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INTRODUCTION

1.1 General features of multiphase flows

A multiphase flow is a flow in which more than one fluid phase is present in the
same flow system at the same time. The most common multi-phase flows include
two phases namely gas (vapour) and liquid. In general a multi-component fluid may
consist of various species, where each species is in some state of aggregation, e.g.
gas, liquid or solid. In the latter case the solid bodies in the form of small particles
are dispersed in a liquid and travel subjected to the forces exerted by the flow on the
particles, which the particles influence the flow. Two-phase flows play a significant
role, however, three-phase flows occur also quite often especially in chemical indus-
try in processes of mixtures separation or in petrochemical industry where crude oil,
transported from the place of exploration, contains water and natural gas. Aside from
the mentioned multiphase flow configurations one can also find more complex occur-
rences where even more than three phases are present, but those are not considered
in the present work.

The main difficulty in the study of multiphase flows, is the existence of an inter-
face between the phases, which represent a discontinuity of the value of or gradient
of the flow field quantities. The magnitude of this discontinuity depends on the sort
of phases. Clearly, it is the largest for the case of a gas-liquid flow. The disconti-
nuity is difficult to handle for standard numerical approaches useful in single phase
flows. Complexity of the problem increases with increasing interface deformation.
This does not allow the use of a single universal model for all multiphase flows, but
rather leads to a variety of approaches applicable to a specific phase configuration.
Therefore, scientists have classified flows, through for example ducts, with respect
to the distribution of the phases, which is a function of flow parameters and the duct
shape. This classification will be briefly discussed in Chapter (2). However, a large
number of flows cannot be assigned to any class, particularly flows in geometrically
very complex systems.
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1.2 Overview of research program

Since one does not know the shape of the interface a priori, it has to be calculated
along with other parameters of the flow. The shape changes are not only due to con-
vection and forces, but also due to thermodynamic effects, such as phase transition.
Consequently, this study considers changes in the distribution of the interface align-
ment and the changes in the flow simultaneously. The algorithm used is based on a
mathematical model of the flow. Clearly, since the governing equations and closure
relations, are not exact, the resulting solution departs from that in the real world.
Another source of error, is that caused by the numerical approach. This thesis aims
also at showing how improvements in the numerical approach affect the quality of
the results.

The basis of this research is the computational method CAVKA developed at
Technical University of Karlsruhe in Germany for simulation of cavitating flows
(Sauer, 2000). The method is a tool comprising the basic calculation algorithms that
have been improved and developed further in the current project. The main extension
is that CAVKA handles pressure driven phase transition, i.e. cavitation. In CAVKA
the temperature is assumed to be constant. The extended method includes the energy
equation and therefore can treat temperature driven phase transition.

The algorithm assumes a single-field approach in the form of the Volume-of-Fluid
(VOF) method. Thus, the distribution of the phases is to be calculated along with
other parameters of the flow and constitutes part of the solution. VOF is coupled
with the Energy of Fluid (EOF) method which allows for the evaluation of the di-
vergence of the velocity field, caused by the gas-liquid phase transition. This sort
of the transition assumes, in contrast to cavitation, the temperature as the driving
force. Consequently, the algorithm employs the distribution of energy or rather the
temperature itself.

The algorithm can handle physical phenomena appearing in a multi-phase flow in
which phase transition takes place. The test cases discussed in this thesis concern
flows of a single component that is in liquid or in vapour phase. However, assump-
tions have to be made that do not allow for a detailed quantitative evaluation of the
result. The assumptions are that the problem is two dimensional, that the phases are
incompressible and that effects due to surface tension can be neglected. Also it is
assumed that effects due to turbulent diffusion may be neglected. These assumptions
affect not only the kinematics of the flow, but also the distribution of the phasic struc-
tures in the domain. In conclusion, it must be emphasized, that the algorithm should
be regarded as a step towards a comprehensive solution of the flow problem. Thus,
at this stage of the development, the model is applicable only to a limited range of
flows.
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1.3 Overview of thesis

This thesis describes details of multi-phase flows, and will discuss the variety of pos-
sible approaches towards the numerical simulation of these flows. Amongst these
approaches the VOF method is a method within the category of single field ap-
proaches. This review is given in Chapter (2) titled "Review of approaches for multi-
phase flows’. Subsequently, the physics of the gas-liquid phase transition is discussed
in Chapter (3): ’Physics of gas-liquid phase transition’. This chapter considers the
situation in which for example surface tension plays a role, and highlights the thermo-
dynamics of the process. Chapter (4) treats the mathematical model of the flow. The
set of governing equations is discussed and the Energy of Fluid method is employed
to evaluate the divergence of the velocity field. In the Chapter (5), ’Numerical ap-
proach’, the governing equations are discretised. Here, amongst others, the procedure
of pressure correction is discussed. Aside from this, the construction of the system
of discretized equations is shown as well as the method of its solution. Chapter (6),
’Interface capturing’, is devoted to the numerical method used to determine the pha-
sic distribution. Additional improvements and interface sharpening algorithms are
discussed there as well. Chapter (7), 'Results’, presents the results of the numer-
ical simulations. The validation of these results is provided utilizing experimental
data from the literature or, when possible, a theoretical consideration of the problem.
The last chapter, 'Discussion’, discusses advantages and disadvantages of the used
computational method and gives some recommendations for further development.







REVIEW OF APPROACHES
FOR MULTIPHASE FLOWS

In the present study, two-phase gas(vapour)-liquid flows are considered. This kind
of flow occurs in a broad variety of industrial devices and system elements such
as vapor condensers, vapor generation systems and mass transfer equipment. All of
these devices need to be properly designed according to the type of flow and the range
of operational flow parameters. In general, one can distinguish three categories of
operation of industrial systems. The first category are systems in which heat and mass
transfer occurs in a steady-state process, at least at normal operation conditions. The
next category is formed by systems operating in a transient state, which occurs during
emergency events in a plant as well as start-up and shut-down. The last category
of operation applies to the situation in which the flow parameters attain their limits
e.g. a critical heat flux in nuclear reactors threatening integrity of cooling water
ducts, critical mass flux at which the mass flow becomes independent of downstream
pressure (choking). To predict the flow there are a number of approaches that have
been developed over the past decades. One can distinguish methods based on:

- empirical correlations,

- phenomenological models,

- multi-fluid models,

- single-fluid models.

Each of them will be briefly described in the next section with emphasis on the latter
two.

2.1 Empirical correlations

The prediction method is based on data collected from results of experiments for
a particular category of flows. The data are for example the pressure gradient, or
mass transition between phases, obtained for a range of flow conditions such as the
mass flux, initial flow quality, heat exchange between the system and its surroundings
and geometry of the flow channel. The database provides correlations between inde-
pendent and dependent parameters resulting in empirical or semi-empirical relations.
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The next step is the application of the established correlations to predict flow pa-
rameters required in an industry applied system. However, if correlations are purely
empirical it is preponderantly inaccurate to extrapolate data relations out of the range
covered by the data from experiments. Such operation is unlikely to be successful
even if correlations are semi-empirical thus partially based on mathematical models
well describing some physical phenomena.

Even if calculations are carried out for conditions within the experimental range,
some significant inaccuracies may arise in the result. This is caused by biases having
influence on the accuracy of the correlation procedure. The main problem appears in
obtaining a fully-developed flow which, in case of multiphase flows, is unreachable
even at a long distance from the inlet of an experimental setup. While in a single
phase flow fully developed flow can be obtained just after tens of duct diameters, in
two-phase flow the distance may extend up to hundreds of diameters, hence, in most
cases it is out of reach of the setup. In this context the pressure gradient, which is
mostly the desirable parameter, that is expected to be constant or varying gradually,
may have a significant error. Moreover, not fully-developed flows are often coupled
with a lack of thermal equilibrium, which importance is difficult to evaluate due to
unsteadiness and unknown dynamic conditions. In the process of developing corre-
lations, unrecognized factors may play an important role, e.g. the effect of surface
tension on local pressure gradients. The influence of these factors may not be taken
into account entirely because of difficulties concerning the shape of the interface on
conditions of the not fully-developed flow. The gas-liquid interface brings about other
unresolved questions concerning local physical parameters within an interfacial re-
gion. Experimental data sampled from a flow duct may also possess an inherent error
of the measuring device or that due to difficulties in the measurement of gas-liquid
flows. In summary, empirical correlations may be useful for well-known conditions,
but fail relatively often when trying to apply them outside the established range of
applicability. This has led to attempts to find better approaches described in the fol-
lowing subsections.

2.2 Phenomenological models

The class of phenomenological models considers a two-phase flow in detail based on
experimental observation of a given type of flow, which is dependent on the topology
of the interface in a duct. These models not only provide global parameters such us
the pressure gradient or void fraction, but also give information about local phasic
structures, e.g. liquid film thickness at the duct wall, bubble/droplet distribution and
their average radius, frequency and size of gaseous slugs, etc. The obtained database
allows for evaluation of physical processes, such us interfacial heat transfer and mo-
mentum transfer, interfacial mass exchange, wall heat transfer, etc., associated with
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the flow and influencing its global parameters. The interfacial transfers are given
in the form of closure relations that are required in the multi-fluid approach to be
discussed later.

Hence, the conclusion is that the foundation of phenomenological models lies in
the classification of the flow geometry. In a single phase flow this is relatively easy,
because one knows the geometry a priori - e.g. the shape of the channel. In such
situation global parameters of the flow may be empirically or theoretically assessed
without large effort. However, evaluation of the geometry in two phase flows con-
stitutes a major difficulty, because of the presence of the gas-liquid interface. Its
geometry becomes part of the solution. The interface position is then one of depen-
dent flow parameters, which has influence on others such as the velocity gradient or
the pressure drop. Thus, without determining the interface geometry there is no way
to compute flow quantities that are essential from the engineering point of view. In
order to overcome this problem researchers have developed so-called flow regimes
that use certain dynamic parameters to describe how the phases are distributed. How-
ever, one should keep in mind that the databases underlying flow regimes are limited
to data for relatively simple channel geometries. Thus, there are many engineering
application for which it is not possible to predict precisely the interface shape.

The empirical correlations described in the preceding section, do not take into
account flow regimes and this is the main reason of their failure in the prediction of
flow parameters. In many cases attempts of data correlation for the pressure drop or
the flow quality generate an error typical of a magnitude of about 30%, whereas in
some ranges correlations are over or underpredict experimental data by a factor of
two. Only limited ranges of data give a deviation of an acceptable level. Because of
the above the flow regimes method, considered here, enjoys greater interest.

In the course of this thesis the multi-field approach will be highlighted. In general,
the method utilizes a separate set of governing equations for each of the phases as-
sumed separated from each other by the interface. In order to implement the model an
assembly of closure relations is required to describe for example the heat and mass
exchange across the interface. It is well known that flow parameters are strongly
dependent on the interface geometry, thus the flow regime. For instance, it is not
difficult to realize, that an interface heat flux in the case of bubbly flow is diamet-
rically different from the one in the case of annular flow, leading to differences in
mass transfer between phases during phase transition. In this situation recognition
of the flow regime as the first step of the approach is a necessity for identifying the
appropriate constitutive relations.

Flow patterns (regimes) are significantly affected by many factors and one of the
most influencing ones is the geometry of the duct and its inclination. As an example
of the variety of regimes the flow patterns in a horizontal pipe is illustrated in Fig.2.1
where the pipe transports a co-current flow. In the horizontal flow shown in Fig.2.1
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FIGURE 2.1: Flow patterns in horizontally placed pipe; a) Dispersed bubbly flow;
b) Stratified flow; c) Stratified wavy flow; d) Plug flow; e) Slug flow; f) Annular
dispersed flow. Figure reproduced from (Banerjee, Hewitt, Zaleski, Tryggvason,
Koumoutsakos, Yadigaroglu and Ishii, (2004)).

the distribution of the interface is strongly affected by gravity. Dominance of grav-
itation will decrease with increasing kinetic energy of the flow, which is manifested
by the magnitude of the phasic velocities. In bubbly flow gas structures are dispersed
in the continuous bulk of the liquid, but their concentration tends to higher values at
the top of the duct than near the bottom of the duct. However, the bubble distribution
may become more uniform in the case of a higher flow speed. The stratified flow is
characterised by the liquid flowing along the bottom of the duct and the gas along
the top. In general, this kind of flow occurs at low velocity of the two phases, how-
ever, depending on the speed the flow pattern is divided into two subregimes, namely
smooth stratified and wavy stratified. The amplitude and frequency of the waves ap-
pearing in the latter flow regime, are influenced by the relative velocity between the
gas and the liquid. Obviously, physical properties of the phases such as density and
surface tension are important in this regime. For increasing liquid flux rate one ob-
tains the plug flow, also called the elongated bubble flow. The pattern configuration
consists of relatively large, bubble free waves which originate from the interfacial
Kelvin-Helmholtz instability. The plug flow transits into slug flow once the gas ac-
celerates. One can observe the small-scale gas structures in the bulk of the waves.
The boundary between the liquid slug regime and the elongated bubble regime is not
as sharp as in the case of the plug flow; the entire flow becomes more chaotic. Still
higher gas velocities result in annular flow characterized by a liquid film covering
the pipe wall. The film tends to be thicker at the bottom of the duct, which is due
to gravity. Variation of the liquid layer thickness depends on the gas flux rate. The
gas velocity affects also the shape of the interface between the film and the gas. The
film is wavy and may or may not be continuous. In annular flow regime, one can
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also note intensified mass exchange between the liquid layer and the bulk of the gas,
caused not only by phase transition, but also due to deposition of droplets onto the
film and their entrainment to the gas. Consequently, the flowing gas core contains
liquid structures, which may substantially change the flow behavior.

