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3.1 Becker-Döring (NBD) equations . . . . . . . . . . . . . . . . . . . 13

3.1.1 Equilibrium cluster size distribution . . . . . . . . . . . . . 15
3.2 Fokker-Planck Equation (NFPE) . . . . . . . . . . . . . . . . . . . 17
3.3 General Dynamic Equation (NGDE) . . . . . . . . . . . . . . . . . 18

4 A multigrid method for the NBD equations 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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I

This chapter constitutes a general introduction to the physics of condensation. We
discuss the condensation physics encountered in nature and the importance of phase
transitions for industrial applications. Finally, an outline of the thesis is given.

1.1 Condensation phenomenon

Phase transition of N-component mixtures is of great importance to various areas of
physics. Applications can be found in the fields of condensing vapors [20], cavitation
[54], crystallization [18, 61], ferromagnetics [57], aerosol and atmospheric science
[17], combustion science [41] and chemical processes [26]. In this thesis we will
focus on the vapor to liquid phase transition.

Condensation occurs when a vapor departs from its equilibrium state due to e.g.
a change in external conditions. This non-equilibrium state of the vapor is charac-
terized by its supersaturation and is the potential to form the liquid phase. After a
certain induction time the system will attain a new equilibrium state containing both
phases [68].

In nature we encounter many types of phase transition. The most common phe-
nomenon is atmospheric cloud formation and it is known that its N-component char-
acter is important for an accurate description of this condensation process [12]. This
thesis, however, will focus on the condensation due to rapidly changing external con-
ditions, e.g. fast expanding nozzle flows. The supersaturations achieved in these
expansions are relatively high, typically of the order of 10 − 100, yielding high clus-
ter formation rates, i.e. high nucleation rates [73]. At these high rates the existence
of foreign host particles is not important and the process can be regarded as homoge-
neous nucleation.

Condensation is often divided into the processes of nucleation and growth. Nu-
cleation can be regarded as the formation of very small stable liquid clusters from
the vapor molecules which occurs at microsecond time scales. The growth process is
the subsequent stage where these clusters increase their size to form the stable liquid
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phase. Although this division is frequently used in literature the processes of nucle-
ation and growth are coupled and the separation is merely a convenient terminology.

1.2 Motivation

The process of condensation can be exploited in natural gas applications. One of
these applications is the Twister Supersonic Gas Separator, see Fig. 1.1. Natural
gas consists of many components, e.g. alkanes, alcohols, inorganics and inert gas
components. The Twister Supersonic Gas Separator utilizes a Laval nozzle to se-
lectively condense specific components. These components can be either undesired
(e.g. hydrogen-sulfide, mercury) or highly valued (e.g. heavy hydrocarbons). The
working principle is as follows, see Fig. 1.1. The untreated saturated feed gas is sup-
plied from the left and guided around the inner core. At the maximum diameter an
array of guide vanes induces a swirl into the flow, and the flow is then accelerated
and expanded through the Laval nozzle, resulting in: (i) the selective condensation
of specific components because of the implied cooling rate and (ii) increase of the
tangential velocity. The droplets are separated and collected at the outer wall thereby
removing the undesired components from the inner gas stream. In most natural gas
applications the treated dry gas stream in Fig. 1.1 consists mainly of methane.

F 1.1: Schematic representation of a Twister Supersonic Gas Separator (image
courtesy of Twister B.V.).

Understanding the N-component condensation process is one of the main chal-
lenges in the development of the Twister device. The simulation of the flow field
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coupled with the equations that describe the condensation process requires enormous
numerical effort, e.g. Refs. [10, 44, 65]. The aim of this thesis is to enhance the
efficiency of the solution algorithms for the N-component condensation models.

1.3 Thesis outline

The thesis starts with a robust numerical solution method for calculation of high pres-
sure real-gas equilibrium properties. These so-called flash calculations are performed
on a three-phase natural gas mixture. Then, an elaborate overview of the models of
condensation is given in Chapter 3. In Chapter 4 an efficient multigrid method is de-
veloped for numerically solving the N-component Becker-Döring equations. These
equations can be regarded as the exact model and the solution can only be obtained
in the small cluster domain. Chapter 5 considers the Stationary Diffusion Flux model
for single component condensation which is capable of accurately describing clus-
ter dynamics in the entire cluster size domain. Simplification of the N-component
Becker-Döring equations leads to the N-component General Dynamic Equation in
Chapter 6, which allows for a tremendous increase in efficiency making the numeri-
cal simulation of N-component condensation possible. The thesis terminates with a
summary and ideas for possible future work.
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To determine the non-equilibrium processes of nucleation and droplet growth, the
equilibrium state has to be calculated. The mixtures encountered in the gas industry
consist mainly of alkanes, alcohols, inorganics and inert components. The present
chapter will start by considering the equations of state and additional comments are
made on the application to N-component mixtures. Then, the computation of the
three-phase equilibrium state is described and results for a real-gas ternary mixture
are presented.

2.1 Equation of state

2.1.1 Single component fluid

The equation of state for a single component fluid provides the relation between
the pressure, p, the molecular volume, v, and the temperature, T . As discussed in
Refs. [40, 42], an equation of state which is capable of describing the various phases
should at least be cubic in volume. A wide class of equations of state can be summa-
rized in a general cubic form:

p =
kT

v − b
− a(T )

(v2 + κv + λ)
, (2.1)

where k is the Boltzmann constant. The parameter a is a measure for the attrac-
tion between molecules and b is the covolume. The parameters κ and λ are specified
in Table 2.1 for some commonly used cubic equations of state, i.e. Van der Waals
(VdW), Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR). The temperature de-
pendence of a differs for each equation of state and depends on the acentric factor ω.
Both a and b are functions of the critical pressure and critical temperature, pc and Tc,
respectively.
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Equation of state κ λ

VdW 0 0
SRK b 0
PR 2b −b2

T 2.1: Parameters κ and λ for the generalized cubic equation of state for the Van
der Waals (VdW), Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equation of
state.
2.1.2 N-component fluid

For a mixture of N components, the equation of state is modified by the appropriate
averaging of the pure component parameters a and b. In the limit case of a single
component fluid the averaging should return the corresponding value for the pure
substance. The most common mixing rule for a parameter q is due to the one-fluid
theory of Van der Waals [40] and is a function of the mole fraction of the phases,
denoted by x = (x1, . . . , xN):

qm =

N∑

i=1

N∑

j=1

xix jqi j, (2.2)

where the subscript ’m’ denotes the mixture property. It is noted that the mixing rule
should be evaluated separately for each phase. The parameter, qi j for j , i, is ob-
tained by either an arithmetic average or a geometric average, denoted by superscripts
a and g, respectively

qa
i j =

(qii + q j j)
2

(1 − li j), qg
i j =
√

qiiq j j(1 − ki j), (2.3)

where li j and ki j are the binary interaction parameters and fitted to experimental data.
In accordance with Ref. [40], the parameter a is combined using the geometric rule
and the parameter b is calculated using the arithmetic combining rule. The binary
interaction parameters for b are often assumed zero, yielding

am =

N∑

i=1

N∑

j=1

xix j
√

aia j(1 − ki j), bm =

N∑

i=1

xibi. (2.4)

2.2 Mixture equilibrium

The mixtures considered in this chapter establish a three-phase equilibrium, i.e. they
consists of a vapor, a condensate liquid and an aqueous liquid phase, denoted by
superscript v, c and a, respectively. The condensate liquid will consist mainly of
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alkanes, whereas the aqueous liquid phase will contain most of the inorganics. The
liquid phases are immiscible and differ in density.

The equilibrium of the mixture is attained if the phases are in mechanical, ther-
mal and chemical equilibrium. The first two conditions for a flat interface result in
equality of pressure and temperature

pα = p, Tα = T, for α = v, c, a. (2.5)

The chemical equilibrium is established by equality of the chemical potential µi of
the phases, e.g. see Refs. [39, 42]:

µv
i (p,T, xv) = µc

i (p,T, xc) = µa
i (p,T, xa), for i = 1, 2, . . . ,N, (2.6)

where xv = (xv
1, . . . , x

v
N), xc = (xc

1, . . . , x
c
N) and xa = (xa

1, . . . , x
a
N) are the vapor,

condensate and aqueous molar fractions, respectively, which are normalized to unity
with respect to their corresponding phase:

N∑

i=1

xαi = 1, for α = v, c, a. (2.7)

The equilibrium calculations are facilitated by the introduction of the fugacity, fi, of
component i in the mixture. The fugacity and chemical potential are related by

µi = µref
i + kT ln


fi

f ref
i

 , (2.8)

where the superscript ’ref’ denotes an arbitrary reference state. The fugacity can
be considered as a modified partial pressure where the effect of non-ideality of the
mixture is accounted for. In the vapor phase, the ideal gas (superscript ’ig’) is chosen
as a reference, yielding

µv
i = µ

ig
i + kT ln

(
f v
i

xv
i p

)
. (2.9)

The ratio φv
i ≡ f v

i /(xv
i p) is a measure of the deviation from ideality, which is called the

fugacity coefficient of component i in the mixture. For an ideal gas mixture f v
i = xv

i p,
so that φv

i = 1.
Similar reasoning can be used for the condensate and the aqueous liquid phases,

both denoted by superscript l=c, a for convenience. The activity coefficient is defined
as γl

i ≡ f l
i /(xl

i f is
i ) and accounts for the non-ideality of the liquid solution, resulting in

µl
i = µis

i + kT ln γl
i, (2.10)
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where superscript ’is’ denotes the ideal liquid solution state. The chemical equilib-
rium condition in Eq. (2.6) is equivalent to the condition f v

i = f c
i = f a

i , yielding

xv
i

xc
i

=
γc

i f is
i

φv
i p
≡ Kc

i ,
xv

i

xa
i

=
γa

i f is
i

φv
i p
≡ Ka

i , (2.11)

where Kc
i and Ka

i are termed the equilibrium constants of component i. This result
for the equilibrium is referred to as the ”γ/φ approach” which is applied extensively
to natural gas mixtures. For hydrocarbon mixtures both the vapor and condensate
phases are accurately described by a cubic equation of state and therefore the fugac-
ity coefficients can be evaluated for both phases. The vapor-condensate equilibrium
constant becomes

Kc
i =

φc
i

φv
i
, (2.12)

where the fugacity coefficient for phase α is calculated using the cubic equation of
state, see Ref. [39]:

ln φαi =

∞∫

V


[
∂nZα

∂ni

]

T,V′,n j,i

− 1


dV ′

V ′
− ln Zα, (2.13)

where Z ≡ pv/kT is the compressibility factor, ni is the number of molecules in
the entire system of component i and n =

∑
i ni. In Eq. (2.13), the integration is

performed over the total volume V = nv. The difference in the vapor and condensate
φi is determined by the difference in the compressibility factor due to the composition
of the respective phase. The resulting expressions of the fugacity coefficients for the
SRK equation of state are derived in Appendix A.

For the aqueous components we use the two-suffix activity coefficient model of
Margules [42]:

kT ln γa
i =

N∑

j=1

N∑

k=1

(A ji − 1
2

A jk)xa
j x

a
k , (2.14)

where the binary coefficients Ai j are fitted to experimental data. The ideal solution
fugacity f is

i is determined by [69]

f is
i = φs

i ps
i exp


p − ps

i

ρl
ikT

 , (2.15)

where φs
i is the pure component fugacity coefficient at saturation pressure ps

i . The
exponential term is called the Poynting factor and contains the pure liquid number
density ρl

i.
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2.3 Equilibrium computation

Solving the phase equilibrium problem is often referred to as a flash calculation.
In the next sections we summarize the governing equations, provide a numerical
solution method and present typical results.

2.3.1 System of equations

We start with the overall mass balance for each component

zi = xv
iV + xc

iC + xa
iA, for i = 1, 2, . . . ,N, (2.16)

whereV, C andA are the phase mole fractions of the vapor, condensate and aqueous
phases, respectively, satisfying: V + C +A = 1. The feed mole fractions zi are nor-
malized (Eq. (2.7)) and specified. By using the equilibrium constants from Eq. (2.11)
and the normalization constraints for the fractions for each phase in Eq. (2.7), a closed
system of 3N + 2 equations is obtained for equal number of unknowns xc, xa, xv,V
and C:

xv
i − xc

i Kc
i

xv
i − xa

i Ka
i

zi − xv
iV − xc

iC − xa
i (1 −V − C)∑N

i=1 xa
i − 1∑N

i=1 xv
i − 1



= 0. (2.17)

The normalization constraint (2.7) for the condensate liquid fractions, xc, follows di-
rectly from summation of Eq. (2.16). Many equilibrium calculation algorithms use
a reduced set of equations improving the efficiency of the method [36, 37]. This
reduction, however, involves the addition of several constraints (e.g. the normaliza-
tion conditions from Eq. (2.7)) which can distort the convergence of the numerical
scheme.

2.3.2 Numerical solution method

The set of equations (2.17) can be solved numerically by means of the Newton-
Raphson method, e.g. see Ref. [70]. The 3N + 2 unknown variables are written in a
single vector, ξ = (xc, xa, xv,V,C), and the system of algebraic equations F(ξ) = 0
consists of the equations given in Eq. (2.17). Provided that the Jacobian of the system,
J, is non-singular, the solution is obtained by iteration

ξn+1 = ξn − J−1(ξn)F(ξn), (2.18)

where the superscripts n and n + 1 indicate the current and the updated value of the
solution, respectively. The (k, l)th element of the Jacobian is defined as

Jkl =
∂Fk

∂ξl
with k, l = 1, . . . , 3N + 2. (2.19)
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The Jacobian elements are evaluated in Appendix A.3. We note that for the first two
equations of (2.17) we need the composition dependence of the equilibrium constants
Kc

i (xc, xv, p,T ) and Ka
i (xa, xv, p,T ). The derivatives of Kc

i with respect to the un-
knowns are evaluated analytically for the SRK equation of state, whereas the deriva-
tives of Ka

i are determined numerically by means of a finite-difference method, see
Appendix A.4.

2.3.3 Initialization

Convergence of the Newton-Raphson method relies on whether the initial estimate
lies within the domain of attraction. Several initialization methods have been pro-
posed in the literature, e.g. Ref. [36], which are based on low-pressure relations for
Kα

i . For high pressures this zeroth order scheme may be inadequate and therefore
we develop an initialization scheme based on first order pressure extrapolation of the
solution variables ξ. We write Eq. (2.17) as

G(p, T ) = F(ξ(p,T ); p,T ) = 0, ∀p, T. (2.20)

The extrapolation uses the derivative of ξ with respect to the pressure, which can be
extracted from

∂G
∂p

= J
∂ξ

∂p
+
∂F
∂p

= 0. (2.21)

The first-order extrapolation of ξ(p + ∆p,T ) is then

ξ(p + ∆p,T ) = ξ(p, T ) − J−1 ∂F
∂p

∆p + O(∆p2). (2.22)

The derivative of F with respect to the pressure only affects the first 2N equations of
Eq. (2.17) containing Kα

i and is given by

∂F
∂p

=

(
−xc

1

∂Kc
1

∂p
, . . . ,−xc

N

∂Kc
N

∂p
,−xa

1

∂Ka
1

∂p
, . . . ,−xa

N

∂Ka
N

∂p
, 0

)

. (2.23)

A similar strategy can be used for extrapolation of ξ(p,T ) in terms of the temperature.

2.4 Results

Flash calculations have been performed using the Soave-Redlich-Kwong equation of
state for a mixture of ethane (k = 1), n-nonane (k = 2) and water (k = 3). The
feed fractions are z = (0.5, 0.1, 0.4). Fig. 2.1 shows the three-phase envelope for the
ternary mixture in the pressure-temperature domain. The domain surrounding the
three-phase region consists either of the single phase vapor (lower right domain) or
the two-phase liquid (upper left domain).
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The condensate and aqueous phase fractions, denoted by C and A, respectively,
are depicted in Fig. 2.1(a)-(b). The phase transition from the vapor to the three-phase
region by means of isobaric cooling results in a liquid which mainly contains aqueous
components. Further decreasing the temperature leads to a constant value of A and
increasing condensate fraction C.

The vapor fractions of n-nonane and water are given in Fig. 2.1(c)-(d). They can be
considered as the ’heavy’ components in the mixture and therefore the vapor fractions
decrease rapidly as the temperature is decreased. Near the liquid phase region the
vapor consists mainly of ethane.

