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INTRODUCTION

1.1 Background
Perhaps the most familiar and most important substance known to mankind is water. It is
present in large quantities in the earth’s seas and lakes. Due to the heating of the earth by the
sun, the water evaporates and dissolves as a vapour in the air around it, forming a mixture
of air and water vapour that forms the earth’s troposphere. In the earth’s troposphere the
temperature decreases with height, about 6.5 ◦C per km. Due to the decrease in temperature
in an upward motion of the air, or when air strikes along a cold surface, the water vapour
condenses on tiny particles like salt, dust and other particles, forming small water droplets.
During this phase transition (latent) heat is released which increases the temperature. De-
pending on the circumstances, these initially small droplets can become large enough to form
rain clouds, from which the water droplets then return to the earth under the influence of the
earth’s gravity field.

The formation of clouds is governed by relatively slow state-changes. During these slow
state-changes the air/water mixture is at all times in thermodynamic equilibrium. In tech-
nological processes, however, a much more rapid change can occur and condensation takes
place at non-equilibrium conditions. The condensation adds heat to the flow, resulting in
a complex interaction of the condensation process with the flow. In the picture below, a

FIGURE 1.1:
Condensation
cloud around F-18
Hornet. U.S. Navy
photo by Ensign
John Gay.

nice example of non-equilibrium condensation in a transonic flow is seen. The water vapour
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present in the air around the aircraft condenses in the high-speed flow over the jet aircraft (see
Campbell and Chambers, [16]).

Another, similar example is the condensation that takes place in the core of tornados
(twisters) where the pressure drops to low values. On a somewhat smaller scale we can
observe this phenomenon in the strong vortices that are formed at the side edges of extended
flaps of transport aircraft during landing. This condensation makes the vortices visible for
the passengers. Also, in the early day of high-speed wind-tunnels, condensation in humid
air caused an undesired mist-flow in the test section, that in later designs was prevented by
drying the air before accelerating and expanding it in the wind tunnel.

In industry, condensation can be an unwanted side-effect, such as is the case for a steam-
turbine. The heat released by the condensing water vapour results in performance losses. To
prevent or minimize these performance losses, it is important to understand the underlying
physics that are relevant in the condensation process. On the other hand, condensation can
also be employed in a useful way in industry, for example in the drying of gases and the
separation of condensible components from gas mixtures in a Condi-Cyclone.

In a Condi-Cyclone the high-pressure gas or gas mixture is expanded to high speed in a
converging-diverging nozzle. This creates a high cooling-rate that results in a high value of
the super-saturation. In this non-equilibrium flow, homogeneous nucleation provides a very
large number of nuclei, that subsequently grow and exhaust the vapour part of the mixture.
In the next step a swirling flow is generated that works as a cyclone for the droplets formed
in the nozzle.

A relatively new industrial application in which condensation is an important phenomena
is found in Extreme Ultra-Violet (EUV) lithography. In this type of application xenon flows
from a reservoir chamber through a nozzle into an ambient environment with relatively low
pressure. The jet which is formed in this way is expanding rapidly, causing the xenon to
partially condense, resulting in a non-equilibrium mixture of vapour and droplets. A laser is
then aimed at the mixture, resulting in the emission of EUV-light.

In the present work, a numerical method is developed that can be used for the numeri-
cal simulation of high-speed flows with condensation in complex three-dimensional geome-
tries. The method enables the study of complex physical phenomena in multi-phase dispersed
flow, including high-pressure gas dynamics, shock waves and other compressible-flow ef-
fects, phase transition and multi-phase flow, and the creation, convection, and transport of
vorticity. The method is a finite-volume method for unstructured grids. It has the advantage
over a structured-grid method that it can more easily discretize complex geometries, such as
highly-swept edges of a vortex generator and solid surfaces intersecting at small angles. In
addition, unstructured meshes have the benefit of easy local clustering of nodes in regions
with high flow-gradients, which reduces the number of grid points required for a numerical
simulation.

1.2 Condensation in rapidly expanding flows

During rapid expansion of a condensible gas, for example the flow in a converging-diverging
nozzle, the thermodynamic state of the flow may approach the coexistence region between
the vapour and liquid phase. When the cooling rate (the time-rate of change of the tempera-
ture) in the flow is very high, typically 106K/s, the gaseous phase may depart radically from
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the equilibrium phase distribution. A state of high super-saturation is therefore achieved, in-
dicating the non-equilibrium state of the vapour. Due to the high-cooling rate, the number
of small clusters of molecules (nuclei) formed due to statistical fluctuations, far exceeds the
number of foreign particles present in the vapour. Therefore the phase-transition is preceded
by homogeneous nucleation. When the small clusters exceed some critical size, the clusters
are stable and rapidly grow into droplets, growing in size until equilibrium is re-established.

Condensation in flows of gas mixtures at high speed has been investigated by, amongst
others, Hill [31], Wegener [67], the group of prof. Schnerr in Germany: Dohrmann [23],
Mundinger [46], Adam [3], Heiler [29], Winkler [69], and the group of prof. van Dongen
in the Netherlands: Luijten [42], Luijten et al. [44] [45], Prast [52], Lamanna [38], Peeters
[50]. Most of their numerical results, however, are restricted to the condensation of water in
a non-condensing background or of the condensation of pure water-vapour, all at relatively
low pressures.

1.3 Thesis overview
In this thesis Computational Fluid Dynamics (CFD) is used as a tool to develop a method to
predict high-pressure high-speed flows with condensation expanding to low pressures at low
temperatures. The computational method is based on the Euler equations, describing the flow
of an inviscid fluid, augmented with Hill’s method of moments, describing the condensation
process. In this study we assume the flow to be steady. The underlying physics of inviscid
flow with condensation is described in chapter 2, together with the governing equations and
relations, required to describe quantities such as surface tension, liquid density and equilib-
rium vapour pressure. In chapter 3 a novel equation of state for real gases is derived, which
can be used to describe the relations between thermodynamic properties of a gas mixture at
high pressure. The relations are constructed such that they satisfy Maxwell’s fundamental
thermodynamic relationships.

In chapter 4 the numerical method is presented, which solves the governing equations on an
unstructured mesh. Most of the applications in the present study are for two-dimensional or
for axi-symmetric flows, for which an unstructured mesh consisting of triangles is employed.
In the method for three-dimensional geometries the unstructured mesh consists of tetrahedra.
The method is an unstructured-grid finite-volume method employing the AUSM+ scheme of
Liou [41], second-order accurate fluxes, and fractional time-stepping to cope with the strong
source terms due to the condensation.

Chapter 5 is dedicated to the validation of the numerical method by comparing numerical
results with numerical results available in literature, as well as available experimental results.
The test-cases presented are a benchmark 2D test-case for the solution of the Euler equations
applied to the transonic flow around a NACA 0012 airfoil, nozzle flows considered experi-
mentally and numerically by the group of prof. Schnerr, and the underexpanded supersonic
jet from a reservoir.

Chapter 6 contains results of the computational method for underexpanded xenon-jets with
condensation, as designed by the FOM-Institute for Plasma Physics 1 (de Bruijn et al. [14]
[15]) for the generation of EUV light. Chapter 7 describes results that were obtained with
the 3D method for a condensing multiple-component gas mixture at high pressure as occurs

1http://www.rijnh.nl/
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in the Condi-Cyclone configurations developed by Twister B.V. 2. Chapter 8 contains the
conclusions of the present study.

2http://www.twisterbv.com/
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PHYSICS OF CONDENSATION

2.1 Introduction

A (pure) substance can take three different forms: vapour (gas), liquid and solid. The be-
havior of a substance can best be described in a three-dimensional graph, see Wisman [70].
Along the axis we place the pressure p, the volume v and the temperature T . In doing so,
we obtain Fig. 2.1; marked in this figure are the regions (surfaces) where two phases exist si-

p

v

Ttr

T

C

T
isotherm
triple−point

critical isotherm

2

T1
cT

1

3

2

FIGURE 2.1: p, v, T -diagram of a pure substance (not on scale). 1) liquid+vapour; 2)
solid+liquid; 3) solid+vapour. Figure obtained from Wisman [70].

multaneously. Such-like regions are called coexistence regions. Two important isotherms are
drawn in Fig. 2.1, the triple-point isotherm and the critical isotherm. The triple-point temper-
ature is the temperature where gas, liquid and solid phase exist simultaneously. Everywhere
along the triple-point isotherm there is equilibrium between the three phases, only the rela-
tive amounts of the phases are different. A familiar triple-point temperature is that of water,
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which is 273.15 K. As this temperature can be maintained very accurately and relatively easy,
it is used as gauge for the temperature scale.

At higher temperatures, the vapour-liquid coexistence region on the isotherm becomes
shorter, as is evident from comparing isotherms T1 and Ttr. Isotherm Tc is the last isotherm
to have a horizontal point of inflection C. This point C is called the critical point; the tem-
perature Tc the critical temperature. For temperatures higher than Tc there is no observable
difference between gas and liquid, although densities can be reached that correspond to liq-
uid densities. At first gases were attempted to liquefy by compression at room temperature
[70]. In the 19th century Faraday 1 succeeded in liquefying many gases. However, before the
notion of the critical temperature was first recognized by C. Cagniard de la Tour 2 in 1822,
further attempts to liquefy gases by compression were doomed to fail. Gases like O2, N2,
H2 and He were therefore thought to be “permanent gases”. Looking at their critical tem-
perature (table 2.1), this is quite understandable. Nevertheless, by reducing the temperature

gas O2 N2 H2 He
critical temperature (K) 154.4 126.2 33.3 5.26

TABLE 2.1: Critical temperature of “permanent gases”, obtained from Bird et al. [12]

below the critical temperature, these gases could also be compressed into liquid form. In
1877 Cailletet 3 and Pictet 4 both succeeded in liquefying air (per unit volume, air contains
approximately 78.084% N2 and 20.947% O2 ). In 1898 Dewar 5 liquefied hydrogen, and
in 1908 Kamerlingh Onnes 6 liquefied helium, the last element to change phase from gas to
liquid.

2.2 Condensation

2.2.1 Condensation during rapid expansion
A three dimensional diagram like Fig. 2.1 is useful to consider the matter as a whole, but
unsuited for practical use. Then we use two-dimensional diagrams, which are obtained from
the three-dimensional diagram by projection onto one of the three bounding surfaces. Projec-
tion onto the p, T surface gives the p, T -diagram, as is shown in Fig. 2.2. Three phase-curves
are present in this graph; the vapour-curve (I), denoting the equilibrium between the gas and
liquid phase; the melting-curve (II), denoting the equilibrium between the liquid and solid
phase and the sublimation-curve (III), denoting the equilibrium between solid and gas phase.

In a slowly varying flow field the thermodynamic state changes continually from one ther-
modynamic equilibrium to another thermodynamic equilibrium. However, during rapid ex-
pansion of a vapour in, for example, a converging-diverging nozzle, its thermodynamic state
can become such that it is far from the equilibrium state, which would be attained during slow

1Michael Faraday (Great-Britain)(1791-1867)
2Charles Cagniard de la Tour (France)(1777-1859)
3Louis Paul Cailletet (France)(1832-1913)
4Raoult Pierre Pictet (Switzerland)(1846-1929)
5Sir James Dewar (Great-Britain)(1842-1923)
6Heike Kamerlingh Onnes (the Netherlands)(1853-1926) Nobel price 1913
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vapour

liquid

T

p

III

II

I

solid

cTtrT

trp

pc

FIGURE 2.2: p, T -diagram with the phase-curves between the phases. I) vapour-curve
(pv,eq(T )); II) melting-curve; III) sublimation-curve. Figure obtained from Wisman
[70].

expansion. In such case the characteristic time-scale for condensation (i.e. the time needed to
form droplets) is larger than the characteristic time-scale of the expansion. The condensation
is said to take place under non-equilibrium conditions, where the extent of non-equilibrium is
usually expressed in terms of the saturation ratio Φ, defined as the ratio of the actual vapour
pressure pv to the equilibrium vapour pressure pv,eq(T ):

Φ =
pv

pv,eq(T )
, (2.1)

and in case Φ > 1, it is called the super saturation ratio. The first stage of condensation
is called nucleation, and embodies the condensation of vapour molecules on foreign bodies,
such as dust particles or other liquid or solid objects (heterogeneous nucleation), or the spon-
taneous formation of vapour clusters (homogeneous nucleation). In case of rapid expansion,
the number of nuclei formed in homogeneous nucleation far exceeds the number of particles
involved in heterogeneous nucleation, so that the onset of condensation is solely described by
homogeneous nucleation. The condition of non-equilibrium persists until the vapour is suffi-
ciently super-saturated to reduce the nucleation barrier at which point nucleation begins. The
second stage of condensation is called droplet-growth, the condensation of vapour molecules
on stable vapour clusters. During this stage of condensation thermodynamic equilibrium is
quickly re-established and prevails thereafter. Due to the formation (latent) heat and the trans-
fer of this heat between the clusters and the vapour there is a heat effect of the condensation
imposed on the gas flow. This increases the pressure and the temperature of the gas-liquid
mixture. Also, the heat addition decreases the Mach number in case the flow is supersonic,
and increases the Mach number in case the flow is subsonic. The increase in temperature re-
sulting from condensation also has the effect of slowing the growth-rate of the droplets which
limits their size.

2.2.2 Homogeneous nucleation
Homogeneous nucleation involves the formation of meta-stable clusters, from a population
of vapour molecules in a super-saturated state, which are big enough to act as condensation
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nuclei. The formation of nuclei is the first step towards the formation of liquid droplets. The
driving potential behind any nucleation theory is the super-saturation ratio, given by Eq. (2.1).

The free energy of formation of a cluster containing n molecules can be expressed, on
thermodynamic principles, see Luijten [42], as the sum of two terms

∆Gn = σa0n
2/3 − nkBT ln(Φ), (2.2)

where kB is the Boltzmann constant, the number that relates the average energy of a molecule
to its absolute temperature (kB = 1.38066× 10−23 J/K), σ the surface tension of a flat liquid
surface, and a0 is a molecular surface area, defined as

a0 = (36π)1/3(vl)
2/3, (2.3)

with vl [m3/cluster] the liquid molecular volume. The first term in Eq. (2.2) represents the
increase in free energy due to the formation of the interface between the two phases, and the
second term represents the decrease in free energy due to the formation of the liquid bulk
phase. As we can see, for Φ < 1, ∆Gn increases monotonically with n, thus lowering the
probability of phase transition to zero. If Φ > 1 on the other hand, there will always be a
value of n for which it is energetically favorable to initiate the phase transition. This critical
cluster value n∗ is found by setting (∂∆Gn/∂n)n∗ = 0, resulting in

n∗ =

(
2θ

3 ln(Φ)

)3

, (2.4)

where θ is the dimensionless surface tension, defined by

θ =
σa0

kBT
. (2.5)

The free energy of formation ∆Gn of a cluster as a function of the number of molecules n in
that cluster (for Φ > 1) is sketched in Fig. 2.3.

2/3nσ 0

n

a

ln (  )kB27
4 3θ

2 ΦT

Gn∆

n

ΦBTnk ln(  )

*

Gn∆

FIGURE 2.3: Free energy of formation of a cluster containing n molecules in case
Φ > 1.

Using the definitions of both a0 and θ and using n∗vl = 4
3πr

∗3 we obtain the Kelvin relation:

r∗ =
2σ

%lRvT ln(Φ)
, (2.6)
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with Rv the specific gas constant of the vapour and %l the condensate density. The Kelvin
relation gives an expression for the critical radius, the smallest radius of a meta-stable cluster
of vapour molecules in a super-saturated state, which is in stable equilibrium with its sur-
roundings. Only droplets which have reached the critical radius will be able to grow further.
Smaller droplets are unstable and will disintegrate. Note that the following relations were
used in deriving the Kelvin relation: vl = M

NA%l
with M the molar mass; the specific gas con-

stant follows from R = R

M
; the universal gas-constant is given by R = kBNA = 8314.51

J/(kg-mol·K), whereNA is the number of vapour atoms in a mole (Avogadro’s number, which
for a kg-mole is 6.02 × 1026, see Bird et al. [12]).

2.2.3 Classical nucleation theory
According to the Classical Nucleation Theory, which has been widely applied to the study of
transonic condensing flows, the nucleation rate J [number of nuclei / (m3· s)] takes the form

J = Ke
−∆Gn∗

kBT , (2.7)

where ∆Gn∗ is the free energy of formation of a cluster with critical radius

∆Gn∗ = 4
3πr

∗2σ, (2.8)

and K is a constant. The nucleation models presented here are the Classical Nucleation
Theory (CNT) and the Internally Consistent Classical Theory (ICCT), given by:

JCNT =
ρ2
v

%l

√

2σ

πm3
e
− 4

27
θ3

ln2(Φ) , (2.9)

JICCT =
1

Φ
JCNT e

θ, (2.10)

respectively, where ρv is the vapour density and m the mass of a vapour molecule. The ICCT
model thus differs essentially from the CNT model, by the presence of the factor 1/Φ, and
the exponential factor eθ. Both nucleation models are described and discussed in Luijten [42]
and Lamanna [38]. In short, the performance of a certain nucleation model strongly depends
on the vapour and on the temperature range within which nucleation takes place. It is also
very difficult if not impossible to determine the surface tension of a super-cooled liquid (with
temperature below the freezing point), and since the nucleation rate depends exponentially on
the third power of the surface tension, this makes the assessment of the quality of nucleation
models very questionable. Therefore, no sound justification for preferring the ICCT to the
CNT model can be given, also since comparison with experiments shows that both models
predict the nucleation rate not very accurately, and an empirical correction factor ξ has to
be applied for both models, e.g JξCNT = ξJCNT, to compensate for the wrong prediction. Ex-
perimental validation (if available) of nucleation theory will then indicate the value for the
empirical correction factor that leads to satisfactory prediction of the nucleation rate.

2.2.4 Droplet growth
Droplet growth is described by the droplet growth rate, ṙ, and involves the net flux of mass
towards the droplet and the net flux of energy away from the droplet. This process depends to



10 CHAPTER 2. PHYSICS OF CONDENSATION

a large extent on the Knudsen number Kn. The latter is defined as the ratio of the mean free
path of vapour molecules to the diameter of the droplet, Kn = l/(2rd), where the mean free
path is given by l = 2µ

√
RT/p, with µ the dynamic viscosity of the gas-phase. For small

Kn, i.e. relatively large droplets, the growth is governed by diffusion; for large Kn, i.e. small
droplets, the growth is controlled by the kinetic process of impingement of vapour molecules
onto the droplet.

The droplet-growth model described here is the well-known Hertz-Knudsen growth law
for small droplets, see Hill [31], valid for Kn > 2.

Hertz-Knudsen droplet growth model

The Hertz-Knudsen growth law is based on a balance between condensation of vapour molecules
on the droplet, and evaporation of vapour molecules from the droplet:

ṙ =
α

%l

(
pv√

2πRvT
− pv,r√

2πRvTd

)

, (2.11)

where Td is the droplet temperature, α an accommodation coefficient usually taken equal to
1.0, and pv,r is the partial super-saturated vapour pressure above a curved surface with radius
of curvature r,

pv,r = pv,eq e
2σ

r%lRvTd , (2.12)

where r is the droplet radius. In the current work it is assumed that the temperature of the
droplets is equal to that of the surrounding gas, Td = T . The validity of this assumption
depends to a large extent on the latent heat (heat of formation) of the vapour. For water, this
assumption can be rather crude, especially in rapid expanding flows, in which droplets grow
fast and have little time to conduct their heat to the surrounding gas. A way to account for
the difference between the temperature of the droplet and the surrounding gas is given in
Lamanna [38].

For xenon, which has a latent heat which is about 32 times smaller than that of water, the
assumption of equal droplet and gas temperature is relatively sound.

2.3 Governing equations
The Euler equations, augmented with Hill’s Method of Moments, have been successfully ap-
plied to numerically simulate rapidly expanding condensing flows, among others Mundinger
[46], Adam [3], Prast [52], Lamanna [38]. Comparison between numerical solutions and re-
sults of experiments for these types of flow show that viscous effects are negligible and do
not need to be included in the governing equations.

In the flow of highly underexpanded jets, viscous effects play an important role in that
they control the dynamics of the Kelvin-Helmholtz instability of the contact surface (edge
of the plume) and of the slip surface downstream of the Mach disk, see Prudhomme and
Haj-Hariri [53]. In the numerical solution of the Euler equations the Kelvin Helmholtz in-
stability and subsequent roll-up is governed by numerical effects. Solving the Navier-Stokes
equations instead of the Euler equations, however, leads to several complications. At solid
walls, the flow is no longer allowed to slip, as is the case for the Euler equations, but will
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have zero velocity. This will introduce boundary layers, which will make the computational
method much more elaborate since a large number of control volumes is needed to resolve
the boundary layer accurately. Furthermore, depending on the flow characteristics, boundary
layers can change from laminar to turbulent, which is not only a very complex process, but,
with the computational resources at hand, it is also not feasible to resolve all the turbulent
length scales.

Since the region downstream of the Mach disk, where viscous effects do play an important
role, is not of interest for the current research, in the present study the Euler equations are
used to describe the flow of an underexpanded jet.

For the flow of a gas of fixed composition, the Euler equations can be written in vector
differential form using index notation:

∂U
∂t

+
∂

∂xj
{Fj(U)} = 0, (2.13)

where U denotes the vector of conservative variables:

(U)T = (ρ, ρu1, ρu2, ρu3, ρet)
T , (2.14)

and F denotes the vector of the convective fluxes:

(Fj(U))T =
(

F
(1)
j , F

(2)
j , F

(3)
j , F

(4)
j , F

(5)
j

)T

, (2.15)

with

F
(1)
j (U) = ρuj ,

F
(i+1)
j (U) = ρuiuj + δijp, i = 1, 2, 3

F
(5)
j (U) = ρujht.

(2.16)

The specific total energy et is the sum of the specific internal energy e and the specific kinetic
energy 1

2uiui:

et = e+ 1
2uiui. (2.17)

The specific total enthalpy ht is given by:

ht = et + p/ρ. (2.18)

The Euler equations have to be supplemented by the equations of state, which relate all the
thermodynamic quantities to two independent thermodynamical quantities, e.g. p = p(ρ, T )
and e = e(ρ, T ).

2.3.1 Gas-liquid mixtures
Consider an infinitesimally small volume V large enough to contain a considerable number
of droplets. The total mass M in V of a mixture consisting of an inert gas and a vapour (e.g.
an air/water mixture), where inert means that this gas is assumed not to condensate, is given
by the sum of the mass of the inert gas Ma, the mass of the vapour Mv and the mass of the
condensate Ml
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M = Ma +Mv +Ml, (2.19)

where the sum of the mass of the vapour and the mass of the condensate is constant and equal
to Mv0,

Mv0 = Mv +Ml. (2.20)

The ratio between the mass of the liquid phase and the total mass is called the liquid mass
fraction g

g ≡ Ml

M
, 0 ≤ g ≤ gmax. (2.21)

The maximum value of the liquid mass fraction is reached when all vapour is condensed,

gmax =
Mv0

M
. (2.22)

The density of the mixture in the control volume V is defined by

ρ ≡ M

V
, (2.23)

so that the density of the inert gas and the vapour follow as

ρa =
Ma

V
= (1 − gmax)ρ, (2.24-a)

ρv =
Mv

V
= (gmax − g)ρ. (2.24-b)

In the same way we find an expression for the density of the liquid ρl (note that this is not the
condensate density %l, which is a material property)

ρl =
Ml

V
= gρ. (2.25)

With Eqs. (2.24-b) and (2.25) we can express the maximum liquid mass fraction given by
Eq. (2.22) as

gmax =
ρv0
ρ
, (2.26)

with ρv0 the sum of the density ρv of the vapour and the density ρl of the liquid,

ρv0 = ρv + ρl. (2.27)
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2.3.2 Mass conservation for the mixture
The mass conservation equation, which is the first equation in (2.13), is applied to each
component separately. With ~u the velocity of the inert gas and the vapour, we have

∂ρa
∂t

+
∂

∂xj
(ρauj) = 0, (2.28)

∂ρv0
∂t

+
∂

∂xj
(ρv0uj) = 0. (2.29)

Note that Eqs. (2.28) and (2.29) are only valid if both the vapour and the liquid are transported
with ~u, i.e. we assume that there is no slip between the gas/vapour- and the liquid-phase. By
substituting Eq. (2.26) in Eq. (2.29), the mass conservation equation for the vapour and the
liquid can be written in the following way:

∂

∂t
(ρ gmax) +

∂

∂xj
(ρ gmaxuj) = 0. (2.30)

Rearranging terms, Eq. (2.30) can be written as

gmax

{
∂ρ

∂t
+

∂

∂xj
(ρuj)

}

+ ρ

{
∂

∂t
(gmax) + uj

∂

∂xj
(gmax)

}

= 0. (2.31)

The first term between brackets represents the mass conservation equation of the mixture,
and is therefore equal to zero. Since ρ 6= 0 we also have

∂

∂t
(gmax) + uj

∂

∂xj
(gmax) = 0, (2.32)

which can be written as

D

Dt
(gmax) = 0. (2.33)

Hence, gmax is constant along path-lines. From (2.33) we can derive an important conclusion:
if gmax is uniform at inflow boundaries, then gmax is uniform over the flow domain, and can
thus be regarded as a global constant.

By substituting Eq. (2.27) in Eq. (2.29), the mass conservation equation for the vapour and
the liquid can also be written in the following way

∂ρv
∂t

+
∂

∂xj
(ρvuj) +

∂ρl
∂t

+
∂

∂xj
(ρluj) = 0, (2.34)

or, with Eq. (2.25),

∂ρg

∂t
+

∂

∂xj
(ρguj) = b, (2.35-a)

∂ρv
∂t

+
∂

∂xj
(ρvuj) = −b, (2.35-b)
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where b represents a phase-transition source term. The mass conservation equation for the
vapour, Eq. (2.35-b), can be replaced by Eq. (2.24-b).

The set of mass conservation equations for the mixture is now






∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

∂ρg

∂t
+

∂

∂xj
(ρguj) = b.

The set of equations consists of the mass conservation equation for the mixture and a conser-
vation equation for the liquid mass fraction. However, the right-hand side, b, representing a
phase-transition source term, is as yet unknown. A set of equations describing the condensa-
tion process, including Eq. (2.35-a), is derived in the next section.

2.3.3 Description of the liquid phase
The General Dynamic Equation (GDE) describes, in absence of coagulation and segregation,
the conservation of droplets in phase-space (~x, r), where r is the radius of a droplet. The
GDE reads, see e.g. Seinfeld [59], or Williams & Loyalka [68]:

∂f

∂t
+

∂

∂r
(ṙf) +

∂

∂xj
(fuj) = δ(r − r∗)J, (2.36)

where δ is the Dirac delta function, J is the nucleation rate, and f is the distribution function,
defined as the radial derivative of the droplet number density n(r, ~x, t); the number of droplets
with radius smaller than r, per unit volume:

f(r, ~x, t) ≡ ∂n(r, ~x, t)

∂r
, (2.37)

so that

n(r, ~x, t) =

r∫

0

f(r, ~x, t)dr. (2.38)

For notation shortness, the independent variables in f and r are omitted hereafter.

Integrating the product of rk and the GDE over r gives:

∂

∂t

∞∫

0

rkfdr +

∞∫

0

rk
∂

∂r
(ṙf)dr +

∂

∂xj
(

∞∫

0

rkfdr uj) =

∞∫

0

rkδ(r − r∗)drJ. (2.39)

By introducing the k-th moment of the distribution function

µk ≡
∞∫

0

rkfdr, k = 0, 1, ... (2.40)

we can write
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∂µk
∂t

+
∂

∂xj
(µkuj) = r∗kJ −

∞∫

0

rk
∂

∂r
(ṙf)dr. (2.41)

The integral can be worked out as:

∞∫

0

rk
∂

∂r
(ṙf)dr = rkṙf

∣
∣
∞

0
− k

∞∫

0

rk−1ṙfdr. (2.42)

The first term on the right hand side is equal to zero since there are no droplets with infinite
radius. To be able to take the droplet growth rate ṙ out of the integral, Hill [31] introduced an
averaged droplet radius:

rH =

√
µ2

µ0
, (2.43)

so that the droplet growth rate no longer depends on the droplets radius r, but on the “Hill”
radius rH , ṙ = ṙ(rH , ~x, t). Eq. (2.42) becomes:

∞∫

0

rk
∂

∂r
(ṙf)dr = −kṙ

∞∫

0

rk−1fdr = −kṙµk−1. (2.44)

Finally, Eq. (2.41) becomes

∂µk
∂t

+
∂

∂xj
(µkuj) = r∗kJ + kṙµk−1. (2.45)

This is a recurrent relation for µk, and for k = 0, .., 3 we find the following closed set of
equations:

k = 0 :
∂µ0

∂t
+
∂µ0uj
∂xj

= J, (2.46-a)

k = 1 :
∂µ1

∂t
+
∂µ1uj
∂xj

= r∗J + ṙµ0, (2.46-b)

k = 2 :
∂µ2

∂t
+
∂µ2uj
∂xi

= r∗2J + 2ṙµ1, (2.46-c)

k = 3 :
∂µ3

∂t
+
∂µ3uj
∂xj

= r∗3J + 3ṙµ2. (2.46-d)

By introducing the following identity

µk ≡ ρQk, (2.47)

with Qk the so called liquid moments, the following set of equations results:
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∂ρQ0

∂t
+
∂ρQ0uj
∂xj

= J, (2.48-a)

∂ρQ1

∂t
+
∂ρQ1uj
∂xj

= r∗J + ṙρQ0, (2.48-b)

∂ρQ2

∂t
+
∂ρQ2uj
∂xj

= r∗2J + 2ṙρQ1, (2.48-c)

∂ρQ3

∂t
+
∂ρQ3uj
∂xj

= r∗3J + 3ṙρQ2. (2.48-d)

The liquid density ρl, expressed in terms of the distribution function, follows from

ρl =

∞∫

0

4
3π%lr

3fdr. (2.49)

If we assume that the condensate density %l (which is a material property) is constant, then
we have from Eqs. (2.40) and (2.49)

ρl = 4
3π%l

∞∫

0

r3fdr = 4
3π%lµ3, (2.50)

and with Eqs. (2.25) and (2.47) we find

g = 4
3π%lQ3. (2.51)

Eq. (2.48-d) can now be written in terms of the liquid mass fraction g, and with this we arrive
at the four equations known as “Hill’s Method of Moments”:

∂ρQ0

∂t
+
∂ρQ0uj
∂xj

= J, (2.52-a)

∂ρQ1

∂t
+
∂ρQ1uj
∂xj

= r∗J + ṙρQ0, (2.52-b)

∂ρQ2

∂t
+
∂ρQ2uj
∂xj

= r∗2J + 2ṙρQ1, (2.52-c)

∂ρg

∂t
+
∂ρguj
∂xj

= 4
3π%l(r

∗3J + 3ṙρQ2). (2.52-d)

Hill’s average droplet radius follows from the liquid momentsQk by substitution of Eq.(2.47)
in Eq. (2.43), resulting in

rH =

√

Q2

Q0
. (2.53)

In summary, in order to arrive at Hill’s Method of Moments as a closed set of PDE’s for the
liquid mass fraction we had to assume:
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(i) no slip between the gas/vapour phase and the liquid phase,

(ii) droplet growth rate ṙ independent of droplet radius,

(iii) condensate density %l constant.

Assumption (i) implies that the droplets remain small, i.e. that the “Langmuir” parameter,
that appears as dimensionless parameter in the differential equation for the trajectory of a
droplet subject to Stokes’ drag force, should be large. The Langmuir parameter is

K =
2

9

1

Reref

ρv
%l

(
r

Lref

)−2

, (2.54)

with Reref = (UrefLref )/νv and Uref and Lref a global velocity and length scale, re-
spectively, and νv the kinematic viscosity of the vapour. Assumption (ii) is essential for the
closure of Hill’s derivation. The droplet radius appears in the denominator of the exponential
power in Eq. (2.12), and for large enough droplets, ṙ is indeed nearly independent of r. As
far as assumption (iii) is concerned, it can be shown that in case %l is not constant the PDE for
g remains the same, but those for Q0, Q1, Q2 change slightly. This is not considered further
in the present study.