Observation of the variation of the interface configuration caused by changing flow
parameters led to the development of flow pattern maps illustrating the flow regimes
as a function of quantities characterizing the flow. These are for instance velocities
or mass fluxes of each phase, a flow quality and many other parameters concern-
ing physical properties of the phases. The map is based on experiments for ducts
at a prescribed inclination and geometry. An experimental setup is equipped with
two valves adjusting flux rates of the gas and liquid phase entering the pipe. The
valves are set at a certain position which correspond to known values of the phasic
fluxes. For this condition one observes which flow regime appears. The results are
presented in the form of a map. An example of such a map is given in Fig.(2.2) from
(Manhane, Gregory and Azis, (1974)). In Fig.(2.2) volumetric fluxes are expressed
in terms of the superficial velocity, j, defined as 7 = Vv /A, where V is the volumet-
ric flux of the phase considered and A is the cross sectional area of the duct. Many
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FIGURE 2.2: Flow regime map of air-water flow in a horizontal pipe at a temperature
of 298.15[K| and pressure of 1[bar] for various pipe diameters: 1.25[cm)| - dotted
line, 2.5[cm] - solid line, 5[cm] - dash-dot line, 30[cm] - dashed line. Figure taken
from (Manhane, Gregory and Azis, (1974)).

attempts have been made to generalize flow regime maps, but it is very difficult be-
cause of the large number of parameters influencing the boundaries between different
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patterns in the map. Even within a map, for which geometry and inclination of the
pipe are constant, regions of regime transitions are difficult to define by any correla-
tion. However, some effort has been made to develop separate models for horizontal
and vertical ducts as these find application in most industrial systems. Furthermore,
some theories have been proposed for steep and slight inclinations, but the range of
inclination angles for which the models are appropriate still remains rather narrow.
Barnea (Barnea, (1986); Barnea, (1987)) reviewed the so far existing regime maps.
His reevaluation and modification of the flow maps yield the complete model for
regime boundaries valid for all angles of a pipe inclination. In spite of this, the feasi-
bility of the approach, particularly for larger pipe diameters and higher pressures, is
still to be tested experimentally. It is certain that the method describes quite well the
relation between the flow pattern and the angle of inclination in its entire range.

A flow regime map constitutes the foundation for further evaluation of local flow
conditions, which are necessary to improve the accuracy of the prediction of essential
flow parameters. Local (interfacial) flow behaviour is the basis for assessment of
constitutive relations indispensable in the multi-fluid approach discussed in the next
section.

2.3 Multi-field approach

Multiphase flows and their physics are described in a continuum formulation by par-
tial differential equations for the macroscopic field supplemented by closure rela-
tions. During the past couple of decades various methods describing multi-phase
flows have been developed, but researchers still encounter difficulties associated with
the establishment of constitutive relations, that impose limitations on every flow
model. The key issue of a multiphase flow is the gas-liquid interface (a two-phase
flow) which appearance is described by flow regimes described in Sec.2.2. How-
ever, it may happen that more than one flow pattern occurs simultaneously in a single
flow system which increases the complexity of the modelling, in particular when the
topography of the interface has to be included in the closure relations.

Detailed observation of multiphase flows shows a number of phasic regions sepa-
rated by an interface. Theoretically, it would be possible to describe the system by
a set of governing equations assigned to each phasic region connected through the
boundary conditions for the interface between the regions. However, the phasic vari-
ables change in time simultaneously with the change of the interface position. The
position is a priori unknown i.e. has to be determined as part of the solution. Taking
this into account renders the model impractical if not impossible to solve for flows
involving more than a small number of (large) regions of one phase embedded in the
bulk phase.

The obstacle has been overcome by taking a macroscopic view of the flow. There
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are three main formulation regarding gas-liquid flows, which are the basis for further
modelling:

a) interacting continua assumption,

b) control volume approach,

¢) averaging method.

The above formulation do not consider interfacial transients, consequently informa-
tion about local transitions is partially eliminated or even lost. Therefore it is very
important to consider in detail the local flow behavior at the interface, in order to
model the interaction of the two phases and to derive a macroscopic description.

a) The first listed approach assumes similarity with a single-phase flow. In each
region of the flow the two phases exist simultaneously and the model includes internal
diffusion of the gas and the liquid. Transport properties and thermodynamics of
the flow depend on the mixture quality, i.e. the phase concentration in the region
considered. In general, the two-phase flow is considered as a mixture described by
its averaged properties, together with transfers between phase mass in case of phase
transition.

However, if in the two-phase flow a finite volume is occupied by a single phase,
this volume is bounded by the moving interface and in continua assumption the dis-
continuity in the form of the interface (e.g. free surface) has to be taken care of.

This kind of approach does well in case of dispersed two-phase flows such as
droplets in a gaseous core or bubbles in a bulk of liquid. It has been successfully
applied to gas mixture flows in which a free surface is not present. Later the model
has been universalized and adopted to a broader range of mixtures, see (Truesdell
and Toupin, (1960)). In spite of the model departure from the description of the
discontinuous features of the interface, it possesses a significant advantage, namely
only one set of governing equations suffices for the description of the flow of the
mixture of the two phases, which substantially simplifies calculations.

b) The control volume approach relies basically on establishing conservation equa-
tions for mass, momentum and energy in an arbitrary control volume. The approach
applies to a gas-liquid mixture as well as to the individual phases. The method was
used extensively in one dimensional or quasi-one dimensional flows. Due to the sim-
plicity of the approach and because quite a wide range of flows present in industrial
systems may be regarded as one or quasi-one dimensional, the number of methods
that has been developed utilise the control volume approach (Tong, (1965); Brod-
key, (1967); Martinelli and Nelson, (1948)). The control volume method predicts
flow parameters with quite good accuracy under the condition that the shape of the
interface is not too complex, as in a case of annular or stratified flows. Otherwise,
interfacial transitions of mass, momentum and energy become difficult to capture and
cross-sectional variation of flow parameters does not permit the flow to be regarded
as one dimensional any more. In such situation the approach loses its accuracy and
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needs to be replaced by a more sophisticated approach.

c¢) This system is represented by the averaging method, which can be subdivided into
two main groups: Eulerian and Boltzmann statistical averages. The most important
and widely used is the Eulerian averaging method. The averaging method constitutes
the base for the development of multi- (or in case of a single substance, gas-liquid
flow, two-) fluid approach.

In the two-fluid model one considers flow phases separately, formulating individual
sets of governing equations for each fluid. Consequently, phases do not pass through a
duct independently, but they are coupled by closure relations representing interfacial
interactions in a macroscopic manner. Constitutive equations are formulated on the
basis of appropriate correlations and averaging methods. However, it must be noted,
that in many cases experimental data do not provide sufficient information about
interfacial transients due to e.g. technical limits of instruments. This implies that for
more complex flows such as transitions between flow regimes or complicated channel
geometries, considerable uncertainties are present in closure relations for multi-fluid
flows. However, one has not discovered yet any alternative for the two-fluid approach,
in particular for weakly coupled two-phase flow, which is capable of predicting drift
parameters with so high level of accuracy, taking into account many subtleties of
local (interfacial) transients.

The very first step in the two-fluid model consists of identification of the flow
fields (flow regimes), whose number is affected by the distribution of the phases in
the duct. It is assumed that in the flow field is homogeneous. The field is then thought
of as a strictly recognizable portion of the flow pattern. An example of the flow field
separation is depicted in Fig.2.3. In general, selection of the field should be done

droplet field vapor field liquid field

FIGURE 2.3: Identification of flow fields in an annular flow.

based on the velocity of each distinguished portion in the flow regime. The velocity
within a portion must be as uniform as possible in order to avoid strong variation
in the momentum flux. Consider the annular flow sketched in Fig.2.3, where the
gaseous core with dispersed droplets has much greater speed than the liquid film at
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the pipe periphery. In this situation regarding the flow as consisting of two fields,
namely the liquid and the gas phase, would lead to an unsatisfactory representation
of the liquid film in the flow. The better choice, for sure, is distinguishing three fields:
the liquid film, the gas core and droplets of liquid convected by the gas in the core.
In the case one needs to confine the consideration to two fields, the best manner to
tackle the problem is, assuming an approximately equal velocity of the droplets and
the gas core flow, to separate the flow into the liquid film as the first field and the
gas-droplet mixture as the second one. The important conclusion arising at this point
is that the number of fields is not strictly tied to the number of flow phases. One
may rather state, that the number of fields witnesses the flexibility of a different flow
regime modelling. For instance, a three-field model concerning a liquid, gas and
liquid-gas mixture, may be assigned to two patterns; the slug flow (the stream of the
liquid at the duct bottom, the pure gas structures at the top and a gas-liquid mixture
of the slugs) and the annular flow (the liquid layer at the duct periphery, the gas core
and the droplets in the core flow), see Fig.2.1.

The next step of the modelling procedure is averaging the governing equations
assigned to each of the flow fields. There exist many methods for averaging in time
and space or both of them, e.g.(Banerjee and Chan, (1980); Drew, (1983); Panton,
(1978)). This averaging procedure allows easy handling of the problem, however,
the exchange of momentum, mass and energy at interfacial regions is basically lost.
Thus, additional information needs to be specified in the form of closure relations.
The quality of these relations is a measure of the accuracy of the result obtained from
flow calculations. In the averaging approach one can distinguish common methods,
namely Euler and Boltzmann.

2.3.1 Euler-Euler approach

The most widely used approach for loosely coupled flows is the Euler-Euler method
also called the interpenetrating continua formulation. The Eulerian space and time
averaging, which has been extensively used for single phase turbulent flows, has be-
come the tool for modelling of three-dimensional two-phase flows as well. In order
to formulate the set of conservation equations one begins with the volume averaging
procedure followed by the so-called ensemble averaging. The volume average is a
mean value of an instantaneous flow variable averaged over a certain finite volume
of the flow e.g. over a cross-section of a channel. Still, for unsteady flow conditions,
the values of averaged quantities can differ when measured at the same instant in
several flows started from the same initial conditions. This is the effect of the statis-
tical behavior of the flow. In order to avoid the ambiguity of the results one needs
to take the mean of the volume-averages of flow quantities. This operation is com-
mutative and has been named double averaging. It ensures continuity of derivatives,
which might otherwise be discontinuous. The considered control volume is shown in
Fig.2.4, in which all necessary variables are revealed. The volume is just inside the
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solid boundary in order to illustrate all possibilities. Nevertheless, the control volume
may also be a part of the internal flow, which does not include physical boundaries of
the duct. The formulation of the appropriate form of the governing equation requires

ANZ

z plane

S<( ~Az/2) (t) S((Z+AZ/2) (t)

Sw(®)
S (1)
FIGURE 2.4: Control volume (dashed line) in the channel; non stationary Sy; - inter-
facial surface within the control volume, Sy, - surface of the stationary wall wetted
by phase (field) k within the control volume, Sy(.+ - /2) - surface at the control vol-
ume boundaries with phase (field) k, mix; - outward directed normal unit vector at
the interface, My, - outward directed normal unit vector on wall Sy, §2 - control
volume, 2y, - volume of phase (field) k in the control volume §); k € N.

the use of Gauss’ theorem. Consider the control volume shown in Fig.(2.4). Using
Gauss’theorem the gradient of quantity ¢, = ¢(z, vy, 2,t) in control volume €2, is
expressed as

/V¢k dQ) = /gbknkw ds + /d)kn;m dS + el 2.1

Skw Skz

with €, the unit vector in z direction and ¢, a variable of the phase (field) k. The rest
of notations including subscripts have been explained in the caption of Fig.(2.4). The
last term at the right-hand side of (2.1) reads

I= /qﬁk (x y,z+% t> ds (z /(;Sk (az U,z % t> s (z,9), (2.2)

Se(=+57) Sk(z )
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where Z and g are coordinates defining the position of points on boundary
Sk(zi Az/2)» given by the plane z = constant of the control volume. Now one can
express (2.2) as

erA2Z
= / [ oGaznas@o)| o 23)
_% Sk(2)

which follows directly from Leibnitz’rule. So it follows that

- = / 60 (3,550) d9 (5,3, 2). 4

Substitution of (2.4) in (2.1) shows that for control volume €2, centered around z =
constant, which is infinitesimal in z-direction

/wkdﬂ —e /qﬁkdﬂ + /¢knmd5+ / xidS 2.5)

Skz

For control volume €2, at (x,y, z), that is infinitesimal in each direction, it then fol-
lows that

/ng)de V /gf)de +/¢knmdS+ /¢knkwds (2.6)

Skz

For the divergence theorem one can derive a similar expression, again for infinitesi-
mal volume €,

/ V. A dQ)=V. / ALdo | + / A iig; dS + / A iy dS. 2.7)
Qg O Ski Skw

Leibniz’ rule for variable ¢ = ¢(x,y,2,t) in control volume Q; = Q(t), not
necessarily infinitesimal, reads

Oy,

rra dQ) = e /¢k dQ) — / Ok (Ug;Tgi) dS, (2.8)
Qp

OSki

where uy; denotes the relative velocity of the interface. An infinitesimal volume-
averaged variable of phase (field) & is defined as

