the �rst two terms represents the \global" shape of the channel and the third term
a \local" feature. For this local feature the following function will be assumed:

R0(x) = A0
m

sin(2�x=a4)

((1 + e�a5(a3=2�x))(1 + e�a5(a3=2+x)))
(4.2)

where
A0
m = Am(1 + e�a5(a3=2�a4=4))(1 + e�a5(a3=2+a4=4)) (4.3)

Of the di�erent parameters in the above equations Am obviously represents the amplitude
and a4 the wavelength. The parameters a3 and a5 are a measure of the width of the
feature compared to the full length of the channel and an amplitude decay parameter,
respectively. As an example, �gure (4.1) shows the geometry obtained for a1 = 0, a2 = 0,
a3 = 0:5, a4 = 0:5 and Am = 0:5. This geometry clearly represents a single local feature

63
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Figure 4.1: Geometry and boundary conditions for Single local feature.

in a uniform channel; it is discussed in detail in the following section. Also shown in
�gure (4.1) are the boundary conditions that will be imposed for all problems throughout
this chapter. For the numerical solution procedure on the given domain a grid will be
generated using

z = �2h(x(�1)) ; (�1; �2) 2 [0; 1] (4.4)

where x(�1) is de�ned by equation (3.68). Finally, for each problem a study has been car-
ried out monitoring the di�erence between the Stokes solution and the Reynolds solution
as a function of the governing parameters. For this purpose the quantity �R as introduced
in chapter (2) is used:

�R =

R
~�1
pS(x; z = 0)dx� R~�1 pR(x)dxR

~�1
pR(x)dx

(4.5)

where the tilde in ~� indicates that the pressure is only integrated for positive values.

4.2 Single local feature

For the case of a local feature in a uniform channel as shown in �gure (4.1), equation (4.2)
has been used, taking the parameters shown in table (4.1).

a1 a2 a3 a5 ��1 �x �
1:0 0 a4

16
a4

0:8 3
2
a3 0:025

Table 4.1: Values of parameters for single local feature.

As a result the only parameters in the problem are the wavelength a4, the amplitude
Am, and of course � = H

L
, which appears in the Stokes equations. Note that Am and

a4 represent dimensionless quantities. In physical terms the amplitude of the feature is
A = HAm and its wavelength � = La4.
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Figure 4.2: (a): Pressure �eld. (b): Streamlines. Both as function of x and z for
� = 0:1, a4 = 0:4, Am = 0:2.

Firstly, as an illustration �gure (4.2) shows a typical Stokes solution to the problem.
Figure (4.2a) shows the pressure �eld and �gure (4.2b) the streamlines. In addition �gure
(4.3a) shows the pressure at the lower and upper surface as a function of x. Finally, �gure
(4.3b) shows the horizontal velocity component u and the vertical velocity component w
as a function of z for x = 0.
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Figure 4.3: (a): Pressure as function of x for z = 0 and z = h(x). (b): u and w velocity
components at x = 0. Subscript indicates Reynolds (r) and Stokes (s) solution,
respectively.

The solution for the problem without feature would be a zero pressure everywhere, a linear
variation of u(z) and w = 0. Comparing this with the �gures shows that the presence of
the feature induces a gradual pressure rise before and after the feature and a sharp local
change around the feature.

In �gure (4.3a) also the pressure solution obtained from the Reynolds equation is
shown. In the region in which the feature is located the Stokes pressure is z-dependent.
Note that the Reynolds and Stokes solution do not only di�er in the vicinity of the feature.
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Also in the \inlet" and \outlet" region preceding and following the feature all the way to
the boundary there is a di�erence, though the di�erence decreases in magnitude.

The velocity pro�les in �gure (4.3b) show little di�erence between the Stokes solution
and the Reynolds solution.
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Figure 4.4: (a): �R for Am = 0:1. (b): �R for a4 = 0:1.

Next, the magnitude of the di�erence �R between the Reynolds and the Stokes solution
is studied in more detail. First, for a �xed amplitude Am = 0:1 the parameters � and
a4 have been varied, see �gure (4.4a). For a given �, with increasing wavelength a4 the
relative di�erence �R decreases. Figure (4.4b) shows that with decreasing � the relative
di�erence �R decreases, regardless of the value of Am. This is in accordance with common
expectations.
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Figure 4.5: �R as function of Am for (a): � = 0:1. (b): � = 0:01.

Figure (4.4b) also shows results obtained when keeping a4 �xed and varying Am for
di�erent �. This �gure shows that for a given � the value of �R increases with decreasing
amplitude. This result seems somewhat odd as one would expect the opposite behavior.
After all, a larger amplitude gives larger slopes, and one generally couples validity of



4.2. SINGLE LOCAL FEATURE 67

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

2.4

2.8
�R

Am

a4 = 0:001

a4 = 0:002

a4 = 0:003

a4 = 0:004

a4 = 0:006

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200R
pdx

Am

R
preydxR
pS(x; 0)dxR
pS(x; 0)dx �

R
preydx

(a) (b)

Figure 4.6: (a): �R as function of Am for � = 0:001. (b): Integration of p only for
positive p, � = 0:001 and a4 = 0:001.

Reynolds equation to \small slopes". Apparently this is not always true. This can be
seen more clearly from �gure (4.5) and (4.6). For di�erent values of � (� = 0:1; 0:01; 0:001)
these �gures show �R as a function of Am and a4. These �gures show that �R does not
monotonously increase or decrease with Am but that it has a maximum, however, for
su�ciently large Am it decreases with Am. For a smaller value of � this maximum occurs
at a smaller value of Am.

For small Am the Stokes solution approaches the Reynolds solution and thus �R ap-
proaches zero. What happens if Am ! 1? This can be best explained by plotting the
integral over the pressure on the lower surface for the di�erent solutions. This has been
done to obtain �gure (4.6b) where this integration has been performed setting negative
pressures equal to zero. It can be seen that in the neighborhood of Am = 1 the integrals
over the Stokes pressure, over the Reynolds pressure and the di�erence between these
integrals tend to in�nity. But the di�erence between the integral over the Stokes and
Reynolds solution tends less fast to in�nity than the integral over the Reynolds solution.
This explains the form of �R as function of Am. So, relative to the Reynolds solution the
Stokes solution does not diverge. It is mentioned here that only points up to Am = 0:9
have been calculated. For amplitudes closer to one the numerical accuracy of the solver
will be questionable. The exact behavior of �R in the limit Am ! 1 can thus not be
predicted.

Secondly, note that in each �gure results are shown for values of a4 that di�er, e.g.
for � = 0:1 then 0:1 < a4 < 0:6, for � = 0:01 then 0:01 < a4 < 0:06 and for � = 0:001
then 0:001 < a4 < 0:006. This choice has been made on purpose. Now, comparing these
�gures shows that, approximately, the magnitude of �R depends only on the ratio �=a4.
So, disregarding the detailed shape of each curve, its level is determined by this ratio.
The purpose of this study is to �nd a general rule indicating when a Reynolds solution
is valid. For this problem one thus �nds that the di�erence between the Stokes and the
Reynolds solution is a function of �=a4. As � = H=L and a4 = �=L this means that the
validity depends on the value of the ratio H=� = �lm thickness/wavelength feature.

From the results presented here it is estimated that a di�erence of 10 percent between
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the Reynolds and the Stokes solution measured by �R occurs for �=a4 = H=� > 0:2.
This is in line with expectations given in literature [25] that a factor of this type, H=�,
determines the transition between Stokes and Reynolds roughness. In �gures (4.5) and
(4.6a) it can already be seen that there is a limit for �R if �=a4 is kept constant and �! 0.
For di�erent values of �=a4 this is depicted in �gure (4.7). The �R values have been scaled
on the maximum value of �R for �=a4 is constant. So it is assumed that �R reaches a
maximum at � = 0:005. Converting to un-scaled variables can shed light on this limit.
If H is assumed constant, then � is constant, because �

a4
= H

La4
= H

�
= constant, then

if L ! 1 the distance between local feature and in/out ow boundary increases. The
limit indicates that there is no interaction between the surface feature and the in/out ow
boundaries.
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Figure 4.7: Limit of �R= �Rmax if �=a4 = constant and �! 0, for Am = 0:1.

Am
�RN=128

�RN=256
�RN=512 p

0:002 0:9587 0:9636 0:9647 2:5
0:03 2:3608 2:3720 2:3748 2:3
0:1 2:3580 2:3658 2:3678 2:3
0:3 1:9779 1:9689 1:9664 2:2
0:5 1:8218 1:7957 1:7883 2:2
0:7 1:5102 1:4792 1:4700 2:1
0:9 0:4994 0:4983 0:4976 1:4

Table 4.2: Convergence of �R for � = 0:01 and a4 = 0:01.

Finally some additional calculations have been carried out to illustrate the accuracy of
the calculated results. As all equations were discretized with second-order accuracy, also
the value of �R computed for a given case should be O(��2) accurate. This is illustrated
in table (4.2). For � = 0:01, a4 = 0:01 and for di�erent values of Am this table shows �R
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on grids with 128�128, 256�256 and 512�512 cells. The order p can be calculated with:

p =
log

��� �R� �RN=128
�R� �RN=256

���
log j ��N=128

��N=256
j ; (4.6)

where the \true" value �R is approximated with the �R value on the �nest grid (N = 512).
The table shows that indeed a second order convergence is obtained. All the computational
results presented in the �gures (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7) were obtained on
a grid with 512� 512 cells. In the next section the perturbation results and the ow �eld
will be presented.

4.2.1 Perturbation SLF

In chapter (2) a perturbation approach was presented that can be used to obtain a correc-
tion to the Reynolds solution without having to solve the full Stokes equations. For the
problem of a Single Local Feature, as discussed in the previous section, such perturbation
solutions are compared with the solution of the Reynolds equation and the solution of the
Stokes equations. For a characteristic case, the accuracy and convergence of the perturba-
tion in relation with the wavelength of the feature is studied. The perturbation parameter
is � = H=L, see section (2.2). As the viscosity is constant and the uid is assumed to
be incompressible for the SLF problem, one can obtain the perturbation solutions very
cheaply. Up to �rst-order perturbation this has been explained in section (2.2). How to
obtain the second-order correction for the pressure is presented in appendix (C). So up
to second-order the expansion looks like:

u(x; z) = u0(x; z) + �2u1(x; z) + �4u2(x; z)
w(x; z) = w0(x; z) + �2w1(x; z) + �4w2(x; z)
p(x; z) = p0(x) + �2p1(x; z) + �4p2(x; z)

(4.7)

with expressions for u0(x; z), w0(x; z) and p0(x) from equation (2.53), (2.55) and (2.54),
respectively. For u1(x; z), w1(x; z) and p1(x; z) equations (C.4), (C.5) and (2.59) are
used. p2(x; z) follows from equation (C.6). For example, the �rst-order perturbation only
requires the solution of an additional Reynolds type of equation.

