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abstract

Many research has been done to provide scientists and aviation engineers

with tools to predict ice accretions on in �ight aircraft. The ice accretion

problem is often sudden, its e�ects can be dramatic, leading to aircraft

accidents with possible loss of lives. Until now this �eld has been relatively

steady. It has proven to be fairly easy to model ice accretions for clouds

with droplets of relatively small droplet diameter (< 50 µm).

However, a recent trend is to investigate supercooled large droplets, with

diameters ranging from 50 µm through 1000 µm or larger. These large

droplets have been found to be more prominent in nature than previously

thought. Ice accretions caused by these droplets have been identi�ed as

the likely cause for several aviation incidents during the last decade. Ice

accretion by sld are far more di�cult to predict than those by smaller

droplets. Development of ice accretion models for sld has found renewed

focus and was the central research theme in the European Commission

FP7 extice project. Much of the research in this thesis has its origins, or

has been inspired by, this project.

A new sld ice accretion method has been developed, incorporating:

droplet size distributions, droplet deformation, droplet splashing, and

droplet rebound. This method has been validated against experimental

catching e�ciencies and experimental ice accretions shapes. Furthermore,

this method has been extended from a Lagrangian method for two-dimen-

sional �ow to an Eulerian method for three-dimensional �ow. Validation

results show an accuracy of droplet catching e�ciencies within 10%. The

ice accretion shapes are more di�cult to accurately predict, but without

a boundary layer �lm �ow model the ice accretion thickness can also be

predicted within approximately 10% accuracy.
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1introduction

On October 31, 1994, at 1559 Central Standard Time, an Avions de

Transport Regional, model 72-212 (atr 72), registration number

n401am, leased to and operated by Simmons Airlines,

Incorporated, and doing business as American Eagle flight 4184,

crashed during a rapid descent a�er an uncommanded roll

excursion. The airplane was in a holding pa�ern and was

descending to a newly assigned altitude of 8,000 feet when the

initial roll excursion occurred. The airplane was destroyed by

impact forces; and the captain, first o�icer, 2 flight a�endants

and 64 passengers received fatal injuries. . . .

The National Transportation Safety Board determines that the

probable causes of this accident were the loss of control,

a�ributed to a sudden and unexpected aileron hinge moment

reversal that occurred a�er a ridge of ice accreted beyond the

deice boots. . . .

ntsb aar-96-01 , Aircra� Accident Report: In-Flight Icing

Encounter and Loss of control, Simmons Airlines, d.b.a. American

Eagle Flight 4184, Avions de Transport Regional (atr), Model

72-212, n401am Roselawn, Indiana, October 31, 1994

T
he above qotation describes an example of an icing encounter,

in this case unfortunately with fatal consequences. It is also one of

the reasons for the current interest in research on icing on aircraft

in �ight. The cause of the severe icing in the fatal atr 72 crash was the

occurrence of so-called supercooled large droplets or sld . The methods

used by aircraft manufacturers are able to predict ice accretions occurring

from normal icing conditions, with normal clouds containing droplets with

a diameter up to 50 µm. However, sld conditions, with droplets ranging

to the millimeter scale, are much less understood. While the probability of

encountering sld icing conditions might not be as large as the probability

of encountering “normal” icing conditions, the danger related to sld icing

greatly exceeds the danger of normal icing.
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chapter 1 introduction

Photograph by caribb on flickr, available under a cc by-nc-nd 2.0 license

Figure 1.1: Photograph of an atr 72-212, American Eagle n440am, same type as

the aircraft from �ight 4184

1 . 1 ice accretion

When liquid water is carried upward in the atmosphere, due to thermal

convection, clouds of water droplets are formed as shown in Fig 1.2. De-

pending on the altitude, temperatures inside these clouds can decrease

below the freezing point (0 ◦C or 273.15 K). These droplets will not freeze

unless there is a nucleus for the droplets to seed on, such as an existing

ice crystal, a sand grain, or a dust particle. As such, clouds can contain

supercooled droplets, droplets with a temperature below the freezing point.

Typical temperatures can range from 0 ◦C down to −40 ◦C, depending on

the altitude. When these droplets hit an object, such as an airplane wing,

they will freeze almost instantly.

The ice accretion process involves several steps. When an aircraft �ies

through a cloud with supercooled droplets they impinge on the surface

of the aircraft due to the forward velocity of the aircraft. The trajectory

that a droplet follows, and therefore the location at which it will impact

the surface, depends primarily on the droplet size; as the trajectory is

determined mostly by the drag force on the droplet. Because the droplets

2
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1.1 ice accretion

supercooled droplet cloud

hot air

altitude

T = 0 ◦C

T > 0 ◦C

T < 0 ◦C

Figure 1.2: Sketch of the birth of a supercooled cloud

are supercooled, a mass of ice will form almost instantly at the moment

the droplets contact the aircraft surface.

The size, shape, and location of the ice accretion that will form depends

on:

• The environmental parameters, e.g., ambient air temperature, pres-

sure, cloud liquid water content (lwc), relative humidity, andmedian

volumetric diameter (mvd).

• The aircraft surface conditions, e.g., surface temperature, surface

roughness, and surface tension at the air/water interface.

• The �ow parameters, e.g., �ight velocity, angle of attack, and icing

time.

1 . 1 . 1types of ice accretion

Two distinct types of ice accretion have been observed:

Rime-ice accretions A dry, opaque and milky-white ice deposit with a

density lower than that of the water in the impinging droplets. It

usually occurs at low airspeeds, low temperatures, and low lwc’s. In

3



chapter 1 introduction

rime ice conditions the released latent heat of freezing is insu�cient

to raise the local temperature above the freezing point and all the

water in the impinging droplet freezes fully upon impact. Generally,

rime-ice accretions have a streamlined shape. This kind of icing is

also called freezing drizzle.

Glaze-ice accretions A heavy coating of transparent ice spreading over

thewing. This has a density close to that of thewater in the impinging

droplets. It usually develops at high airspeeds, temperatures closer

to the freezing point, and high lwc’s. In glaze-ice conditions, due

to the relatively high amount of released latent heat of freezing, the

temperature increases to 0 ◦C. Therefore, only part of the water in the

droplets freezes upon impact, the rest of thewater runs back along the

airfoil surface. This run-back water often freezes further downstream

on the airfoil surface. Generally, the resulting ice formations have

an irregular, non-aerodynamic shape, which may jeopardize the

aerodynamic characteristics of the airfoil section. This kind of icing

is also called freezing rain.

1 . 1 .2 ice accretion features

Several features are common in ice accretion shapes:

Roughness Ice that forms as a non-continuous distribution on the surface,

usually at the onset of ice accretion. Roughness may grow into clear

ice.

Feathers Similar to the roughness-feature, but these features extend fur-

ther from the surface. Thought to be more prevalent in sld condi-

tions due to splashing and rebound of impinging droplets. Feathers

may grow into clear ice or stream-wise ridges.

Clear ice Relatively smooth patches of ice, usually near the stagnation

point.

Stream-wise ridges Typical rime icing shape, conforming to the surface.

Stream-wise ridges may grow into horns.

Span-wise ridges Typical sld feature. Formed by run-back water freez-

ing downstream of anti-icing devices.

4



1.1 ice accretion

Horns Horns can grow just downstream of the stagnation point. It is

common to encounter one or two horns, but more is possible. Horns

can extend signi�cantly in the direction normal to the surface.

For airplanes, ice accretions can cause severe problems because they

disturb the aerodynamic characteristics of the airplane, e.g., an increase

in drag due to increased surface roughness, or �ow separation due to the

horns. Ice accretions can also occur on engine intakes, causing dangerous

situations when the ice detaches and is sucked into the engine.

low

Because of the inherent dangers of icing, airplanes have to be certi�ed

to be allowed to �y in icing conditions. For this certi�cation a speci�cation

of the “normal” icing cloud has been formulated in the Federal Aviation

Administrations (faa) regulations: faa 14 cfr Part 25 Appendix C: Atmo-

spheric Icing Conditions for Aircraft Certi�cation.

1 . 1 .3supercooled large droplets

As a contrast to “normal” droplets, supercooled large droplets (sld) are

de�ned as droplets with a

• temperature below freezing (T < 0 ◦C or T < 273.15 K), and a

• diameter larger than normal droplets (d > 50 µm).

sld encounters are rare. Wrongfully, they were attributed to conditions in

alpine-climates, but sld have been encountered in many other locations,

including tropical-climates.

sld are thought to be the main cause of the accident referred to in the

introduction as well as several other aviation incidents. Because of their

size sld present speci�c problems because

• ice accretion occurs faster than for “normal” droplets.

• ice accretion occurs at di�erent locations thanwhere “normal” droplet

ice accretion occurs. More water is transported downstream as run-

back water. This can cause ice accretions beyond the protection

measures that are in place for “normal” icing.

5
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Photograph by dga Essais Propulseurs

Figure 1.3: Photograph of an icing wind-tunnel test showing an sld-speci�c ice

accretion, note the absence of horns

• ice accretion is harder to predict than for “normal” droplets. sld are

more likely to splash, rebound, deform or break-up than “normal”

droplets.

A typical example of sld icing is shown in Fig. 1.3 and Fig. 1.4.

Droplets with sizes larger than 1 mm have been reported, e.g., in the

eurice project; which is much larger than the largest diameter (50 µm)

prescribed in the faa 14 cfr Part 25 Appendix C �ight envelope.

The faa is developing a new �ight envelope, known as faa 14 cfr

Part 25 Appendix O, including sld-conditions. The European Aviation and

Space Agency (EASA) is developing similar regulations.

In preparation of these new regulations the industry wants to improve

their understanding and predictive capabilities of sld speci�c ice accre-

tions. One such e�ort is the extice project, a project funded from the

European Union’s seventh framework program (fp7). Much of the re-

search presented in this thesis originates from this project. The present

research focuses on the prediction of sld trajectories and the correspond-

ing distribution of water impinging on airfoils. Furthermore, the extension

of this methodology to three-dimensional ice accretion simulation.

6



1.2 ice accretion modeling

Photograph by nasa Lewis, now nasa Glenn

Figure 1.4: Photograph of an icing wind-tunnel test showing an sld-speci�c ice

accretion, note the span-wise ridge

1 .2ice accretion modeling

Because of the impact of ice accretions, all aircraft manufacturers need and

want to know the e�ects of in-�ight icing on the aerodynamic character-

istics of their aircraft. The reasons are threefold: they need to comply to

certi�cation demands regarding airworthiness with inoperative anti-icing

devices, they want to design their aircraft such that the aircraft experiences

minimal in�uence from in-�ight icing, and they want to design their air-

craft such that the need for anti-icing devices is minimal (in space, energy

and cost). Combined with the many other demands for an aircraft, these

design-requirements lead to a �nal aircraft design.

During the design-phase it is often impossible—on economical and prac-

tical grounds—to carry out in-�ight ice accretion �ight tests: a �ying proto-

type must be available and the right atmospheric conditions must be found.

Not to mention the possible dangers related to �ying in icing conditions.

Especially for sld conditions this can be a daunting task! The only other

options are:

7



chapter 1 introduction

1. wind-tunnel tests, this requires a scaled model of (part) of the aircraft

and the availability of an icing wind-tunnel; and

2. numerical methods, this requires a sound mathematical model de-

scribing the physical processes involved in the formation of ice

accretions and, of course, su�cient computing power.

Numerical methods are by far the most cost- and time-e�ective method of

the two. However, it also requires the most (fundamental) knowledge of

the physics involved in the entire ice accretion process.

Four separate stages of modeling can be identi�ed:

Flow Model for Surrounding Air In order to predict the location of

possible ice accretions the �ow surrounding the aircraft must to

be known. The geometry of the aircraft and the environmental con-

ditions are used as input for this model. The model employs com-

putational �uid dynamics (cfd) to obtain a realistic �ow solution.

The output from this model can be used to supply the droplet model

with input.

Droplet Model Using the �ow surrounding the aircraft, the cloud con-

ditions, and the aircraft geometry as input; the droplet model must

predict the distribution of impinging droplets on the aircraft surface,

the so-called catching e�ciency. Essentially, the equations of motion

for the droplet have to be considered. The droplet physics involved

for sld droplets in the aircraft �ow �eld are far more complicated

than the physics for “normal” droplets. The output from this model

can be used as input for the thermodynamic model.

Thermodynamic Model Using the �ow near the surface and the im-

pingement distribution from the above models, the thermodynamic

model is able to predict the ice accretion using a mass and energy

balance along the surface of the aircraft. The shape of the �nal ice

accretion is determined by the mass and density of ice on the surface,

caused by freezing of impinging water and of run-back water, if

present. Water that does not freeze is used as input for the surface

�ow model.

Flow Model for the Surface Flow of Water Using the �ow of air near

the surface and the amount of water on the surface that does not

8



1.3 objectives of present study

freeze, the surface �ow model must predict how much water �ows

downstream along the aircraft surface. This can be a cfd-model

based on �lm-dynamics, but often it is a simple empirical model. The

run-back water is used as input for the above described thermody-

namic model.

1 .2 . 1resulting ice accretion method

The results of each of the above models depend on the other models, espe-

cially the surface �ow and the thermodynamic model. Therefore, providing

a solution method for these models is not evident. Usually the surface

�ow and thermodynamic model are combined into a single model. This

leads to a sequential solution procedure. Some solution methods loop over

these models several times, using the obtained ice accretion shape as a new

(intermediate) aircraft geometry, i.e., as input for the air �ow model).

1 .3objectives of present study

This study aims at improving the existing numerical method for the pre-

diction of ice-accretions to a more accurate method for sld conditions.

The resulting numerical method will provide predictions for ice-accretion

shapes that are similar in shape and size to experimental results, in both

two and three dimensions.

The outline of this study is as follows:

• A description of state-of-the-art numerical method.

• A detailed analysis of supercooled large droplets.

• A �rst improvement to the numerical method; solving a Eulerian

droplet �ow �eld. Including sld speci�c e�ects, e.g., splashing and

rebound.

• A second improvement of the numerical method; simulating three-

dimensional ice accretions.

• Validation results of the introduced improvements.

• Concluding remarks.

9
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N
owadays, it is common practice in the aircraft manufacturing in-

dustry to apply computational methods for the prediction of ice

accretions in two-dimensional �ows. Studies to extend the two-

dimensional ice growth methodology to three-dimensional �ows are in

progress at for example nasa Glenn as well as at cira and onera.