2.5 Conclusions

In this chapter a method has been presented for solving the complete system of equa-
tions for equilibrium calculations. The equilibrium variables are part of the solution
vector and are not subject to additional constraints. For the Newton-Raphson method
to converge, it is essential to provide an adequate initialization method. For that
we propose a pressure extrapolation scheme. Initialization schemes based on low-
pressure expressions [36] are insufficiently accurate and can lead to incorrect results.
The derivatives needed in the iterative scheme and the initialization scheme are cal-
culated analytically for the hydrocarbon components which are accurately described
by the SRK equation of state.
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F 2.1: Phase diagrams for mixture of ethane (k = 1), n-nonane (k = 2) and
water (k = 3) with feed mole fractions z = (0.5, 0.1, 0.4) based on the SRK equation
of state. Iso-contours of: (a) condensate liquid fraction C, (b) aqueous liquid fraction
A, (c) vapor fraction of n-nonane xv

2 and (d) vapor fraction of water xv
3.
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The various physical models that are used to describe N-component condensation
are reviewed. All models presented aim at evaluating the cluster size distribution but
differ in their accuracy and complexity. We start with the computationally most chal-
lenging model: the N-component Becker-Döring (NBD) equations which are most
complete in their physical description and can be considered as the ’exact’ model.
Then, the N-component Fokker-Planck Equation is derived by continuation of the
NBD equations. Further simplification of this equation leads to the N-component
General Dynamic Equation.

3.1 Becker-Döring (NBD) equations

The kinetic process of condensation is described by the N-component Becker-Döring
(NBD) equations [4, 68]. The cluster evolution is considered as a sequence of ele-
mentary processes of attachment and detachment of monomers. The NBD equations
describe the time rate of change of the N-component n-cluster number density, ρn,
due to the fluxes towards and from neighboring clusters:

dρn

dt
=

N∑

k=1

{
Jk

n−ek
− Jk

n
}
, (3.1)

where n = (n1, n2, . . . , nN)T ∈ NN and ek is the kth unity vector. The flux at n in
k-direction, Jk

n, is constructed by considering the forward rate, f k
n , and the backward

rate, bk
n, as

Jk
n = f k

nρn − bk
n+ek

ρn+ek . (3.2)

In the model represented by Eqs. (3.1) and (3.2) it is assumed that the n-clusters can
change in size due to addition or extraction of a single k-component monomer only,
which is justified due to the fast decreasing number density with increasing size gov-
erned by the Boltzmann size distribution, see Eq. (3.7). A more general description
taking into account the kinetics between all cluster sizes is given in Ref. [23]. The
Becker-Döring process is illustrated in Fig. 3.1 for the binary case, i.e. N = 2.
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F 3.1: Kinetic process described by the Becker-Döring equations for N = 2 at
the n-cluster. The open and solid circles correspond to component 1 and component
2 monomers, respectively.

The forward rate is determined by the impingement rate of vapor molecules on the
existing n-cluster and is derived from gas kinetics as [14, 32]

f k
n = ρek

(
s

1
2
ek + s

1
2
n

)2
√

kT (mek + mn)
2πmek mn

, (3.3)

with ρek = yk p/kT the monomer number density of component k and mek its molec-
ular mass. Furthermore, sn and mn are the surface area and the mass of the n-cluster,
respectively, given by

sn = (36π)
1
3 v

2
3
l,n, with vl,n =

N∑

k=1

nkvl,ek , (3.4)

where vl,ek is the partial molecular volume of component k and

mn =

N∑

k=1

nkmek . (3.5)

The backward rate is determined by the detailed balance condition at constrained
equilibrium, implying that the equilibrium size distribution satisfies Eq. (3.2) for Jk

n =
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0, ∀n, k yielding

bk
n = f k

n−ek

ρ
eq
n−ek

ρ
eq
n

, (3.6)

where ρeq
n is the Boltzmann equilibrium size distribution for N components [32]

ρ
eq
n = ρ0

n exp(−gn), with gn ≡ ∆Gn

kT
, (3.7)

and where ∆Gn is the Gibbs free energy of cluster formation, k is the Boltzmann
constant, T is the temperature and ρ0

n is the normalization constant. The relation for
the Gibbs free energy is discussed in Section 3.1.1.

The NBD problem can be solved for given boundary conditions at the monomer
number densities, i.e. at ρek . A thorough elaboration of Penrose [3, 38] proves that
given the correct initial and boundary conditions the solution of the BD equations
exists and is unique.

For realistic condensation problems, in which clusters reach a size up to 107 mono-
mers, the system of equations (3.1) leads to a numerical task for an N-component
mixture that cannot be carried out due to the required large memory storage and
computational effort. Therefore, computations based on solving the NBD-equations
either use a limited region in n-space [47, 81] or use a sectional method in which
ranges of cluster sizes are grouped [65].

3.1.1 Equilibrium cluster size distribution

The NBD equations and the deduced models require the equilibrium distribution (3.7)
containing the Gibbs free energy of formation of an n-cluster. In the proceeding
part of the thesis we will mainly consider the vapor-liquid transition of alcohol mix-
tures and apply the energy of formation used by Refs. [78, 81] and extend it to N-
components. The Gibbs free energy comprises a negative bulk term (which is the
potential to form the liquid phase) and the positive surface term given by

gn = −
N∑

k=1

nk ln
(
ak

xk

)
+
σnsn

kT
, (3.8)

where ak = yk p/ps
k is the vapor phase activity with yk and ps

k the vapor mole fraction
and the saturation pressure of the k-component, respectively. The vapor phase activity
can be considered as the N-component equivalent of the supersaturation. In Eq. (3.8),
xk = nk/

∑N
l=1 nl is the liquid fraction and σn is the surface tension of the n-cluster.

The latter is often assumed equal to the plain layer surface tension (with composition
corresponding to the n-cluster) which is termed the capillarity approximation. The
activity coefficients of the liquid phase are assumed unity due to the ideality of the
alcohol mixture [71, 78]. Moreover, the clusters are assumed well-mixed meaning
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that the possibility of surface enrichment of one of the constituents is not accounted
for. The σn in Eq. (3.8) is given by [31]

σn =

N∑

k=1

xkσk, (3.9)

where σk is the surface tension of the pure k-component.
The critical cluster size, n∗, is defined as the saddle point of the function g(n),

which represents the lowest energy barrier for growing clusters [21, 49]. To form
stable liquid clusters the flux from the k-component monomer densities needs to pass
this energy barrier. Therefore, the main flux of clusters is expected to pass through n∗.
In Fig. 3.2 the shape of the Gibbs free energy of a binary mixture is illustrated. Three
possible nucleation paths are drawn of which the one passing through the critical size
n∗ is energetically the most favorable.

F 3.2: Iso-contours of the Gibbs free energy of formation for the binary ethanol-
hexanol mixture in (n1, n2)-space, i.e. N = 2. Solid iso-lines correspond to gn > gn∗ ,
dashed iso-lines correspond to gn < gn∗ . The dot corresponds to the saddle point
of gn referred to as the critical size n∗. The nucleation paths are illustrated by the
dotted lines with the thick dotted line corresponding to the main flux path passing
through n∗.

The normalization constant, ρ0
n, in Eq. (3.7) has been subject to discussion in lit-

erature, see e.g. Ref. [78]. In its original form, devised by Reiss [49], the con-
stant is given by the sum of the monomer number densities of all components, i.e.
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ρ0 =
∑N

k=1 ρek and is not a function of the cluster composition. Using this normal-
ization constant in Eq. (3.7) leads to unphysical limits of the equilibrium size dis-
tribution. These limits comprise the reduction to the unary equilibrium distribution
and the limiting behavior near the monomer densities. The normalization derived
by Ref. [78] ensures that the correct limits are obeyed and is termed self-consistent.
The normalization ’constant’, ρ0

n depends on the cluster composition and reads for
N-components:

ρ0
n =

N∏

k=1

[
ρs

ek
exp(θk)

]xk
, (3.10)

where ρs
ek

is the saturated monomer number density of component k and θk≡ sekσk/kT .
Although the self-consistent form satisfies the required limits for the N-component

equilibrium size distribution, the model has several drawbacks. The surface contri-
bution in g(n) is based on the capillarity approximation which loses its meaning for
small clusters. Also, the equilibrium size distribution cannot be applied to supercrit-
ical fluids since σk and ρs

ek
are indeterminate. Recent studies [24, 25, 34] attempted

to improve the form of g(n) and ρ0
n based on a statistical mechanical approach for

N = 1, 2. However, a general expression for N-component mixtures is not yet ob-
tained.

3.2 Fokker-Planck Equation (NFPE)

An alternative for the NBD equations is the N-component Fokker-Planck Equation
(NFPE) which can be derived by continuation of ρ(n, t) to non-integer values of n. A
Taylor series expansion of the right-hand side (rhs) of system (3.1) [66, 85] leads to

∂ρ(n, t)
∂t

=

N∑

k=1

T k
L(ρ, n, t), (3.11)

with

T k
L(ρ,n, t) ≡

L∑

l=1

1
l!
∂l

∂nl
k

[(
(−1)l f k(n) + bk(n)

)
ρ(n, t)

]
. (3.12)

Eq. (3.11) is referred to as the generalized NFPE [50] for L → ∞. The rhs terms
become smaller as the order increases [66], therefore to good approximation we can
truncate the summation in Eq. (3.12) at the second-order term yielding the NFPE

∂ρ

∂t
≈ −

N∑

k=1


∂

∂nk

{(
f k(n) − bk(n)

)
ρ
}
− ∂2

∂n2
k

{
1
2

(
f k(n) + bk(n)

)
ρ

} . (3.13)

The first term in the rhs is the drift term and the second term is the diffusion term
containing the diffusion coefficient dk(n) ≡ 1

2

(
f k(n) + bk(n)

)
. The error introduced
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by neglecting the higher-order terms can give unphysical results for ρ(n, t) in the
sense that the equilibrium distribution is not a solution of Eq. (3.13) as demonstrated
in Ref. [66].

We can circumvent this problem by using a more convenient form of Eq. (3.13)
[67, 85]:

∂ρ

∂t
= −

N∑

k=1

[
∂

∂nk

(
ṅkρ − dk

∂ρ

∂nk

)]
, (3.14)

where the term between the round brackets is the nucleation flux Jk(n) = ṅkρ− dk
∂ρ
∂nk

with growth rate ṅk. Eq. (3.14) can be recast in vector form as

∂ρ

∂t
+ ∇n · (ṅρ) = ∇n · (D∇nρ) , (3.15)

where ∇n =
(
∂
∂n1
, ∂
∂n2
, . . . , ∂

∂nN

)
, ṅ is the growth rate vector and D is the diagonal

diffusion tensor with entries dk.
The growth rate vector, ṅ, is chosen such that the N-component generalization of

the fundamental Zeldovich relation [85] is satisfied:

ṅ(n) = D(n)∇n
[
ln ρeq(n)

]
, (3.16)

which ensures the correct Boltzmann equilibrium limit of Eq. (3.15): Jk(n) = 0,∀n, k,
when ρ(n) = ρeq(n). If the normalization constant ρ0(n) in the continuous form of
Eq. (3.7) is not a function of cluster size, Eq. (3.16) reduces to ṅ(n) = −D(n)∇ng(n).
Since the Gibbs free energy of formation exhibits a saddle point in n-space the growth
rate is zero at n∗ and the drift flux ṅρ vanishes. As soon as clusters become suf-
ficiently larger than n∗ the drift flux becomes dominant and the diffusion flux can
be neglected [46]. The diffusion term in Eq. (3.14) ensures that small clusters can
become supercritical and grow to larger sizes. This behavior is further explained in
Chapter 6.

The NFPE requires a numerical solution scheme that can handle the region-dependent
hyperbolic/parabolic character of Eq. (3.15). Furthermore, for N-component mix-
tures we still need a large N-dimensional computational grid and higher order nu-
merical schemes are mandatory in order to control numerical diffusion.

3.3 General Dynamic Equation (NGDE)

We define the supercritical cluster size domain Ω∗ in n-space as the region in which
g(n) decreases if ‖n‖ increases. Noting that: 1

2∇n‖n‖2 = n, we obtain the definition

Ω∗ ≡
{
n ∈ RN | n · ∇ng(n) < 0

}
. (3.17)
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Instead of calculating the diffusion flux in the NFPE we can introduce clusters in
the supercritical domain Ω∗ at a source location n0 at a rate equal to the steady state
nucleation rate Js. This leads to the N-component General Dynamic Equation

∂ρ

∂t
+ ∇n · (ṅρ) = Jsδ(n − n0), (3.18)

where the Dirac δ-function introduces the clusters at n0 in N-dimensional cluster
space. The NGDE allows for a very efficient solution strategy based on the hyperbolic
character of Eq. (3.18). The steady state nucleation rate, Js, is obtained by solving
the NBD equations (3.2) with ∂ρn

∂t = 0, which is described in full detail in Chapter 6.
The implication of neglecting the diffusion term is that Eq. (3.18) is only applicable
in the supercritical domain Ω∗.

In its original form introduced in Ref. [52] for single component condensation, the
source term of Eq. (3.18) is located at the critical cluster size, i.e. n0 = n∗. At fixed
external conditions, however, the newly born critical clusters are in unstable equi-
librium and therefore do not grow. This results in a cluster size distribution that is
singular at n∗. Moreover, a rapid change in external conditions, resulting in an in-
crease of the critical size, leads to evaporation of all clusters. Recent studies made an
attempt to overcome these deficiencies by replacing the δ-function in Eq. (3.18) by a
boundary condition at a size larger than the critical size [22, 66]. We will extensively
address the location of the source point n0 in Chapter 6.
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In this chapter a multigrid algorithm is developed enabling faster solution of the N-
component Becker-Döring equations for the cluster size distribution in N-component
nucleation. The numerical method is elaborated for an arbitrary number of con-
densing components, making the simulation of many-component nucleating systems
feasible. The method is applied to a steady state ternary nucleation problem in order
to demonstrate its efficiency. The results are used as a validation for existing ternary
nucleation theories. The method is also applied to a non-steady state ternary prob-
lem, which provides useful insight into the initial stages of the nucleation process.

The work in this chapter has been published in revised form as: D.S. van Putten,
S.P. Glazenborg, R. Hagmeijer and C.H. Venner, J. Chem. Phys. 135, 014114 (2011).

4.1 Introduction

The nucleation rate of N-component mixtures is an important parameter in many
fields of physics, e.g. vapor-liquid transition [73, 83], crystallization [51], atmo-
spheric aerosols [15, 77] and metallurgy science [48]. To calculate the steady state
nucleation rate, the N-component generalization [21, 74] of the classical binary nu-
cleation theory of Reiss [49] is often used. The N-component nucleation theory ap-
plies assumptions in the saddle point region of the Gibbs free energy in order to find
an analytic solution of the nucleation rate. This theory provides steady state nucle-
ation rates only.

To circumvent the assumptions of the classical theory, the full N-component Becker-
Döring (NBD) equations [4] need to be solved. Many studies concern the numerical
solution of the binary Becker-Döring equations [81, 35] and to obtain the steady state
size distribution requires long simulation times [46]. Moreover, increasing the num-
ber of nucleating components leads to an exponential increase of the computational
effort and results in a practically unsurmountable numerical task.
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In the present chapter we propose a multigrid algorithm [6] for the calculation of
the N-component size distribution. Multigrid methods have been applied successfully
to various physical problems and show a tremendous gain in the efficiency for numer-
ical methods for solving discretized partial differential equations [7, 76]. However,
these methods have been developed to suit a specific physical problem and generally
will not succeed when applied to other systems. Therefore, we construct a geometric
multigrid algorithm which is tailored to the NBD equations. The efficiency increase
is demonstrated by means of solving a steady state ternary nucleation problem. The
time evolution of the ternary cluster size distribution is calculated in the initial stages
of the nucleation process providing useful insight on relaxation times and the time
dependence of the main nucleation path.

The obtained method makes calculations of N-component nucleation feasible and
can be used to validate the assumptions of N-component nucleation theories. Further-
more, the solution of reduced models of the NBD equations like the Fokker-Planck
Equation [54], General Dynamic Equation [46] and Stationary Diffusion Flux equa-
tion [45] can be compared with the solution of the full NBD equations. Moreover,
the method allows for more complicated relations for the Gibbs free energy, e.g.
Ref. [25, 84].