2.3.4 Alternative derivation of Hill’s Method of Moments
As an alternative, Hill’s Method of Moments can also be derived from the following expres-
sion for the liquid mass fraction g (Oswatitsch [49], Hill [31]):

g(t) =

t∫

0

4
3π%l(t)r

3(t, τ)
J(τ)

ρ(τ)
dτ. (2.55)

In contrast to the previous section, this expression is based on physical intuition instead of
definition in terms of the third moment. It is noted that the above expression is valid under the
assumption that there are no droplets at t = 0, and that there is no coagulation or segregation.
When the time dependence of the liquid density %l is neglected, the time derivative of g
follows from Eq. (2.55) as

dg

dt
= 4

3π%lr
∗3 J(t)

ρ(t)
+ 4π%l

t∫

0

J(τ)

ρ(τ)
ṙ r2(t, τ)dτ. (2.56)

Introducing, as before in section 2.3.3, the Hill radius rH , the droplet-growth rate ṙ can be
taken outside the integral. With the auxiliary variables:

Q2 =

t∫

0

r2(t, τ)
J(τ)

ρ(τ)
dτ, (2.57-a)

Q1 =

t∫

0

r(t, τ)
J(τ)

ρ(τ)
dτ, (2.57-b)
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Q0 =

t∫

0

J(τ)

ρ(τ)
dτ, (2.57-c)

rH =

√

Q2

Q0
, (2.57-d)

the following system is obtained

∂ρQ0

∂t
+
∂ρQ0uj
∂xj

= J, (2.58-a)

∂ρQ1

∂t
+
∂ρQ1uj
∂xj

= r∗J + ṙρQ0, (2.58-b)

∂ρQ2

∂t
+
∂ρQ2uj
∂xj

= r∗2J + 2ṙρQ1, (2.58-c)

∂ρg

∂t
+
∂ρguj
∂xj

= 4
3π%l(r

∗3J + 3ṙρQ2). (2.58-d)

The expressions for the liquid moments here are represented as integrals in time, while in
section 2.3.3 they are defined as integrals over the droplets radius. Hagmeijer [27] has shown
that the two different integral representations are equivalent, and consistent with the GDE.
Therefore, Eqs. (2.58-a)-(2.58-d) are identical to Eqs. (2.52-a)-(2.52-d).

2.3.5 Alternative approximate closure using two moment equations

Apart from Hill’s Method of Moments, consisting of four differential equations, an alternative
approximate closure, consisting of two moment equations, exists in literature, see e.g. Heiler
[29]. In this method, the differential equation for the number of particles per unit mass Q0

and that for the liquid mass fraction g are:

∂ρQ0

∂t
+
∂ρQ0uj
∂xj

= J, (2.59-a)

∂ρg

∂t
+
∂ρguj
∂xj

= 4
3π%l(r

∗3J + 3ṙr̄2ρQ0), (2.59-b)

with r̄ an average droplet radius, calculated as

r̄ =

(
g

4
3π%lQ0

) 1
3
. (2.60)

Heiler [29] claims that the method gives comparable results for the liquid mass fraction as
the four-equation method by Hill. The method is computationally less expensive, however,
it is also less accurate, since, in contrast to Hill’s Method of Moments, the average droplet
radius r̄ is present in the differential equation for g. Therefore, the two-moment method is
not considered further in this thesis.
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2.3.6 Equation of state for the mixture
The governing set of equations, consisting of the Euler equations and Hill’s Method of Mo-
ments, need to be augmented with an equation of state. The equation of state will give an
expression for the pressure p and the temperature T , which are needed for the calculation of
the fluxes and the condensation source term.

The static pressure of the mixture is the sum of the partial pressure of the vapour and that
of the inert gas,

p = pa + pv. (2.61)

For the moment, the inert gas and the vapour are treated as perfect gases (a perfect gas is one
in which intermolecular forces are neglected, Anderson [6]), with specific gas constants Ra
and Rv , respectively, i.e. the thermal equations of state read, see also chapter 3:

pa = ρaRaTa, (2.62-a)
pv = ρvRvTv. (2.62-b)

In chapter 3 we also consider the case of non-perfect gases. Assuming thermal equilibrium,
the temperature of the inert gas and the vapour are identical,

Ta = Tv = T, (2.63)

and the equation of state for the mixture thus becomes

p = ρRT, (2.64)

with R the gas constant of the mixture,

R = (R0 − gRv), (2.65)

and R0 the gas constant for the case of zero liquid mass fraction,

R0 = (1 − gmax)Ra + gmaxRv. (2.66)

The enthalpy hρ of the mixture follows from the sum of the enthalpies of the gas compo-
nents and the condensate:

hρ = haρa + hvρv + hlρl, (2.67)

which can be rewritten using Eqs. (2.22), (2.24-a) and (2.24-b), giving an expression for the
specific (per unit of mass) enthalpy h:

h = (1 − gmax)ha + (gmax − g)hv + ghl. (2.68)

The vaporization heat L is defined as the difference between the specific enthalpy hv of the
vapour and that of the condensate hl:

L ≡ hv − hl, L > 0, (2.69)
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so that we can write

h = (1 − gmax)ha + gmaxhv − gL. (2.70)

In analogy to Eq. (2.68), an expression for the specific internal energy can be derived:

e = (1 − gmax)ea + (gmax − g)ev + gel. (2.71)

Using the definition of the enthalpy h = e+ p/ρ and Eq. (2.69) we can write

e = (1 − gmax)ea + gmaxev − gL+ g(pv/ρv − pl/%l). (2.72)

The pressure acting on the liquid is assumed to be equal to the mixture pressure, p = pl, so
we can write, using the perfect gas assumption,

e = (1 − gmax)ea + gmaxev − gL+ g(Rv −
ρ

%l
R)T. (2.73)

For a calorically perfect gas we have, see chapter 3:

e = cvT, (2.74)

where cv is the specific heat at constant volume, defined as

cv ≡
(
∂e

∂T

)

v

. (2.75)

The inert gas and the vapour are both treated as calorically perfect gases, so that Eq. (2.73)
becomes

e = cv0T − gL+ g(Rv −
ρ

%l
R)T, (2.76)

where cv0 is the specific heat at constant volume for the case of zero liquid mass fraction,

cv0 = (1 − gmax)cva
+ gmaxcvv

. (2.77)

Once the specific internal energy e, the density ρ, and the liquid mass fraction g are known,
the temperature of the mixture can be obtained from Eq. (2.76) and subsequently the pressure
of the mixture follows from Eq. (2.64).

The last term in Eq. (2.76) is usually neglected since ρ� %l, so that

e = cv,0T + g(RvT − L). (2.78)

In case a linear expression for the latent heat is available, as is the case for the air-water
mixture, Eq. (2.107), we have, from Eq. (2.78),

T =
e+ gL0

cv,0 + g(Rv − L1)
. (2.79)



2.3. GOVERNING EQUATIONS 21

2.3.7 Resulting set of governing equations
The resulting set of governing equations, consists of the Euler equations (2.13) augmented
with Hill’s Method of Moments, and is given by:

∂U
∂t

+
∂

∂xj
{Fj(U)} = W(U), (2.80)

where U denotes the vector of conservative variables:

(U)T = (ρ, ρu1, ρu2, ρu3, ρet, ρQ0, ρQ1, ρQ2, ρg)
T , (2.81)

and F denotes the vector of the convective fluxes:

(Fj(U))T =
(

F
(1)
j , ..., F

(9)
j

)T

, (2.82)

with

F
(1)
j (U) = ρuj ,

F
(i+1)
j (U) = ρujui + δijp, i = 1, 2, 3

F
(5)
j (U) = ρujht,

F
(i+6)
j (U) = ρujQi, i = 0, 1, 2

F
(9)
j (U) = ρujg.

(2.83)

The condensation source term W is given by:

(W(U))T =
(

W (1), ...,W (9)
)T

, (2.84)

with

W (1),...,(5)(U) = 0,

W (k+6)(U) = r∗kJ + k ṙρQk−1, k = 0, 1, 2

W (9)(U) = 4
3π%l(r

∗3J + 3 ṙρQ2).

(2.85)

2.3.8 Speed of sound
The speed of sound is a very important quantity, because it determines the speed at which
infinitesimally small disturbances propagate through a medium. Since the composition of the
mixture is not constant when condensation is taking place, instead of the speed of sound, the
frozen speed of sound is introduced here. This is the speed at which infinitesimally small
disturbances propagate through a medium with fixed composition,

a2
f ≡

(
∂p

∂ρ

)

s,g

, (2.86)

where s is the specific entropy. In general, the equation of state is given by

p = p(ρ, e, g). (2.87)

The increment of the pressure, at constant g, then follows as
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dp =

(
∂p

∂ρ

)

e,g

dρ+

(
∂p

∂e

)

ρ,g

de. (2.88)

The first law of thermodynamics can be written in the following form

de = Tds+
p

ρ2
dρ, (2.89)

which, upon substitution in Eq. (2.88), gives

dp =

[(
∂p

∂ρ

)

e,g

+
p

ρ2

(
∂p

∂e

)

ρ,g

]

dρ+ T

(
∂p

∂e

)

ρ,g

ds. (2.90)

Expressing p directly as function of ρ, s and g gives for constant g:

dp =

(
∂p

∂ρ

)

s,g

dρ+

(
∂p

∂s

)

ρ,g

ds. (2.91)

Equating the increments dρ in Eqs. (2.90) and (2.91) then yields
(
∂p

∂ρ

)

s,g

=

(
∂p

∂ρ

)

e,g

+
p

ρ2

(
∂p

∂e

)

ρ,g

, (2.92)

which is the definition of the frozen speed of sound. Substitution of Eqs. (2.64) and (2.79) in
Eq. (2.92) yields

a2
f = RT

[

1 +
R

cv,0 + g(Rv − L1)

]

(2.93)

2.3.9 Relation between the liquid mass fraction and the saturation
For a mixture with temperature T0, pressure p0, zero liquid mass fraction and a maximum
liquid mass fraction gmax the saturation ratio Φ0 can be calculated as:

Φ0 =
pv0

pv,eq(T0)
=
ρv0RvTv
pv,eq(T0)

=
gmaxρ0RvT0

pv,eq(T0)
=
gmaxp0Rv/R0

pv,eq(T0)
. (2.94)

If, instead of the maximum liquid mass fraction, the saturation ratio Φ0 of the mixture is
known, then gmax follows from the last equation as:

gmax =
1

1 +
Rv
Ra

(
p0

pv,eq(T0)Φ0
− 1

) . (2.95)

2.4 Material properties and constants
In the expressions for the nucleation rate, the droplet growth and the equation of state, several
material properties and constants occur. For water and xenon, these quantities are given in
the following subsections.
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2.4.1 Surface tension

During rapid expansion in both converging-diverging nozzles and underexpanded jets, tem-
peratures often drop far below the triple-point temperature of the condensing substance.
When this happens, no definite statements can be made whether the condensate is liquid or
solid. For steady flows of humid air, however, Dohrmann [23] finds good agreement with ex-
periments under the assumption of liquid condensate. It is therefore assumed that the formed
condensate is only present in the form of liquid.

The expression for the surface tension of water is taken from Dohrmann [23] and can be
written in the following form:

σ(T ) =







19.861(T/Tc)
4 − 42.150(T/Tc)

5

−5.6464 × 10−6 [N/m] for T < 249.39 K
0.118 − 0.100(T/Tc) [N/m] for T ≥ 249.39 K

(2.96)

with T in Kelvin and Tc = 647.3 K, the critical temperature of water. The triple-point
temperature of water is Ttr = 273.15 K.

Lamanna [38] uses a different expression for the surface tension at low temperatures. Her
expression gives good correlation with experimentally obtained density distributions along
the axis for the condensing flow in the G1-nozzle (see Lamanna [38]), for subcoolings as low
as T = 219 K. Lamanna’s expression can be written in the following form:

σ(T ) =







8.52000 × 10−2 − 0.229297(T/Tc) + 1.46999(T/Tc)
2

−2.36417(T/Tc)
3 [N/m] for T < 250 K

0.118 − 0.100(T/Tc) [N/m] for T ≥ 250 K
(2.97)

Note that both Lamanna’s expression for T < 250 K and Dohrmann’s expression for T <
249.39 K are not based on experimentally obtained values, but merely a carefully constructed
extrapolation to lower temperatures. Both expressions for the surface tension of water are
plotted in Fig. 2.4.

The surface tension of liquid xenon is described by an expression first suggested by Van der
Waals

σ(T ) = σ0(1 − T/Tc)
p [N/m], T < Tc, (2.98)

where Tc is the critical temperature. According to Croxton [19], this empirical relation ap-
pears to describe the behavior of simple liquids remarkably well. Smith et al. [60] find the
following values: σ0 = (5.46 ± 0.1) × 10−2 N/m and p = 1.282 ± 0.017. The critical
temperature of xenon is Tc = 289.74 K. These values were derived from measurements in
the temperature range of 189 to 286 K. Croxton [19] argues that there is no guarantee that the
parametric representation (2.98) will hold right down to the triple point, which, for xenon, is
about 160.3 K at 0.816 bar. The relation may be expected to hold only for molecules of high
symmetry and low eccentric factor in the vicinity of the critical point. Smith et al. [60] com-
pare expression (2.98) with experimentally obtained values by Leadbetter and Thomas [39]
of the surface tension in the temperature range 161.9 to 164.6 K. Their results are concluded
to be in reasonable agreement, which is the motivation to use Eq. (2.98) also for temperatures
lower than the triple-point temperature. The surface tension of xenon is plotted in Fig. 2.5.
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FIGURE 2.4: Surface tension σ of liq-
uid water according to Dohrmann [23],
Eq. (2.96), and Lamanna [38], Eq. (2.97).
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FIGURE 2.5: Surface tension σ of liquid
xenon according to Eq. (2.98).

2.4.2 Liquid density
The density of water is a function of the temperature, and is obtained from Pruppacher and
Klett [54], who give an expression in terms of the temperature in degrees Celsius. This
expression can be rewritten in terms of the temperature in Kelvin, and becomes:

%l(T ) = %0







5∑

i=0

Ai(T/Ttr)
i/

1∑

i=0

Bi(T/Ttr)
i [kg/m3] T ≥ Ttr

2∑

i=0

Ci(T/Ttr)
i [kg/m3] T < Ttr

(2.99)

with %0 = 999.84 kg/m3 the liquid density at the triple-point temperature Ttr = 273.15 K.
The constants (dimensionless) in Eq. (2.99) are given in table 2.2.

A0 = −2.0079 A3 = −10.447 B0 = −3.9603 C0 = 0.17058
A1 = −3.5552 A4 = 3.8244 B1 = 4.9603 C1 = 1.6353
A2 = 13.784 A5 = −0.59812 C2 = −0.80593

TABLE 2.2: Constants for equation (2.99)

The saturated liquid density of xenon is taken from Theeuwes and Bearman [64] who find
the following expression

%l − %l,c =

6∑

i=1

Ai(1 − T/Tc)
i/3 [kg/m3], (2.100)

in which the critical density %l,c = 1099 kg/m3 and the critical temperature Tc = 289.74 K.
The constants in this equation were obtained by the method of least squares and are given in
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table 2.3.

A1 = −0.2184099 × 106 [kg/m3] A4 = 0.8705383 × 107 [kg/m3]
A2 = 0.1748818 × 107 [kg/m3] A5 = −0.6824710 × 107 [kg/m3]
A3 = −0.5528331 × 107 [kg/m3] A6 = 0.2131116 × 107 [kg/m3]

TABLE 2.3: Constants for equation (2.100)

The temperature range of the experimental data on which Eq. (2.100) is based is 176 to
237 K, and the maximum deviation between Eq. (2.100) and the experimental data is about
0.11%. The liquid density at the boiling point (T = 165.11 K at 1 atmosphere) is 2953
kg/m3. The melting point of xenon at 1.0 atm is 161.4 K. Experimental data for the liquid
density below the melting point is not available. However, since the temperature in practical
applications often drops below the melting point, equation (2.100) is extrapolated to lower
temperatures, using a linear extrapolation which coincides both in function value as in slope
at T = 166 K. This leads to the following expression:

%l(T ) = %l,c[3.786267 − 1.935229(T/Tc)] [kg/m3], T < 166 K. (2.101)

The liquid densities of water and xenon are plotted in Figs. 2.6 and 2.7, respectively.
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FIGURE 2.6: Liquid density of water.

T [K]

ρ
[k

g/
m

3 ]

100 150 200

2400

2600

2800

3000

3200

3400

FIGURE 2.7: Liquid density of xenon,
dashed line denotes linear extrapolation.

2.4.3 Vapour pressure
For the calculation of the phase-boundary curve of water, the formulation after Sonntag and
Heinze [62] is used,

pv,eq(T ) = eA9+A10T+A11T
2+B1 ln(T )+CoT

−1

[N/m2], (2.102)
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with constants

A9 = 21.125; B1 = 2.4576;
A10 = −2.7246 × 10−2; C0 = −6094.4642;
A11 = 1.6853 × 10−5.

For xenon, a survey of available experimental data for vapour pressure over liquid and solid
phase is given in S̆ifner and Klomfar [61]. Bowman et al. [13] find the following expression
for the liquid phase, based on fitting experimental data with a least-squares method over the
temperature range 162.02 to 288.97 K:

pv,eq(T ) = eA12+A13T+B2 ln(T )+C1T
−1

[N/m2], (2.103)

with constants

A12 = 55.9772; B2 = −6.58218;
A13 = 0.015775; C1 = −2219.02.

The coexistence curves of water and xenon are shown in Figs. 2.8 and 2.9, respectively.
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FIGURE 2.9: Gas-liquid coexistence curve
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2.4.4 Latent heat
The latent heat L can be determined from the Clausius-Clapeyron equation

dpv,eq
dT

=
Lpv,eq
RvT 2

, (2.104)

from which the latent heat follows as

L = RvT
2

(
1

pv,eq

dpv,eq
dT

)

. (2.105)
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With Eq. (2.102), the following expression for the latent heat of water is obtained

L(T ) = Rv(A10T
2 + 2A11T

3 +B1T − C0) [J/kg]. (2.106)

In the temperature range of 200 to 300 K the latent heat after Eq. (2.106) decreases nearly
linearly with temperature, and with a maximum error of about 0.05% can be approximated
by

L(T ) = L0 + L1T [J/kg], (2.107)

with constants

L0 = 3105913.39 [J/kg]
L1 = −2212.97 [J/kg·K]

The latent heat of xenon follows from Eqs. (2.105) and (2.103) as

L(T ) = Rv(A13T
2 +B2T − C1) [J/kg]. (2.108)

The latent heat of water and xenon are shown in Figs. 2.10 and 2.11, respectively. Note that
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FIGURE 2.10: Formation heat (gas to liq-
uid) of water, solid line Eq. (2.106), dashed
line Eq. (2.107).
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lation. Dotted line is the constant value of
L chosen in the numerical simulations.

typical values for the latent heat of water (2.5 × 106 J/kg) and xenon (1.0 × 105 J/kg) differ
more than one order of magnitude. Because the variation of L with T is small for xenon,
in the numerical simulations, as a first approximation, the latent heat is taken as a constant
(L = L0 = 100 kJ/kg).
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2.4.5 Material properties of the gas phase
The values of the specific gas constant R, the specific heat capacities cp and cv and the ratio
of specific heats γ are:

dry air:

R = 287.04 [J/kg·K]
cp = 1004.0 [J/kg·K]
cv = 716.96 [J/kg·K]
γ = 1.4004

water:

R = 461.52 [J/kg·K]
cp = 1859.0 [J/kg·K]
cv = 1397.5 [J/kg·K]
γ = 1.3302

xenon:

R = 63.329 [J/kg·K]
cp = 158.32 [J/kg·K]
cv = 94.991 [J/kg·K]
γ = 1.6667

The mass of a water molecule is m = 2.991 × 10−26 kg, and the mass of a xenon molecule
is m = 2.180 × 10−25 kg.
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3.1 Thermodynamics

3.1.1 Basics
The Thermodynamic State Principle states that for a gas with fixed chemical composition, the
local thermodynamic state is completely fixed by two independent thermodynamic quantities.
So, if we have a system with three thermodynamic quantities, namely the pressure p, the
specific volume v (≡ 1/ρ) and the temperature T , then there must be an Equation Of State
(EOS) that describes a relation between these thermodynamic quantities of the system. In
this specific example this EOS is a so-called thermal EOS. In case the system in addition
also involves an energy-like quantity, like internal energy, entropy or enthalpy, we have to
consider the first and second law of thermodynamics, and relations derived from this, the
so-called Maxwell relations.

The first law of thermodynamics reads

de = dq − p dv, (3.1)

with dq the added amount of heat per unit mass. In thermodynamics the specific heats (heat
capacity per unit mass) play an important role. They are defined as the amount of heat that
must be added to a unit mass in order to raise its temperature one K in a small reversible
change, either at constant pressure (cp) or at constant volume (cv):

cv ≡
(
∂q

∂T

)

v

and cp ≡
(
∂q

∂T

)

p

. (3.2)

For state changes at constant volume, the first law of thermodynamics, Eq. (3.1) reduces to

de = dq, (3.3)

so that the specific heat at constant volume cv can be expressed as

cv(T, v) =

(
∂e

∂T

)

v

. (3.4)

With the definition of the specific enthalpy,
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h ≡ e+ p v, (3.5)

we can write the first law of thermodynamics as

dh = dq + v dp. (3.6)

For state changes at constant pressure, we thus have

dh = dq, (3.7)

so that the specific heat at constant pressure cp can be expressed as

cp(T, p) =

(
∂h

∂T

)

p

. (3.8)

The Maxwell relations are obtained by combining the first and second law of thermodynam-
ics, resulting in the fundamental equation of Gibbs, e.g. see Kuiken [37],

de = T ds− p dv, (3.9)

with s the specific entropy. A first set of Maxwell relations is obtained by choosing (T, v) as
the independent variables. Then we can express the differentials de and ds as

de =

(
∂e

∂T

)

v

dT +

(
∂e

∂v

)

T

dv, (3.10)

ds =

(
∂s

∂T

)

v

dT +

(
∂s

∂v

)

T

dv. (3.11)

Substituting the expressions for the differentials de and ds in Eq. (3.9) yields, with Eq. (3.2),

(
∂s

∂T

)

v

=
1

T

(
∂e

∂T

)

v

=
1

T
cv(T, v), (3.12)

(
∂s

∂v

)

T

=
1

T

[(
∂e

∂v

)

T

+ p

]

. (3.13)

Differentiating Eq. (3.12) with respect to v and Eq. (3.13) with respect to T , and equating the
two results yields the equation of Helmholtz:

(
∂e

∂v

)

T

= −p+ T

(
∂p

∂T

)

v

. (3.14)

Combination of Eqs. (3.11) to (3.14) then gives the following expression for the differential
of the specific entropy:

ds =
1

T
cv(T, v)dT +

(
∂p

∂T

)

v

dv. (3.15)

Substitution of the Helmholtz equation in Eq. (3.13) leads to
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(
∂s

∂v

)

T

=

(
∂p

∂T

)

v

. (3.16)

Differentiating Eq. (3.12) with respect to v and Eq. (3.16) with respect to T , and equating the
two results yields

(
∂cv
∂v

)

T

= T

(
∂2p

∂T 2

)

v

. (3.17)

In a very similar fashion, by choosing (p, T ) as the two independent thermodynamic variables,
we can derive a second set of Maxwell relations

(
∂s

∂T

)

p

=
1

T
cp(T, p), (3.18)

(
∂s

∂p

)

T

= −
(
∂v

∂T

)

p

, (3.19)

from which we obtain the pendant of the equation of Helmholtz:
(
∂h

∂p

)

T

= v − T

(
∂v

∂T

)

p

. (3.20)

In addition, we can derive the following relation
(
∂cp
∂p

)

T

= −T
(
∂2v

∂T 2

)

p

. (3.21)

Relation between cp and cv

From Eq. (3.15) it follows that
(
∂s

∂T

)

p

=
1

T
cv(T, v) +

(
∂p

∂T

)

v

(
∂v

∂T

)

p

, (3.22)

and with Eq. (3.18) the relation between cp and cv follows as

cp − cv =

(
∂p

∂T

)

v

(
∂v

∂T

)

p

. (3.23)

This shows that for a given thermal EOS and a given cv , the cp is known.

3.1.2 Discussion
It follows from Gibbs’ fundamental equation (3.9) that if for example e is given as function
of v and s, as a so-called caloric EOS, the temperature T (v, s) and pressure p(v, s) follow
from Eq. (3.9) in terms of the partial derivatives of e(v, s), completing the description of the
thermodynamics. The same is true when choosing s(v, e) as caloric EOS.

In the present study we describe the thermodynamics in terms of the independent variables
ρ(≡ 1/v) and e, i.e. the thermodynamic quantities that appear, together with p, directly in the
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Euler equations. We can express the fundamental equation of Gibbs (3.9) in the independent
variables ρ and e as

T ds = de− p

ρ2
dρ. (3.24)

Taking the differential of the entropy s(ρ, e) in terms of ρ and e leads to

ds =

(
∂s

∂e

)

ρ

de+

(
∂s

∂ρ

)

e

dρ, (3.25)

so we can derive the following relations

(
∂s

∂e

)

ρ

=
1

T
, (3.26)

(
∂s

∂ρ

)

e

= − p

ρ2T
. (3.27)

As discussed above, if s is given in a caloric EOS as function of ρ and e, the description would
be complete. However, in practice it is inconvenient to work with the entropy, therefore we
choose to use a thermal-like EOS, to be derived in section 3.4, involving T (ρ, e) and p(ρ, e).

Taking the derivative of Eq. (3.26) with respect to ρ and the derivative of Eq. (3.27) with
respect to e and equating the results yields

∂

∂ρ

(
1

T

)

e

= − ∂

∂e

(
p

ρ2T

)

ρ

. (3.28)

This expression can be considered as a constraint on the admissible thermodynamic relations
for p(ρ, e) and T (ρ, e). Eq. (3.28) can be expanded to

p

(
∂T

∂e

)

ρ

− T

(
∂p

∂e

)

ρ

+ ρ2

(
∂T

∂ρ

)

e

= 0. (3.29)

3.2 Classification of gases
In engineering applications, the most commonly used thermal EOS is the perfect gas EOS,
which assumes a dilute gas in which the volume occupied by the molecules is negligible
and in which the molecules do not exert a force on each other. Only during their occa-
sional collisions they interact with each other and exchange momentum and energy. The
perfect gas EOS, however, is not applicable in all conditions. At very high temperatures,
for example, one has to account for effects like dissociation, recombination, ionisation and
molecule-oscillations, making a high-temperature gas EOS necessary. For a gas at conditions
of high pressure, intermolecular forces can no longer be neglected, which means that a real
gas EOS should be used. In this chapter, the difference between a perfect and real gas EOS
is reviewed, and a novel real-gas EOS obeying Maxwell’s relations is derived.

For the analysis of gas dynamic problems, we can identify four categories of gases, as
follows, see Anderson [7]: Calorically perfect gases, thermally perfect gases, mixtures of
chemically reacting gases and real gases. Since chemically reacting gases are not considered
here, this category is not discussed further.
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3.2.1 Calorically perfect gas

A perfect gas is a gas that satisfies the perfect gas equation

pv = RT, (3.30)

with R the specific gas constant. It follows from Eq. (3.23) that for this gas cp − cv = R
is constant, known as Carnot’s law, which is found to be satisfied to better than 1% by air
at normal temperatures and pressures (Batchelor [10]). From Eq. (3.17) it follows that cv =
cv(T ) and with Eq. (3.21) also cp = cp(T ).

A calorically perfect gas is by definition a gas with constant specific heats cv and cp (ac-
cording to Eq. (3.23) it is sufficient to state that cv is constant). For this gas, it follows from
Eqs. (3.4) and (3.14) that

e = cvT. (3.31)

In many compressible flow applications, the pressures and temperatures are moderate
enough that the gas can be considered to be calorically perfect.

3.2.2 Thermally perfect gas

For relatively high temperatures, the specific heats cv and cp are not constant, but functions
of the temperature

cp = f1(T ) and cv = f2(T ), (3.32)

with the constraint that f1(T ) − f2(T ) = R is constant. The specific internal energy follows
from Eqs. (3.4) and (3.14):

e(T ) =

∫

f2(T ) dT, (3.33)

and the specific enthalpy then follows as h(T ) = e(T ) +RT .

3.2.3 Real gas

For relatively high pressures, intermolecular forces can no longer be neglected. In practice,
a gas behaves as a real gas under conditions of very high pressure and moderate (room)
temperature, conditions which accentuate the influence of intermolecular forces on the ther-
modynamics. For a real gas, the perfect gas EOS (3.30) is no longer valid. Instead, we must
use a “real gas” thermal EOS, of which there are many versions. Also, cv will be a function of
both T and v, with cp given by Eq. (3.23). Perhaps the most familiar real-gas thermal EOS is
the van der Waals equation, described in section 3.3. However, this EOS describes a relation
between the density, the pressure and the temperature of the gas only. Since the temperature
and pressure are both dependent variables, an additional expression is needed in terms of the
specific internal energy or the specific enthalpy. To this end, a novel EOS is developed, which
is described in section 3.4.
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3.3 EOS of van der Waals
An EOS that takes into account the effects of intermolecular forces, is the EOS derived by van
der Waals. Based on molecular-theoretical considerations, see Wisman [70], this EOS gives
a qualitatively good description of the influence of intermolecular forces. Van der Waals’
considerations can be summarized as follows:

1. Molecules repulse one another at very close distance. As a consequence, a part of the
volume in which the gas is situated, is not accessible. The presence of a molecule
at a certain location excludes the possibility that another molecule can be present at
that very same location. The volume in which a molecule can be situated is therefore
smaller than the whole volume. The excluded volume is called co-volume, and is de-
noted by b. The freely available volume is then (v − b), and the thermal EOS for a
perfect gas then becomes: p(v − b) = RT .

2. At large distance molecules attract each other with a force that decreases rapidly with
increasing distance. This is simplified by the assumption that molecule β is only at-
tracted by molecule α if β is located within a sphere with radius r and α as center. This
sphere is referred to as the attraction-sphere. In the interior of the gas, there will be an
equal number of molecules within each attraction-sphere, so that the net-effect of all
attracting forces is zero. At a wall, parts of the attraction-sphere will poke through the
wall, so that gas molecules in the opposite part of the attraction-sphere exert a resulting
force. This resultant is directed inward. This implies that the pressure in the gas is
different from the pressure at the wall. The pressure correction is proportional to the
number of molecules in a layer along the wall, which has a thickness r0, equal to the
radius r of the attraction-sphere, see Fig. 3.1. This means that the pressure correction is

0r

FIGURE 3.1: Gas molecules and their attraction sphere at a wall.

proportional to the number of molecules per unit of volume, or inversely proportional
to v. The force exerted on each molecule is proportional to the number of molecules
within the attraction-sphere, i.e. also inversely proportional with v. The resulting pres-
sure correction is therefore inversely proportional to v2, and the pressure p is replaced
by the expression (p+ a/v2).

In conclusion, the thermal EOS of van der Waals reads:

(p+
a

v2
)(v − b) = RT, (3.34)

where R is the gas constant, and a and b are constants depending on the gas. It follows from
Maxwell relation (3.17) that cv = cv(T ) and from (3.21) that cp = f(T, p).
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3.4 Novel real gas EOS
The van der Waals thermal EOS gives a qualitatively good description of the phenomena
that occur at high pressure. However, here we follow a somewhat different approach. To
account for real-gas effects, the concept of the compressibility factor z, see Wisman [70], is
introduced, which is defined by the relation

z ≡ p

ρRT
, (3.35)

so that the thermal EOS now reads

p = zρRT , (3.36)

with R the specific gas-constant as before (note that ρ ≡ 1/v). For the van der Waals gas we
find, for example,

z = z(T, v) =
v

v − b
− a

vRT
. (3.37)

In solving the Euler equations, we need an expression for the pressure in terms of the
specific internal energy e and the density ρ, since these two thermodynamic quantities are
part of the state vector U in the conservation formulation, and the pressure p is not. Therefore,
such an expression is derived here for the pressure, and also for the temperature, since this
thermodynamic property is needed in the calculation of flows with condensation (note that
the temperature is not needed for the Euler equations).

Recall that the thermodynamic state for a gas of constant composition is fixed by specifying
only two thermodynamic quantities. Thus, by specifying the density and the specific internal
energy, the thermodynamic state of the gas is fixed and the pressure can be written as a
function of the density and the specific internal energy:

p = p(ρ, e). (3.38)

Hence, with Eq. (3.36), the temperature and compressibility factor also have to be functions
of density and specific internal energy:

p(ρ, e) = z(ρ, e)ρRT (ρ, e). (3.39)

The explicit expressions for both z and T can be of any form, for example first, second
or higher order polynomials can be chosen, as long as they satisfy Eq. (3.28) or (3.29). The
values of the constants occurring in these polynomials are then determined from experimental
data, i.e. it is assumed that we have at our disposal a data-base in the form of table 3.1.