2.1existing ice accretion code

The 2dfoil-ice method [Jacobs et al., 2008, Dillingh and Hoeijmakers,

2003, 2004, Snellen, 1996, Snellen et al., 1997], developed at the Univer-

sity of Twente, predicts the growth of ice on 2d surfaces. It is based on

a quasi-steady �ow and ice growth model that takes into account all im-

portant mass and heat transfer processes that occur when supercooled

water droplets strike an airfoil. The droplets either freeze immediately

upon impact or freeze partly while the rest of the water runs back on the

airfoil. The capabilities of the method have more recently been extended by

the inclusion of a model for thermal ice protection systems [Dillingh and

Hoeijmakers, 2003]. The use of this method, therefore, not only enables

the assessment of potential icing hazards due to ice growth on unprotected

surfaces; but also the design and appropriate placement of thermal ice

protection systems. Aircraft icing is a threat during take-o� and climb,

during descent and landing, and in holding pattern �ight; when high-lift

devices of the multi-element airfoil are deployed. The geometric capability

of the method has recently been extended to the case of multi-element

airfoil sections [Jacobs et al., 2008].

2.1 . 1lagrangian droplet modeling

2dfoil-ice employs a so-called Lagrangian droplet tracking method. This

means that droplets are followed individually from an initial release location

11



chapter 2 previous numerical methods

~x0 = (x0,y0,z0)
T . Along the droplet trajectory, a droplet velocity ~Ud =

(u,v,w )T can be determined by integration of the equation of motion for

this droplet. If a suitable time-step ∆t is chosen a new droplet position can

be calculated.

The equation of motion for a droplet is usually taken to depend only on

the droplet drag and on gravity. All other forces that may be acting on the

droplet are ignored. As a result the equation of motion of the droplet can

be expressed as:

md
d~U

ddt
=
~D + ~дmd , (2.1)

with ~д the gravity andmd themass of a droplet. The drag force ~D is speci�ed

as:
~D = 1

2
ρa

���~Ua − ~Ud
���
(

~Ua − ~Ud

)

AdCD , (2.2)

with ρa the density of the surrounding air. Furthermore, ~Ua and ~Ud are

the air and droplet velocities, respectively. Ad is the cross-sectional area of

the droplet. CD is usually a function of the Reynolds number based on the

relative droplet velocity, Red :

Red ≡
ρa

���~Ua − ~Ud
���d

µa
, (2.3)

withd the droplet diameter and µa the dynamic viscosity of the surrounding

air. In the current modelCD is derived from the expression due to Langmuir

and Blodgett [1946]:

CDRed
24

= 1 + 0.0197Re0.63d + 2.6 · 10−4Re1.38d , (2.4)

which is valid for Red < 1000.

Integrating the equation of motion gives the droplet velocity

~U (t ) =

t
∫

t ′=0

d~U

dt ′
dt ′ ≈ ~U0 +

d~U

dt ′

������t ′=t0
∆t , (2.5)

with ∆t = t − t0. The position of the droplet follows from

~x (t ) =

t
∫

t ′=0

~U (t ′) dt ′ ≈ ~x0 + ~U0∆t . (2.6)

12



2.1 existing ice accretion code

dy

ds

Figure 2.1: Local catching e�ciency for Lagrangian methods

catching efficiency

Using the calculated trajectories the catching e�ciency can be determined.

The catching e�ciency is de�ned as the dimensionless mass of water

impinging on the surface. For a Lagrangian method, this catching e�ciency

β is de�ned as:

β =
dy

ds
, (2.7)

with dy the distance between two closely spaced trajectories at their release

location and ds the distance along the surface between the corresponding

two impact locations. A graphical example of this can be seen in Fig. 2.1.

A value of β = 1 implies that the distance between the two trajectories is

the same on release and impact, i.e., the mass of water droplets contained

between the two directories is exactly the same on the surface as at the start

of the trajectory. A typical catching e�ciency curve will show a peak value

just below β = 1 around the stagnation point, decreasing away from the

stagnation point in downstream direction where eventually it will decrease

to zero. The points on the upper and lower surface closest to the stagnation

point where β = 0 are called the impingement limits.

The catching e�ciency is an important quantity for the prediction of

ice accretions, since the ice accretion shape depends on the total amount

as well as on the distribution of impinging water.

2.1 .2messinger model

Using the catching e�ciency as one of the inputs, an ice accretion shape

has to be calculated. Since the existence and shape of the ice is very much

a local variable, a numerical scheme has to be conceived to calculate this

amount of ice locally. One method that is often employed is the Messinger

[1953] model. The Messinger approach can be described as follows:

13



chapter 2 previous numerical methods

• Divide the area along the surface into control volumes. Each control

volume is limited by the surface on the bottom, the air on the top,

and two neighboring control volumes; one upstream and one down-

stream. This means that a control volume may contains a layer of

water, bounded on the bottom by either the ice layer or the airfoil

surface, as illustrated in Fig. 2.2.

• Iterate:

– Start using an initial guess temperature of 0 ◦C.

– Calculate the mass balance for each of the control volumes on

the surface.

– Use the energy balance to calculate the temperature and a

freezing fraction.

– Repeat until the temperature and freezing fraction reach con-

vergence.

Using this method it is possible to �nd an equilibrium state for each of

the control volumes. The details of this method will be explained in the

following sections.

mass balance

Themass balance is determined by the di�erence between themass entering

the control volume and the mass leaving the control volume.

Incoming mass: Sources of mass for each control volume.

• mass of impinging droplets

• mass of runback water from upstream control volumes

Outgoing mass: Sources of mass loss for each control volume.

• mass of water that freezes, determined by the energy balance

• mass of runback water to downstream control volumes

• mass of water evaporating from the surface

The outgoing mass �ows are dependent on the resulting mass of ice, which

is determined by the thermodynamic balance. These mass �ows are illus-

trated in Fig. 2.2(a).

14
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Ice

Waterṁin,i ṁout,i

ṁimp,i ṁev,i

ṁice,i

CVi

(a) Mass �ows

Ice

WaterQin,i Qout,i

Qimp,i Qev,i

Q freeze,i Qcool,i

Qconv,iQaero,i Qwater,i

CVi

(b) Energy �ows

Figure 2.2: Messinger control volume, 2d

thermodynamic balance

The thermodynamic balance determines if, and howmuch, water freezes on

the surface. A balance has to be found between the incoming and outgoing

energy of a control volume.

Incoming energy: Sources of energy for each control volume.

• kinetic energy of impinging droplets

• enthalpy of impinging droplets

• enthalpy of runback water from upstream control volumes

Outgoing energy: Sources of energy loss for each control volume.

• latent heat of freezing water

• latent heat of evaporating water

• enthalpy of remaining water �lm

• enthalpy of runback water to downstream control volumes

All of these terms contribute to the energy balance, depending on the

temperature of the surface Ts and on the surrounding air Te . These energy

�ows are illustrated in Fig. 2.2(b).
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iteration procedure

To satisfy the mass and energy balance an iterative procedure is used. The

unknown parameters are the leaving mass, the temperature, and the so-

called freezing fraction. The iterative procedure starts at the stagnation

point (2d) or stagnation line (3d), where there is no runback water from

upstream control volumes. For such a control volume the only entering

mass is the impinging droplet mass.

As an initial guess, the temperature for each control volume is chosen

as 273.15 K, the freezing point of water. At this temperature it is possible

to have a mixture of ice and water: the freezing fraction, f , needs to be

determined:

f ≡
freezing mass

incoming mass
. (2.8)

The next step in the iteration procedure is determined by three ranges for

the freezing fraction:

f < 0 : Ts,1 = Ts,0 − ∆Ts , no water→ ice

0 ≤ f ≤ 1 : Ts is correct, some water→ ice

f > 1 : Ts,1 = Ts,0 + ∆Ts„ all water→ ice

(2.9)

If 0 ≤ f ≤ 1, the mass of water not turning into ice is the amount of

runback water. The iteration process is illustrated in Fig. 2.3.
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panel = 1

T = 273.15 K

calculate

energy

�ows

0 ≤ f ≤ 1 f < 0

Ts,1 =

Ts,0 − ∆Ts

f > 1

Ts,1 =

Ts,0 + ∆Ts

incoming mass

(impingement + runback)

calculate

freezing

mass

calculate

runback

mass

last panel panel + 1

end

yes

no no

yes yes

yes

no

mass from

runback water

energy from

runback water

Figure 2.3: Flow chart of the iteration procedure used with the Messinger method
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3supercooled large droplets

T
he most important reason why sld ice accretions di�er from

normal ice accretions is the droplet size and the speci�c e�ects that

are encountered when �ying in conditions with these droplets. The

sld droplet e�ects are:

deformation Shear forces make sld more likely to deform then smaller

droplets.

breakup Larger shear forces may lead to breakup of sld’s.

splashing sld’s are more likely to splash upon impact with a surface.

rebound Similar to splash, but the entire droplet is de�ected instead of a

splash event, creating multiple droplets.

These e�ects make it more di�cult to predict sld droplet trajectories,

which is necessary to carefully predict the resulting ice accretion shape.

3.1effect on existing models

The aforementioned sld speci�c e�ects have a severe implication on the

existing ice accretion models.

The droplet deformation e�ect can be taken into account by modifying

the relation for the drag of the droplets, as shown in section 3.2.1. However,

the resulting relation is not a straightforward one, since it will depend on

the Reynolds number, the Weber number, or on a combination of these.

Droplet breakup is already a far more challenging aspect. There are

relations readily available from literature, see section 3.2.2, to determine

the moment and time of breakup; but the di�culty lies in the droplets that

are formed after the breakup event. These secondary droplets will have a

smaller diameter than the primary droplet and thus will have di�erent

characteristic properties, for drag or splashing events. Furthermore, every
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chapter 3 supercooled large droplets

breakup event will result in secondary droplets with a di�erent diameter.

This means that multiple droplet sizes will have to be tracked.

According to Wright and Potapczuk [2004], splashing is of primary

in�uence on the resulting sld ice accretions, it is also one of the most chal-

lenging e�ects to accurately model. The assumption for non sld droplets

is that, upon contact, they always impinge on a surface. Splashing implies

that this is no longer true: a droplet may splash, resulting in the re-injection

of several secondary droplets, with a smaller diameter, into the �ow around

the surface; but also in the possible deposition of part of the original droplet

on the surface. There are some splashing models available in literature,

see section 3.2.3, but their implementation is not straightforward. The

location on the surface where the secondary droplets are formed needs to

be tracked to correctly account for the mass lost by secondary droplets

being entrained in the �ow. This loss of mass is indicated by the mass loss

coe�cient, ϕ. The mass loss coe�cient can range from ϕ = 0 (no mass loss,

all mass deposits on the surface) to ϕ = 1 (no mass deposits on the surface).

Again, as with the breakup e�ect, multiple droplet sizes will have to be

tracked.

The rebound e�ect is very similar to the splashing e�ect. However, now

the resulting secondary droplet is of the same diameter as the primary

droplet. Furthermore, there is no deposition of mass on the surface: ϕ = 1.

This results in a simpler numerical implementation, shown in section 3.2.4.

Finally, both splashing and rebound are in�uenced by the existence of a

liquid �lm layer on the airfoil surface. This �lm surface is modeled by a

constant surface roughness in�uence in the heat transfer equations. The

�lm is not modeled as a dynamic �uid layer. However, due to the larger

mass of incoming water, larger water �lm thickness may occur, and liquid

�lm modeling may become necessary, as has been investigated by Norde

[2013].

3.1 . 1 droplet trajectories

To be certain that the aforementioned e�ects are the major e�ects that play

a role in the simulation of sld droplet trajectories, a study into the forces

acting on these droplets has been performed. In the work of van Eijkeren

and Hoeijmakers [2010] a comprehensive analysis of the available models

for the forces acting on droplets surrounded by a �uid �ow was performed.
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3.1 effect on existing models

Using these models, the impact of each of the separate forces has been

assessed.

For normal droplets, it is common to assume that all forces besides drag,

gravity and buoyancy can be ignored. To assess if this is a valid assumption

for the larger sld’s an analysis of two di�erent sets of trajectories has

been performed. One set of trajectories has been calculated using the

conventional assumption (only drag, gravity and buoyancy) and the other

set was calculated using a number of additional forces. The set of possibly

relevant forces consists of:

• drag,

• gravity,

• buoyancy,

• Basset history force, and

• virtual mass force.

The complete force on a droplet contains even more force-terms, some of

which are unknown. There are some lift terms, e.g., the Sa�man lift force,

but these force terms depend on rotation of the droplet or the containing

�uid. Since for most calculations the potential-�ow assumption is used,

which implies that rotation of the �ow �eld is negligible, these rotational

lift terms are ignored.

drag force

The drag force is accounted for using Eq. 2.2 from section 2.1.1, repeated

here:
~D = 1

2
ρa

���~Ua − ~Ud
���
(

~Ua − ~Ud

)

AdCD .

gravity force

In most conventional models the gravity is combined with at least part

of the buoyancy force. For this study the two have been accounted for as

individual force terms. The gravity force consists only of the force acting

on the droplet by gravitational acceleration:

~fд = ρwVd~д; (3.1)
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chapter 3 supercooled large droplets

where ρw is the density of water, Vd the volume of a droplet, and ~д the

gravitational acceleration vector.

buoyancy force

The buoyancy force is caused by a pressure gradient. In most common

methods, only the constant pressure gradient caused by the constant gravity

�eld is taken into account, resulting in

~fb = −ρaVd~д, (3.2)

where ρa is the density of the surrounding �uid (air). However, for the

present analysis the pressure gradient also takes into account the local

pressure gradient, ~∇p, induced by the �ow �eld:

~fb = −Vd~∇p. (3.3)

basset history force

Perhaps the most important question is whether or not the Basset history

force has to be accounted for. This term is based on the relative speed

at which the boundary layer on the droplet surface adapts to changes in

the surrounding �ow. Calculation of this term is particularly complicated

because it involves a time-integration over the path of the droplet, i.e.,

accounting for its history:

~fB = −3dµaπ
t

∫

−∞

K (t − τ ,τ )
d
(

~U − ~Ud

)

dt
dτ . (3.4)

where the kernel K has been chosen as the kernel for non-creeping �ow

conditions from Mei et al. [1991]:

K (t − τ ,τ ) =


(

4π (t − τ )
τd

)0.2

+



π (t − τ )2

f 3
H
τ 2
d

Re3d



0.4

−2.5

, (3.5)

with the droplet relaxation time τd =
ρad

2

µa
and fH = 0.75 + 0.2Red .