— 1
b = o /¢kd9- (2.9)
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In order to express a volume-averaged quantity in terms of variables in control vol-
ume §2, one needs to define the volume fraction ¢y, in an infinitesimal control volume
Q as

Q
=—. 2.10
Qg = (2.10)
The volume-averaged form of a quantity is then
— 1
ak¢k = 5 /(ﬁde (2.1 1)
Qp,
The local instantaneous conservation equation for field & reads
opethe | &, - S
Pa;ﬁ + V. (prtikr) = =V.Jg + prPr, (2.12)

where py1, denotes any conserved flow variable, J_;C is the external flux term and ¢
indicates a source term. Integration of (2.12) over infinitesimal control volume €,
using (2.6), yields

/8(%%) a0+, /pkwkﬁk ao | + /pk¢k (Up-Tigi) dS =

ot
Q Q Ski
g g g (2.13)
—V. /jde — /fk.ﬁkidS— / fk.ﬁkwds—l—/pk@de.
Qk Skz Skw Qk
Leibniz’ rule (2.8) employed in (2.13) to the unsteady term then gives
0 L S = _
5 | PeowdQ+ [ (ot (@ — i) Tii dS + V. | [ prtpptiy d2 | =
Qe Ski Q
g g g (2.14)

- V. /fde —/fk.ﬁkidS— / fk.ﬁkwdSJr/pk(I)de.
Qk Ski Skw Qk

Finally, implementation of (2.9) in (2.14) yields the volume averaged form of the
general conservation equation for field k

B L ., =
%’M + V. (arpribrts ) = —V. (Oéka) +

- 1 oL . — —_—
apprPr — 5 /(Pkwk (uk—ukl)) MpidS +/]knkZdS +/Jk.nkwd5’ , (2.15)

Ski Ski Skw
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where a bar over the terms, similarly to (2.9), denotes averaged quantities. In the
derivation of (2.15) one assumed that at the solid surface, Sk,,, the normal component
of the velocity equals zero. Note that the last term on the right-hand side of (2.15)
can be interpreted as follows:

1 R N R
—Q/Pk¢k (Uy, — ;) Tig; dS
Ski

is the term that represents the increase of 1 in control volume (2 because of the
motion of the interface Sy; relative to the motion of the phase k& of the fluid. This
term is not present in case the interface is not convected with the fluid of phase k;

1 -
) / Jp. M dS
Ski

is the term that represents the contribution to phase & of the fluid through a flux into
Qy, through the interface Sg;;

1 -
) / J Moy dS
Skw

similar for the flux across the solid surface.

Ensemble-averaging requires replacing the right hand side of Eq.(2.9) by the sum-
mation average of a quantity which volume-averaged values are probed from a cer-
tain number of identical experiments at the same instant from their beginning. For
example, volume fraction oy, of phase k represents a value of an averaged ensem-
ble of fractions which appeared at the same moment since initiation of experiments
carried out under the same conditions. Nevertheless, the ensemble-averaging proce-
dure yields exactly the same form of the equations, consequently ensemble-averaging
signs have been omitted and only the volume-averaging is marked explicitly. In the
following all averaged variables will be regarded as double-averaged quantities, i.e.
the average over infinitesimal control volume €2 plus the ensemble-average.

In order to obtain the equations for the conservation of mass, momentum and en-
ergy one needs to individualize Eq.(2.15). This is obtained by substituting for vy, jk
and ¢, the expressions relevant for each of the conservation equations. The appro-
priate form of the above three quantities is given in Tab.(2.1).

In Tab.(2.1) one has: ey, internal energy [J/kg|, § body force acceleration [N/kg],
e.g. gravitation, py, pressure [N/m?], g heat flux vector [J/m?s], Qj volumetric
heat source [.J/m3s] e.g. from radiation and T, stress tensor [N/m?].

The derived set of equations operates on averages of products, which is not equal

to products of averages. This very important aspect of an averaged formulation has
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tion | T P
Mass 1 0 0

Momentum U, ol =7 g
Energy er + % (p;j — ﬂ;) Ay, + G | -G+ Qk

TABLE 2.1: Formulas for conserved quantities.

been defined as a covariance and some have attempted to model the effect of this
difference (Zuber and Findlay, (1965); Bankoff, (1960)).

The right-hand side of Eq.(2.15) contains integrals over the interface surface and
the wall bounding the duct. They involve mass, momentum and heat exchange be-
tween phases (fields) and on absence of wall effects one may express them as given
in Tab.(2.2).

Conservation .
. Formulation
equation
Mass Fk % f Pk (ﬁk — Ukz) ﬁkzdS
Ski

Momentum My | & (fskﬁkﬁk[(ﬁk_ﬁki) ki) dS + fsk (Plj - ?k) .ﬁkids)

i

— 12 = .
Energy Ej, & fsk (Pk <€k+ ‘u'z"‘ )(ﬁk— ﬁki)+ﬁk<pkf—?k)+%)-nkid5

TABLE 2.2: Interfacial relations for the Euler approach.

The interfacial quantities, the quantities with the k¢ subscript, appearing in (2.15)
and Tab.(2.2) need further modelling. Differences between the averaged variables
and those at the interface originate, in the case of the pressure and the stress tensor,
from the flow dynamics of the bulk of the flow. Suppose a gaseous bubble or a
droplet in the bulk of a liquid or a gas, respectively. The curved interface of these
objects causes an increment of the velocity of the bulk in the vicinity of the bubble
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or droplet, decreasing simultaneously the static pressure. Consequently, there are
additional effects of drag and lift acting on the field. The heat flux at the interface
also demands attention, because it is driven by the temperature difference across the
interface. The temperature is continuous across the interface because of the thermal
diffusive nature of fluids. Thus, the temperature in the region adjacent to the interface
will differ in comparison to the averaged one in the bulk of the field, consequently
the heat flux will assume other values than in the case of a temperature discontinuity
between flow fields. Developing the above closure relations constitutes considerable
difficulty, in particular in a flow of high complexity of the interface. Constitutive
equations and requirements for them will be discussed below.

2.3.2 Boltzmann statistical average

Another important scheme of the multi-field approach in the framework of the av-
eraging method is the Boltzmann probability distribution. The method is mainly
applicable for problems involving highly dispersed phases. It is based on the Eule-
rian approach applied to a continuous phase (field) and the Boltzmann probability
distribution formulation, which considers other phases sprayed in the bulk of a con-
tinuous phase. A dispersed phase is described by a distribution function, which gives
information about number or concentration of phasic structures, their velocity and
probable size, thus actually the formulation represents the multi-field model of a
sprayed phase consisting of a large number of fields. The approach, similar to that of
(Williams, (1959)), considers a two-phase flow and defines the quantity

Ser1 (7, QUi g1, 1) drg dQd|adl

which represents the probable number of discrete spherical phasic structures of radius
between r and r 4 dr, placed in the control volume df2 and moving with a phasic
velocity in the range |l ; and |i|,, ,+ d|u],_ ;. In other words fj1 is the number
of phasic particles per unit range of radius, velocity and volume. The change of
quantity fx1 in time is defined as

0 o (r - . - . )
Lgct—&-l __ (?”kglrfk+1) _V.(fk+1uk+1)—vuk+l (frs1@p 1 HQr 1ok 1. (2.16)

The derivatives V, ﬁuk ., are with respect to the spatial and velocity of the pha-
sic structure coordinates, respectively. The term Qk+1 represents a source of the
dispersed phase, whereas 011 denotes the change of fiy1 as the effect of the co-
alescence and break-up of structures, which change their size and dynamics. The
quantity 7 is the growth rate of a phasic particle and dy, 1 its acceleration due to
forces acting on the structure. The term involving the acceleration represents the
change of fj11 caused by forces which change the velocity such that it is out of the

range (Up41, Ugt+1 + dilg+1), whereas V. (fr+1Uk+1) represents the divergence of
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structures in the control volume. The acceleration of structures is due to the sum of
forces, such as hydrostatic ones, drag or gravitation, that particles are subjected to. In
order to arrive at the general equation of interfacial transport one needs to multiply
(2.16) by the surface area of the phasic structures in the control volume and integrate
over their velocity and radius. If 7 is known, the source term Q k+1 and oy are eval-
uated, then fj 1 can be assessed. If a spray is diluted enough, statistical fluctuations
of the dispersed phase is negligible and the equations of motion of the continuous
field are coupled with (2.16) through the variables 7 and @y, 1.

The averaged terms of the governing equation (2.15) written for the continuous
phase remain essentially unchanged, see Tab.(2.1), however, the volume fraction, «,
is defined according to the statistical nature of the model. For a two-phase flow it is
expressed as

4 .
ap=1-— //37rr3fk+1 dr d |t - 2.17)

The interfacial relations for mass, momentum and energy transport between the phases
(fields) are tabulated in Tab.(2.3). The relation for the continuity equation in Tab.(2.3)

C"“S‘“;”' Formulation
equation
Mass 'y - ffPH14WT2ffk+1 drd |ﬁ|k+l
Mor}[entum ~fpn, tnr3a, £ drd|i|, ~[[py, 4mr?i{(d@, — 1, )f, drd|d],
A
Energy 3 32 = ¢ oo ’ 2 AR PR
o [P smrid,,, D, o dfd\u|k+?ﬂpk+l47r7 et —5— Jfdrdldl, |

TABLE 2.3: Interfacial relations for the Boltzmann approach.

reveals a mass transfer between phases. The first term of the expression for momen-
tum represents forces of the continuous field acting on the discrete phase, whereas
the second term shows the average momentum added to the continuous flow, which
is the effect of the phase transition in the fields. The two terms for the energy equa-
tion account for the work done on phase & (continuous field) and total internal energy
transferred during the phase transition, respectively. Obviously, above relations, as in
the case of the Eulerian constitutive equations, require additional modelling effort.
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The above discussion of the Boltzmann-type equations assumes a spherical shape
of the dispersed droplets or gaseous bubbles, nevertheless the model can be ex-
tended to non-spherical sprayed structures by implementing appropriate shape fac-
tors. Moreover, implementation of the shape distribution function brings information
about the shape and size of the dispersed phase, thus allows for describing the evolu-
tion of the interfacial area. Consequently, detailed insight in the interfacial geometry
is possible, which makes modelling of closure relations easier and more accurate than
the Euler approach, specifically in case of complex topologies of the interface.

2.3.3 Closure relations for multi-field approaches

The last step of the procedure of modelling are the closure relations for interfacial
exchange of mass, momentum and energy. The relations of the type given by I'y, M k
and FE, are integrated over the interface surface or eventually a physical boundary of
a channel wetted by the considered phase, consequently values of the integrals are
strongly dependent on the interface topology. Prediction of the interface shape is the
central difficulty, which is partially overcome by employment of flow regimes, that
allow for at least a prediction of interfacial area s; in the considered control volume.
The interfacial area is defined as the interfacial surface area within the control volume
per unit volume. Accuracy of prediction of the area depends on the size of the control
volume. However, it is theoretically possible to achieve constitutive relations that
are independent of the size of the control volume (Nigmatulin, (1979)). For well-
dispersed phasic structures in a continuous flow this is feasible, nevertheless, for
larger structures such as slugs or plugs the difficulty arises that the control volume
cannot be sufficiently large to contain a sufficient number of representative phasic
elements.

The general requirements for the constitutive relations may be classified with re-
spect to the kind of the field boundary, namely whether it is an interface or a wall
intersected by the field. Essentially, both of them demand similar quantities to model,
as will be briefly described. The most difficult issue is establishing sg;. Information
about a current flow pattern is certainly helpful, however, the matter is more com-
plex for a two-phase flow if there is an additional field running through the duct, e.g.
the dispersed phase in the annular dispersed flow. For the interpenetrating continua
model the problem arises how to determine which portion of the interface is part of
the liquid film and which part is the dispersed phase. Separation of this contribution
is the major difficulty in multi-field modelling.

The other necessary quantity is the scalar heat transfer coefficient Ag;, which is a
function of the fluid physical properties and of the interfacial or wall shear stress.
The factor is indispensable for the prediction of I', and Ej. The interfacial mass
transfer caused by a phase transition, with negligence of kinetic energy and surface




22 CHAPTER 2. REVIEW OF APPROACHES FOR MULTIPHASE FLOWS

tension effects, obeys the equation

& I, @it dS

) (2.18)
I

Iy =
where the numerator represents the heat flux through the interface and the denomina-
tor is the latent heat of vaporisation. The numerator may be expressed as

1 - = ~Y
q [Tk dS = Aiski (T — Thi) (2.19)

Ski

where 1" denotes the temperature and the subscripts £ and ki denote a point in the
bulk field and at the interface, respectively. Quantity sg; is defined as area of the
interface per volume of the control volume. Interfacial temperature Ty; is assumed to
be that in equilibrium with the pressure py; for a single-component, two-phase flow.
Multiplication of I'y by the heat of vaporization of the phase is the contribution of
E), revealing the amount of latent heat converted to sensible heat in the phase.

For the momentum closure, Mk, one needs to evaluate the drag coefficient for
the dispersed phase, a friction coefficient for the continuous interface or the channel
wall and additionally a mass coefficient for the dispersed structures coexisting in the
flow with the same continuous phase at the duct wall. In the situation of the latter,
under appropriate conditions, e.g. dispersed annular flow, one observes deposition
of phasic structure on the liquid film and the entrainment of the liquid into the gas,
that demands additional effort to find the rate of deposition or entrainment. Detailed
analysis of I'y, and Ej will not be carried out here since this is not the scope of the
present work.