Substitution of Eq. (3.39) in Maxwell relation (3.28) results in

∂

∂ρ

(
1

T

)

e

= −R
ρ

(
∂z

∂e

)

ρ

. (3.40)

Integrating gives

1

T
= −R

∫
1

ρ

(
∂z

∂e

)

ρ

dρ+ f(e). (3.41)
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density specific internal energy pressure temperature
ρ e p T
. . . .
. . . .
. . . .

TABLE 3.1: experimental data for gas at high pressure

We take the following polynomial form for the compressibility factor z

z(ρ, e) = z00 + z10ρ+ z01e+ z20ρ
2 + z11ρe+ z02e

2, (3.42)

where z00, z10, ..., z02 are constants. Note that this expression is valid only in a restricted
region of ρ and e. In this way we find for the derivative of z with respect to e

(
∂z

∂e

)

ρ

= z01 + z11ρ+ 2z02e, (3.43)

and for the reciprocal of T we thus find

1

T (ρ, e)
= −R{z11ρ+ (z01 + 2z02e) ln(ρ)} + f(e). (3.44)

We are free to choose the function f(e), and we choose here, analogous to the compressibility
factor z, a polynomial function. We want our real-gas model to include the perfect gas model
when choosing appropriate values for the constants of the polynomial for the compressibility
factor z, i.e. to recover e = cvT when z = 1. We then see that we have to include a term
T0e

−1 in f(e). The chosen polynomial is

f(e) = T0e
−1 + T1 + T2e, (3.45)

giving us the full expression for the temperature as

T (ρ, e) =
1

−R{z11ρ+ (z01 + 2z02e) ln(ρ)} + T0e−1 + T1 + T2e
. (3.46)

We can use the constants T0, T1 and T2 to fit the polynomial expression for T (ρ, e) to the
data points given in table 3.1. With the expressions for z(ρ, e) and T (ρ, e) known, we can
obtain the pressure from Eq. (3.39), which makes the system of thermodynamic equations
closed. Eq. (3.39) can be considered as the thermal EOS, while Eq. (3.46) can be considered
as the caloric EOS. These relations contain 9 parameters, which can be chosen arbitrarily.

So, in summary, we chose ρ and e as the independent set of thermodynamic quantities, and
by specifying the thermal EOS (3.36) with specified z(ρ, e), Eq. (3.42), and the expression
for T (ρ, e), Eq. (3.46), we have the thermodynamics described completely.

3.5 Derived quantities of the real gas EOS
With the system of thermodynamic equations closed, we can find expressions for important
derived quantities, such as the entropy, and the isobaric and isochoric specific heats.
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3.5.1 Entropy
With Eqs. (3.26) and (3.27) we can find an expression for the entropy. By integrating
Eq. (3.26), making use of Eq. (3.46)

s(ρ, e) = −R{z11ρe+ (z01e+ z02e
2) ln(ρ)} + T0 ln(e) + T1e+ 1

2T2e
2 + s̃(ρ). (3.47)

Differentiating with respect to ρ gives
(
∂s

∂ρ

)

e

= −R{z11e+ z01
e

ρ
+ z02

e2

ρ
} + s̃′(ρ). (3.48)

From Eq. (3.27) we have

(
∂s

∂ρ

)

e

= −Rz
ρ

= −R{z00
1

ρ
+ z10 + z01

e

ρ
+ z20ρ+ z11e+ z02

e2

ρ
}. (3.49)

Setting Eq. (3.48) equal to Eq. (3.49) we find the expression for s̃′(ρ)

s̃′(ρ) = −R{z00
1

ρ
+ z10 + z20ρ}, (3.50)

and we see that the right-hand side of this equation is indeed only a function of ρ, enabling
us to integrate this expression, yielding

s̃(ρ) = −R{z00 ln(ρ) + z10ρ+ 1
2z20ρ

2} + s0. (3.51)

Now we have found an equation for the entropy

s(ρ, e) = s0 −R [{z00 + z01e+ z02e
2} ln(ρ) + {z10 + 1

2z20ρ+ z11e}ρ ]

+T0 ln(e) + T1e+ 1
2T2e

2. (3.52)

For a calorically perfect gas we have

z00 = 1,

z10 = 0; z20 = 0; z11 = 0; z01 = 0; z02 = 0,

T0 = cv,

T1 = 0;T2 = 0,

and by substituting these values in Eq. (3.52) we find the expression for the entropy of a
calorically perfect gas

s(ρ, e) = s0 + ln(ρ−Recv ). (3.53)

This shows that in isentropic flow of a calorically perfect gas e = const ργ−1, where we have
used the perfect gas relation R = cp − cv and the definition γ ≡ cp/cv .
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3.5.2 Isobaric and Isochoric Specific Heat
To determine the specific heat at constant volume cv and the specific heat at constant pressure
cp, we have the following set of equations available:

p = p(ρ, e) = z(ρ, e)ρRT (ρ, e), (3.54)
T = T (ρ, e). (3.55)

First we will derive an expression for the specific heat at constant volume. We start with the
relation for the isochoric specific heat as derived in Eq. (3.4), with v ≡ 1/ρ,

cv ≡
(
∂e

∂T

)

ρ

. (3.56)

Since the independent variables are ρ and e, we can immediately rewrite this as

cv =
1

(
∂T
∂e

)

ρ

. (3.57)

Now an expression for the specific heat at constant pressure will be derived. We start from
the relation for the isochoric specific heat as derived in Eq. (3.8):

cp =

(
∂h

∂T

)

p

, (3.58)

where the enthalpy h is defined as h ≡ e+ p/ρ. By replacing h we get

cp =

(
∂e

∂T

)

p

− p

ρ2

(
∂ρ

∂T

)

p

. (3.59)

Taking the derivative of the set of Eqs. (3.54) and (3.55) with respect to T at constant pressure
p, we get

(
∂

∂T

{
Eq. (3.54)
Eq. (3.55)

)

p

;







0 =

(
∂p

∂e

)

ρ

(
∂e

∂T

)

p

+

(
∂p

∂ρ

)

e

(
∂ρ

∂T

)

p

,

1 =

(
∂T

∂e

)

ρ

(
∂e

∂T

)

p

+

(
∂T

∂ρ

)

e

(
∂ρ

∂T

)

p

,
(3.60)

enabling us to derive the following relations

(
∂e

∂T

)

p

=

(
∂p

∂ρ

)

e

/[(
∂p

∂ρ

)

e

(
∂T

∂e

)

ρ

−
(
∂p

∂e

)

ρ

(
∂T

∂ρ

)

e

]

, (3.61)

(
∂ρ

∂T

)

p

= −
(
∂p

∂e

)

ρ

/[(
∂p

∂ρ

)

e

(
∂T

∂e

)

ρ

−
(
∂p

∂e

)

ρ

(
∂T

∂ρ

)

e

]

. (3.62)

By substituting Eqs. (3.61) and (3.62) in Eq. (3.59) we have derived an expression for the
isobaric specific heat in the desired form:
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cp =

[(
∂p

∂ρ

)

e

+
p

ρ2

(
∂p

∂e

)

ρ

]/[(
∂p

∂ρ

)

e

(
∂T

∂e

)

ρ

−
(
∂p

∂e

)

ρ

(
∂T

∂ρ

)

e

]

. (3.63)

Though it requires some algebraic manipulations, above expression can also be obtained from
Eq. (3.23), making use of Eq. (3.29) and deriving from p = p(ρ, e) via the differentials

(
∂p

∂T

)

ρ

=

(
∂p

∂e

)

ρ

/(
∂T

∂e

)

ρ

. (3.64)

3.5.3 Total pressure

When adiabatically bringing a gas to rest, the total specific enthalpy is conserved. There-
fore, the stagnation specific enthalpy h0 (subscript 0 denotes stagnation) is equal to the total
specific enthalpy ht,

h0 = ht. (3.65)

The total specific enthalpy is the sum of the specific enthalpy and the specific kinetic energy,

ht = h+ 1
2 |~u|

2. (3.66)

The specific enthalpy can be expressed in terms of specific internal energy, density and pres-
sure through its definition

h ≡ e+
p

ρ
, (3.67)

so that

e0 +
p0

ρ0
= e+

p

ρ
+ 1

2 |~u|
2. (3.68)

We can eliminate the stagnation pressure p0 and the static pressure p by substituting the
thermal EOS p = zρRT , resulting in a relation for ρ0 and e0 in terms of the local values of ρ
and e:

e0 + z(ρ0, e0)RT (ρ0, e0) = e+ z(ρ, e)RT (ρ, e) + 1
2 |~u|

2. (3.69)

When isentropically bringing a gas to rest the following relation is valid:

s(ρ0, e0) = s(ρ, e). (3.70)

We now have two non-linear relations for ρ0 and e0, which can be solved for a given state
(ρ, e) and |~u| by, for example, a Newton iteration method. Once we have found ρ0 and e0
we can calculate the total temperature T0 = T (ρ0, e0) from Eq. (3.46), and the total pressure
p0 = p(ρ0, e0) from Eqs. (3.42) and (3.39).
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3.5.4 Speed of Sound

In section 2.3.8 an expression for the frozen speed of sound (2.92) was derived. Dropping the
subscript g (the gas has constant composition) we have

(
∂p

∂ρ

)

s

=

(
∂p

∂ρ

)

e

+
p

ρ2

(
∂p

∂e

)

ρ

. (3.71)

The first and second term between brackets at the right-hand side are found from the real-gas
EOS as

(
∂p

∂ρ

)

e

= ρRT

(
∂z

∂ρ

)

e

+ zρR

(
∂T

∂ρ

)

e

+ zRT , (3.72-a)
(
∂p

∂e

)

ρ

= ρRT

(
∂z

∂e

)

ρ

+ zρR

(
∂T

∂e

)

ρ

. (3.72-b)

The derivatives of the compressibility factor and the temperature with respect to the density
and the specific internal energy can be found from Eqs. (3.42) and (3.46). They are

(
∂z

∂ρ

)

e

= z10 + z11e+ 2z20ρ, (3.73-a)
(
∂z

∂e

)

ρ

= z01 + z11ρ+ 2z02e, (3.73-b)

(
∂T

∂ρ

)

e

= RT 2

{

z11 +
z01 + 2z02e

ρ

}

, (3.73-c)
(
∂T

∂e

)

ρ

= T 2

{

2Rz02 ln(ρ) +
T0

e2
− T2

}

. (3.73-d)

With Eqs. (3.72-a) to (3.73-d) and Eq. (3.71) we have found an explicit equation for the speed
of sound in the real gas.

3.6 Real-gas EOS for a condensing gas mixture
If the thermodynamic state of the gas-mixture is such that one or more components condense,
then the thermodynamic state of the mixture is not fixed by specifying the density and the
specific internal energy only. During the condensation process, the mixture is continuously
changing in composition, so that the thermodynamic state depends also on the composition.
Therefore, the liquid mass fractions gk of the individual components k need to be incorpo-
rated in the EOS. In this way, the pressure of the mixture becomes a function of the density,
the specific internal energy, and the liquid mass fractions of the individual components of the
mixture:

p = p(ρ, e, gk). (3.74)
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Since the real-gas EOS Eq. (3.39) does not account for the liquid mass fractions gk, we are
faced with the problem of determining the pressure. However, if the volume occupied by the
liquid droplets is small compared to the volume occupied by the vapour, then the pressure of
the mixture p is equal to the pressure pv of the vapour mixture,

p = pv. (3.75)

For the vapour mixture (excluding the liquid), we can determine the pressure from the real-
gas EOS (3.39). The composition of the mixture is not constant, and thereforeR is a function
of the composition:

pv = p(ρv, ev, gk) = z(ρv, ev)Rv(gk)ρvT (ρv, ev), (3.76)

where ρv and ev are the density and the specific internal energy of the vapour part of the
mixture. We can determine Rv(gk) from

Rv(gk) = R0

1 −
K∑

k=1

gk
Rk

R0

1 − g
, g < 1 , (3.77)

where Rk is the gas-constant of component k, R0 is the gas constant of the mixture in case
of zero liquid mass fraction, and g is the total liquid mass fraction, equal to the sum of liquid
mass fraction of the individual components

g =
K∑

k=1

gk. (3.78)

The vapour density follows from Eq. (2.24-b), and by regarding all components as vapour
(note that in principle every gas can condense under the right circumstances) we have gmax ≡
1 and thus

ρv = ρ(1 − g). (3.79)

By using the definition of the enthalpy, h ≡ e + p/ρ, we can express the specific internal
energy of the vapour as

ev = hv −
pv
ρv
, (3.80)

where hv is the specific enthalpy of the vapour. Then we can sum the contributions to the
specific enthalpy h of the vapour and the liquid to get the specific enthalpy of the mixture,
i.e.

ρh = ρvhv + ρlhl ⇒
h = (1 − g)hv + ghl. (3.81)

The difference between the enthalpy of the vapour and the enthalpy of the liquid of a con-
densing component, is equal to the heat of formation
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L = hv − hl, (3.82)

where L is the latent heat (heat of formation). Substitution of Eq. (3.82) in Eq. (3.81) gives

h = (1 − g)hv + g(hv − L) = hv − gL, (3.83)

so that the enthalpy of the gaseous phase is equal to

hv = h+ gL. (3.84)

The latent heat L is found by summing the individual contributions per component (heat is
released by the liquid, this explains why subscript l is attached to the density):

ρlL =

K∑

k=1

ρl,kLk ⇒

L =

K∑

k=1

gk
g
Lk, (3.85)

where K is the number of components, and ρl,k is the liquid density of component k. The
latent heat Lk of a component can be calculated, for example, with the law of Watson, see
Reid et al. [57]. Substituting Eq. (3.85) into Eq. (3.84) gives an expression for the enthalpy
of the gaseous phase

hv = h+

K∑

k=1

gkLk. (3.86)

If we substitute this expression in Eq. (3.80) we find

ev = h− pv
ρv

+

K∑

k=1

gkLk, (3.87)

or equivalently

ev = e+
p

ρ
− pv
ρv

+

K∑

k=1

gkLk. (3.88)

With the assumption of equal mixture and vapour pressure, we find an implicit relation for
the specific internal energy ev of the vapour:

ev = e− g
pv(ρv, ev)

ρv
+

K∑

k=1

gkLk. (3.89)

This equation can be solved, for example, with Newton iteration. Once the specific internal
energy ev of the vapour is known, with the density of the vapour given in Eq. (3.79), the
pressure follows from Eq. (3.76).



4 C
H

A
P

T
E

R

NUMERICS

4.1 Governing equations in cylindrical coordinates and two
dimensions

Since one of the main aims of this thesis is to simulate condensing flows in axi-symmetric
configurations, the set of governing equations (2.80) is transformed from Cartesian coordi-
nates (x, y, z) to cylindrical coordinates (r, θ, z). For flows without swirl, the governing
equations, in cylindrical coordinates, become (see appendix A)

∂rU
∂t

+
∂rF
∂z

+
∂rG
∂r

= H + rW. (4.1)

This equation can be rewritten by taking r out of the derivative terms and dividing by r:

∂U
∂t

+
∂F
∂z

+
∂G
∂r

=
H − G
r

+ W. (4.2)

The governing equations in two dimensions are found from the ones in 3D by omitting the
momentum equation in the z-direction, and by setting the velocity and the derivatives in the
z-direction equal to zero, w = 0; ∂

∂z = 0. We find then:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= W. (4.3)

The governing equations for axi-symmetric flows and those for two-dimensional flows thus
differ only by the source term (H − G)/r in the axi-symmetric form. For convenience, we
replace the z-coordinate with x and the r-coordinate with y, so that the governing equations
become

∂U
∂t

+
∂F
∂x

+
∂G
∂y

=
H − G
y

+ W. (4.4)

where the first term on the right-hand side is zero for two-dimensional flows. The state vector
U, the flux vectors in x- and y-direction F and G, respectively, the axi-symmetric source term
H and the condensation source term W are given by:
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U =















ρ
ρu
ρv
ρet
ρQ0

ρQ1

ρQ2

ρg















F =















ρu
ρu2 + p
ρuv
ρuht
ρuQ0

ρuQ1

ρuQ2

ρug















G =















ρv
ρvu
ρv2 + p
ρvht
ρvQ0

ρvQ1

ρvQ2

ρvg















(4.5)

H =















0
0
p
0
0
0
0
0















W =















0
0
0
0
J
r∗J + ṙρQ0

r∗2J + 2ṙρQ1
4
3π%l(r

∗3J + 3ṙρQ2)















(4.6)

For axi-symmetric flow u and v are the axial and radial velocity component, respectively.

4.2 Non-dimensionalisation of the governing equations
By choosing an independent set of reference quantities, the governing equations can be non-
dimensionalised. The chosen set of independent reference quantities are length Lref (m),
pressure pref (kg/m·s2), temperature Tref (K), and specific gas-constant of the mixture R0

(m/s2·K). With these reference quantities the following dimensionless variables result:

t̂ =
t
√
R0Tref

Lref
, x̂ =

x

Lref
, ŷ =

y

Lref
, r̂∗ =

r∗

Lref
,

û =
u

√
R0Tref

, v̂ =
v

√
R0Tref

, ˆ̇r =
ṙ

√
R0Tref

, p̂ =
p

pref
,

ρ̂ =
ρR0Tref
pref

, T̂ =
T

Tref
, êt =

et
R0Tref

,

R̂ =
R

R0
, Q̂k =

QkprefL
(3−k)
ref

R0Tref
, Ĵ =

JL4
ref

√
R0Tref

.

The quantities appearing in the expressions for the nucleation rate J and the droplet growth-
rate ṙ are non-dimensionalised in the same way as the quantities above. If we substitute all
the dimensionless variables into the governing equations, we obtain

∂Û
∂t̂

+
∂F̂
∂x̂

+
∂Ĝ
∂ŷ

=
Ĥ − Ĝ
ŷ

+ Ŵ. (4.7)

where the state vector Û, the flux vectors in x- and y-direction F̂ and Ĝ, respectively, the axi-
symmetric source term Ĥ and the condensation source term Ŵ are as given in Eqs. (4.5) and
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(4.6), except that all the quantities now carry a hat, indicating that they are all dimensionless.
For convenience, the hat is omitted from here on.

4.3 Numerical Algorithm
For the numerical solution of the non-linear, coupled system of governing equations (4.7),
a finite-volume method is used. For all current applications, the computational domain is
two dimensional, and is discretized by triangular elements, from which median dual mesh
control volumes are constructed. The flux terms F and G are calculated at the center of the
edges of the median dual mesh, using either van Leer’s Flux Vector Splitting scheme (FVS)
or Liou’s AUSM+ FVS scheme. Second-order extrapolation of the solution from the nodes
to the edges is achieved using van Leer’s MUSCL-scheme. The control-volume-averaged
solution vector U is assigned to the value of U at the center of gravity of the control volume.
The solution at the nodes is then obtained from the solution at the center of gravity by linear
interpolation, employing the gradient of the solution vector at the center of gravity. The
condensation source term and the axi-symmetric source term are calculated from the solution
in the center of gravity of the control volume. The change in time of the discretized solution
follows from the sum of the fluxes and the source terms.

4.4 Finite-volume method
For the formulation of the finite-volume method, the governing equations (4.7) are integrated
over a stationary control surface with area A:

∫∫

A

(
∂U
∂t

+
∂F
∂x

+
∂G
∂y

)

dA =

∫∫

A

(
H − G
y

+ W
)

dA. (4.8)

By applying Gauss’ divergence theorem we can express the surface integral for the flux terms
in a contour integral:

∫∫

A

∂U
∂t

dA+

∫

∂A

(Fnx + Gny) dC =

∫∫

A

1

y
(H − G) dA+

∫∫

A

W dA, (4.9)

where ~n = (nx, ny)
T is the boundary normal and C = ∂A is the closed contour that forms

the boundary of surface A. By introducing control-volume averaged quantities in the follow-
ing way

φ =
1

A

∫∫

A

φ dA, (4.10)

and by discretizing the flux terms we can rewrite Eq. (4.9) for a control volume as

∂Ui
∂t

Ai +

N∑

j=1

(Fnx + Gny)i,jCi,j

︸ ︷︷ ︸

I

=

(
Hi − Gi

yi

)

Ai
︸ ︷︷ ︸

II

+ WiAi
︸ ︷︷ ︸

III

, (4.11)
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where i is the index of the control volume, N the total number of interfaces that form the
boundary of control volume i and j the index of the interfaces of the control volume i.
Eq. (4.11) is grouped in several terms, which will be referred to as

I: convective flux term,
II: axi-symmetric source term, and

III: condensation source term,

respectively. The numerical treatment of each term is different and is described in the follow-
ing sections. For convenience the bar, denoting the volume averaged value, is omitted from
here on.

4.5 Construction of the median dual mesh
The 2D computational domain is divided into elements that are triangular. The median dual
mesh is constructed from the triangular elements by connecting the midpoints of the edges of
the triangle with the centroids (center of gravity) of the triangles, as is illustrated in Fig. 4.1.

FIGURE 4.1: Construction of the median dual mesh from the triangular elements.

4.6 The convective flux term

4.6.1 Edge-wise flux computation and distribution
If Eq. (4.11) is solved for the control-volume-averaged value of U associated with the control
volume constructed around each node of the computational domain, we need to compute the
fluxes over the interfaces which form the boundary of the control volumes. In this way, for
every internal interface (not for the interfaces at the boundaries of the computational domain),
the fluxes are computed twice. To prevent this, the internal interfaces are uniquely associated
with the edges of the triangles as demonstrated in Fig. 4.2.

The fluxes at the contours C1 and C2 are computed with the same method using the same
data, so that they can be treated as one interface. For convenience, the product of the normal
vector ~n and the contour C is stored as the contour vector ~C, so that ~Cab = ~n1C1 + ~n2C2,
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b
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21
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FIGURE 4.2: Edge a-b with its interfaces C1 and C2.

which, for uniqueness, is defined to point from node a to node b. A loop over all edges starting
at node a then gives the flux over all interfaces forming the boundary of the control volume
associated with node a. So, in the method, one loop over all edges in which for each edge
a-b the calculated flux is added to the control volume associated with node a and subtracted
from the control volume associated with node b, leads to the net flux for all control volumes.

4.6.2 Flux-vector splitting schemes
The convective fluxes at the interfaces are evaluated by either the AUSM+ flux splitting
scheme, proposed by Liou [41], or Van Leer’s FVS scheme [65]. Every face is appointed a
left (l) and right (r) state, also indicated as plus (+) or minus (−) states, respectively. The
left and right states are either taken equal to the state in nodes a and b, respectively, or are
constructed from a higher-order method as is explained in section 4.6.3.

AUSM+ scheme

Let the left and right states be given, then the left and right AUSM+ Mach numbers are

Ml =
~ul · ~C
a1/2 | ~C|

, (4.12-a)

Mr =
~ur · ~C
a1/2 | ~C|

, (4.12-b)

respectively, where ~ul and ~ur are the left and right velocity vector, respectively, and a1/2 is
the speed of sound at the interface, which is calculated as a1/2 = 1

2 (al + ar). Based on the
left and right Mach numbers, the following split Mach numbers are defined:

M
+(Ml) =

{
1
4 (Ml + 1)2 + β(M2

l − 1)2 |Ml| < 1
1
2 (Ml + |Ml|) |Ml| ≥ 1

(4.13-a)

M
−(Mr) =

{

− 1
4 (Mr − 1)2 − β(M2

r − 1)2 |Mr| < 1
1
2 (Mr − |Mr|) |Mr| ≥ 1

(4.13-b)
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with β a user-defined parameter in the range: − 1
16 ≤ β ≤ 1

2 . With the split Mach numbers
the interface Mach number is constructed as

m1/2 = M
+(Ml) + M

−(Mr), (4.14)

from which the split interface Mach numbers follow as

m+
1/2 = 1

2 (m1/2 + |m1/2|), (4.15-a)

m−

1/2 = 1
2 (m1/2 − |m1/2|). (4.15-b)

In analogy with the split Mach numbers, the following split pressures are defined:

P
+(Ml) =

{
1
4 (Ml + 1)2(2 −Ml) + αMl(M

2
l − 1)2 |Ml| < 1

1
2 (1 +Ml/|Ml|) |Ml| ≥ 1

(4.16-a)

P
−(Mr) =

{
1
4 (Mr − 1)2(2 +Mr) − αMr(M

2
r − 1)2 |Mr| < 1

1
2 (1 −Mr/|Mr|) |Mr| ≥ 1

(4.16-b)

with α a user defined parameter in the range: − 3
4 ≤ α ≤ 3

16 . With the split pressures, the
interface pressure follows as

p1/2 = P
+(Ml) pl + P

−(Mr) pr. (4.17)

With the split interface Mach-numbers m±

1/2 and the interface pressure p1/2 known, the nu-
merical convective flux for the 8 governing equations is constructed as follows

F1 = | ~C|(m+
1/2alUl,1 +m−

1/2arUr,1), (4.18-a)

F2 = | ~C|(m+
1/2alUl,2 +m−

1/2arUr,2) + p1/2Cx, (4.18-b)

F3 = | ~C|(m+
1/2alUl,3 +m−

1/2arUr,3) + p1/2Cy, (4.18-c)

F4 = | ~C|(m+
1/2al{Ul,4 + pl} +m−

1/2ar{Ur,4 + pr}), (4.18-d)

F5 = | ~C|(m+
1/2alUl,5 +m−

1/2arUr,5), (4.18-e)

F6 = | ~C|(m+
1/2alUl,6 +m−

1/2arUr,6), (4.18-f)

F7 = | ~C|(m+
1/2alUl,7 +m−

1/2arUr,7), (4.18-g)

F8 = | ~C|(m+
1/2alUl,8 +m−

1/2arUr,8), (4.18-h)

where Ul,i and Ur,i are the i-th component of Ul and Ur, respectively. Liou [41] argues that
the AUSM+ scheme has the following features: (1) exact resolution of a stationary normal
shock or contact discontinuity, (2) positivity-preserving property, and (3) improvement in
accuracy over its predecessor AUSM and other popular schemes, (4) simplicity and easy
generalization to other conservation laws.
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Van Leer’s FVS scheme

Van Leer’s FVS scheme closely resembles the AUSM+ scheme and is obtained by replacing
a1/2 by al and ar in Eq. (4.12-a) and Eq. (4.12-b), respectively. Furthermore, in Eqs. (4.13-a)
and (4.13-b) parameter β = 0 and in Eqs. (4.16-a) and (4.16-b) parameter α = 0. The split
interface Mach numbers are replaced by

m+
1/2 = M

+(Ml), (4.19-a)

m−

1/2 = M
−(Mr). (4.19-b)

The numerical convective flux is then given by Eqs. (4.18-a) to (4.18-h). A drawback of
the Van Leer FVS is that it fails to recognize a contact-discontinuity, leading to excessive
numerical diffusion, see Liou & Steffen [40].

4.6.3 Higher-order fluxes

Associating the solution with the center of gravity

If we assume that the solution is constant throughout the control volume, the solution at the
faces of the control volume is equal to the solution at the node associated with that control
volume. When we assume that the solution varies linearly inside the control volume, the
solution at the face of the control volume is no longer equal to the solution at the node of the
control volume. Assuming linear variation inside the control volume, the solution φ at any
point in the control volume is given by

φ(~x) = φ0 + (~∇φ)0 · (~x− ~x0), (4.20)

where φ0 is the solution in a certain fixed point inside the control volume. If we integrate
φ(~x) over the control volume, and divide the result by the surface A of the control volume,
we get

1

A

∫∫

A

φ(~x) dA =
1

A

∫∫

A

φ0 dA+
1

A

∫∫

A

(~∇φ)0 · (~x− ~x0) dA. (4.21)

Since the gradient of the solution (~∇φ)0 is constant throughout the control volume, this term
can be taken out of the integral

1

A

∫∫

A

φ(~x) dA =
1

A

∫∫

A

φ0 dA+
1

A
(~∇φ)0 ·

∫∫

A

(~x− ~x0) dA. (4.22)

If we locate the fixed point indicated by subscript 0 at the center of gravity, then the last term
in Eq. (4.22) represents the static moment around the center of gravity, which is by definition
equal to zero. Therefore, the last term vanishes, and we have

1

A

∫∫

A

φ(~x) dA =
1

A

∫∫

A

φcg dA. (4.23)
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The term on the left-hand side is the cell-averaged value φ, see Eq. (4.10). Therefore, the
assumption of a linear variation of the solution inside the control volume necessitates the
association of the control-volume-averaged solution with the solution at the center of gravity,
and not at the node of the control volume, which is in general not located at the center of
gravity of the control volume.

Reconstructing the solution in the nodes

Every control volume has a center of gravity, and since the number of control volumes is
equal to the number of nodes, the number of centers of gravity is equal to the number of
nodes. This allows the construction of a triangular mesh based on the centers of gravity of
the median dual mesh control-volumes, as shown in Fig. 4.3.

FIGURE 4.3: Centers of gravity of the median dual mesh control volumes. Dotted lines
form the node triangles, solid lines form the center of gravity triangles.

With the solution in each corner point of the center of gravity based triangles known,
we can reconstruct the gradient of the solution inside each triangle (see section 4.6.4). The
gradient of the solution at the center of gravity is taken as the weighed sum of the gradient in
the surrounding triangles:

(~∇φ)cg =
1

∑

j ωj

∑

j

ωj(~∇φ)j , (4.24)

where j is the index of the triangle surrounding the center of gravity. The weights ωj are
given by

ωj =
1

Aj
, (4.25)

so that small triangles contribute more to the gradient in the center of gravity than large trian-
gles. Note that if the gradient in all surrounding triangles is the same, then the reconstruction



4.6. THE CONVECTIVE FLUX TERM 51

of the gradient at the center of gravity is exact. With the gradient at the center of gravity
known, the solution in the node is found as

φnode = φcg + (~∇φ)cg · (~xnode − ~xcg). (4.26)

Second-order accurate fluxes

Second-order accurate fluxes can be obtained by either interpolating fluxes at the nodal points
directly, or by first interpolating conserved or primary flow variables and then calculating the
fluxes. While the latter technique is computationally more expensive, it leads to solutions
with fewer spurious oscillations, Hirsch [30]. For a structured, equidistant mesh, as shown
in Fig. 4.4, the values of the left and right state second-order, limited, primitive variables
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FIGURE 4.4: Cell nomenclature for one-dimensional reconstruction and limiting.

Q = Q(U) with Q = (ρ, u, v, p,Q0, Q1, Q2, g)
T at interface i + 1

2 are obtained using the
κ-scheme of Anderson et al. [8]

Ql
i+1/2 = Qi + { 1

4s[(1 − κs)∆− + (1 + κs)∆+]}i, (4.27-a)

Qr
i+1/2 = Qi − { 1

4s[(1 − κs)∆+ + (1 + κs)∆−]}i+1, (4.27-b)

where

∆+
i ≡ Qi+1 − Qi, (4.28-a)

∆−

i ≡ Qi − Qi−1. (4.28-b)

Furthermore, s is the nonlinear limiter defined as

s =
2∆+∆− + ε

(∆+)2 + (∆−)2 + ε
. (4.29)

with ε a small number, typically 1× 10−12, to prevent division by zero in parts of the domain
where the gradient of Q becomes zero. The value of κ is restricted to −1 ≤ κ ≤ 1. For
κ = −1 pure one-sided second-order extrapolation is obtained, while for κ = +1 second-
order central differencing is obtained. A value of κ = 1/3 leads to a third-order accurate
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upwind-approximation, see Anderson et al. [8]. Near discontinuities the limiter s reduces the
scheme to first-order (s→ 0).