22



3.1 effect on existing models

virtual mass force

The virtual mass force is based on the acceleration of the air surrounding

the droplets. Accelerating a droplet means that the air surrounding it has to

accelerate as well. The virtual mass force therefore depends on the relative

acceleration:

~fvm =
1

2
ρaVd

d
(

~U − ~Ud

)

dt
. (3.6)

results

The two sets of droplet forces were used to perform calculations for two

droplet sizes. The droplet sizes chosen are the minimum and maximum

droplet diameters from the 10-bin droplet size distribution determined in an

impingement experiment performed by Papadakis et al. [2007], also used in

the validation of the complete model in chapter 6: 16 µm and 1046 µm, re-

spectively. The considered con�guration is a naca 23012 airfoil of 0.9144 m

at 2.5◦ angle of attack. The free-stream velocity ~U∞ = 78.23 m/s. With the

Reynolds number as

Re ≡
ρ∞~U∞c

µ
= 4.4 · 104 (3.7)

and the Mach number as

M ≡
~U∞
a
= 0.23, (3.8)

where c is the airfoil chord length and a the free-stream speed of sound.

For this con�guration the impingement limits were determined and

approximately 100 droplet trajectories were calculated within these limits.

The results are shown in Fig. 3.1.

For each of the force-components the trajectory with the maximum

force magnitude was determined, and the identi�cation number of this

trajectory was stored. The trajectories corresponding to unique trajectory

identi�cation numbers were plotted. This results in two or three di�erent

trajectories for each set of calculations, which indicates that most droplet

force components have a maximum force in the same trajectory. Further-

more, the droplet trajectories that are not the same are geometrically very

close to each other resulting in very similar trajectory plots.
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Figure 3.1: Magnitude of force components along droplet trajectories, only trajecto-

ries for which one of the components has a maximum value are shown
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Based on the resulting trajectories it can be concluded that:

• For both droplet sizes the drag force is the dominant force, although

the order of magnitude is almost four times larger for the larger

droplets than it is for the smaller droplets.

• For the smaller droplets (Fig. 3.1(a)) the second most dominant force

is the history force. However, this force component is already more

than one order of magnitude smaller than the drag force.

• For the larger droplets (Fig. 3.1(b)) the buoyancy force becomes more

important than the history force, the history force term is, similar to

the secondary force term for the smaller droplets, around one order

of magnitude smaller than the dominant drag force.

The calculation of the history force term is very time-consuming since it

involves integration over the entire time-domain up to the considered time.

Furthermore, the history force acts as in the same direction as the drag

force term. When ignoring the history force, part of the ignored e�ects are

compensated by an increase in the drag force. This gives reason to continue

with the generally accepted method of including only drag, buoyancy and

gravity in the calculation of droplet trajectories. It would be very time

consuming to include the history force in the numerical model, while the

increase in accuracy of the resulting droplet trajectories is minimal.

3.2available sld models

For each of the e�ects listed in section 1.1.3 there are models available from

literature. The most appropriate model for each sld e�ect is described

below.

3.2 .1deformation

One of the e�ects that becomes noticeable for larger droplets is due to

droplet deformation. Larger shear forces in the �ow can cause droplets to

deform. This means that the assumption that a droplet behaves as a solid

sphere (Eq. 2.4) is no longer valid.
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Droplet deformation may lead to droplet breakup. Droplets that are de-

formed or stretched beyond a certain limit will eventually breakup. There-

fore, similar relations apply to droplet deformation and droplet breakup.

feo

One attempt to improve the trajectory calculations due to the deformation

of droplets is by Feo and Jarillo [2008] as part of the extice project. In this

work the droplet drag coe�cient is determined from droplet velocity while

moving towards an airfoil. Feo used a high speed camera to with double

exposure to capture droplet sizes and motion. These drag coe�cients are

then compared to the drag coe�cients for spheres.

Using this data, a linear approximation of the drag coe�cient as a func-

tion of the local Reynolds number is proposed. Feo’s data suggests that for

low droplet Reynolds number the spherical model is valid. For a droplet

Reynolds number larger than Red > 345, the spherical droplet drag co-

e�cient is modi�ed. Data is not available for Red > 720, leading to the

following linear relations [De Gennaro, 2009, Mingione, 2012]:

CDRed
24

=



−0.00355Red + 3.760 : 345 < Red ≤ 385

−0.00517Red + 4.782 : 385 < Red ≤ 442

−0.00255Red + 3.425 : 442 < Red ≤ 475

0.0318Red − 12.903 : 475 < Red ≤ 518

0.00333Red − 0.313 : 518 < Red ≤ 630

−0.00325Red + 2.221 : 630 < Red < 720

. (3.9)

Note that there is no direct time dependence in this relation, while

deformation—like breakup—is very much a time dependent process. Note

that Eq. 3.9 is valid only for water droplets, no droplet properties are

included in this model.

tab-model

The Taylor analogy breakup (tab) model is, as it’s name implies, a breakup

model (see section 3.2.2); it uses droplet deformation to estimate when a

droplet will breakup, but it can also be used to modify the droplet drag

coe�cient. One such model is, according to Tan et al. [2005], used in
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fluent©; it uses the droplet deformation described in the tab breakup

model, Eq. 3.15, to modify the droplet drag coe�cient

CD = CD,sphere (1 + 2.632y) , (3.10)

where y is the non-dimensional deformation of a droplet, as described in

Eq. 3.18.

3.2 .2breakup

If the stresses on a droplet are large enough (larger than the stresses needed

to deform a droplet), or the deformation persists long enough; the droplet

might breakup into smaller droplets. A review on di�erent breakup models

has been performed by Tan et al. [2005].

Breakup is a cascading process; droplets will continue to breakup, under

the stresses imposed by the �ow on the droplet, until a certain critical

diameter is reached. Droplets with a diameter smaller than this critical

diameter are stable. The stresses on a droplet are determined mostly by the

relative Weber number:

Wed ≡
ρa

���~Ua − ~Ud
���
2
d

σw
. (3.11)

For breakup the critical Weber number, for cases neglecting droplet viscos-

ity, is usuallyWec ≡ 12 ([Honsek et al., 2008, Pilch and Erdman, 1987].

Most models identify multiple types of breakup. For example, Pilch and

Erdman [1987] identify �ve types, or modes, of breakup:

• vibrational breakup,

• bag breakup,

• bag-and-stamen breakup,

• sheet stripping, and

• wave crest stripping (followed by catastrophic breakup).

These �ve breakup modes are illustrated in Fig. 3.2 and a model based on

the experiments is described in the next section.
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Figure 3.2: Sketch of the various breakup modes [Pilch and Erdman, 1987]
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pilch and erdman

Onemethod for predicting droplet breakup is by Pilch and Erdman [1987]. It

uses the critical Weber number, the stable diameter, and the critical resident

time to determine breakup. A separate resident time is used for each of the

�ve breakup modes. To this end a dimensionless time is de�ned as

T = t

���~Ua − ~Ud
���
√

ρa
ρw

d
. (3.12)

The stable diameter can be estimated using

dstab =Wec
σa

ρa
���~Ua − ~Ud

���
2
, (3.13)

breakup will continue as long as the secondary droplets are still larger than

the stable diameter. The resident times for the �ve breakup modes to reach

total breakup, where d ≤ dstab , are then:

T =



6 (Wed − 12)−0.25 : 12 ≤ Wed ≤ 18

2.45 (Wed − 12)−0.25 : 18 ≤ Wed ≤ 45

14.1 (Wed − 12)−0.25 : 45 ≤ Wed ≤ 351

0.766 (Wed − 12)−0.25 : 351 ≤ Wed ≤ 2670

5.5 : Wed ≥ 2670

. (3.14)

tab-method

The Taylor analogy breakup (tab) model from O’Rourke and Amsden

[1987] is a widely used breakup model. In this model, breakup is assumed

to occur due to internal vibration of a droplet. This vibration can lead to

instability and breakup of the droplet.

The equation governing the (damped) vibration of a droplet is

F − kx − d dx
dt
=m

d2x

dt2
. (3.15)

In this equation d signi�es the damping coe�cient, not the diameter and x

is the relative displacement of the equator of the droplet. Taylor’s analogy
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gives the coe�cients:

F

m
= CF

ρa
���~Ua − ~Ud

���
2

ρwr
, (3.16a)

k

m
= Ck

σw

ρwr 3
, (3.16b)

d

m
= Cd

µw

ρwr 2
; (3.16c)

with r the droplet radius; andCF ,Ck , andCd chosen to match experimental

data.

Droplet breakup, according to this model, occurs when the distortion of

a droplet is greater than the critical ratio Cb of the droplet radius:

x > Cbr .

The most common assumption for the critical ratio isCb ≡ 0.5. This means

that breakup occurs when a droplet vibrates with a magnitude such that

the north and south poles meet at the middle of a droplet.

Non-dimensionalizing using y = x
Cb r

, and substituting Eq 3.16 into

Eq. 3.15 gives:

d2y

dt2
=

CF

Cb

ρa

ρw

���~Ua − ~Ud
���
2

r 2
−
Ckσw

ρwr 3
y −

Cdµw

ρwr 2
dy

dt
, (3.17)

where breakup will now occur for a non-dimensional droplet deformation

y > 1. Solving Eq. 3.17 for y is possible, assuming that the relative velocity

is constant:

y (t ) =Wem + e−t/td
[
(y0 −Wem ) cos (ωt ) +

1

ω

(

dy0

dt
+
y0 +Wem

td

)

sin (ωt )

]
, (3.18)

where the modi�ed Weber number is

Wem ≡
CF

C − kCd
Wed ,
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the damping frequency is

1

td
=

Cd

2

µw

ρwr 2
,

and the oscillation frequency is de�ned from

ω2
= Ck

σw

ρwr 3
−

1

t2
d

.

The diameter of the secondary droplets after breakup is determined from

energy conservation. Using the vibrational energy of the droplet, the Sauter

mean radius of the secondary droplets is found to be

r32 =
r

1 +
9Ky2

20
+
ρwr

2 (dy/dt )2

σ

6K − 5

120

; (3.19)

with K the ratio of total energy in distortion and oscillation in the funda-

mental mode, of the order K ≈ 0.33.

3.2 .3splashing

The most important e�ect speci�c for sld’s is the splashing e�ect. Splash-

ing is usually parameterized by the Weber number (Eq. 3.11) and the

Reynolds number, or by a combination of Weber and Reynolds: the Ohne-

sorge number, which is similar to the Laplace number La. The Ohnesorge

number is de�ned as:

Ohd ≡
1
√
La
≡
√
We

Re
≡

µa
√

ρaσwd
. (3.20)

Splashing is usually characterized by a combination of Weber and Ohne-

sorge. Two widely used combinations can be found in literature:

Cossali The Cossali splashing parameter is de�ned as [Cossali et al., 1997]:

K = Oh2/5Wen . (3.21)
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Yarin and Weiss The Yarin and Weiss splashing parameter is similar to

the Cossali parameter [Yarin and Weiss, 1995]:

Ky = Λ−3/8
(

Oh2/5Wen
)5/16

=


3

2

(

lwc

ρw

)1/3

−3/8
(

Oh2/5Wen
)5/16

,

(3.22)

where Λ is the droplet frequency, which functions as a measure for

�lm thickness.

In both these combinations, a larger diameter d , as seen with sld, increases

the parameter; leading to a higher probability of a splashing event.

Both Cossali and Yarin and Weiss determined a critical value of their

splashing parameter, any value above this critical level leads to a splashing

event. The critical Cossali parameter is determined as a function of �lm

thickness, which is mostly unknown in a numerical simulation. Yarin and

Weiss found the critical value to be a constant:

Ky,crit = 17. (3.23)

trujillo

Besides the critical values for splashing, a complete model for the numerical

simulation of splashing events needs more information: the number, size,

direction, and velocity of the secondary droplets. These parameters are

shown in Fig. 3.3. One of the �rst papers that attempts to model these

parameters is by Trujillo et al. [2000]. His model was intended for fuel

injection sprays. Trujillo et al. statistically analyzed several impingement

experiments.

The splashing parameter used by Trujillo is taken from the work of

Cossali, Eq. 3.21. An empirical relation for the critical value of this splashing

parameter was determined by �tting data from Stow and Had�eld [1981]

and Mundo et al. [1995]. When the splashing parameter K exceeds this

critical value, the impinging droplet will splash. This relation is only valid

for dry surface conditions and is a function of the non-dimensional surface

roughness Rnd :

Kc,dry = 180R−0.35nd , (3.24)
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~n

~Ud,in

~Ud,out

N = 3

din

dout

Figure 3.3: Parameters involved in a splashing event

where

Rnd ≡
Ra

din
, (3.25)

with Ra the average surface roughness.

To account for the wetting of the surface from previous droplet impacts,

the data from Yarin and Weiss is used to estimate Kc,spray :

Kc,spray

Kc,dry
= κ ≈ 3.0, (3.26)

assuming that the ratio κ remains constant for varying surface roughnesses

Rnd .

Stow and Stainer [1977] reported a linear correlation between kinetic

energy and the number of secondary droplets. This linear relation is ex-

tended by �tting Trujillo’s experimental data, obtaining a relation between

the Cossali splashing parameter K and the number of secondary droplets.

Any in�uence from surface roughness is present in the parameter Kc,dry :

N =
1

22


0.0437


K



���~Ud,in

���
~Ud,in · ~n




2

− Kc,dry


 − 44.92


. (3.27)

The number of secondary droplets also depends on the incident angle of

the incoming droplet:

θ = arcsin



~Ud,in · ~n
���~Ud,in

���


 . (3.28)
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Note that the relation of the number of secondary droplets is linear with

respect to the splashing parameter, if the incident angle is kept constant.

By applying a Gaussian distribution to the data from Mundo et al., a

relation for the mean tangential velocity and mean normal velocity can be

found:

~Ud,out ·~t

~Ud,in ·~t
= 0.85 + 0.0025θ , (3.29a)

~Ud,out · ~n

~Ud,in · ~n
= 0.12 + 0.002θ ; (3.29b)

where a restriction to the incident angle θ of a droplet, is inherited from

Mundo et al.: 4◦ < θ < 65◦.

From the work of Yarin and Weiss, a relation for the amount of splashed

mass is determined, expressed as the mass loss coe�cient ϕ. For conve-

nience the splashing parameters from Yarin and Weiss are converted to

Cossali’s splashing parameter:

ϕ =
mout

min
= 0.8

{
1 − exp

[
−0.85

(

Ky − Ky,crit

)]}

= 0.8
{
1 − exp

[
−0.85

(

Λ−3/8K5/16 − Λ−3/8K5/16
c,spray

)]}
.

(3.30)

This equation is graphically presented in Fig. 3.4.