4.2 N-component Becker-Döring equations

The NBD equations describe the time rate of change of the N-component n-cluster
number density, ρn(t), as described in Chapter 3. Using Eq. (3.2) in Eq. (3.1) yields
the system of first-order ordinary differential equations

dρn

dt
=

N∑

k=1

{
f k
n−ek

ρn−ek −
(

f k
n + bk

n
)
ρn + bk

n+ek
ρn+ek

}
, (4.1)

where n = (n1, n2, . . . , nN)T ∈ NN and ek is the kth unity vector. In the case of vapor-
liquid transition the forward rate is given by gas kinetics [14, 32] (see Section 3.1)
and the backward rate is determined by the detailed balance condition at constrained
equilibrium

bk
n = f k

n−ek

ρ
eq
n−ek

ρ
eq
n

, (4.2)

where ρeq
n is the binary equilibrium size distribution

ρ
eq
n = ρ0

n exp(−gn), with gn ≡ ∆Gn

kT
, (4.3)

where ∆Gn is the Gibbs free energy of cluster formation, k is the Boltzmann con-
stant, T is the temperature and ρ0

n is the normalization constant. In this study we apply
the self-consistent equilibrium size distribution of Refs. [78, 81], see Section 3.1.1.
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4.3 Numerical solution method

The time step of an explicit algorithm for the NBD equations (4.1) is limited by the
Courant-Friedrichs-Lewy (CFL) condition [9] leading to very small time steps, e.g.
of the order of 10−10s in Ref. [46]. Therefore, we develop an implicit solver relieving
us from this restriction. The first-order backward Euler time discretization [70] of
Eq. (4.1) reads

−∆t
N∑

k=1

f k
n−ek

ρm
n−ek

+ cnρ
m
n − ∆t

N∑

k=1

bk
n+ek

ρm
n+ek

= ρm−1
n , (4.4)

where ∆t is the time step size and

cn ≡ 1 + ∆t
N∑

k=1

{
f k
n + bk

n
}
. (4.5)

The superscripts m− 1 and m in Eq. (4.4) refer to the previous and current time level,
respectively. This system can be cast in the form

Lu = g, (4.6)

where g is the known right hand side containing the ρn’s at time m− 1 and u contains
the ρn’s at the present time m.

The number density of the monomers, i.e. n = ek, are assumed constant and given
by the pure k-component vapor number densities, i.e.

ρek = ρv,k, for k = 1, 2, . . . ,N. (4.7)

The system is subject to the boundary conditions for the flux Jk defined in Eq. (3.2)

Jk
n−ek

= 0, if nk = 0, (4.8)

Jk
n = Jk

n−ek
, if nk = ne,k, (4.9)

where ne,k is the maximum cluster size of component k in the computational domain
chosen such that it is located sufficiently far from the critical size n∗. To increase the
stability of the numerical scheme, a constant flux boundary condition is applied at
nk = ne,k [81].

To solve this system we use the Gauss-Seidel iterative procedure [70]. Let L ju = g j

denote the jth equation of system (4.6) and r j = g j − L jũ denote the residual of the
jth equation, where ũ is the current approximation of u. The Gauss-Seidel relaxation
scheme at a certain time level is given by

ũ j := ũ j +

(
∂L ju
∂u j

)−1

r j, (4.10)



24 C 4. A     NBD 

It is commonly known that the convergence of this iterative procedure will slow down
when the solution becomes smooth with respect to the grid size [6]. Therefore, we
develop a geometric multigrid algorithm for solving the system (4.6).

4.4 Multigrid

Multigrid methods were first introduced for the fast solution of partial differential
equations by Brandt [5]. Since then algorithms have been developed using the multi-
grid/multilevel methodology for many problems in mathematics, engineering and
physics [7]. Multigrid algorithms obtain their efficiency reducing each error com-
ponent in the numerical solution process at a scale at which this can be done most
efficiently. Crucial to the method is detailed understanding of the behavior of the
equations to be solved at different scales. To obtain an efficient algorithm requires: (i)
adequate reduction of small scale errors using an iterative scheme, (ii) accurate repre-
sentation of the fine scale behavior of remaining smooth components of the error on
the coarser scales and (iii) suitable often problem dependent interscale corrections.
A black-box approach is rarely successful.

An example of a flow diagram of a multigrid V(ν1, ν2) algorithm is given in Fig. 4.1.
Starting at a fine grid, the target grid at which the solution is required, a set of coarser
grids referred to as levels are introduced. On each coarser grid specific error com-
ponents are reduced by ν1 iterations on the way to a coarsest grid on which the final
smoothest components are solved to machine precision. Subsequently all corrections
are merged from coarse to fine grid, at each gridlevel carrying out an additional ν2
iterations.

F 4.1: Representation of a multigrid V-cycle, V(ν1, ν2), with ν1 pre-relaxations,
ν2 post-relaxations and ν0 relaxations on the coarsest grid.
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4.4.1 Coarse grid correction scheme

The principle of coarse grid correction is described using 2 levels with a fine grid
denoted by h and a coarse grid denoted by H. We start with Eq. (4.6) on the fine
grid, i.e. Lhuh = gh, and find the approximation ũh by means of ν1 relaxations. The
residual rh is defined as

rh = gh − Lhũh, (4.11)

which can be written as

rh = Lhuh − Lhũh. (4.12)

Defining the error on the fine grid as vh ≡ uh − ũh, one obtains

Lh(ũh + vh) = Lhũh + rh, (4.13)

which is the general form for non-linear operators referred to as the Full Approx-
imation Scheme. In this scheme an approximation to the error vH is solved from
Eq. (4.13) represented at gridlevel H. However, the operator of the N-component
Becker-Döring equations is linear. In that case it is more convenient to use the Cor-
rection Scheme. For a linear operator Eq. (4.13) reduces to

Lhvh = rh. (4.14)

Due to the ν1 relaxations the resulting error vh is smooth with respect to the fine grid
and the relaxation process becomes less effective. We therefore transfer the error and
residual to the coarse grid using the restriction operator, IH

h , and solve

LHvH = IH
h rh. (4.15)

After ν0 relaxations vH is solved to machine precision and transferred by the interpo-
lation operator Ih

H to the fine grid in order to correct ũh

ũh := ũh + Ih
HvH . (4.16)

Finally, the errors introduced by interpolation of vH on level h are reduced by ν2
post-relaxations. If this scheme is used recursively on multiple levels the V-cycle is
obtained.

For the multigrid scheme we need the restriction and interpolation operators, IH
h

and Ih
H , respectively, and the coarse grid operator LH . The success of the multigrid

algorithm relies on the proper choice of these operators.
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4.4.2 Geometrical coarsening

We define the fine grid consisting of hypercubes of unit length in n-space with corre-
sponding cell centers. These cell centers represent all possible cluster compositions
given by the integer number of monomers. Fig. 4.2 shows the coarsened grid in two
component (n1, n2)-space. The fine and coarse grid cell centers are indicated by the
dots and the open squares, respectively. We emphasize that only the values at the fine
grid cell centers correspond to physically realizable cluster sizes.

For convenience the index space i is defined which corresponds with the compo-

F 4.2: Coarse grid definition in two dimensional (i1, i2)-space. The solid and
dashed lines are the cell boundaries on the fine grid and their cell centers are denoted
by the dots. The solid lines are the cell boundaries on the coarse grid with cell centers
indicated by the open squares. The set Ωi and its boundaries in k = 1 direction, ∂+

1 Ωi
and ∂−1 Ωi, are indicated.

sition space n on the fine grid, such that any variable q defined in the composition
n-space is related to the i-space by: qh

i ≡ qn.
On the coarse grid we define the index set in one component direction

Ωi(ib, ie) =

{ {i}, 0 ≤ i ≤ ib,
{2i − ib − 1, 2i − ib} , ib < n ≤ ie,

(4.17)

where ie is the maximum cluster size and ib is the index below which the grid is
not coarsened. This is done to accurately describe the expected steep gradients of
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the solution in the region of small clusters. The index set can be extended to higher
dimensions

Ωi(ib, ie) =
{
j ∈ NN | jk ∈ Ωik (ib,k, ie,k), 1 ≤ k ≤ N

}
. (4.18)

Furthermore, let ∂+
k Ωi and ∂−k Ωi, as indicated in Fig. 4.2, denote the ’positive’ and

’negative’ boundaries of Ωi in direction k, respectively. These sets are defined as

∂±k Ωi =
{
j ∈ NN |j ∈ Ωi, jk ∈ ∂±Ωik

}
. (4.19)

with ∂+Ωi = max(i, 2i − ib) and ∂−Ωi = max(i, 2i − ib − 1). With these definitions the
restriction and interpolation operators are defined in the following section.

4.4.3 Restriction and interpolation operators

Let Gh and GH denote the spaces of all grid functions on the fine and coarse grid,
respectively. Then the restriction operator, IH

h , and the corresponding interpolation
Ih
H , are defined as

IH
h : Gh 7→ GH , gH

i =
1
|Ωi|

∑

j∈Ωi

gh
j , (4.20)

Ih
H : GH 7→ Gh, gh

j = gH
i , ∀ j ∈ Ωi. (4.21)

We take ρH = IH
h ρ

h. Similarly, the operator Lh is restricted by means of Galerkin
coarsening [6]

LH = IH
h LhIh

H . (4.22)

For convenience, the operators are considered further for the steady state of Eq. (4.1).
The equation considered at point i of the steady state Lhuh is given by

−
N∑

k=1

f h,k
i−ek

ρh
i−ek

+ ch
i ρ

h
i −

N∑

k=1

bh,k
i+ek

ρh
i+ek

= 0. (4.23)

Then LHuH can be written in a similar form as Eq. (4.23)

−
N∑

k=1

f H,k
i−ek

ρH
i−ek

+ cH
i ρ

H
i −

N∑

k=1

bH,k
i+ek

ρH
i+ek

= 0, (4.24)

where cH
i ≡

∑N
k=1

{
f H,k
i + bH,k

i

}
. LHuH contains the coarse grid forward rate, f H,k

i ,

and the coarse grid backward rate, bH,k
i , defined by

f H,k
i ≡

∑

j∈∂+
k Ωi

f h,k
j , and bH,k

i ≡
∑

j∈∂−k Ωi

bh,k
j . (4.25)
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This cell structured coarsening generates a coarse grid equation with the physical
character of the fine grid equations for the smooth components that the coarse grid
needs to correct. This is essential for good multigrid performance. It is emphasized
that this favorable property is achieved when using the proposed cell coarsening and
that other coarsening procedures may lead to non-converging coarse grid systems
[16].

4.5 Results and discussion

We define a test case for the Ternary Becker-Döring (TBD) equations. The ideal
alcohol mixture consists of ethanol (k = 1), propanol (k = 2), hexanol (k = 3) and
an inert carrier gas (argon). The carrier gas does not influence the ternary nucleation
process and serves as a heat sink in condensation experiments, see e.g. Ref. [71]. The
vapor mole fractions of the condensing components are: y = (7.446 · 10−3, 1.818 ·
10−3, 1.026·10−4) and assumed non-depletable. The pressure p and temperature T are
fixed such that a constant supersaturated state is attained, see Table 4.1. The alcohol
mixture can be regarded as ideal and the pure properties are given in Appendix B.

Parameter
p [kPa] 66.76
T [K] 260.0
a (1.0, 1.2, 4.0)
n∗ (22, 18, 21)

g(n∗) 48.0

T 4.1: Test case conditions for the ternary ethanol, propanol and hexanol mixture
with vapor composition y = (7.446 · 10−3, 1.818 · 10−3, 1.026 · 10−4).

4.5.1 Steady state ternary nucleation

The steady state solution of the TBD equations is obtained by solving Eq. (4.1) with
dρn
dt = 0. We demonstrate the efficiency increase accomplished by using the multigrid

algorithm by comparing the convergence of the conventional Gauss-Seidel relaxation
scheme against the V(2, 1)-cycle multigrid algorithm. The three component compu-
tational domain consists of 1283 points. For convenient comparison we define a work
unit (wu) as the amount of computational time needed for one fine grid relaxation.
The L2-norm of the residual (Eq. (4.11)) for N-components is defined as

‖r‖2 =

√
1∏N

k=1 ie,k

∑

j∈Ω
r2

j , (4.26)
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where Ω denotes the entire computational domain

Ω(ie) =
{

i | ik ∈ {0, 1, . . . , ie,k}, ∀k ∈ {1, 2, . . . ,N}} . (4.27)

For the test case we take ib = n∗ since steep gradients in the solution are expected in
the subcritical region, i.e. i ≤ n∗. This ensures that the steep gradients are accurately
described on all grid levels.

wu
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F 4.3: Convergence of residual for steady state ternary nucleation; Gauss-
Seidel relaxation (solid) and V(2, 1)-cycle with: l = 2 (dashed), l = 3 (dash-dot),
l = 4 (dash-dot-dot) and l = 5 (dotted) on 1283 grid.

Fig. 4.3 shows the typical stalling convergence behavior for conventional Gauss-
Seidel relaxation. Relaxation reduces the residuals effectively in the initial stage
due to the reduction of high frequency error components. As these components are
reduced the error becomes smoother and relaxation is unable to further reduce the
error efficiently. The multigrid V-cycle algorithm continues the fast reduction of the
error until the error becomes smooth on the coarsest grid. Therefore, the residuals
of the multigrid algorithm with a larger number of levels continue the efficient error
reduction. For l = 5 an efficiency gain of approximately a factor 10 is achieved. It has
to be noted that the relaxation process itself is a relatively effective solution method,
when compared to the typical textbook examples [7], since the initial solution hardly
contains low frequency error components. Therefore, the efficiency gain is not as
high as reported in literature.
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The numerical solution of the steady state problem is used to calculate the steady
state nucleation rate

Js ≡
∑

n2,n3

J1
n. (4.28)

This numerical result is compared with the result from the analytic expression given
by the classical nucleation theory, e.g. see Ref. [81]. For comparison we define the
norm of the vapor activities, |a|, as in Refs. [71, 78]

|a| =
√

a2
1 + a2

2 + a2
3. (4.29)

The ratios between the vapor activities are maintained and similar to the ones pre-
sented in Table 4.1, i.e. a2/a1 = 1.2 and a3/a1 = 4.

The steady state nucleation rates as a function of |a| are depicted in Fig. 4.4 for
different temperatures. As will be shown in the next section the assumptions made
to obtain an analytic expression, see e.g. Ref. [31, 81] and Section 6.2, are not al-
ways justified. However, the steady state nucleation rates agree within one order of
magnitude with the numerically obtained values over a range of temperatures and |a|.

|a|

J s
[m

-3
s-1

]

4 6 8 10 12 14
1010
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1030

T=240K

T=280K

T=260K

F 4.4: Comparison of theoretical and numerical steady state nucleation rates
for T = 240K, T = 260K and T = 280K; Js from steady state nucleation theory
(solid line) and from present numerical results (triangles).
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4.5.2 Transient ternary nucleation

We solve the TBD equations during the first 10µs of the formation process. The grid
dimensions are 1283 and the time step is 5 · 10−3µs. One single time step needs ap-
proximately 3 wu to converge to ‖r‖2 = 10−14 for the V-cycle (with l = 6), whereas
relaxation requires 18 wu. The efficiency increase obtained by using the multigrid
technique is smaller compared to that of the steady state case. This can be explained
by the presence of the time step in the operator L, increasing the diagonal dominance
of L with decreasing time step size. The increased diagonal dominance of the opera-
tor makes the relaxation process more efficient, therefore reducing the efficiency gain
of the multigrid method. The convergence history of the transient case is plotted in
Fig. 4.5.

wu
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F 4.5: Convergence of time dependent nucleation; Gauss-Seidel relaxation
(solid) and V(2, 1)-cycle with: l = 2 (dashed), l = 4 (dash-dot) and l = 6 (dash-
dot-dot) on 1283 grid. Residual is evaluated at new time level and is reduced to
10−14 for each time step.

The cluster size distribution can be plotted in the three component n-space at
several time instants, see Fig. 4.6. In the initial stage of the nucleation process
(Fig. 4.6(a)) the distribution is transported mainly along the n1-axis. This is due
to the large vapor number density of ethanol which results in a higher forward rate
and consequently a faster transport in n1-direction.