At this point it is concluded that unless the closure terms are not sufficiently accu-
rately modelled the superiority of the multi-field approach over the single-fluid (mix-
ture) method vanishes, however, due to conservation of the interfacial discontinuity
in a loosely coupled flow there is not an alternative for the multi-field procedure, that
allows a high accuracy prediction.

On the other side of the spectrum, from the point of view of the macroscopic flow
field treatment, one finds the single-field flow models. This group of models will be
discussed in the following section.

2.4 Single-field approach

The single-field approach differs from the multi-field approaches from the point of
view of the treatment of the phases in the computational domain. The single-field
method regards a multi-phase flow as a single computational field in which more
than one phase may exist and the interface between two phases is solved as a part of
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the solution. In this kind of scheme, one set of governing equations suffices to calcu-
late all essential flow field variables. This simplifies the process of computation and
is the reason why the method raised so much interest of researchers. In the light of
difficulties in formulating the closure relations in the multi-field approach, especially
in the transition regions of the flow pattern map, single-field schemes reveal their su-
periority. The method does not demand an approximate predefinition of the interface
geometry since this is part of the solution, thus the interface locus becomes the pa-
rameter and a flow regime map is redundant. Nevertheless, it still serves as source of
information necessary for evaluation of the accuracy of the calculation result.

The problem, which arises in the approach consists in the failure of the governing
equations of the handling by multiphase flow discontinuities. In order to overcome
this problem, the interface is not assumed as a boundary of continuous flow properties
any more, but it is discarded and replaced by a continuous transition between phases.
Consequently, the interface loses its sharpness and is diffused in space, that causes
the flow dynamics to depart from that existing in reality. The interface possesses thus
a finite thickness, its value indicating the solution accuracy. Since the time of the first
attempts of the application of the single-field approach, many methods of interface
sharpening have been developed. The large variety of methods does not allow to give
a detailed review, but some of the best-known sharpening schemes will be discussed
in the following paragraphs of this section. The method that has been utilized in the
present research is discussed in detail in Chapter (5). The interface spatial diffusion
constitutes an obstacle in weakly coupled flows, but in the case of coupled flows such
as bubbly flow with vapor structures concentrated in patches or dispersed ones where
droplets are suspended and convected in the bulk of the flowing gas, the single-field
approach appears to be the ideal solution. However, the obvious shortcoming of the
method is that one loses some information about interfacial interactions, which might
be incorporated by additional closures.

The single-field approach, due to the condition of smooth transition between pha-
sic physical properties, may be regarded as a member of the interacting continua
assumption mentioned in the beginning of Sec.(2.3). The main consequence of the
method is that with the assumption of incompressibility of the fluid mixture phases,
the mixture behaves as a quasi-compressible flow. This feature allows a single set of
equations for the whole domain. In order to formulate the equations one needs the

averaged phasic quantities of (2.15), namely pr ¥k, prUr¥k, J) k and pg Py in terms of
the averaged mixture quantities. This is performed by summation of the phasic terms
over the number of phases existing in the flow. Consequently,

k=N k=N F=N_ k=N
S oktr, Y pktintes Y Tk > pePs
k=1 k=1 k=1 k=1

lead to the general conservation equation for the single-field approach, which as-
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sumes the form of (2.15)

ag;b + V. (pith) + V.J = p@. (2.20)
Because of the mixture character of (2.20) the subscript & present in (2.15) has been
left out. The individual form of the mass, momentum and energy equation are derived
based on expansion of the terms in (2.20) which assume the form given in Tab.(2.1).
The quantities referring to the interfacial relations, being at the right-hand side of
(2.15) need also to be summed. However, for the mass, momentum and energy con-
servation law, one has that

= >
=ML
—
o
I
o

ol

1

ko
Il
o

(2.21)
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thus the right-side hand of (2.20) is simplified considerably. In (2.21) N denotes the
number of phases that exist in the mixture.

The solution of the set of the governing equations consists of the flow variables
such as pressure, velocity and internal energy, however, it does not provide the ge-
ometry of the phase interface. Due to that, values of the time and space dependent
physical properties of the flow, namely p, i (dynamic viscosity) and A (heat conduc-
tivity), cannot be assessed without introducing a quantity indicating the position of
the phases in space. This term is a scalar representing the phase distribution, which
may be the argument of a steep function or may itself be the value of this function,
that depends on the assumed model. In general, the quantity, say ¢, must obey the
transport equation

gf + () = V., (2.22)
where J represents the source of ¢, e.g. in the case of phase transition. The equation
results in the distribution of ¢ in space, which subsequently results in the physical
properties of the mixture in the domain. The properties are usually estimated using a
weighting function, where the weighting factor is equal to ¢, i.e.

v = ¢V + (1 — &) Vet (2.23)

where «y represents a relevant physical property.
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Many ways of the interpretation of the interface have been developed, which rep-
resents a variety of ideas. Nevertheless, they may be divided in two basic groups
distinguished by the character of the spatial discretizing of the computational do-
main, namely the fixed- and the moving-grid. The first one is predefined and is not
convected together with the interface which intersects the grid arbitrarily. The latter
appears in the domain as a subgrid describing the shape and position of the interface
dividing the domain in subdomains each assigned to a phase. However, the scheme
still remains a member of the single-phase approach. A comprehensive review of
methods of interface description is beyond the scope of this work, consequently only
a couple of widely used approaches will be highlighted, namely:

- Level-Set Method,
- Embedded Interface Method,
- Volume of Fluid Method (VOF).

24.1 Level-Set approach

In the level set approach, the interface is a surface in three-dimensional space or a
contour in two-dimensional space, defined by some function R (¥,t). Additional
surfaces, parallel to the interface are constructed by defining their coordinates as off-
set from the interface by a given distance in the direction normal to the interface. For
example, consider the following function in the Cartesian coordinate system

R(z,y,2) = a2+ 32+ 22 —r. (2.24)

The surface R(x,y, z) = 0 represents a sphere of radius 7, centered at the origin. A
level set of the relation is the set of points placed at a certain constant distance from
the considered sphere, consequently, it is represented by another sphere of a smaller
or larger radius than 7.

The level set procedure may also be employed for positioning of the interface in a
domain. The representation of

R(Z,1) = | A7 (2.25)

in space is the shape of the interface at a given time under the condition that the
parameter |A7] is equal to 0. If |A7] differs from O the level set appears as the
contour at distance |A7] away from the interface and parallel to it. Thus, R (Z, t) has
the meaning of the distance function from the interface (Osher and Sethian, (1988)).
In order to recognize a phase, the distance from the interface needs to be indicated by
a sign, say, negative for the gas phase and positive for the liquid phase. Assuming this
notation and a closed surface for the interface forming the boundary of a gas structure,
all distances at the gaseous side will be negative. At time ¢ = 0, the position of the
interface is known, so it is the moment the initialization of the function R (¥, t) takes
place. It lies in the choice of the lowest value of the distance between each point
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in the domain and points on the interface, that allows to assess the position of the
isospheres. Because of convection the interface changes its position in time, so the
obvious consequence of that is updating the distribution of the distance function,
which is the next step of the procedure. This operation is performed using (2.22).
The distance function constitutes the basis for evaluation of physical properties
of the flow, which are in turn used in the set of governing equations. Values of the
function R (Z, t) can be used as the argument in the Heaviside function such that

(2.26)

The distance function remains continuous in the entire domain, however, the argu-
ment of (2.26) provides the discontinuity of the Heaviside function at the interface.
This feature makes (2.26) a very convenient tool for expressing a sudden jump of
values of the physical properties at the interface. Hence, the physics of the interface
is described correctly, nonetheless the mathematical model consisting of the equation
set is not able to accommodate discontinuities. Consequently, an alternative solu-
tion has been employed (Sussman, Smereka and Osher, (1994); Sussman, Fatemi and
Smereka, (1998)) which assigns a finite thickness to the interface. The thickness re-
mains in proportional relation to the grid size used to discretize the computational
space. Now the Heaviside function assumes the form of the C? function

H(R) =

— o= O

R(Z,t 00
1+ 2+ Lsin (Z8)] R(&t) € (—¢,¢) (2.27)
R(Z,t o0

where 2¢ denotes a measure for the thickness of the interface. This form of the func-
tion allows for a smooth transition of the property values through the phase bound-
ary. Values are found using (2.23), with the adjusted version of the Heaviside function
serving as the weighting factor ¢. When the governing equations together with (2.22)
are solved, contours of R (#,t) deform and depart from the parallel alignment with
the interface. This provides nonuniformity in the physical properties of the phases.

It follows from (2.27), that the thickness of the interface is 2¢/ )ﬁR‘ To keep the

thickness uniform along the phase boundary the gradient of the level set function
must satisfy the relation

)6R‘:1. (2.28)

The gradient of R may depart from unity, thus function R(Z,t) needs to be re-
initialized. The process of re-initialization is considered out of the scope of this
work and it will not be discussed any further.
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2.4.2 Embedded interface method

The Level-Set Method introduces an interface thickness of the dimension of the grid
size, so the finer the mesh the lower the level of diffusion of the phase boundary
and the better the description of the real nature of the jump in the fluid properties.
However, the mathematical model still features this smooth transition. In the liter-
ature there are methods of exact interface positioning with simultaneous conserva-
tion of the diffusion of the physical properties. An example of this approach is the
embedded interface method mainly developed by Tryggvason (Unverdi and Tryggva-
son, (1992); Tryggvason, Bunner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas and
Jan, (2001)). The method is a hybrid method. It couples an interface tracking and
an interface capturing method. The single set of equations of motion is used for all
phases employing a fixed grid in the computational domain. Then a mesh of finer
resolution is utilized in order to track the convected interface. This grid moves with
the phase boundary and its resolution adjusts dependent on the complexity of the
geometry of the interface.

Similarly to the Level-Set Method the phases are distinguished through the Heav-
iside function given by (2.26), which values are computed in the whole domain by
transport equation (2.22). The interface is described by a moving subgrid consist-
ing of triangular elements describing surface Si;, or in a case of a two-dimensional
scheme consisting of segments. Each element stores information about its corner or
vertex points and adjacent elements, see Fig.(2.5). Elements of the front are oriented
and those representing a given interface must have the same orientation. Every oper-

a) b) element

FIGURE 2.5: Structure of the front; a) two-dimensional scheme, b) three-dimensional
scheme; dashed line - pointer to adjacent element, dotted line - pointer to a cor-
ner/end point. Figure reproduced from (Banerjee, Hewitt, Zaleski, Tryggvason,
Koumoutsakos, Yadigaroglu and Ishii, (2004)).

ation carried out on the front begin from the first numbered object (element) and then
through stored pointers to the others it propagates until all objects have been visited.
Once the interface moves it deforms changing its geometry. Consequently, the
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initial number of elements may not be sufficient to reflect properly the shape of the
front. Therefore the discretization of the interface is adapted to reflect the complexity
of its shape. The surface grid is adapted separately from the fixed volumetric grid in
such a way that the interface has a sufficient fine discretization.

Since the governing equations result in the distribution of the velocity in the do-
main the interface is advanced as an effect of the new time-progressed velocity field.
The central challenge in this step of the model is to find the velocity at points of the
interface. This is achieved by interpolation of velocities from nodes of the fixed vol-
umetric grid at the points of the interface. Once the interpolated velocity has been
found a new position of the point on the interface is obtained by integration. The
integration may be performed in the simple way

Arkii,]‘,k :/uk‘ii,j’kdta (229)

where Arkii,j, . denotes the distance, which the convected interface node covers in
time dt. The advection of the front is performed, unlike the momentum equation,
in a nonconservative form, that may result in an error. This error corresponds to
an artificial sink or source of mass. Thus the accuracy of the front convection is
the crucial issue of the approach. It may be improved by employing a higher-order
temporal integration. Another source of error is the interpolation procedure. Even
if the velocities at the fixed volumetric grid points are, for an incompressible flow,
divergence free, this may not be the case for interpolated velocities at the front. Thus,
a higher order interpolation could alleviate this problem.

Once the front is reconstructed it is also desirable to convert quantities at points on
the front to volume grid nodes neighbouring those on the interface. Often a smooth-
ing procedure must be performed in order to smear out the flow properties discon-
tinuity and make their distribution tractable for the governing equations. The front
represents the Dirac delta function, J, consequently the procedure uses an approxima-
tion of this function on the volume grid. This creates a smooth transfer of quantities.
The quantities such as phasic difference of density or heat conductivity gradient are
usually of dimension unit per unit length or area for a two or three dimensional sys-
tem, respectively. The global value of a quantity will be assured if the following
equation is satisfied

/ Arg,,dS = / A~vadL2, (2.30)
S ki Q
where A~ denotes a phasic difference of a quantity. Its volume and surface character
is denoted by 2 and Sj; subscripts, respectively. Averaging expression (2.30) leads
to the value of the fixed volume grid quantity

Ski

Avg = foyskiqﬁﬁ, (2.31)
=1
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where n denotes the number of interface elements contained in the control volume,
whereas ¢ denotes the weighting factor. The factor satisfies the condition

N
> ¢p,, =1 (2.32)
P

for each direction of interpolation. The form of the interpolation function depends on
the number of volume grid points involved. However, the weighting function consists
very often of the product of one dimensional functions such that

Gijk = PiP;Pr, (2.33)

where ¢, j, k indicate each individual direction of interpolation. The simplest weight-
ing function for a direction reads

|Arlpy, 1A,

|A7“|PNi
& = |AT’|PN1_—<|AT|PN1_—|AT‘SM7;> (2.34)
[Arlpn, ATS’% € (-Arpn,, 0)
0 |A7lg,, = [AT]py,

where |Ar|p n; denotes the distance between nodes of the fixed volume grid in the
i direction and |Ar| s, 1s the distance from a front node to the considered point of
the volume grid. The distances on both sides of the interface may be regarded as the
distance function R discussed in the preceding paragraph, thus they assume opposite
signs, that allows for proper evaluation of physical property differences.