From mass conservation the average diameter of the secondary droplets

dout can be determined using N , ϕ, and din:

ϕρw
πd3in
6
= Nρw

πd3out
6
, (3.31)

so that

dout =

(

ϕ

N

)1/3

din . (3.32)

The mass loss coe�cient can be used to correct the local catching e�-

ciency for the amount of water that moves away from the surface due to

splashing. The average diameter and velocity of the secondary droplets

can be used to calculate the trajectory of the secondary droplets. Note that

for the Trujillo model, the mass loss increases very rapidly to an asymptote

of 0.8.
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Figure 3.4: Mass loss coe�cient as a function of splashing parameter

habashi

Honsek et al. [2008]—commonly known as the Habashi model—addressed

the over-prediction of mass loss by calibrating Trujillo’s mass loss func-

tion to sld conditions, resulting in an equation very similar to Eq. 3.30,

replacing the constant 0.8 by 3.8√
Ky

:

ϕ =



3.8
√

Ky



{
1 − exp

[
−0.85

(

Ky − Ky,crit

)]}

= 3.8Λ3/16K −5/32
{
1 − exp

[
−0.85Λ−3/8

(

K5/16 − K5/16
c

)]}
.

(3.33)

The
√

Ky term in this equation ensures that for increasing splashing pa-

rameter Ky the mass loss coe�cient decreases from the 0.8 asymptote. A

graphical representation of this function is given in Fig. 3.4. Note that for

Ky > 23 the mass loss equation can be approximated (within 1%) by:

ϕ ≈
3.8
√

Ky

= 3.8Λ3/16K −5/32 : Ky > 23. (3.34)

3.2 .4rebound

Rebound is an sld e�ect that is strongly related to splashing. In stead of the

splashing event resulting in multiple smaller droplets a rebound results in a
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single secondary droplet moving away from the surface, without depositing

mass. Rebounding takes place mostly near the impingement limits and has

the e�ect of moving the impingement limits further upstream, reducing

the impingement area.

bai and gosman

The rebound model is taken from the implementation of Honsek et al.

[2008], using the model by Bai and Gosman [1995]. A splashing threshold

is de�ned using the droplet Weber number. From experiments, a minimum

and maximum value has been found, where the maximum value depends

on the Laplace—or Ohnesorge—number:

10 ≤ Wed ≤ 1320 La−0.18 = 1320Oh0.36d . (3.35)

Bai and Gosman also determined relations for the secondary velocity,

these relations are similar to relations for the velocities of a splashing

droplet described in Eq. 3.29. Note that the tangential velocity does not

depend on the angle of incidence:

~Ud,out ·~t

~Ud,in ·~t
=

5

7
, (3.36a)

~Ud,out · ~n

~Ud,in · ~n
= −

(

0.9930 − 0.0307θ ′ + 0.0272θ ′2 − 0.0086θ ′3
)

, (3.36b)

where θ ′ = 90 − θ .
For a rebound event, the diameter remains unchanged: a single droplet

rebounds from the surface, leading to all mass being lost:

dout = din, ϕ = 1. (3.37)
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4eulerian droplet method

T
his chapter eludes on the implementation of the sld models de-

scribed in the previous chapters. Speci�cally, it explains the de-

velopment of a new ice accretion calculation method, using an

Eulerian frame. This in contrast with the Lagrangian frame of 2dfoil-

ice. The Eulerian method has been named Droplerian, an aggregation of

droplets and Eulerian.

4.1eulerian droplet tracking

The 2dfoil-ice method is based on Lagrangian droplet tracking, in which

the (potential) �ow �eld is calculated using a panel-method. This has

some limitations, especially for cases in which multiple-element airfoil

geometries are represented. Due to the potential-�ow model in 2dfoil-ice,

the geometry of multiple-element airfoils often has to be approximated in

order to cope with the viscosity dominated �ow solutions in cove regions.

This can be achieved by allowing only a single sharp edge on each element,

and by determining cove bounding streamlines as integral parts of the

closed element geometries.

A second problem can be the process of �nding droplet trajectories that

impinge on one of the airfoil elements. This can become a time consuming

task.

To reduce both of these limitations an Eulerian droplet tracking method

has been developed. The Eulerian method accepts �ow �eld data from any

available �ow model, e.g., potential-�ow such as used in 2dfoil-ice, but

also �ow �eld solutions based on the Euler equations or the full Navier-

Stokes equations. The �ow �eld is used as input to calculate a droplet

velocity and droplet density �eld on a grid around the airfoil. For the

Eulerian method, discrete droplet trajectories do not need to be calculated,

reducing the computational load, while allowing a detailed investigation

of the droplet variables close to the airfoil.
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chapter 4 eulerian droplet method

A further reason for developing the Eulerianmethod is the relatively easy

extension towards three-dimensional geometries compared to Lagrangian

methods.

The output needed from the droplet tracking method should be suited

as input for the icing method. For the icing method only two quantities

related to the impinging droplets are needed: the rate of mass of water

impinging locally on the airfoil surface, and the rate of kinetic energy that

is associated with the impinging droplets. The local rate of impinging mass

can be obtained from the local catching e�ciency β . From the velocity of

the impinging droplets the rate of kinetic energy due to the impinging

droplets can be calculated.

For Lagrangian methods the local catching e�ciency is de�ned as the

ratio of the rate of impinging mass divided by the rate of impinging mass

had the droplet trajectories been straight lines, as was shown in Eq. 2.7

β =
dy

ds
,

and in Fig. 2.1, assuming that the mass of the droplets between two droplet

trajectories remains constant; given a �xed value of dy, the smaller the

contour element ds the larger the rate of impinging mass and therefore, β .

For an Eulerian method, since we do not (necessarily) compute individual

droplet trajectories, this approach cannot be applied. Using the liquid water

content (lwc) of the cloud, the following relation depending only on the

local droplet density ρd and local droplet velocity ~Ud can be derived:

β =
ρd ~Ud · ~n

lwc
���~Ud,∞

���
, (4.1)

where the local droplet density ρd is the volume fraction of water contained

in the droplets α multiplied with the local water density ρw , at the airfoil

of wing surface:

ρd = αρw . (4.2)

Equation 4.1 contains the rate of impinging mass of liquid water per square

meter ρd ~Ud · ~n (see Fig. 4.1), which can be used directly as input for the

icing model.

To calculate both ρd and ~Ud , the droplets are considered as a second

�uid phase. Solving the mass and momentum balances for a discretized
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s~n~Ud

Figure 4.1: Droplet velocity ~Ud and surface normal ~n

domain provides these local quantities. One of the source terms for the

momentum balance will be the drag force, since this is the main driving

force for the droplet phase. The equations for conservation of mass and

conservation of momentum for the droplet phase are:

∂ρd

∂t
+~∇ · ρd ~Ud =0, (4.3)

∂ρd ~Ud

∂t
+~∇ ·

(

ρd ~Ud

)

~Ud=ρd ~fD + ρd

(

1 −
ρa

ρw

)

~д; (4.4)

where the only other source-term considered, besides the drag force ~fD , is

due to gravity and buoyancy. For the present case other forces, such as lift

force and Basset history force, are neglected.

The drag force is expressed in terms of the drag coe�cient CD :

~fD =
ρa

���~Ua − ~Ud
���
(

~Ua − ~Ud

)

AdCD

2ρwVd
, (4.5)

whereCD is usually a function of droplet diameter and the Reynolds number

based on the relative droplet velocity Red (Eq. 2.3). The drag force D is

taken from Eq. 2.2. The expression for the drag coe�cient can range from

an expression for small diameter droplets to special relations for deforming

droplets (sld diameter droplets). In the current method CD is initially

identical to the drag coe�cient from the Lagrangian method. Equation 2.4

is repeated here for clarity [Langmuir and Blodgett, 1946]:

CDRed
24

= 1 + 0.0197Re0.63d + 2.6 · 10−4Re1.38d ,

which is valid for Red < 1000.
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The equations for the Eulerianmethod are solved numerically by employ-

ing a �nite-volume method based on similar numerical �ow simulation

methods [Kelleners, 2007, Koop, 2008]. This edge-based �nite-volume

method uses an unstructured grid and is suited for both two-dimensional

and three-dimensional domains, discretized using a combination of ele-

ment types. The �ow �eld of the air surrounding the airfoil or wing is used

only as input, since it is assumed one-way coupling between the air and

droplet phase is adequate for the present purpose. The �ow solution can

be obtained from any available �ow solver.

4.2 implementation

The base of the Eulerian droplet tracking method is a 2d Lagrangian droplet

tracking method. The �rst implementation has been based on this 2d

method, but implemented in a 3d frame.

4.2 .1 time step

For a Navier-Stokes, edge-based, �nite-volume method; for non-local or

global time stepping the maximum time step is de�ned as follows:

max∆t ≡
min∆x
���~U
��� + a
, (4.6a)

where ∆x is a characteristic length scale of a control volume, such as

the distance or radius through a grid cell. The maximum time step can

be described as: the time needed for “information” to travel through the

smallest cell possible, at the fastest speed possible. For local time stepping

the time step can be formulated as:

(max∆t )i ≡
(min∆x )i
���~Ui

��� + ai
, (4.6b)

where i denotes the quantities belonging to the ith grid-cell.

For the Eulerian droplet tracking method this methodology cannot be

employed. The considered �eld actually consists of a disperse medium. The

speed of sound has nothing to do with the speed at which information
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travels from one droplet to another; or from one grid-cell or control volume

containing droplets, to the next.

Analyzing the system of equations posed by Eq. 4.3 and Eq. 4.4, the

maximum time step is related to the eigenvalues of this system. This would

mean that for this system of equations the information velocity would be
~Ud . For the Navier-Stokes equations, the speed of sound is introduced via

the pressure-gradient term, which is not present in the system of equations

for the droplets. This gives the following relations for the maximum global

time step and the maximum local time step, respectively:

max∆t ≡
min∆x
���~Ud

���
, (4.7a)

(max∆t )i ≡
(min∆x )i
���~Ud,i

���
. (4.7b)

4.2 .2multi-disperse droplet distributions

In the original Lagrangian method, a mono-disperse droplet distribution

was employed. This meant that the entire droplet cloud was simulated

using droplets with a single diameter, usually with a diameter equal to the

mvd. For clouds with smaller droplets this is an acceptable assumption,

the droplet distribution is very dense around the mvd. Furthermore, it is

assumed that droplets do not change their size during the droplet tracking

phase. However, for larger droplets, especially for sld, the size of the

droplets can change during the droplet tracking phase, e.g., after a splashing

or a breakup event. Furthermore, typical clouds containing sld often have a

bimodal droplet size spectrum. To cope with these phenomena the resulting

Eulerian droplet tracking equations (Eq. 4.3, 4.4) are solved for a multi-

disperse droplet distribution, separated in multiple droplet-bins. For each

droplet-bin in the distribution, a separate set of equations is solved; each

bin corresponding to a single speci�c droplet diameter.

The results of ρd and ~Ud for each droplet-bin are combined in a single

distribution for the catching e�ciency β , which is subsequently used in

the icing method, using the fraction of the total lwc, Fi for the speci�c
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droplet-bin. The sum of Fi for all droplet-bins has to be equal to one:

Nbin
∑

i=1

Fi = 1, (4.8)

withNbin the number of droplet-bins. Then the catching e�ciency becomes

β =

Nbin
∑

i=1

Fiβi . (4.9)

In order to accommodate the splashing and re-injection of droplets, it is

necessary to compute the droplet bins in a sequential, largest �rst, order.

This ensures that secondary droplets resulting from splashing events in bin

i , possibly forming multiple smaller secondary droplets, can be re-injected

into bin i + 1. The results from each bin are stored separately because

the velocity and droplet density of each bin are needed to calculate the

impinging kinetic energy for the ice accretion method.

4.2 .3 splashing method

To implement the additional splashing method, a new subroutine has been

added to the computational method. A graphical description of the splash-

ing and rebound method can be found in Fig. 4.2. Based on the local droplet

density ρd and the local droplet velocity ~Ud , the subroutine determines

the mass loss coe�cient ϕ and the secondary velocity ~Ud,out . Since the

splashing models from Trujillo (section 3.2.3) and Habashi (section 3.2.3)

consider splashing as an event in two dimensions (normal and tangential),

information about orientation of the impingement surface is also needed.

The models also provide the number of secondary droplets, leading to a

secondary diameter dout . These inputs and outputs are summarized in

Table 4.1.

The �rst step is to decompose the droplet velocity ~Ud at the impact point

in a normal and tangential component, as shown in Fig. 4.3. The process to

�nd the normal component is straightforward, using the surface normal

vector ~n:

Un,in =
~Ud,in · ~n. (4.10)

The tangential component of the droplet velocity depends on the angle

of the trajectory of the incoming droplet with the surface. The normal
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Table 4.1: Splashing method input and output

input output

ρd ϕ
~Ud,in

~Ud,out

din dout
~n

start

input:

ρd , ~Ud,in ,

din , ~n

calculate

Un and Ut

10 ≤
Wed ≤

1320On0.36
d

calculate
~Ud,out

calculate K

K > Kc

calculate

ϕ, ~Ud,out ,

N , dout

output:

ϕ = 0,
~Ud,out = ~0

output:

ϕ = 1,
~Ud,out ,

dout = din

output:

ϕ, ~Ud,out ,

dout

end

no

yes

no

yes

Figure 4.2: Flow chart of the subroutine for calculating the splashing and rebound

occurring for a single droplet-bin at a control volume on the surface of

the airfoil or wing

43



chapter 4 eulerian droplet method

x

y

z

~nplane

~n

−~Ud

~t

Figure 4.3: Plane spanned by the velocity of an incoming droplet ~Ud,in and the

surface normal ~n at the impact point on the surface

vector of a plane spanned by the incoming droplet velocity ~Ud,in and the

surface normal vector ~n follows from

~nplane =
~n × ~Ud,in

���~n × ~Ud,in
���
. (4.11)

The tangential vector needed for the splashing model is the vector per-

pendicular to this normal vector ~nplane and the surface normal vector

~n:

~tplane =
~n × ~nplane
���~n × ~nplane

���
. (4.12)

The tangential component of the velocity is then:

Ut,in =
~Ud,in ·~tplane . (4.13)

The normal component of the velocity is used in the splashing criterion

from Eq. 3.26, using Eq. 3.24 and Eq. 3.21. Splashing occurs if

K > Kc,spray . (4.14)

If no splashing occurs: ϕ = 0 and the subroutine ends. However, if splash-

ing does occur, ϕ is determined using Eq. 3.33, followed by a calculation
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of the average velocity of the secondary droplets using Eq. 3.29. The sec-

ondary droplet velocity is then assembled from the normal and tangential

components:
~Ud,out = Ud,out · ~n +Ud,out ·~tplane . (4.15)

Finally, the number of secondary droplets N is determined using Eq. 3.27. If

N > 1 the secondary diameter dout is determined using Eq. 3.32. If N ≤ 1,

dout = din .