For an unstructured, triangular mesh with constant mesh size, as shown in Fig. 4.5, the
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FIGURE 4.5: One-dimensional reconstruction and limiting on an unstructured
equidistant mesh.

extrapolation to the interface i+ 1
2 using values at the nodes i−1,i,i+1 and i+2 is straight-

forward, but for an unstructured, triangular mesh with varying size, as shown in Fig. 4.6, the

+1
/2 QQ−1iQ i

ii+
1/

2
l r

QQ

i +1 Qi +2

FIGURE 4.6: One-dimensional reconstruction and limiting on an unstructured mesh
with varying mesh size.

only information which is readily available at the interface is the state at nodes i and i + 1.
The state at nodes i−1 and i+2 however, is not known, since these ghost nodes, as they will
be referred to, are not part of the mesh. To be able to apply Eqs. (4.27-a) and (4.27-b) without
modification, the values at ghost nodes i − 1 and i + 2 are reconstructed from the states at
the surrounding nodes of the triangle in which the ghost node is located. This reconstruction
is second-order accurate and is described in section 4.6.4.
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4.6.4 Second-order solution reconstruction in a triangle
Consider a triangle in the (x, y)-plane, defined by its three nodes, labeled 1,2 and 3, respec-
tively, see Fig. 4.7. If we assume the quantity ϕ to vary linearly inside the triangle, the value

x
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P
2

ϕ = ϕ

ϕ
3

ϕ

ϕ

(x,y

P

)
1

2
ϕ

FIGURE 4.7: Linear reconstruction in a triangle

of ϕ at any point P inside the triangle is given by

ϕ(xP , yP ) = AxP +ByP + C, (4.30)

which is the general description of a plane in three dimensions. The constants A,B and C
follow from the solution of the following system of equations

ϕ1 = Ax1 +By1 + C, (4.31-a)
ϕ2 = Ax2 +By2 + C, (4.31-b)
ϕ3 = Ax3 +By3 + C, (4.31-c)

so that





A
B
C



 =





x1 y1 1
x2 y2 1
x3 y3 1





−1



ϕ1

ϕ2

ϕ3



 , (4.32)

with





x1 y1 1
x2 y2 1
x3 y3 1





−1

=
1

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣





y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1



 .

(4.33)
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It can be shown that the value in point P is given by the following equation

ϕP = α1ϕ1 + α2ϕ2 + α3ϕ3, (4.34)

where

α1 =

∣
∣
∣
∣
∣
∣

xP yP 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

, α2 =

∣
∣
∣
∣
∣
∣

x1 y1 1
xP yP 1
x3 y3 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

, α3 =

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
xP yP 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

. (4.35)

It is worth noting that α1, α2 and α3 denote the area of the inner triangles 4P,2,3, 4P,3,1 and
4P,1,2 as fraction of the area of triangle 41,2,3, respectively, see Fig. 4.8.
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FIGURE 4.8: Triangles 4P,2,3, 4P,3,1 and 4P,1,2.

4.7 The axi-symmetric source term
The main concern when discretizing the axi-symmetric source term is the occurrence of the
coordinate y in the denominator, see Eq. (4.11). Since y is zero for nodes which are situated
on the axis, we cannot simply use the state at the node associated with the control volume
i to determine the axi-symmetric source term. Instead, the solution in the center of gravity
is used, and since the center of gravity, unlike the node, is not located on the axis, we have
ycg 6= 0.

The axi-symmetric source term consists of two terms: H, and G. The two terms are deter-
mined from the state vector at the center of gravity Ucg:

(Hi − Gi)
Ai
yi

= [H(Ucg) − G(Ucg)]i
Ai
ycg,i

. (4.36)
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4.8 The condensation source term
Since the axi-symmetric source term is calculated in the center of gravity of the control vol-
ume, the condensation source term W is also calculated in the center of gravity,

Wi = W(Ucg). (4.37)

The nucleation rate J , as given in Eqs. (2.9) and (2.10), and the expression for the critical
droplet radius (2.6), contain the natural logarithm of the super-saturation ratio Φ, which, in
condensing flows, usually increases from a value smaller than one to a value larger than one.
To prevent division by zero, which occurs when Φ = 1, the nucleation rate is only calculated
for Φ > 1 (note that the J ≡ 0 for Φ < 1). In the computational method, the threshold
condition Φ > 1 is replaced by Φ > 1 + ε where ε is a small number, larger than machine
zero, the smallest number that can be represented on the computer compared to the number
one.

The expression for the droplet growth rate (2.11) contains the radius r of a droplet. Since
the radius is not defined when there are no droplets, calculation of ṙ can only be done when the
number of droplets is larger than one. The number of droplets Q0 however, has a dimension
of droplets per kilogram of mixture. The threshold is therefore replaced by the number of
droplets per control volume, ρQ0A

3/2 > 1 + ε, where ε is introduced for the same reason as
used for the threshold in the nucleation rate.

4.9 Time integration
For the present applications, we are only interested in finding the steady-state solution. Time-
updates are used as a relaxation method to obtain this steady-state solution. Since the time
scale of the condensation source term can be very different from that of the other three terms
in Eq. (4.11), the time-update is split into two parts. This splitting method is called fractional
time-stepping and is described in Oran & Boris [48]

∂Ui
∂t

= −Ri, (4.38-a)

∂Ui
∂t

= Si, (4.38-b)

with

Ri =
1

Ai
[(4.11)I − (4.11)II],

Si = Wi.

The first part (4.38-a) is solved using Heun’s two-step predictor-corrector method, which is
second order accurate,

U(0)
i = U(n)

i
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U(1/2)
i = U(0)

i − ∆tiR(0)
i

U(∗)
i = U(0)

i − ∆tiR(1/2)
i

U(∗∗)
i = 1

2 (U(1/2)
i + U(∗)

i ) (4.39)

with n the current time-level. For steady flows, local time-stepping is performed, which
means that the magnitude of the time-step ∆ti is the maximum allowable local time-step
per control volume. The local time-step is calculated from the CFL-criterion (named after
Courant, Friedrich and Lewy). The local time-step is a function of the maximum signal
propagation speed and the control-volume geometry

∆ti = 1
2 CFL

√
Ai

(|~u| + a)i
, (4.40)

where a is the speed of sound and ~u the velocity vector. The square root of the area provides
a characteristic length for the control volume, while the prefactor 1

2 is included to account
for the irregular shape of the median-dual mesh control-volume. Typical values for the CFL-
number are in the range of 0.9− 1.0. For flows without condensation the solution at the next
time level n+ 1 is

U(n+1) = U(∗∗). (4.41)

For flows with condensation, the second part (4.38-b) is solved using k steps of the predictor-
corrector method

U(0)
i = U(∗∗)

i

U(s+1/2)
i = U(s)

i + ∆t
(s)
i S(s)

i

U(s+1)
i = 1

2 (U(s+1/2)
i + U(s)

i + ∆t
(s)
i S(s+1/2)

i )

U(n+1)
i = U(k)

i , s = 0, 1, ..., k − 1 (4.42)

The fractional time-steps ∆t(s) are chosen such, that the production of liquid per time-step -
and thus the amount of latent heat release - is limited

∆t
(s)
i W8(U

(s)
i ) < αg, (4.43)

where W8 is the eighth component of the condensation source vector W. Since the latent
heat of water and xenon differ significantly, the value of αg is chosen differently for each
substance. For water, a typical value is αg = 10−4 kg/m3, and for xenon αg = 10−3 kg/m3.
The last fractional time-step ∆t

(s−1)
i is adjusted such that after k time-steps the sum of the

fractional time-steps is equal to ∆ti

k−1∑

s=0

∆t
(s)
i = ∆ti. (4.44)

For unsteady flows, local time-stepping cannot be applied, since the time-step at every control-
volume needs to be equal. The local time-step ∆ti is then replaced by the global time-step,
which is
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∆tg = min(∆ti) i = 1, ..., N, (4.45)

where N is the number of control volumes.

4.10 Boundary conditions
At the boundaries of the computational domain, the control volumes are closed as shown in
Fig. 4.9. To determine the fluxes over the boundary interfaces, dummy nodes are introduced
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FIGURE 4.9: Closure of the median dual mesh at a boundary, denoted by the solid
line.

across the boundary surfaces. These dummy nodes are outside of the computational domain,
and have associated with them a state vector which is updated employing the boundary con-
ditions. In the present computational method boundaries are divided into three main classes:

1. Inflow and outflow boundaries, which allow the flow of fluid through the boundary;

2. Far-field boundaries, representing the flow state in the far field;

3. Solid walls which have zero net mass flux.

The state vector in the dummy node is updated according to the type of the boundary condi-
tion. The flux at the boundary face is then computed using the flux operator, that is also used
in the interior domain.

4.10.1 Inflow and Outflow Boundaries
In the present computational method, the flow at the inflow and outflow boundaries is as-
sumed to be nearly one-dimensional. The equations for 1D flow follow from Eq. (4.7) as

∂

∂t













ρ
u
p
Q0

Q1

Q2

g













+













u ρ 0 0 0 0 0
0 u 1

ρ 0 0 0 0

0 ρa2 u 0 0 0 0
0 0 0 u 0 0 0
0 0 0 0 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u













∂

∂x













ρ
u
p
Q0

Q1

Q2

g













=
1

ρ













0
0
0
W5

W6

W7

W8













. (4.46)



58 CHAPTER 4. NUMERICS

From Eq. (4.46) we find the eigenvalues from the (7x7) Jacobian matrix as the solutions of

(u− λ)5[(u− λ)2 − a2] = 0. (4.47)

So it follows that the 7 eigenvalues, all real, are λ1 = u, λ2 = u + a, λ3 = u − a, λ4 =
u, λ5 = u, λ6 = u, λ7 = u. This clearly indicates that 5 characteristic directions correspond
with the streamline directions and the remaining two directions correspond with acoustic
waves identical to the ones for single-phase flow.

The propagation properties in a one-dimensional flow are expressed in a straightforward
way by the characteristic variables, which are described by the compatibility relations for
one-dimensional flow. The compatibility relations are found by multiplying Eq. (4.46) with
the left eigenvectors, related to the eigenvalues λ1, λ2, ..., λ7:

∂ρ

∂t
− 1

a2

∂p

∂t
+ u

(
∂ρ

∂x
− 1

a2

∂p

∂x

)

= 0, (4.48-a)

∂u

∂t
+

1

ρa

∂p

∂t
+ (u+ a)

(
∂u

∂x
+

1

ρa

∂p

∂x

)

= 0, (4.48-b)

∂u

∂t
− 1

ρa

∂p

∂t
+ (u− a)

(
∂u

∂x
− 1

ρa

∂p

∂x

)

= 0, (4.48-c)

∂Q0

∂t
+ u

∂Q0

∂x
= W5, /ρ (4.48-d)

∂Q1

∂t
+ u

∂Q1

∂x
= W6, /ρ (4.48-e)

∂Q2

∂t
+ u

∂Q2

∂x
= W7, /ρ (4.48-f)

∂g

∂t
+ u

∂g

∂x
= W8, /ρ (4.48-g)

where Wk is the k-th component of W, as given in Eq. (4.6). To be able to apply the one-
dimensional compatibility relations at a two-dimensional boundary, we have to prescribe a
direction for the velocity u and the direction x. For the velocity the direction of the velocity
vector normal to the boundary is chosen, so that u = ~u · ~en. For the direction x the local
normal direction to the boundary is chosen, i.e. x = n, see Fig. 4.9. The direction of the
velocity vector at the dummy node d is taken equal to the direction of the velocity vector at
the boundary node b.

The boundary conditions may be divided into numerical and physical boundary conditions.
The number of physical boundary conditions which may be specified depends on whether the
flow is subsonic or supersonic.

Subsonic inflow

At a one-dimensional subsonic inflow boundary (0 < u < a), there are 6 inward-running
characteristics (u, u + a, u, u, u, u) and one outward-running characteristic (u − a). We can
thus prescribe 6 physical conditions leaving one numerical condition. This numerical condi-
tion is determined by the third of the compatibility relations, Eq. (4.48-c), which describes the
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upstream-traveling acoustic wave. In the numerical method, two different boundary condi-
tions are implemented. The first one prescribes the liquid moments (ρQ0, ρQ1, ρQ2, ρg) and
the total pressure p0 and total temperature T0, the second one prescribes the liquid moments
and the static pressure p and static temperature T .

• Total-value preserving subsonic inflow boundary condition
If we specify the total pressure p0 and total temperature T0, we get, using a general
equation of state,

p0 = p(ρ0, e0), (4.49-a)
T0 = T (ρ0, e0). (4.49-b)

These two (non-linear) relations provide the total density, ρ0, and the total specific
internal energy, e0. Next, the total specific enthalpy and the specific entropy follow as

h0 = e0 +
p0

ρ0
, (4.50-a)

s0 = s(ρ0, e0), (4.50-b)

where s is a given expression for the specific entropy. Furthermore, the following
expressions also apply to the inflow boundary

h0 = e+
p

ρ
+

1

2
u2, (4.51-a)

s0 = s(ρ, e), (4.51-b)

which upon differentiation with respect to time lead to

0 =
∂e

∂t
+

1

ρ

∂p

∂t
− p

ρ2

∂ρ

∂t
+ u

∂u

∂t
, (4.52-a)

0 =

(
∂s

∂ρ

)

e

∂ρ

∂t
+

(
∂s

∂e

)

ρ

∂e

∂t
. (4.52-b)

The first and third term on the right-hand side of Eq. (4.52-b) follow from Maxwell
relations (3.26) and (3.27), which are repeated here for convenience:

(
∂s

∂e

)

ρ

=
1

T
, (4.53-a)

(
∂s

∂ρ

)

e

= − p

ρ2T
. (4.53-b)

Upon substitution in Eq. (4.52-b) we find
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0 = − p

ρ2T

∂ρ

∂t
+

1

T

∂e

∂t
, (4.54)

or

∂e

∂t
=

p

ρ2

∂ρ

∂t
. (4.55)

This last expression can now be substituted in Eq. (4.52-a), leading to

∂u

∂t
= − 1

ρu

∂p

∂t
, (4.56)

which gives a relation between the time-rate of change of the pressure and the time-rate
of change of the velocity. Eq. (4.56) can be used to eliminate ∂u

∂t from (4.48-c), leading
to the following expression

∂p

∂t
= R, (4.57)

where R is the residual

R =
u(u− a)

u+ a

(

ρa
∂u

∂n
− ∂p

∂n

)

. (4.58)

Integration in time of the pressure at the boundary is done with Heun’s predictor-
corrector method, see section 4.9. For simplicity, we consider only the predictor step.
The pressure at the intermediate time level becomes

p(1/2) = p(0) + ∆tR(0). (4.59)

Next, the density ρ and specific internal energy e at the dummy node are calculated
from the following set of equations:

p(1/2) = p(ρ, e), (4.60-a)
s0 = s(ρ, e), (4.60-b)

and the components of the velocity at the dummy node follow from

h0 = e+ p(1/2)/ρ+
1

2
u2, (4.61-a)

ud/vd = ub/vb, (4.61-b)

where u and v are the x- and y-component of the velocity vector ~u. Subscript b denotes
the boundary node and subscript d denotes the dummy node. The last relation implies
that the direction of the velocity at the dummy node is equal to the direction of the
velocity at the boundary node.
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• Static-value preserving subsonic inflow boundary condition

In case the static pressure at the boundary is known, the time-rate of change of the pres-
sure is zero. Therefore, the second term on the left-hand side of Eq. (4.48-c) cancels.
Integration in time of the velocity at the boundary is done in the same way as for the
total value preserving inflow boundary condition.

Note that the space derivatives (terms with ∂
∂n ) in both inflow boundary conditions are dis-

cretized using first order differences. Thus, for example

∂u

∂n
=
ub − ud
nb − nd

. (4.62)

Supersonic inflow

For a supersonic inflow, all the characteristics are inward-running, and we are free to specify
all of the flow variables.

Subsonic outflow

At a one-dimensional subsonic outflow boundary (0 < u < a), there are 6 outward-running
characteristics (u,u+a,u,u,u,u) and one inward-running characteristic (u-a). Therefore only
one physical condition may be prescribed, for example the static pressure (independent of
time), as is done in the present numerical method, and determine the remaining variables,
i.e. ρ and u, and the liquid moments, using compatibility relations (4.48-a) and (4.48-b),
and (4.48-d)-(4.48-g). Since the pressure is fixed, the second term on the left-hand side of
Eqs. (4.48-a) and (4.48-b) cancels, and the time-rate of change of the density and velocity
follow as

∂ρ

∂t
= − u

(
∂ρ

∂n
− 1

a2

∂p

∂n

)

, (4.63-a)

∂u

∂t
= − (u+ a)

(
∂u

∂n
+

1

ρa

∂p

∂n

)

, (4.63-b)

while for the liquid moments we find

∂Q0

∂t
= − u

∂Q0

∂n
+W5/ρ, (4.63-c)

∂Q1

∂t
= − u

∂Q1

∂n
+W6/ρ, (4.63-d)

∂Q2

∂t
= − u

∂Q2

∂n
+W7/ρ, (4.63-e)

∂g

∂t
= − u

∂g

∂n
+W8/ρ. (4.63-f)
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Supersonic outflow

For a supersonic outflow, no physical conditions may be specified and the time rate of change
of the state at the dummy nodes is completely determined by all compatibility relations. For
simplicity, the compatibility relations are not used to determine the state at the dummy node,
but all state variables are extrapolated from the interior of the computational domain to the
outflow boundary,

Ud = Ub. (4.64)

4.10.2 Far-field boundaries
Far-field boundaries are needed to limit the size of the computational domain. At the far-field
boundaries, it is checked whether there is inflow or outflow. Fur the current flow simulations,
the velocity normal to the boundary is small (subsonic). In the case of inflow, the total-value
preserving inflow boundary condition is applied. In the case of outflow, the subsonic outflow
boundary condition is applied.

4.10.3 Solid Walls
At solid walls there is no flow through the boundary. This implies that there is only a pressure
contribution to the flux at the wall. Deconick & Struys [22] derived an expression for the
pressure at the wall, consistent with the Van Leer FVS scheme

pd = pb(Mn + 1)2(1 +
γ − 1

2
Mn), (4.65)

where γ is the ratio of specific heats, and Mn is the Mach-number normal to the wall,

Mn =
~u · ~en
a

, (4.66)

with normal vector ~en defined to point outwards as in Fig. 4.9. The flux at the wall is now
calculated based on the pressure pd at the dummy node. From Eq. (4.65), we see that the
pressure at the dummy node is larger than pressure at the boundary node, in case of outflow.
The increased pressure will have the effect of turning the velocity vector more in line with the
boundary tangent. In practice, using the modified pressure pd instead of pb leads to a smaller
numerical entropy production at the wall.

4.11 Solution continuation on subsequent meshes
As a starting point for the numerical calculation of the flow in or over a given geometry,
everywhere in the field initial conditions have to be known. Since these initial conditions can
deviate substantially from the final solution, a relatively large amount of computational time
is spent on iterating the flow solution from its given initial state to a state close to the final,
converged, solution.

After establishing the flow in a certain geometry on a given mesh, it is important to show
that the solution is sufficiently grid independent. In practice this usually implies that one
first computes a flow solution on a relatively coarse mesh, and subsequently refines the mesh
until the changes in the solution become small in some norm. As initial solution on the finer
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mesh, we want to use the solution on the coarser mesh. Thus, for every node of the fine mesh,
we want to determine the solution of the coarse mesh as initial solution. For an equidistant
structured mesh, this procedure is rather straightforward, since it is easy to determine in
which square of the coarse mesh a node of the fine mesh is located. For unstructured meshes
however, this procedure is not as straightforward as it may seem. If, for every node of the fine
mesh, one has to loop over all control volumes of the coarse mesh to find where it is located,
this can be computationally very expensive, especially for three dimensional meshes, which
consist of many nodes. When halving the mesh-size, for example, the number of nodes will
increase with ∼ 23 (in three dimensions), so that for a coarse mesh consisting of Nc nodes,
the number of nodes in the fine mesh Nf will be ∼ 23Nc. The number of computational
operations needed to calculate the initial solution on the fine mesh will then be proportional
to N2, where N =

√
NcNf .

Appendix B presents a mesh-to-mesh interpolation method that is computationally less
expensive.
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The numerical results for steady flows without condensation (“dry flows”) and steady flows
with non-equilibrium condensation, presented in this chapter, are utilized to validate the
present numerical method. The numerical method is based on the numerics presented in
chapter 4, and contains the physical models which were presented in chapter 2. The results
will also give insight into the effects of condensation in transonic flows.

All triangular meshes were created with Delaundo, see Müller [47], a program that creates
triangular grids based on the Frontal Delaunay Method.

5.1 NACA 0012 airfoil
Well-known airfoils of a certain class including the Göttingen 398 and the Clark Y airfoils,
which have proved to be efficient, are nearly alike when their camber is removed (mean line
straightened) and they are reduced to the same maximum thickness, see Abbott & Von Doen-
hoff [2]. A thickness variation similar to that of these airfoils was chosen for the development
of the N.A.C.A. airfoils. An equation defining the shape was used as a method of producing
a family of airfoil sections.

If the chord is taken along the x axis from 0 to 1 the ordinates y are given by an equation
of the form

±y = a0

√
x+ a1x+ a2x

2 + a3x
3 + a4x

4. (5.1)

This equation was adjusted to give the desired shape by imposing the following conditions to
determine the constants:

1. Maximum ordinate 0.1 at 0.3 chord, x = 0.3 : y = 0.1, dy/dx = 0.

2. Ordinate at trailing edge x = 1 : y = 0.002

3. Trailing-edge angle x = 1 : dy/dx = −0.234

4. Nose shape x = 0.1 : y = 0.078

The following equation satisfying approximately the above-mentioned conditions repre-
sents a profile having a thickness of approximately 20 percent of the chord:

±y = 0.29690
√
x− 0.12600x− 0.35160x2 + 0.28430x3 − 0.10150x4. (5.2)
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Sections having any desired maximum thickness are obtained by multiplying the basic ordi-
nates by the proper factor; that is

±yt =
t

0.20
(0.29690

√
x− 0.12600x− 0.35160x2 + 0.28430x3 − 0.10150x4), (5.3)

where t is the maximum thickness. For the NACA 0012 airfoil, the maximum thickness is
t = 0.12. The shape of the airfoil is shown in Fig. 5.1.
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FIGURE 5.1: NACA0012 airfoil

There is a vast amount of data available for the flow over the NACA 0012 airfoil at free-
stream Mach-number M∞ = 0.8 and angle of attack α = 1.25◦. Six numerical results,
obtained independently by different authors, are reported in ref. [4]. In this AGARD report
the static pressure, Mach and total pressure distribution along the upper and lower surface
of the airfoil are given. Also, the lift-coefficient cl, the drag-coefficient cd, and the moment-
coefficient around the 1/4 chord point cm, for the airfoil are given. The results reported in
ref. [4] were all obtained on structured grids of either C or O type.

5.1.1 Generation of the unstructured mesh
A problem which is encountered when generating a mesh around the NACA 0012 airfoil,
is that the trailing edge of the airfoil has a finite thickness, ±yte = 0.0105t, which is an
undesirable property since a finite trailing edge thickness will introduce unwanted vortices
as well as some unsteadiness at the trailing edge. Therefore, the trailing edge should have
zero thickness. Rivers and Wahls [58] discuss different methods used to overcome the finite
trailing edge thickness problem. Based on the work by Rivers and Wahls [58], a sliver of
thickness is removed from the lower and upper surface, varying linearly from the trailing
edge to the leading edge, so that

±yt,c = ±yt ∓ 0.0105tx

=
t

0.20
(0.29690

√
x− 0.12810x− 0.35160x2 + 0.28430x3 − 0.10150x4) (5.4)

where yt,c is the ordinate of the airfoil with zero thickness at the trailing edge.
Since the flow-field over the NACA 0012 airfoil is known from other numerical methods,

this solution can be used to refine the mesh at places of high solution gradient. Large gradients
occur around the stagnation point at the nose, the trailing edge, and at the shock on the upper
surface as well as the (weak) shock on the lower surface.

The distance between two nodes will be referred to as the mesh size h. The mesh is refined
at the nose, to capture the large gradient of the flow expanding from the stagnation point over
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the sharply curved nose. The refined mesh at the nose has a constant mesh size hnose and
runs from x/c = 0 to x/c = 0.03. The mesh at the surface is also refined at both the upper
and lower shock location. The mesh size at both shocks is equal to hshock. The mesh size
between the nose and the shock is increased with 10% every successive node until the mesh
size reaches a given maximum size hmax. To capture the shock at the upper surface, which
has a height of approximately one chord length, the mesh around the shock is also refined,
again with mesh size hshock.

The inflow and outflow boundary, and the far-field boundaries at the lower and upper part
of the domain are located at 50 chord lengths from the airfoil. Since the flow field far from
the airfoil is uniform, the mesh can be chosen conveniently coarse at these boundaries. The
number of nodes on the far-field boundaries and the inflow and outflow boundary is set to 10.

The mesh-size at the nose and the mesh size at the shocks on the lower and upper surface,
are input parameters of a program which creates the nodes on the surface of the airfoil and at
the inflow, outflow and far-field boundaries. These nodes are then used as input for Delaundo,
the program which creates the triangular mesh. Four different meshes have been created,
indicated by mesh I, II, III and IV, respectively. The corresponding mesh parameters are
listed in table 5.1.

mesh size h [x/c] number of nodes
mesh nose shock max total on airfoil (upper-lower)

I 0.003 0.005 0.015 4019 103 - 106
II 0.001 0.005 0.015 4803 143 - 143
III 0.001 0.003 0.010 6249 171 - 174
IV 0.001 0.002 0.008 7536 202 - 207

TABLE 5.1: NACA 0012 mesh parameters

In comparison with the structured meshes given in ref. [4], the unstructured meshes I to
IV combine a higher number of nodes on the airfoil with a lower number of total nodes.
The finest structured mesh, for example, is of O-type and consists of 320 × 64 nodes with
320 nodes on the airfoil. The ratio of total nodes and nodes on the airfoil is therefore 64,
while for unstructured mesh IV this ratio is around 18. It is therefore expected that the
computational effort to obtain a converged solution with similar accuracy is lower for the
present unstructured meshes.

In Fig. 5.2 mesh I is shown. In the left plot we see the complete mesh, and in the right plot,
a close-up of the mesh around the airfoil is shown.

5.1.2 Results

The flow is solved with the 2D version of the numerical method, using the AUSM+ scheme
with α = 3/16 and β = 1/8, and second-order accurate fluxes with κ = 1/3. Since the total
pressure is of atmospheric level, the air is treated as a perfect gas. The boundary condition
at the inflow is the total-value preserving subsonic inflow boundary condition with p0 = 1.0
bar and T0 = 300 K. At the outflow the subsonic outflow boundary condition is used, with
static pressure p/p0 = 0.656. Assuming that we have the same static pressure far upstream
and downstream of the profile, the resulting free-stream Mach number is M∞ = 0.8. At
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FIGURE 5.2: NACA0012 airfoil: triangular mesh I.

the upper and lower boundaries of the domain the far-field boundary conditions are imposed,
with the same total flow conditions as at the inlet boundary.

The L2-norm of the residuals of the state vector, defined as

L2(U) =
1

N

√
√
√
√

N∑

i=1

(
Un+1
i − Uni

∆ti

)2

, (5.5)

where N is the number of nodes, and n the iteration number, for mesh I is shown in Fig. 5.3.
After 10,000 iterations the L2-norm of the residual of the density has dropped below 10−3.
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FIGURE 5.3: NACA 0012, M∞ = 0.8, α = 1.25◦. L2 norm of the residuals for mesh I.

The evolution of the residuals hereafter exhibits no bumps, and the location of the shock on
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the upper side of the airfoil after 10,000 iterations remains the same. The lift-, drag- and
moment-coefficient after 15,000 iterations and 20,000 iterations are identical up to the fourth
decimal. Since the coefficients given in ref. [4], have only four decimals, it is concluded that
the solution is accurate enough once the L2-norm of the residual of the density is lower than
0.5 × 10−4.

For the solution obtained on mesh I, the total pressure loss is calculated along the upper
and lower surface. The result is shown in Fig. 5.4. As a reference, the distribution given in
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FIGURE 5.4: NACA 0012, M∞ = 0.8, α = 1.25◦. Total pressure loss on the upper
and lower surface.

ref. [4] for the 320 × 64 O-type mesh, which is the only solution provided in tabular form,
is also plotted in this figure. This solution will be referred to as the “AGARD” solution. The
“AGARD” solution is used here for comparison with the present results.

From Fig. 5.4 we see that there is a relatively large total-pressure loss on the nose at both
the upper and lower surface of the mesh. Since the flow should be isentropic here, the total
pressure loss is purely numerical. The jump in the total pressure loss across the shock wave
as obtained with the present method agrees well with that of ref. [4], while the shock in the
present result is slightly downstream of the shock in the results of ref. [4]. Also, at the trailing
edge the present method features a peak in the total-pressure loss due to numerical effects.

To appreciate this, one should realize that, in theory, at the trailing edge the total pressure
is two-valued, caused by the difference in shock strength for the shocks on the upper and the
lower surface. At the trailing edge the static pressure is continuous, so that the difference
in total pressure results in a difference in velocity (Mach-number). This implies that the
streamline (contact surface) from the trailing edge is tangential to the lower surface, i.e. the
upper-surface trailing edge point is a stagnation point and the lower surface trailing-edge
point is a point where M 6= 0. In the numerical method, the trailing-edge is a node and
uniquely associated with it is a control volume, i.e. we cannot accommodate a two-valued
solution at the trailing edge.

In an attempt to reduce the total pressure loss at the nose, the mesh-size at the nose is
reduced (mesh II). The solution is iterated until the L2-norm of the residual of the density is
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lower than 0.5 × 10−4, which is after approximately 8,400 additional iterations. The total-
pressure loss along the upper and lower surface for mesh II after 10,000 iterations is plotted
in figure 5.5. As can be seen from Figs. 5.4 and 5.5, the total pressure loss at the nose has

0 0.25 0.5 0.75 1

mesh II
AGARD1-

p 0
/p

0,
∞

(Lower) x/c

1-
p0

/p
0i

nf
0 0.25 0.5 0.75 1

-0.02

0

0.02

0.04

0.06

0.08

(Upper) x/c

FIGURE 5.5: NACA 0012, M∞ = 0.8, α = 1.25◦. Total pressure loss on the upper
and lower surface.

reduced considerably, and it can be concluded that the mesh-size at the nose is now small
enough. The position of the shock on the upper surface, however, has also changed (further
downstream). To investigate the sensitivity of the shock location on the mesh-size, a solution
is obtained on mesh III and IV, which have a smaller mesh size in the shock region and a
smaller maximum mesh size. Again, the same criterion for convergence of the solution as
was used on mesh I and II is used. For all meshes, the position of the shock on the upper
surface is tabulated in table 5.2. The position of the shock is different for each mesh, but the

mesh upper shock (x/c) cl cd cm
I 0.647 0.3791 0.0271 -0.0460
II 0.650 0.3861 0.0269 -0.0478
III 0.654 0.3908 0.0271 -0.0488
IV 0.655 0.3902 0.0267 -0.0485

TABLE 5.2: NACA 0012, M∞ = 0.8, α = 1.25◦. Aerodynamic coefficients and shock
position for the different meshes.

changes in position are small, and the difference in position for mesh III and mesh IV are
very small. Furthermore, if we consider the pressure distribution over the airfoil, shown in
Fig.5.6, we see that the shock on the upper surface is steeper than the shock in the reference
AGARD solution, but that the end-point of the shock for both the present result (mesh IV)
and the reference AGARD solution is located at the same position. From Fig. 5.6 we also
observe that for the lower surface, the (weak) shock is more smeared.
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2
∞), mesh IV compared with ref. [4]. cp∗ = 0.43464.

In table 5.2, the lift-coefficient cl, drag-coefficient cd, and moment-coefficient cm around
the 1

4 -chord point are also given. These aerodynamic coefficients are found by integrating the
static pressure over the surface, see Anderson [6]. Since the x-direction corresponds with the
free-stream direction, we find:

cl =
l

1
2γp∞M

2
∞c

=
−1

1
2γp∞M

2
∞c

∫

∂A

p ny dC, (5.6)

cd =
d

1
2γp∞M

2
∞c

=
−1

1
2γp∞M

2
∞c

∫

∂A

p nx dC, (5.7)

cm =
m

1
2γp∞M

2
∞c

2 =
1

1
2γp∞M

2
∞c

2

∫

∂A

p{y nx − (x− 1
4c)ny} dC, (5.8)

where ~n is the outward-pointing contour normal on the airfoil contour ∂A.
The calculated values of the lift-, drag-, and moment-coefficient are different for each

mesh, but converge to a certain value with decreasing mesh size. The aerodynamic coeffi-
cients are all somewhat larger than those reported in ref. [4]. In ref. [4] there is also some
scatter in the values of cl, cd, and cm contributed by the different authors. The values cor-
responding to the “AGARD” solution are: cl = 0.3632, cd = 0.0230, cm = −0.0397. The
scatter in the data provided by the different authors amounts to ∆cl = 0.0273, ∆cd = 0.0023,
∆cm = 0.0072.