Figure (4.8) shows some results obtained for the case � = 0:01, Am = 0:4 and three
wavelengths a4 = 0:06; 0:04; 0:02. The �gures show the pressure at the surface z = 0 and
z = h(x) as obtained from the Reynolds equation, the Stokes solution, and the �rst-and
second-order perturbation solution.

As the global features of the SLF solution have been discussed in detail in the previous
section, here only the solution in the region around the feature is shown.

Firstly consider the case a4 = 0:06. The �rst-order perturbation solution to the pres-
sure already di�ers very little from the Stokes solution, and the second-order perturbation
result is an even more accurate approximation to the Stokes solution. Clearly the pertur-
bation in � for this case converges.

With decreasing wavelength the accuracy of the perturbed solutions is expected to
decrease. This can be seen from the results shown for the smaller wavelengths a4. For
a4 = 0:04 the perturbation still \converges", i.e. provides an accurate correction to the
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Figure 4.8: Pressure at the surface z = 0 (left) and z = h(x) (right) for the Reynolds
solution (prey), the Stokes solution (ps) and a �rst (p1) and second order (p2)
perturbation solution for the case � = 0:01 and Am = 0:4 while a4 = 0:06 (top), a4 = 0:04
(center) and a4 = 0:02 (bottom).
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Reynolds solution. However, for a4 = 0:02 this is no longer true. The global correction,
i.e. the perturbation solution, is accurate in the region away from the feature, but locally
at the feature the perturbation results are a very poor approximation to the Stokes results.
The perturbation solutions contain a local oscillation with an amplitude that is even larger
in the second-order result than in the �rst-order result. This indicates that locally the
perturbation in � does not converge. Apparently the local gradients have become too
large for the global parameter � to be an adequate perturbation parameter.

It is observed that in all three cases (a4 = 0:06; 0:04; 0:02) the Stokes pressure is larger
than the Reynolds pressure. A closer look at the pressure expansion

p(x; z) = p0(x) + �

 
~p1(x) +

@w0

@z

!
+ �3

Z  
@2w0

@x2
+
@2w1

@z2

!
dz + �3~p2(x) (4.8)

shows that this is caused by ~p1(x) and ~p2(x) because w0 and w1 only di�er from zero in
the region where dh=dx is non zero. The equations for ~p1(x) and ~p2(x) contain derivatives
of h with respect to x, this in contrast with the Reynolds equation. So, the curvature of
the feature does not only have a local e�ect but also a global e�ect.

For the same cases �gure (4.9) shows some velocity results. The left �gures show the
ow �eld according to the Stokes solution. The �gures on the right show the velocity
components u and w as a function of z at the location x = 0. These �gures show the
velocity components from the Reynolds solution, the Stokes solution, and a �rst-order
perturbation result. For the Reynolds solution it can be found from equations (2.53) and
(2.55) that at x = 0:

u = 1� z (4.9)

and

w = z2(1� z)
dh

dx
(4.10)

because h = 1 and dp
dx

= 0. This means that the u pro�le is the same for a4 =
0:06; 0:04; 0:02 and for the w pro�le only the minimum value of w changes.

The �gure shows that for a4 = 0:06 and a4 = 0:04 the perturbation solution of the
velocity �eld is a good approximation of the Stokes solution.

For a4 = 0:02 the �rst-order perturbation results are not an improvement on the
Reynolds solution. They predict a back-ow in the top of the domain. The predicted
re-circulation ow �eld does not seem realistic. The Stokes solution predicts a much
smaller recirculation zone. It is situated on top of the line � = 0:494 in the wave in �gure
(4.9). The Reynolds equation does not predict this type of recirculation. So, perturbation
theory is not capable of predicting these recirculation zones correctly.

In general there are two types of recirculation for the SLF. The �rst type, which is
also predicted by the Reynolds equation, contains a back-ow generated for an amplitude
Am > 0:5. In �gure (4.10a) a Stokes velocity solution is shown for � = 0:01, Am = 0:9
and a4 = 0:06. It shows such a recirculation zone which extends to the inow boundary.
The second, very local type is not predicted by the Reynolds equation. It occurs when
�=a4 = O(1) and also the series expansion in terms of � can not adequately predict this
recirculation. An example of this type of recirculation is given in �gure (4.10b). Note that
in this case the bulk of the uid is passing the feature below. This recirculation is of the
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Figure 4.9: Streamlines of Stokes velocity �eld (left) and velocity components u(z) and
w(z) at x = 0 (right) for the Stokes (S) solution, the Reynolds (R0) solution and the
�rst-order perturbation (R1) solution for the case � = 0:01 and Am = 0:4, while
a4 = 0:06 (top), a4 = 0:04 (center) and a4 = 0:02 (bottom).
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same type as found in the case of a driven cavity problem, see [47]. From �gure (4.10) it is
clear that the amplitude induced recirculation has a much stronger e�ect on the ow than
the short wavelength induced recirculation. A combination of both recirculation patterns
can occur when �=a4 = O(1) and Am > 0:5.
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Figure 4.10: Two types of recirculation for � = 0:01. (a): Large amplitude induced
recirculation Am = 0:9 and a4 = 0:06. (b): Short wavelength induced recirculation
Am = 0:4 and a4 = 0:02

Similar calculations have been performed for larger values of the amplitude. The
global tendency is the same. For large wavelengths the perturbation theory provides
accurate corrections on a global as well as on a local scale. For small wavelengths the
perturbation theory breaks down locally. In contrast with the small-amplitude case now
there is no convergence of the global pressure distribution to the Stokes solution for
smaller wavelength. Finally, for a given � the breakdown of the perturbation theory is
not only governed by �=a4 but also by Am. This is due to the fact that terms in the
Stokes equations multiplied by some power of � are no longer O(1) if for example Am=a4
or Am=a

2
4 are large, as was explained in section (2.2).

Naturally the behavior illustrated above is also reected in global parameters of the
solution such as the �R value used to measure the di�erence between the Stokes solution
and the Reynolds solution. This is illustrated in table (4.3) and in �gure (4.11), where the
�R value is obtained comparing the Stokes solution, the �rst-and second-order perturbation
pressure for the case � = 0:01, Am = 0:4 and di�erent values of a4. The table shows that
for a large wavelength the �R value based on the perturbation solution is quite accurate.
However, the error increases with decreasing wavelength, yielding poor results when the
perturbation theory breaks down. Note that for a4 = 0:02 the result is still quite good.
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a4 �Rp1
�Rp2

�RS

0:06 0:1028 0:0993 0:0944
0:04 0:2356 0:2180 0:2123
0:03 0:4227 0:3677 0:3626
0:02 0:9600 0:6848 0:7168
0:01 3:8751 � 1:8746

Table 4.3: �R values for the SLF with � = 0:01 and Am = 0:4: for �rst-order perturbation
( �Rp1), for second-order perturbation ( �Rp2) and for Stokes solution ( �RS).

As was shown in �gure (4.8) for this case the accuracy of the perturbation pressure is
quite acceptable globally but is very poor locally. Because �R is dominated by the global
di�erence, this is only moderately reected in the value of �R.

Next, for a given wavelength a4 = 0:04 and � = 0:01 �gure (4.11) shows the value of
�R based on the �rst-and second-order perturbation solution and the Stokes solution as
a function of the amplitude Am. The results are obtained for � = 0:01. For this case,
even for large amplitudes, the value of �R is predicted quite accurately by the perturbation
solution.
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Figure 4.11: The �R values for the Stokes ( �RS) solution, the �rst-order perturbation ( �Rp1)
solution and the second-order perturbation ( �Rp2) solution for the SLF with � = 0:01 and
a4 = 0:04.

In conclusion, in this section it has been shown that for the SLF, a perturbation theory
yields accurate corrections to the Reynolds solution as long as the ratio � to wavelength
is not too large. For large values of (�=a4), see section (2.2), the global correction of the
level of the pressure solution will still be reasonable, however, the predicted local pressure
�eld and the velocity �eld are inaccurate. In such cases better results may be obtained
with a more sophisticated perturbation approach, using di�erent expansion parameters
in di�erent regions, i.e. � on a global scale and some �Am=a4 on a local scale.

Finally, for the present case of iso-viscous, incompressible ow, the perturbation so-
lutions could be obtained easily. It should be noted that for the more general case of a
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pressure-dependent density and viscosity the entire series expansion is much more com-
plicated.

4.3 Multiple local feature

A single local feature as discussed in the previous section is of course an exceptional case.
In general the surface geometry will be more complex. Therefore as a next step consider
the case of a more complex feature, a waviness of a certain width. Such a \multiple local
feature" can also be created with equation (4.2) by taking a3 larger than the wavelength.
Firstly a typical example will be presented. In �gure (4.12) the pressure �eld and the
streamlines are shown for the case � = 0:01, Am = 0:2, a3 = 0:05 and a4 = 0:01. The
x-axis has been enlarged to show the feature.
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Figure 4.12: Results of Stokes ow for the MLF. (a): Pressure �eld. (b): Streamlines.
Both as function of x and z for � = 0:01, a3 = 0:05, a4 = 0:01 and Am = 0:2.

The pressure on the lower and upper surface for the Stokes and Reynolds solution are
shown in �gure (4.13a). The pressure tends to zero at x = �1 and x = 1. The Reynolds
pressure solution is much lower than the Stokes solution as was already found for the
SLF. In �gure (4.13b) the u and w velocity components at x = 0 are shown for the Stokes
and Reynolds solution as function of z. The Reynolds solution for u and w is given by
equations (4.9) and (4.10), respectively. The correspondence for the pressure and velocity
�eld with the SLF is clear. For this con�guration there are recirculations in the tops of
all �ve waves. This local type of recirculation was already encountered in the SLF and is
not predicted by the Reynolds equation.

In �gure (4.14a) the pressure as function of x is plotted for di�erent numbers of waves.
It can be seen that the solutions overlap in parts of the domain. This is also reected
in �gure (4.14b) where the �R is shown as a function of Am for di�erent numbers of
waves. Because of the correspondence between the di�erent multiple wave solutions it is
not needed to study more extensive the multiple local feature. The results for the SLF



76 CHAPTER 4. RESULTS FOR STOKES

−0.1 −0.05 0 0.05 0.1
−6

−4

−2

0

2

4

6

−0.1 −0.05 0 0.05 0.1
0

2

4

6

h

x

h(x)p

pr
ps(x; 0)

ps(x; h)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−20

−16

−12

−8

−4

0

4

u w

z

ur

wr

us

ws

(a) (b)

Figure 4.13: Results for the MLF for � = 0:01, a3 = 0:05, a4 = 0:01 and Am = 0:2. (a):
Pressure and �lm thickness as function of x. (b): u and w velocity components at x = 0
as function of z.

contains all relevant information for the Stokes ow between two parallel plates of which
one contains a sinusoidal feature.
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Figure 4.14: Results for the MLF. (a): Stokes pressure solution at z = h (solid line) and
z = 0 (dotted line) for � = 0:01, Am = 0:2 and a4 = 0:01 and di�erent a3. (b): The �R
values for di�erent a3, � = 0:01 and a4 = 0:01.