Summarizing the above approach, it is applicable to problems in which clearly sep-
arated phasic structures occur in the surrounding bulk of another phase. An example
of this case is the bubbly flow in which separated structures are convected by the bulk
of the liquid, while coalescence and break-up appear in the process. Nonetheless, for
flows where e.g. bubbly patches containing a large number of interacting gaseous
phases appear, this approach is not feasible due to the costs of the interface recon-
struction. The method next to be discussed, termed Volume of Fluid (VOF) appears
to be a better choice for these flows.

2.4.3 Volume of Fluid method

The Volume of Fluid approach is based on the steep function indicating that there is
more than one phase in a given control volume. The function is defined such that
it assumes values of unity for one phase occupying the volume and zero otherwise.
Consequently, it is clear that a phase distribution may also be defined by the Heaviside
function given by (2.26). In the Eulerian representation, that is considered here,
the grid remains fixed and the flow is convected through the fixed control volume
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boundaries. The calculation of the flow requires averaging of flow parameters over
fluid elements, which is done for a given control volume. The disadvantage of this
procedure is the tendency of smoothing of all gradients in the flow quantities. This
applies also to the discontinuity of the physical properties across the interface. Thus
the interface itself loses its sharpness, being smeared out in space. The averaging
operation allows the use of the partial-differential equation form of the governing
equations. Consequently, the Heaviside function also requires smoothing. For the
VOF method, the Heaviside function assumes the form

0 k=0
H (zpmp) =4 ‘& ke(0,1) (2.35)
1 k=1,

where x; ,,, , denotes a point in the domain identified by the coordinates [, m, n of the
mesh and k denotes a given phase. Equation (2.35) reveals that the Heaviside function
may be represented by the volume fraction given by (2.10). The volume fraction, or
the so-called void fraction if one considers a gas-liquid flow, assumes values of 0 and
1 for opposite phases and values in between these two for the interfacial region. The
field of the volume fraction is convected with the velocity field and obeys transport
equation (2.22), repeated here in terms of the volume fraction and with the absence
of volumetric effects, e.g. phase transition
aak =

0% | & i) — 0. 2.
5 + V. (o) =0 (2.36)

The transport equation is solved along with the governing equations and results in a
distribution of o which reveals the interface of a certain finite thickness which is not
necessarily of the dimension of the grid size. The diffusion of the phasic boundary
may exceed the mesh size particularly in regions of high complexity of the interface.
Since such smooth transition of flow parameters is not desirable, the scheme needs
to be improved. In order to do this some algorithms have been proposed. The step
character of the Heaviside function allows using models approaching its discontinu-
ous character. These methods, referred to as donor-acceptor schemes, rely essentially
on an appropriate manner of approximation of the convective term present in (2.36)
at control volume boundaries (Hirt and Nichols, (1981); Leonard, (1997); Leonard,
(1979)). The algorithms require a higher order interpolation of variables at the control
volume face, incorporating parameters permitting treatment of the unsteady nature of
the flow. It is not intended to review the variety of interpolation models, however,
those that have been used in the present research, namely ULTIMATE, QUICKEST
and CICSAM, will be described in detail in Chapter (6).

Since the velocity field in the domain has been evaluated, advection of phasic re-
gions needs to be carried out. This operation is performed in two ways. The first, the
so-called split operator or fractional step method updates an « field propagating the
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variable along each spatial direction in time. This is done separately, thus estimation
of an « distribution along one direction results in intermediate alpha values. The pro-
cess is accomplished when advection along the last coordinate is performed, which
gives the final « field. In most cases the convection process is commutative from the
point of view of the choice of direction. The detailed explanation of the procedure
will be given in Chapter (5). The other group of advection algorithms is the group
of unsplit methods (Collea, (1990); Bell, Dawson and Shubin, (1988); Pukett, Alm-
gren, Bell, Marcus and Rider, (1997)). These methods are geometrically complex
since they require employment of fluxes along the transverse directions of the control
volume. The description of these algorithms is beyond the scope of the present study.

Once the distribution of the volume fraction at a certain time has been obtained
one needs to evaluate the physical properties of the phasic flow. The volume fraction
plays the role of the weighting factor and contributes in (2.23), which is repeated
below in terms of «

v = apve + (1 — ag) Yrs1, (2.37)

where v denotes a given physical property.

The Heaviside function in the form of the volume fraction distributed in the do-
main gives the base for attempts of interface reconstruction. The phase boundary
is considered as a continuous line (2D) or surface (3D) deforming in space during
convection. The central difficulty in the reconstruction process lies in the approxima-
tion of the position of each section of the interface in the considered control volume,
knowing only values of the volume fraction therein and in control volumes in its
neighborhood. The simplest type of these methods is the Simple Line Interface Cal-
culation (SLIC) or SOLA-VOF (Hirt and Nichols, (1981)). The reconstruction is
relatively crude and outlines the phase boundary as the assembly of segments aligned
with grid faces, see Fig.(2.6). Advection of the interface generates a number of spu-
rious regions of phase k detached from the bulk of phase k. The improved algorithm
is given by the Piecewise Linear Interface Construction (PLIC) (Scradovelli and Za-
leski, (2001); Scradovelli and Zaleski, (2003); Rider and Kothe, (1998)), in which
the interface is visualized as a chain of discontinuous segments with finite discon-
tinuities, Fig.(2.6), which disappear when the radius of interface curvature assumes
larger and larger values.

The effort of reconstruction has not been taken in the present study, thus the subject
will not be discussed any further.

In general, the Volume of Fluid approach preserves mass in a natural way due to
the advection algorithm which utilizes the conservation law in the form of (2.36).
The entire scheme is local from the point of view of convection. Solely values of
a in adjacent control volumes are necessary in order to perform the procedure of
advection. However, the number of volumes being used depends on the chosen order
of interpolation. Results of computations utilizing VOF and generating the motion of
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a) b)
0.1 0 0 0.1 0 0
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FIGURE 2.6: Reconstruction algorithms results; a) SLIC, b) PLIC. Figure reproduced
from (Banerjee, Hewitt, Zaleski, Tryggvason, Koumoutsakos, Yadigaroglu and Ishii,
(2004)).

interface will be described in the following chapters.




PHYSICS OF GAS-LIQUID
PHASE TRANSITION

3.1 p-v-T relation

In this chapter thermodynamic relations are reviewed, that play a role in multi-phase
flows with phase transition. The discussion is kept general, in the sense that the fluids
are assumed to be compressible. However, in the rest of the thesis it is assumed that
the gas and liquid phases are incompressible.

Each pure substance may be described by thermodynamic variables that determine
its thermodynamic state. The primitive, basic variables are the pressure, p, tempera-
ture, T, and volume, v or V/, occupied by the substance. The volume may be given in
the extensive or intensive form. The extensive form, V', depends on the system size.
The intensive form, v, is the variable related to a unit of mass, thus is a system size
independent quantity.

The above three quantities are linked to each other by the equation of state which,
for example, for a perfect gas assumes the form

pv = RT, 3.1)

where R represents the specific gas constant and v is the specific volume. Real gases
behave as perfect gases at not too high temperatures, pressures and densities (di-
lute gases in which intermolecular forces are negligible). At higher pressures and
densities the ratio between the right and left side of (3.1) departs from unity and its
deviation is expressed by the compressibility factor Z, i.e.
pv
Z = T

Based on kinetic theory the viral equation of state has been derived, which assumes

the form of a series in the reciprocal of the specific volume

B C D
Z(T,S):1+*+72+73, (33)
v v v

3.2)

where B, C, D denote functions of temperature and are named the first, second an
third viral coefficient, respectively, which represent interactions between gas particles
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on the molecular level. Obviously, once a gas particle is assumed to behave indepen-
dently on its surrounding, thus when one considers a perfect gas, the right hand side
of (3.3) reduces to 1. The determination of the viral coefficients requires informa-
tion about the intermolecular forces between particles. Models for these forces have
been applied successfully for the two or three first factors and for gases of a relatively
simple molecular structure (Kandlikar, Shoij and Dhir, (1999)).

Other attempts of obtaining an appropriate equation of state for real gases involve
semi-empirical relations, such as proposed by van der Waals (van der Waals, 1873)

RT a

v—>b v?’

p= (3.4)
where b denotes the constant accounting for the finite volume occupied by the gas
molecules, whereas a/v? represents attraction forces present between the molecules.
Equation (3.4) has been further modified by other researchers, that has led to the two
models which are considered as the best amongst those containing two constants,
namely

RT a
= - 35
L — v(v+b)T05 (3-5)
and RT
a
p= (3.6)

v—>b v242bv —b?
These two relations were proposed by Redlich and Kwong (Redlich and Kwong,
(1949)) and Peng and Robinson (Peng and Robinson, (1976)), respectively. These or
similar equations are often used as basis for mixture p-v-T" relationships, from which
equilibrium diagrams have been determined with reasonable success (Kandlikar et al.,
(1999)).

At present there is no equation of state, covering the full range of the variables in-
volved, that reflects the nature of a pure substance. Consequently, the equation must
be adopted for each state of aggregation and for the regions of coexistence in which
two or three phases remain in equilibrium. Fitting the constants present in the equa-
tion of state is usually carried out by employing empirical data. The graphical repre-
sentation of the equation of state is a surface in the space defined by coordinates each
assigned to the three primitive variables. Such a graph is given in Fig.(3.1) where
relations for two pure substances have been plotted. One of them contracts during so-
lidification, whereas the second expands; this may be, for example, water. In Fig.(3.1)
one can distinguish three regions of coexistence, namely liquid-vapour, vapour-solid
and solid-liquid. These surfaces are separated by two important isotherms: the triple
point temperature and the critical temperature isotherm. The triple point isotherm
indicates the thermodynamic condition allowing simultaneous existence of the three
phases in thermodynamic balance. The critical point isotherm is the isotherm above
which there is no observable difference between the liquid and the vapour phase. At
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Pressure

Pressure

FIGURE 3.1: p-v-T surfaces; a) substance contracting during solidification, b) sub-
stance expanding during solidification. Figure taken from (http://highered.mcgraw-
hill.com, n.d.).

such conditions one cannot observe a sudden jump in volume or specific volume due
to evaporation or condensation. The increase of volume with decreasing pressure is
monotonic. The critical isotherm passes through the point of inflection of the curve
limiting the region of liquid-vapour coexistence. The point called critical determines
where the slope of the curve and its derivative is zero i.e.

Op B 0%p B
(o). o (), 7

With the definition of the critical point one is able to express the constants ¢ and b of

the van der Waals relation, (3.4), which become

_ 9RT v, b— Ve
8 3’

where the subscript ¢ indicates the critical condition. With P. = 3RT,/8v,, substitu-

tion of the constants in (3.4) yields the equation of van der Waals in terms of reduced

variables

a (3.8)

8T, 3
= - — 3.
p?‘ 3'Ur _ 1 '117217 ( 9)
where r is the subscript denoting a reduced variable expressed by
¢
—, (3.10)
e

with ¢ indicating any primitive thermodynamic quantity. The pressure, specific vol-
ume and temperature for water in the critical state read (Schmidt, (1982))

pe = 221.2[bar],  w. = 0.00317[m3/kg], T.= 674.30[K].
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These values define the constants in the van der Waals relation, (3.4), for water,
namely

a =1109.83[Jm?/kg?] b= 0.00106[m>/kg].

3.2 Two-phase equilibrium

Generally, the definition of a system isolated from its surroundings and being in ther-
modynamic equilibrium states that all forces in the system must be balanced and that
the temperature is uniform. These conditions exist on the p-v-T" surface which, for
convenience and clearness, is projected on the p-v plane, see Fig.(3.2). The region
of the gas-liquid equilibrium is depicted by the limiting (saturation) curve with its
maximum at the critical point. Isotherms for a temperature below the critical value
are monotonic for the parts not inside the envelope of the saturation curve. At the
saturation curve, however, there is a discontinuity in the slope, such that inside the
envelope isotherms are lines p = const. Below the critical value, on the left side
of the saturation curve, one finds subcooled liquid. The region to the right of the
saturation curve is the vapour region. The projection of the p-v-T' surface onto the

VAFR VAPOR

SO
SOLIN = LIGUIN

LIQUID + VAPOR

Tripls line

vipde line -
/ SOLID + YAPDR / SOLID + VAPOR

v

FIGURE 3.2: p-v diagram; a) substance contracting during freezing, b) substance ex-
panding during freezing. Figure taken from (http://highered.mcgraw-hill.com, n.d.).

p-T plane, Fig.(3.3), shows that the saturation curve terminates at the left at the triple
point and at the right at the critical point. The area between the saturation curve and
the *melting’ curve, represents the liquid phase, whereas a vapour appears below the
saturation curve. The equilibrium conditions allowing for coexistence of the gas and
liquid phases, exist only at the saturation curve.