The difference between the present results and the “AGARD” solution are caused by
the different pressure distributions over the airfoil, see Fig. 5.6. Since the lift- and drag-
coefficients are found by integrating the pressure over the surface, they are proportional to
the area enclosed by the cp-curve. For the upper surface, the positive contribution to the lift
is larger than for the reference case, primarily because in our result the shock is steeper than
in the reference case. For the lower surface, the negative contribution to the lift is smaller be-
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cause in our result the (weak) shock is more smeared. The net result is a higher lift-coefficient
for the present results in comparison to the reference case.

Fig. 5.7 shows the map of Mach iso-contours for the solution on mesh IV. Clearly visible
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FIGURE 5.7: NACA 0012, M∞ = 0.8, α = 1.25◦. Iso-Mach lines, mesh IV (∆M =
0.05).

is the shock on the upper side of the profile, extending almost one chord length into the flow-
field. The shock on the lower side of the profile is weak and not as clearly visible as the
stronger shock on the upper side.
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5.2 Parallel-jet nozzle A1
The parallel-jet nozzle A1 is a nozzle with relatively little divergence downstream of the
throat section, and has a straight outflow section downstream of the divergent part of the
nozzle. The flow in the nozzle is therefore very sensitive to variations in the back pressure,
and to variations in the inlet vapour fraction. The flow in this 2D nozzle has been extensively
investigated, numerically as well as experimentally, by Schnerr and Adam [3], which makes
this a very suitable test-case to validate the present numerical method.

The geometry of the nozzle is given in Fig. 5.8. The nozzle has a straight outflow section

192.1 mm

y  =46.346 mmex

M   =1.2ex

R =300 mm*

M=1

y =45 mm

x

*

y

FIGURE 5.8: Geometry of the parallel-jet nozzle A1 (schematic).

with a length of ≈ 104.5 mm, starting at ≈ 87.6 mm downstream of the throat. The throat
of the nozzle has a height of 2y∗ = 90 mm, and has the shape of an arc with a radius
R∗ = 300 mm. The height of the nozzle at the outflow boundary is 2y∗ ≈ 92.69 mm, so
that for an isentropic flow of air through the nozzle, the outflow Mach number is Mex = 1.2.
More details can be found in Adam ([3], section 5.2)

We will consider the flow of dry air and the flow of wet air through the parallel-jet nozzle.
In the experiments, the parallel outflow section of the nozzle is connected to an adjustable
diffuser, which makes it possible to control the pressure at the outflow of the nozzle. The
experimental setup is sketched in Fig. 5.9. For the flow of wet air, the diffuser is adjusted
such that the cross-sectional area of the diffuser is larger than the cross-sectional area of
the parallel outflow section of the nozzle. In this way, the flow in the nozzle is completely
determined by the geometry of the nozzle, and not by the pressure at the parallel outflow
boundary of the nozzle. The flow of wet air exhibits a shock in the diverging part of the
nozzle, upstream of the parallel outflow section of the nozzle. The location of the shock is
completely determined by the geometry of the nozzle, since the flow expands into vacuum
downstream of the diffuser. For the flow of dry air, the diffuser was adjusted such that the
flow exhibits a shock at the same location as is the case for the flow of wet air.

In the numerical simulations, two different geometries are used. Flows with condensation
are calculated on a mesh, in which the flow due to a slight divergence downstream of the
parallel part of the nozzle is expanded once more. In this way, the flow is accelerated to
supersonic velocity, in the same way as in the experiments due to the expansion into the
vacuum. The flow with condensation is therefore solely determined by the geometry of the



74 CHAPTER 5. VALIDATION

Aligner

valve

Adjustable

p

diffuser

area

Ball−bearing

0

Measurement

Laboratory

Sieve

Vacuum tank

0T

0

Φ0

p

Outside

∆

FIGURE 5.9: Schematic construction of the supersonic wind-tunnel, figure reproduced
from Adam’s thesis [3].

nozzle, independent of the outflow boundary condition. On the other hand, the flow of dry air,
without condensation, is calculated on a mesh that does not have a divergent part downstream
of the parallel part of the nozzle. In this way, a back pressure can be imposed at the outflow
boundary, which in its turn can be adjusted such that a shock will be located at the same
location as for the flow with condensation.

The shape of the nozzle wall, which is needed to create the triangular mesh, was obtained
from the structured mesh generated by Adam [3]. Two different geometries are available for
the A1 nozzle, one with a straight outflow section, used for the dry flow simulations (dry air
mesh), and one with an added divergent part downstream of the straight outflow section, used
for the wet air flow simulations (wet air mesh).

The dry air mesh consists of 211×41 nodes in x- and y-direction, respectively. The wet
air mesh consists of 221×41 nodes in x- and y-direction, respectively. From the dry air
structured mesh, two different meshes were created, one using every second node of the
structured nozzle mesh boundaries, and one using all nodes of the boundaries. The first
triangular mesh thus has 250 boundary nodes and consists in total of 3519 nodes and 6786
triangles, and will be referred to as the dry air coarse mesh. The second triangular mesh has
500 boundary nodes and consists in total of 13805 nodes and 27108 triangles, and will be
referred to as the dry air fine mesh.

In a similar way as for the dry air structured mesh, a coarse and a fine wet air unstructured
mesh were created. The wet air coarse mesh consists of 3646 nodes and 7030 triangles, and
the wet air fine mesh consists of 14294 nodes and 28066 triangles. The dry air coarse mesh
and the wet air coarse mesh are shown in Fig. 5.10. Note that the meshes are not symmetric
around the axis y = 0. For flows with bifurcation, an additional symmetric mesh would be
needed, which can be constructed by mirror imaging an unstructured mesh for y ≥ 0 around
the x−axis. Since bifurcation is not studied for the flow in the A1 nozzle in this thesis, this
is not considered further.

Since the coarse meshes consists of considerably less nodes, the number of iterations
needed to obtain a converged solution is substantially lower for the coarse meshes than for
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Wet air coarse mesh

Dry air coarse mesh

FIGURE 5.10: A1-nozzle: coarse triangular meshes created with Delaundo, for dry
air and wet air flow simulations.

the fine meshes. The amount of work needed to perform one iteration is also less for the
coarse meshes. Results obtained on the coarse meshes are used as initial solution on the
fine meshes (using the linear solution interpolation method described in appendix B), and the
results obtained on the fine meshes are compared with those obtained on the coarse meshes.

For both the dry air and wet air test cases, the reservoir (total) pressure and temperature
at the inlet are T0 = 298.7 K and p0 = 1.004 bar, respectively. The wet air has a reservoir
saturation of Φ0 = 35.6%. The maximum liquid mass fraction follows from Eq. (2.95),
gmax = 7.253 g/kg. The imposed pressure at the outflow boundary for the dry air is p =
0.6339 bar. The flow is solved with 2D version of the computational method, using the
AUSM+ scheme with α = 3/16 and β = 1/8, and second-order accurate fluxes with κ =
1/3. Since the total pressure is of atmospheric level, the air/water mixture is treated as a
perfect gas. Nucleation is calculated with the CNT model.

5.2.1 Dry flow with shock
First, the flow of dry air with a shock is calculated on the coarse dry air mesh. An initial
solution with a Mach number ofM = 0.7 is imposed everywhere in the nozzle. The boundary
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condition at the inflow is the total-value preserving subsonic inflow boundary condition. At
the outflow the subsonic outflow boundary condition is used. The L2-norm of the residuals,
given by Eq. (5.5), is shown in Fig. 5.11. After approximately 2,000 iterations the flow
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FIGURE 5.11: A1-nozzle, coarse mesh.
Residuals for dry flow with shock.
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FIGURE 5.12: A1-nozzle, coarse mesh, dry
flow with compression shock. Pressure at
symmetry line of the nozzle for different it-
eration levels.

becomes supersonic in the throat, and after approximately 5,000 iterations a shock starts to
form directly downstream of the throat. As the iteration process continues, the shock moves
further downstream. The bumps in the residuals, best seen in the residuals of ρu and ρv,
indicate the shock moving downstream from one control volume to the next one. Finally,
after more than 14,000 iterations, the shock stays at the same discrete location, and only
minor changes are taking place in the flow field, as can be seen from the smooth decrease of
the residuals. The pressure rise through the steady shock is shown in Fig. 5.12, from which
we can also see that the shock stays at the same location, and the small changes in pressure
at the shock become smaller per iteration, indicating that the solution is converging to a final,
steady-state solution.

With the solution interpolation method, the solution on the coarse mesh obtained after
24,000 iterations, is used to generate an initial solution on the fine mesh. The flow conditions
are kept the same, and the computational 2D flow method is run for another 50,000 itera-
tions. The residuals of the iteration process are shown in Fig. 5.13. As can be seen from
the residuals, the convergence is considerably slower than for the coarse mesh. After 50,000
iterations, the residuals have decreased more than five orders in magnitude, and the solution
is considered to be sufficiently converged.

The solution on the fine mesh after 50,000 iterations is shown in Fig. 5.14. The flow reaches
a maximum Mach number of M = 1.159 (compared to M = 1.154 for the coarse mesh) at
the symmetry line directly upstream of the shock, indicating that the shock is weak. The total
pressure loss resulting from the shock is 1−pt/p0 = 0.0046 (compared to 1−pt/p0 = 0.0051
for the coarse mesh). Theoretically, following from the Rankine-Hugoniot relations for a
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FIGURE 5.13: A1-nozzle, fine mesh. Residuals for dry flow with shock.

ba

FIGURE 5.14: Numerical simulation on fine mesh of dry flow with shock in parallel-jet nozzle
A1;

quantity symbol light grey dark grey increment
a Mach-number M > 1 > 1.1 0.02
b pressure p/p0 > 0.6 > 0.8 0.01

normal shock with upstream Mach number M = 1.159, the shock should result (for dry air)
in a total pressure loss of 1 − pt/p0 = 0.0049. At the outflow boundary the Mach number is
Mex = 0.83 (which is the same as for the coarse mesh).

5.2.2 Flow with condensation
Now that the dry flow field with a steady compression shock is achieved, it can be used as
initial solution for the flow with condensation. First, an initial solution on the coarse wet air
mesh is obtained from the solution on the fine dry air mesh, with the solution interpolation
method described in appendix B. The saturation is changed from Φ0 = 0 to Φ0 = 0.356,
corresponding to a maximum liquid mass fraction of gmax = 7.25 g/kg. The boundary
condition at the outflow is changed to the supersonic outflow boundary condition.

The residual during the iteration process is shown in Fig. 5.15. As can be seen, the solution
converges to machine zero in about 50,000 iterations.

The solution interpolation method is used to obtain an initial solution on the fine mesh,
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FIGURE 5.15: A1-nozzle: residuals, flow
with condensation and shock, coarse mesh.

Iterations

R
es

id
ua

l

0 20000 40000

10-6

10-5

10-4

10-3

10-2

ρ
ρu
ρv
ρE

FIGURE 5.16: A1 nozzle: residuals, flow
with condensation and shock, fine mesh.

based on the converged, wet flow solution on the coarse mesh. The residuals of the iteration
process are shown in Fig. 5.16. Here, only the evolution of the residuals up to 50,000 iter-
ations is shown, to emphasize the relatively slow convergence compared to the convergence
on the coarse mesh. After approximately 300,000 iterations the residuals stop decreasing and
become machine zero. The solution after 300,000 iterations is shown in Fig. 5.17. Note that
the solution in the divergent part downstream of the parallel part of the nozzle is not shown,
since we are not interested in this part of the solution. Recall that the divergent part was only
added to the nozzle to ensure supersonic velocity at the outflow boundary, so that the out-
flow boundary does not have any influence on the solution upstream of the added divergent
part. In Fig. 5.17a we see the expansion of the mixture to supersonic speed with a maximum
Mach number of Mf = 1.157 at the symmetry line. Downstream of the throat, the super-
sonic flow is terminated by a normal shock, represented on the mesh by three nodes. The
location of these points is x = 3.39, x = 3.51 and x = 3.64 cm (at the symmetry line). In
Fig. 5.17b we see the saturation of the flow increasing from Φ < 1 upstream of the throat
to a super-saturation with maximum value of Φ = 20.1 one cell upstream of the shock. As
soon as the air/water-vapour mixture becomes super-saturated, droplets start to form in the
nucleation process, as can be seen in Fig. 5.17c, where the logarithm of the nucleation rate
is shown. The nucleation rate reaches a maximum of J = 2.03 × 1019 m−3s−1 in the cen-
tral part of the nozzle just upstream of the shock. The shock interacts with the condensation
process, as it cuts off the process of nucleation which is a direct result of the decrease of
the super-saturation. Fig. 5.17d gives the number of droplets formed during nucleation, most
in the central region of the nozzle, where the super-saturation was highest. The number of
droplets becomes significant in the nucleation zone just upstream of the shock. The droplets
formed here, do not evaporate completely when passing through the shock. Downstream of
the shock the droplets grow again, because, despite the shock, there is still super-saturation.
From the shock, the droplets are convected downstream with the flow. The release of latent
heat during the condensation, caused by the growing droplets, is an internal source of energy
to the fluid in the gaseous phase. As a result, the fluid at subsonic speed downstream of
the shock, expands in the straight outflow section to nearly sonic speed just upstream of the
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FIGURE 5.17: Numerical simulation on fine mesh of wet flow in parallel-jet nozzle A1. The
arrow indicates the shock position. The results are shown up to the diverging outflow section.

quantity symbol light grey dark grey increment
a Mach-number Mf > 0.9 > 1.1 0.02
b super-saturation Φ > 2 > 12 1
c nucleation rate log10 J [m−3s−1] > 10 > 18 1
d number of droplets Q0 [1014kg−1] > 1 > 2 0.2
e liquid mass fraction g/gmax > 0.05 > 0.5 0.025
f Hill droplet radius rH [µm] > 0.1 > 0.2 0.01

added divergent outflow section. The distribution of the liquid–mass fraction and that of the
droplet radius, shown in Figs. 5.17e and 5.17f, respectively, are quite smooth. The liquid–
mass fraction increases downstream of the shock to a maximum value of 0.535 g/gmax on the
symmetry line just upstream of the divergent outflow section. The droplets reach a maximum
radius of 0.258 µm near the wall just upstream of the divergent part of the wall. That the
droplets near the wall are larger is because the number of droplets at the wall is smaller, and
have the opportunity to grow larger than the larger amount of droplets in the central region of
the nozzle. However, still most liquid is in the central region, see Fig. 5.17c.

5.2.3 Comparison between fine and coarse mesh wet flow solution

For the flow with condensation, the results obtained on the coarse and the fine mesh are
compared by considering the flow solution along the symmetry line. The results are shown in
Fig. 5.18. The properties such as Mach-numberMf , temperature T and pressure p agree very
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FIGURE 5.18: A1-nozzle, wet flow. Coarse (−··−··−) and fine (———) mesh solution along
the symmetry line. The results are shown up to the diverging outflow section.

well, with the results for the coarse mesh somewhat more smeared at the shock. Although
not clearly visible from Fig. 5.18, the super-saturation Φ on the coarse mesh is somewhat
larger upstream of the shock, with the maximum super-saturation just upstream of the shock
somewhat smaller than on the fine mesh.

This results, for the coarse mesh, in a slightly larger region with significant nucleation rate
J , with the maximum nucleation rate somewhat smaller, all in all resulting in a larger number
of droplets Q0. Also, as can be seen from Fig. 5.18, the liquid-mass fraction g is slightly
larger for the coarse mesh solution. As a consequence, the Hill droplet radius rH distribution
is practically the same for the coarse and fine mesh solution.

Since the solution on the fine mesh does not differ significantly from the solution on the
coarse mesh, we can conclude that on the fine mesh the solution has become sufficiently
grid-independent.

5.2.4 Comparison with results from literature
The thesis of Adam [3] contains experimental and numerical results for the A1 nozzle. The
experimental results consist of schlieren pictures of the dry flow and the wet flow, and of
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the static pressure along the centerline of the nozzle, also for both the dry flow and the wet
flow. The numerical results contain the Mach number, the nucleation rate, and the liquid mass
fraction.

Experimental and numerical schlieren images

Schlieren images give a qualitative representation of the gradient of the density in a speci-
fied direction. Schlieren-like images can therefore be obtained from the numerical results by
calculating the gradient of the density throughout the flow field. For the A1 nozzle, the ex-
perimental schlieren image represents the gradient in the x-direction, therefore the numerical
schlieren image is calculated as ∂ρ

∂x . Fig. 5.19 shows the experimental and numerical schlieren
images. Comparing the two schlieren images, we see that at the centerline the shock in the

FIGURE 5.19: A1 nozzle, wet flow. Numerical schlieren image ( ∂ρ∂x ) produced from
present result (upper), and schlieren picture of experiment (lower).

experiment is at the same location as in the numerical result. However, contrary to the nu-
merical result, the shock is curved in the experiment. The curvature near the wall is caused
by the interaction of the shock with the boundary layer along the wall, an effect not present
in our model of the flow. In the experiment, we also observe the turbulent boundary layer
downstream of the shock.
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Experimental and numerical static pressure distribution

In the experimental set-up of Schnerr & Adam [3], there are pressure orifices in the side-
wall along the nozzle-axis of the measurement area (see also Fig. 5.9). The static pressure
distribution, as pressure difference with the atmosphere, can then be measured by means of
U-tube manometers. In this way, Schnerr (see ref. [3]) obtained the static pressure along the
centerline at the side-wall of the A1 nozzle for both the dry flow and the wet flow. The exper-
imentally obtained static pressure distribution is shown in Fig. 5.20, together with the static
pressure distribution obtained from the present numerical results, for both the dry flow and
the wet flow. The identical pressure distribution up to a location just downstream of the shock
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FIGURE 5.20: A1-nozzle, comparison between experimentally obtained pressure dis-
tribution and present results for the dry flow and the wet flow. The + indicates the
location where the (numerically calculated) flow becomes supersonic.

for both the dry flow and the wet flow indicates, that not much heat is added over the shock.
Downstream of the shock the pressure increases slightly due to the geometrical divergence
of the nozzle, before the condensation sets in, releasing heat in the flow, resulting in an in-
crease of the velocity and a monotonically decreasing pressure. For the dry flow, the pressure
in the parallel part of the nozzle remains constant. Comparison between the experimental
and numerical pressure distribution shows differences just upstream of the shock as well as
downstream of the shock. Because of the interaction of the shock with the side-wall bound-
ary layer in the channel, the pressure increase over the shock in the experimental pressure
measurements is somewhat smeared out. In the experiment, the shock substantially increases
the thickness of the boundary layer aft of the shock, so that the effective cross sectional area
of the nozzle decreases. Since the flow is subsonic downstream of the shock, the decrease
in effective cross sectional area will lead to an acceleration of the flow and a lower static
pressure compared to the numerical results, for both the dry and the wet flow. The differ-
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ence between the numerical results and the experiment is ∼ 0.03p0. Adam [3] finds very
similar differences, both qualitative and quantitative, between his numerical results and the
experimental data (see next section).

Comparison with other numerical results

In the thesis of Adam [3], a numerical method is employed to simulate the wet flow in the A1-
nozzle. The numerical method contains the same nucleation and droplet growth models as the
present numerical method. The method applied by Adam [3] however, is based on structured
grids, as opposed to the unstructured triangular grids used for the present computations.

The numerical results presented by Adam [3], contain the Mach numberMf , the nucleation
rate J , the liquid mass fraction g, and the static pressure along the centerline. Adam [3] finds
a maximum Mach-number of Mf = 1.16 just upstream of the shock, while for the present
results the maximum Mach-number is Mf = 1.157. The shock location is identical for
both results. The maximum nucleation rate found by Adam is somewhat larger, J = 5×1019

m−3s−1 and for the present computations J = 2.03×1019 m−3s−1. The liquid mass fraction
at the outflow centerline is also somewhat larger, g/gmax = 0.56 for Adam’s computational
results compared to g/gmax = 0.535 for the present computational results.

In conclusion, the overall agreement between the present numerical results and the numer-
ical results obtained by Adam [3], is good.

5.2.5 Discussion of the present numerical result
Although the present result for the wet flow in the A1 nozzle agrees quite well with ex-
perimental data and with another numerical result, the sensitivity of the solution to the ex-
pressions for the material properties, as presented in section 2.4, was not considered. For
the surface tension, two expressions were presented, Eq. (2.96), obtained from Dohrmann’s
thesis [23], and Eq. (2.97), obtained from Lamanna’s thesis [38]. The first expression was
used in the numerical simulation of the wet flow in the A1 nozzle, since this expression was
also used in the numerical method used by Adam [3]. In this way, utilizing the same mate-
rial properties for water as Adam did, the correct implementation of the present numerical
method has been validated, as presented in the preceding subsection.

To investigate the sensitivity of the solution of the wet flow in the A1 nozzle for the ex-
pression of the surface tension, expression (2.97) presented by Lamanna [38], has been imple-
mented in the present numerical method. For the same flow conditions, the present numerical
method, now containing expression (2.97) for the surface tension of water, is applied to ob-
tain a converged solution on the fine mesh for the wet flow in the A1 nozzle, starting from
the solution obtained with Dohrmann’s expression for the surface tension of water.

The residuals converge to machine accuracy, in the same oscillating manner as shown in
Fig. 5.16. The solution however, is slightly different from the solution presented in section
5.2.2. The shock is located somewhat further downstream, as is the region with nucleation
upstream of the shock. The region in which the nucleation occurs is somewhat larger in
streamwise direction. As a result, there are more droplets in the flow downstream of the
shock, and with the distribution of the liquid mass fraction being more or less the same, but
located further downstream, the droplets are somewhat smaller in size. This demonstrates
not only the complexity of the condensation process and the need to correctly represent the
material properties of the condensing substance, but also the extreme sensitivity of the flow in
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the A1 nozzle to small changes in the conditions or model parameters. Lamanna [38] argues
that “the entire set of experimental data can best be correlated with a numerical method
based on the following combination: reduced ICCT for the nucleation rate, the transitional
Gyarmathy model for the droplet growth process and, the newly proposed surface tension
fit”. The transitional Gyarmathy model (describing the droplet growth rate) is different from
the Hertz-Knudsen droplet growth model used in the present calculations in that it takes into
account the variation in Knudsen number during the growth of the droplets. The transitional
Gyarmathy model also takes into account the difference in the temperature of the droplets and
that of the flow, caused by the latent heat released by the vapour condensing on the droplets.

From this we can conclude that the good agreement of the present numerical results for the
wet flow in the A1 nozzle, which are obtained by applying the CNT model rather than the
reduced ICCT model, the Hertz-Knudsen model instead of the transitional Gyarmathy model,
and Dohrmann’s expression instead of Lamanna’s for the surface tension of water, is caused
by a “cancellation” of effects induced by the mathematical models for the condensation pro-
cess applied in the present method. However, we should take into consideration that the wet
flow in the A1 nozzle is extremely sensitive to small changes in the flow conditions, which is
caused by the geometry of the A1 nozzle. It is expected that the flow in or around less crit-
ical geometries than the A1 nozzle is less sensitive to (the parameters in) the mathematical
models used to describe the condensation process.
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5.3 Supersonic underexpanded dry jet
A supersonic underexpanded jet is generated from a sonic or a supersonic flow exhausting
from an axi-symmetric nozzle into an environment with a lower static pressure. The nozzle
can have a shape which is optimized for a certain application, but it can also have an arbi-
trary shape, e.g. a rupture in a pipe containing gas at high pressure. Underexpanded jets
are found in a number of applications, for example rocket exhausts at high altitude, vehicle
manoeuvring thrusters, propulsion simulation devices and fuel injectors.

The basic features of the supersonic plume are shown in Fig. 5.21.
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FIGURE 5.21: Schematics of the plume of an underexpanded nozzle

The flow ejecting from the nozzle at sonic velocity expands through an expansion fan
centered at the edge (lip) of the nozzle. The expansion fan accelerates the flow to supersonic
velocity and turns the flow away from the centerline, deflecting the flow over an angle of
90 degrees, such that it becomes adjacent to the vertical wall. The static pressure at the
vertical wall just downstream of the nozzle lip becomes smaller than the ambient pressure,
and a compression shock is formed which compresses the flow to the ambient pressure level.
Downstream of this shock, there is a stagnation point, where the flow meets the ambient gas
and separates from the vertical wall. The jet boundary, representing the contact discontinuity
between the internal flow and the external ambient surroundings, is continuously curving
towards the supersonic internal flow. Compression due to the curved jet boundary enhances
the formation of the shock. The curved shock has the form of a barrel, and is therefore
referred to as the barrel shock.

In the region enclosed by the barrel shock, streamlines seem to radiate from a single point,
a “source” at a certain distance downstream of the nozzle orifice, see Ashkenas & Sherman
[9]. The flow inside the barrel shock expands to a pressure which is much lower than the
ambient pressure, and, depending on the pressure ratio, a shock normal to the centerline is
formed, the so called Mach disk (named after its discoverer). The Mach disk decelerates the
flow to subsonic velocity. Away from the centerline, the Mach disk curves towards the flow
(concave when viewed from upstream) and intersects with the barrel shock. At the inter-
section a reflected shock is formed, which turns the streamlines, which are directed towards
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the centerline just upstream of the reflected shock, in the direction of the centerline. The
curvature of the Mach disk implies that the flow is being turned away from the centerline at
the triple point. This corresponds to a Mach reflection, following Hornung’s classification,
see Hornung [32]. From the resulting triple-point, a slip line emanates to accommodate the
difference in total pressure between the flow through the barrel shock and the reflected shock,
and that through the Mach disk.

Detailed experimental data is available for underexpanded axi-symmetric jets. An excellent
paper on this subject was written by Ashkenas & Sherman [9], who investigated the location
of the Mach disk as a function of the reservoir/ambient pressure ratio for different gases,
and gave a comprehensive explanation of the viscous effects in the free jet. It should be
kept in mind that their results are based on measurements using a nozzle that consists of
a converging part only, so that the outflow orifice is also the nozzle throat. Ashkenas &
Sherman [9] conclude that the location of the Mach disk does not depend on properties of the
gas, such as specific heat ratio, gas constant, etc., but only on the pressure ratio, as is evident
from Fig. 5.37. From this figure, Ashkenas & Sherman [9] derived the following empirical
relation for the distance of the Mach disk from the nozzle exit plane:

xM/D ≈ 0.67(pr/pa)
1/2, (5.9)

where D is the nozzle throat diameter, pr the total pressure in the reservoir, and pa the
pressure in the static ambient. The same type of relation was presented in an earlier paper by
Crist et al. [18], but with a slightly different slope,

xM/D ≈ 0.65(pr/pa)
1/2, (5.10)

The difference between both expressions is probably caused by the experimental difficulty of
determining the exact location of the Mach disk. Crist et al. [18] study the Mach disk in more
detail, and come to the following conclusions:

1. The Mach-disk location is insensitive to:
(a) the ratio of specific heats γ,
(b) condensation,
(c) nozzle lip geometry, and,
(d) absolute pressure level.

2. The Mach-disk location is given by Eq. (5.10), for pressure ratios to 300,000 and prob-
ably higher.

3. Diameters of Mach disk, jet boundary, and barrel shock:
(a) increase with decrease in γ,
(b) increase with condensation,
(c) decrease at high stagnation density for which intermolecular forces become im-

portant.

4. Ratio of Mach-disk diameter to Mach-disk distance from nozzle exit-plane is approxi-
mately a constant for high pressure ratios.

5. For the high Mach-number region, properties along the jet axis may be approximated
by flow through a hypothetical conical nozzle.

Abbett [1] also gives a comprehensive explanation of the various flow features occurring in
the underexpanded jet. Axi-symmetric Euler and Navier-Stokes equations have been used to
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obtain numerical solutions for underexpanded jet plumes with impressive results, see Cumber
et al. [20], [21], Gribben et al. [26], Berzins et al. [11], Prudhomme & Haj-Hariri [53].
These computational results demonstrate good agreement with experiments for a wide range
of conditions using parameters such as Mach-disk location and centerline velocity and are
reported to capture the complex flow structure in detail.

5.3.1 The computational domain
The primary goal is to simulate the flow ejecting from a circular nozzle. The injector consists
of a reservoir containing quiescent gas at high pressure pr, and a converging nozzle leading
to the exit where the flow discharges into the ambient surroundings where the pressure is
equal to pa. The ratio between the pressure in the reservoir and the ambient surroundings
is high enough that the nozzle flow becomes sonic and an underexpanded jet is formed at
the exit. The computational domain, consisting of the nozzle and the external region (the
ambient) is shown in Fig. 5.22. The outflow and far-field boundaries are preferably located at
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FIGURE 5.22: Computational domain (not to scale) for axi-symmetric nozzle, xM is
the estimated Mach-disk location according to Eq. (5.9)

a large distance from the nozzle orifice. For all calculations, the far-field boundary is placed
at y = 2xM and the outflow boundary is placed at x = 4xM , where the location of the Mach
disk xM is determined from the empirical rule due to Ashkenas & Sherman [9], see Eq. (5.9).
The influence of the location of the far-field and the outflow boundary on the solution is
expected to be negligible, as is confirmed by the present computational results.

5.3.2 Boundary conditions
At the nozzle inflow, the stagnation conditions are the same as in the reservoir. Therefore, at
the nozzle inflow, the total value preserving inlet boundary condition is applied. At the axis
of rotational symmetry, the velocity normal to the boundary has to be zero. The boundary is
therefore similar to that of a solid wall, and the solid wall boundary condition is applied.

At the outflow boundary, the situation is somewhat more complicated. Depending on the
pressure ratio and the location of the outflow boundary, the jet wake can have either a subsonic
or a supersonic core, bounded in both cases by a supersonic ring. Outside this supersonic ring
the flow becomes subsonic again. For the subsonic flow in- and outside of the supersonic
ring, a static pressure has to be prescribed. For the flow outside the supersonic ring, the
static pressure is roughly equal to the ambient pressure, since it may be assumed that the
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flow velocity is very small here. In case the jet core is subsonic, no definite statements about
the outflow pressure can be made. However, as became clear from numerical experiments, a
simple boundary condition that extrapolates all flow solution variables from the interior to the
outflow boundary, was sufficient enough to determine the state over the whole of the outflow
boundary.

At the far-field boundary, the situation is as follows. The shear layer separating the jet from
the ambient surroundings would be a vortex sheet in the case of inviscid flow. In viscous flow
the shear layer entrains fluid from the ambient surroundings, which results in an entrained
flow in the ambient. In the numerical method for solving the Euler equations for inviscid flow,
numerical effects will spread the vortex-sheet into a shear layer which entrains fluid from
the ambient surroundings. Therefore, there is inflow over the complete far-field boundary.
Streamlines thus emanate from far away where the flow is quiescent, and therefore at this
boundary the far-field boundary condition is applied. The total pressure there is equal to the
ambient pressure pa, and the total temperature is taken equal to the total temperature in the
reservoir, Ta = Tr.

5.3.3 The mesh
The computational domain, bounded by the boundaries as depicted in Fig. 5.22, is discretised
by triangular elements. The mesh is preferably dense in regions with large gradients, and
coarse in regions with small gradient. For axi-symmetric flows, it is important to limit the
size of the elements on the symmetry-line, since the axi-symmetric contributions are predom-
inant in the vicinity of the centerline. Slight errors in the radial velocity approximations can
produce large errors in the solution, see Prudhomme & Haj-Hariri [53].

In the jet plume, bounded by the barrel shock and the Mach disk, the flow is expanding
rapidly, and the mesh should be dense enough to capture the large flow gradients occurring
in the plume. From Eq. (5.9) the downstream length of the jet is known, and from Crist et al.
[18] it follows that the diameter of the jet is approximately half the length of the jet. Behind
the Mach disk, flow gradients become smaller, and the mesh-size is chosen larger behind the
Mach disk. Away from the rotational symmetry-line, outside the jet boundary, flow gradients
are small, and the mesh-size is accordingly large.

In summary, the computational domain is divided into three regions as depicted in Fig. 5.23.
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FIGURE 5.23: Division of the computational domain for the underexpanded jet into
three regions with different mesh spacing.

A program that uses the desired mesh-sizes in each region as input, generates the boundary
nodes, which are in turn used by the meshing program Delaundo to generate the unstructured
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triangular mesh.
An example of a relatively coarse mesh, for a pressure ratio of pr/pa = 10.0 (xM ≈ 2.1D)

is shown in Fig. 5.24. It demonstrates the utility of using an unstructured grid: nodes can be
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FIGURE 5.24: Example of a (relatively coarse) triangular mesh for the underexpanded
jet, pr/pa = 10.

concentrated relatively easy in regions with large gradients, while away from these regions
the grid becomes quickly coarse again.