4.4 EHL relevant geometry

The surfaces encountered in hydrodynamic lubrication are normally not at on a global
scale. In tribology the contacting surfaces are approximated by parabola. In this section

the contact is modeled by a at lower surface and a 4th-order parabolic upper surface.
The almost horizontal part of the upper surface in the middle of the contact can be seen
as the result of the deformation of the upper surface which occurs in EHL contacts.
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Again, in order to describe the upper boundary, equations (4.1) and (4.2) have been
used, together with the parameters in table (4.1). But now a1 is variable and a2 = 4. The
variables to be varied are: �, a1, Am and a4. The boundary conditions are the same as
for the SLF and are shown in �gure (4.1).

Firstly, as an illustration, �gure (4.15) shows a typical Stokes solution to the problem.
Figure (4.15a) shows a pressure �eld and �gure (4.15b) shows the streamlines.
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Figure 4.15: (a): Pressure �eld and upper boundary h(x). (b): Streamlines. Both as
function of x and z for � = 0:1, a1 = 0:1, a4 = 0:04, Am = 0:08.

The pressure �eld has the same global form as for the SLF, except that the pressure
gradient in the z direction near x = 0 is small compared to the global pressure rise in x
direction. The stream lines show that at the entrance and at the exit of the contact a
recirculation occurs. Also there is a local recirculation in the top of the feature, although
this is not visible in �gure (4.15b). Figure (4.16a) shows the pressure at the lower and at
the upper surface as a function of x. Finally, �gure (4.16b) shows the horizontal velocity
component u and the vertical velocity component w as a function of z at the x coordinate
where h(x) has a local maximum (x = �0:01). Figure (4.16a) shows that the Stokes
pressure is larger than the Reynolds pressure. This was also found for the SLF. The
Stokes pressures at the lower surface and that at the upper surface are the same. Only
in the region near the waviness there is a di�erence. The u velocity �eld in �gure (4.16b)
shows that there is a recirculation in the top of the waviness for the Stokes as well as
for the Reynolds solution. The w velocity �eld is nearly zero for both solutions. For the
Reynolds solution this is logical, because dh=dx is zero at x = �0:01. As has been done
for the SLF, the value of �R has been calculated to quantify the di�erence between the
Stokes and the Reynolds solution. For three situations the �R value has been calculated.
Firstly, for � = 0:1 and a1 = 0:1. Secondly, for � = 0:01 and a1 = 0:1. Finally, for � = 0:1
and a1 = 0:01. The results are shown in �gure (4.17). In �gures (4.17a), (4.17b) and
(4.17c) the �R is plotted as function of amplitude Am for di�erent values of the wavelength
a4. It is shown that with decreasing wavelength (a4) the accuracy of the Reynolds solution
decreases, as was already found for the SLF. However, in contrast to the SLF results, the
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Figure 4.16: (a): Pressure as function of x for z = 0 and z = h(x). (b): u and w velocity
components at x = 0. Subscript indicates the Reynolds (r) or the Stokes (s) solution.
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Figure 4.17: The �R value as function of Am for di�erent a4. (a): � = 0:1 and a1 = 0:1.
(b): � = 0:1 and a1 = 0:01. (c): � = 0:01 and a1 = 0:1.

amplitude of the feature has a stronger e�ect. Only for large amplitudes there will be a
big di�erence between the Stokes and Reynolds solution.

Note that for the cases shown in �gure (4.17) the wavelengths are chosen such that
the factor �a1=a4 is the same. It is clear that the �gures give more or less the same result.
Only the �rst case, � = 0:1 and a1 = 0:01, is a little bit di�erent because here � is still
big and there might be some interaction between the inow/outow boundaries and the
waviness.

Where does the ratio �=a4 originate from? It was found in chapter (2) that dh
dx

and
higher derivatives are important and can destroy the e�ect of a small � in a series expan-
sion. However, the value � dh

dx

���
x=0

� �2�Am�
a4

� Am�
a4

can not predict if the solutions of the

Reynolds equation are valid. Firstly, the parabolic shape in �gure (4.17) excludes this
parameter because the same �R value coincides with di�erent Am�

a4
. Secondly, if only points

before the maximum value are considered in �gure (4.17), e.g. the points Am = 0:008,
a4 = 0:0006, �R = 0:2114 and Am = 0:0088, a4 = 0:0014, �R = 0:2115 with Am

a4
= 13:33

and Am
a4

= 6:29, respectively, it is clear that the same �R value coincides with di�erent
Am
a4
. A better parameter seems to be the maximum value of � dh

dx

���
max

� �2��a1
a4

� �a1
a4

by
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taking Am ! a1. In physical parameters it follows that �a1
a4

= Ha1
La4

= Hloc

�
. So, to have

more than ten percent deviation between the Stokes and the Reynolds solution according
to �R, Hloc

�
> 0:25 must hold. The amplitude of the feature is still unbounded. For a

single local feature the maximum in �R is reached for small amplitudes. For EHL relevant
geometries an amplitude close to the local �lm thickness is needed to reach a maximum.
The parameter Hloc

�
con�rms the expectations of [25].

4.4.1 Perturbation EHL relevant geometry

The same perturbation analysis, that was used in section (4.2.1) for the SLF, will be used
here. In �gure (4.18) some results are shown, for the case � = 0:1, a1 = 0:1, Am = 0:08
and two wavelengths a4 = 0:04; 0:018.
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Figure 4.18: Pressure at the surface z = 0 (left) and z = h(x) (right) for the Reynolds
solution (prey), the Stokes solution (ps) and a �rst-(p1) and second-order (p2)
perturbation solution for the case a4 = 0:04 (top) and a4 = 0:018 (bottom) while for both
cases � = 0:1, a1 = 0:1 and Am = 0:08.

The �gures show the pressure at the surface z = 0 and z = h(x) as obtained from
the Reynolds equation, the Stokes solution, and the �rst-and second-order perturbation
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solution. As the global features of the solution have been discussed in detail in the
previous section, here only the solution in the region around the feature is shown. First
consider the case a4 = 0:04. The �rst-order perturbation solution is already a great
improvement on the Reynolds solution. The second-order perturbation result is an even
more accurate approximation to the Stokes solution. Clearly the perturbation in � for this
case converges. With decreasing wavelength the accuracy of the perturbed solutions is
expected to decrease. This can be seen from the results shown for a smaller wavelength.
For a4 = 0:018 the perturbation solution does not converge on a local scale, in the region
of the feature, but also not on a global scale. With increasing perturbation order, the
series expansion diverges more and more from the Stokes solution and the parameter �
is not an adequate perturbation parameter anymore. It is observed that in both cases
(a4 = 0:04; 0:018) the Stokes pressure is higher than the Reynolds pressure as was found
for the SLF.
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Figure 4.19: Streamlines of velocity �eld (left) and velocity u(z) and w(z) at x = 0
(right) for the Stokes (S) solution, the Reynolds (R0) solution and the �rst order
perturbation (R1) solution for the case a4 = 0:04 (top) and a4 = 0:018 (bottom) and for
both cases � = 0:1, a1 = 0:1 and Am = 0:08.

For the same cases �gure (4.19) shows some velocity results. The left �gures show the
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ow-�eld according to the Stokes solutions. The �gures on the right show the velocities
u and w as a function of z at the location x = 0. These �gures show the velocity
components according to the Reynolds solution, the Stokes solution, and a �rst-order
perturbation result. The �rst-order perturbation results for a4 = 0:04 for the u and w
velocity components at x = 0 are improvements on the Reynolds solution but too large, as
can be seen in �gure (4.19). Both solutions predict a recirculation in the top of the wave.
The Reynolds solution predicts a smaller recirculation and the �rst-order perturbation
a larger recirculation, compared to the Stokes solution. For a4 = 0:018 the �rst-order
perturbation correction is much too large, compared to the Stokes solution. A visual
inspection of the ow �eld of the �rst-order perturbation shows that it is not realistic
anymore. Besides a large recirculation in the top of the wave, for large ratios �a1=a4,
in this case for a4 � 0:018, another recirculation appears on top of the �rst one. This
secondary recirculation, already reported in the section (4.1.1), can neither be predicted
by the Reynolds equation nor by a perturbation analysis in �. They are rather small
compared to the large recirculation.

That the global pressure correction to the Reynolds solution, given by the perturbation
analysis, is correct is also illustrated by the calculation of the �R values. For � = 0:1,
a1 = 0:1 and a4 = 0:04 the �R values as function of the amplitude have been plotted
in �gure (4.20). For three solutions �R is shown in this �gure. For: the �rst-order and
second-order perturbation solutions and for the Stokes solution. It can be seen that a
higher-order series expansion results in a better prediction of the �R. These kinds of
calculations were not repeated for smaller wavelengths because of the lack of convergence.
So, in contrast to the SLF where up to 20 percent deviation between the Stokes solution
and the Reynolds equation could be predicted by the perturbation analysis, a maximum
of roughly 10 percent applies.
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Figure 4.20: The �R value when � = 0:1, a1 = 0:1 and a4 = 0:04 in the case of the
Stokes( �Rs) solution and in the case of �rst( �R1) and second( �R2) order perturbation
analyze.



82 CHAPTER 4. RESULTS FOR STOKES

4.5 Conclusion

With respect to the Stokes model, used to describe the ow in a narrow contact geometry
the following conclusions can be drawn.

� For a single sinusoidal feature in a nominally uniform �lm the ratio H=� determines
the di�erence between the Stokes and the Reynolds solution. If this ratio is O(1),
di�erences greater than ten percent, e.g. in the predicted e�ect on the lift force, can
be expected.

� The results from the single wave also hold for the multiple wave situation.

� For moderate wavelengths of the local feature the developed perturbation theory
can predict the Stokes solution very well.

� In the case of a more realistic contact surface, a paraboloid with a single local feature
superimposed on it, the ratio Hloc=� determines the di�erence between the Stokes
and the Reynolds solution, where, Hloc is the �lm-thickness at the location of the
feature. If this ratio is O(1) and the amplitude of the feature is close to the �lm-
thickness (Hloc), di�erences greater than ten percent occur. Also here, for moderate
wavelength and amplitude of the local feature the developed perturbation theory
can predict the Stokes solution very well.



Chapter 5

Compressibility and piezo-viscous

e�ects

In the previous chapter the di�erences between the solution of the Stokes equations and
that of the Reynolds equation were studied as a function of the ratio � = H=L and
characteristics of the surface geometry such as wavelength and amplitude.

The limitation to the validity of the Reynolds equation related to the contact geometry
is well known and quantifying it was the main objective of the work, presented in Chapter
(4). To really isolate the e�ects of geometry, the lubricant was assumed to be incompress-
ible and iso-viscous. Also \cavitation" was ignored and the load carrying capacity was
computed using a Sommerfeld assumption. In this chapter the e�ects of compressibility,
cavitation and piezo-viscosity are studied.