This is confirmed by considering the main nucleation path in Fig. 4.7. The quan-
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F 4.6: Cluster size distribution, isosurface of log10 ρ = 12(black), 8(dark grey)
and 4(light grey) at (a) t1 = 0.1µs, (b) t2 = 1µs, (c) t3 = 6µs and (d) t4 = 10µs for
conditions given in Table 4.1.

tities n̂2(n1) and n̂3(n1) are defined as the location in the (n2, n3)-plane at which the
length of the nucleation flux vector, |Jn|, has its maximum. After a certain induction
time, τ, the solution attains its steady state and for this specific case τ ≈ 10µs. Due
to the high forward rate of ethanol (k = 1) the main flux bypasses the saddle point
similarly as obtained in the theoretical and numerical studies of Refs. [54, 74] and
Ref. [53], respectively.

We analyze the total nucleation flux normal to the (n2, n3)-plane as a function of
n1 and time t defined as

J̄n1(t) ≡
∑

n2,n3

J1
n(t). (4.30)

Fig. 4.8 shows the time dependence of J̄n1 . We see a similar dependence of the total
nucleation flux at different values of n1 as found in single component nucleation [2].
After τ ≈ 10µs the nucleation fluxes converge to their steady state value, which is
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F 4.7: The main nucleation path (a) n̂2 and (b) n̂3 as a function of n1 at t1 =

0.1µs, t2 = 1µs, t3 = 4µs, t4 = 6µs and t5 = 10µs. The dot denotes the saddle point
n∗.

consistent with the previously presented induction time.
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F 4.8: Time dependence of J̄n1 at n1 = 5, 10, . . . , 35.

4.6 Conclusions

We have presented a geometric multigrid algorithm for N-component nucleation. The
algorithm clearly demonstrates the feasibility of multigrid as faster alternative solu-
tion method for numerically solving the NBD equations. The proposed method is a
first step in the development of an optimally efficient multigrid solution method for
N-component condensation. The success of the algorithm relies largely on the ap-
propriate choice of the restriction and interpolation operators ensuring that the coarse
grid operators ”inherit” the fine grid error smoothing and stability properties of the
fine grid operator. For the TBD equations an efficiency increase of a factor of 5 − 10
is obtained, compared to simple single grid iteration.

The results show that in the initial stages of the nucleation process the main nu-
cleation path is far from the saddle point of the free energy of formation. Moreover,
the steady state solution shows a deviation of the main nucleation flux from the sad-
dle point, contrary to the assumptions made in the classical nucleation theory. In
spite of this, simulations show that the steady state nucleation rate itself is predicted
within one order of magnitude by the analytic expression given in Refs. [78, 81].
Furthermore, time dependent nucleation rate data show an induction time of 10µs for
the ternary mixture considered. These observations can aid in the development and
validation of N-component nucleation theories.

The algorithm is not restricted to vapor-liquid transition and is expected to work
for a wide variety of formation problems. The results presented here only considered
the cluster size distribution for relatively small clusters. If the size distribution is
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desired in a large cluster domain, a non-uniform grid in the n-space is mandatory
which complicates the construction of a geometric multigrid algorithm. For these
cases an Algebraic Multigrid (AMG) algorithm [75] could be advantageous. Note
that in the present study a non-depletable vapor is assumed. Including the vapor
depletion involves a global constraint, which affects the forward and backward rates
in the operator L [16].
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A new model describing the evolution of clusters in the processes of single component
nucleation and growth is proposed. The diffusion flux in the non-stationary Fokker-
Planck equation with an unknown distribution function is approximated by the closed
form expression containing the steady-state solution of the Zeldovich-Frenkel equa-
tion. This is justified due to the smallness of the induction time of cluster formation
compared to the timescale observed in experiments. The resulting Stationary Diffu-
sion Flux model is valid for all cluster sizes, computationally efficient and applicable
to various types of cluster formation processes. Its application to a nucleation pulse
experiment shows excellent agreement with the solution of the set of formally exact
Becker-Döring equations.

The work in this chapter has been published in revised form as: D.S. van Putten
and V.I. Kalikmanov, J. Chem. Phys. 130, 164508 (2009).

5.1 Introduction

Modeling the cluster size distribution, describing the evolution of clusters in the pro-
cesses of unary nucleation and growth, is an important subject in various areas of
physics. Applications can be found in the fields of condensing vapors [20], crystal-
lization [18, 61], ferromagnetics [57], aerosol and atmospheric science [17], combus-
tion science [41] and chemical processes [26]. In these fields an accurate solution of
the Becker-Döring (BD) equations [4], or its continuous equivalent, i.e. the Fokker-
Planck equation (FPE) [85], is mandatory. Both BD and FPE couple the processes of
nucleation and growth and as such provide the size distribution in the entire cluster
size domain. However, this leads to excessive computation times.

The urge for computationally more tractable models has led to the introduction of
the General Dynamic Equation (GDE) [52]. The GDE decouples the nucleation and
growth process and models nucleation by means of a Dirac δ-function term. In its
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original form the source term introduces clusters at the critical size [52]. At fixed ex-
ternal conditions, however, the newly born clusters of critical size, n∗ are in unstable
equilibrium and therefore do not grow. This results in a cluster size distribution which
is singular at n∗. Moreover, a rapid change in external conditions resulting in an in-
crease of the critical size, leads to evaporation of all clusters. Recent studies made
an attempt to overcome these deficiencies of the GDE by replacing the δ-function by
a boundary condition at a certain size larger than the critical one [22, 46, 66]. The
GDE is aimed at the description of large supercritical clusters and does not supply
the cluster size distribution in the subcritical region.

The aim of this chapter is to present a simplification of the FPE, which is valid for
the entire cluster size range without the need for additional restraints. In general, the
flux in the FPE contains a drift term and a diffusion term. The approximation refers
to the diffusion flux, which is pronounced in the range of cluster sizes up to a certain
size slightly exceeding the critical cluster size. It transports the newly formed clusters
to the supercritical range and becomes negligibly small compared to the drift flux
outside of this domain [60]. Due to the extreme small value of the induction time of
nucleation [2], tind, (∼10−6s) compared to laboratory time scales, the size distribution
in the diffusion flux can be replaced by the stationary solution of the Zeldovich-
Frenkel equation [32, 85]. This leads to an analytical expression for the diffusion
flux. The result is termed the Stationary Diffusion Flux (SDF) model. The stationary
cluster size distribution can still change with time due to its implicit dependence on
the external conditions and therefore the SDF is capable of treating time-dependent
condensation problems.

5.2 Stationary Diffusion Flux model

In the continuous limit the BD equations reduce to the FPE [85] for the continuous
number density, ρ(n, t):

∂ρ(n, t)
∂t

= −∂J(n)
∂n

, with (5.1)

J(n) = −D(n)
∂ρ(n, t)
∂n

+ ṅ(n)ρ(n, t). (5.2)

The first term on the right-hand side of Eq. (5.2) is the diffusion flux in size space
while the second one is the drift flux containing the growth rate ṅ(n). The diffusion
coefficient D(n) and the growth rate ṅ(n) are related by the fundamental Zeldovich
relation [32]

D(n) = − ṅ(n)
g′(n)

, with g′(n) =
dg(n)

dn
. (5.3)

It is important to note that at the critical cluster size, n∗, g(n) is at its maximum
implying that g′(n∗) = 0. The growth rate at the critical size, i.e. ṅ(n∗) also vanishes,
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however D(n∗) remains finite. The general form of the law for the growth rate ṅ can
be written in terms of the reduced radius r ≡ (n/n∗)

1
3 as in Ref. [62],

ṙ(r) =
1
τrα

(
1 − 1

r

)
, with τ−1 ≡ dṅ

dn

∣∣∣∣∣
n∗
, (5.4)

where the power index α depends on the type of mass exchange, e.g. α = 0 and 1
correspond to the ballistic and diffusion-limited cluster growth, respectively.

The starting point of the SDF is the Fokker-Planck equation. We propose an ap-
proximation in which the diffusion term in Eqs. (5.1)-(5.2), involving the unknown
cluster size distribution, ρ(n, t), is approximated by

Qs ≡ ∂

∂n

{
D(n)

∂ρs(n)
∂n

}
, (5.5)

containing the stationary flux of nucleating clusters; here ρs(n) is the non-equilibrium
stationary cluster size distribution. The latter is defined as the steady-state solution
of the Zeldovich-Frenkel equation [32]

∂

∂n

{
D(n)ρeq(n)

∂γs(n)
∂n

}
= 0, γs(n) ≡ ρs(n)

ρeq(n)
, (5.6)

where ρeq(n) is the equilibrium size distribution (Eq. (3.7)). Integrating Eq. (5.6)
using the boundary conditions γs(1) = 1 and limn→∞ γs(n) = 0, yields [32]

ρs(n) = ρeq(n)Js

∞∫

n

dñ
D(ñ)ρeq(ñ)

, (5.7)

where the steady-state nucleation rate Js is

Js =



∞∫

1

dn
D(n)ρeq(n)



−1

. (5.8)

Combining Eq. (5.5) with (5.2), the latter for the stationary conditions, ρ(n, t) = ρs(n)
and Js = const, we find

Qs =
∂

∂n
{ṅρs} =

∂

∂n
{
ṅρeq [1 − Jsε(n)]

}
, (5.9)

with

ε(n) ≡
n∫

1

dñ
D(ñ)ρeq(ñ)

. (5.10)
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This leads to the general expression for the SDF

∂ρ

∂t
+
∂

∂n
(ṅρ) =

∂

∂n
{
ṅρeq [1 − Jsε(n)]

}
, (5.11)

which is valid for all cluster sizes. In the limit of ”small” n, i.e. n � n∗, such that
g(n) � g(n∗), the free energy g(n) is dominated by the positive surface contribution
implying that the number of small clusters continues to have its equilibrium value in
spite of the drift flux.

Using Eq. (5.9), we can rewrite the SDF model as a homogeneous conservation
equation for size distribution as

∂ρ

∂t
+
∂

∂n
(ṅρ) = 0, (5.12)

where the effective SDF growth rate ṅ(ρ, n) incorporates the stationary diffusion
flux and is defined as

ṅ(ρ, n) ≡ ṅ
(
1 − ρs

ρ

)
. (5.13)

The behavior of the size distribution can be analyzed by considering Eq. (5.13). If
ρ > ρs, ṅ behaves similar as the deterministic growth rate ṅ. This situation occurs
when the supersaturation is decreased and consequently the stationary size distribu-
tion decreases. For ρ � ρs the distribution behaves as if the diffusion flux is absent.
On the other hand when ρ < ρs, e.g. when the supersaturation is increased, this be-
havior inverts. In the subcritical cluster size region the clusters grow until the steady
state distribution is attained.

One can simplify Eq. (5.11) in the domain n ≥ n∗ using the properties of ρeq(n).
The function exp(g(n)) has a strong maximum at n = n∗, implying that we can expand
g(n) around n∗ up to the second order term,

g(n) ≈ g(n∗) +
1
2

g′′(n∗)(n − n∗)2, with (5.14)

g′′(n∗) =
∂2g
∂n2

∣∣∣∣∣∣
n∗
< 0.

The diffusion coefficient, D(n) is proportional to the cluster size as n
2−α

3 (e.g. for the
ballistic growth law 1/D(n) ∝ n−

2
3 ). Therefore, in view of the exponential function

in ρeq(n), the main contribution of the diffusion coefficient in the integral of Eq. (5.7)
is for values of n close to the lower integration limit, yielding

ρs(n) ≈ Js
exp(−g(n))

D(n)

∞∫

n

exp(g(ñ))dñ. (5.15)
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Substituting Eq. (5.15) into (5.9) and using (5.3) results in

Qs = Js
∂

∂n

−g′(n) exp(−g(n))

∞∫

n

exp(g(ñ))dñ

 . (5.16)

Substituting these relations in Eq. (5.16) and defining the Zeldovich factor, Z ≡√−g′′(n∗)/2π, we find

Qs = Js
∂

∂n

{√
πζ exp(ζ2)erfc(ζ)

}
, with (5.17)

ζ ≡ √
πZ(n − n∗), (5.18)

where erfc(x) is the complementary error function [1]. For large clusters

lim
ζ→∞

{√
πζ exp(ζ2)erfc(ζ)

}
= 1.

yielding Qs → 0 for n→ ∞ as required [60]. Evaluation of Eq. (5.17) yields

Qs = JsπZΨ(ζ), with (5.19)

Ψ(ζ) = − 2ζ√
π

+ (1 + 2ζ2) exp(ζ2)erfc(ζ).

At the critical cluster size Ψ(ζ = 0) = 1 and decreases rapidly with ζ, demonstrating
the vanishing of the diffusion term at large n. Finally, in the supercritical cluster size
domain the SDF, i.e. Eq. (5.11), reduces to

∂ρ

∂t
+
∂

∂n
(ṅρ) = JsπZΨ(ζ), ζ ≥ 0 (5.20)

where ζ is given by Eq. (5.18). Eq. (5.20) is a convenient approximate form for nu-
cleation experiments, in which the supercritical clusters are of major interest. The
right-hand side represents the source term with newly born clusters and shows re-
semblance with the GDE [52], which reads

∂ρ

∂t
+
∂

∂n
(ṅρ) = Jsδ(n − n∗). (5.21)

The difference, however, is that the source term of Eq. (5.20) takes into account all
supercritical clusters and not just the critical size n∗. This prevents the appearance of
a singular size distribution in case the external conditions are fixed.

The general SDF Eq. (5.11) is applicable to all cluster sizes in the range 1 ≤ n < ∞
and is solved by imposing an initial condition and by specifying the thermodynamic
model of cluster formation, g(n), as well as the growth law, ṅ(n). Moreover, addi-
tional constraints are not necessary for the subcritical clusters.
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5.3 Results and discussion

We apply the SDF to a nucleation pulse experiment (see e.g. Refs. [33, 79]). The test
case consists of a typical stepwise constant pressure-temperature profile comprising
a region with high supersaturation, in which nucleation and growth take place (region
I), followed by a region with low supersaturation, in which nucleation is negligible
(region II). An example of such an experiment is presented in Table 5.1. The pulse
duration is 50µs. The supersaturation is the single component equivalent of the va-
por activity and is given by S = yp/ps(T ), where p is the total pressure, y is the
non-equilibrium vapor fraction and ps(T ) is the saturation pressure of the nucleating
substance. We take water as nucleating substance with y = 7 · 10−3; its thermody-
namic properties are those of Ref. [79]. The induction time of nucleation is defined
as tind =

(
4πD(n∗)Z2

)−1
, (see e.g. Ref. [2]).

Parameter Region I Region II
(t ≤ 50µs) (50µs < t < 300µs)

p [kPa] 77.0 115.5
T [K] 240.0 270.0
S 14.34 1.67
n∗ 23 1885
log10 Js [m−3s−1] 16.6 −180
tind [µs] 1.7 29.2

T 5.1: Nucleation pulse test case conditions for water with vapor fraction y =

7 · 10−3.

The results are validated utilizing the solution of the set of formally exact BD equa-
tions (3.1), with the forward and backward rates determined as described in Chap-
ter 3. The monomer density is non-depleting and assumed constant in both regions.
A set of 105 BD equations is solved using the Piecewise Constant Flux approxima-
tion [11]. The SDF is solved employing the van Leer MUSCL scheme (see [30] and
references therein). Using the SDF model, the computational effort is reduced by a
factor 8 compared to the effort required for solution of the BD equations. For con-
sistent comparison of the present solution with that of the BD equations, the growth
law in the SDF should be chosen appropriately [58, 59] as

ṅ(n) = D(n)
[
1 − exp(g′(n))

]
. (5.22)

Fig. 5.1 depicts the cluster size distribution in region I at several time instants.
The results from the SDF show a good agreement with those of the BD equations
for all cluster sizes. A small difference between the solutions at t1 is due to the
instantaneous occurrence of the pulse at t = 0. The BD solution exhibits a certain
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F 5.1: Cluster size distribution ρ(n, t): BD equations (solid) and SDF (short-
dashed) for nucleation pulse experiment in region I at t1 = 10 µs, t2 = 20 µs, t3 =

30 µs, t4 = 40 µs and t5 = 50 µs. The vertical long-dashed line shows the location of
the critical cluster.

relaxation time to be noticed in the supercritical domain. For times larger than t1 the
difference becomes negligible. At n � n∗ the diffusion term vanishes and at large t,
ρ(n, t) ≈ ρs(n) ≈ J/ṅ(n) until the double exponential decay of the front of the size
distribution occurs, as described by Shneidman [62].

n

ρ
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10-11
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104

109

t10
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t7
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region IIn*

F 5.2: Cluster size distribution ρ(n, t) in region II at t6 = 100 µs, t7 = 150 µs,
t8 = 200 µs, t9 = 250 µs and t10 = 300 µs. Other notations - see Fig. 5.1.