Equilibrium of the system may be also determined by a function of state, e.g. the
Gibbs function defined as

G=H-TS, @3.11)
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FIGURE 3.3: p-T diagram. Figure taken from (http://highered.mcgraw-hill.com,
n.d.).

where H denotes enthalpy [J], S entropy [J/K] and T absolute temperature [K]. In
the state of equilibrium G is constant, i.e.

3G = 0. (3.12)

In a system of a pure substance where the gas and the liquid phases are present the
Gibbs function depends, aside from temperature and pressure, also on the amount of
phases present. Thus any change in G is determined by

oG 0G oG oG
5C = (aT> 5T + <8p>T5p+ <M>T Sy + <ang>T Sny = 0, (3.13)

pn n Dy D

where the notation n; and n, indicate a molar or mass amount of the liquid and the
gas in the system, respectively. Since the pressure and temperature are constant and
assuming a closed system in which n = n; + n, is constant, (3.13) can be reduced to

the form
oG

5Gyr = sm+ (24 Sny. (3.14)
’ anl T,png 8”9 T,p,ny

Assuming an equilibrium state the left hand side of (3.14), accordingly (3.12), is zero.
Consequently, with én = dny + dn; = 0, one finds

(“) :_<3G> . (3.15)
871[ T,p,ng ang T,p,ny

Statement (3.15) reveals the macroscopic nature of an equilibrium state, which does
not provide observable changes of system parameters. It does not apply to a micro-
scopic scale for which the phase transition occurs but its rate in both directions is the
same, thus the amount of a given phase remains unchanged.
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At the state of equilibrium the change in the Gibbs energy of the liquid equals that
of the vapour, so that

6g1 (p,T) = dgq (0, T), (3.16)

where g is the intensive form of (G. Taking ¢ as a function of 7" and p leads to a
relation between p and 7T, i.e.

), ()= (3), 0+ (1)
= dp+|==| dTT=|—=) dp+ | =) dT. (3.17)
< op ) oT » op ) oT v

Using the definition of internal energy and enthalpy, the increment in the Gibbs free
energy in its intensive variable form may be expressed in the form

dg = vdp — sdT, (3.18)

where s denotes entropy in the form of an intensive variable. Taking g as a function
of (T, p) one obtains

9y 9y
7)) = 2 ) = _g. 3.19
(), (Gr), @
Substitution of (3.19) in (3.17) yields
dp\ _ dp
-8+ v <dT> = —84 + vy <dT> . (3.20)
According to (3.12)
hi —Ts; = hg —T'sg, 3.21)

where h denotes the intensive form of the enthalpy. Rearrangement and combination
of (3.20) and (3.21) results in
dp — hg—My l

dT T (vg —v)) T (vg — vy) (3-22)

which is known as the Clapeyron equation and relates the pressure and temperature at
a state of equilibrium with the specific heat of vaporisation [ and the specific volumes
of the two phases. In case the system is subjected to not too high pressures the gas
may be regarded as perfect and its specific volume equals RT"/p. Furthermore in that
case the specific volume of the liquid, v;, is negligible in comparison to that of the
gas. Then relation (3.22) reduces to

dlin (p) l
= 2
dT  ~ R,I? (923)
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known as the Clausius-Clapeyron equation (Kandlikar et al., (1999)). The above
equation is the base for the consideration leading to the relation for the latent heat of
evaporation of water as a function of temperature,
L(T)
L(Trey)

(TN /(TN ./ T\ ./ T\*./T)\°
1+A1<Tref>+A2<Tref>+A3<Tref>+A4<Tref>+A5<Tref> ’

which will be used in the further part of this work. The dimensionless constants in
(3.24) originate from

(3.24)

Az’ _ Ai(Tref)i :
(Trey)
with following A; dimensional constants:

(3.25)

As = —3.320494 E — 07, Ay = 6.487444 E — 04,
A4 = —5.184260 F — 01, Ay = 2.068768 E + 02,
Az = —4.313656 F + 04, I(Tyef) = 6.308721 E + 03.

Relation (3.24) remains in good agreement with the distribution of the latent heat as
measured (Schmidt, (1982)), see Fig.(3.4).
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FIGURE 3.4: a) heat of evaporation for water as function of temperature: solid line
- relation (3.24), dashed line - experimental relation (Schmidt,(1982)); b) relative
error between experimental and approximate function.

In order to determine the equilibrium state of a gas-liquid mixture of a pure sub-
stance the equation relating the pressure and temperature of saturation is required.
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Many efforts have been taken to find a reliable formula, which would be valid for a
range of temperatures as wide as possible. The Clausius-Clapeyron equation, (3.23),
yields, under the assumption of constant latent heat in a given range of temperatures,

!

l”(P):A—ﬁ7
g

(3.26)
where A is a constant. Equation (3.26) implicates that the pressure-temperature re-

lation is a straight line over the range of temperatures where the heat of vaporization
remains constant. Consequently, relation (3.26) may assume the form

B

In(p)=A— 7 (3.27)

where B is the latent heat at a given temperature. Equation (3.27) can be derived
from the Clausius-Clapeyron equation, (3.23), by integration. In the present method
the result is truncated to the form (3.27). The accuracy of (3.27) suffices for the
purpose of this study. For the normal boiling point, taken as the reference value,
constants A and B assume values

A =24.9015726[In(N/m?)], B = 4991.043497[In(N/m?)K],

where A and B are temperature independent. Comparison of the measured distribu-
tion and relation (3.27) is depicted in Fig.(3.5), in the form of 7' = T'(p).
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FIGURE 3.5: a) saturation curve: solid line - relation (3.27), dashed line - experimen-
tal data (Schmidt,(1982)); b) relative error between experimental data and relation
(3.27).

For many purposes more accurate data of thermodynamic variables are required and
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formula (3.27) does not suffice. A more satisfactory relation has been proposed by
Antoine (Antoine, (1888)):

B
T+C

In(p)=A-— (3.28)
In (3.28) A, B and C are constants. For a wider range of temperatures or pressures
and for demanded high accuracy, it is difficult if not impossible to fit data on experi-
mental saturation values utilizing a relatively simple formula such as that of Antoine.
One of the equations satisfying this requirement is

In(p)=A-

T+C+DT+Eln(T), (3.29)
where A, B, C, D and FE are constants (Kandlikar et al., (1999)).

Summarizing, the approximate relation for the saturation pressure, all involve em-
piricism and non of them has a thermodynamic basis that would ensure appropriate
values of the constants present in the relations.

In the situation discussed so far, the gas-liquid interface is ideally flat thus there
are no additional forces contributing to the mechanical balance that ensures a state of
equilibrium of the system. However, many cases of two-phase flow concern curved
interfaces. Taking into account surface tension in a two-phase flow, the mechanical

balance at the interface reads 5
g
Pg=Dp1+ s (3.30)

where o[ N/m] denotes the surface tension and r is the radius of the curvature of the
interface, e.g. a vapour bubble submerged in a liquid. Suppose that the pressure and
the temperature of saturation for flat interfaces is the point c in Fig.(3.6).

The temperature of saturation is associated with vapour pressure p,, however, this
pressure is lower than the pressure of saturation for the flat interface, psq; the pg
isobar meets the Ty,; isotherm at point b. Condition of phasic equilibrium demands
uniformity of the temperature and equality of the Gibbs energy, see (3.12) and (3.15),
consequently the difference between the pressure of the vapour in the bubble and that
in the surrounding liquid is the vertical line of constant g from point b to a. However,
due to the equilibrium condition of uniform temperature, pressure ps,¢, is associated
with temperature T4, but not with temperature 7s,;, which would be the temperature
of saturation in case of a flat interface and pressure pgq,. It is concluded that the
system contains a superheated liquid and although the temperature is higher than that
of the saturation state for the liquid, a phase transition is not observed. This situation
is referred to as the metastable state. It is also possible to show points a, b and ¢
in a p — v plot, see Fig.(3.7). This figure shows isotherm 7., which is divided in
segments. Segment A B indicates subcooled liquid which without interface curvature
evaporates at point B and becomes a pure vapour at point £. Further decrease of
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FIGURE 3.6: Equilibrium diagram of pressure, p, as function of Gibbs free energy, g,
for a gaseous bubble submerged in a liquid.

pressure causes a rise of the specific volume of the vapour and finally one reaches
point F'. Nevertheless, as shown above, it is possible to superheat a liquid above the
temperature of saturation without phase transition, i.e. it is given by segment BC'
Metastable state is also possible for the vapour once its specific volume is decreased
along DFE. Any thermodynamic process occurring along segment BC as well as DE
is accessible because it does not violate the stability criterion, (Op/dv), < 0, which
is indispensable from the point of view of mechanical stability of the condensation
and evaporation process. It is not the case for segment C'D for which the stability
rule is violated and (0p/0v), becomes positive.

The curve connecting point C, the critical point, and D, that bounds the metastable
regime, is termed the liquid spinodal and vapour spinodal at the left and right side of
the critical point, respectively.

3.3 Non-equilibrium state

Phase transition begins when the thermodynamic condition passes the saturation en-
velope depicted in Fig.(3.2) and Fig(3.7). The first step of the process occurs when
the excess of the temperature over the temperature of saturation is large enough to
reduce the nucleation barrier, which is the starting point of nucleation. Nucleation re-
lies on the clustering of substance molecules on micro-size objects suspended in the
bulk of the substance. This process is named heterogeneous nucleation. The other
known way of the nucleation process is termed homogeneous nucleation, which is
the spontaneous condensation of molecules, that creates phasic clusters. Existence
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FIGURE 3.7: p-v graph illustrating metastable state of a pure substance.

of these clusters in a system provides a metastable state described in the preceding
section. Any change of thermodynamic conditions in the direction in which the phase
transition is favourable invokes this process immediately. Then the transition occurs
until the moment of a new thermodynamic balance in which phasic clusters play the
role of aggregation nuclei. The two types of nucleation may occur simultaneously in
the same system. The dominance of the nucleation of one type is a matter of concen-
tration of nuclei in the bulk of a substance. It may happen that in real-life fluids with
impurities, phase transition originating from homogeneous nucleation dominates due
to the higher concentration of nuclei generated by homogeneous nucleation compared
to the concentration of impurities. The time scale of homogeneous or heterogeneous
phase transition differs. The homogeneous one, once it occurs, is much faster than
the heterogeneous phase change, thus effects of homogeneous nucleation dominate
in very fast processes.

Assuming a constant pressure of the system in which the liquid is expected to
undergo boiling, the required difference between the temperature of the superheated
liquid and the temperature of saturation, necessary to form a cluster, is given by

20 Taat, (v —

(3.31)
where r denotes the cluster radius. The equation has been derived from the Clapey-
ron equation, (3.22), with the assumption that the pressure of a foreign gas can be
neglected (Banerjee, Hewitt, Zaleski, Tryggvason, Koumoutsakos, Yadigaroglu and
Ishii, (2004)). The temperature difference is shown in Fig.(3.8), where experimental
results and the van der Waals prediction, (3.4), are depicted. At a temperature within
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FIGURE 3.8: Superheating: liquid temperature higher than temperature of satura-
tion; solid line - saturation curve, dotted line - experimental data (Volmer, (1939)),
dashed line - van der Waals equation (3.4).

the range of the metastable state, given by (3.31), any increment of the system heat
would bring about growth of the gaseous cluster, or otherwise, its collapse.

One can distinguish two types of nucleation, namely in the bulk and at the sur-
face. For a pure liquid, the bulk nucleation is a homogeneous process due to the
low number of foreign bodies suspended in the bulk of the substance. In this sense
pure indicates that the number of foreign bodies suspended in the bulk of the liquid
is considerably smaller than required for the heterogenous nucleation. An absolutely
pure substance is technically difficult to produce, if it is possible at all. Considering
the homogeneity of the process the superheating temperature, at which the process
begins, is higher than in the case of surface nucleation. This is also the reason of the
rather explosive nature of homogeneous bulk nucleation. In practice it occurs as the
effect of a sudden pressure change e.g. in nozzles or in the case of a shock wave; it is
also observable during heating up a liquid in a microwave oven. Surface nucleation is
a process of great importance in practice because it forms the foundation for the the-
ory describing the most common boiling mechanism. This kind of phase transition
occurs on a heated surface and begins in tiny cavities which are present in a surface
even if it is regarded as smooth. Cavities usually trap a foreign, non-condensable gas
at their bottom. This gas acts as a site of nucleation. The initial radius of the foreign
gas is regarded as that of the nucleation cluster. Thus, neglecting the pressure of this
gas, the superheating temperature necessary for the beginning of the process of nu-
cleation is given by (3.31). An example of such a situation is shown in Fig.(3.9). The
presence of the initial nucleus constitutes the metastable state and if the temperature
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FIGURE 3.9: Stages of vapour bubble growth in a cavity of a superheated sur-
face. Figure reproduced from (Banerjee, Hewitt, Zaleski, Tryggvason, Koumout-
sakos, Yadigaroglu and Ishii, (2004)).

of the liquid layer above the initial gaseous structure inside the cavity exceeds the sat-
uration threshold, the bubble will increase in size up to the moment of its detachment
from the surface.