Compressibility and cavitation are related, see chapter (2). It was shown that the
limitation of the pressure to the vapor pressure could be implemented via a speci�c density
pressure relation. Some results obtained with this algorithm are presented here.

However, compressibility is also important for another reason. Much less known than
the geometric limitation to the validity of the Reynolds equation is its limited validity
in relation to pressure-dependent density and viscosity. These e�ects are of particular
importance for the �elds of gas lubrication and EHL.

5.1 Compressibility: Gas lubrication

Shortly after the discovery of the mechanism of hydrodynamic lubrication by Reynolds the
possibility to use gas, or, more precisely, air, as a lubricant was explored [52]. One obvious
advantage of air lubrication is that it is nearly always available. Alternatively, in the case
of compressors or equipment working with gases one might well use the processed gas itself
for lubrication. Some other potential advantages of lubrication with gas are the extremely
low friction that can be achieved due to the low viscosity and the corresponding very low
frictional heating. However, these advantages did not outweigh the disadvantages:

� Most gases have no boundary lubrication properties. Thus, when the surfaces touch
during start up, running out or, incidentally, e.g. due to vibrations, damage of the

83
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surface may occur very easily leading to complete failure. Protection against these
situations requires a \back-up" lubrication mechanism.

� The load capacity that can be generated by aerodynamic lubrication alone is often
not su�cient for practical situations. Aero-static \help" with externally supplied
pressure can partly solve this problem.

As a result, gas lubrication remained a small �eld for a long time. Only after the second
World War the �rst real practical applications were developed. Relevant references are
[21], [29] and [17].

The past decade has seen a renewed interest in gas lubrication. In particular, appli-
cations in the computer industry have stimulated this interest, e.g. hard disk sliders and
the head-tape interface. Many publications have appeared in which the lubrication of
these problems in relation with geometry (of the slider) have been studied numerically.
In all these cases the Reynolds equation is used to describe the ow. In some cases it is
corrected for special e�ects occurring in very thin �lms (Knudsen e�ect) but the validity
of the equation itself has rarely been questioned. This forms the topic of the present
section.

As a model problem the ow below a step geometry is taken. The problem is illustrated
in �gure (5.1). This problem can be seen as a section taken from a \grooved" bearing.
The lower surface moves with a certain velocity and of particular interest is the generated
load bearing capacity in relation to this speed and the step geometry. The gas is assumed
to obey the ideal gas law, see equation (2.67). The uid motion can be described by the
Reynolds equation (2.68) or by the Stokes equations in the form (2.8), (2.9) and (2.10).
In both cases the factor of proportionality between the density and the pressure can be
divided out of the uid motion equations. The dimensionless viscosity is held �xed to
unity. The geometry of the \step" is de�ned by:

h(x) = 1� a1
(1 + e�a2(a3�x))(1 + e�a2(a3+x))

: (5.1)

For the Stokes solution the grid is generated by:

z = �2h(x(�1)) ; (�1; �2) 2 ([0; 1]; [0; 1]) ; (5.2)

where x(�1) is de�ned by equation (3.68). The boundary conditions are also given in
�gure (5.1). The parameter of interest is the lift force. For the Stokes case this force has

two components, see section (2.4). Substitution of � = 1 (iso-viscous) and @u
@x

���
z=0

= 0 in

equation (2.79) gives

Fp =
Z 1

�1
p(x; z = 0) dx and Fw = �4

3
�
Z 1

�1

@w

@z

�����
z=0

dx : (5.3)

In this study �(= 0:005), a1(= 0:5) and a3(= 0:05) will be �xed as we have already
studied the geometrical limitations of the validity of the Reynolds equation. Here we
wish to focus on the compressibility aspects only. The relevant input parameters are �,
the surface velocity u1 and a2. The parameter a2 is proportional to the slope of the step
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Figure 5.1: Geometry and boundary conditions for Single Local Feature in the case of gas
lubrication.

because dh
dx

���
x=a3

� a1a2
4

if a2a3 � 1. The solutions will be compared with the solutions of

the Reynolds equation. For this case the Reynolds equation is given by:

d

dx

"
�ph3 dp

dx
+
6u1
�
ph

#
= 0 (5.4)

and the predicted lift force by:

Frey =
Z 1

�1
p(x)dx (5.5)

From equation (5.4) it can be seen that the Reynolds solution is determined by the
parameter u1=�. This is the equivalent of the usual bearing number �n =

6u1
�

in terms of
the non-dimensional variables used here.

In the introduction it was mentioned that gas bearings generally have a limited maxi-
mum load capacity. For the present problem the Reynolds solution has a high-speed limit
that can be calculated from equation (5.4). Integrating with respect to x and taking the
limit �

u1
! 0 gives:

6ph = c1 ; (5.6)

where the integration constant c1 follows from the pressure boundary condition 6p(x =
�1)h(x = �1) = 6 = c1. In the high-speed limit the lift force can be calculated according
to:

F1
rey =

Z 1

�1

1

h
dx : (5.7)

So, for a given geometry this limit can be computed easily. If a3 ! 1, representing
exactly a step, the integral can be evaluated: F1

rey = 2:1. The shape of the pressure
pro�le is given by p = 1=h.

Figures (5.2) and (5.3) show a typical solution to the problem for a2 = 1343 and
u1 = 0:05. Figure (5.2) also shows the pressure pro�le and the streamlines of the Stokes
solution. The streamline picture shows a small recirculation zone in front of the step.
This recirculation is also present in the Reynolds solution. In �gure (5.3a) the velocity as
function of z is shown for x = �0:1. The Reynolds and the Stokes solution are more or less
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the same. Also shown in �gure (5.3) is the pressure as a function of x at the surface z = 0
and z = h and also the Reynolds solution. For this case the two solutions obviously di�er
very little. The solution shows everything that were to be expected: a \block-shaped"
pressure distribution along the restriction with a \boundary layer" in front and after the
restriction in which it builds up and drops down to unity, respectively. Based on the
Reynolds solution one would now expect the width of this boundary layer to decrease
with increasing speed.

0.4

1

2

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

−0.5
0

0.5

x

z

p

−0.15 −0.05 0.05 0.15
0

0.2

0.4

0.6

0.8

1

x

z h(x)

� = 0:025

� = 0:024

� = 0:022

� = 0:02

� = 0:01

(a) (b)

Figure 5.2: Stokes solution. (a): Pressure �eld. (b): Streamlines. Both as function of x
and z for � = 0:005, u1 = 0:05 and a2 = 1343.
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Figure 5.3: (a): u and w velocity components at x = �0:1. (b): Pressure as function of
x for z = 0 and z = h(x). Subscript indicates if it is a Reynolds (r) or a Stokes (s)
solution. � = 0:005, u1 = 0:05 and a2 = 1343.

Figure (5.4) shows the computed pressure pro�les at z = 0 and z = h as a function
of u1 for the Reynolds and the Stokes solution to the problem. Clearly the Reynolds
solution exhibits the aforementioned behavior, however, the Stokes solution does not. At
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�rst, with increasing u1 the block shape indeed appears, and the pressure pro�les at z = 0
and z = h di�er little. However, with increasing u1 the pressure pro�le moves away from
the block shape and at the same time the pro�le at z = 0 and that at z = h starts to
di�er. For z = 0 the high pressure at the restriction, followed by a low pressure in its
wake, is replaced by a gradual increase along the restriction and a gradual decrease in its
wake. At the surface z = h the pressure pro�le tends to exhibit a narrow peak at the
leading edge of the restriction and also here along the restriction it is not constant but
shows a gradual decrease. In the wake of the restriction (x > 0:05) a zone of very low
pressure is formed (nearly vacuum). The length of this zone increases with increasing u1.
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Figure 5.4: Pressure as function of x for � = 0:005, a2 = 1343 and di�erent u1 for the
Stokes (drawn lines) and Reynolds (dashed lines) solutions to the gas bearing problem.
(a): Pressure at z = 0. (b): Pressure at z = h.

Table (5.1) shows the computed load capacity of the con�guration as a function of u1
for the Stokes and Reynolds solution. The computed lift forces for the two solutions di�er
little and, quite remarkably, in spite of the fact that the Stokes solution to the pressure
does not seem to have a high-speed limit, the lift force does. Moreover, its limiting value
is the same as the one predicted by the Reynolds model.

The e�ect of the slope of the side wall of the step is the next topic of investigation.
This slope is determined by a2. The angle between the side of the step and a horizontal
line in the physical world is determined by:

tan(�) = �
dh

dx

�����
x=a3

� �a1a2
4

; (5.8)

for a2a3 � 1. Three situations have been calculated: a2 = 582 (� = 20o), a2 = 1343 (� =
40o) and a2 = 2771 (� = 60o). The results for the pressure pro�les for u1 = 25:0 are shown
in �gure (5.5). The pressure on the lower surface is not much a�ected by a change in a2.
The width of the pressure peak on the upper surface in front of the step decreases with
increasing a2 and the length of the almost vacuum region behind the step also decreases
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Stokes Reynolds
u1 �n Fp Fw Fp + Fw Frey

0.01 12.0 2.1947 0 2.1947 2.1802
0.05 60.0 2.1245 0 2.1245 2.1157
0.25 300.0 2.1101 0 2.1101 2.1015
1.0 1200.0 2.1084 0 2.1084 2.0994
5.0 6000.0 2.1081 0.0003 2.1084 2.0991
25.0 30000.0 2.1072 0.0010 2.1082 2.0990
100.0 120000.0 2.0892 0.0102 2.0994 2.0990

Table 5.1: Computed lift force (load capacity) for gas lubrication problem for Reynolds
solution (Frey) Stokes solution (Fp; Fw) as a function of the bearing number �n. The
Reynolds limit for in�nite �n is F1

rey = 2:1.
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Figure 5.5: Pressure as function of x for � = 0:005, u1 = 25:0 and di�erent a2 for the
Stokes (ps) and Reynolds (prey) solutions to the gas bearing problem. (a): Pressure at
z = 0. (b): Pressure at z = h.

with increasing a2. The height of the pressure peak on the upper surface in front of the
step increases with increasing a2.

So, if one �xes the lower surface speed and steepens the side walls, the pressure along
the upper surface will resemble the high speed limit p = 1

h
with a pressure peak before

the step and a pressure dip behind the step. The lower surface pressure will be hardly
a�ected by a change in a2 but it is totally di�erent from the high-speed limit for the
Reynolds pressure.

Finally, table (5.2) gives the computed lift force according to the Stokes and Reynolds
solution for di�erent a2 and u1 = 0:01 and u1 = 25:0, respectively. The table shows
that, again, the lift capacity computed, with the Stokes solver, di�ers little from the value
predicted by application of the Reynolds equation.
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Stokes Reynolds
�n a2 Fp Fw Fp + Fw Frey

12.0 582 2.1894 0 2.1894 2.1755
12.0 1343 2.1947 0 2.1947 2.1802
12.0 2771 2.1970 0 2.1970 2.1825
30000.0 582 2.1046 0.0005 2.1051 2.0976
30000.0 1343 2.1072 0.0010 2.1082 2.0990
30000.0 2771 2.1090 0.0013 2.1103 2.0996

Table 5.2: Computed lift force (load capacity) for gas lubrication problem for Reynolds
solution (Frey) Stokes solution (Fp; Fw) as a function of the step parameter a2. The
Reynolds limit for in�nite �n is F1

rey = 2:1.