The results for the SDF in region II (Fig. 5.2) are in excellent agreement with the
BD solutions in the entire cluster size domain. The size distribution in the region
of n � n∗ resembles the equilibrium size distribution, as observed in Eq. (5.11). In
region II, the SDF reduces to the conservation equation for ρ(n, t) in the supercritical
region. We find that at the critical clusters ρ(n∗, t) decays exponentially with time - in
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agreement with Ref. [63]. Furthermore, the SDF solution exhibits a general feature:
the exponential decay of ρ(n, t) with time is true for the subcritical clusters up to the
equilibrium size distribution. This test case demonstrates the validity of the SDF for
the entire cluster range.

The solution of the SDF can be used for validation of various types of nucleation
experiments (e.g. nucleation pulse tubes, diffusion cloud chambers and expanding
nozzle flows [33, 72]). For continuously varying pressure-temperature profiles [8]
all p,T -dependent functions - J, S , g(n) and ρs(n) - become parametric functions of
time.

From the size distribution, the evolution with time of the total number of formed
clusters can be calculated. For the nucleation pulse experiment of Table 5.1, a portion
of the clusters formed in region I evaporates (∼10%). This is due to the rapid increase
of the critical size in region II, causing a part of the size distribution to become sub-
critical. This correction can be applied to experimentally measured nucleation rates,
as done by Ref. [22]. Moreover, the SDF can serve as a guideline for designing nu-
cleation pulse experiments. Important parameters in these experiments are the pulse
duration time (region I) and the ratio between the supersaturation in both regions.
Additionally, an accurate description of the shape of the cluster size distribution pro-
vides useful information for the applied measurement techniques.

5.4 Conclusions

The evolution of clusters in the processes of nucleation and growth can be approxi-
mated quite well by the SDF. The model is concise and capable of treating any time
dependent nucleation problem under the assumption that the timescales of the ex-
periment are much longer than the induction time of nucleation. The SDF does not
invoke additional constraints on the cluster size distribution and can be applied to all
cluster sizes. For most practical applications, in which the supercritical clusters are
of major importance, the simplified SDF for n ≥ n∗ can be used (Eq. (5.20)). Note
that the elaboration in this chapter has been carried out for a purely phenomenologi-
cal model of the free energy of cluster formation. The validation of the SDF has been
demonstrated for a nucleation pulse experiment. It is expected that SDF may be of
general validity for any cluster formation process.
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A computationally efficient method is proposed for the calculation of the N-component
cluster size distribution. This method is based on the Phase Path Analysis algo-
rithm, which originally has been derived for single component condensation. First
this method is extended by considering the N-component General Dynamic Equation
(NGDE). The NGDE introduces clusters at a point in n-space. The location of this
source point is determined by the Gibbs free energy of formation and the impingement
rates of the constituents. The resulting model describes the N-component cluster size
distribution along a line in n-space. For a typical nucleation pulse experiment the
solution of the Binary General Dynamic Equation is compared with the solution of
formally exact Binary Becker-Döring equations. The results show good agreement
for the cluster composition, size and the integral properties of the size distribution.

The work in this chapter has been published in revised form as: D.S. van Putten,
R.S.R. Sidin and R. Hagmeijer, J. Chem. Phys. 132, 184511 (2010).

6.1 Introduction

The calculation of the cluster size distribution in N-component nucleating systems is
of great interest in many fields of physics. To obtain the N-component cluster size
distribution the full set of NBD equations need to be solved. The solution of the
binary condensation problem has been addressed in several studies [35, 65, 81] and
more recently the ternary problem has been solved in a confined cluster region [47]
and Chapter 4. This solution method requires excessive computational time and is
not attractive for most practical applications in which the cluster sizes range from 10
to 107 molecules.

For single component systems the General Dynamic Equation (GDE) has been
introduced [52], which is a computationally efficient model for the calculation of the
unary size distribution. The GDE decouples the processes of nucleation and growth
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and as a result this model is not applicable to the size distribution in the region of
subcritical cluster sizes. On the other hand, recent studies have demonstrated that for
large supercritical clusters the global behavior of the distribution is in good agreement
with the solution of the formally exact Becker-Döring equations [63, 66]. Some
ambiguity still exists, however, in the choice of the location of the source term in the
n-space. This will be addressed accordingly by using the Stationary Diffusion Flux
(SDF) model [45] described in Chapter 5.

First the GDE is extended to N-component systems by using quasi-1D consider-
ations of the SDF model. The resulting N-component General Dynamic Equation
(NGDE) is a conservation equation for the N-component size distribution with a
source term located at a point in n-space. The location of the source term is de-
rived from the Gibbs free energy of formation and the impingement rates of the con-
stituents. The binary case is addressed to allow for a geometric construction and
serves as an illustrative case of the NGDE due to the reduction in dimensionality.

Subsequently, an efficient solution algorithm is introduced which exploits the hy-
perbolic character of the NGDE for the N-component size distribution. The algo-
rithm is an extension of the Phase Path Analysis (PPA) algorithm derived for unary
systems [20]. It is shown that the resulting cluster size distribution, which has a
Dirac δ-function character, agrees well in integral sense with the solution of the NBD
equations.

6.2 N-component General Dynamic Equation

The continuous equivalent of the N-component Becker-Döring (NBD) equations (3.1)
is the N-component Fokker-Planck Equation (NFPE) which describes the time evo-
lution of the continuous N-component cluster distribution ρ(n, t) [85]

∂ρ(n, t)
∂t

= −∇n · J(n), (6.1)

where ∇n = ( ∂
∂n1
, ∂
∂n2
, . . . , ∂

∂nN
) and the nucleation flux vector J(n) = (J1(n), J2(n),

. . . , JN(n)) is given by

J(n) = −ρeq(n)D(n)∇nγ(n) (6.2)

= −D(n)∇nρ(n) + ṅ(n)ρ(n) (6.3)

where γ(n) ≡ ρ(n)/ρeq(n). The first term on the right-hand side of Eq. (6.3) is the
diffusion flux vector with the diffusion tensor D(n), the second term is the drift flux
vector containing the growth rate vector ṅ(n), with ṅk(n, t) given by the growth law
in k-direction. The latter is obtained from the N-component generalization of the
fundamental Zeldovich relation [85]

ṅ(n) = D(n)∇n
[
ln ρeq(n)

]
. (6.4)
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If the normalization constant ρ0(n) in the continuous form of Eq. (3.7) is not a func-
tion of cluster size, Eq. (6.4) reduces to ṅ(n) = −D(n)∇ng(n) with g(n) the Gibbs
free energy form Eq. (3.8).

We define the supercritical cluster size region Ω∗ in n-space as given by Eq. (3.17).
The N-component General Dynamic Equation (NGDE) effectively decouples the pro-
cesses of nucleation and growth and introduces the newly formed clusters at a size,
n0 ∈ Ω∗, at a rate equal to the steady state nucleation rate, Js. The NGDE is con-
structed by neglecting the diffusion term in the NFPE and by introducing the newly
formed clusters in the supercritical cluster size region by means of a Dirac δ-function
[46]

∂ρ

∂t
+ ∇n · (ṅρ) = Jsδ(n − n0). (6.5)

The N-component classical nucleation theory [74] provides Js and the aim of this
chapter is to define the location of the ’source point’ n0. The location of n0 is deduced
from the SDF model and is based on the closed form expression for the steady state
cluster size distribution.

The diffusion flux in Eq. (6.3) reduces rapidly as the cluster size passes the saddle
point [45, 46]. The source location n0 is therefore expected to be located near the
critical size n∗. To aid the computation of the steady state distribution a new coordi-
nate system is defined by ξ = A−1∆n with ∆n = n − n∗. The transformation is aimed
at removing the anisotropy of the nucleation flux (i.e. the diffusion tensor D(n)) in
Eq. (6.2). Moreover, it is used to facilitate the integration of the equilibrium size
distribution. The divergence of the steady state nucleation flux transforms as

∇n · (ρeqD∇nγs
)

= ∇ξ ·
(
ρeqA−1DA−∇ξγs

)
= 0, (6.6)

where γs(ξ) = ρs(ξ)/ρeq(ξ) with ρs(ξ) the steady state size distribution. Near n∗ we
can expand g(n) around n∗ up to the second order, yielding the quadratic form

g(n) ≈ g∗ + ∆nH∗∆n, (6.7)

where g∗ ≡ g(n∗) and H∗ denotes the Hessian matrix of 1
2 g(n) evaluated at n∗

H∗i j =
1
2
∂2g(n)
∂ni∂n j

∣∣∣∣∣∣n∗
. (6.8)

Application of the transformation to Eq. (6.7) yields

g ≈ g∗ + ξAH∗Aξ. (6.9)

Both Eq. (6.6) and Eq. (6.9) can be simplified by a process called simultaneous diag-
onalization [29]. Firstly, we assume that the diffusion tensor D(n) is approximately
constant in the saddle point region, i.e. D(n) ≈ D(n∗) ≡ D∗. We use the following
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properties: H∗ is symmetric and D∗ is symmetric and positive-definite and define a
symmetric matrix B as

B ≡ (D∗)
1
2 H∗(D∗)

1
2 , (6.10)

which can be written as
B ≡ UΛU, (6.11)

where the columns of U form the orthonormal left eigenvectors of B. The entries λk

of the diagonal matrix Λ are the eigenvalues of B. Then, choosing the transformation
matrix as

A = (D∗)
1
2 U, (6.12)

we obtain
A−1D∗A− = U(D∗)−

1
2 D∗(D∗)−

1
2 U = I, (6.13)

AH∗A = U(D∗)
1
2 H∗(D∗)

1
2 U = UBU = Λ. (6.14)

Hence, Eq. (6.6) becomes isotropic

∇ξ ·
(
ρeq∇ξγs

)
= 0, (6.15)

and the quadratic form of Eq. (6.9) reduces to a sum of squares

g = g∗ + ξΛξ = g∗ +

N∑

k=1

λkξ
2
k . (6.16)

Since B is symmetric, the eigenvalue problem Eq. (6.11) can be solved using the Ja-
cobi method of successive orthogonal transformations, see e.g. Ref. [43]. The trans-
formation matrix A is then determined by Eq. (6.12) and we denote the kth column of
A by qk.

Using the terminology of Shneidman [54], the new coordinate system ξ consists
of one ’unstable’ coordinate ξ1 in the direction of q1 corresponding to λ1 < 0,
i.e. the nucleation flux is in the direction of q1. All other ’stable’ coordinates
ξ̄ = (ξ2, . . . , ξN)T correspond to λk > 0 for k = 2, . . . ,N. The combined coordi-
nate system can be written as ξ = (ξ1, ξ̄)T.

The steady state nucleation rate and size distribution are calculated by considering
Eq. (6.15) which reduces to the one-dimensional form

∂Jξ1

∂ξ1
= 0, (6.17)

since the derivatives of J in all stable directions ξ̄ vanish (direction of principle
growth approximation). This means that in the saddle point region Jξ1 = Jξ1(ξ̄)
which reads

Jξ1(ξ̄) = −ρeq(ξ)
∂γs(ξ)
∂ξ1

, (6.18)
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with the equilibrium size distribution in the transformed system given by

ρeq(ξ) = ρ
eq
∗

N∏

k=1

exp
(
−λkξ

2
k

)
, (6.19)

with ρeq
∗ = ρeq(ξ∗). Integration of Eq. (6.18) over the unstable coordinate ξ1 from −∞

to ξ1, yields

1 − γs(ξ1, ξ̄) =
Jξ1(ξ̄)

ρ
eq
∗

N∏

k=2

exp
(
λkξ

2
k

) ξ1∫

−∞
exp

(
λ1ξ
′2
1

)
dξ′1. (6.20)

Evaluation of the integral leads to

Jξ1(ξ̄) = 2

√
−λ1

π
ρ

eq
∗

N∏

k=2

exp
(
−λkξ

2
k

) 1 − γs(ξ1, ξ̄)
erfc(−√−λ1ξ1)

, (6.21)

where erfc(x) is the complementary error function [1]. We observe that the left hand
side is independent of ξ1, and therefore defining

ψ(ξ̄) ≡ 1 − γs(ξ1, ξ̄)
erfc(−√−λ1ξ1)

, with
∂ψ

∂ξ1
= 0. (6.22)

Using the boundary condition γs(ξ1, ξ̄) = 0 for ξ1 → ∞ results in ψ(ξ̄) = 1
2 which

immediately leads to

γs(ξ1, ξ̄) =
1
2

erfc(
√
−λ1ξ1) (6.23)

and since ρs(ξ) = γs(ξ)ρeq(ξ), yields

ρs(ξ) =
1
2
ρ

eq
∗

N∏

k=1

exp
(
−λkξ

2
k

)
erfc(

√
−λ1ξ1). (6.24)

Furthermore, Eq. (6.21) becomes

Jξ1(ξ̄) =

√
−λ1

π
ρ

eq
∗

N∏

k=2

exp
(
−λkξ

2
k

)
. (6.25)

For the binary case the typical Gaussian shape of the nucleation flux in the (n1, n2)-
space is illustrated in Fig. 6.1. The shape of the Gibbs free energy of formation is
also indicated by iso-lines in the same figure.

The steady state nucleation rate is obtained by integrating Eq. (6.25) over all stable
coordinates

Js =

∫

RN−1

Jξ1(ξ̄) det(A)dξ2dξ3...dξN = π(N−2)/2 −λ1√| det(H∗)|ρ
eq
∗ , (6.26)
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F 6.1: Isocontours of Gibbs free energy of formation g(n) in (n1, n2)-space.
Solid iso-lines correspond to g(n) > g(n∗), dashed iso-lines correspond to g(n) <
g(n∗). The flux around n∗ is given by Jξ1(ξ2) (dotted line) in the (ξ1, ξ2)-coordinate
system. The dot indicates the saddle point n∗.

where we used

det(U) = 1, det(Λ) = det(D∗) det(H∗), det(A) =
√

det(D∗). (6.27)

A more rigorous explanation of the integral in Eq. (6.26) is given in Appendix C.
We use the N-component generalization of the Stationary Diffusion Flux (SDF)

approach for the quasi one-dimensional flux in the direction of the ξ1-coordinate.
The SDF approach involves replacing the diffusion flux in the FPE by its steady state
value which is based on the small time scales in the nucleation process [45]. The
nucleation flux in Eq. (6.25) has a strong exponential character in the direction of the
stable coordinates ξ̄ on the ξ1-axis. Therefore, the source point n0 in Eq. (6.5) should
be located on this axis. To account for the flux in the entire saddle point region we
integrate Eq. (6.24):

ρ̄s(ξ1) ≡
∫

RN−1

ρs(ξ1, ξ̄)dξ2dξ3...dξN . (6.28)

Evaluation of Eq. (6.28) using Eq. (6.24) yields

ρ̄s(ξ1) =
1
2
ρ

eq
∗
π(N−1)/2 √−λ1√| det(H∗)| exp

(
ζ2

)
erfc(ζ),

ζ ≡
√
−λ1ξ1. (6.29)
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Similarly to expressions (6.2) and (6.3), the nucleation flux in ξ1-direction, given by
Eq. (6.18), can be decomposed in a diffusion flux and a drift flux

Jξ1(ξ̄) = −∂ρ(ξ)
∂ξ1

+ ρ(ξ)
∂

∂ξ1

[
ln ρeq(ξ)

]
, (6.30)

We construct the quasi one-dimensional SDF by using Eq. (6.17) for steady state

∂Jξ1

∂ξ1
= 0, ⇒ ∂

∂ξ1

{
−∂ρ̄s(ξ1)

∂ξ1
+ ξ̇1ρ̄s(ξ1)

}
= 0, (6.31)

where ξ̇1 ≡ ∂
∂ξ1

[
ln ρeq(ξ)

]
is the growth rate in ξ1-direction. Using Eq. (6.19) we

obtain
ξ̇1 =

ξ1

τξ1

, with τξ1 ≡ −
1

2λ1
, (6.32)

where τξ1 is the Zeldovich time parameter, see also Appendix C. We approximate the
diffusion flux in the quasi one-dimensional FPE (6.1) by the stationary diffusion flux
as

∂ρ

∂t
+

∂

∂ξ1

(
ξ̇1ρ

)
= Qs, where Qs ≡ ∂2ρ̄s

∂ξ2
1

. (6.33)

Using the steady state size distribution ρs(ξ1) from Eq. (6.29), we obtain

Qs = π(N−1)/2ρ
eq
∗

(−λ1)3/2
√| det(H∗)|Ψ(ζ), (6.34)

Ψ(ζ) ≡ − 2ζ√
π

+ (1 + 2ζ2) exp(ζ2)erfc(ζ), (6.35)

where the function Ψ(ζ) is identical to the expression derived by Refs. [45, 46] for
N = 1, 2. Using the steady state nucleation rate, Js, from Eq. (6.26) yields

Qs = Js
√
−λ1πΨ(ζ). (6.36)

The function Ψ(ζ) is a monotonically decreasing function of ζ demonstrating the
decrease of Qs for ζ increasing in positive ζ direction, see Appendix C. At the critical
size, Ψ(ζ = 0) = 1. Define ζ0 such that it satisfies Ψ(ζ0) = εΨ(0), then ε is a measure
for the decrease of the diffusion term. The choice of ε is a compromise; it should be
sufficiently small for the diffusion term to be negligible compared to the drift term;
on the other hand n0 should be located in the vicinity of n∗, where the direction of
principle growth approximation and the expansion in Eq. (6.7) are still valid. A value
of ε = 10−2 leads to ζ0 = 3.6, which value we will assume for calculations. We note
that a similar analysis can be performed based on the ratio between the diffusion and
drift fluxes, see Appendix C. The sensitivity of the NGDE to the choice of ε will be
discussed in Section 6.4.1. If ε is chosen appropriately, the corresponding ζ0 is fixed
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and does not depend on the specific problem. In the original n coordinate system we
note that ∆n = q1ξ1 and using Eq. (6.29) yields the source location

n0 = n∗ +
ζ0√−λ1

q1. (6.37)

Thus the location of the source point of the NGDE depends on the critical cluster size
n∗, the tolerance ε and the direction of q1 corresponding to the negative eigenvalue
λ1.