5.3.4 Instabilities occurring in the jet
As was already found in previous numerical investigations of the supersonic underexpanded
jet, Berzins et al. [11], Cumber et al. [20] [21], Prudhomme & Haj-Hariri [53], the Euler
equations, lacking a diffusive mechanism, are not well-suited to simulate strongly underex-
panded jets computationally. Therefore, results obtained by other authors, are based on the
Navier-Stokes equations instead.

In the inviscid plume of the underexpanded nozzle, a very well-known instability, known
as the Kelvin-Helmholtz (K-H) instability, occurs. The instability can develop when two
parallel streams of different velocities are adjacent to each other. At the interface, or vortex
sheet (infinitesimal shear layer), the flow can be unstable to perturbations, even infinitesimal
ones. This is in particular the case for shear layers of constant strength, stretching shear
layers are to a lesser extent subject to instability. The shear layer will deform into waves,
which grow in amplitude further downstream, and eventually the shear layer will roll up and
form convective patterns called Kelvin cats eyes, shown in Fig. 5.25 (photo taken from An
Album of Fluid Motion, Milton Van Dyke [24]).

In the flow-field of a strongly underexpanded jet, there are two regions where a shear layer
is present: along the jet boundary, where the flow emanating from the nozzle meets the am-
bient surrounding gas, and at the slip-line originating from the triple-point, which is the point
where the barrel shock and the Mach disk intercept and form a reflected shock, see Fig. 5.21.
Without the presence of a dissipative mechanism, such as viscosity, the billows caused by the
K-H instability grow without bound, and cause the flow field to become unstable, therefore
preventing a steady-state solution.

Since the present computational method is based on the Euler equations, the only diffusive
mechanism that is present is of numerical origin, included in the Truncation Error (T.E.),
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FIGURE 5.25: Example of a Kelvin-Helmholtz instability. From “An Album of Fluid
Motion” by Milton van Dyke [24].

defined as the difference between the original governing equations and the discrete approx-
imation to it, Anderson [6]. In case the fluxes are of first order, the lowest order in the T.E.
of the momentum equations contain second derivatives of the velocity, so that this term is
similar to the viscous terms in fluid flow equations, Anderson [6]. Thus, in case of first-
order fluxes, the finite-volume method introduces an artificial viscosity in the solution. This
is often called implicit artificial viscosity, as opposed to explicit artificial viscosity, which is
purposely added to a discretization scheme. Artificial viscosity tends to reduce the gradients
in the solution whether physically correct or numerically induced. This effect, which is the
direct results of even derivative terms in the T.E., is called artificial dissipation.

As became evident from attempts to numerically simulate the underexpanded jet, using
second-order accurate fluxes (generally referred to as a second–order method, which lacks
second–order derivatives in the T.E.) leads to instability. Along the jet boundary, the Kelvin–
Helmholtz (K-H) instability occurs, causing the jet boundary to oscillate with increasing
amplitude downstream. As a result, the location of the intercepting barrel shock oscillates,
resulting in its turn to a Mach–disk moving up- and downstream with time. In this unsteady
flow, vortices are continuously shed from the jet boundary, and are convected downstream
with the flow. These unsteady flow effects become more pronounced with decreasing mesh
size. However, if first-order fluxes (generally referred to as a first–order method) are used
instead of second–order fluxes, the solution is steady and converges to machine zero. The
major drawback of first–order methods is that the T.E. decreases linearly with h, where h is
the mesh-size, while for second–order methods the T.E. decreases with h2. Therefore, the
number of control volumes required to obtain an accurate (grid converged) solution of the
governing equations, is in general much larger for first–order methods. Since the number of
control volumes is directly related to the computational effort required to compute a solution,
second–order methods are generally preferred over first–order methods, since for a desired
level of accuracy they save computational time. However, it is clear that for the present
computations, the second-order method does not give satisfactory results, necessitating the
use of the first-order method.

A further argument to use a numerical method that suppresses the K-H instabilities is that
the literature suggests that the Mach disk is quite stationary, indicating that it does not depend
dominantly on the jet-plume boundary and slip-line instabilities.

5.3.5 Results for pressure ratio 30
The underexpanded jet of air for a pressure ratio of pr/pa = 30 is calculated with the axi-
symmetric version of the computational method, using the AUSM+ scheme with α = 3/16
and β = 1/8, and first-order accurate fluxes. Since the pressure in the reservoir is kept
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constant and equal to pr = 1 bar, the perfect gas equation of state is used. For the pressure
ratio of 30, a grid convergence study is carried out to check whether the obtained solution is
sufficiently grid-independent. Three sets of meshes are generated with different mesh-sizes,
to study the influence of the mesh-size on the solution. The mesh sizes in the three regions I,
II and III, listed in section 5.3.3, are tabulated in table 5.3.

mesh size h
mesh region I region II region III number of nodes
coarse D/18 D/6 xM/1.5 4,708

intermediate D/36 D/12 xM/3.0 17,918
fine D/54 D/18 xM/4.5 39,840

TABLE 5.3: Mesh sizes in the different regions of the computational domain for an underex-
panded jet with pr/pa = 30. xM is the Mach-disk location according to Eq. (5.9) and D is
the diameter of the nozzle exit.

On the three meshes, the iteration process is continued until the total temperature throughout
the whole domain is constant up to the sixth digit, which is then considered as a converged
solution. This corresponds roughly to a decrease in the L2-norm of the residuals in density,
momentum and total energy of six orders of magnitude (if the iterative process is continued
further, the residuals can be reduced to machine zero, but this has no noticeable influence
on the solution). On the coarsest mesh, for y/D < 0.5, an initial solution is imposed with
Mach number M = 1, total pressure pr = 1 bar and total temperature Tr = 300 K. For
y/D ≥ 0.5 the initial conditions are equal to the ambient conditions. After 4,000 iterations
the solution is sufficiently converged. Subsequently, the solution on the coarse mesh is used
as initial solution on the intermediate mesh. Since the initial solution is already very accurate,
it takes only 3,000 iterations to obtain a sufficiently converged solution on the intermediate
mesh. The solution on the intermediate mesh is then used as initial condition for the fine
mesh. After a further 5,000 iterations the solution on the fine mesh is sufficiently converged.

In Fig. 5.26, the iso-contours of the Mach number are plotted, for the coarse, intermediate
and fine mesh. On all meshes, the barrel shock, the Mach disk and the reflected shock are
clearly visible, becoming more pronounced as the mesh size decreases. As can be seen from
the left figure, the location of the intersection of the Mach disk with the rotational symmetry-
line is nearly identical for both the coarse and the intermediate mesh. However, the diameter
of the Mach disk is larger on the intermediate mesh. Comparing the solution on the fine and
the intermediate mesh, the location of the Mach disk is again nearly identical, and also the
diameters of the Mach disk are nearly identical, with the diameter on the fine mesh slightly
larger.

Since the Mach disk is represented on the mesh by three nodes, it is not immediately
clear which point should be chosen as “the” Mach-disk location. The diameter of the Mach
disk is found as the point where the barrel shock and Mach disk intercept, and since in the
numerical solution both shocks have a finite thickness, the diameter can only be determined
with a limited accuracy. The centerline location and diameter of the Mach disk are shown
in Fig. 5.27 as functions of the mesh-size h. In the left plot, the squares represent the first
and last node of the discrete representation of the Mach disk, and the circle represents the
intermediate point of the Mach-disk location on the centerline. In the right plot, the squares
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FIGURE 5.26: Underexpanded jet, pr/pa = 30. Mach number iso-contours for solutions on
the coarse, intermediate and fine mesh. Light grey: M > 1 ; dark grey: M > 4 ; ∆M = 0.2
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disk diameter for the coarse, intermediate and fine mesh.

denote the lower and upper side of the barrel shock at the Mach disk, and the circle denotes
the average of these two points. Using Taylor series expansion, we can write for the location
of the Mach disk:

x̂M (h) = x̂M (0) + x̂′M (0)h+ 1
2 x̂

′′

M (0)h2 +O(h3) (5.11)

where x̂ = x/D. Using the values found on the coarse, intermediate and fine mesh, we can
write, using the Taylor series expansion:
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where h1, h2 and h3 denote the mesh-size in region I (see table 5.3) of the coarse, interme-
diate, and fine mesh, respectively. Omitting the truncation error O(h3), which is allowed
for sufficiently small values of h, we can solve for the unknowns with x̂M (0), x̂′M (0), and
x̂′′M (0). In effect, we find parabolic functions for x̂M , and these parabola are drawn as dashed
lines in Fig. 5.27. As can be seen from this figure, the parabola intersect at h = 0. This
encourages the assumption that the solution which would be obtained on a mesh with an in-
finitely small mesh-size can be extrapolated from the solutions on the coarse, intermediate
and fine mesh.

The extrapolated value of the location of the Mach disk at the centerline is xM ≈ 3.84D.
This is in good agreement with the value that follows from the empirical formula, Eq. (5.9),
which gives xM = 3.67D, yielding a relative error of approximately 5%. The extrapolated
value of the diameter of the Mach disk is DM ≈ 2.0D. This value agrees well with the
empirical formula reported by Crist et al. [18], DM/D ≈ 0.35

√

pr/pa, which results for
pr/pa = 30 in a diameter ofDM = 1.9D, also yielding a relative error of approximately 5%.
In Fig. 5.28, the data on which the empirical formula of Crist et al. [18] is based is shown.

FIGURE 5.28: Underexpanded jet.
Mach-disk diameter versus pres-
sure ratio, figure taken from Crist et
al. [18]. Dj is the diameter of the
nozzle at the exit, i.e. Dj = D. The
pressure ratio p0/p∞ corresponds
to pr/pa.

The scatter which is evident from this figure, is much larger than the difference between the
present result and the value obtained from the empirical formula. Note that the plot includes
data for underexpanded jets of different gases for pressure ratios ranging from approximately
20 up to 200,000.

In Fig. 5.29, the Mach-number along the centerline is plotted as a function of the distance
from the nozzle orifice. Note that this plot does not extend up to the location of the Mach
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FIGURE 5.29: Underexpanded jet,
pr/pa = 30. Mach number along the
centerline, present calculations.

FIGURE 5.30: Mach number along the centerline,
figure taken from Ashkenas & Sherman [9].

disk, and that we changed from x/D to x/r, with x/r = 2x/D. As was already evident from
Fig. 5.26, the Mach-number at a certain location downstream of the nozzle orifice, increases
with decreasing mesh-size. However, the difference between the intermediate and fine mesh
result is small compared to the difference between the coarse and intermediate mesh result.
In Fig. 5.30 the experimentally determined Mach-number distribution along the centerline
is shown. The difference between the present results and the experimental data is approxi-
mately 3%. The small discrepancies between the computational results and the experimental
data are probably caused by the artificial dissipation present in the computational method.
The artificial dissipation has the effect of decreasing flow gradients, just like viscous effects
would. The artificial dissipation will be different from the real viscous dissipation, causing
the difference between the experiments and the computation. As the amount of artificial dis-
sipation becomes smaller with decreasing mesh-size, flow gradients become larger, and the
Mach-number increases.

Recirculation behind the Mach disk

Looking in detail at the underexpanded flow, a recirculation zone is seen right behind the
Mach disk in the coarse mesh solution, as depicted in Fig. 5.31. Such a recirculation zone is
evidence of the presence of a vortical flow region. The vorticity required for this could have
been produced by the Mach disk, which must then vary in strength from the centerline to the
triple point. However, it follows from Fig. 5.31 that the Mach disk is almost a straight shock
and that along the shock the variation of the Mach number just upstream of the shock is very
small, suggesting that the Mach disk is almost constant in strength.

The recirculation behind the Mach disk was also found by Berzins et al. [11] for a pressure
ratio of 31. Gribben et al. [26] also report the occurrence of a recirculation zone behind
the Mach disk. However, they consider the underexpanded jet ejecting from a converging-
diverging nozzle with an exit Mach-number of M = 3, for a pressure ratio of 342.9. There-
fore it is difficult to compare their results with the present results.

As is evident from Fig. 5.31, the recirculation zone disappears as the mesh is refined, and
on both the intermediate and the fine mesh, there is no recirculation present. To ensure that
the solution obtained on the coarse mesh is unique (i.e. to exclude any possible bifurcation),
the solution without recirculation obtained on the fine mesh is used as initial solution on the
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FIGURE 5.31: Underexpanded jet, pr/pa = 30. Streamlines and Mach iso-contours
for the solutions on the coarse mesh (left) and intermediate mesh (right).

coarse mesh, thereby providing the computational method an initial solution without recircu-
lation. The iterative process converges quickly, and the solution obtained is identical to the
previous solution, i.e. there is no evidence to suggest that the solution on the coarse mesh
is not unique and that another solution without recirculation is also possible on the coarse
mesh. This clearly suggests that the vorticity seen in the solution on the coarse mesh has no
physical meaning.

5.3.6 Results for varying pressure ratio

Underexpanded jets of air are calculated for a range of pressure ratios, and the results are
compared with available experimental data. The flow is calculated with the axi-symmetric
version of the computational method, using the AUSM+ scheme with α = 3/16 and β =
1/8, and first-order accurate fluxes. Since the pressure in the reservoir is kept constant and
equal to pr = 1 bar, the perfect gas equation of state is used.

Mach distribution for different pressure ratios

For pressure ratios ranging from 10 to 110 with an increment of 20, converged solutions are
obtained on meshes with a mesh-spacing that is equal to that of the intermediate mesh. A
new “optimal” mesh is created for each pressure ratio. For pressure ratios of 30, 50 and 70,
the Mach iso-contours are shown in Fig. 5.32, and for pressure ratios of 70, 90 and 110, the
Mach iso-contours are shown in Fig. 5.33. Note that for pr/pa = 110 a slightly coarser
mesh was used, since Delaundo was not able to create the intermediate mesh for this pressure
ratio.

As is clearly visible from these figures, the topology of the flow remains very similar. The
centerline Mach distribution, up to the Mach disk, is identical for the different pressure ratios,
with the jet expanding further for higher values of the pressure ratio pr/pa. This illustrates
the supersonic character of the flow. Note that in the expansion the Mach number reaches a
maximum value of almost 7.1 for pr/pa = 110.

The diameter of the jet boundary, the barrel shock and the Mach disk all increase with in-
creasing pressure ratio. These observations are all in line with the experimental observations
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FIGURE 5.32: Mach iso-contours for pressure ratios 30, 50 and 70. Light grey: M > 1 ;
dark grey: M > 5 ; ∆M = 0.2.
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FIGURE 5.33: Mach iso-contours for pressure ratios 70,90 and 110. Light grey: M > 1 ;
dark grey: M > 5 ; ∆M = 0.2.

made by Crist et al. [18]. Also note that with increasing pressure ratio the expansion of the
flow about the nozzle lip becomes deeper and the “barrel shock” starts higher up along the
wall. This effect contributes to the plume becoming wider with increasing pressure ratio.

Characteristics jet for different pressure ratios

For the range of pressure ratios, several characteristics of the jet are plotted in Fig. 5.34. The
location of the Mach disk at the centerline xM increases with increasing pressure ratio, as
does the diameter of the Mach diskDM . From Fig. 5.34 we also see that the maximum Mach-
number Mmax, the Mach number just upstream of the Mach disk, increases with increasing
pressure ratio. We can also observe that the barrel-shock stand-off distance yb increases with
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increasing pressure ratio. The increase seems to be more or less proportional to pr/pa, in
contrast to xM and DM , which are, according to Ashkenas & Sherman [9] and Crist et al.
[18], proportional to

√

pr/pa.

In Fig. 5.35, the pressure distribution along the centerline for pressure ratios of 10, 30,
50, 70 and 90 is shown. The upper plot shows the static pressure relative to the ambient
pressure. From this plot we observe that the static pressure downstream of the Mach disk is
about equal to the ambient pressure, and nearly independent of the pressure ratio pr/pa. This
is in agreement with the experimental observations made by Ashkenas & Sherman [9]. In
the lower plot of Fig. 5.35, the static pressure relative to the reservoir pressure is shown. The
distributions coincide up to the Mach disk, emphasizing the supersonic character of the jet.
In both plots in Fig. 5.35 we observe that the pressure exhibits oscillations which decay in
amplitude downstream and decrease in amplitude with increasing pressure ratio. The increase
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FIGURE 5.35: Underexpanded jet: pressure distribution along the centerline for different
pressure ratios.

in pressure on the centerline just downstream of the Mach disk is caused by the slip surface
emanating from the triple point (see Fig. 5.21), which decreases the effective area through
which the air “processed” by the Mach disk flows. The subsonic flow downstream of the
Mach disk is accelerated up to supersonic speed, indicating that the slip surface creates a
virtual throat. Downstream of this virtual throat, the flow remains supersonic.
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Validation: Mach-disk location for different pressure ratios

Shown in Fig. 5.36 are the locations of the Mach disk for the range of pressure ratios, and the
empirical formula from Ashkenas & Sherman [9].
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derexpanded jet.
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FIGURE 5.37: Un-
derexpanded jet.
Mach-disk location,
figure taken from
Ashkenas & Sher-
man [9]. Plenum
chamber pressure p0

corresponds to the
reservoir pressure
pr, test chamber
pressure p1 corre-
sponds to ambient
pressure pa.

The location of the Mach disk is somewhat over-predicted by the present computational
method, but the results are well within the scatter in the experimental data, as is evident
from Fig. 5.37. As we have seen from the grid convergence study, the Mach disk tends to
move upstream as the mesh is refined (see Fig. 5.27), from which it can be concluded that
agreement between experiment and the present results would be better still for meshes with
smaller mesh-size.
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6.1 Introduction
Laser produced plasmas provide a source of extreme ultraviolet (EUV) light rendering them
well suited for use in next generation lithography tools, see Kanouff et al. [34] and De Bruijn
et al. [14] [15]. The plasma is generated by directing a (pulsed) laser at the supersonic plume
of an underexpanded free xenon jet, as is illustrated in Fig. 6.1. The expansion in the jet
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FIGURE 6.1: Schematic representation of plasma formation in a supersonic jet

causes the xenon to become super-saturated such that the gas partially condenses forming
a non-equilibrium mixture of gas and small droplets. The gas-liquid mixture absorbs the
laser energy leading to the formation of the desired laser produced plasma. The plasma
is usually produced at a safe working distance downstream of the nozzle exit in order to
minimize interaction between the hot plasma and the nozzle orifice, effectively minimizing
debris production at the nozzle orifice.

The amount of EUV that is produced and is readily available depends on the laser power,
the EUV absorption by the gas surrounding the plasma, and on the amount of matter that
the laser beam encounters as it travels through the jet (the laser focal region). Absorption
losses can be decreased by the use of a coaxial nozzle, in which the target gas (producing
the plasma) flows through an inner nozzle, and a buffer gas (ideally not absorbing any laser
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power) flows through an outer annular nozzle. The buffer gas confines the jet, effectively
decreasing the jet width and its expansion-rate, increasing the amount of target gas (xenon)
inside the laser focal region.

At the FOM-Institute for Plasma Physics Rijnhuizen, there is ongoing research in laser
produced plasmas. The main focus is on ways to increase the EUV yield. Since the liquid
droplets play an important role in the production of the EUV-light, a clear understanding of
the condensation process taking place in the jet plume would be of great value. Towards this
end, the flow with condensation in an axi-symmetric underexpanded xenon jet is computed
with the present numerical method. A difference between the ongoing experiments at FOM
Rijnhuizen and our numerical simulations is the shape of the nozzle. In the experiments, a
converging-diverging nozzle is used, while in the computations a converging nozzle is used.
In a converging-diverging nozzle, especially for a nozzle with a relatively long diverging
part, most of the condensation would take place in the nozzle itself. If a nozzle is used with a
convergent part only, the condensation will take place in the supersonic jet itself, so that the
effect of condensation on the shape and structure of the jet plume becomes more pronounced
than for a converging-diverging nozzle.

Since the main aim of the present investigation is merely to study the condensation process
in an underexpanded xenon jet, the pressure ratio is chosen smaller than the pressure ratios of
more than 1,000 used in the experiments carried out at FOM Rijnhuizen. Partly this accounts
for the pressure drop in the diverging part of the nozzle. Furthermore, the reduced pressure
ratio limits the axial and lateral size of the jet plume and therewith the computational do-
main, hereby keeping computation times within acceptable bounds. The absolute level of the
pressure in the reservoir is set to pr = 20 bar, and the pressure in the chamber in which the
jet exits, i.e. the ambient environment, is equal to pa = 1 bar, resulting in a pressure ratio
of 20. The temperature in the reservoir is chosen such that the saturation in the reservoir is
Φ0 = 30.0%, corresponding to a temperature Tr = 296.9 K. Since the condensation is taking
place in the ambient, we can assume that the assumption of xenon behaving as a perfect gas is
valid. Furthermore, a pressure of 20 bar is still moderate enough for the perfect gas law to be
valid. The nozzle exit diameter is chosen as 1.0 mm, a value which is of the same order as the
exit diameter of the nozzles used at FOM Rijnhuizen and the nozzles used in the experiments
by Crist et al. [18], for underexpanded jets of, amongst others, nitrogen and argon.

In the light of the discussion in section 5.2.5 on the results of the wet flow in the A1 nozzle,
it is noted here that the application of the present method to the condensation in the under-
expanded flow of xenon, serves as a demonstration of the capability of the present method
to numerically simulate such a flow. This because the amount of experimentally obtained
material properties of xenon available in literature is very limited, while also recommenda-
tions like Lamanna [38] for air/water regarding the combination of nucleation model, droplet
growth model, and surface tension are not available for the condensing flow of xenon.

6.2 Xenon jet without condensation

The computational domain is defined in the same way as for the computations without con-
densation, see Fig. 5.22. The mesh used is the fine mesh as described in table 5.3. The fine
mesh is chosen since the solution on the fine mesh will exhibit the most detail. The mesh
consists of 28,260 nodes and 55,875 triangles. Before computing the flow-field with con-
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densation, first a flow-field is computated without condensation. This is achieved by setting
the maximum liquid mass fraction to zero, gmax = 0. In this way an underexpanded jet
is obtained of a gas that has the thermodynamical properties of xenon, but which does not
condensate.

The flow is calculated with the axi-symmetric version of the computational method, using the
AUSM+ scheme with α = 3/16 and β = 1/8, and first-order accurate fluxes. The perfect
gas equation of state is used. The converged solution for the flow field without condensation
is shown in Fig. 6.2. For comparison, the solution on the same mesh for the flow of air, for the
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FIGURE 6.2: Underexpanded jets of xenon without condensation and of dry air; pr/pa = 20,
Tr = 296.9 K, 28,260 nodes.
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Mach-number M > 1 > 4 0.2
Temperature [K] T < 200 < 100 20

same pressure ratio and the same reservoir conditions, is also shown in this figure. The two
solutions are very similar in topology. The expansion of xenon is deeper, Mmax,Xe ≈ 6.1
and Mmax,air ≈ 4.9, and also the temperature is lower for xenon. The location of the Mach
disk is approximately the same for xenon without condensation and for air. The diameter
of the Mach disk, however, is clearly larger for air. These results are both in line with the
conclusions drawn by Crist et al. [18], who state that the Mach-disk location is insensitive for
the ratio of specific heats (γ = 1.40 for air and γ = 1.67 for xenon), and that the diameter of
the Mach disk increases with decreasing ratio of specific heats γ. In the right plot of Fig. 6.2
it can be seen that the temperature decreases to T ≈ 25 K in the expansion upstream of the
Mach disk. Creasy et al. [17] studied the underexpanded jet of hydroxyl radical (OH) at
a pressure ratio of pr/pa = 1288.14. At this relatively large pressure ratio, Creasy et al.
[17] compare numerical results with experimental data, and find that their numerical method
predicts a minimum temperature as low as 10 K, while experimental data reveals that the
temperature does not drop below a certain threshold (∼ 25 K). For the present pressure ratio,
pr/pa = 20, the temperature does not drop below 25 K either. Furthermore, condensation
will add heat to the flow so that the temperature decrease in the supersonic expanding flow
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is smaller, as we will see, for the xenon flow with condensation the minimum temperature is
∼ 120 K.

6.3 Xenon jet with condensation
With the underexpanded flow solution of xenon for gmax = 0 available, we can now compute
the flow solution with condensation, by setting the liquid mass fraction to gmax = 1. The
computational method is then run for another 6,000 iterations. The convergence history is
shown in Fig. 6.3. As can be seen from this figure, the residual of ρ reduces almost four
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FIGURE 6.3: Underexpanded wet xenon jet, pr/pa=20, Tr = 296.6 K, Φ0 = 0.30.
Convergence history, 28,260 nodes.

orders of magnitude, but the residual of ρg, representing the amount of liquid per unit volume
of vapour/liquid mixture (or liquid volume fraction), reduces just two orders of magnitude.
This illustrates the sensitivity of the flow to the condensation process; after approximately
2,000 iterations, the liquid volume fraction residual remains at the same level, but the density
residual still decreases. Eventually, after approximately 5,000 iterations, the density residual
reaches a minimum as well. The largest residuals are found in the vicinity of the nozzle
lip, where the flow is deflected supersonically over an angle of 90 degrees and large flow
gradients are present. However, the solution is stable and does not change noticeably after
the minimum level of the residuals is reached. The solution after 6,000 iterations is shown
in Fig. 6.4. Globally speaking, the topology of the flow remains similar to the one in the
xenon jet without condensation. In Fig. 6.4a we see that the flow expands to a supersonic
speed of approximately Mf = 3.8 right upstream of the Mach disk. In comparison with
the flow without condensation, shown in Fig. 6.2, in which M = 6.1, the Mach-number is
much lower, clearly indicating that the heat addition due to the condensation process reduces
the Mach-number. We also see that the Mach disk moves slightly downstream, but that the
diameter of the Mach disk has increased considerably, i.e. from 0.55D to 0.8D. This is due
to the condensation process, which causes the stagnation pressure to decrease and the static
pressure to increase. To accommodate the static pressure increase, the jet boundary moves to
a larger diameter. Since the barrel shock, which is now weaker, is formed by expansion waves
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FIGURE 6.4: Underexpanded wet xenon jet, pr/pa=20, Tr = 296.6 K, Φ0 = 0.30, 28,260
nodes;

quantity symbol light grey dark grey increment
a Mach-number Mf > 1 > 3 0.2
b super-saturation Φ > 1 > 2 0.2
c nucleation rate log10 J [m−3s−1] > 10 > 20 2
d number of droplets log10Q0 [kg−1] > 14 > 15 0.1
e liquid mass fraction g > 0.1 > 0.2 0.02
f Hill droplet radius rH [µm] > 0.2 > 0.4 0.02

that reflect as compression waves from the constant pressure boundary, the barrel shock will
move to a greater diameter. Since the Mach disk terminates at the barrel shock, its diameter
is also increased, provided that the location of the Mach disk does not change too much as a
result of the condensation. This observation is in line with the experimental observations by
Crist et al. [18], who find that the diameter of the Mach disk, the diameter of the jet boundary,
and the diameter of the barrel shock increase with condensation.

In Fig. 6.4a we also observe that the Mach disk has moved downstream compared to the
location in the flow without condensation. For the dry flow, the Mach disk is located at
xM ≈ 3.1D, while for the wet flow xM ≈ 3.4D. Crist et al. [18] conclude from their
experimental observations, that the location of the Mach disk is insensitive to condensation.
Their conclusion is based on the fact that the Mach-disk location for the flow of argon, for
which they clearly observed condensation, is approximately the same as that for other gases,
such as helium and nitrogen, which do not condensate. To appreciate this conclusion, we
consider the data on which Crist et al. drew this conclusion, reproduced in Fig. 6.5. From
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FIGURE 6.5: Underexpanded jet. Mach-disk location from experiments, figure taken
from Crist et al. [18]. Dj is the diameter of the nozzle exit and corresponds toD, while
p0/p∞ corresponds to the pressure ratio pr/pa. —— fit: xm/Dj = 0.65(p0/p∞)1/2.

this figure, however, we see that the Mach-disk location for the different gases has a scatter
of approximately 10%. This not fully justifies the conclusion that the Mach-disk location
is insensitive to condensation. From Fig. 6.5 we find that Crist’s results indicate that for
pr/pa = 20 the Mach disk is at about 3 to 3.5D.

Returning to the present results, we see in Fig. 6.4b that the super-saturation is relatively
low throughout the jet. After the nucleation peak around x = 0.25D, the flow initially
recovers to near equilibrium (Φ ≈ 1.1) at x/D = 0.6, caused by the formation of liquid.
Due to the relatively high expansion rate of the flow, the super-saturation increases again up
to Φ ≈ 2.4 just upstream of the Mach disk, which abruptly terminates the super-saturated
state of the flow. As we can see, the saturation outside the barrel shock is indeed smaller
than one, and remains so, indicating that outside the region enclosed by the Mach disk and
the barrel shock, the liquid will evaporate. Considering Fig. 6.4c, which is on a larger scale
than the other plots, we see that nucleation takes place just downstream of the nozzle exit, in
a crescent-shaped region extending from the centerline to the nozzle lip. The nucleation rate
reaches its maximum of almost 1024 nuclei per m3 per second in the expansion fan around the
nozzle lip. As we can see from Fig. 6.4d, the largest number of droplets of up to 1015 nuclei
per kg mixture are also formed in the expansion fan at the nozzle lip, where the nucleation is
stretched out over a relatively large part of the flow.
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The liquid mass fraction g, shown in Fig. 6.4e, increases in downstream direction, and the
largest amount of liquid is found just upstream of the triple-point, where g/gmax ≈ 0.28.
The flow outside the barrel shock contains considerably less liquid than the flow inside the
barrel shock. Downstream of the Mach disk most liquid has evaporated, g/gmax < 0.04. The
liquid that passes through the reflected shock does not completely evaporate, but the amount
of liquid decreases rapidly downstream of the reflected shock. In Fig. 6.4f which presents
the (average, Hill) droplet size, we see that downstream of the nucleation zone the droplets
increase gradually, first rapidly, further downstream at a lower rate.

The largest droplets are situated just upstream of the triple point, where they have a di-
ameter of approximately 0.9 µm. At radial locations larger than that of the barrel shock, the
droplets rapidly decrease in size to values smaller than 0.4 µm in diameter. The wiggles in
the droplet-radius iso-contours downstream of the reflected shock are caused by the circum-
stance that the liquid mass fraction is very small here, but the number of droplets is still large.
The average droplet radius here is then not well-defined. This is a drawback of the present
method; the model does not include complete evaporation of the droplets. Once droplets
have been created, they can only grow or shrink, but they cannot completely evaporate and
disappear from the flow. This is not a problem, as long as the size of the droplets is larger
than the critical droplet-size (droplets with a size smaller than the critical size are unstable
and should evaporate completely). Upstream of the Mach disk and inside the boundary of
the jet, the droplets are larger than the critical size, so that the model is valid here. Down-
stream of the Mach disk, however, the droplets becomes smaller than the critical droplet size
and droplets should evaporate completely. Since de-nucleation (the rate at which droplets are
“destructed”) is not modeled in the present numerical method, the very small droplets do not
evaporate and therefore the average radius of the droplets is not well-defined in regions where
droplets becomes smaller than the critical droplet-size.

6.4 Influence of maximum liquid fraction on the underex-
panded jet

Since the gas in the reservoir consists solely of vapour, the maximum liquid mass fraction is
by definition equal to one, gmax = 1.0. However, from a numerical point of view, we can
limit the maximum liquid mass fraction to values smaller than one. In this way we obtain a
mixture consisting of xenon vapour, and a hypothetical inert gas having the same thermody-
namical properties as xenon, but which does not condensate. By varying the maximum liquid
mass fraction at the inlet of the nozzle, we can study the influence of a varying liquid mass
fraction on the flow in the underexpanded jet.