In summary, comparison of the Reynolds and Stokes solutions for the gas lubricated
step geometry has shown that:

� On the lower surface the pressure as a function of x di�ers from the Reynolds
solution for large u1, nevertheless the same lift force is created.

� The steepness of the step inuences the extend of the region where a pressure
peak/dip occurs. This peak/dip is not predicted by the Reynolds equation.

So it is concluded that in order to predict the lift force one can generally use the Reynolds
equation, but the predicted pressure pro�les should be handled with care.

�n 1=�MG

12 19.5
60 28.0
300 52.6
1200 63.5
6000 84.6
30000 120.0
120000 256.0

Table 5.3: Average error reduction factor per V(2,2) cycle of the Stokes solver as a
function of �n for � = 0:005 and a2 = 1343.

To conclude this section, some details are given regarding the numerical performance
of the algorithm for the solution of the Stokes equations. The above solutions were all
obtained using a FMG algorithm with 5 V(2,2) cycles per level. The �nest grid contained
256�256 cells. The discretization of the continuity equation was done with the �rst order
upstream scheme presented in section (3.4.1). In the line relaxation process the line search
algorithm was not needed. The numerical solver exhibited excellent performance. In fact,
with increasing u1 the performance even improved. This is illustrated in table (5.1). This

table gives the average error reduction per cycle de�ned as: �MG =
h
rp(Nc=5)
rp(Nc=1)

i 1
4 .
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For large u1 the MG cycle tends to be an exact solver. This is due to the strong
downstream dependence in the problem and the use of an upstream discretization.

As a �rst-order discretization was used, it is important to check whether observed
tendencies in the solution are perhaps a result of arti�cial \viscosity". This applies in
particular to the solutions for high u1. Therefore convergence of the solution with decreas-
ing mesh size was checked. Some results are shown in �gure (5.6). This �gure shows the
pressure as a function of x at z = 0 of the Stokes solution for grids with 64; 128; 256; 512
cells. Also shown is a plot of the contour lines of the pressure. The �gure shows that
with decreasing mesh size the solution converges, although this process for the pressure
contours is quite slow, as could be expected from the use of a �rst order scheme. However,
clearly the computed pressure pro�le is accurate and as a result the di�erences between the
Stokes solution and the Reynolds solution, observed for high u1, are not due to artefacts
resulting from the discretization.
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Figure 5.6: (a): Pressure as a function of x at z = 0 for the Stokes solution on di�erent
grids. (b): Also shown the contour plot of the pressure for the Stokes solution on
di�erent grids. � = 0:005, u1 = 25:0 and a2 = 1343.

5.2 Compressibility: Cavitation

If the lubricant is a liquid and the pressure drops below the vapor pressure it will cavitate.
For most lubricated contacts this phenomenon will occur in regions where the gap widens,
most notably in the exit region of the contact.

To account for this behavior in simulations, an extension of the Stokes model or the
Reynolds model is needed. In their standard form both models allow an unlimited pressure
drop, and if p = 0 at the boundaries they will predict signi�cant negative pressures in
widening regions. In these cases the computed lift force will be wrong. For example, the
computed pressure pro�le below a parabolic surface with p = 0 at the boundaries will
be anti-symmetric and thus have zero predicted net lift force. However, in reality the
negative pressures will be limited to the vapor pressure. As the di�erence between the
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vapor pressure and the atmospheric pressure is small compared to the pressure generated
in the gap, it is justi�ed to take both to be zero and compute the lift force using only
the positive part of the pressure �eld. This \Sommerfeld" approach was used to obtain
the results presented in chapter (4) as can be seen from the de�nition of the lift force
di�erence �R.

However, the most accurate way is to extend the model such that pressures lower
than the vapor pressure will not occur. For models based on the Reynolds equation this
is commonly done by imposing the separate condition p > pv ( in practice p > 0) and
then solve a complementarity problem. For the Stokes equations this approach is not
suited because, if in the region where p � pv the Stokes equations are replaced by for
example p = pv and u = 0, w = 0, the continuity equation does not hold on the cavitation
boundary. In section (2.3.3) a two-phase model was proposed, to overcome this problem.

It was shown that this two-phase model could be used in both the Reynolds and the
Stokes model. In chapter (2) it has already been validated that when implemented in
a Reynolds model this approach gives similar results to those obtained with the usual
complementarity approach. In this section results obtained with the Stokes model will be
presented.

Firstly, to show some typical behavior of the cavitation model, the problem of the ow
below a parabolic surface is studied (rigid, iso-viscous limit of EHL). Secondly, the ow
in a uniform �lm with a single local feature is revisited. For this problem the di�erences
between the Reynolds and Stokes solution were investigated in detail using the quantity
�R. The objective here is to verify that �R, computed using Stokes solutions obtained with
the cavitation model, behaves in the same way as Stokes solutions obtained without the
cavitation model.

5.2.1 Parabolic gap

Equations (2.8), (2.9) and (2.10) or in the transformed form (2.28), (2.29) and (2.30) are
used to describe the ow underneath a parabola. The geometry of the parabola is de�ned
by equation (4.1) where a1 = 0:2, a2 = 2 and Am = 0. The viscosity is assumed to be
constant. The density is assumed to depend on the pressure according to (2.71). The
coordinate transformation from the physical domain to the computational domain is given
by equation (5.2) where x(�1) = 2�1 � 1. So, to generate the grid, there is no re�nement
in the x-direction. The boundary conditions are p = 0; w = 0 at the inlet and at the
outlet. The problem was solved using an FMG algorithm with 5 W(2,2) cycles per grid
level. The solutions presented were obtained using 6 levels with a coarsest grid consisting
of 8� 8 cells. Some details regarding performance and convergence of the solver for this
problem will be given at the end of this section.

With respect to the solution itself the e�ect of the parameter �� of the cavitation model
will be investigated. As a reminder: �� represents the slope in the density-pressure relation
around the vapor pressure point. A larger �� implies a steeper slope and will a�ect the
solution in and near the cavitation region. Results will be presented for 0:1 � �� � 400.
In �gures (5.7), (5.8) and (5.9) a typical solution is shown for � = 0:01, pv = �300:0 and
�� = 0:1. Figure (5.7) shows the pressure and density pro�le as a function of x and z. It
is observed that the density suddenly increases to unity at x � 0:6. Such a rapid change
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Figure 5.7: (a): Pressure pro�le. (b): Density pro�le. Both as function of x and z for
� = 0:01, �� = 0:1, pv = �300:0.

is also observed in the streamline picture (5.8a). The u- and w-velocity pro�les for the
Stokes and the Reynolds solution as function of z at x = 0:5 are almost exactly the same.

Figure (5.9a) shows for the same case the pressure at z = 0 computed using the
Reynolds model and the Stokes model, respectively. If cavitation had not been accounted
for, the solution would have been anti-symmetric. Clearly now the pressure minimum is
limited to the vapor pressure. Note that the width of the cavitated region will depend on
the value of the vapor pressure. For this case where pv is taken signi�cantly lower than
the boundary pressure one observes a pressure drop reaching the vapor pressure at about
x = 0:2 and a return to the liquid pressure at about x = 0:6. For the value � = 0:01 taken
here, the Reynolds and Stokes solutions di�er very little. Therefore only the pressure at
the lower surface is shown. Figure (5.9b) also shows an enlargement of the pressure pro�le
in the cavitated region together with the density. This �gure once again shows very little
di�erence between the Reynolds and Stokes results, which implies that the pressure and,
thus, the density will vary little as a function of z.

Figure (5.10) and (5.11) show the contour plots of the density using �� = 0:1; 50; 100
and 400, respectively. Comparing the results for �� = 50; 100 and 400 with the result for
�� = 0:1 shows that the width of the cavitated region is not changed. However, the iso-
contour of the density in this region are no longer straight lines. This implies that p varies
as a function of z and that in this region the Reynolds and the Stokes solutions di�er.
In particular, with increasing �� a region of very low density develops close to the upper
surface. As in this region the density equals the vapor density, this can be interpreted as
a \bubble". The development of such a fully vaporized region or \bubble" for increasing
�� is also illustrated in �gure (5.12) where � is plotted as a function of z at x = 0:5 for
di�erent ��. Note that as a function of z the transition from the fully-vaporized region
to the region with � > 0:01 at x = 0:5 is gradual. Furthermore, it can be seen in �gure
(5.12) that for increasing �� the density near z = 0 approaches unity. It is mentioned
that, physically, one would also expect this to happen near the lower surface as for the



5.2. COMPRESSIBILITY: CAVITATION 93

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

z

� = 0:16

� = 0:14

� = 0:12

� = 0:1

� = 0:06

� = 0:02

h(x)

0 0.1 0.2 0.3 0.4
0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

u w

z

us
ws
ur
wr

(a) (b)

Figure 5.8: (a): Streamlines as function of x and z. (b): u and w velocity components at
x = 0:5. Subscript indicates if it is a Reynolds (r) or a Stokes (s) solution. � = 0:01,
�� = 0:1, pv = �300:0

present case the lower surface supplies the lubricant.
An interesting question is if this formation of a fully-vaporized region is related to the

pressure solution by some parameter. One can calculate the di�erence �~p = p(x; z =
h(x)) � p(x; z = 0), at the point where p reaches a minimum in the non-cavitating case.
It was found that if �~p > �

2��
and the minimum pressure in the non-cavitating case is

lower than pv, a fully-vaporized region occurs.
For the solutions shown in �gures (5.10) and (5.11), even though the solution inside

the cavitated region changes, the boundaries of this region remain straight. This can
be ascribed to the small value of �. For a larger value of � these lines will no longer be
straight. This is illustrated in �gure (5.13a) which shows a result obtained for � = 0:5,
pv = �8:0 and �� = 10:0. In �gure (5.13b) it is shown that the density approaches unity
on the lower surface but now for �� = 10:0.

How do the values for �� used here relate to physically relevant values? For a mineral
oil at standard conditions owing through a hydrodynamically lubricated contact the
following values can be estimated:

�o = 100:0 � 10�3 [kg/ms]
�l = 1000:0 [kg/m3]
�v = 1:0 [kg/m3]
av = 500:0 [m/s]
H = 0:1 � 10�6 [m]
u0 = 1:0 [m/s]

(5.9)

With these values the value of �� in equation (2.72) can be calculated: ��=2.0. So, the
z-dependency in the density for the problem discussed here, occurs in reality, if H is much
smaller and/or u0 is much larger.