In the NGDE, the Gaussian profile in ξ̄ is effectively replaced by a Dirac δ-function
at ξ̄∗ = 0 (i.e. Jξ1(ξ̄) ≈ Jsδ(ξ̄)). The construction with the Dirac δ-function produces
a flux, Jξ̃ along the curvilinear coordinate system ξ̃ in n-space. This is schematically
illustrated in Fig. 6.2 for the binary GDE, i.e. N = 2. Near the saddle point the
direction of Jξ̃ is approximately in ξ1-direction. Similar effective 1D approaches
have been proposed in Refs. [13, 54, 68].

F 6.2: The open circle indicates the source point n0 and the solid arrow rep-
resents the flux Jξ̃ in the curvilinear coordinate system ξ̃ in (n1, n2)-space. Other
notations, see Fig. 6.1.
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6.2.1 Special case of N = 1

For single component nucleation the procedure is simplified since the flux direction
is evident. The SDF model [45] can be applied directly leading to

n0 = n∗ +
ζ0√
πZ , with ζ0 = 3.6. (6.38)

where Z ≡
√
− 1

2π
d2g
dn2

∣∣∣∣
n∗

is the Zeldovich factor for unary condensation. A similar

condition is found by Refs. [55, 56]: n0 − n∗ � (
√
πZ)−1 ⇒ ζ0 � 1. This condition

is based on the reduction of the diffusion flux instead of the diffusion term and for
ε = 10−2 leads to ζ0 = 7, see Appendix C.

6.3 Phase Path Analysis

In Ref. [20] the so-called Phase Path Analysis (PPA) algorithm has been derived for
an advected single-component vapor. In the present section we extend the method
to a non-advected N-component vapor. Let Ω(t) represent a region in n-space which
is transported with the cluster growth rate. Application of the Reynolds transport
theorem then yields

d
dt

∫

Ω(t)

dn =

∫

∂Ω(t)

ν · ṅ ds, Ω(0) = Ω0, (6.39)

where ν is the outward unit normal on boundary ∂Ω(t) of Ω(t). Integration of the
NGDE (6.5) over Ω(t) leads to

d
dt

Φ(Ω(t), t) = Js(n0(t))H(Ω(t), n0(t)), (6.40)

where Φ(Ω(t), t) is the number of clusters in Ω(t) at time t

Φ(Ω(t), t) =

∫

Ω(t)

ρ(n, t)dn, (6.41)

and

H(Ω,n0) ≡
{

1 n0 ∈ Ω,

0 n0 < Ω.
(6.42)

Eq. (6.40) can be integrated with respect to time from 0 to t

Φ(Ω(t), t) = Φ0 +

t∫

0

Js(n0(τ))H(Ω(τ),n0(τ)) dτ, (6.43)

Φ0 = Φ(Ω0, 0). (6.44)
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To facilitate actual computation of this integral we introduce a characteristic surface
n̄(t; n0(τ), τ) in n-space defined by

d
dt

n̄ = ṅ(n̄, t), n̄(τ; n0(τ), τ) = n0(τ). (6.45)

At fixed t, n̄(t; n0(τ), τ) represents a curve in the n-plane that is parameterized by τ,
see Fig. 6.3 for a binary system, i.e. N = 2.

F 6.3: Characteristics (dashed lines) in two component (n, t)-space originating
from the source location n0(t) (dash-dotted line with open circles). At fixed t the
distribution is given along a curve, n̄(t; n0(τ), τ).

Since both Ω and n̄ are transported at the cluster growth rate, it is observed that

H(Ω(τ), n0(τ)) ≡ H(Ω(t), n̄(t; n0(τ), τ)), ∀t ≥ τ. (6.46)

Eq. (6.46) is the N-component equivalent of Eq. (19) in Ref. [19]. With this expres-
sion, Eq. (6.43) can be rewritten in the computationally more convenient form

Φ(Ω(t), t) = Φ0 +

t∫

0

Js(n0(τ))H(Ω(t), n̄(t; n0(τ), τ)) dτ. (6.47)
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For example, if the intersection of ∂Ω(t) and the curve n̄(t; n0(τ), τ) consists of two
points n̄(t; n0(τ1), τ1) and n̄(t; n0(τ2), τ2), τ2 > τ1, then

Φ(Ω(t), t) = Φ0 +

τ2(t)∫

τ1(t)

Js(n0(τ)) dτ. (6.48)

So the PPA algorithm for N-component systems comprises the tracing of the charac-
teristics in (n,t)-space (Eq. (6.45)) and the calculation of the number of clusters per
unit volume between the successive characteristics by means of Eq. (6.48). After this
procedure we can reconstruct the curve n̄ providing the composition of the clusters.
Furthermore, we define the corresponding distribution φ(s, t) along this curve as

φ(s, t) ≡ Js(n0(τ))
/∥∥∥∥∥

dn̄
dτ

∥∥∥∥∥ , s(τ; t) ≡
τ∫

0

∥∥∥∥∥
dn̄
dτ′

∥∥∥∥∥ dτ′. (6.49)

The curve length s is defined for convenience since it scales with the total cluster
size. We note that the s-derivative is well-defined, whereas the derivative to one of
the constituents may not; a projection of the curve n̄ on the nk-axis can lead to a
self-intersection of the curve, resulting in a non-unique value for the derivative.

It is noted that direct comparison between the NBD solution and the NGDE solu-
tion is not possible since each of these distributions is of a different type. The NBD
solution is defined in the entire n-space, whereas the NGDE solution is a continu-
ous but quasi-1D distribution. We therefore compare the distributions resulting from
the NGDE with those from the NBD equations indirectly by evaluating their integral
properties in the supercritical size domain Ω∗ given by Eq. (3.17) in the form of the
total cluster number density Φ and the superficial liquid mass density lk. The total
cluster number density is calculated using

Φ(t) =
∑

n∈Ω∗
ρn(t),

Φ(t) =

s(t;t)∫

0

φ(s, t)ds, (6.50)

Besides the total cluster number density, the superficial liquid mass density of com-
ponent k can be determined

l
k (t) = mk

∑

n∈Ω∗
nkρn(t),

l
k (t) = mk

s(t;t)∫

0

n̄k(s)φ(s, t)ds, (6.51)

for k = 1, 2, . . . ,N, where mk is the molecular mass of component k.
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6.4 Test case definition

We define two test nucleation pulse experiments of alcohol mixtures, e.g. see Ref. [71].
The first case considers a binary mixture and the results of the Binary General Dy-
namic Equation (BGDE) are compared to the corresponding results of the formally
exact Binary Becker-Döring (BBD) equations. The second test case is a quinary
mixture and serves as a demonstration of the efficiency and capabilities of the PPA
algorithm.

6.4.1 Binary nucleation pulse experiment

We define a test case based on a typical nucleation pulse experiment for a binary
condensing mixture of ethanol (k = 1), hexanol (k = 2) and an inert carrier gas
(argon), e.g. see Ref. [71]. The carrier gas does not influence the nucleation behavior
of the condensing components and serves as a heat sink during the condensation
process. The test case consists of a stepwise constant pressure-temperature profile
comprising a region with high vapor phase activities ak ≡ yk p/ps,k(T ), in which yk

and ps,k(T ) are the vapor molar fraction and the saturation pressure of component k,
respectively. In this region of high vapor phase activity, nucleation and growth take
place and is referred to as region I or pulse region. The pulse region is succeeded by
a longer time period with low vapor phase activities, in which nucleation is negligible
(region II). The external conditions during the experiment are presented in Table 6.1.
The pulse duration is 50µs. The vapor is assumed non-depletable with mole fractions
y = (1.117 · 10−2, 2.31 · 10−4). The mixture of ethanol and hexanol can be regarded
as ideal and the pure component properties are listed in Appendix B.

Parameter Region I Region II
(t ≤ 50µs) (50µs < t < 300µs)

p [kPa] 66.76 74.00
T [K] 260.0 270.5
a (1.50, 9.00) (0.72, 2.86)
n∗ (17, 18) (68, 104)

n0 (36.7, 30.0) (106.1, 148.1)

log10 Js [m−3s−1] 17.5 −10.6

T 6.1: Nucleation pulse test case conditions for binary ethanol-hexanol mixture
with vapor composition y = (1.117 · 10−2, 2.31 · 10−4) and ζ0 = 3.6.

6.4.2 Quinary nucleation pulse experiment

The quinary mixture contains ethanol (k = 1), propanol (k = 2), butanol (k = 3),
pentanol (k = 4), hexanol (k = 5) and argon as a carrier gas. The vapor mole fractions
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of the alcohol mixture are: y = (7.446 · 10−3, 1.818 · 10−3, 7.786 · 10−4, 2.344 ·
10−4, 1.026 · 10−4). The nucleation pulse conditions are given in Table 6.2. The
alcohol mixture can be regarded as ideal and the properties are listed in Appendix B.

Parameter Region I Region II
(t ≤ 50µs) (50µs < t < 300µs)

p [kPa] 66.76 74.00
T [K] 260.0 270.5
a (0.8, 0.96, 1.2, 1.6, 3.2) (0.39, 0.4, 0.49, 0.58, 1.02)
n∗ (11, 9, 6, 6, 10) (58, 46, 41, 44, 64)

n0 (28.4, 23.3, 16.0, 13.0, 15.0) (101.5, 81.7, 73.8, 72.9, 89.0)

log10 Js [m−3s−1] 17.5 −19.5

T 6.2: Nucleation pulse test case conditions for quinary alcohol mixture with
composition y = (7.446 · 10−3, 1.818 · 10−3, 7.786 · 10−4, 2.344 · 10−4, 1.026 · 10−4)
and ζ0 = 3.6.

6.4.3 Computational method

The BBD equations are solved by means of a sectional approximation in n-space,
extensively described in Ref. [65]. This method groups the clusters into bins and for
this test case a resolution of 700x700 bins is used. The time integration is performed
using the Heun predictor-corrector method [70] with a time step size of 10−10s. The
partial vapor densities are prescribed at the origin of the n-space, i.e. ρe1 = ρv,1 and
ρe2 = ρv,2.

The characteristics in the PPA algorithm (Eq. (6.45)) and the integral in Eq. (6.48)
are evaluated using second-order Heun time integration [70]. The number of charac-
teristics is coupled to the time step size, as illustrated in Fig. 6.3. The reconstruction
of φ(s, t) in Eq. (6.49) is carried out by means of a forward finite-difference method.
The BGDE is solved using different values of ζ0 = [2, 3.6, 5] in Eq. (6.37) demon-
strating the sensitivity of the method for the choice of the value of ζ0.

6.5 Results and discussion

The solution of the BBD equations has been obtained by parallel computation on 32
processors, requiring in a simulation time of approximately 10 days. In contrast, the
solution of the BGDE with the PPA algorithm has been obtained in less than a minute
on a single processor. Also the simulation of the quinary mixture using the NGDE is
performed in order of minutes on a single processor.



58 C 6. P P A    NGDE

The computational time of the PPA method scales linearly with the number of
components since the number of evaluations per phase path increases linearly with N.
The NBD equations, however, require an additional grid dimension per component
leading to an exponential increase of the computational effort with increasing N.

6.5.1 Binary mixture

The solution of the BGDE is compared with the solution of the formally exact BBD
equations. Comparison are the composition and size of the clusters, the total cluster
number density (Eq. (6.50)) and the superficial liquid mass density of the components
(Eq. (6.51)).

Fig. 6.4 shows the comparison between the results of BBD equations and those of
the BGDE for the cluster composition. The results are plotted at several time instants
covering both regions of the nucleation pulse experiment. Note that the contours of
the binary size distribution from the BBD equations are plotted on log-scale, indicat-
ing that the distribution has a strong maximum near the curve n̄ obtained from the
BGDE (solid line). This means that the highest number density of a certain cluster
size has a composition which agrees with the composition of that cluster size calcu-
lated by the BGDE. During the pulse (region I, Fig. 6.4a-c) the clusters are generated
near the origin of the n-space. After the pulse (region II, Fig. 6.4d-f) the distribution
is transported in n-space indicating that the nucleation has quenched, leaving cluster
growth as the prevailing process.

Fig. 6.5 shows φ(s) in n-space at several time instants, indicating the composition
and the distribution of the binary clusters. We observe the typical decrease of the
distribution with increasing size in the pulse region (t = 25µs). Also, the sharp front
at the large size part of the distribution is obtained similar to the distribution obtained
in the single component case [45, 63, 66]. The typical decrease of the distribution
with time is also observed in Fig. 6.5. This decrease is due to the stretching of the
distribution, which is caused by the monotonically increasing growth rate with cluster
size, i.e. dṅk

dnk
>0, ∀nk ∈ n̄.

Fig. 6.6 shows the comparison between the result of BBD equations and that of the
BGDE in terms of the total cluster number density as function of time. We observe
that the result from the BBD equations exhibits a certain relaxation time [82] (∼ 2µs),
whereas the BGDE is based on the steady state nucleation rate. The instantaneous
presence of the source in the supercritical size region results in a higher value of
Φ. For most nucleation pulse experiments the time of the pulse (region I) is much
longer than the relaxation time of the BBD equations, resulting in a relatively smaller
difference in Φ obtained from BBD and BGDE. However, due to excessive simulation
times for solving the BBD equations an accurate numerical experiment with a pulse
duration of the order of milliseconds is not feasible. The instantaneous decrease of Φ

after the pulse is caused by the instantaneous increase of n∗ resulting in a part of the
cluster size distribution to become subcritical and to evaporate. The choice of ζ0 in
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Eq. (6.37) determines the magnitude of this decrease in Φ. If ζ0 is decreased, a larger
portion of the size distribution will evaporate after the nucleation pulse, as indicated
in Fig. 6.6.

Fig. 6.7a shows the comparison of data for the superficial liquid mass density of
ethanol obtained from the solution of the BBD equations and the one obtained from
the BGDE. The activity of ethanol during the pulse is larger than unity, increasing l1.
After the pulse, the activity decreases resulting in the partial evaporation of ethanol
molecules from the clusters. Fig. 6.7b shows the comparison of data for the superfi-
cial liquid mass density of hexanol obtained from the solution of the BBD equations
and from the BGDE. The results of the BGDE for l1 and l2 correspond reasonably
well with the BBD solution for various ζ0 values. We note that no unique value of ζ0
can be chosen such that all integral properties are in good agreement.