4.2 .4rebound model

The rebound model is implemented as a special case of splashing, as shown

in Fig. 4.2. Apart from the splashing threshold, in the same splashing

subroutine, a check is performed (Eq. 3.35) to determine if a rebound event

will take place. If a rebound event is detected ϕ = 1, N = 1 and dout = din .

The components of the secondary velocities for the rebounded droplets are

determined using Eq. 3.36.

4.2 .5re-injection of splashed droplets

Droplets that splash—or rebound, for re-injection this is equivalent—should

in most cases be re-injected into the droplet �ow domain. It could be that

these secondary droplets impinge on the surface at another location in

a later stage of the impingement process. The re-injection of droplets

depends on the diameter of the secondary droplets that are formed during

a splashing or rebound event.

In case of a rebound event, for which dout = din , the droplet is re-

injected into the same bin as it originated from. For splashing events,

however, secondary droplets will always be smaller than the originating

droplets: dout < din . The secondary droplets are re-injected into a bin

representing a smaller diameter. The actual re-injection bin is chosen to be

the bin representing the diameter closest to that of the secondary droplet

diameter:

binout =


binin : rebound

binin +minloc
[

dout − dbin,i
]

: splash
, (4.16)

where i = binin + 1,binin + 2, . . . ,Nbin . Also, dbin,i is the diameter repre-

sented by bin i; binin is the bin the primary droplet originated from; and
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minloc is the fortran-like function, returning the relative position of the

entry in the array with the minimum value of the argument of the function.

The extraction and injection of mass and momentum is managed by

keeping separate arrays of data; [mlc], which stands formass loss coe�cient

and [mri], which stands for mass re-injected:

mlc = ϕi, j [Nbin × Ncell ] , (4.17)

mri = mrii,k, j + ϕi, jρd,i, j [Nbin × Nbin × Ncell ] . (4.18)

where ϕi, j is ϕ from bin i , cell j; and ρd,i, j is ρd from bin i , cell j , into bin k

(based on the closest diameter from Eq. 4.16).

These arrays are �lled during the numerical simulation process, at the

beginning of a simulation, the mass lost and re-injected into each cell

equals zero. At each moment in time, the amount of mass injected into

bin k cell j becomes:

mrik, j =

Nbin
∑

i=1

mrii,k, j . (4.19)

Similar to the array of re-injected mass [mri], there are also three arrays

containing the re-injected momentum:

uri = urii,k, j + ϕi, jρd i, jud i, j

vri = vrii,k, j + ϕi, jρd i, jvd i, j

wri = wrii,k, j + ϕi, jρd i, jwd i, j


[Nbin × Nbin × Ncell ] , (4.20)

with bin-totals:

urik, j =

Nbin
∑

i=1

urii,k, j vrik, j =

Nbin
∑

i=1

vrii,k, j wrik, j =

Nbin
∑

i=1

wrii,k, j . (4.21)

Example.

Both arrays are initialized:

mlc = mri = 0.

If droplets from bin 1, cell 1 will splash as secondary droplets into bin 3

(based on Eq. 4.16), they will populate both matrices as follows, using
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Eq. 4.17 and Eq. 4.18:

mlc1,1 = 0.8,

mri1,3,1 = 0 + 0.8 ρd,1,1.

Suppose droplets from bin 2 also splash into bin 3:

mlc2,1 = 0.6,

mri2,3,1 = 0.8 ρd,1,1 + 0.6 ρd,2,1.

The amount of mass injected into bin 3, cell 7 becomes (Eq. 4.19):

mri3,7 =

Nbin
∑

i=1

mrii,3,7.

4.2 .6boundary conditions

With respect to the boundary conditions, the boundary condition at the

surface of the airfoil or wing requires special attention. In order to calculate

a catching e�ciency the normal component of the droplet velocity at the

airfoil surface is needed. However, when the normal component of the

droplet velocity is negative (using the de�nition from Fig. 4.1), i.e., away

from the airfoil, droplets should not be created from the surface of the

airfoil. This leads to a boundary condition on the surface of the airfoil,

which depends on the sign of the normal component of the droplet velocity.

For a normal component of the droplet velocity directed away from the

airfoil the following boundary conditions are applied:

~Ud · ~n ≥ 0 : ψwall = 0, (4.22a)

whereψ is the variable of the considered governing equation; either ρd or

ρd ~Ud . In case the normal component of the droplet velocity at the surface

is directed into the airfoil the values at the wall ψwall are calculated by

extrapolation from the values at the center of the �nite-volume next to the

airfoil surfaceψ0:

~Ud · ~n < 0 : ψwall = ψ0 + (~xwall − ~x0) · ~∇ψ0. (4.22b)

47



chapter 4 eulerian droplet method

For the re-injection of droplets the values at the wall have to be increased

to contain the added amount of mass or momentum:

Nbin
∑

i=1

mrii,k, j > 0 : ψwall, j = ψwall, j +



Nbin
∑

i=1

mrii,k, j : ρd

Nbin
∑

i=1

urii,k, j : ρdu

Nbin
∑

i=1

vrii,k, j : ρdv

Nbin
∑

i=1

wrii,k, j : ρdw

, (4.23)

with k the considered bin and j the considered cell next to the surface.
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5ice accretion method in three

dimensions

O
ne of the major advantages of an Eulerian approach is the easy

extension of the droplet tracking method to three-dimensions.

However, this also requires a method for calculating the ice accre-

tions in 3d.

5 . 1boundary ordering

In 2d, the ice accretion method is fairly simple: starting at the stagnation

point, the temperature Ts and freezing fraction f can be calculated, one

control volume after another. This assumes that the air �owing along the

surface forces the water �lm from the stagnation point in downstream

direction. In 3d the stagnation point has become a stagnation line, leading

to a 2d surface �ow.

This means that the sequential ordering of control volumes becomes

far less trivial. This would mean that the surface �ow could; either be

solved iteratively, or, an alternative ordering for the control volumes on

the surface has to be found. In order to save on computational cost that

would be implied by solving the surface �ow iteratively, while recursively

iterating on the temperature, the order of the boundary control volumes

will be determined.

Considering the surface �ow on an airfoil: similar to the 2d case, the

surface �ow starts at a stagnation panel, continuing downstream in mul-

tiple directions. Assuming again that the direction of the surface �ow is

completely determined by the �ow of air along the surface:

~Us,i

���~Us,i
���
=

~Ua,i

���~Ua,i
���
, (5.1)

for the ith control volume. Here ~Us is the �ow along the surface.
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chapter 5 ice accretion method in three dimensions

This means that by following the �ow of air along the surface, the

order in which the surface �ow passes through the control volumes can be

determined. As an intermediate step an array [rank] can be determined,

starting at 1, increasing by 1 for each control volume the �ow has passed.

As a �rst step, the approximate stagnation point (or stagnation line in

3d) is determined:

ranki = 1 :



ua,i < 1 × 10−5 & va,i < 1 × 10−5

ua,i < 1 × 10−5 & wa,i < 1 × 10−5

va,i < 1 × 10−5 & wa,i < 1 × 10−5
. (5.2)

Starting from these points, which are most likely stagnation points, the

�ow can be followed along the surface in downstream direction, numbering

the control volumes consecutively: if the velocity of the �ow is in the same

direction as the vector from one control volume to the next, the rank is

determined. This process is repeated until no control volumes change rank.

This is clari�ed in Algorithm 5.1 and illustrated in Fig 5.1.

Input: Initial ranking

Output: Final ranking

chanдed = True;

while chanдed do

chanдed = False;

for i = 1,Nconn do

A = element left of i;

B = element right of i;

if ~Ua,A · (~xB − ~xA) and rankB < rankA + 1 then

rankB = rankA + 1;

if not chanдed then chanдed = True;

;

else if ~Ua,B · (~xA − ~xB ) and rankA < rankB + 1 then

rankA = rankB + 1;

if not chanдed then chanдed = True;

;

Algorithm 5.1: Rank calculation
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5.1 boundary ordering

~Ua

1 1 1 1 1 1

(a) Initial values,

stagnation line

~Ua

1 2 3 4 5 6

2 3 4 5 6 7

(b) First iteration

~Ua

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

(c) Last iteration

Figure 5.1: Illustration of rank calculation on a �at plate on a �at plate with uniform

surface �ow �eld

The order of calculation is then determined by looping over all ranked

cells, shown in Algorithm 5.2 and Fig. 5.2. The order-counter starts at

orderi = 1, for the �rst cell i , with ranki = 1. It increases for every cell

with ranki = 1. If all cells have been checked, the process is repeated for

ranki = 2. Note that the order can change depending on the order of the

grid cells.

Input: Final ranking

Output: Order

k = 1;

while k ≤ maxval [rank] do

j = 1;

for i = 1,Ncell do

if ranki = k then

orderi = j;

j = j + 1;

Algorithm 5.2: Order calculation
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chapter 5 ice accretion method in three dimensions

~Ua

1 3 6 10 14 18

2 5 9 13 17 21

4 8 12 16 20 23

7 11 15 19 22 24

(a) Cells ordered

up-down-left-right

~Ua

1 2 4 7 11 15

3 5 8 12 16 19

6 9 13 17 20 22

10 14 18 21 23 24

(b) Cells ordered

left-right-up-down

Figure 5.2: Illustration of order calculation on a �at plate with uniform surface �ow

�eld

The resulting array [order] contains the surface element numbers, or-

dered in �ow direction, such that:



order1
order2
...

orderNcell



=



�rst cell to process

second cell to process
...

last cell to process.



5 .2 catching efficiency calculation

Apart from the preprocessing of the boundary control volumes, the catching

e�ciency has to be determined on the surface. For each control volume on

the surface the catching e�ciency is found using Eq. 4.1:

β =
ρd ~Ud · ~n

lwc
���~Ud,∞

���
βi =

ρd,i ~Ud,i · ~ni

lwc
���~Ud,∞

���
.

(5.3)

Any droplets that splash or rebound are already accounted for due to

the change in mass and momentum introduced in Eq. 4.23, so the mass loss

coe�cient should not be included in Eq. 5.3.
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5.3 messinger method

5 .3messinger method

With the ordering of the boundary control volumes and the catching e�-

ciencies known, it is possible to perform the calculation for the heat and

mass balance in every control volume. Because this is a 3d method, the

Messinger method has to be adapted.

5 .3 . 1mass flow

The Messinger method assumes a 2d �ow, with the surface �ow entering

the control volume (CV) from one side and leaving it at the other side as

run-back water. This was demonstrated in Fig. 2.2. In 3d, the surface �ow

enters and leaves as determined by the surface �ow direction. However, for

the local mass and energy balances the control volume is still considered

2d, see Fig 5.3. The 3d �ow comes into play in determining which control

volumes receive the run back mass going out of the current control volume.

The mass �owing out of the control volume, ṁout , has to be converted to a

3d vector:

~̇mout,i = ṁout,i

~Ua,i

���~Ua,i
���
, (5.4)

such that

ṁin,B =

Nconn
∑

i=1

ṁout,A

~Ua,B

���~Ua,B
���
· ~nA,B , (5.5)

where Nconn is the number of edges of the surface element connected to

other elements, ~Ua,B is the air velocity of neighboring element B for edge

i , and ~nA,B is the normal on edge i .

Assuming that all surface �ow is instantaneous, Algorithm 5.3 can be

used to determine the in�ow into every control volume.

Using this adapted mass �ow method the Messinger method can be

applied otherwise unaltered. This results in an ice thickness for each surface

element. Projecting these ice thicknesses in the direction of the surface

normal gives an ice accretion shape in three dimensions.
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chapter 5 ice accretion method in three dimensions

Input: Order, ṁout,i

Output: [ṁin]

UX = 0;

for j = 1,Nconn do

A = element left of j;

B = element right of j;

UX j = 1
2

(

~Ua,A + ~Ua,B

)

· ~xB−~xA
|~xB−~xA | ;

if A == i and UX j > 0 then

UX = UX +UX j;

else if B == i and UX j < 0 then

UX = UX −UX j;

for j = 1,Nconn do

A = element left of j;

B = element right of j;

UX j = 1
2

(

~Ua,A + ~Ua,B

)

· ~xB−~xA
|~xB−~xA | ;

if A == i and UX j > 0 then

ṁin,B = ṁin,B +
UXj
UX

ṁout,A;

else if B == i and UX j < 0 then

ṁin,A = ṁin,A − UXj
UX

ṁout,B ;

Algorithm 5.3: In�ow calculation
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5.3 messinger method

Water

Ice

ṁin,i

ṁice,i

ṁout,i

ṁimp,i ṁev,i

CVi

Figure 5.3: Messinger control volume, 3d, mass �ows
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6validation for supercooled large

droplet methods

T
he models described in the previous chapters have been imple-

mented into the numerical method. Some models have been im-

plemented in both the Lagrangian and Eulerian computational

methods, while some models have only been implemented in the more

advanced Eulerian method. Several validation tests have been performed

to asses the suitability of these models for the prediction of ice accretion

shapes involving sld.

The results of each of the numerical methods is compared to the ex-

perimental data from Papadakis et al. [2007], who have de�ned a well-

documented case including the details of the incoming droplet distributions,

which are very important for an sld catching e�ciency calculation.

6.1experimental data

Data from several experiments was used to validate the numerical results.

For a description of these experiments, see the following sections.

6.1 . 1papadakis , naca 23012

The paper from Papadakis et al. [2007] provides experimental data for a

naca 23012 airfoil. The asymmetrical pro�le was placed in nasa’s icing

wind-tunnel at Glenn Research Center, to study sld e�ects. To this purpose

several di�erent droplet distributions were used, with an mvd in the range

of 20 – 236 µm. For the present research, the largest mvd is of particular

interest. As a reference, non-sld, case the case with smallest mvd is used.

The test conditions for these two cases are listed in Tab. 6.1, the measured

droplet distributions are shown in Tab. 6.2 and Fig. 6.1.

The resulting ice accretion shapes obtained in the icing wind-tunnel are

not known, but the resulting catching e�ciencies are provided. Since the
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chapter 6 validation for supercooled large droplet methods

Table 6.1: Conditions for selected cases [Papadakis et al., 2007]

20 µm mvd 236 µm mvd

AoA 2.5◦

c 0.9144 m

lwc 0.19 g/m3 1.89 g/m3

���~Ua,∞
��� 78.23 m/s

T∞ 299 K

p∞ 101330 Pa

catching e�ciencies are only presented as a �gure, numerical values have

been obtained by tracing the provided �gures, as shown in Appendix A.