Summarizing it is concluded that the cavitation model yields the desired \physical"
behavior from the viewpoint of lift force computations, i.e. it provides a lower limit to
the pressure. The width of the cavitation region will be determined by the magnitude of
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Figure 5.9: (a): The pressure at z = 0 as function of x for the Reynolds solution without
cavitation, the Reynolds solution with cavitation and the Stokes solution with cavitation.
(b): Zoom in of the pressure and density at z = 0 as function of x for the Reynolds and
the Stokes solution with cavitation in the cavitation region, � = 0:01, pv = �300:0 and
�� = 0:1.

the vapor pressure itself. The solution inside this region will depend on the parameter
��. For large �� in this region a z-dependent pressure and density is found showing once
again that the density-pressure relation induces di�erences between Stokes and Reynolds
solutions in thin �lms.

To conclude this section some details about the performance of the numerical algorithm
will be given. For the gas-lubricated contact convergence was excellent. However, for the
cavitation problem it strongly depends on the value of ��. For a large �� sharp changes in
the pressure occur in a small region. In such cases the modi�ed Newton step, as described
in section (3.4.2), does not �nd a root for the system of equations at one line. In that case
the set of equations at the previous line is solved again, followed by the set of equations
at the \bad" line. This procedure is repeated until the \bad" line is solved. The lines
where this di�culty occurs are the ones near the point where the uid starts to cavitate
and the point where the mixture returns to a liquid. At the �rst point dp=dx changes very
rapidly. At the second point there is a jump in dp=dx, see �gure (2.6). These phenomena
also have a strong e�ect on the MG performance. This is illustrated in table (5.4) where
the average error reduction over 5 cycles is shown as a function of ��.

�� 0:1 1:0 10:0 50:0 100:0 200:0 400:0
�MG 10:3 8:8 3:5 3:2 3:2 9:4 2:1

Table 5.4: Average error reduction factor per W(2,2) cycle of the Stokes solver as a
function of �� for N = 256, � = 0:01 and pv = �300:0

To improve convergence for large ��, special measures need to be taken in the MG algo-
rithm concerning interpolation of correction and computation of the coarse grid operator.
Such modi�cations should be the subject of further research.



5.2. COMPRESSIBILITY: CAVITATION 95

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

z

h(x)

� = 0:6

� = 0:7

� = 0:8

� = 0:9

� = 1:0

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

z

h(x)

� = 0:4

� = 0:5

� = 0:6

� = 0:8

� = 1:0

(a) (b)

Figure 5.10: Contour plot of the density for � = 0:01 and pv = �300:0. (a): �� = 0:1.
(b): �� = 50:0.

Finally an illustration is given of the convergence of the solution with decreasing mesh
size (N = 128; 256; 512) for � = 0:01, pv = �300:0 and �� = 100:0. In �gure (5.14a) the
contour line � = 0:5 is shown for the solution on di�erent grids. In �gure (5.14b) the
density as function of z at x = 0:5 is shown. These �gures show that with decreasing
mesh size the solution converges.

5.2.2 Cavitation: SLF

In this section the case of a single local feature in a uniform gap is revisited but now
taking into account cavitation. For the case studied here the geometry is given by:

h(x) = 1� a3
p
2e

a4
xe

�
�

x
a4

�2
: (5.10)

This is slightly di�erent from the geometry considered in chapter (4) to avoid numerical
di�culties near the point where the harmonic part in equation (4.2) is dimmed by the
exponential part. From Fourier analysis of (5.10) it follows that the wavelength of the
feature is � = 2�p

2
a4 � 4:4a4.

The boundary conditions are p = 1:0, w = 0 on the inlet boundary and dp=dx = 0,
w = 0 on the outlet boundary. A constant viscosity is assumed. Results will be presented
for � = 0:01 and di�erent values of a3 and a4. The vapor pressure is assumed to be pv = 0
and the vapor density �0 = 0:01. The parameter �� will be varied. The problem is solved
with the same numerical algorithm as used in the previous section. The grid has been
generated using

z = �2h(x(�1)) ; (�1; �2) 2 [0; 1] ; (5.11)

where x(�1) is de�ned by equation (3.68). An FMG algorithm was used with 6 levels,
using 12� 12 cells on the coarsest grid.

Figures (5.15) and (5.16) show a characteristic solution for the problem with cavitation
(�� = 10:0). In �gure (5.15) the pressure and density pro�le are shown for a3 = 0:01 and
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Figure 5.11: Contour plot of the density for � = 0:01 and pv = �300:0. (a): �� = 100:0.
(b): �� = 400:0.
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Figure 5.12: Density as function of z at x = 0:5 for � = 0:01 and pv = �300:0.

a4 = 0:6. From this �gure it can be seen that after a pressure rise, induced by the feature,
the pressure drops to zero and remains zero. The density upstream of the feature is 1:0
and downstream of the feature it approximates 0:9. Only near the feature the density
drops to the vapor density. Figure (5.16a) shows a streamline plot of the ow. Figure
(5.16b) shows the u� and w�velocity pro�le at x = 0:015.

Next the inuence of the wavelength and the amplitude on the solution is studied.
In �gure (5.17) the density and the �lm thickness are shown as function of x for di�er-
ent amplitudes (a3) and wavelengths (a4). Figure (5.17a) shows that an increase of the
amplitude causes a fully vaporized region. Also a change in wavelength can cause this
phenomenon, see �gure (5.17b). So, in addition to ��, also the geometry determines the
structure of the solution of the cavitated region.

This inuence of the geometry on the density can best be evaluated by looking at the
contour plots of the density. In �gure (5.18) the density has been plotted for di�erent
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Figure 5.13: (a): Contour plot of the density. (b): Density as function of z at x = 0:5.
For � = 0:5, pv = �8:0 and �� = 10:0.

amplitudes. It can be observed that the region with � < 0:9 increases with increasing
amplitude and that a fully vaporized region arises. In the same way �gure (5.19) shows
the e�ect of the wavelength. It can be concluded that an increase in wavelength causes
a decrease of the region with � < 0:9 and the fully vaporized region may disappear.
Furthermore, the solution approximates the Reynolds solution where the density is only
a function of x. Finally, the e�ect of �� on the solution is illustrated in �gure (5.20).
Based on the results presented in the previous section for the ow under a parabola it
may be expected that an increase of �� increases the z-dependence of the density and the
formation and size of the vaporized region. This is exactly what �gure (5.20) shows. In
chapter (4) it was found that a decrease in wavelength increases the di�erence between
the Stokes and the Reynolds solutions. The amplitude was found to be less important. In
the case of cavitation it turns out that not only the wavelength is an important parameter
but also the amplitude of the feature. A large ratio of wavelength to �lm-thickness will
not be likely in, for example, EHL contacts, but a large amplitude may occur. Also in
the case of a geometry, which itself does not result in a strongly z-dependent density, this
may still be caused by increasing ��. For example, a change in the lower surface speed or
a decrease in H can result in a large ��.

In chapter (4) solutions of the Reynolds equation and the Stokes equations were com-
pared using �R. In this section the values of �R obtained for the present SLF problem
without cavitation will be compared with values of �R computed using solutions satisfying
the cavitation condition. The e�ects of wavelength, amplitude and �� on the computed
values of �R for the problem without cavitation and on the computed values of �R for the
problem with cavitation are illustrated in table (5.5) and in �gure (5.21). Table (5.5)
shows that in both cases, with and without cavitation, an increase of the wavelength (a4)
results in a decrease of the �R value and that the �R values found for �� = 10:0 do not di�er
much from the �R values found in the non-cavitating case. Furthermore, this table shows
an increase of the �R value for increasing ��. It tends to have a limit. Figure (5.21) shows
the �R value as function of the amplitude (a3) in the cavitated and in the non-cavitated
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Figure 5.14: (a): Contour plot of the iso-density contour � = 0:5 for the Stokes solution
on di�erent grids. (b): Density as function of z at x = 0:5 for the Stokes solution on
di�erent grids. � = 0:01, pv = �300:0 and �� = 100:0.

��
a4 10:0 50:0 100:0 No cavitation
0:005 0:8554 - - 0:8154
0:01 0:2399 0:2567 0:2589 0:2493
0:02 0:0664 - - 0:0624

Table 5.5: The relative lift force parameter �R value for di�erent a4, �� and in the case of
no cavitation. For � = 0:01 and a3 = 0:4. A bar indicates a not computed point.

case. It is noted that both models give more or less the same �R values, only for small
amplitudes there is di�erence between both models. This �gure can be compared with
the line a4 = 0:04 in �gure (4.5b). It is then observed that they resemble each other as
is expected, because in both cases the ratios � to wavelength are approximately the same
and for the SLF this ratio determines the value of �R.

Finally, in section (5.2.1) a relation between �
2��

and �~p = p(x; h) � p(x; 0), at the

point where p reaches a minimum in the non-cavitating case, was found to indicate the
existence of a fully-vaporized region. For the SLF this relation no longer holds.
In summary, the following conclusions can be drawn with respect to the SLF with cavi-
tation.

� The cavitation model can e�ectively prevent the pressure from dropping below a
preset value, the vapor pressure.

� The �R values computed with or without a two-phase cavitation model are compa-
rable.

� In certain cases a fully-vaporized region occurs. From experiments it is known that
a bubble is present. The model does open the possibility to investigate micro-
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Figure 5.15: Stokes solution for SLF. (a): Pressure pro�le. (b): Density pro�le. Both as
function of x and z. � = 0:01, �� = 10:0, a3 = 0:6 and a4 = 0:01.

cavitation inside a lubricated contact which is not possible with the Reynolds equa-
tion. The latter does not predict fully-vaporized regions.

To conclude this section, again a few results regarding convergence and accuracy are
presented. The error reduction per MG cycle, �MG, strongly depends on the values of ��,
a3 and a4. This is illustrated in table (5.6). This shows a decrease in the cycle performance
for increasing steepness of the grid-lines in the physical domain and for increasing ��. The
method is obviously not optimal in handling the sharp change in pressure.

a4
a3 �� 0:005 0:01 0:02
0:2 10:0 - 6:7 -
0:4 10:0 4:2 4:9 5:7
0:4 50:0 - 9:7 -
0:4 100:0 - 7:4 -
0:6 10:0 - 2:0 -

Table 5.6: Average error reduction factor per W(2,2) cycle of the Stokes solver for
� = 0:01. A bar indicates a not computed point.

Convergence of the solution with decreasing mesh size can be shown in many ways. One
simple way is to look at the contour line of a speci�c density value of a solution obtained
on grids with di�erent cell size. This is illustrated in �gure (5.22). On the coarse-grid
the iso-contour looks ragged due to inaccuracy. The wiggle gradually disappears with
decreasing mesh size.
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Figure 5.16: Stokes solution for SLF. (a): Streamlines. (b): u and w velocity
components at x = 0:015. Subscript indicates if it is a Reynolds (r) or a Stokes (s)
solution. � = 0:01, �� = 10:0, a3 = 0:6 and a4 = 0:01.

5.3 Piezo-viscous e�ects

The most important conclusion of the previous sections is that even if � = H=L is small
this does not automatically imply that the pressure does not vary over the �lm (as a
function of z) which is the key assumption when deriving the Reynolds equation. The
occurrence of large gradients in the density was shown to lead to a z-dependence in the
pressure. In [1] it was pointed out that the same should happen for rapid changes of the
viscosity induced by changes of the pressure.