6.5.2 Quinary mixture

The results obtained by the PPA algorithm of the quinary mixture are presented in this
section. Due to the excessively long computational times of the NBD equations the
NGDE solution cannot be validated against the exact solution of the NBD equations.
For the location of the source term we take ζ0 = 3.6. The time dependent total cluster
number density Φ is depicted in Fig. 6.8(a). Similar to the binary case depicted in
Fig. 6.6, the typical instantaneous decrease of Φ immediately following the pulse is
observed. Fig. 6.8(b) gives the superficial liquid mass densities for all components as
a function of time. The behavior of the components differs in the pulse and growth
region. This is clarified in Fig. 6.8(c), where the liquid mass fraction xk = lk/

∑
i li is

shown. The composition of the clusters change rapidly at the onset of the nucleation
pulse and during the pulse the mass fractions tend to converge to a steady state value.
Following the pulse the conditions change and the ethanol evaporates leading to a new
steady state composition. The choice of the nucleation pulse conditions determines
the composition of the clusters at the end of the nucleation pulse experiment, i.e. at
t = 300µs.

Fig. 6.9 shows the size dependence of the distribution φ and the liquid mass frac-
tions xk at (a) t = 25µs, (b) t = 100µs and (c) t = 300µs. The PPA algorithm provides
all properties, e.g. Φ(s), n(s), as a function of the curve length s. The thick solid line
in Fig. 6.9(a)-(c) indicates the size distribution φ(s) and shows similar behavior as
in the binary case. In the initial stage of the nucleation pulse (Fig. 6.9(a)) the size
distribution decreases strongly with increasing size until the front of the distribution
is reached. The composition of the clusters changes with s in the pulse region. Small
clusters have a composition approximately equal to the composition at the source
point n0. As the clusters grow the liquid mass fractions converges to the steady state
values corresponding to the compositions found in the time dependent solution in
Fig. 6.8(c). In the growth region the influence of the pulse region is apparently not
important any more and the composition is almost size independent.
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6.6 Conclusions

Application of the PPA algorithm to the NGDE with N = 2 reduces the computa-
tional time with a factor of 105 compared to the computational time required for the
solution method for the NBD equations. This extreme reduction of computing time
of the NGDE relative to that of the NBD equations renders the method based on the
NGDE feasible for the use in the design and analysis of nucleation pulse experiments,
providing valuable information on the cluster composition and cluster size distribu-
tion. The method is suitable for any time dependent cluster formation process as long
as the relaxation time of the formation process is smaller than the typical timescale
of the experiment.

The results in Fig. 6.6 and 6.7 show that the choice of the starting value ζ0 influ-
ences the results. The value of ζ0 can be chosen by matching Φ with Φ, but
this will deteriorate the agreement between l

k and l
k . The origin of the devia-

tions is in the assumption of a steady state nucleation flux, as explained in Ref. [64]
for single component condensation. Incorporating the time lag in the nucleation flux
is expected to yield better results.

Application of the PPA algorithm to the NGDE with N = 5 demonstrates the
potential of the method. The simulation is performed in the order of minutes on a
single processor and provides the approximate size distribution and the composition
of the clusters. Unfortunately a comparison with the solution of the NBD equations
cannot be made for N = 5 due to the excessive computational effort that would be
required.

In the present chapter we have demonstrated the validity of the model for vapor-
liquid transition, but the procedure is of general validity for any N-component cluster
formation process that exhibits a saddle point in g(n). Moreover, the model could be
extended to a g(n) surface with two saddle points as has been observed in Ref. [84].
The right-hand side of Eq. (6.5) could be adjusted by adding a second Dirac δ function
with a newly defined second source location.
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F 6.4: Comparison of the cluster composition obtained from the BBD equations
(dashed contour lines) and n̄(t; n0(τ), τ) (solid line) in the pulse region at (a) t = 5µs,
(b) t = 25µs, (c) t = 50µs and in the growth region at (d) t = 100µs, (e) t = 200µs,
(f) t = 300µs for ζ = 3.6 and conditions given in Table 6.1. The contour lines
correspond to log10(ρn) from -5 to 15 with increments of 2; solid circle indicates n∗
and open circle indicates n0.
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F 6.5: Distributions φ(s, t) in n-space at t = 25µs in the pulse region and at
t = 100µs and t = 300µs in the growth region for ζ = 3.6 and conditions given in
Table 6.1
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F 6.6: Comparison of the total cluster number density Φ (solid line) and
Φ for ζ0 = 2 (dashed line), ζ0 = 3.6 (long dashed line) and ζ0 = 5 (dash dotted
line) as function of time for binary mixture nucleation pulse test case.
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(a) k = 1: ethanol
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(b) k = 2: hexanol

F 6.7: Comparison of the k-component superficial liquid mass density l
k (solid

line) and l
k for ζ0 = 2 (dashed line), ζ0 = 3.6 (long dashed line) and ζ0 = 5 (dash

dotted line) as function of time for the nucleation pulse test case, (a) ethanol (k = 1)
and (b) hexanol (k = 2).
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F 6.8: Time dependent solution of the NGDE (N = 5) for the mixture of ethanol
(solid), propanol (short-dashed), butanol (dash-dotted), pentanol (long-dashed) and
hexanol (dotted): (a) the total number of clusters Φ, (b) the superficial mass den-
sities lk and (c) the liquid mass fractions xk. The conditions in the pulse re-
gion: n∗ = (11, 9, 6, 6, 10), n0 = (28.4, 23.3, 16.0, 13.0, 15.0), g(n∗) = 41.7; in
the growth region: n∗ = (58, 46, 41, 44, 64), n0 = (101.5, 81.7, 73.8, 72.9, 89.0),
g(n∗) = 130.2.
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F 6.9: Size dependent solution of the NGDE (N = 5) for the mixture of ethanol
(solid), propanol (short-dashed), butanol (dash-dotted), pentanol (long-dashed) and
hexanol (dotted): at (a) t = 25µs, (b) t = 100µs and (c) t = 300µs. The thick solid
line is the size distribution φ and the thin lines are the liquid mass fractions xk of the
constituents.
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7.1 Conclusions

In Chapter 2 a robust numerical solution method has been developed for the calcu-
lation of three-phase equilibria for real mixtures. The method is based on Newton-
Raphson iteration and a proper initialization scheme has been presented based on
pressure extrapolation. The commonly used initialization schemes are insufficiently
accurate for high pressure calculations. The derivatives needed in the iterative scheme
and the initialization scheme are calculated analytically for the components which are
accurately described by the SRK equation of state. The results for a ternary three-
phase mixture are calculated and give useful insight in the multiphase behavior of
real gases.

In Chapter 4 a multigrid algorithm has been derived for the numerical solution of
the N-component Becker-Döring (NBD) equations. The standard multigrid coars-
ening techniques fail for the N-component nucleation problem, but the developed
geometrical coarsening scheme does work. The proposed coarsening conserves the
fluxes and yields equivalent sets of equations on the coarsened grids. The method
can be used for an arbitrary number of components and reduces the computational
time by a factor of 10 compared to the computing time required for general iterative
solvers. The ternary nucleation problem has been investigated by solving the time
evolution of the cluster size distribution in the initial stages of the formation process.
The method is applicable to small clusters and can aid in the development of theories
for steady state nucleation.

In Chapter 5 an approximate model has been derived from the unary Fokker-Planck
Equation (FPE). The model assumes a steady state cluster size distribution in the
subcritical cluster size region which leads to an analytic expression for the diffusion
flux in the FPE. The resulting model is termed the Stationary Diffusion Flux (SDF)
model and is applicable to all cluster sizes. Comparison of the results of the SDF with
the results of the BD equations shows an excellent agreement for the size distribution
up to the monomers.

In Chapter 6 the efficient Phase Path Analysis algorithm has been introduced for
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the N-component General Dynamic Equation (NGDE). The location of the source
term in the NGDE has been derived rigorously and depends on the free energy of
cluster formation and the N-component gas kinetics. The algorithm can be applied to
supercritical clusters and is capable of calculating the approximate size distribution
for large clusters. The method has been validated for the case of a nucleation pulse
experiment for a binary mixture and comparing the size, composition and integral
properties of the approximate distribution with the outcome of the formally exact
NBD equations. The method reduces the computational effort by a factor of 105 for
the binary mixture.

7.2 Recommendations

Several recommendations are proposed for possible future research:

1. The method for initialization in Chapter 2 can also be extended for the temper-
ature, see Eq. (2.22). The resulting expressions for extrapolation in pressure
and temperature can be exploited such that one of the variables in the solution
vector remains constant. Preferably the pressure and temperature increments
can be chosen such that the vapor phase fraction is constant. One then obtains
a scheme which solves the variable vector by tracing the variables along iso-
contours of the vapor phase fraction and omits the use of an iterative scheme.
Therefore this method is potentially very efficient while maintaining high res-
olution equilibrium pressure-temperature data.

2. The multigrid method in Chapter 4 is a first step in the development of effi-
cient multigrid algorithms for the present type of problems. At the moment it
is limited to the small cluster size region. This is due to the geometrical con-
struction of the coarse grid levels. To extend the method to the region of larger
cluster size one could use a bin structure for the original NBD equations on the
target grid as developed for binary mixtures in Ref. [65]. More recently, Al-
gebraic MultiGrid (AMG) algorithms have been developed, see e.g. Ref. [75].
These methods are not restricted to the geometrical construction of the grid
levels. The coarsening is based on the shape of the operator L in the sense that
strongly coupled elements in the solution vector u are maintained on the coarse
grid. This coarsening is expected to be more efficient since it automatically lo-
cates the regions of interest and disregards the less important regions which are
solved in the geometrical approach.

3. The SDF model has been derived for single component condensation. The
model can be extended to N-component mixtures given an appropriate choice
of a curvilinear coordinate system in the subcritical cluster size region. In the
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large cluster size region the stationary diffusion flux in the direction perpendic-
ular to the growth rate vector cannot be neglected.

4. The Phase Path Analysis algorithm for the NGDE in Chapter 6 is expected to
be a suitable method for validation of N-component nucleation experiments.
Due to the reduced computational time, the method can be used as a design
tool for experimental devices (e.g. nozzle geometries [73]) based on the inte-
gral properties of the N-component size distribution. For these fast expanding
nozzle flows the coupling between the condensation and the fluid dynamics
equations need to be established similarly as has been achieved in Ref. [65].
Also the extension to incorporate the depletion of the vapor is mandatory to
simulate the behavior in these condensing flows accurately.
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In this appendix the expressions for the equilibrium calculations are derived in fur-
ther extent. The derivation is applicable to both the liquid and vapor phase, so the
superscript from Eq. (2.13) is dropped. The elaboration will be performed using the
SRK equation of state, given by

p =
kT

v − b
− a(T )

v(v + b)
, (A.1)

where a(T ) and b for a pure component are given by

a(T ) =
0.42748k2

T 2
c

pc
[1 + (0.480 + 1.574ω − 0.176ω2)(1 − T

1
2

r )]2,

b =
0.08664kTc

pc
. (A.2)

A.1 Fugacity coefficient and chemical potential

The calculation of fugacity coefficient involves the compressibility factor Z, which is
related to the pressure as

Z ≡ pv
kT

=
v

v − bm
− am

kT (v + bm)
. (A.3)

For the evaluation of the integral in Eq. (2.13) the partial compressibility factor is
required, which is defined as Z̄i ≡

(
∂nZ
∂ni

)
T,V,n j,i

with n is the total number of molecules
and ni is the number of molecules of component i. Elaboration for the SRK equation
of state and rewriting in terms of the total volume V = nv, yields

Z̄i =
V

V − bmn
+

nVb̄i

(V − bmn)2 −
nāi

kT (V + bmn)
+

amn2b̄i

kT (V + bmn)2 , (A.4)
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where the derivatives are taken at constant temperature, volume and number of molecules
of all other components. The partial parameters āi and b̄i can be calculated by using
the averaging from Section 2.1.2

āi ≡ 1
n

(
∂n2am

∂ni

)

T,n j,i

= 2
√

ai

N∑

j=1

x j
√

a j(1 − ki j), b̄i ≡
(
∂nbm

∂ni

)

T,n j,i

= bi. (A.5)

It is noted that in Eq. (A.5) the binary interaction parameters, li j, are assumed to
be equal to zero in agreement with Section 2.1.2. The integrand in Eq. (2.13) thus
becomes

Z̄i − 1
V

=
1

V − nbm
− 1

V
+

nb̄i

(V − nbm)2 −
nāi

kTV(V + nbm)
+

n2amb̄i

kTV(V + nbm)2 , (A.6)

where the molar volume is replaced by the total volume, i.e. V = nv. Integrating
Eq. (A.6) and rewriting in terms of molecular volume, results in

ln φi = − ln
(
v − bm

v

)
+

āi

kTbm
ln

(
v

v + bm

)
− amb̄i

kTb2
m

ln
(

v
v + bm

)
− ln(Z)

+
b̄i

(v − bm)
− amb̄i

kTv(v + bm)
. (A.7)

The last two contributions reduce to b̄i
b (Z − 1) by using Eq. (A.3). In terms of the

compressibility factor, the fugacity coefficient for the SRK equation of state becomes

ln φi = − ln (Z − B) +
b̄i

bm
(Z − 1) − A

B

(
āi

am
− b̄i

bm

)
ln

(Z + B
Z

)
, (A.8)

where A and B are defined as

A =
am p
k2

T 2
, and B =

bm p
kT

. (A.9)

A.2 Compressibility factor

For the calculation of the fugacity coefficient, the compressibility factor is needed.
Substitution the definition of Z in Eq. (A.3) in the equation of state, results in

Z3 − Z2 + (A − B − B2)Z − AB = 0. (A.10)

This equation can be solved either analytically or numerically, where the parameters
A and B are determined separately for the liquid and the vapor phase. To prevent
numerical instabilities, an analytic solution procedure is used as proposed by Ref. [1].
The compressibility factor for the liquid and the vapor phase are given by the lowest
and highest root of Eq. (A.10), respectively.
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A.3 Elements of the Jacobian

The majority of elements in the Jacobian in Eq. (2.19) are zero. Let Fk denote the kth

equation of the function vector, then the sub-matrices are given by

∂F1,i
∂xc

j
= −Kc

i δi j − xc
i
∂Kc

i
∂xc

j
,

∂F1,i
∂xa

j
= 0, ∂F1,i

∂xv
j

= δi j − xc
i
∂Kc

i
∂xv

j
,

∂F1,i
∂V = 0, ∂F1,i

∂C = 0,

∂F2,i
∂xc

j
= 0, ∂F2,i

∂xa
j

= −Ka
i δi j − xa

i
∂Ka

i
∂xa

j
,

∂F2,i
∂xv

j
= δi j − xa

i
∂Ka

i
∂xv

j
,

∂F2,i
∂V = 0, ∂F2,i

∂C = 0,

∂F3,i
∂xc

j
= −Cδi j

∂F3,i
∂xa

j
= (V + C − 1)δi j,

∂F3,i
∂xv

j
= −Vδi j,

∂F3,i
∂V = xa

i − xv
i ,

∂F3,i
∂C = xa

i − xc
i ,

∂F4
∂xc

j
= 0, ∂F4

∂xa
j

= 1, ∂F4
∂xv

j
= 0, ∂F4

∂V = 0, ∂F4
∂C = 0,

∂F5
∂xc

j
= 0, ∂F5

∂xa
j

= 0, ∂F5
∂xv

j
= 1, ∂F5

∂V = 0, ∂F5
∂C = 0,

(A.11)

where i, j = 1, . . . ,N.