From the point of view of the behaviour of an industrial system and its prediction,
it is essential to be able to predict the amount of a substance phase that is generated
as the effect of the gas-liquid phase transition. Initial data for this are thermodynamic
conditions of the system and the thermodynamic requirements necessary for carrying
out the phase transition process. The basic assumption that simplifies the process is
neglecting the surface tension effects. Consequently, one also drops the contributing
surface tension which causes the phase transition to be limited by the saturation line
but not by the gas-liquid spinodal. In the p — v plane, Fig.(3.7), a transition of this
kind is depicted by the isothermal, and simultaneously isobaric, line between points
B and E. Therefore a metastable state is not considered.

First the amount of heat necessary to accomplish the phase transition is required.
Completion of the process means that the entire amount of a given substance, con-
tained in the system, will change its state of aggregation. It is assumed that the initial
state is a state of saturation, thus either point B or F/, depending on the direction of
the transition.

In order to evaluate the amount of energy needed for the transition, one needs to
split the process in two parts, namely the isochoric heat transfer to the substance and
subsequently its adiabatic expansion.

The considered process applies to evaporation. Condensation can be considered
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analogously. In the first part of the process one supplies a portion of heat to a closed
vessel filled with liquid. The heat supplied reads

dq = Tds + sdT. (3.32)
The Gibbs-Duhem relation, see (Kuiken, (1994)), shows that
sdT = vdp. (3.33)

The amount of heat is exactly such that it allows to evaporate the entire content of the
system considered, e.g. a vessel. According to Gibbs’ equation the change of internal
energy reads

(de) gy—o = (1'ds) g,—o (T'ds) g—g (3.34)

—p dv =
NG
0
where e denotes the specific internal energy. The change in enthalpy at constant

volume v reads

(dh) gy—o = (T'dS) g—o — p\di}_/qu dv_+vdp = (T'ds) 4,_, + vdp. (3.35)
0 0

Interpretation of enthalpy in a system of fixed volume provides problems. The change
in enthalpy of a system is nearly singularly meaningful for systems at constant pres-
sure, when the change in enthalpy is equivalent to heat delivered. Otherwise, there
is no easily-interpreted meaning for this state function. Nevertheless, the enthalpy
is put forward as the sum of the heat that cannot be transferred to mechanical work,
(T'ds) 4y—0, and the thermodynamic potential, vdp, which could possibly be turned to
work. Equation (3.35) can be quantitatively evaluated using specific heats. Employ-
ing the Maxwell relations one obtains

(dh) gy—o = (C0ydT) 4,—y + vdp = Opy dT, (3.36)

where Cv and Cp are the specific heats at constant volume and constant pressure,
respectively. For a liquid their values are nearly the same. Thus, an increment of
the enthalpy at constant volume is equivalent to the product of the specific heat at
constant pressure and the change in temperature.

The following step concerns adiabatic expansion. One may imagine, that one of the
vessel boundaries is released and the superheated liquid expands. In the standard case
of a gas expansion, the thermodynamic potential, vdp, would be entirely transferred
to mechanical work. However, in this particular case, due to physical properties
of the substance, causing phase transition, only a part of the potential will turn to
work. The rest will be used to overcome the attraction forces between particles of
the liquid. The attraction forces consume the majority of the energy used for the
transition. For water at a pressure of 1[atm| the amount of energy transferred into
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the work is only about 7.51%. Since aside from the mechanical work, the potential is
used for increasing the system disorder, the system rises further its entropy, in spite
of the process being adiabatic. The mechanical work done by the system induces the
change of the internal energy de, such that
(de),,, = (Tds)

exp —

— pdv. (3.37)

exp
Since the process is adiabatic and dq = 0, then according to (3.32)
TdS = —sdT. (3.38)

Bearing in mind (3.33) the change of the enthalpy of the expansion is equal to zero,
namely

(dh)eap = | Lds — pdv +pdv+v_dp =0. (3.39)

If one assumes that the mass of the system is 1[kg|, then the intensive quantities
are equivalent to extensive ones and h, e and s become additive variables. Thus,
the entire process of transition can be described as the sum of changes of quantities,
namely

de = (de) g,—o + (de) ., = (T'ds) gy_o + (T'ds)

exp ~

—pdv =Tds — pdv. (3.40)

exp

and

dh=|T ds 4+v dp + | Tds 4+v dp =Tds = Cp;dT. (3.41)
>0 Jdv=0 >0 —pdv>0 exp <0

Suppose that heat Cpy, dT', delivered to the substance being in the state of satura-
tion, is not sufficient to change the state of aggregation of the entire content of the
considered system. In this situation, only a part of the substance, of volume (), ., will
undergo the transition, whereas the rest remains in the same state of aggregation. In
order to transit the entire content the latent heat

L =1p (3.42)

is necessary, with §2 the volume of the system. The subscript k& denotes the phase
considered. Transition of the substance contained in €2 . requires

@k dTka = lkae,c‘ (3.43)

The relation between the delivered heat and the latent heat yields

Cbk dTka _ lkae,c o Qe,c

. R (3.44)
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From (3.44) the volumetric portion of the substance that will undergo the transition
can be found. It reads
Opy, dT O

l

The fraction at the right-hand side of (3.45) is called the energy fraction. It is the basic
quantity for the EOF method. The mechanical work pdv causes (2. . to increase or
decrease, depending on the direction of the process. Since the transition is isothermal
and isobaric a volume change depends on the difference between phasic densities
in the state of saturation. The volume of the substance resulting from the phase
transition obeys the relations

Qee = (3.45)

— g, o, ="q. (3.46)
Pg Pl

Q

for evaporation and condensation, respectively. Equation (3.46) leads immediately to
the formulation for the volume increment or decrement:

AQ, = (’” . 1) O, AQ, = <pg - > Q. (3.47)
Pg Pl

for evaporation and condensation, respectively. Volume change of the substance dur-
ing evaporation is positive, whereas during condensation it is negative, which indi-
cates the direction of the process.

The gas-liquid phase transition from a quantitative point of view, as presented here,
constitutes the base for the Energy of Fluid (EOF) method useful for modelling of the
phase transition process. Details of this approach will be described in Chapter (5).




MATHEMATICAL MODEL

The main goal of this thesis, is the development of a suitable CFD algorithm for
the prediction of the flow of two immiscible fluids, separated by an interface. The
field of interest concerns gas(vapour)-liquid flows, so the jump of the value of the
flow quantities over the interface is large. The fluids considered represent a single
substance and are assumed incompressible, i.e. their density does not change because
of changes in pressure or temperature. The temperature-driven phase transition is
also incorporated in the method. This chapter describes the mathematical basis of the
method.

The fluids are considered as continua. The flow is modelled by the standard math-
ematical approach considering the mechanical and thermodynamic balance of flow
field quantities (Ramshaw and Trapp, (1976)). Regions occupied by fluids are indi-
cated by the Heaviside function (2.35), see Sec.(2.4.3), with as argument the volume
fraction defined as the ratio between the volume occupied by a phase and that of the
control volume considered, (2.10). In expression (2.10) volume fraction denotes a
gaseous volume fraction, consequently it is termed the void fraction. The Heaviside
function is approximated by its smoothed version, so that the interface does not form
a sudden jump in fluid properties, but a monotonic transition of these properties re-
sult in space. This allows to regard a two-phase substance as a continuous medium
and although the phases of the substance are incompressible, the flow behaves as
quasi-compressible.

The model is suited for turbulent as well as laminar flows, however, the first one
requires the modelling of the influence of turbulence on the mean flow quantities.
Several turbulent flow schemes have been developed e.g. (Wilcox, (1993)), never-
theless since the flow motion in the model is dominated by the pressure and inertia
forces the problem of turbulence is not to be considered within the scope of this study.
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4.1 General equation of motion

The local instantaneous conservation equation given by (2.12) describes the three
conservation laws, namely conservation of mass, momentum and energy. Equation
(2.12) applies to a single phase of a multi-phase system, marked by subscript k. Once
the single-field approach is considered, the subscript can be omitted, see Sec.(2.4).
Since (2.12) has the partial differential equation form, it describes changes of flow
field quantities occurring in an infinitesimally small control volume fixed in space.
However, due to the discontinuous nature of two-phase flows this type of formulation
fails and needs to be replaced by a formulation involving a computational domain
consisting of fixed finite volumes inside which all flow variables and properties are
volumetrically averaged. This formulation, termed the Finite-Volume approach, uses
the general equation of motion in the volume-integrated form of (2.12)

opté
ot

d9+/ﬁ. (pitp) dQ = —/6.fd9+/p<1>dsz. 4.1
Q Q Q

Q

The first term on the left hand side of (4.1) denotes the net change of the time deriva-
tive of the quantity pt» contained in the control volume €). The quantity v represents
the conserved intensive property which multiplied by the density and integrated over
the control volume appears as the extensive variable,

U= / pdeY, 4.2)

Q

which constitutes the total content of the physical quantity in the control volume.
The second term on the left hand side denotes the change due to a net flux out of
the control volume. The term containing J represents a surface source, whereas the
lats term involving & is the volumetrically distributed source of ¢). Summarizing, the
above relation is the relation between the convective, the diffusive and the volumetric
source terms as the cause of producing the change of ¢ in time. The equation consti-
tutes the basis for the formulation of the mass, momentum and energy conservation
laws. These laws completely describe the behaviour of the flow, which are to be
supplemented by expressions for the physical properties of the fluid such as density,
viscosity and heat conductivity.
Employing Gauss’ theorem yields

/ Vo dQ = / $idsS, (4.3)
Q o

where ¢ denotes an arbitrary quantity. The left-hand side of (4.3) is equivalent to the
integration of ¢ over the closed surface bounding the control volume 2. Employment
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of the Gauss’ theorem and Leibniz’ rule yields, for a control volume that is fixed in
space:

% / o dQ + / (pit)) .7idS = — / J.idS + / p®dS. (4.4)
Q le) o0 Q

The form of (4.4) is convenient for the derivation of the individual conservation equa-

tions. The graphic representation of the conservation laws, based on (4.4), is shown

in Fig.(4.1).

J

FIGURE 4.1: Control volume for conservation laws.

4.2 Individual conservation equations

Individual conservation equations are obtained by choosing the quantities 1, J and
@ in the form given in Tab.(2.1). Each of the conservation equations is given in the
following subsections.

4.2.1 Conservation of mass

The quantity ¢ is chosen as the density of the fluid. This fluid density varies from
the value of the liquid to that of the vapour, depending on the vapour-liquid interface
location, see Sec.(2.4.3). The equation of conservation of mass reads

gt/de—i—/p(ﬁ.ﬁdS) o, (.5)
Q o0

with vapour-liquid mixture density p defined as p = ap, + (1 — ) p;. Continuity
equation (4.5) states that if there is no net mass production in the control volume {2,
the only reason of a mass change in this volume is a flux across its boundaries.
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In partial differential form one finds

op =, o
s + V. (pt) = 0. (4.6)

This equation can be rearranged as

a—’: L aVp+ pV.G =0, 4.7)
where the first two terms on the left combine to the substantial derivative of the
density, Dp/Dt = 90p/dt + 1i.Vp, i.e. the change in p of an infinitesimal fluid
element moving with the flow. This results in

Dp

4.2.2 Conservation of momentum

In the momentum equation the quantity 1 is chosen as pu. As seen in Tab(2.1), the
external flux term consists of the pressure and the viscous stress tensor. If the fluid is
assumed to be Newtonian, the term can be expressed by

— 2 =d = =
J= <p + B’N'ﬁ) T—2uD, (4.9)

where 11 denotes the temperature-dependent dynamic viscosity coefficient, I is the
unit tensor and D is the rate of strain (deformation) tensor. In (4.9) use is made of
Stokes’ hypothesis that the trace of the local stress tensor equals zero. Writing (4.9)
in index notation for Cartesian coordinates yields

2 Ouy
i = — = | 0;; — 2uD;;, 4.1
Jij (p+3ﬂa$k> J HL 5 (4.10)
where L/ 5
U; U5
D = — v J . 4.11
J 2 <8xj + 8.731) ( )

The Kronecker symbol, ;;, appearing in (4.10), assumes the value 1 if ¢ = j and 0
otherwise. For the viscous part of the external surface flux term one finds

2 ouy,

Tij = 2puDij —
The second term on the right hand side of (4.12) appears only when any volumetric
change in the control volume occurs. This may be a phase transition that changes the
volume of the substance and causes a nonzero divergence of the velocity field. The
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only volumetric force term considered here is the gravitational force. Thus, the quan-
tity @ in the far-right hand side term of (4.1) is replaced by ¢ denoting gravitational
acceleration.