In this section some results are presented that con�rm this prediction. Simulations
were performed solving the Stokes equations (2.8), (2.9) and (2.10) for the single local
feature problem assuming an exponential viscosity-pressure relation. The gap geometry
is again given by equation (5.10). The grid is generated by equation (5.11) where x(�1)
is de�ned by equation (3.68) with the parameters a1 = 1, � = 0:025, �x = 4:5a4 and
��1 = 0:6. The boundary conditions are p = 0 and w = 0 on the inlet and outlet. The
density is assumed to be constant and the viscosity pressure equation (2.66) is used. The
parameter � is �xed at � = 0:1. FMG with �ve levels and a coarsest grid of 12 � 12 is
used. Results are presented for di�erent values of a3 (amplitude), a4 (wavelength) and
��p (pressure-viscosity coe�cient). The important ratio between local �lm thickness and
wavelength can be approximated by Hloc=� � �=(4:4a4). As was shown in chapter (4)
this parameter gives an indication of the \geometrically" induced di�erence between the
Reynolds and the Stokes solution for constant viscosity. In �gure (5.23a) the pressure as a
function of x is shown for a3 = 0:2; a4 = 0:2. In this case Hloc=� � 0:1 and there is already
a moderate di�erence between the Stokes and the Reynolds solution for � = 1. Figure
(5.23b) shows the result for ��p = 0:19. This �gure shows that the viscosity-pressure
dependence signi�cantly increases the di�erence between the Reynolds and the Stokes
pressure. One can observe that the pressure according to the Stokes solution also globally
di�ers from the Reynolds pressure. Furthermore, one observes that the maxima in p at
z = 0 and z = h do not occur at the same point as was the case for � = 1.
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Figure 5.17: The density and �lm-thickness at z = h as function of x for � = 0:01 and
�� = 10:0. (a): Di�erent amplitudes a3 and a4 = 0:01. (b): Di�erent wavelengths a4 and
a3 = 0:4.

In �gure (5.24) the u and w velocity components as function of x have been plotted
at x = 0. For the iso-viscous as well as for the piezo-viscous case the Reynolds equation
predicts that at x = 0, where dp

dx
� 0 and h = 1, the velocity pro�les have the following

form:

u(0; z) = 1� z ; (5.12)

w(0; z) = z2(1� z)
dh

dx
; (5.13)

see equation (2.40) and (2.45). In �gure (5.24a) it can be seen that also the Stokes solution
for the u velocity pro�le is a straight line and that the location of the minimum of the w
velocity pro�le is the same as is found with the Reynolds solution. However, in the piezo-
viscous solution for ��p = 0:19, see �gure (5.24b), the Stokes solution for the u-velocity
pro�le is no longer a straight line and the location of the minimum of the w-velocity
pro�le has shifted to the left.

To quantify the di�erence between the Stokes and the Reynolds solutions, the relative
lift force di�erence �R is used again. Figure (5.25)(a) shows �R as a function of ��p for three
di�erent wavelengths a4 and an amplitude a3 = 0:2. The �gure shows that with increasing
��p the di�erence in the lift force predicted by the Reynolds equation and the Stokes
equations increases. This e�ect appears to be stronger with increasing wavelength. Next,
�gure (5.25b) shows the value of �R as a function of ��p for di�erent amplitudes keeping the
wavelength �xed. Again �R increases with increasing ��p with a stronger e�ect for larger a3.
Both �gures clearly show that a geometrically induced di�erence between the solutions of
the Reynolds and the Stokes equations is signi�cantly ampli�ed by the viscosity pressure
dependence. To what extend are the values for ��p assumed above realistic? This can be
seen as follows. Taking

�o = 100:0 � 10�3 [kg/ms]
�p = 2:0 � 10�8 [s2 m/kg]
H = 0:1 � 10�6 [m]
u0 = 1:0 [m/s]

(5.14)
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Figure 5.18: E�ect of amplitude on solution of SLF problem with cavitation: contour plot
of the density, �� = 10:0, a4 = 0:01. (a): a3 = 0:2. (b): a3 = 0:4. (c): a3 = 0:6.
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Figure 5.19: E�ect of wavelength on solution of SLF problem with cavitation: contour
plot of the density, �� = 10:0, a3 = 0:4. (a): a4 = 0:02. (b): a4 = 0:01. (c): a4 = 0:005.
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Figure 5.20: E�ect of �� on solution of SLF problem with cavitation: contour plot of the
density, a3 = 0:4, a4 = 0:01. (a): �� = 10:0. (b): �� = 50:0. (c): �� = 100:0.
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Figure 5.22: Contour plot of constant density line � = 0:5 on di�erent grids. Stokes
solution for the SLF problem � = 0:01, a3 = 0:4 and a4 = 0:01.

which are realistic values for a tribological problem it follows that ��p =
�p�0u0

H
= 0:02 and

if u0 is increased with a factor of 10 than ��p = 0:2.
Finally a few words about the performance of the solver. The algorithm shows a

rather poor MG convergence and for large ��p, �=a4, a3 it does not converge at all. This
is a subject for future research. However, the results, presented here, are su�cient to
illustrate the basic phenomenon that viscosity-pressure dependence has a signi�cant e�ect
on the di�erence between the Reynolds and Stokes solution for the SLF. This indicates
that there are some interesting questions to be answered in future EHL research where
viscosity-pressure dependence is one of the key phenomena explaining �lm formation.
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Conclusions

The aim of the research presented in this thesis was to establish criteria concerning the
validity of the Reynolds equation for the prediction of the ow in lubricated contacts.
This equation is derived from the Navier-Stokes equations under the assumption that
the ratio � = H=L of gap height and gap length is small and that it is a slow-viscous
ow. An intermediate description can be derived by omitting the inertia terms in the N-S
equations. This results in the Stokes equations. Most lubricated contacts have a small
� on a global scale. However, as technical surfaces are never perfectly smooth on a local
scale, this may no longer be true. The question then is how large the error will be that is
made when using the Reynolds equation compared to using the Stokes equations.

In order to investigate the di�erence between the Stokes and the Reynolds solutions,
the ow in a uniform channel with a surface feature on one of the surfaces, and the
ow below a parabolically shaped surface was investigated. It was found that multi-grid
techniques can e�ectively solve the discretized Stokes equations for thin �lms.

To quantify the di�erence between the Reynolds and the Stokes solution the relative
load di�erence parameter �R was introduced. The �R was monitored as a function of the
characteristic parameters of the geometry. From this study it was concluded that the
important parameter seems to be the ratio of �lm thickness and wavelength, thereby
con�rming the hypothesis of [25].

It was found that, for channel ows, deviations of more than ten percent between the
Reynolds and the Stokes solutions occur if H=� > 0:2 holds. For more general domains
one should take for H the local �lm thickness (at the location of the feature) and the
amplitude close to the �lm thickness. Comparing this with the values of H=� in practice
it is concluded that in most cases Reynolds roughness is found and the Reynolds equation
is valid. It was also shown that perturbation analysis is a cheap way of approximating
the Stokes solution for moderate values of the ratio H=� and of the amplitude.

Apart from the geometry of the contact also compressibility and piezo-viscous e�ects
can inuence the validity of the Reynolds equation. This was shown for a model problem
taken from gas-bearing application. It was found that, besides the geometry of the domain,
the lower surface speed can cause a cross-�lm dependent pressure. For the two-phase
cavitation model it was shown that a steeply varying density as a function of the pressure
can cause a cross-�lm dependent pressure. In the case of piezo-viscosity already existing
di�erences between the Stokes and the Reynolds solutions can be ampli�ed if the pressure-
viscosity coe�cient is increased.
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Recommendations for further

research

It appears that geometrically induced di�erences between the Reynolds and the Stokes
solution will be rare in EHL contacts. But if one wants to have a closer look at what the
precise e�ect is on the load carrying capacity of the contact one could use an expression
for the pressure from perturbation analysis in an existing EHL solver. The validity of
the assumption that the convective terms can be neglected in the neighborhood of a local
feature could be a topic for further study.

The gas-bearing model results call up some questions concerning the calculated high
speed pressure pro�le. To what extent are the pressure pro�les that were found realistic,
and what is the e�ect of inertia in this regime?

For small �� the MG performance for the two-phase model is quite good. An increase
of �� decreases the MG performance. So, if one wants to do more research on cavitation
with the two-phase model, one should investigate the MG scheme more precisely. Is
there a better relaxation procedure? What about the coarse-grid operator? What kind
of inter-grid operators should be used? A good starting point could be the study of the
full potential equation, see [74], [94]. This is also a partially elliptic/hyperbolic equation.

Piezo viscosity appears to result in a distinct di�erence between the Reynolds and
the Stokes solutions in an EHL contact. Also here some numerical problems (no MG
convergence) were encountered for too large viscosity-pressure coe�cients. A remedy is
probably to use some kind of an upwind discretization in the direction of the characteristics
such as given by A.7.
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Appendix A

Determination type of equation

Partial di�erential equations can be divided into three main categories: elliptic, parabolic
and hyperbolic. Simple examples are: the Laplace equation, the di�usion equation and
the wave equation. They di�er in the way a disturbance in the solution is transported
through the domain. The lines along which the disturbance is transported are called
characteristics. It is also possible that the partial di�erential equation is a combination of
the above mentioned types. Also systems of partial di�erential equations can be classi�ed
in the above categories. For a mathematical introduction to this topic see [100].

For a system of quasi-linear �rst-order partial di�erential equations of the form:

A
@u

@x
+B

@u

@z
= Cu+ c ; (A.1)

where u and c(x; z) are n-component column vectors and A, B and C are n � n matrix
functions of x, z and u. The slope of the characteristics in the (x; z) plane are determined
by the eigenvalues �i of A

�1B, i.e.

dz

dx
= �i; i = 1:::n : (A.2)

With the eigenvalues and eigenvectors of A�1B the following division can be made.

1. If the �i's are complex-valued then the system is elliptic.

2. If the �i's are real and the n eigenvectors are linearly independent then the system
is hyperbolic.

3. if the �i's are real and not all n eigenvectors are linearly independent then the
system is parabolic.

A.1 Incompressible, piezo-viscous ow

In this case � is a function of p and � is constant. Equations (2.11), (2.12) and (2.13)
with � = 1 can be written as:

(1� 2�p[ux])
@p

@x
� �p[wx + uz]

@p

@z
� �(

@2u

@x2
+
@2u

@z2
) = 0 ; (A.3)
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(1� 2�p[wz])
@p

@z
� �p[wx + uz]

@p

@x
� �(

@2w

@x2
+
@2w

@z2
) = 0 ; (A.4)

@u

@x
+
@w

@z
= 0 ; (A.5)

where �p=
d�
dp
, ux=

@u
@x
, uz=

@u
@z
, wx=

@w
@x

and wz=
@w
@z
.