A.4 Derivatives of Kα
i

For the equilibrium flash problem and initialization algorithm we need the derivatives
of Kα

i with respect to pressure, temperature and phase fractions. The derivatives can
be evaluated numerically by means of a finite difference method. For the hydrocar-
bon components, which are accurately described by the SRK equation of state, the
derivatives can be evaluated analytically and written in the following convenient form

∂Kc
i

∂ϑ
=

d
dϑ

(
φc

i

φv
i

)
= Kc

i

(
d ln φc

i

dϑ
− d ln φv

i

dϑ

)
, with ϑ = p,T, xαj . (A.12)

where α = v, c. The derivatives of the fugacity coefficient (Eq. (A.8)) with respect to
ϑ is given by

∂ ln φi

∂ϑ
= −

∂Z
∂ϑ − ∂B

∂ϑ

Z − B
+

b̄i

bm

(
∂Z
∂ϑ
− (Z − 1)

∂ ln bm

∂ϑ

)
− A

B

{[(
∂ ln A
∂ϑ

− ∂ ln B
∂ϑ

) (
āi

am
− b̄i

bm

)

+
āi

am

(
∂ ln āi

∂ϑ
− ∂ ln am

∂ϑ

)
+

b̄i

bm

∂ ln bm

∂ϑ

]
ln

(Z + B
Z

)

+

(
āi

am
− b̄i

bm

)
B

Z + B

(
∂ ln B
∂ϑ

− ∂ ln Z
∂ϑ

)}
,

(A.13)

where we dropped the superscript α for clarity. The complexity of this derivative
depends on the variable and the equation of state considered. For Eq. (A.13) we
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require the derivative of Z with respect to ϑ

∂Z
∂ϑ

=

∂A
∂ϑ (B − Z) + ∂B

∂ϑ (A + Z + 2BZ)

3Z2 − 2Z + A − B − B2 . (A.14)

The derivatives of A and B with respect to pressure and fraction can be evaluated
straightforwardly, see Eq. (A.5) and (A.9). The complexity of the derivatives with
respect to temperature, however, depends on the equation of state and for SRK are
given by

∂A
∂T

= A
(
∂ ln am

∂T
− 2

T

)
,

∂B
∂T

= −B
T
. (A.15)

Using the mixture rules for am from Section 2.1.2 yields

∂am

∂T
= −

N∑

i=1

N∑

j=1

xix j
√

aia j(1 − ki j)νi, (A.16)

∂āi

∂T
= −√ai

N∑

j=1

x j
√

a j(1 − ki j)(νi + ν j), (A.17)

where νi originates from the temperature dependence of ai in Table 2.1, i.e. ∂ai
∂T =

−aiνi, with

νi ≡
0.480 + 1.574ωi − 0.176ω2

i[
1 + (0.480 + 1.574ωi − 0.176ω2

i )(1 − T
1
2

r,i)
] √

TTc,i

. (A.18)

The derivatives with respect to the fractions x j are

∂A
∂x j

=
ā jA
am

,

∂B
∂x j

=
b̄ jB
bm

, (A.19)

(A.20)

with ā j and b̄ j given by Eq. (A.5). Finally, we evaluate the derivatives of āi with
respect to x j

∂āi

∂x j
= 2
√

aia j(1 − ki j),

which is phase independent.
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The thermo-physical properties of ethanol, propanol, butanol, pentanol and hexanol
are taken from several sources. The saturation pressure ([Pa]) for the pure component
follows from [40]

ps,k = pc,k exp


akτk + bkτ

1.5
k + ckτ

2.5
k + dkτ

5
k

Tr,k

 , (B.1)

where pc,k and Tc,k are the critical pressure and temperature, respectively, τk ≡ 1−Tr,k

and Tr,k = T/Tc,k is the reduced temperature. For ethanol (k = 1), propanol (k = 2),
butanol (k = 3), pentanol (k = 4) and hexanol (k = 5) the parameters are

a1 = −8.68587, a2 = −8.53706, a3 = −8.40615,
b1 = 1.17831, b2 = 1.96214, b3 = 2.2301,
c1 = −4.8762, c2 = −7.6918, c3 = −8.2486,
d1 = −1.588, d2 = −2.945, d3 = −0.711,
pc,1 = 6.13 · 106 Pa, pc,2 = 5.17 · 106 Pa, pc,3 = 4.42 · 106 Pa,
Tc,1 = 513.92 K, Tc,2 = 536.78 K, Tc,3 = 563.05 K.

a4 = −8.98005, a5 = −9.49034,
b4 = 3.91624, b5 = 5.13288,
c4 = −9.9081, c5 = −10.5817,
d4 = −2.191, d5 = −5.154,
pc,4 = 3.91 · 106 Pa, pc,5 = 3.47 · 106 Pa,
Tc,4 = 588.15 K, Tc,5 = 610.7 K.

(B.2)
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The liquid density ([kg/m3]) from Ref. [27] for the component of the alcohol mixture
are given by

ρl,1 = 1060.6 − 0.95929T, (B.3)

ρl,2 = 1050.1 − 0.84682T,

ρl,3 = 1050.3 − 0.88124T,

ρl,4 = 1049.8 − 0.79527T,

ρl,5 = 1044.1 − 0.76716T.

The surface tension ([N/m]) is taken from Ref. [28]

σ1 = 10−3(24.05 − 0.0832(T − 273.15)), (B.4)

σ2 = 10−3(25.26 − 0.0777(T − 273.15)),

σ3 = 10−3(27.18 − 0.0898(T − 273.15)),

σ4 = 10−3(27.54 − 0.0874(T − 273.15)),

σ5 = 10−3(26.44 − 0.0869(T − 273.15)).
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In this appendix we derive useful properties of the N-component cluster dynamics
near the critical size n∗. The growth rate vector and the integration of the nucleation
flux vector are elaborated. We finalize this appendix with a discussion on the source
term location of the NGDE.

C.1 Growth rate vector

The growth rate vector in n-space is given by Eq. (6.4). Using Eq. (6.7), the growth
rate in the vicinity of the saddle point can be written as

ṅ(n) = T−1
n ∆n, with Tn ≡ −1

2
(
D∗H∗

)−1 . (C.1)

The matrix Tn is the Zeldovich time parameter matrix for N-component condensation
in the n-coordinate system. Similarly, the general expression for the growth rate
vector ξ̇ = A−1ṅ near ξ∗ with A from Eq. (6.12), becomes

ξ̇(ξ) = T−1
ξ ξ, with Tξ ≡ −1

2
diag(λ−1

1 , λ−1
2 , . . . , λ−1

N ), (C.2)

where Tξ is the Zeldovich time parameter matrix in the ξ-coordinate system. We note
that Eq. (C.2) can be obtained directly by the simultaneous diagonalizing transforma-
tion (Eq. (6.14)) of the Zeldovich time parameter matrix in Eq. (C.1).

Given that λ1 < 0 and λk > 0 for k = 2, . . . ,N the growth rate in ξ1-direction is
unstable around the critical size ξ∗, i.e. ξ̇1 > 0 for ξ1 > 0 and ξ̇1 < 0 for ξ1 < 0.
This implies that in all stable directions, where λk > 0 (k = 2, . . . ,N), the growth rate
forces the clusters to converge to the ξ1-axis.

C.2 Nucleation flux integration

In this section we derive the integration domain of Eq. (6.26) in the transformed co-
ordinate system [80]. In the n-space we define the vector ∇nξ1 normal to the surface
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S 0 given by
S 0 =

{
n ∈ RN |n = Aξ + n∗, ξ1 = ξ0

1

}
. (C.3)

A schematic representation is given in Fig. C.1. The N-component nucleation rate is

F C.1: Representation of the integration surface S 0 and the vectors ξ and ∇nξ1
in n-space.

determined by integration of the nucleation flux vector over the hyper-surface S 0

Js =

∫

S 0

Jn · νdS , with ν =
∇nξ1

|∇nξ1| , (C.4)

the unit normal vector to the surface S 0.
We define the volume V as the integral over the transformed ξ-space

V(ξ0
1,Σ) =

ξ0
1∫

0



∫

Σ

det(A)dξ2dξ3...dξN

 dξ1, (C.5)

with Σ an arbitrary subset of RN−1 and V is the map of [0, ξ0
1]×Σ. We require that the

change of the volume V in ξ1-direction can be written in both coordinate systems as

∂V
∂ξ0

1

=

∫

S

∂n
∂ξ1
· νdS , (C.6)

∂V
∂ξ0

1

=

∫

Σ

det(A)dξ2dξ3...dξN . (C.7)
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where S is the map of Σ. Since Σ is arbitrary this leads to

dS =
det(A)
∂n
∂ξ1
· ν dξ2dξ3...dξN . (C.8)

We now discuss the transformed nucleation flux. In n-space the flux is given by

Jn = −ρeqD∇nγs = −ρeqDA−∇ξγs, (C.9)

whereas the transformed flux is

Jξ = −ρeq∇ξγs, (C.10)

leading to
Jn = DA−Jξ. (C.11)

Due to the simultaneous diagonalization we have A−1DA− = I and thus DA− = A
yielding

Jn = AJξ. (C.12)

Using Jξ = (Jξ1 , 0, . . . , 0) in Eq. (C.12), the integrand in Eq. (C.4) can be rewritten
as

Jn · ν =
∂n
∂ξ1
· νJξ1 . (C.13)

Hence using Eq. (C.13) and (C.8) in Eq. (C.4), the steady state nucleation rate be-
comes

Js =

∫

RN−1

Jξ1 det(A)dξ2dξ3...dξN . (C.14)

C.3 Source point location

The value of ζ0 in Eq. (6.37) can be derived from the ζ-dependence (ζ ≡ √πξ1)
of the steady state diffusion flux. Using the steady state cluster size distribution ρ̄s
from Eq. (6.29) we can write for the scaled diffusion and drift flux in ξ1-direction,
respectively,

−J−1
s

dρ̄s

dξ1
=

[
1 − √πζ exp(ζ2)erfc(ζ)

]
≡ Υ(ζ), (C.15)

J−1
s ξ̇1ρ̄s =

√
πζ exp(ζ2)erfc(ζ) ≡ 1 − Υ(ζ). (C.16)

The scaling with the steady state nucleation rate is applied such that the rhs functions
are normalized. Fig. C.2 depicts the rapid decay of the function Υ(ζ) and therefore
the rapid decay of the normalized diffusion flux. The function Ψ(ζ) in Fig. C.2 is
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based on the decrease of the diffusion term given in Eq. (6.35). Both functions are
related as

dΥ

dζ
=
√
πΨ. (C.17)

The vertical lines Fig. C.2 indicate two conditions for ζ0 in Eq. (6.37) given by

Ψ(ζ0) = εΨ(0), → ζ0 = 3.6, (C.18)

Υ(ζ0) = εΥ(0), → ζ0 = 7.0, (C.19)

where ε = 10−2 is a measure for the decay of the functions with respect to the value
at the critical size, i.e. ζ = 0. The sensitivity of the NGDE for the choice of ζ0 is
discussed in Section 6.5.1.

ζ

Ψ
,Υ

0 2 4 6 810-3

10-2

10-1

100

ζ0 = 3.6

ζ0 = 7.0

Υ

Ψ

F C.2: The functions Υ (solid) and Ψ (dashed) as a function of ζ. The thin
vertical lines indicate ζ0 = 7.0 (diffusion flux based) and ζ0 = 3.6 (diffusion term
based).



SAMENVATTING

Het proefschrift beschrijft efficiënte methoden ontwikkeld voor N-componenten con-
densatie processen. Deze methoden zijn verkregen door enerzijds het gebuik van effi-
ciente numerieke methoden en anderzijds door de vereenvoudiging van de wiskundige-
fysische beschrijving. De modellen en bijbehorende algoritmes verschillen in het
vermogen om details van de fysica van het condensatie proces te beschrijven en in de
benodigde rekentijd.

Het proefschrift presenteert evenwichts thermodynamica van reële gassen zowel
als de ontwikkeling van een robuuste numerieke oplosmethode gebaseerd op Newton-
Raphson iteratie. De Jacobiaan is analytisch uitgewerkt. Het initialisatie schema voor
deze oplosmethode maakt gebruik van extrapolatie van de oplos vector in termen
van de druk. Resultaten worden gepresenteerd voor een drie-fase ternair reëel gas
mengsel.

Een multigrid methode is ontwikkeld voor de verhoging van de efficiëntie van im-
pliciete methodes voor het numeriek oplossen van de N-componenten Becker-Döring
(NBD) vergelijkingen. Deze methode gebruikt een geometrische multigrid algoritme
voor een willekeurig aantal grid levels. Het multigrid algoritme lost de volledige set
van NBD vergelijkingen 10 keer sneller op dan de gangbare iteratieve schema’s. Des-
ondanks is de methode alleen toepasbaar in het regime van kleine clusters, dit van-
wege de beperkte beschikbare rekencapaciteit. Echter, de verkregen tijdsafhankelijke
oplossing van de NBD vergelijkingen geeft nuttige fysische inzichten in de initiële
fase van het nucleatie proces.

Voor unaire condensatie is het Stationary Diffusion Flux (SDF) model afgeleid.
Dit model kent geen beperking ten aanzien van cluster grootte. De diffusie flux in
de Fokker-Planck vergelijking voor niet-stationaire condensatie bevat een distributie
functie die niet bekend is. Hiervoor wordt als benadering de distributie functie van
de stationaire situatie genomen. Het resulterende SDF model is geldig voor alle clus-
ter groottes, rekenefficiënt en toepasbaar voor diverse clusterformatie processen. In
het domein van clusters groter dan de kritische cluster grootte wordt de stationaire
diffusie flux gegeven door een analytische uitdrukking.

Het Phase Path Analysis (PPA) algoritme is uitgebreid naar N-componenten mengsels.
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Hiervoor is de N-componenten General Dynamic Equation (NGDE) geconstrueerd.
Dit model introduceert clusters op een bron locatie in de N-componenten cluster
grootte ruimte. De resulterende hyperbolische differentiaal vergelijkingen maken het
mogelijk de benadering van de N-componenten cluster grootte verdeling zeer ef-
ficiënt te berekenen. Voor validatie van de methode is de evolutie van de distributie
functie voor een binair mengsel bepaald. Dit laat een zeer goede overeenkomst zien
tussen de oplossing van de volledige NBD vergelijkingen en die van de NGDE voor
de cluster grootte, cluster compositie en de integraal grootheden van de distributie
functie. Het PPA algoritme toegepast op de NGDE geeft een reductie in de ben-
odigde rekentijd met een factor 105 vergeleken met de rekentijd die benodigd is voor
het oplossen van de NBD vergelijkingen.



SUMMARY

This thesis describes efficient solution methods developed for N-component conden-
sation processes. These methods are aimed at either the reduction of the numerical
effort required for solving the equations describing the condensation process or the
simplification of the physical description. The models and corresponding algorithms
differ in their ability to describe the condensation phenomenon and the required com-
puting times.

The equilibrium thermodynamics of real gases is presented and a robust numerical
procedure is constructed based on Newton-Raphson iteration. The Jacobian of the
system of equations has been determined analytically. The initialization scheme for
the iterative procedure for these equilibrium problems uses a pressure-extrapolation
scheme. Results are given for a three-phase ternary real-gas mixture.

A multigrid method has been developed to enhance the efficiency of implicit nu-
merical methods for solving the N-component Becker-Döring (NBD) equations. The
geometrical multigrid method for arbitrary number of grid levels is presented. The
multigrid algorithm solves the full set of NBD equations 10 times faster than con-
ventional iterative schemes. The method is restricted to the regime of small cluster
sizes due to limited available computational resources. However, the time dependent
solution of the NBD equations does provide useful insight in the physics of the initial
stages of the nucleation process.

For single component condensation the Stationary Diffusion Flux (SDF) model
has been derived which is valid in the entire cluster size space. The diffusion flux in
the Fokker-Planck equation for unsteady condensation contains an unknown distribu-
tion function. This distribution function is approximated by a closed-form expression
based on the cluster size distribution function for steady condensation. The resulting
Stationary Diffusion Flux model is valid for all cluster sizes, computationally effi-
cient and applicable to various types of cluster formation processes. In the regime of
supercritical cluster sizes the diffusion flux is given by an analytical expression.

The Phase Path Analysis (PPA) algorithm has been extended to N-component mix-
tures. For this method the N-component General Dynamic Equation (NGDE) is
constructed. This model introduces clusters at a source point in the N-component
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cluster size space. The model allows for a very fast solution of the approximate N-
component cluster size distribution. For validation of the method a nucleation pulse
test case involving a binary mixture has been used. Comparison of the numerical
results of the NBD equations and those from the NGDE shows excellent agreement
for the cluster size, cluster composition and the integral properties of the cluster size
distribution. The PPA algorithm applied to the NGDE reduces the computational ef-
fort by a factor 105 compared to the effort required for solving the full set of NBD
equations.
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