These catching e�ciencies can be compared to the predicted catching e�-

ciencies, removing the uncertainties and errors coming from the modeling

of the ice accretion phase. The ice accretion modeling will be investigated

in chapter 7.

A preliminary test showed that, although Papadakis et al. provide 27

and 10 bin droplet distributions, the 27 bin droplet distribution provides

no noticeable increase in the accuracy of the numerical prediction. It does

however cause a much longer simulation time. Therefore, the 10 bin droplet

distributions are used throughout the validation process.

6.1 .2 mda - three element airfoil

A second source of experimental data comes from the Garteur project. This

European project focused on ice accretion on multiple-element airfoils. A

three element airfoil was provided (an airfoil with a leading edge slat and

a trailing edge �ap).

This geometry caused problems for the potential �ow module of 2dfoil-

ice so a modi�ed geometry was created. limiting streamlines around the

cove areas of the slat and main element were added to the geometry to

avoid the appearance of multiple stagnation points on the airfoil sections.

The airfoil geometry is the same as that used by Vu et al. [2002], and

the catching e�ciencies from this report are used. The 10 bin droplet size
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6.1 experimental data

Table 6.2: 10-Bin droplet distributions for selected cases [Papadakis et al., 2007]

Droplet lwc Droplet size [µm]

bin [%] 20 µm mvd 236 µm mvd

1 5.0 3.850397 16.25037

2 10.0 9.390637 63.65823

3 20.0 13.80175 135.4827

4 30.0 19.60797 298.5197

5 20.0 25.4820 508.4572

6 10.0 30.73474 645.4684

7 3.0 35.19787 715.8689

8 1.0 38.32569 747.3936

9 0.5 40.66701 763.2455

10 0.5 44.36619 1046.767

Droplet diameter, d [µm]
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(a) 20 µm mvd
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(b) 236 µm mvd

Figure 6.1: 10-Bin droplet distributions for selected cases, individual bins (boxes)

and cumulative (solid line) [Papadakis et al., 2007]
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chapter 6 validation for supercooled large droplet methods

Figure 6.2: mda - three element airfoil, original geometry, picture from Vu et al.

[2002]

Table 6.3: Conditions for selected cases [Vu et al., 2002]

21 µm mvd 92 µm mvd

AoA 4◦

c 0.9144 m

lwc 0.22 g/m3 0.21 g/m3

���~Ua,∞
��� 78.66 m/s

T∞ 299 K

p∞ 101330 Pa

distributions from Sec. 6.1.1 are used. The remaining conditions are listed

in Table 6.3.

6.2 computational domains

For comparison, a number of computational domains were used. The same

domain, and corresponding computational grid, was used for as many cases

as possible, to exclude e�ects of di�erent grid sizes on the results.

6.2 .1 two-dimensional geometries

The two-dimensional domains consist of two types, depending on the

numerical method used. For the Lagrangian 2dfoil-ice method, only the
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6.2 computational domains

Dimensionless x-coordinate, x
c

D
im

en
si
o
n
le
ss

y
-c
o
o
rd
in
at
e,

y c

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

−0.1

0.1 airfoil surface

Figure 6.3: 2d naca 23012 geometry, Lagrangian method

Figure 6.4: 2d naca 23012 geometry, Eulerian method

airfoil contour is discretized and modeled as line segments. For the Eulerian

Droplerian method the entire domain is discretized as 2d surface elements.

naca 23012

The naca 23012 airfoil has been used in a number of analyses, the geome-

tries used in these analysis are shown in Fig 6.3 and Fig. 6.4.

For the Lagrangian method, the computational domain consists of 400

contour elements. The panel distribution features a concentration of ele-

ments near the leading and trailing edge of the domain which is referred

to as a double-cosine distribution. For the Eulerian domain 799 elements
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chapter 6 validation for supercooled large droplet methods

Table 6.4: 2d naca 23012, Eulerian grid parameters

Flow Spanwise Normal

direction direction direction

Size −5c , +4c 0 −3c , +3c
Vertices 42 0 28

Total vertices 14295 Airfoil surface vertices 799

Table 6.5: 2d mda - three element airfoil, Eulerian grid parameters

Flow Spanwise Normal

direction direction direction

Size −5c , +4c 0 −3c , +3c
Vertices 21 0 14

Total vertices 9327 Airfoil surface vertices 7030

on the airfoil surface were used, and a total of 14295 triangular elements

were used.

The domain of the Eulerian method is a �nite domain, contrary to the

Lagrangian in�nite domain where the potential-�ow solution is known at

every point. The limits of the Eulerian domain are shown in Table 6.4.

mda - three element airfoil

The three element airfoil is used by the Eulerian droplet trajectory method,

combined with a potential-�ow solution. The computational domain is

shown in Fig. 6.5, this geometry includes the modi�cations needed to allow

a potential �ow solution for this complicated geometry.

The limits of the Eulerian domain are shown in Table 6.5.

6.2 .2 three-dimensional geometries

Only the Eulerian method is used in three dimensions, so all domains are of

the 3d grid type. The geometries are based on the above two-dimensional

naca 23012 geometry.
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6.2 computational domains

(a) Overall view

(b) Airfoil view

Figure 6.5: 2d mda - three element airfoil geometry, Eulerian method
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chapter 6 validation for supercooled large droplet methods

Table 6.6: Semi-2d naca 23012, Eulerian grid parameters

Flow Spanwise Normal

direction direction direction

Size −5c , +4c 1 m −3c , +3c
Vertices 42 3 28

Total vertices 166082 Airfoil surface vertices 56823

naca 23012, semi-2d

This geometry is based on the 2d naca 23012 geometry described in sec-

tion 6.2.1. The basic geometry used is extruded into the third (span wise)

dimension. This leads to a numerical grid described in Tab. 6.6

The root and tip of the so formed wing are modeled as wind-tunnel walls.

A slip boundary condition is applied along the boundaries in the newly

created third dimension to force the �ow to align to the numerical domain

and to render the domain e�ectively in�nite in span wise direction.

The resulting three-dimensional geometry is shown in Fig. 6.6.

naca 23012, swept wing

The swept geometry is also based on the two-dimensional naca 23012

geometry. However, it is now extruded using a base vector that is not

perpendicular to the original 2d airfoil. The airfoil is extruded such that a

wing with a 20◦ wing sweep is created.

The parameters from Tab. 6.6 are used. However, the wing is cut, halfway

through the spanwise dimension. The �nite swept wing is 0.5 m long with

an abrupt “chopped o�” wing tip. the walls in span wise direction are still

applied using a slip boundary condition.

The resulting geometry is shown in Fig. 6.7.

6.3 multi-disperse droplet distribution

One of the initial improvements made to both the Lagrangian and the

Eulerian method is the inclusion of multi-disperse droplet distributions

as explained in section 4.2.2. The e�ects of such a distribution versus a

single droplet size are shown in Fig. 6.8. For the smaller droplet sizes
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6.3 multi-disperse droplet distribution

(a) Side view

(b) Internal view on the leading edge

Figure 6.6: Semi-2d naca 23012 geometry
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(a) Side view

(b) Internal view on the leading edge

Figure 6.7: Semi-2d swept naca 23012 geometry

66



6.4 deformation

a de�nite improvement is observed, instead of the sharp cuto� for the

catching e�ciency in Fig. 6.8(a) a more �uent result is found; which is in

far better agreement with the experimental results. For the larger mvd this

sharp cuto� was not found for the mono-disperse distribution, as seen in

Fig. 6.8(b), so the improvement compared to the experimental results is less.

For both the small and large mvd a slightly lower catching e�ciency is

obtained for the multi-disperse simulation, decreasing the over-prediction

compared to the experimental results.

The accuracy can be estimated by looking at the integral of the catching

e�ciency

βtotal =

s
∫

s=0

βds ′

s
,

or in numerical form

βtotal ≈
∑Npanel

i=1 βi (∆s )i

sNpanel

. (6.1)

The total catching e�ciencies are shown in Tab. 6.7. Though the improve-

ment for the 236 µm mvd did not appear to be as large, when looking at

the total catching e�ency the improvement is actually much bigger than

for the 20 µm mvd case.

6.3 .1lagrangian vs. eulerian

As a baseline, the multi-disperse calculations from both methods can be

compared to see if the transition from the Lagrangian method to the Eu-

lerian method does not introduce any artifacts. The results from both

methods are shown in Fig. 6.9. Comparing the Lagrangian (2dfoil-ice)

results with the Eulerian (Droplerian) results, only a small di�erence is

found. This small di�erence is most likely due to numerical dissipation in

the Eulerian method, overall the results are very similar.

6.4deformation

The modi�ed droplet drag-coe�cient from Feo and Jarillo [2008] has been

implemented. Equation 3.9 can be converted to a numerical relation in a

straightforward fashion.
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Figure 6.8: Multi-disperse droplet distribution e�ects
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Figure 6.9: Di�erence between Lagrangian and Eulerian results
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Table 6.7: Total catching e�ciencies for multi-disperse droplet distribution

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.012941614 − −
1 Bin 0.010054046 −22.311670 −
10 Bins 0.010206984 −21.129902 1.1817679

(a) 20 µm mvd

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.038614443 − −
1 Bin 0.058026021 50.270251 −
10 Bins 0.053725100 39.132137 11.138114

(b) 236 µm mvd

Analyzing the impact of Eq. 3.9, the most important aspect is the thresh-

old for droplet deformation: a minimum droplet Reynolds number of

Red > 345 is needed. This means that only for large magnitude of the

relative droplet velocity
���~Ua − ~Ud

��� a modi�cation is implied. These high

levels of relative droplet velocity are only encountered in the direct vicinity

of an object in the �ow. When a droplet is already this close to an object

the modi�cation due to the modi�ed drag-coe�cient has nearly no e�ect.

The impact of the deformation model is relatively moderate, but imple-

mentation is simple.

6.4 .1 single element airfoil

The droplet deformation e�ect is tested on a single element airfoil, using

the naca 23012 data from Papadakis. Both the unmodi�ed and modi�ed

droplet drag results are compared to the experimental catching e�ciency

results, as shown in Fig. 6.10 and Tab 6.8.

Based on Fig. 6.10(a) no visual change is notable due to the deformation

model. This is because the model only has an e�ect for higher droplet

diameters or higher Red . Looking at the value of βtotal there is actually
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6.4 deformation

Table 6.8: Total catching e�ciencies for multi-disperse droplet distribution with

deformation

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.012941614 − −
10 Bins 0.010206984 −21.129902 −
+ Deformation 0.010141722 −21.634188 −0.50428565

(a) 20 µm mvd

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.038614443 − −
10 Bins 0.053725100 39.132137 −
+ Deformation 0.052388102 35.669707 3.4624299

(b) 236 µm mvd

a 0.5% decrease in the prediction accuracy compared to the experimental

value.

For the 236 µm mvd the shape slightly improves compared to the exper-

imental results, especially on the upper side of the airfoil. This is supported

by βtotal , compared to the model without deformation a 3% improvement

is observed.

6.4 .2three element airfoil

A more signi�cant in�uence of sld e�ects is expected for a multi-element

airfoil; where larger relative velocities can be encountered in the wake of an

airfoil segment, while the time before impact is still large. To asses this the

mda three element airfoil is used. The experimental catching e�ciencies

from Vu et al. [2002], described in Sec. 6.1.2 are used.

non-sld diameter

First a non-sld mvd is used as a general validation. The results for this

21 µm mvd are shown in Fig. 6.11. Aminor di�erence between themodi�ed
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(b) 236 µm mvd

Figure 6.10: Droplet deformation e�ect, single element airfoil
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Figure 6.11: Droplet deformation e�ect, three-element airfoil, small diameter droplets
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chapter 6 validation for supercooled large droplet methods

drag results and the spherical droplet drag results is visible. However, this

di�erence is, for these non-sld droplet diameter, negligible.

sld diameter

Second an sld mvd is used. The results for this 21 µm mvd are shown in

Fig. 6.12. For this larger, sld sized mvd the di�erence between deformed

droplet drag and spherical droplet drag. Especially the impingement on

the main airfoil element di�ers a lot between the two drag models. This

can be explained because this is also the area where droplets experience a

large shear force, being transported through a very narrow �ow section

between slat and main element. The catching e�ciency with the modi�ed

droplet drag relation is much closer to the experimental results than the

result obtained with the spherical droplet drag relation.

6.5 splashing

Splashing is thought to be a major sld in�uence, so a large e�ect on

the catching e�ciency is expected, especially for the larger mvd. For the

large droplet bins, no di�erence should be noted. Droplets impinging the

surface are removed from the large bin, either with or without splashing

model. However, with the splashing model, smaller secondary droplets are

re-injected. This is shown in Fig.

Looking at the 20 µm mvd results in Fig. 6.13(a) (the dashed line), a clear

loss of impinging mass is visible around the leading edge. This reduces

the accuracy of the numerical model. This is caused by the limitation that

the splashing model is valid for impact angles larger than 4◦. The total

catching e�ciency is decreased by 6%, as shown in Tab. 6.9.

For the 236 µm mvd the splashing model does lead to an improvement

in accuracy compared to the experimental values, as shown in Fig. 6.13(b).

Again a decrease of the catching e�ciency is observed near the leading

edge, but this does not have as great an e�ect as for the small mvd case. The

improvement comes from the areas downstream of the leading edge, where

the catching e�ciency is reduced to values that are in better agreement

to the experiments. Table 6.9 shows an improvement in total catching

e�ciency of 25%.
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Figure 6.12: Droplet deformation e�ect, three-element airfoil, large diameter droplets
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chapter 6 validation for supercooled large droplet methods

Table 6.9: Total catching e�ciencies for multi-disperse droplet distribution with

splashing

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.012941614 − −
10 Bins 0.010206984 −21.129902 −
+ Splash 0.0094145110 −27.253403 −6.1235012

(a) 20 µm mvd

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.038614443 − −
10 Bins 0.053725100 39.132137 −
+ Splash 0.043845866 13.547840 25.584296

(b) 236 µm mvd

It is interesting to note that, although re-impingement is implicitly possi-

ble in the current method, apparently no re-impingement takes place with

the splashing model active. Figure 6.13 shows that the catching e�ciency

resulting from the splashing simulation is always smaller or equal to the

catching e�ciency without the splashing model, as is the total catching

e�ciency in Tab. 6.9.

6.6 rebound

The splashing model provided (for the large mvd) a big improvement,

however; for the areas furthest downstream of the leading edge, an over-

prediction of the catching e�ciency is still found. Physically, these regions,

near the impingement limits, are the regions where rebound occurs. There-

fore, a rebound model could potentially improve the catching e�ciencies

even further.