The terms in brackets will be kept constant in this analysis. After introduction of the
new variables s1=

@u
@z
, s2=�@w

@z
= @u

@x
and s3=

@w
@x

the above equations can be written in
the form (A.1) with

A =

2
666666664

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 �1 0 0
0 0 0 0 1 0
0 0 1� 2�p[ux] 0 �� 0
0 0 ��p[wx + uz] 0 0 ��

3
777777775
; B =

2
666666664

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 ��p[wx + uz] �� 0 0
0 0 1� 2�p[wz] 0 � 0

3
777777775

(A.6)
and u=fu; w; p; s1; s2; s3gT , Cu=fs3; 0; 0; 0; 0; 0gT , c=0. Because Det[A]=�� + 2��pux
the eigenvalues of A�1B can be found: �1;2=0, �3;4=�I and

�5;6 =
��p[uz + wx]�

p
D

1 + 2�p[wz]
; (A.7)

where

D = �2p([uz + wx]
2 � 4[uxwz])� 1 :

The �1;2 can be omitted because they result from the transformation of the second-order
system to the �rst-order system. This means that the system is fully elliptic if D < 0.
This is always the case in the constant-viscosity case. If D = 0 then the system is partially
parabolic. If D > 0 then the system is partially hyperbolic.

A.2 Compressible, piezo-viscous ow

The density and the viscosity are both functions of the pressure. Equations (2.8), (2.9)
and (2.10) with �=1 can be written as:

(1 +
1

3
�p(2[wz]� 4[ux]))

@p

@x
� �p[wx + uz]

@p

@z
� 4

3
�
@2u

@x2
� 1

3
�
@2w

@x@z
� �

@2u

@z2
= 0 ; (A.8)

(1 +
1

3
�p(2[ux]� 4[wz]))

@p

@z
� �p[wx + uz]

@p

@x
� 4

3
�
@2w

@z2
� 1

3
�
@2u

@x@z
� �

@2w

@x2
= 0 ; (A.9)

u�p
@p

@x
+ �

@u

@x
+ w�p

@p

@z
+ �

@w

@z
= 0 ; (A.10)

where �p=
@�
@p
, �p=

d�
dp
, ux=

@u
@x
, uz=

@u
@z
, wx=

@w
@x

and wz=
@w
@z
. The terms in brackets will

be kept constant in this analysis. After introduction of the new variables s1=
@u
@x
, s2=

@w
@x
,
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s3=
@u
@z

and s4=
@w
@z

the above equations can be written in the form (A.1) with

A =

2
666666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 �1
0 0 1 + 1

3
�p(2[wz]� 4[ux]) �4

3
� 0 0 �1

3
�

0 0 ��p[wx + uz] 0 �� 0 0
� 0 u�p 0 0 0 0

3
777777777775
;

B =

2
666666666664

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 ��p[wx + uz] 0 0 �� 0
0 0 1 + 1

3
�p(2[ux]� 4[wz]) �1

3
� 0 0 �4

3
�

0 � w�p 0 0 0 0

3
777777777775

(A.11)

and u=fu; w; p; s1; s2; s3; s4gT , Cu=fs1; s2; 0; 0; 0; 0; 0gT , c=0. Because Det[A]= 4
3
�2�pu

the eigenvalues of A�1B can be found: �1;2=0, �3;4=�I, �5;6= I and �7=
w
u
. The �1;2

can be omitted because they result from the transformation of the second-order system
to the �rst-order system. In compressible ow the system is partially hyperbolic with
characteristics along w=u independent of the viscosity.
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Appendix B

Determination speed of sound

In the two phase model the minimum speed of sound in a mixture of liquid and bubbles
is required. In the following an estimate for the minimum speed of sound is deduced. For
a detailed discussion see [3], pp. 93. This parameter is then used in equation (2.71). The
speed of sound in a uid is de�ned as:

a2 =

 
@p

@�

!
s

; (B.1)

where ()s indicates a constant entropy. Only in the transition region between the liquid
and the vapor state the density is not constant and the speed of sound is not in�nite (see
�gure (2.4)). This is typical for the used model. Obviously, in reality the speeds of sound
in the vapor and in the liquid have �nite values.

To determine the speed of sound in the mixture the volume fraction (�a) of the vapor
bubbles in the mixture is introduced. The actual density is then a linear combination of
the liquid density and the vapor density:

� = �a�v + (1� �a)�l : (B.2)

It is assumed that the bubbles in the mixture are small enough to follow the uid when
an acoustical wave passes. In that case, the ratio �a = �a�v

�
is a conservative quantity

(i.e. the mass does not change when an acoustical wave passes). It can be substituted in
equation (B.2) and results in:

1

�
=

�a

�v
+
1� �a

�l
: (B.3)

This can be di�erentiated with respect to p and after some manipulations the following
equation can be found

1

a2�
=

�a

a2v�v
+
1� �a

a2l �l
: (B.4)

With the use of equation (B.2) it can be rewritten in a more useful form:

a =

p
�l�vavalq

(�l(1� �a) + �v�a)(�va2v(1� �a) + �a�la2l )
: (B.5)
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The minimum speed of sound in the mixture can now be deduced by solving da
d�a

���
�a=�amin

=

0 and substituting �a
min back into equation (B.5). The �a

min is given by:

�a
min =

�2va
2
v � 2�v�la

2
v + �2l a

2
l

2(�l � �v)(�la2l � �va2v)
: (B.6)

If �l � �v than �a
min ! 1

2
and the following expression for the minimal speed of sound is

found

amin = 2av

s
�v
�l

: (B.7)
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Appendix C

Second-order perturbation

In this appendix the expansion of the Stokes equation in (= �2) will be carried out up
to second order. The development of the �rst-order approximation has been explained
in Section 2.2. The second-order expansion of the Stokes equations can now be deduced
by substituting equation (2.49) in equations (2.46), (2.47) and (2.48) and equating equal
orders in 2.

�
@p2
@x

� @2u2
@z2

=
@2u1
@x2

; (C.1)

�
@p2
@z

=
@2w1

@z2
+
@2w0

@x2
; (C.2)

@u2
@x

+
@w2

@z
= 0 : (C.3)

On the four boundaries of the domain the perturbation variables take the following values:
u2 = 0; w2 = 0; p2 = 0. The right-hand sides in the above equations contain known
functions, resulting from lower-order perturbation results. The w0 is given in equations
(2.55). The �rst-order perturbation u1 follows from twice integrating equation (2.56) with
respect to z and is given by:

u1 =
c2z(z � h)

2h3
+
z(z � h)(�30c1�z2 � 90z2h+ 9c1�h

2 � 10zh2 + 32h3)(h0)2

30h5
+

z(c1� + 4h)(15z3 � 20z2h+ 3zh2 + 2h3)h00

60h4
; (C.4)

where c1 and c2 are integration constants following from integrating equation (2.54) and
equation (2.60) respectively, with respect to x from �1 to 1. For convenience the short-
hand notations h0 = dh=dx, h00 = d2h=dx2 etc. have been introduced. An expression for
w1 can be found through equation (2.58) with the use of the explicit form of u1.

w1 =
z2(z � h)(�30c1�z2 � 72z2h + 9c1�h

2 � 12zh2 + 16h3)(h0)3

30h6
+
c2z

2(z � h)h0

2h4
+

z2(z � h)(36c1�z
2 � 9c1�zh + 108z2h� 19c1�h

2 � 12zh2 � 64h3)h0h00

60h5
�

z2(z � h)2(3z + h)(c1� + 4h)h000

60h4
: (C.5)
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The integration of equation (C.2) with respect to z gives an expression for the pressure
correction p2:

�p2 =
Z "

@2w0

@x2
+
@2w1

@z2

#
dz + ~p2(x) ; (C.6)

where ~p2 is unknown. An explicit expression for �p2 can now be found by substituting w0

and w1 in equation (C.6).

�p2 = ~p2(x) +
zc2h

0(3z � 2h)

2h4
+

z(h0)3(�75c1�z3 + 60c1�z
2h� 180z3h+ 27c1�zh

2 + 120z2h2 � 18c1�h
3 + 84zh3 � 32h4)

30h6
+

zh0h00(45c1�z
3 � 45c1�z

2h+ 135z3h� 15c1�zh
2 � 120z2h2 + 19c1�h

3 � 78zh3 + 64h4

30h5
+

zh000(c1� + 4h)(�15z3 + 20z2h� 6zh2 � 4h3)

120h4
: (C.7)

Upon substitution of equation (C.7) in equation (C.1) and double integration with respect
to z an expression for u2 can be found. This u2 can be substituted in equation (C.3). This
equation can be integrated with respect to z between 0 and h(x). Using the boundary
conditions and the Leibnitz rule the following equation can be deduced:

d

dx

"
�h3d~p2

dx
+
�4(h0)4(9c1� + 46h)

525
+
c2hh

00

10
� h2(h00)2(80c1�+ 107h)

1050
+

3c2(h
0)2

5
� 118h(h0)2h00(c1�+ 8h)

525
� 2h2h0h000(22c1� + 17h)

525
+

71h3h0000(c1� + 4h)

4200

#
= 0 : (C.8)

This is again a Reynolds type of equation for the unknown function ~p2. It can be solved
by numerical integration. From equation (C.7) it can be seen that the solution consists of
two parts: in the global part, represented by ~p2(x), an overall correction is introduced, so
the pressure pro�le not only changes at the location of a local feature; in the local part,
where h0 changes rapidly, the pressure is also a function of z.
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Appendix D

Truncation error of the discrete

continuity equation

In this appendix it is shown that for the discretization of the constant density continuity
equation, proposed in chapter (3), the truncation error is of second order in (��1; ��2). In
the discretized continuity equation (3.4) the contravariant base vectors are replaced by
the covariant base vectors. The continuity equation is then given by:h

a2(2)u
i
i+ 1

2
j
��2 �

h
a2(2)u

i
i� 1

2
j
��2 +h
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i
ij+ 1

2

��1 �
h
�a2(1)u+ a1(1)w

i
ij� 1

2

��1 = 0 : (D.1)

After division of equation (D.1) by ��1��2 and using the transformation (3.16) it follows
that:
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where h = h(�1) and x = x(�1). In this equation the following bilinear interpolations are
used:
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and
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2
j+1) : (D.4)

For each quantity in equation (D.2) the Taylor approximation around the grid point (i; j)
is substituted. If the function u is su�ciently smooth the following Taylor expansion can
be written:
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where ()ij indicates that the function between the brackets is evaluated at the grid point
(i; j). Also for h and x Taylor approximations around the point (i; j) can be developed.
After substitution of the Taylor approximations in equation (D.2) it follows that:
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Equation (D.6) shows that the truncation error of the in this work used discretization
for the continuity equation is of second-order in (��1; ��2). From equation (D.6) it is also
clear that steep gradients in h can increase the truncation error. A remedy is to re�ne
the grid. It is also mentioned that a local re�nement of the grid in the x-direction can
decrease certain terms in the truncation error.
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