Starting from the dry solution at gmax = 0.0 (note that the pressure and the temperature
in the reservoir are not altered: pr = 20 bar, Tr = 296.9 K), a series of solutions is created,
increasing gmax with 0.2 for each successive numerical simulation. The liquid mass fraction
distribution for gmax = 0.2 and gmax = 0.4 is shown in Fig. 6.6, and for gmax = 0.6
and gmax = 0.8 in Fig. 6.7. The influence of gmax on the flow-field topology is small,
with a gradual increase in Mach-disk diameter and barrel-shock diameter, and a downstream
motion of the Mach disk. For gmax = 0.2 and gmax = 0.4, almost no liquid is formed in
the region bounded by the Mach disk and the barrel shock, g/gmax < 10−6 for gmax = 0.2
and g/gmax < 3 × 10−6 for gmax = 0.4. The little amount of liquid present is located in a
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FIGURE 6.6: Underexpanded xenon jet. Liquid mass fraction for gmax = 0.2 and
gmax = 0.4 shown in grey-scale, labeled lines are Mach iso-contours. pr/pa=20,
Tr = 296.6 K, 28,260 nodes.
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gmax = 0.8 shown in grey-scale, labeled lines are Mach iso-contours. pr/pa=20,
Tr = 296.6 K, 28,260 nodes.

small region upstream and downstream of the reflected shock. As can be seen from the Mach
iso-contours, the influence of the condensation on the flow is negligible. As for the dry flow
case gmax = 0, see Fig. 6.2, the gas expands up to Mf = 6.1 just upstream of the Mach disk,
both for gmax = 0.2 and gmax = 0.4.

For larger liquid mass fraction, however, condensation occurs inside the region bounded
by the barrel shock and the Mach disk. The expansion is not as deep, only to Mf ≈ 3.7 for
gmax = 0.6 and Mf ≈ 3.8 for gmax = 0.8. The Mach disk now shifts to a location further
downstream. We also observe that the diameter of the Mach disk increases as the liquid mass
fraction is increased.
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The Mach-disk location as a function of the maximum liquid mass fraction is shown in
Fig. 6.8. Note that, in addition to the previous results, additional simulations were performed

gmax

0 0.25 0.5 0.75 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
M

/D

gmax

0 0.25 0.5 0.75 1
3

3.1

3.2

3.3

3.4

3.5

x M
/D

FIGURE 6.8: Underexpanded xenon jet. Mach-disk location and diameter for various liquid
mass fractions. pr/pa=20, Tr = 296.6 K.

for gmax = 0.45, 0.475, 0.5, 0.525, 0.55 and gmax = 0.7. As can be seen, there is a definite,
relatively sharp increase in the distance of the Mach disk from the nozzle exit plane, obtaining
a maximum at gmax ≈ 0.6. Above this value of gmax the location is again more or less
constant, as also seen in the left plot of Fig. 6.8. In case of gmax = 1.0, which corresponds to
the real physical situation, the increase in the distance of the Mach disk from the nozzle exit
plane is approximately 10%, within the scatter of the results of Crist et al. [18], see Fig. 6.5.

The diameter of the Mach disk, shown in the right plot of Fig. 6.8, varies more strongly
with gmax than the Mach-disk location. Up t0 gmax = 0.4, the diameter is constant, but
for gmax = 0.5 the diameter becomes relatively small. For this value of gmax, there is a
considerable amount of liquid (values up to g ≈ 0.22) present in the flow outside the barrel
shock upstream of the reflected shock.

The heat released during the formation of the liquid increases the pressure outside the
barrel shock and causes the barrel shock to be located closer to the centerline. This causes
the sharp decrease of the diameter of the Mach disk at gmax = 0.5. For larger gmax, more
liquid is formed inside the barrel shock and less outside the barrel shock, and the diameter of
the Mach disk increases sharply with increasing gmax.

Attempts have been made to explore whether there exists a hysteresis in the flow pattern
for the case of in increasing or decreasing gmax. However, computing a sequence of solu-
tions from low gmax to higher gmax or the other way around did not result in two different
solutions, i.e. hysteresis was not found.
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6.5 Influence of the saturation in the reservoir

As a further study of the influence of the condensation on the underexpanded jet, three addi-
tional simulations were performed. For these additional simulations, the temperature in the
reservoir was set to Tr = 282.2, Tr = 319.7 and Tr = 364.3, corresponding to reservoir sat-
urations of Φ0 = 0.40, Φ0 = 0.20 and Φ0 = 0.10, respectively. The results (for gmax = 1)
are shown in Fig. 6.9, which includes the earlier results for Φ0 = 0.30 (Tr = 296.6 K). The
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FIGURE 6.9: Underexpanded xenon jet. Liquid mass fraction for varying reservoir saturation
level. pr/pa=20.

influence of the saturation ratio on the flow-field topology is small, with a gradual increase
in Mach-disk diameter and barrel-shock diameter. As we can see, the location of the Mach
disk is the same for all saturation ratios. The curvature of the Mach disk, on the other hand,
becomes more pronounced as the saturation is increased. We can also see from Fig. 6.9 that
the amount of liquid formed per kg mixture increases only slightly with increasing saturation,
and if we consider the amount of liquid on the centerline, we see that there is even a small
decrease in liquid mass fraction. This is caused by the increase in the diameter of the region
where the liquid is located, i.e. the liquid mass fraction is high in a larger area.

6.6 Conclusion

The numerical results show that condensation has a considerable effect on the underexpanded
jet of xenon. The condensation considerably reduces the maximum Mach number reached in
the expansion, widens the plume and the Mach disk, and moves the Mach disk slightly aft.
It is shown that for pr/pa = 20, most of the liquid appears inside the region enclosed by
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the barrel shock and the Mach disk, in a cylindrical region of diameter of about two nozzle
diameters and a length of about one nozzle diameter, immediately upstream of the Mach disk.
This would form the best candidate region to focus the laser for producing EUV light. The
amount of liquid that is encountered by the laser as it travels through the jet plume can be
increased by lowering the reservoir temperature.
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RCONDENSATION IN REAL-GAS

FLOWS IN THREE DIMENSIONS

This chapter presents results that have been obtained with the 3D unstructured-grid numerical
method based on the Euler equations and Hill’s method of moments for multiple component
mixtures. The 3D method requires a droplet-growth valid for all Knudsen numbersKn, which
is needed to describe droplet growth in a high-pressure background. The 3D method includes
the real-gas model as described in chapter 3. The application concerns natural gas expanding
in a Condi-Cyclone.

7.1 Hill’s method of moments for a multiple component mix-
ture

Hill’s moment equations [31], for a mixture containing K components, of which N compo-
nents nucleate, read (in integral conservation form):

∂

∂t

∫

V

U dV +

∫

∂V

~F · ~n dS =

∫

V

W dV , (7.1)

with

U =







ρQ0,n

ρQ1,n

ρQ2,n

ρgk,n







and ~F =







ρ~uQ0,n

ρ~uQ1,n

ρ~uQ2,n

ρ~ugk,n







, (7.2)

where Q0,n, Q1,n and Q2,n are the zeroth, first and second moment of the droplet-radius dis-
tribution, respectively, of droplets that start as nucleus of component n, and gk,n is the liquid
mass fraction of component k in droplet nucleus of component n. The index n indicates the
nucleating components (n = 1(1)N ≤ K). In a flow with multiple condensing components,
more than one component can act as nucleus on which the other components then condense.
In case of two nucleating components, for example, we have N = 2 and we have to distin-
guish between two different droplet groups, one for nucleating component n = 1, and one
for nucleating component n = 2. The liquid mass fraction of component k in droplet group
n = 1 is then given by gk,1 and that of component k in droplet group n = 2 is given by gk,2.
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The source term consists of two parts. One term represents the formation of nuclei, the
other term the condensation of all vapour components of the mixture on the formed nuclei.
We denote this as W = Wnucl + Wcond, where

Wnucl =








Jn

r∗nJn

r∗ι
2Jn

δkn
4
3π%l,k r

∗
n

3Jn








and Wcond =













0

ρQ0,n

k=K∑

k=1

ṙk

2ρQ1,n

k=K∑

k=1

ṙk

4ρπQ2,n %l,k ṙk













, (7.3)

with r∗n and Jn the critical radius and the nucleation rate, respectively. In Eqs. (7.1) - (7.3)
the last equation denotes any of the K components. The set of equations is valid for any of
the N nucleating components. So Hill’s moment equations for a mixture of gases with K
components of which N components nucleate constitute a system of N(K + 3) equations.

7.1.1 Multi-component droplet growth
The expression for diffusion-controlled droplet-growth in a multi-component system, in the
limit of dilute vapour components in a non-condensing background gas, can be written as
(see Luijten et al. [43])

ṙ2 = 2
ρ̂v
%̂l

K∑

k=1

Dk(yv,k − yeqv,k) , (7.4)

provided that the components are well miscible. In this expression, ρ̂v and %̂l are the total
molar densities of the vapour and the condensate (i.e. ρ̂v = ρv/M and %̂l = %l/M ),
respectively. The actual molar fraction of the vapour yv,k and the equilibrium molar fraction
of the vapour yeqv,k are defined as

yv,k ≡ Nv,k

N
and yeqv,k ≡

N
eq
v,k

N
, (7.5)

where N is the number of moles of the vapour/liquid mixture, and Nv,k and N
eq
v,k are the

actual and equilibrium number of moles of vapour component k in the mixture, respectively.
The molar mass M of the mixture follows from

M =
K∑

k=1

y0,kMk , (7.6)

with Mk the molar mass of component k, and y0,k the (constant) molar fraction of the vapour
and liquid of component k,

y0,k = yv,k + yl,k . (7.7)

The molar liquid fraction yl,k is defined as
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yl,k ≡ Nl,k

N
, (7.8)

where Nl,k is the number of moles of liquid of component k. In Eq. (7.4), Dk denotes the
diffusion coefficient. To extend the droplet-growth model to the free-molecular regime and
the transition regime in between (see also Peeters et al. [51]), the droplet-growth model is
modified in the following way:

ṙ2 = ρ̂v

K∑

k=1

Nutk
%̂l,k

Dk(Xvyv,k −Xeq
v y

eq
v,k) , (7.9)

with Xv and Xeq
v the total molar vapour fraction and the total equilibrium molar vapour

fraction:

Xv =

K∑

k=1

Nv,k

N
and Xeq

v =

K∑

k=1

N
eq
v,k

N
, (7.10)

respectively. The Nusselt number Nutk of the transition regime, is included to extend the
droplet-growth model to higher Knudsen numbers. The transition regime is the regime which
lies in between the continuum and free-molecular regime. The Nusselt number of the transi-
tion regime is given by

Nutk =
NufkNu

c

Nufk +Nuc
, (7.11)

where the superscript f denotes the free-molecular regime and c the continuum regime. Since
Nuc is always close to 2 (see Luijten [42]), Nuf largely determines the behavior of Nut. It
becomes very small in the free-molecular limit, so that Nuc drops out and we have Nut →
Nuf . In the continuum limit the situation is reversed, and we get Nut → Nuc = 2, and
consequently Eq. (7.9) reduces to the growth-law for the continuum regime.

The Nusselt number of the free-molecular regime is given by

Nufk =

√

2

π

√

M

Mk

Sck
Kn

, (7.12)

where Sc is the Schmidt number. The Schmidt number is defined as (see Bird et al. [12]):

Sck ≡ µ

ρvDk
, (7.13)

where µ is the dynamic viscosity, and the Knudsen number Kn, see section 2.2.4, is defined
as the ratio of the mean free path of a vapour molecule and the droplet diameter

Kn =
l

2r
. (7.14)

The mean free path is given by

l =
2µ

√
RT

p
. (7.15)
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This multi-component droplet-growth model can be used for either molecular growth (Kn >
10), diffusion controlled growth (Kn < 0.01) and the transition region in between.

7.1.2 Nucleation model
The expression for the nucleation rate J given in section 2.2.3 for the CNT and ICCT model
can also be applied to the real gas vapour/liquid mixture. For the determination of the
super-saturation ratio Φn of a nucleating component, however, a different expression is used,
namely

Φn =
yv,n
yeqv,n

. (7.16)

This expression is valid for both low and high pressures, and reduces to Eq. (2.1) for low
pressures.

7.1.3 Closure of Hill’s equations
To solve the governing equations, consisting of the 5 Euler equations for 3D flow, and Hill’s
method of moments for multiple condensing components, several physical properties have to
be known. For natural gas, the necessary physical properties are listed below.

µ: dynamic viscosity

σ: surface tension

Xeq
v : equilibrium total molar vapour fraction

yeqv,k: mole fraction of component k of the vapour in the equilibrium mixture

Dk: diffusion coefficient per component

%l,k: condensate density per component

For the 3D numerical method, these properties are available in the form of a database, given
at user specified combinations of p and T . The values for any pressure p and temperature T
are obtained from the data base by linear interpolation.

7.2 Determination of the coefficients of the real-gas EOS
With the real-gas EOS derived in chapter 3 we want to describe the thermodynamic behavior
of a gas mixture at high pressure, consisting of K components. We assume that for the gas
mixture considered, some auxiliary procedure creates the data-base (see also table 3.1), for
the gas mixture. The data base is generated for a given range and increment of the pressure
and the temperature.

If we denote the minimum and maximum pressure by pmin and pmax, respectively, the
minimum and maximum temperature by Tmin and Tmax, respectively, and the increments
in pressure and temperature by pinc and Tinc, respectively, the auxiliary procedure creates
table 7.1.
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pressure temperature compressibility specific equilibrium
factor enthalpy molar vapour

(Pa) (K) (-) J/kg fraction; k = 1(1)K
pmin Tmin z h yeqv,k
pmin Tmin + Tinc z h yeqv,k

. . . .
pmin Tmax − Tinc z h yeqv,k
pmin Tmax z h yeqv,k

pmin + pinc Tmin z h yeqv,k
pmin + pinc Tmin + Tinc z h yeqv,k

. . . .
pmax − pinc Tmax z h yeqv,k

pmax Tmin z h yeqv,k
. . . .

pmax Tmax z h yeqv,k

TABLE 7.1: Real-gas data-base produced by an auxiliary procedure.

In formula form, the temperature and pressure can be written as

pi = pmin + (i− 1)pinc ; i = 1(1)I , (7.17)
Tj = Tmin + (j − 1)Tinc ; j = 1(1)J , (7.18)

where

I = 1 + int(
pmax − pmin

pinc
) , (7.19)

J = 1 + int(
Tmax − Tmin

Tinc
) . (7.20)

Typical values for I and J are 102. From table 7.1 we can derive the density and internal
energy in the following way (note that the real gas EOS reads p = zρRT )

R =
R

K∑

k=1

yeqv,kMk

, (7.21)

ρ =
p

zRT
, (7.22)

e = h− p/ρ . (7.23)

In this way, we have found the density and internal energy at every combination of pressure
and temperature, so for every combination of i and j we now have the following functions

zi,j = z(ρi,j , ei,j) , (7.24)
Ti,j = T (ρi,j , ei,j) . (7.25)
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By introducing a unique index ι, defined as ι ≡ (j−1)I+ i, we can replace any combination
of indices i, j by ι, so that

zι = z(ρι, eι) , (7.26)
Tι = T (ρι, eι) . (7.27)

In the real-gas EOS, these functions are specified by Eqs. (3.42) and (3.46), respectively,
which are repeated here for convenience:

z(ρ, e) = z00 + z10ρ+ z20ρ
2 + z11ρe+ z01e+ z02e

2 , (7.28)

T (ρ, e) =
1

−R{z11ρ+ (z01 + 2z02e) ln(ρ)} + T0e−1 + T1 + T2e
. (7.29)

First, the coefficients z00, z10, ..., z02 in the expression for the compressibility factor z are
determined. These are determined from the real-gas data-base using a least-squares method,
resulting in the minimalisation of the following expression

ψ(b) =
∑

ι

φι[z(ρι, eι) − zι]
2 , (7.30)

where b = (z00, z10, z20, z11, z01, z02)
T , and φ is a weight function (this function is explained

later on in section 7.2.1). To find the minimum of ψ we set dψ
db = 0. Differentiation of

Eq. (7.30) gives

dψ

db
=

d

db

(
∑

ι

φι[z(ρι, eι) − zι]
2

)

=
∑

ι

d

db

(
φι[z(ρι, eι) − zι]

2
)

= 2
∑

ι

φι[z(ρι, eι) − zι]
d

db
z(ρι, eι) . (7.31)

Setting Eq. (7.31) equal to zero results in the following system

Ab = c . (7.32)

Matrix A and column vector c are given below:

A =
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(7.33)
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c =

















∑
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(7.34)

We can solve for b via the LU decomposition of matrix A (Gauss elimination followed by
back-substitution).

With the constants of the compressibility factor known, the constants T0, T1 and T2 of the
temperature fit, Eq. (7.29), are determined by minimalisation of the following expression

ψ(b) =
∑

ι

φι

[
1

T (ρι, eι)
− 1

Tι

]2

, (7.35)

where b = (T0, T1, T2)
T . In the same way as for the compressibility factor, this results in the

following system

Ab = c , (7.36)

where matrix A and column vector c are now given by

A =
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(7.37)

c =








∑

ι
φι[1/Tι +Rι{z11ρι + (z01 + 2z02eι) ln(ρι)}]/eι

∑

ι
φι[1/Tι +Rι{z11ρι + (z01 + 2z02eι) ln(ρι)}]

∑

ι
φι[1/Tι +Rι{z11ρι + (z01 + 2z02eι) ln(ρι)}]eι








(7.38)

As before, b is solved by Gauss elimination and back-substitution.

7.2.1 The weight function

If we consider a flow without entropy creation, then all (p, T ) values throughout the domain
would be situated on the isentropic curve. Since the entropy in a flow with condensation
increases, not all (p, T ) values in the flow domain are situated on the isentropic curve. When
creating the 9 parameters of the real-gas EOS, it would be irrelevant to include the (p, T ) com-
binations which are located far away from the isentropic curve. For this reason, the weight
function φ is included. It is equal to 1 on the isentropic curve, and decreases exponentially
away from this curve.
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To determine the weight function, the parameters of the real-gas EOS have to be known
(since we want to determine the isentropic curve). However, to determine the parameters of
the real-gas EOS, the weight function has to be known.

To solve this problem, an initial weight distribution of φι = 1 is chosen, but the weight is
set to zero at the points which satisfy one of the following conditions

T ≥ Tmin +
1

3
(Tmax − Tmin) +

Tmax − Tmin
pmax − pmin

(p− pmin) , (7.39-a)

T ≤ Tmin − 1

8
(Tmax − Tmin) +

Tmax − Tmin
pmax − pmin

(p− pmin) . (7.39-b)

This is visualized in Fig. 7.1, where the grey areas represent the regions of the (p, T ) domain

T

φ=1

φ=0

φ=0

p

Tmin

Tmax

min pmaxp

FIGURE 7.1: Fit region: weight factor of zero in grey areas. Dashed line denotes
(estimated) isentropic curve.

where the weight φ is set to zero. Note that the values for pmin, pmax, Tmin and Tmax should
be chosen with care, i.e. such that the isentropic curve is located within the φ = 1 region in
Fig. 7.1.

Next, table 7.1 is created with relatively high increments pinc and Tinc. From this table,
the 9 parameters of the real-gas equation of state are determined.

With the equation of state known, a reference entropy sref is calculated at a certain ref-
erence condition (pref , Tref ), for example the static pressure and temperature at an inflow
boundary. This reference entropy is then used to isentropically calculate the temperature at
pmin, pmed = (pmin + pmax)/2 and pmax. This results in 3 different p, T combinations,
which correspond to three different points in the (p, T ) domain. These three points are used
to determine a circle which passes through these three points. The equation of this circle is

(p− pcnt)
2 + (T − Tcnt)

2 = r2 , (7.40)

where pcnt and Tcnt represent the center of the circle, and r is the radius of the circle. With
the circle known, the increments are set to, for example, pinc = 1 bar and Tinc = 1 K, and
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a new table is created, similar to table 7.1. However, for (p, T ) combinations located in the
grey domain in Fig. 7.1 no values are calculated, since these are not needed. With the new
table the weights are then determined in the following way:

φι =

{
exp(−10r̄2ι ) r̃ι > 0
exp(−200r̄2ι ) r̃ι ≤ 0

, (7.41)

with

r̃ι =
√

(pι − pcnt)2 + (Tι − Tcnt)2 − r , (7.42)

and

r̄ι =
r̃ι

maxι(|r̃|)
. (7.43)

For a practical situation the weights are given in Fig. 7.2 With the weights known, the 9
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FIGURE 7.2: Weight distribution in (p, T ) domain.

parameters of the real-gas EOS can be determined. The deviation of the pressure and the
temperature obtained from the real-gas EOS from the values of p and T in the data-base is
shown in Fig. 7.3. The deviation in both the temperature and the pressure is small and less
than 2%.
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FIGURE 7.3: Deviation between real-gas EOS and data-base. Left plot shows the deviation
in pressure, right plot shows the deviation in temperature (both in %).

7.3 3D test-case: The flow of natural gas through a Condi-
Cyclone

A Condi-Cyclone is an apparatus consisting of a Laval nozzle, a vortex generator, and a
deposition section, as sketched in Fig. 7.4.

Laval nozzle

Deposition section

Vortex
generator

FIGURE 7.4: Schematic representation of a Condi-Cyclone.

The Laval nozzle expands the flow to supersonic velocity, such that most of the components
in the natural gas become super-saturated. Nucleation of one or more of the components will
take place, and the super-saturated components will condense on the existing nuclei. The
droplets are then convected downstream with the flow towards the vortex generator. The
vortex generator, in the present study consisting of a slender delta-wing attached to the tube
wall, as shown in Fig. 7.5, introduces swirl into the flow, and in the deposition section down-
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FIGURE 7.5: Condi-Cyclone, close up of delta wing in the vortex generator.

stream of the vortex generator, the droplets are centrifuged towards the tube wall under the
influence of centrifugal forces. In the Condi-Cyclone, the droplets move relatively to the
flow, i.e. there is slip between the gas and liquid phase. In the present 3D method, however,
it was assumed that the droplets move with the flow, i.e. in the numerical method there is
no slip between the gas and liquid phase. This implies that the present method includes the
effect of the nucleation and condensation (specifically the heat addition) on the gas flow, but
not the effect on the gas-dynamics of the slip between the liquid phase and the gas phase.
With the gas-dynamics established in this way, a post-processing procedure is used, based on
the Lagrangian equation of motion of the droplets in the given swirling flow, to compute the
trajectories of a specified droplet distribution. This second step in the computational set-up
provides information on the separation efficiency of the Condi-Cyclone. This procedure is not
considered here further, since we merely want to demonstrate the capability of the 3D method
to simulate the flow of multiple condensing components at high pressure in 3D geometries.

7.3.1 Generation of the real-gas EOS parameters

The multiple-component mixture flowing through the Condi-Cyclone is a natural gas, con-
sisting of 20 components. The mixture consists of several light and heavy hydrocarbons,
nitrogen, water, and carbon-dioxide. The minimum and maximum values of the temperature
and the pressure, and the increments in pressure and temperature as listed below:

pmin = 15 bar
pmax = 100 bar
Tmin = 182 K
Tmax = 300 K
pinc = 1 bar
Tinc = 1 K

The 9 parameters of the Maxwell-relations conforming real-gas EOS are obtained as de-
scribed in section 7.2, resulting in the following values for the 9 parameters:
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z00 = 0.64695
z10 = − 0.72623 × 10−2 m3/kg
z20 = 0.19712 × 10−4 m6/kg2

z11 = 0.11780 × 10−7 m3/J
z01 = 0.20364 × 10−5 kg/J
z02 = − 0.28508 × 10−11 kg2/J2

T0 = 0.97981 × 103 J/kg · K
T1 = 0.41800 × 10−2 K−1

T2 = − 0.91526 × 10−8 kg/J · K

7.3.2 Flow in the Laval nozzle
Since the flow leaving the Laval nozzle and entering the vortex generator is supersonic, it is
possible to first obtain a flow solution in the Laval nozzle, and subsequently to solve the flow
in the vortex generator and deposition section. The inflow conditions for the vortex generator
are then taken equal to the outflow conditions of the Laval nozzle.

The method is, in principle, capable of considering all components as possible nuclei,
but the number of Hill equations to be solved would then amount to 20(20 + 3) = 460,
which is not feasible in numerical simulations. Furthermore, the process of how precisely
a certain component does or does not condense on a nucleus of another component or on
a droplet covered with another component is not yet completely understood (Peeters [50]).
Such knowledge should be added as model to the present method in order to make it an
accurate tool. Therefore, the nucleating component is water, based on knowledge obtained
from experiments, which appear to indicate that water nucleates first and that subsequently
the other components condense on the water nuclei.

The Laval nozzle is rotational symmetric and has a smooth variation in diameter. There-
fore, the flow in the nozzle can, in good approximation, be considered as quasi-one-dimen-
sional (Q1D). In a Q1D flow we consider cross-sectional averaged flow field quantities and
only the (cross-sectional averaged) axial component of the velocity. The flow in the nozzle
is calculated with a Q1D method based on the Q1D Euler equations, augmented with Hill’s
method of moments for multiple-condensing components. The Q1D method is second-order
accurate and contains the same droplet growth model and nucleation model as the 3D method
and is based on the same numerical techniques. The benefit of a Q1D method, is that the gen-
eration of meshes is trivial and calculation times are very short.

For the Laval nozzle, a mesh with 200 nodes in x-direction was created. The convergence
history of the numerical simulation for the present case is shown in Fig. 7.6. From this figure
we see that the residual decreases linearly on a logarithmic scale, and that there are no bumps
after 2,000 iterations, indicating that the solution is converging smoothly to machine-zero,
which is reached after 8,000 iterations.

The results are shown in Fig. 7.7. The dashed lines represent the solution when the source
term is set to zero, i.e. when no condensation takes place. The influence of the conden-
sation can clearly be seen in the Mach number and in the thermodynamic properties. The
Mach number increases in the nozzle from a low subsonic value to a low supersonic value of
about 1.2. With the heat addition due to condensation, the Mach number should increase in
the subsonic regime and decrease in the supersonic regime, as is observed in the numerical
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FIGURE 7.6: Condi-Cyclone, convergence history of the flow in the Laval nozzle cal-
culated with the Q1D method.

results. The total temperature increases, while the total pressure decreases, both caused by
the heat released during condensation. The compressibility factor z is also shown, and it can
be seen that the condensation process tends to increase z, while the supersonic expansion
decreases z. The plots of the nucleation rate and super-saturation ratio Φ show the usual
features. As soon as Φ exceeds 1.0 nucleation starts, at an ever increasing rate, while in the
rapidly expanding gas the super-saturation continues to increase. Then, as the number of nu-
clei is sufficiently large (1017 per m3 per s) the amount of liquid formed becomes significant
and the super-saturation and the nucleation rate attain a maximum and subsequently decrease
with increasing liquid mass fraction g. Note that in the present case most of the nucleation
takes place in the subsonic part of the flow. This can be explained by the fact that the super-
saturation in the reservoir is equal to 1.0, so that immediately upon entering the nozzle, the
super-saturation exceeds 1.0 and the subsonic expansion will invoke nucleation.

The number of droplets per unit massQ0 increases exponentially until the nucleation starts
to decrease. After this, droplet-growth takes over the condensation process, leading to J = 0
and to a constant number of droplets per unit mass. The droplet radius shown is the Hill-
radius. Since the Hill-radius is an average property, it is ill-defined as long as the number
of droplets is small. It is therefore common that the droplet radius exhibits some wiggles
in regions where the number of droplets is relatively small. As can be seen in Fig. 7.7, the
curve for the radius is smooth as soon as there are ∼ 1013 particles per kg of mixture, i.e. for
x > −0.06.

The last two plots in Fig. 7.7 show the liquid-mass fractions gk and the normalized liquid
mass fraction gk/gmax,k of three components: H2O (water), C3H8 (propane) and C9H20

(nonane). The liquid-mass fraction of water increases rapidly until the water vapour is nearly
exhausted, while the other components shown grow on the existing water nuclei, and do not
exhaust their vapour completely.
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FIGURE 7.7: Condi-Cyclone, flow in the Laval nozzle calculated with the Q1D method.
Dashed line denotes flow without condensation. Note that the nozzle throat is at x = 0.
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7.3.3 Flow in the vortex generator and deposition section

The flow in the vortex generator and deposition section is solved with the 3D method, using
the AUSM+ scheme with α = 3/16 and β = 1/8, and second-order accurate fluxes with κ =
1/3. Nucleation is modeled with the ICCT model. The computational domain, consisting
of the vortex generator and the deposition section, is discretized by a mesh consisting of
tetrahedral elements. The mesh is generated with ICEM 1. Two meshes have been created; a
coarse mesh consisting of ∼ 83K nodes and ∼ 443K tetrahedra and a fine mesh consisting of
∼ 154K nodes and ∼ 840K tetrahedra.

The flow conditions at the outlet of the nozzle are used as inflow conditions for the Condi-
Cyclone configuration. These conditions are: p = 38.78 bar, T = 230.2 K, ux = 424.6 m/s
and uy = uz = 0, leading to a Mach-number of M = 1.24. At the inlet the liquid mass-
fraction g is 4.02 g/kg and the Hill droplet radius rH is 0.12 µm. The conditions at the inflow
boundary are used as initial conditions throughout the whole of the computational domain.

First, a solution on the coarse mesh is established, with 5,000 iterations. The solution
obtained on the coarse mesh is then used to obtain an initial solution on the fine mesh, with
the interpolation method described in appendix B. The numerical method is subsequently run
for another 10,000 iterations. The convergence history of the simulations on the coarse and
fine mesh are shown in Fig. 7.8.
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FIGURE 7.8: Condi-Cyclone, convergence history for the flow in vortex generator and
deposition section calculated with the 3D method.

As we can see from the convergence history, the residual of the density decreases more
than three orders in magnitude for the flow calculated on the coarse mesh. For the fine mesh,
the residual decreases rapidly from the initial value and the decrease in the magnitude of the
residual of the density for the flow on the fine mesh is around 3 orders in magnitude.

The results are presented in Figs. 7.9 and 7.10. All plots show the flow-field quantities on
the upper-side of the delta wing and in a number of cross-flow planes normal to the tube-axis.
As can be seen in Fig. 7.9a, the flow is supersonic everywhere in the tube. The supersonic flow

1http://www.icemcfd.com/



128 CHAPTER 7. CONDENSATION IN REAL-GAS FLOWS IN THREE DIMENSIONS

around the sharp-edged slender delta-wing features a subsonic leading-edge, i.e. the Mach
number normal to the leading edge is subsonic. This implies that the flow around the leading
edge behaves as in subsonic flow, i.e. the edge is rounded by the flow, but since the edge is
sharp it separates at the edge. In the present inviscid-flow method the numerical dissipation
mimics the effects of the real viscosity in that the flow does separate at a sharp edge. This
results in the formation of a shear layer that due to its self-induced velocity field rolls up into
a vortex core, the so-called leading-edge vortex-core. From the apex of the delta wing to the
trailing edge the vortex increases in strength to attain an appreciable strength. Downstream of
the trailing edge the vortex is not fed by vorticity produced at the leading edge anymore and
remains equal in strength. In this part of the tube, the deposition section, the vortex induces
the swirling flow that causes the droplets formed in the condensation process to move towards
the wall of the tube.

The vortex core can be detected in Fig. 7.9a, as the more or less circular region above the
wing where the Mach number reaches a maximum. This region is also visible in the cross
sections further downstream where the vortex follows a spiral-type of trajectory. In Fig. 7.9b
we see that the temperature in the vortex core drops rapidly, to temperatures as low as 185
K. These extreme low temperatures induce a very high super-saturation of the nucleating
component (water), even though here the water is already present as 97% liquid. This high
super-saturation leads to nucleation above the upper side of the wing, and also downstream
of the wing, see Fig. 7.9c, but has no significant effect on the number of nuclei. The total
liquid mass fraction is shown in Fig. 7.10a. As can be seen, the highest liquid mass fractions
occur in the vortex core.

The droplet diameter at the outlet of the tube is about 0.4 µm and does not vary much over
the outlet surface. Below the lower side of the wing however, which is not shown here, the
droplet radius becomes very small, caused by the evaporation in the compression zone which
is present there. In Figs. 7.10b and 7.10c the liquid mass fraction gk of C3H8 and C9H20 is
shown. Note that the liquid mass fractions of the individual components are shown as fraction
of the maximum liquid mass fraction of that component, i.e. gk/gmax,k. Components C3H8

and C9H20 represent the relatively light and heavy hydrocarbon components present in the
mixture, respectively. As can be seen from these figures, the lighter hydrocarbons tend to
condensate less than the heavier ones.