For the small 20 µm mvd case, the splashing model proved a decrease

in numerical model accuracy. The rebound model only deteriorates the

comparison with the experiment, the catching e�ciency near the leading
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6.6 rebound

Table 6.10: Total catching e�ciencies for multi-disperse droplet distribution with

splashing and rebound

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.012941614 − −
10 Bins 0.010206984 −21.129902 −
+ Splash + Reb. 0.0085830681 −33.679022 −12.548120

(a) 20 µm mvd

βtotal ∆ exp. Improvement

[−] [%] [%]

Experiment 0.038614443 − −
10 Bins 0.053725100 39.132137 −
+ Splash + Reb. 0.039413463 2.0692270 37.062910

(b) 236 µm mvd

edge is further decreased as shown in Fig. 6.13(a). This leads to a further de-

crease of 6% in βtotal , to a total de�cit of 12% compared to the experimental

value, shown in Tab. 6.10.

The larger 236 µm mvd does improve from the inclusion of a rebound

model, as seen in Fig. 6.13(b). A total improvement of 37% in βtotal is found,

leading to a di�erence with the experiment of only 2% (Tab. 6.10).

While the splashing model did not show evidence of any re-impingement

of secondary droplets, the rebound model does show some re-impingement.

For Fig. 6.13(b), an increase in the catching e�ciency with rebound model

is visible in the area around s = −0.2. The total catching e�ciency however

is still reduced, compared to the splashing model it is even reduced further,

as shown in Tab. 6.10.

77



chapter 6 validation for supercooled large droplet methods

Dimensionless airfoil-coordinate,
s−sstaд

c

C
at
ch
in
g
e�

ci
en
cy
,β

−0.3 −0.2 −0.1 0.0 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Droplerian, 10 bins, splashing+rebound
Droplerian, 10 bins, splashing
Droplerian, 10 bins
Experimental results

nose topbottom

(a) 20 µm mvd
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(b) 236 µm mvd

Figure 6.13: Splashing and rebound e�ect
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6.7 three-dimensional

6.7three-dimensional

The extended numerical model was validated, �rst against the existing 2d

model, with results and experiments readily available; and second, against

the three-dimensional experiments from the extice project.

6.7 .1comparison to two-dimensional method

A number of tests were performed to compare the accuracy of the newly

created 3d numerical ice accretion model to that of the original 2d model.

The most basic assessment can be made by judging �ow patterns across

the airfoil surface. Second, catching e�ciencies can be compared to true

two-dimensional results. Third the e�ect of three dimensional wing on the

catching e�ciency results can be determined.

semi-2d wing section

The model used for this validation test consists of a three-dimensional

extrusion of a 2d naca 23012 pro�le. A triangular surface mesh was

formed on the airfoil surface, which was consequently used to form a

three-dimensional tetragonal mesh, as described in Hospers [2007]. Using

the resulting geometry shown in Fig. 6.6 an assessment of the �ow patterns

across the airfoil surface was performed.

The conditions de�ned in section 6.1.1 are used to de�ne this 3d case as

well, leading to results comparable with the 2d results from section 6.3.

Figure 6.14 shows that the method de�ned in section 5.1 provides a �ow

pattern that may be expected; surface liquid will �ow from leading-edge

to trailing edge, both on the top and bottom of the airfoil. As expected,

the �ow is essentialy 2d, no �ow in longitudinal (root to tip) direction is

visible.

The catching e�ciency can be shown in three dimensions as indicated

in Fig. 6.15. Again, little variation in longitudinal direction is observed.

Plotting the catching e�ciency in every surface element as a function of

the airfoil s-coordinate, gives a catching e�ciency curve, similar to those

for the 2d pro�les. A direct comparison is made in Fig. 6.16.

The 3d catching e�ciency tends to be slightly lower than the 2d values.

This may be due to the fact that incoming droplets are dissipated in 3d
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chapter 6 validation for supercooled large droplet methods

(a) Order of airfoil surface elements

(b) Order with streamlines along the surface, showing surface �ow direction

Figure 6.14: Extruded semi-2d geometry
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6.7 three-dimensional

Figure 6.15: Three-dimensional catching e�ciency results
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Figure 6.16: Catching e�ciency for three-dimensional results, projected to two di-

mensions, semi-in�nite wing
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chapter 6 validation for supercooled large droplet methods

Table 6.11: Total catching e�ciencies for swept 3d wing

βtotal ∆ exp. Change

[−] [%] [%]

Experiment 0.038614443 − −
2d 0.039413463 2.0692270 37.062910

Semi-2d 0.038586636 6.0694054 3.9190849

Swept 0.035240569 −4.7144608 −10.166802

directions, but possibly this is due to numerical dissipation. In general, the

results for the 2d and 3d models is very comparable, especially consider-

ing the fact that the semi-2d wing results are slightly in�uenced by the

boundaries of numerical domain.

swept wing section

A natural extension is towards a swept wing. Comparison to the 2dmethod

is less meaningful, however, a visual inspection of the surface �ow pattern

may provide insight into the correctness of the numerical model.

Figure 6.17 shows the �ow pattern expressed again in terms of the surface

element order. The surface �ow originates from the wing root, and �ows

simultaneously towards the trailing-edge and towards the wing tip. This

proves that the method is capable of predicting a surface �ow pattern

that is multi-dimensional; 2d in fact, from a stagnation line across the

surface. This is in contrast to the �ow patter from a pure two-dimensional

method, which only predicts �ow from the stagnation point towards the

trailing-edge; an essentially 1d �ow.

It is no longer useful to plot the catching e�ciency in two dimensions.

However a 3d plot can be made, as shown in Fig. 6.18. The catching ef-

�ciency is notably lower, due to the a �ow component around the wing

tip as can been seen in Fig. 6.17(b). However, a comparison based on the

integrated βtotal from Eq. 6.1 can be made. The comparison is shown in

Tab. 6.11. A decrease of 10% in βtotal is observed in going from a straight

to a swept wing.

The most signi�cant 3d e�ect is observed in the mass of surface (or run-

back) water entering each surface element,mc,in . The spanwise component
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6.7 three-dimensional

(a) Order of airfoil surface elements

(b) Order with streamlines along the surface, showing surface �ow direction

Figure 6.17: Extruded swept geometry
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Figure 6.18: Three-dimensional catching e�ciency results, swept 3d wing

of the surface �ow pushes surfaces water towards the wing tip. This is

shown in Fig. 6.19.

6.8 conclusion

All models appear to have a bene�cial in�uence on the predicted catching

e�ciencies. However, it is very hard to quantify the improvement since

the catching e�ciency depends on a large number of (partially unknown)

parameters, e.g., splashing appears to have larger improving in�uence for

large droplets, while it may have a deteriorating in�uence for non-sld

diameters.

A ranking can be made from largest to smallest in�uence based on the

results from this chapter:

1. multi-disperse droplet diameters,

2. splashing,

3. deformation,

4. rebound.
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6.8 conclusion

Figure 6.19: Three dimensional surface mass �ow,mc,in , results
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7validation of ice accretion

method

T
he models described in the previous chapters have been imple-

mented into the numerical method. Some models have been im-

plemented in both the Lagrangian and Eulerian codes, while some

models have only been implemented in themore advanced Eulerianmethod.

Several validation tests have been performed to asses the suitability of these

models.

Each of the numerical methods is compared to the experimental data

from Papadakis et al. [2007], who have de�ned a clear case including

the incoming droplet distributions, which are very important for an sld

catching e�ciency calculation.

7 .1experimental data

Several experiments were used to validate the numerical data. For a de-

scription of these experiments, see the following sections.

7 .1 . 1extice, cepr - naca 0012

Within the scope of the extice project a validation experiment was con-

ducted in the dga cepr (Centre d’Essais de Propulsion) facilities. These

facilities include a small scale icing wind tunnel, with advanced spray

injection possibilities.

Catching e�ciencies and ice accretion shapes were determined for a

straight, semi-in�nite, naca 0012 airfoil geometry.

Cloud validation studies were performed, rendering some interesting ice

shapes, suitable for comparison to the computational methods. These ice

shapes were formed from speci�c droplet clouds, representing the droplet

distributions found in sld clouds. These distributions are shown in Fig. 7.1.

The tabular distributions consist of 40 droplet bins.
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(a) 40 µm mvd, monomodal
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(b) 40 µm mvd, bimodal
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(c) 104 µm mvd, bimodal
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(d) 180 µm mvd, bimodal
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(e) 215 µm mvd, monomodal
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(f) 250 µm mvd, monomodal

Figure 7.1: Droplet distributions in cepr experiments
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7.1 experimental data

Table 7.1: Selected cepr cases

case Mach T altitude mvd lwc AoA time
◦C m g/m3 ◦ s

E5 0.2 −25 0 (b) 0.3 2 450

E7 0.2 −10 0 (b) 0.3 2 450

E19 0.2 −25 0 (e) 0.22 2 616

Figures 7.1(b–d) show the typical bimodal droplet distributions encoun-

tered in sld clouds. Distributions (e) and (f) were added to the initial test

matrix because preliminary cfd results showed an increased possibility

of sld phenomena, to ensure that sld models could be validated.

The extice campaign contained 22 cases numbered E1–E22. Each distri-

bution from Fig. 7.1 was used at least once, generally in a catching e�ciency

run combined with one or more ice accretion runs.

Catching e�ciencies are determined by running an ice accretion test at

−25 ◦C and calculating impingement from measured ice thickness, under

the assumption that all water freezes instantly. The ice accretion runs vary

in simulated temperature, altitude, speed and duration.

From these 22 runs, three cases were selected. Many cases are outside

of the considered scope because the Mach number for these cases is too

high, either 0.5 or 0.65 From the selected cases one case is at 40 µm mvd,

and one case is at 215 µm mvd. This corresponds with distributions (b)

and (e) from Fig. 7.1 and with cases E5, E7, and E19 from the cepr extice

campaign respectively. The selected cases are shown in Tab. 7.1.

Part of this work was also used by Norde [2013] to validate an extended

surface �ow model.

7 .1 .2extice, dassault - three element swept wing

The extice project pertained not only the previously mentioned cepr tests,

but also an extended test in the cira wind tunnel. This wind tunnel is

one of the largest icing wind tunnels in the world, allowing for a cold

and depressurized atmosphere. The model used in the extice tests was

provided by the Dassault Aviation company, a partner in the project. They

provided a 3d wing used on their Falcon aircraft , with a wing sweep and

adjustable slat and �ap.
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chapter 7 validation of ice accretion method

Photograph by bagalute on flickr, available under a cc by 2.0 license

Figure 7.2: Photograph of a Dassault Falcon 2000, Deutsche Telekom d-bonn, with

a wing very similar to the extice model

Table 7.2: Selected cira case

run Mach T altitude mvd lwc AoA time
◦C m g/m3 ◦ s

12 0.183 −5 0 165.33 0.65 −2 457

The �ap was �xed during the tests, at an angle chosen to minimize wind

tunnel wall e�ects. Con�gurations with and without slat de�ection were

tested. The cira wind tunnel allowed for a scale of the wing geometry of

1:2.

From the test matrix run 12 was chosen as a test case for the 3d numerical

ice accretion model. This case is particularly suited because of its high

bi-modal droplet distribution and neutral angle of attack, for which a

geometry was made available by Dassault Aviation in the extice project.

cira de�ned two sections for which an ice accretion was traced. The

location of these sections were de�ned andmeasured from the tip end of the

slat. Both sections were traced as two-dimensional sections perpendicular
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7.2 computational domains

Figure 7.3: Photograph of the traced ice shape on the tip section of the Dassault

wing, picture from cira

to the leading edge, as demonstrated in Fig. 7.3. A root and tip section are

de�ned, measured at 53.5 cm and 161.1 cm from the slat tip respectively.

7 .2computational domains

The two-dimensional ice accretions are validated using the geometry from

section 7.1.1. However, the three-dimensional results are based on a new

three-dimensional geometry.

7 .2.1dassault - three element wing section

The basic geometry for this computational analysis was kindly provided

by Dassault Aviation in the Extice project. A fully three-dimensional CAD

�le was provided, including cira wind tunnel section. This model was

not completely suited for a CFD analysis, so some model cleanup was
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chapter 7 validation of ice accretion method

Table 7.3: 3d Dassault wing, Eulerian grid parameters

Flow Span Normal

direction direction direction

Size −4500, +3800 mm 2390 mm −1800, +1800 mm

Vertices 22 7 10

Total Airfoil surface

vertices 89205 vertices 36431

performed: closing of geometry sections and smoothing of abrupt geometric

orientations. The �nal model is shown in Fig. 7.4.

The computational model has a root chord length, including the (re-

tracted) slat and �ap, of 1808 mm. The wing half span is 3190 mm. The

sweep angle measured along the leading edge is 32.3◦. Details on the nu-

merical domain are given in Table 7.3

7 .3 two-dimensional ice accretions

The naca 0012 airfoil is not an airfoil that creates speci�c high shear in the

surrounding �uid �ow, nor is it inherently three-dimensional. However, it

provides a good case for basic testing of the splashing and rebound model,

without introducing complicating sld physics.

7 .3.1 ice accretion shapes

For each of the selected cases an ice accretion shape was computed. They

are shown and analyzed in the following sections.

case e5

Case E5 is a base case at non-sld conditions. Droplerian should perform

well here as no additional changes to the original models have been im-

plemented. The ice accretion shape is good compared to the experimental

shape.
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7.3 two-dimensional ice accretions

(a) Side view

(b) Internal top view of the wing (c) Internal bottom view of the wing

Figure 7.4: 3d Dassault wing, modi�ed geometry
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Figure 7.5: Ice accretion shape result for case E5
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Figure 7.6: Ice accretion shape result for case E5
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7.3 two-dimensional ice accretions

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05  0  0.05  0.1  0.15  0.2

β

(s - sstag)/c

Droplerian
Experiment

Airfoil

Figure 7.7: Ice accretion shape result for case E19

case e7

Case E7 is based on case E5 but with a higher temperature. This will create

a di�erent type of ice accretion, with more of a rime-ice shape, since not

all of the deposited water will freeze immediately.

Again the results are good, however micro-features of the ice accretion

are not caught by the numerical model.

case e19

Case E19 is a true sld case. At 215 µm mvd this is a test case for the

splashing and rebound models. The results are exceptional, a good agree-

ment to the experimental ice accretion shape is found. However, again, a

lack of micro-features of the accretion is to be noted.

7 .3.2conclusion

In two dimensions the ice accretion shapes agree with the experimental ice

accretion shapes. No greater di�erence is observed for sld and non-sld

conditions. A discrepancy for both conditions is the lack of micro-features

for the numerical ice accretion shape.
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chapter 7 validation of ice accretion method

7 .4 three-dimensional ice accretions

Three-dimensional ice accretions are validated using the cira experiments

and Dassault geometry described in sections 7.1.2 and 7.2.1, respectively.

cira de�ned two cut planes for which an ice accretion shape was traced.

These sections are extracted from the simulation results as well, to compare

with the experimental results.

7 .4 .1 catching efficiency

The catching e�ciency is largest along the leading edge. What draws

attention here is a second impingement region downstream of the leading

edge on both the top and bottom of the airfoil surface. These impingements

are hard to see, but are present none the less.

Three-dimensional e�ects are visible around the wing tip, where the

impingement area moves along with the wing edge.

7 .4 .2 ice accretion shape

The ice accretions are shown in Fig. 7.10, in grayscale on a blue wing

surface. A white color means a (thin) layer of ice is present. A thin layer of

ice along the bottom of the airfoil is visible, especially near the �ap. There

is also a small amount of impingement here, although not visible in the

�gures in the previous section.

Note also a secondary impingement region on the top of the airfoil,

downstream of the leading edge. This ridge is also visible on photographs

of the experiments in Fig. 7.11. Note that the experimental ice accretions

show a larger e�ect of the wind tunnel wall near the root of the section,

see Fig. 7.11(b). This can be explained by the lack of viscosity in the �ow

model used in the simulated �ow �eld for the numerical model.

For the section ice accretions a more quantitative conclusion can be

drawn. The ice accretion thicknesses for both the sections are predicted

fairly accurate close to the leading edge. However, downstream of the

leading edge, the ice accretion thickness is underestimated. This is due to

the presence of horn like shapes in the experiment, as seen in photographs,

which are not reproduced by the numerical model. The total mass of ice

predicted by the model is most likely similar to the mass in the experiment.
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7.4 three-dimensional ice accretions

(a) Top view

(b) Bottom view

Figure 7.8: Catching e�ciency results, β
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Figure 7.9: Catching e�ciency results, Dassault wing, measured from the wing

leading edge

However, due to a more sparse distribution of ice on the airfoil surface the

horns grow to a thicker, more erratic ice layer.

7 .4 .3 conclusion

Data shows that the numerical model is fairly accurate. The largest imbal-

ance between numerical and experimental results is found in the micro-

features of the ice accretions, such as horns or ridges. These micro-features

are not captured by the numerical model and, as such, the prediction of

thickness and shapes of ice accretions is di�erent to what is seen in experi-

ments.

The cira results indicate a maximum ice accretion thickness of 13.1 mm,

while the numerical model predicts a maximum ice thickness of 11.7 mm.

This gives an error of −10.7%.
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7.4 three-dimensional ice accretions

(a) Top view

(b) Bottom view

Figure 7.10: Ice accretion shape result, Dassault wing, thickness in mm
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chapter 7 validation of ice accretion method

(a) Front view

(b) View on traced sections from the wing root

Figure 7.11: Photographs showing experimental ice accretions on the Dassault wing,

picture from cira
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7.4 three-dimensional ice accretions
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Figure 7.12: Ice accretion shape result, Dassault wing, thickness in mm
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8conclusions and recommendations

B
ased on the research results described in this thesis the following

conclusions and recommendations are given.

8.1conclusions

Based on the validation results for both the catching e�ciency in chapter

6 and the ice accretion shapes in chapter 7, for both two-dimensional and

three-dimensional geometries, the following can be concluded:

• The main force components determining the droplet trajectories for

both non-sld and sld are:

– (deformed) droplet drag,

– history force
(

< 0.1 · Fdraд
)

, and

– buoyancy force
(

< 0.1 · Fdraд
)

.

• In order of in�uence, the following modi�cations improve the results

for the catching e�ciency:

1. droplet size distributions (as opposed to mono-disperse droplet

distributions),

2. splashing,

3. droplet deformation, and

4. rebound.

• Ice accretion thickness is matched fairly well by the numerical

method;

– micro-features (i.e., feathers or ridges) are under predicted,

– in 3d micro-features are less accurately predicted than in 2d.
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chapter 8 conclusions and recommendations

• The limits of ice accretions on airfoils and wings are in line with

experimental results.

The most signi�cant deviation of numerical results compared to experi-

mental results lies in the under prediction of the micro-features. A signi�-

cant time-dependent e�ect is present in the micro-features. When a small

amount of ice accretes on the airfoil or wing surface this in�uences the

�ow. A new, additional, stagnation point is formed on the micro-feature,

causing more ice to be accreted onto this micro-feature; causing it to grow.

The current study has not analyzed the e�ect or the possibility of splitting

the ice accretion simulation into multiple subsequent time steps.

In general the following can be said about the results for the catching

e�ciency and the ice accretion shape:

• The catching e�ciency calculated by the numerical method is within

approximately 10%.

• The ice accretion shape calculated by the numerical model is within

approximately 10% when considering the maximum accretion thick-

ness.

• The results for 3d �ow are slightly less accurate than the results for

2d �ow.

8.2 recommendations

Related to the above conclusions, these are the recommendations for further

research:

• Results show an inability of the computational method to accu-

rately capture the catching e�ciency around the leading edge. It

is suspected that this is caused by secondary (splashed/rebounded)

droplets re-impinging on or near the leading edge. The number

and mass of re-impinging droplets may be over-predicted by the

present computational model because of missing breakup e�ects on

secondary droplets or a lack of resolution in droplet diameter.

• Prediction of micro-features in the calculated ice accretions is very

di�cult. These features exist because of �ow patterns changing in
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8.2 recommendations

time, something which has not been investigated in this thesis. This

may be expanded by adding a time in�uence in either one of two

�ow solutions: the surrounding �uid (air) �ow or the liquid �lm �ow

on the airfoil surface.

• The method has been tested and validated for �ow �elds in the

potential �ow regime (M < 0.3). It would be relevant to include

results beyond this limit into a validation study, the method is capable

of using surrounding �uid �ow solutions from any computational

method as an input �ow, i.e., higher velocity �ows are within reach

of the developed method.

• Further validation of the ice accretion method, especially for 3d �ow

is recommended. The extension to 3d �ow in the present study has

only been validated for a single case of truly 3d ice accretion.
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atraced results from papadakis et

al. [2007]

In the article of Papadakis et al. [2007] the resulting catching e�ciencies

are only provided in the form of �gures. To be able to compare numerical

results with this experimental data, these �gures have been traced. The

resulting tables are provided here.

Table A.1: Traced values for 20µm mvd from Papadakis et al. [2007]

s [mm] β [−]
−198.562615704 0.00155763239875

−187.072490031 0.00155763239875

−182.763692903 0.00155763239875

−171.27356723 0.00155763239875

−152.602113011 0.00155763239875

−141.111987338 0.00155763239875

−129.621861664 0.00155763239875

−118.131735991 0.00155763239875

−110.950407445 0.00155763239875

−102.33281319 0.00155763239875

−90.8426875171 0.00155763239875

−83.6602403843 0.00311526479751

−79.3514432569 0.00311526479751

−67.8601989966 0.00467289719626

−59.2403675677 0.00778816199377

−52.7738161155 0.01246105919

−49.8990475232 0.0155763239875

−45.5857760477 0.0218068535826

−43.428021723 0.0264797507788

−40.5510159566 0.0327102803738

−37.6717730163 0.0420560747664

Table continued on next page
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appendix a traced results from papadakis et al. [2007]

Table continued from previous page

s [mm] β [−]
−35.5095443436 0.0529595015576

−32.6280642293 0.0654205607477

−29.7443469409 0.0809968847352

−27.5754067462 0.101246105919

−23.9657264943 0.127725856698

−21.070823336 0.158878504673

−18.8951716192 0.188473520249

−15.9980312869 0.222741433022

−13.0941794325 0.266355140187

−10.9073418458 0.311526479751

−7.99901564344 0.361370716511

−5.80770370868 0.41277258567

−2.16894019475 0.479750778816

0.0246089140198 0.534267912773

2.19690486977 0.559190031153

5.06048759207 0.546728971963

7.90169857436 0.503115264798

10.7294865126 0.440809968847

13.5595116249 0.381619937695

15.6747596436 0.327102803738

18.5103776909 0.275700934579

21.3493514992 0.228971962617

24.1927996555 0.188473520249

26.3237078922 0.155763239875

29.1716303965 0.121495327103

32.0262644228 0.0965732087227

34.8864913841 0.0794392523364

37.0297040778 0.0638629283489

38.459258265 0.0545171339564

42.0420924288 0.0436137071651

44.9101494992 0.0373831775701

47.7782065695 0.0311526479751

50.6462636398 0.0249221183801

53.5187950581 0.0249221183801

Table continued on next page
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Table continued from previous page

s [mm] β [−]
55.6720750348 0.0233644859813

57.8253550115 0.0218068535826

60.6956492559 0.018691588785

63.5681806742 0.018691588785

66.4407120925 0.018691588785

68.5939920692 0.0171339563863

71.4665234875 0.0171339563863

78.6456148593 0.0140186915888

85.1076919635 0.01246105919

93.0060347769 0.0109034267913

106.649440427 0.00934579439252

120.292846077 0.00778816199377

136.808783145 0.00623052959502

151.888454504 0.00467289719626

174.149454409 0.00311526479751

187.075845792 0.00311526479751

189.949495797 0.00467289719626

Table A.2: Traced values for 236µm mvd from Papadakis et al. [2007]

s [mm] β [−]
−198.077634011 0.0016051364366

−193.271719039 0.0000000000000

−182.6987061 0.0016051364366

−177.892791128 0.00321027287319

−171.164510166 0.0016051364366

−161.552680222 0.0016051364366

−150.979667283 0.0000000000000

−145.212569316 0.0000000000000

−132.717190388 0.0016051364366

−125.988909427 0.00321027287319

−118.299445471 0.00642054574639

−110.609981516 0.0128410914928

−103.881700555 0.0208667736758

Table continued on next page
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Table continued from previous page

s [mm] β [−]
−100.036968577 0.024077046549

−98.1146025878 0.0272873194222

−93.3086876155 0.0321027287319

−91.3863216266 0.0353130016051

−88.5027726433 0.0529695024077

−85.6192236599 0.0642054574639

−81.7744916821 0.0674157303371

−79.8521256932 0.0706260032103

−76.9685767098 0.0786516853933

−75.0462107209 0.091492776886

−72.1626617375 0.099518459069

−69.2791127542 0.110754414125

−66.3955637708 0.126805778491

−63.5120147874 0.142857142857

−60.6284658041 0.154093097913

−58.7060998152 0.163723916533

−55.8225508318 0.181380417335

−53.9001848429 0.197431781701

−51.0166358595 0.211878009631

−48.1330868762 0.22632423756

−45.2495378928 0.24077046549

−43.3271719039 0.266452648475

−40.4436229205 0.284109149278

−37.5600739372 0.30176565008

−34.6765249538 0.327447833066

−31.7929759704 0.351524879615

−28.9094269871 0.375601926164

−26.9870609982 0.394863563403

−25.0646950092 0.423756019262

−21.2199630314 0.449438202247

−18.3364140481 0.475120385233

−16.4140480591 0.512038523274

−13.5304990758 0.545746388443

−10.6469500924 0.598715890851

Table continued on next page
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Table continued from previous page

s [mm] β [−]
−7.76340110906 0.68378812199

−4.87985212569 0.772070626003

−2.95748613678 0.865168539326

−0.0739371534196 0.937399678973

1.84842883549 0.950240770465

4.73197781885 0.903691813804

7.61552680222 0.807383627608

10.4990757856 0.69341894061

13.3826247689 0.585874799358

15.3049907579 0.512038523274

18.1885397412 0.459069020867

21.0720887246 0.412520064205

23.9556377079 0.372391653291

25.8780036969 0.333868378812

29.7227356747 0.30176565008

32.606284658 0.271268057785

34.528650647 0.248796147673

36.4510166359 0.229534510433

40.2957486137 0.210272873194

42.2181146026 0.192616372392

45.101663586 0.178170144462

47.0240295749 0.162118780096

49.9075785582 0.157303370787

52.7911275416 0.14606741573

55.674676525 0.131621187801

58.5582255083 0.133226324238

60.4805914972 0.126805778491

62.4029574861 0.120385232745

66.247689464 0.120385232745

70.0924214418 0.113964686998

71.0536044362 0.112359550562

73.9371534196 0.117174959872

77.7818853974 0.117174959872

80.6654343808 0.109149277689

Table continued on next page
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Table continued from previous page

s [mm] β [−]
83.5489833641 0.104333868379

84.5101663586 0.102728731942

89.3160813309 0.107544141252

91.2384473198 0.107544141252

95.0831792976 0.0979133226324

98.9279112754 0.0947030497592

101.811460259 0.0930979133226

106.617375231 0.0979133226324

110.462107209 0.0947030497592

115.268022181 0.0930979133226

121.035120148 0.0898876404494

123.918669131 0.0850722311396

127.763401109 0.0850722311396

132.569316081 0.0866773675762

137.375231054 0.0818619582665

142.181146026 0.0770465489567

144.103512015 0.0770465489567

148.909426987 0.0722311396469

150.831792976 0.0690208667737

154.676524954 0.0690208667737

156.598890943 0.0690208667737

160.443622921 0.0690208667737

163.327171904 0.0674157303371

168.133086876 0.0626003210273

170.055452865 0.0593900481541

172.939001848 0.0593900481541

175.822550832 0.0529695024077

178.706099815 0.0497592295345

181.589648799 0.0545746388443

184.473197782 0.0529695024077

190.240295749 0.0561797752809

192.162661738 0.0513643659711

196.96857671 0.0513643659711

198.890942699 0.0481540930979

Table continued on next page
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Table continued from previous page

s [mm] β [−]
202.735674677 0.0449438202247

210.425138632 0.0385232744783

220.036968577 0.0321027287319

226.765249538 0.0272873194222

231.57116451 0.0256821829856

235.415896488 0.0256821829856

243.105360444 0.0256821829856

249.833641405 0.0208667736758

257.52310536 0.0192616372392

265.212569316 0.0176565008026

270.018484288 0.016051364366

278.669131238 0.0128410914928

285.3974122 0.0112359550562

291.164510166 0.0112359550562

300.776340111 0.00802568218299

303.659889094 0.00642054574639

311.34935305 0.00642054574639

316.155268022 0.00481540930979

316.155268022 0.00481540930979
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