The results presented demonstrate, that the present method can be used to analyze the
transonic flow of multi-component gas mixtures with condensation in complex geometries.
However, features like multi-component nucleation and condensation (Peeters [50]), as well
as de-nucleation need to be included in the physical model before detailed further analysis
can be carried out.
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FIGURE 7.9: Condi-Cyclone, results.
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CONCLUDING REMARKS

- For compressible flows of a (multi-component) gas with condensation, in the thesis a closed
set of partial differential equations and algebraic relations is derived. It consists of the Eu-
ler equations of gas dynamics and Hill’s Method of Moments describing the liquid phase,
plus relations for material properties, such as surface tension, liquid density and equilibrium
vapour pressure (the dew-curve). The most important assumptions underlying the model for
the multi-phase dispersed flow are inviscid flow and zero slip between the gas and liquid
phase.
- It has been shown that Hill’s Method of Moments can alternatively be derived from the
General Dynamic Equation (which describes, in absence of coagulation and segregation, the
conservation of droplets in phase-space).
- For gases and mixtures of gases, utilizing Maxwell relations following from a combination
of the first and second law of thermodynamics, equations of state and other thermodynamic
relations have been derived for conditions ranging from (1) conditions of high pressure and
moderate (room) temperature, to (2) low pressure and low temperature. The formulation con-
tains only 9 free parameters that are determined from a weighted least-squares fit of data from
a data-base. For a natural gas, it is shown that such real-gas equations of state are adequately
accurate.
- To achieve second-order spatial accuracy in the finite-volume discretization on unstructured
grids, it is essential that the control-volume averaged solution is associated with the centroid
of the control volume. In the second-order reconstruction algorithm this has to be considered
carefully.
- Validation of the computational method for two-dimensional and axi-symmetric flow prob-
lems has shown that the method produces results that agree well with other numerical results
and with experimental data. For flows without condensation, this refers to the benchmark
problem of the NACA 0012 airfoil compared to other numerical results and the axi-symmetric
flow in an underexpanded supersonic jet compared to experimental data. For flow with con-
densation, results correlate well with other numerical results, which in its turn agree well with
experimental data.
- For the validation cases for which experimental data is available, the assumptions underly-
ing the present method have proven to be valid. Convergence of the method for all validation
cases is excellent; residuals can be reduced to machine accuracy and calculations generally
require less than one day on an SGI O200.
- The underexpanded xenon jet shows similar interesting flow features as the underexpanded
jet of other gases, such as the Mach disk and the barrel shock. Condensation has a signif-
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icant effect on the diameter of the Mach disk and the diameter of the barrel shock. It is
also demonstrated that there is a remarkably rapid shift in the location of the condensation
when the saturation in the reservoir varies from lower values to higher values. For the un-
derexpanded xenon jet flow, the method converges to adequate levels of accuracy but not to
machine accuracy.
- It has been demonstrated that the computational method can be applied to the flow of a 20-
component natural gas with condensation in a complex 3D geometry. The 3D flow features
a strong expansion with a high cooling-rate and nucleation and droplet-growth followed by a
strong swirling flow with additional nucleation, further droplet growth in regions with expan-
sion and evaporation in regions with compression. However, features like multi-component
nucleation and condensation, as well as de-nucleation need to be included in the physical
model before detailed analysis can be carried out.



REFERENCES

[1] M. Abbett, Mach Disk in Underexpanded Exhaust Plumes, AIAA Journal, Vol. 9, No.
3, pp. 512-514 (1971).

[2] I.H. Abbott and A.E. Von Doenhoff, Theory of Wing Sections, Dover Publications
(1958).

[3] S. Adam, Numerische und experimentelle Untersuchung instationärer Düsenstömungen
mit Energiezufuhr durch homogene Kondensation, Ph.D. Thesis, Universität Karlsruhe,
Karlsruhe, Germany (1996).

[4] AGARD Advisory Group For Aerospace Research & Development, Test Cases For The
Inviscid Flow Field Methods, AGARD-AR-211 (1985).

[5] M. Aftosmis, D. Gaitonde and T.S. Tavares, Behavior of Linear Reconstruction Tech-
niques on Unstructured Meshes, AIAA Journal, Vol. 33, No. 11 (1995).

[6] J.D. Anderson, Modern Compressible Flow, With Historical Perspective, Third Edition,
McGraw-Hill (2003).

[7] J.D. Anderson, Hypersonic and High Temperature Gas Dynamics, McGraw-Hill (1989).

[8] W.K. Anderson, J.L. Thomas and B. van Leer, Comparison of finite volume flux vector
splittings for the Euler equations, AIAA Journal, Vol. 24, pp. 1453-1460 (1986).

[9] H. Ashkenas and F.S. Sherman, The Structure and Utilization of Supersonic Free Jets
in Low Density Wind Tunnels, In Fourth International Symposium on Rarefied Gas
Dynamics, Academic Press, Vol. 2, pp. 84-105 (1966).

[10] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press
(1970).

[11] M. Berzins, R. Fairlie, S.V. Pennington and J.M. Ware, SPRINT2D: Adaptive Software
for PDEs, ACM Transactions on Mathematical Software, Vol. 24, No.4, pp. 475-499
(1998).

[12] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Second Edition,
John Wiley & Sons, Inc. (2002).



134 REFERENCES

[13] D.H. Bowman, R.A. Aziz and C.C. Lim, Vapor pressure of liquid argon, krypton, and
xenon, Canadian Journal of Physics, Vol. 47, pp. 267-273 (1969).

[14] R. de Bruijn, A. Bartnik, H. Fledderus, H. Fiedorowicz, P. Hegeman, R. Constantinescu
and F. Bijkerk, Characterization of a novel double-gas-jet laser-plasma EUV source,
SPIE 3997-17 (2001).

[15] R. de Bruijn, K. Koshelev, G. Kooijman, E.S. Toma and F. Bijkerk, Absorption of EUV
in laser plasmas generated on xenon gas jets, Journal of Quantitative Spectroscopy and
Radiative Transfer, Vol. 81, pp. 97-105 (2003).

[16] J.F. Campbell and J.R. Chambers, Patterns in the Sky: Natural Visualization of Aircraft
Flow Fields, NASA SP-514 (1994).

[17] D.J. Creasy, D.E. Heard, M.J. Pilling, B.J. Whitaker, M. Berzins, R. Fairlie, Visualisa-
tion of a supersonic free-jet expansion using laser-induced fluorescence spectroscopy:
Application to the measurement of rate constants at ultralow temperatures, Applied
Physics B, Vol. 65, pp. 375-391 (1997).

[18] S. Crist, P.M. Sherman and D.R. Glass, Study of the Highly Underexpanded Sonic Jet,
AIAA Journal, Vol. 4, No. 1, pp. 68-71 (1966).

[19] C.A. Croxton, Liquid State Physics - A Statistical Mechanical Introduction, Cambridge
University Press, pp. 140-189 (1974).

[20] P.S. Cumber, M. Fairweather, S.A.E.G. Falle and J.R. Giddings, Predictions of the
Structure of Turbulent, Moderately Underexpanded Jets, Journal of Fluids Engineering,
Vol. 116, pp. 707-713 (1994).

[21] P.S. Cumber, M. Fairweather, S.A.E.G. Falle and J.R. Giddings, Predictions of the
Structure of Turbulent, Highly Underexpanded Jets, Journal of Fluids Engineering, Vol.
117, pp. 599-603 (1995).

[22] H. Deconinck and R. Struys, Consistent boundary conditions for cell centered upwind
finite volume Euler solvers, Numerical methods for fluid dynamics III, Clarendon Press
(1988).

[23] U. Dohrmann, Ein numerisches Verfahren zur Berechnung stationärer transsonischer
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TRANSFORMATION

A.1 Governing equations in cylindrical coordinates
In this appendix, the governing equations are transformed from a Cartesian coordinate system
to a cylindrical coordinate system. In cylindrical coordinates, instead of designating the
coordinates of a point P by x, y, z, we locate the point by giving the values of r, θ, z as
is illustrated in Fig. A.1.

z
P

r

θ

x

y

FIGURE A.1: Definition of cylindrical coordinate system

The cylindrical coordinates are related to the Cartesian coordinates by:






x = r cos θ, (A.1-a) r =
√

x2 + y2, (A.1-d)
y = r sin θ, (A.1-b) θ = arctan(y/x), (A.1-e)
z = z, (A.1-c) z = z. (A.1-f)

The following notation will be used for the Cartesian and cylindrical coordinates, and for the
velocities in the Cartesian and cylindrical coordinate system, respectively:

(x, y, z)T = (x1, x2, x3)
T , (A.2-a)

(r, θ, z)T = (ξ1, ξ2, ξ3)
T , (A.2-b)

(ux, uy, uz)
T = (u1, u2, u3)

T , (A.2-c)
(vr, vθ, vz)

T = (v1, v2, v3)
T . (A.2-d)

The coordinate transformation Jacobian matrix is defined by:
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J ≡ ∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=





xr xθ xz
yr yθ yz
zr zθ zz



 =





cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1



 , (A.3)

so that the determinant of J and inverse of J are

|J | = r sin2 θ + r cos2 θ = r, (A.4)

and

J−1 =
∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
=





rx ry rz
θx θy θz
zx zy zz



 =





cos θ sin θ 0
− 1
r sin θ 1

r cos θ 0
0 0 1



 , (A.5)

respectively. The governing equations (2.80), are repeated here for convenience:

∂U
∂t

+
∂

∂xj
{Fj(U)} = W(U). (A.6)

Applying the coordinate transformation to Eq. (2.80), the following transformed equation is
obtained

∂U
∂t

+ J−1
mj

∂

∂ξm
{Fj(U)} = W(U), (A.7)

where J−1
mj = {J−1}mj , i.e. the element on the m-th row and the j-th column of the inverse

of the Jacobian matrix. Note that the three components of the momentum equations are still
the components in x,y and z direction. This equation can be cast in strong conservation form
again by multiplying with |J | and by regrouping terms. This results in the following equation:

|J |∂U
∂t

+
∂

∂ξm
{|J |J−1

mjFj(U)} − Fj(U)
∂

∂ξm

(
|J |J−1

mj

)
= |J |W(U). (A.8)

The last term is equal to zero and can be dropped, see Tannehill et al. [63]:

∂

∂ξm
(|J |J−1

mj ) ≡ 0, (A.9)

leading to the following strong conservation form:

∂V
∂t

+
∂

∂ξm
{Gj(V)} = |J |W(U). (A.10)

with

V ≡ |J |U, Gj(V) = |J |J−1
mjFj(V/|J |). (A.11)

Note that the Jacobian matrix does not depend on time so that |J | can indeed be brought inside
the time derivate in Eq. (A.8). Also note that the components of the momentum equation are
still the components in x, y and z direction.
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A.1.1 Mass conservation equation
For the mass conservation equation the following relation is obtained

∂|J |ρ
∂t

+
∂

∂ξm
{|J |J−1

mjρuj} = 0. (A.12)

The velocity vector in the new coordinate system ~v is found by multiplying the velocity vector
in the old coordinate system ~u with the inverse Jacobian matrix

vm = J−1
mjuj , (A.13)

so that Eq. (A.12) becomes

∂rρ

∂t
+
∂rρvm
∂ξm

= 0, (A.14)

or, expanded in terms of (r, θ, z):

∂rρ

∂t
+
∂rρvr
∂r

+
∂rρvθ
∂θ

+
∂rρvz
∂z

= 0. (A.15)

A.1.2 Momentum conservation equation
For the three momentum conservation equations (i = 1, 2, 3) we get

∂|J |ρui
∂t

+
∂

∂ξm
{|J |J−1

mj (ρuiuj + δijp)} = 0. (A.16)

Multiplying with the inverse Jacobian matrix gives

J−1
ni

∂|J |ρui
∂t

+ J−1
ni

∂

∂ξm
{|J |J−1

mj (ρuiuj + δijp)} = 0. (A.17)

Since the Jacobian does not depend on time it can be brought inside the time derivative

J−1
ni

∂|J |ρui
∂t

=
∂

∂t
(|J |ρJ−1

ni ui)
(A.13)
=

∂|J |ρvn
∂t

. (A.18)

The second term in Eq. (A.17) can be worked out:

J−1
ni

∂

∂ξm
{|J |J−1

mj (ρuiuj + δij p)} = J−1
ni

∂

∂ξm
(|J |ρuiJ−1

mjuj + |J |J−1
mjδij p) (A.19-a)

(A.13)
= J−1

ni

∂

∂ξm
(|J |ρuivm + |J |J−1

mi p). (A.19-b)

The inverse Jacobian in the first term of Eq. (A.19-b) can be brought inside the brackets in
the following way:

J−1
ni

∂

∂ξm
(|J |ρuivm) =

∂

∂ξm
(|J |ρJ−1

ni uivm) − |J |ρuivm
∂

∂ξm
J−1
ni (A.20-a)

(A.13)
=

∂

∂ξm
(|J |ρvnvm) − |J |ρuivm

∂

∂ξm
J−1
ni . (A.20-b)
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The velocities in the old coordinate system can be transformed to the new system by using
the inverse of Eq. (A.13), i.e. ui = Jijvj so that the last term of Eq. (A.20-b) becomes

|J |ρuivm
∂

∂ξm
J−1
ni = |J |ρJijvjvm

∂

∂ξm
J−1
ni . (A.21)

The second term of Eq. (A.19-b) can be written as

J−1
ni

∂

∂ξm
(|J |J−1

mi p) = J−1
ni |J |J−1

mi

∂p

∂ξm
. (A.22)

Carrying out the index summations for each index this yields for the components of the
momentum equation in r, θ and z direction

r(n = 1) :
∂rvr
∂t

+
∂rρv2

r

∂r
+
∂rρvrvθ
∂θ

+
∂rρvrvz
∂z

+ r
∂p

∂r
− r2ρv2

θ = 0, (A.23-a)

θ(n = 2) :
∂rvθ
∂t

+
∂rρvθvr
∂r

+
∂rρv2

θ

∂θ
+
∂rρvθvz
∂z

+
1

r

∂p

∂θ
+ 2ρvrvθ = 0, (A.23-b)

z(n = 3) :
∂rvz
∂t

+
∂rρvzvr
∂r

+
∂rρvzvθ
∂θ

+
∂rρv2

z

∂z
+ r

∂p

∂z
= 0. (A.23-c)

A.1.3 Energy conservation equation
In analogy with the mass conservation equation, the energy conservation equation in cylin-
drical coordinates is given by

∂rρet
∂t

+
∂rρvrht
∂r

+
∂rρvθht
∂θ

+
∂rρvzht
∂z

= 0. (A.24)

A.1.4 Hill’s method of moments
For Hill’s method of moments, consisting of four equations, we get (i = 0, 1, 2, 3):

∂|J |ρqi
∂t

+
∂

∂ξm
{|J |J−1

mj (ρqiuj)} = rW (i+6). (A.25)

with q = (Q0, Q1, Q2, g)
T . Carrying out the index summations, we get

∂rρqi
∂t

+
∂rρvrqi
∂r

+
∂rρvθqi
∂θ

+
∂rρvzqi
∂z

= rW (i+6). (A.26)

A.1.5 Axi-symmetric flow without swirl
In the case of axi-symmetric flow without swirl the ∂

∂θ terms are zero, and in addition also the
velocity in θ direction, vθ is zero. As a result, the momentum equation in θ direction can be
dropped and the resulting set of governing equations in case of axi-symmetric flow without
swirl is

∂rU
∂t

+
∂rF
∂z

+
∂rG
∂r

= H + rW. (A.27)

Column vectors U, F, G, H and W are given by:
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U =















ρ
ρvz
ρvr
ρet
ρQ0

ρQ1

ρQ2

ρg















F =















ρvz
ρv2
z + p

ρvzvr
ρvzht
ρvzQ0

ρvzQ1

ρvzQ2

ρvzg















G =















ρvr
ρvrvz
ρv2
r + p

ρvrht
ρvrQ0

ρvrQ1

ρvrQ2

ρvrg















(A.28)

H =















0
0
p
0
0
0
0
0















W =















0
0
0
0
J
r∗J + ṙρQ0

r∗2J + 2ṙρQ1
4
3π%l(r

∗3J + 3ṙρQ2)















(A.29)
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INTERPOLATION

In this appendix, an efficient method is presented to interpolate the solution from one (source)
mesh to another (target) mesh. A structured equidistant background mesh is used as a means
of reducing the computational effort required to obtain an initial solution on the target mesh
from O(N2) to O(N log(N)). The method was originally developed for solution continua-
tion on 3D unstructured tetrahedral meshes, but for clarity, it is presented here for solution
continuation on 2D triangular meshes. Extension of the method to 3D tetrahedral meshes is
straightforward.

In general, the information which is needed to describe a triangular or tetrahedral mesh,
is the geometric location of every node, and for every triangle the index of the nodes which
form the triangle. The file in which the geometric location of the nodes is stored will be
referred to as the node file, and the file which stores the indices of the nodes spanning the
element (triangle or tetrahedron) will be referred to as the element file. An example of a
mesh consisting of only three triangles, and its corresponding node and element file, is given
in Fig. B.1.

2

3 5

I III
II

1

4

node file element file
node location element node indices

1 ~x1 I 1,2,3
2 ~x2 II 2,3,4
3 ~x3 III 3,4,5
4 ~x4

5 ~x5

FIGURE B.1: Example mesh consisting of three triangles with corresponding node
and element file, black dots represent the nodes, elements are denoted in Roman.
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With the node and element file available, the mesh is fully described. Since the source mesh
and the target mesh discretize the same geometry, every node of the target mesh will be
located inside or on the edge of a triangle of the source mesh, except for some nodes on a
curved boundary, as is illustrated in Fig. B.2. The solution in these target boundary nodes is

'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('
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'('('('('('('('('('('('('('('('('('('('('('
'('('('('('('('('('('('('('('('('('('('('('

)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()
)()()()()()()()()()()()()()()()()()()()()()source mesh

Source mesh

Target mesh

Target node outside
Boundary

FIGURE B.2: Target mesh and source mesh discretization of a curved boundary

copied from the nearest source node, which is found by looping over all nodes of the source
mesh. The amount of computational effort needed for this is limited, since the amount of
boundary nodes for 2D meshes and especially for 3D meshes is very small compared to the
number of interior nodes.

To prevent looping over all source mesh triangles when attempting to find the element
number in which the target node lies, the aim is to loop only over a limited part of the domain.
For this purpose, a structured mesh consisting of rectangles of a certain size is “superposed”
over the coarse mesh, which completely overlaps the unstructured mesh, as is depicted in
Fig. B.3 for the mesh of Fig. B.1. The structured mesh consists of Nx rectangles in x-

9 10

11 12

8

3 4 5

6 7

13

ymax

ymin
max

14 15

x min x
21

FIGURE B.3: Structured mesh overlaying the unstructured mesh

direction and Ny rectangles in y-direction, so that the total number of rectangles N2 is equal
to NxNy . The minimum and maximum value of x and y are denoted by xmin and ymin,
and xmax and ymax, respectively. If we number the rectangular elements from 1 to N2, the
rectangle number n in which an arbitrary point (x, y) is located is given by

n(x, y) = 1 + nx(x) + ny(y)Nx , (B.1)
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where

nx(x) = int
(
x− xmin

∆x

)

, (B.2-a)

ny(y) = int
(
y − ymin

∆y

)

, (B.2-b)

with

∆x =
xmax − xmin

Nx
, (B.3-a)

∆y =
ymax − ymin

Ny
. (B.3-b)

The integer function “int” truncates its argument to an integer. With the number (index) of
the rectangle known, we now need to know which triangles are partly or completely in the
rectangle. However, this information is not available. The inverse problem on the other hand,
i.e. determining which rectangles completely overlap a certain triangle is straightforward.
The indices of these rectangles can easily be found by determining the minimum and maxi-
mum x and y coordinates of the triangle, denoted by x4,min and y4,min, and x4,max and
y4,max, respectively. For the above mentioned example, see Figs. B.1 and B.3, the rectangles
overlapping triangle I are 1-3,6-8 and 11-13. Note that rectangles 2,3 and 8 do not overlap
triangle I, but, for simplicity, they are not omitted.

The procedure of determining which rectangles overlap a certain triangle is repeated for
every triangle. During this procedure, a compact-storage array at of dimension [0 : N2] is
created which counts how many times the index of a certain rectangle is encountered. For our
example mesh, the contents of at is given in table B.1. Note that at[0] ≡ 1. Subsequently,

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
value 1 2 2 3 2 1 2 2 3 2 1 2 2 3 2 1

TABLE B.1: Contents of compact-storage array at

the contents of at is modified in the following way:

at[i] + at[i− 1] → at[i] for i = [1, 2, ..., N2] . (B.4)

The modified contents of compact-storage array at , for our example, is given in table B.2.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
old 1 2 2 3 2 1 2 2 3 2 1 2 2 3 2 1
new 1 3 5 8 10 11 13 15 18 20 21 23 25 28 30 31

TABLE B.2: Contents of compact-storage array at after modification
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After this is done, another compact-storage array b is created with dimension [1 :na], where
na = at[N2] − 1. Array b will store the inverse information of which triangle belongs to
which rectangle. This is done by looping over all triangles, and for each triangle looping over
all overlapping rectangles, by using the information stored in array at. This procedure is best
explained by explaining it in pseudo-programming language:

b[ ] := 0
For e = 1 to N4

For i = nx(x4,min) to nx(x4,max)
For j = ny(y4,min) to ny(y4,max)
k := 1 + i+ jNx
n := 0
Do

If b[at[k − 1] + n] == 0 Then
b[at[k − 1] + n] := e
Exit

Else
n := n+ 1

End If
End Do

Next j
Next i

Next e

The statement ”Exit” terminates the ”Do - End Do” loop and jumps to the next statement, i.e.
”Next j”. For the example mesh, b is given in table B.3.

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
value I II I II I II III II III III I II I II I

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
II III II III III I II I II I II III II III III

TABLE B.3: Contents of compact-storage array b

To determine whether a certain point P0 is inside, on, or outside of a given triangle P1P2P3,
we determine α1, α2, α3 according to Eq. (4.35)

(1) If 0 < α1 < 1, 0 < α2 < 1, 0 < α3 < 1, then P0 is properly inside the triangle.
(2) If 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ α3 ≤ 1, and one or two of α1, α2 and α3 is zero, then

P0 is on the triangle’s boundary (one zero means edge, two zeroes means node).
(3) If any of the inequalities in (2) above is false, P0 is outside the triangle.

The value in point P0 is then found from Eq. (4.34).
Now that the contents of the compact-storage arrays at and b have been established, and

a method is available to test if a certain point is located inside a given triangle, finding the
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triangle in which an arbitrary node of the target triangular mesh is located is straightforward.
First, the number of the rectangle n(x0, y0) in which the node is located is determined using
Eq. (B.1). Second, we test if P0 is located inside triangle j, for b[at[n(x0, y0)−1]] ≤ j ≤
b[at[n(x0, y0)]−1]. In this way, we can find the triangle of the source mesh in which the
node of the target mesh is located by looping only over a restricted number of triangles. The
initial solution in the node is also directly determined from Eq. (4.34). The computational
effort to obtain the interpolated solution is in the order of N log(N), compared to O(N 2)
for an interpolation method which runs over each triangle for every new node. To appreciate
this, consider the effort it would require to interpolate a solution from a mesh with 10,000
nodes to a mesh with 40,000 nodes, which would be at least O(108) by running over each
triangle, while for the present interpolation method, the effort would be at most O(105). So,
for example, the current interpolation method would reduce the computation time from one
hour to 4 seconds.
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SUMMARY

Condensation in flows at high speed occurs in many practical situations and industrial ap-
plications, for example in the transonic flow of humid air around an aircraft, the expansion
flow in steam turbines, phase-separation devices such as a Condi-Cyclone, or in the high-
speed flow of an underexpanded jet. The subject of this thesis is the modeling and numerical
simulation of high-speed (transonic) flows with condensation.

In the present study we consider flows that are rapidly expanding. Due to the rapid ex-
pansion, the onset of condensation is described by homogeneous nucleation, involving the
spontaneous formation of vapour clusters in the flow. Under thermodynamic non-equilibrium
conditions, the vapour clusters then grow into droplets. The condensation process releases
heat to the flow, leading to a complex interaction of the condensation process with the flow
itself.

In case of high-pressure flows, the perfect-gas equation of state can no longer be used. A
novel real-gas equation of state is therefore developed, satisfying Maxwell’s thermodynamic
relations, which can be used to accurately describe the behavior of the gas in a specified
range of pressure and temperature. The formulation contains only 9 free parameters that are
determined from a weighted least-squares fit of data from a data-base. For a natural gas, it is
shown that the present formulation of the real-gas equation of state is adequately accurate.

The numerical method developed is based on the Euler equations of gas dynamics and
Hill’s Method of Moments describing the liquid phase, plus relations for material proper-
ties, such as surface tension, liquid density and equilibrium vapour pressure. The governing
equations are solved with an explicit finite-volume method. The computational domain is
discretized using triangular (2D, axi-symmetric) or tetrahedral (3D) elements. This allows
for relatively easy meshing of complex geometries and local clustering of control volumes.
The fluxes are calculated with Liou’s AUSM+ scheme, and second order spatial accuracy is
achieved by applying van Leer’s MUSCL-scheme, with the control-volume-averaged solution
assigned to the centroid of the median-dual mesh control-volume. The solution is iterated to
a steady state using Heun’s predictor-corrector method, while the condensation source term
is treated by a fractional time-stepping method.

The method can be used to simulate compressible, high-speed, high-pressure flows of a
(multi-component) gas with condensation. Two-dimensional and axi-symmetric flow prob-
lems have been utilized to validate the computational method. These are the dry flow of air
around the NACA 0012 airfoil at a transonic flow condition, the flow of wet air through the
A1 nozzle, and the axi-symmetric flow of dry air in an underexpanded supersonic jet. The
validation cases show that the method produces results that agree well with other numeri-
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cal results and with experimental data. Therefore, the assumptions underlying the present
method have proven to be valid for the validation cases considered. Calculations for two-
dimensional and axi-symmetric flows generally require less than one day turn-around time
on an SGI O200.

As an application the underexpanded jet of xenon is considered. The underexpanded xenon
jet shows that condensation has a significant effect on the diameter of the Mach disk and on
the diameter of the barrel shock. When the reservoir conditions change such that the satura-
tion varies from lower values to higher values, there is a remarkably rapid shift in the location
of the condensation from outside of the barrel shock to inside of the barrel shock. This shows
again the complex interaction of the condensation process with the flow that may occur in
industrially relevant jet flows. For the underexpanded xenon jet flow with condensation, the
method converges to adequate levels of accuracy but not to machine accuracy. Specifically
in the vicinity of the nozzle lip, where the supersonic flow is deflected over an angle of 90
degrees, the exponential dependency of the nucleation rate on the flow prevents convergence
to machine accuracy.

When the computational method is applied to the flow of a multi-component natural gas
with condensation in a complex 3D geometry, the 3D flow features a strong expansion with a
high cooling-rate and nucleation and droplet-growth followed by a strong swirling flow with
additional nucleation, further droplet growth in regions with expansion and evaporation in
regions with compression. However, features like multi-component nucleation and conden-
sation, as well as de-nucleation need to be included in the mathematical model before detailed
analysis can be carried out.



SAMENVATTING

Condensatie in hogesnelheidsstromingen komt in veel praktische situaties en industriële toe-
passingen voor, bijvoorbeeld in de transsone stroming van vochtige lucht rond een vliegtuig,
de expansiestroming in stoomturbines, fasescheidingsapparaten zoals een Condi-Cyclone,
of in de hogesnelheidsstroming van een ondergeëxpandeerde straal. Het onderwerp van dit
proefschrift is de modellering en numerieke simulatie van hogesnelheids- (transsone) stro-
mingen met condensatie.

In het huidige onderzoek beschouwen we stromingen die snel expanderen. Als gevolg van
de snelle expansie, wordt het begin van condensatie beschreven door homogene nucleatie, de
spontane vorming van dampclusters in de stroming. Onder thermisch niet-evenwicht condi-
ties groeien de dampclusters vervolgens tot druppels. Tijdens het condensatieproces komt er
warmte vrij in de stroming, wat leidt tot een complexe interactie van het condensatieproces
met de stroming.

In het geval van hogedrukstromingen, kan de perfect-gas toestandsvergelijking niet langer
worden gebruikt. Daarom is een nieuwe reëel-gas toestandsvergelijking ontwikkeld, die vol-
doet aan Maxwell’s thermodynamische relaties, welke kan worden gebruikt om nauwkeurig
het gedrag van het gas te beschrijven in een voorgeschreven bereik van druk en temperatuur.
De formulering bevat slechts 9 vrije parameters die worden bepaald uit een gewogen kleinste-
kwadraten fit van data uit een databank. Voor aardgas wordt aangetoond dat de huidige for-
mulering van de reëel-gas toestandsvergelijking voldoende nauwkeurig is.

De ontwikkelde numerieke methode is gebaseerd op de Euler vergelijkingen voor de gasdy-
namica en Hill’s Methode van Momenten welke de vloeistoffase beschrijft, plus betrekkingen
voor stofeigenschappen, zoals oppervlaktespanning, vloeistofdichtheid en evenwichtsdamp-
druk. De beschrijvende vergelijkingen worden opgelost met een expliciete eindige volume
methode. Het rekengebied wordt gediskretiseerd met driehoekige (2D, axiaalsymmetrisch)
of tetraëdervormige (3D) elementen. Dit maakt het relatief eenvoudig om complexe geo-
metriëen te voorzien van een rekenrooster en om lokaal controlevolumes te clusteren. De
fluxen worden berekend met Liou’s AUSM+ schema, waarbij tweede-orde nauwkeurigheid
in de ruimte wordt bereikt door het toepassen van Van Leer’s MUSCL schema, met de
controlevolume-gemiddelde oplossing toegewezen aan het zwaartepunt van het mediaan-
duale-rooster controlevolume. De oplossing wordt geı̈tereerd tot een stationaire toestand, ge-
bruikmakend van Heun’s predictie-correctie methode, terwijl de condensatie bronterm wordt
behandeld met een fractionele tijdstap methode.

De methode kan worden gebruikt om samendrukbare, hogesnelheids-, hogedrukstromingen
van een (multicomponenten) gas met condensatie te simuleren. Twee-dimensionale en axiaal-
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symmetrische stromingsproblemen zijn gebruikt om de berekeningsmethode te valideren.
Dit zijn de stroming van droge lucht rond het NACA 0012 profiel voor een transsone stro-
mingsconditie, de stroming van vochtige lucht door de A1 nozzle, en de axiaalsymmetrische
stroming van droge lucht in een ondergeëxpandeerde straal. De validatiegevallen laten zien
dat de methode resultaten produceert die goed overeenkomen met andere numerieke resul-
taten en met experimentele data. De aannames die ten grondslag liggen aan de huidige
methode hebben hierdoor bewezen geldig te zijn voor de beschouwde validatiegevallen.
Berekeningen aan twee-dimensionale en axiaalsymmetrische stromingen kosten over het al-
gemeen minder dan een dag tijd op een SGI O200.

Als toepassing wordt de ondergeëxpandeerde straal van xenon beschouwd. Deze laat zien
dat condensatie een significante invloed heeft op de diameter van de Machschijf en op de dia-
meter van de vatschok. Als de reservoircondities zo veranderen dat de verzadiging van lagere
waarden tot hogere waarden varieert, vindt er een opmerkelijk snelle verschuiving plaats van
de locatie van de condensatie van buiten de vatschok tot binnen de vatschok. Dit illustreert
nogmaals de complexe interactie van het condensatieproces met de stroming zoals die plaats
kan vinden in industrieel relevante straalstromingen. Voor de ondergeëxpandeerde xenon
straalstroming met condensatie, convergeert de methode tot een toereikend nauwkeurigheids-
niveau, maar niet tot machinenauwkeurigheid. Met name in de nabijheid van de nozzlerand,
waar de supersone stroming over een hoek van 90 graden wordt afgebogen, verhindert de
exponentiële afhankelijkheid van de nucleatie met de stroming de convergentie tot machine-
nauwkeurigheid.

Als de berekeningsmethode wordt toegepast op de stroming van een multicomponenten
aardgas met condensatie in een complexe 3D geometrie, vertoont de 3D stroming een sterke
expansie met een hoge koelsnelheid en nucleatie en druppelgroei gevolgd door een sterk
wervelende stroming met additionele nucleatie, verdere druppelgroei in gebieden met ex-
pansie en verdamping in gebieden met compressie. Het is echter nodig om verschijnselen
als multicomponenten nucleatie en condensatie, als ook de-nucleatie, op te nemen in het
wiskundige model voordat gedetailleerde analyse uitgevoerd kan worden.
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