Substituting all terms in the general equation one obtains the momentum equation
as

;/pgd9+/pﬁ(ﬁ.ﬁd5) =
Q oN

= 2 — =
- /pﬁdS+/ <2,uD— <3 w.a) 1) ﬁdS+/p§dQ.
0N o0 Q

To re-arrange the energy equation later on, it is convenient to obtain the partial dif-
ferential form of the momentum equation:

(4.13)

a — — — - = — —

apu—i—V.(puu) =—-Vp+ V.7 + pg. 4.14)
Using the continuity equation the left-hand side of (4.14) can be re-arranged in the
form with the substantial derivative, to yield

D

Z — _Vp+ V.74 pq. 4.15
T, Vp+ V.7 + pg ( )

4.2.3 Energy

The basic form of the energy equation introduces the specific total energy, F, thus
in the energy equation the general quantity ¢ in (4.4) is F/. The external energy
flux term consists of three terms: the heat flux into the control volume through its
boundary; the work done on the system per unit time by the pressure; the work done
on the system per unit time by the viscous stress. Taking this together, J assumes the
form

J=q+pi—Ti. (4.16)

The volumetric energy source consists of two terms: the work done per unit time
of the volumetric force field, and the volumetric heat sources. Here volumetric heat
sources are not considered and only the gravitational force does work. Consequently,
one obtains

8/pEdQ+/pEﬁ.ﬁdS—

ot

@ o (4.17)
—/q”.ﬁdS—/pﬁ.ﬁdS—l—/(Tﬁ) .ﬁd5+/pa.gdﬂ

o0 o0 o0 Q
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The partial differential form of the energy equation is
a - — = = — = = —_ =
g (pE) + V. (piE) = —V.q— V. (pd) + V. (T @) + p(3.9) . (4.18)

Using the continuity equation the left-hand side can be rearranged into the form with
the substantial derivative, resulting in

DE 2 L e e = _
P = VIV (p@l) + V. (7@) + p (§.7). (4.19)

The heat flux vector, ¢, may be expressed by Fourier’s law as
= —AVT. (4.20)

In the present study the specific internal energy, e, is a more convenient quantity to
consider, so (4.17) requires rearrangement.
The definition of the total specific energy is

1
E = e+§|f[]2, 4.21)

with the second term on the right representing the kinetic energy per unit mass. Tak-
ing the inner product of the velocity vector and the momentum equation (4.13) in the
partial differential form gives

pZ |t = —a.Vp + 4 (6?) +p(3.3). 4.22)

So that combining this mechanical energy equation with (4.19) yields

De - o> L 2 L (= =
Por = ~V.§—pV.i+ V. (Ta) —a. (V.T) . (4.23)

The last two terms on the right-hand side of (4.23) form Rayleigh’s dissipation func-
tion, i.e.

V. (Fii) - (ﬁ.?) = (? ﬁ) . (4.24)
Now, using the continuity equation, the left-hand side of (4.23) can be rewritten in

partial differential conservation form, i.e. d (pe) /At + V. (pide), so that upon inte-
gration over the control volume and applying Gauss’ theorem one obtains

gt/(pe) dQ) + /pe (u.i) dS =

Q o0

—/qfﬁdS—Q/p(m) wa+ [[(79).] ao

o0 Q

(4.25)
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In a system in which more than one phase of a substance exists, term pe consists of
many elements. Suppose the system is not in thermodynamic equilibrium. Then term
pe, with the reference energy level at the state of saturation, reads

pe g pl (1—a) (CU[Tsat+CUl (T_Tsat))+

(4.26)
Pgt (CUlTsat+l_psat(vgsat_ulsat)+C”9 (T'—Tsat)) -

Implementation of this form into the energy equation, (4.25), is avoided by omitting
the latent heat and the work | — pset(vy,,, — v1,,,) from (4.26). Now term pe is
expressed by

sat

pe = p; (1 —a) CoyT + pgaCugT. 4.27)

Since term | — pgq¢ (v, — 1., ) is eliminated, one needs to model the change of tem-
perature caused by phase transition. Thus, an additional contribution of the surface
source, Qtrans, appears in the energy equation. Now the energy equation reads

at/pedﬂ%—/pe(ﬁﬁ) dsS =

Q o0 (4.28)
_ /@.ﬁdS—/p(vﬁ) dQ+/ [(?6) ﬁ} A2 + Qtrans-

o0 Q Q

Now suppose that function F'(¢,1),---) assumes the partial differential form of
(4.4), such that

0

= o () + V. (pid) + V.J — p® = 0. (4.29)

F (t’ ¢’ . )

Function F'(t,, - - -) may be expressed as the sum of two other functions
F(t, ) =F (¢, )+ F{¢,--). (4.30)
Functions Fy(t,1),---) and Fy(t, 1), - - - ) have the same form as F'(¢, ), - - - ), namely
Fi (b, ) = % (p0); + V. (pvi); + V.J; = p@i =0, (431)

where i = 1,2. Expressing function F'(t,,---) as the sum of Fy(t,4,---) and
F5(t, 1, - - - ), after rearrangement, yields

0 - q

5 (P + V- (pid)y =
L. P 3} L. (4.32)
—V.Ji +p® + 5 (p)y — V. (ppii)y — V.Ja + pP2| .
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Now, (pt1), J1 and ®; for the energy equation are:
(P¢)1 = pcnga
Ji=(ar+ 5% (1 - o)A (ﬁT)Jr oo+ S0 (1= 0) ) Fittqr, (433)
1= g Cvl ! Hg CUZ a . 0 '
p®1 =0,
where @ = 7/ and ¢ represent the temperature change due to phase transition. In

order to satisfy (4.30) such that F'(¢,1), - - - ) corresponds to (4.28), (pt)2), Jo and @
are

(ph)y = (1 = &) pr (Cvy — Cvg) T
e ( cvg>(1_a)Al(ﬁT> <—C>(1 Q)i+ g 4.34)
Cuy Cu ’
pP2 =0,
Since, according to (4.31), F5(t,v,---) = 0, the integral, rearranged form of
Fi(t,1,---) for the energy equation reads

g pCo, T dSH+ /,OCUg T (i0.77) dS= / ( g+— 1-a) AD(@T).MM
oN

Cv _ o
/ ((Oé,ug + Ci’l}!l] (1 - Oé) Ul) a v) AdQ) + Qtrans-
Q

While temperature, 7', is the same in F', F} and F3, all these functions produce the
same temperature distribution. The above consideration has led to the simplified form
of the unsteady and convective terms of (4.35), in which the specific heat of liquid
does not appear. For the purpose of convenience in implementation, (4.35) will be
used further. Discretization of (4.35) is discussed in Chapter (5).

(4.35)

4.3 Void fraction transport equation

The Heaviside function, (2.35), describes the distribution of phases in a system. Em-
ploying the Heaviside function, the two-fluid system can be modelled as a continuum.
The argument of the Heaviside function is the void fraction « defined by (2.10). Time
and spatial changes of o are governed by the general conservation equation (4.1),
where ¢ equals . In the case of phase transition, one finds the surface source J
at the right side of (4.1), consequently the transport equation for the void fraction
assumes the form

a?t / o d) + / (@.71) dS = / V.J dQ. (4.36)
Q

Q o0N
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In order to evaluate J one needs to refer to the continuity equation, (4.5). The av-
eraged density in control volume 2 is defined by (2.37), where « plays the role of
the weighting factor. This ensures the continuous distribution of properties in regions
where the interface is present. Equation (2.37) constitutes the closure relation which
for the density reads

p=ap;+(1—a)p (4.37)

Substitution of (4.37) in (4.5), with the assumption of incompressibility of the vapour
and liquid phases, yields

a/adQ+/aﬁ.ﬁdS:/ Pl .7dQ, (4.38)
ot Pl — Pg
Q o0 Q

where the surface flux .J reads

J=-"_z (4.39)
PL— Pg

The divergence of the velocity field, appearing at the right hand side of (4.38), will
be discussed in the following section.

4.4 Energy of Fluid method (EOF).

The divergence of the velocity field is evaluated using the non-conservation form of
the continuity equation, (4.8). From this equation one finds V.4 and integration over
the control volume, using Gauss’ theorem yields

oo 1Dp
/u.ndS = /p Di df). (4.40)
Q

oN

The right hand side of (4.40) contains p which may be expressed with the help of
(4.37). Assuming incompressibility of the phasic densities one obtains

IR Pl — pg DO[
ndS = — dQ2. 441
/u ndS / o Di ( )
0N Q

The divergence of the velocity field, appearing in the control volume, is understood as
a volume source resulting from the phase transition which occurs inside this control
volume. The Volume of Fluid method regards the transition, e.g. evaporation, as
the growth of the vapour-liquid mixture volume with simultaneous decrement of the
mixture density. This volume growth is represented by the divergence of the velocity
field, where the velocity results from the substance expansion or contraction in the
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control volume. The velocity can be compared to that of the boundary of a growing or
shrinking gaseous bubble during the transition in the two-field approach. The velocity
is regarded then as absolute, not relative. Consequently, the divergence of the velocity
field in the control volume depends only on the rate of change of the volume, not on
the substance motion caused by external forces. Therefore the substantial derivative,
Da/ Dt in (4.41), reduces to the ordinary time derivative (Sauer, 2000). Finally, one

obtains
— pg d
/ﬁ.ﬁds - / PL” Py &% 10y, (4.42)
p dt
Q

oN

The next step of the procedure is the quantitative evaluation of the term dov/dt.
This will be done on the basis of the mathematical model of the Energy of Fluid
method discussed in Sec.(3.3).

The key of the procedure is the evaluation of the time derivative of .. Suppose the
phase transition process which occurs in both directions - evaporation and condensa-
tion. Attime ¢ = 0, the beginning of the transition, a substance, a pure liquid or a pure
vapor, occupies the control volume 2. After an infinitesimally small time increment
dt the substance will change its volume as the effect of the transition, see Fig(4.2).
In reality, one would observe the appearance of phasic structures separated by the

Qt+dlt),
/ Q(t) Q(t+dit),

FIGURE 4.2: Change of the volume of a vapour-liquid mixture at the time t+dt, as the
effect of phase transition. Initial volume is ), volume after condensation is Q)(t+dt).,
volume after evaporation is QU (t + dt)..

interface, i.e. appearing in the bulk. However, in the case of the VOF approach, a
substance is regarded as a continuum, where one assumes the change of the averaged
density, with simultaneous increment or decrement of the volume. The occupied vol-
umes at time ¢ + dt are Q(t + dt). and (¢ + dt), for evaporation and condensation,
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respectively. Their values are obtained based on the procedure described in Sec.(3.3).
By combination of (3.45) and (3.47) one obtains

OpdT

Ot + db)e = Q(t) + dQe = Q(t) + (Z - 1) Lo,
, CondT (4.43)
Qt +dt). = Qt) +dQ. = Qt) + (pj - 1) I Q(t),

where Cp d1" denotes the heat excess over or below the state of saturation. The vol-
ume of vapour resulting from the evaporation and the volume of condensing vapour
is

Ot + dt)ey = L Cpr dT

Q(t), and
aI o

Ot + dt),, = (1 - %ldT> Q(t),

(4.44)

for the evaporation and condensation, respectively. According to the definition of the
void fraction, (2.10), the relation between (4.44) and (4.43) gives the void fraction in
the volumes (¢ + dt). and Q(t + dt)., namely

Q
at + dt)e — M,
Qt + di). 445)
(t—i—dt) _ Q(t%—dt)qg '
“ T 0+ dt).

Since the control volumes considered are fixed, it is necessary to assume, that the
void fraction in the volumes €2(¢ 4 dt) is the same as that in 2 at time ¢ + d¢. This
leads to the statement

Oé(t + dt)ﬂ = O[(t + dt)Q(t—‘rdt)e,c‘ (446)
The void fraction in 2, resulting from the transition, reads
a(t+dt)g = a(t) + da, (4.47)

where a(t) = 0 for the case of evaporation and «(t) = 1 for the case of condensation.
Expressing «(t + dt)q using (4.43) and (4.44) and further rearrangement leads to the
formula for dcr, namely

d ol Opy dT
Qe = — )
Py + (ﬂ—1) Cpy dT
Pe (4.48)
do. = Py Chy AT

e (& - 1) Opyar
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Finally, for the time-derivative of a., and o, one finds for (4.48)

(da) = lim dae =
dt e dt—0 dt
lim 2 Oy <dT> _ (dT)
dt—0 pgl—i—(%—l) C?)l (%)edt dt e Pg ! dt e’
(doa) = lim dae =

dat ). dt—0 dt

lim P9 Opg <dT> _ Oy <dT>
dt—0 P4 (%(l; _ 1) ChIJ (dl)cdt dt c Pg l dt c

(4.49)

dt

Substitution of (4.49) in (4.42) gives an estimate of the net velocity divergence in a
control volume.

The above discussion applies to the situation that the transition begins for the case
volume 2(t) contains a single phase. A more complex scheme involving a vapour-
liquid mixture as start will be discussed in Chapter (5).

4.5 Physical properties of phases

The vapour and liquid densities are assumed to be constant throughout the numerical
simulation. They are evaluated at the start of calculations on the basis of initial pres-
sure and temperature, on the condition that both variables are uniformly distributed in
each phase. If this is not the case, an average temperature and pressure is chosen. For
the gas (steam) the density is estimated according to formulae used by (Sauer, 2000)

pg(T) = 103 exp (~Ao+ A1 T — AsT? + A3T? — AyT* + AsT°) [kg/m?], (4.50)
where

As = 1.759194F — 12, A, = 4.293708E — 09, A; = 4.313782E — 06,
Ay = 2.258077F — 03, A; = 6.383280F — 01, Ao = 7.099724,

with dimension [4;] = [1/K?]. The value of the density of the liquid (water) is
obtained from

pi(T) = Ag — A\T + AT? — AsT3 + AT — AsTP [kg/m?), (4.51)
where

As = 1.336940F — 13, A4 = 2.337246E — 10, Az = 1.582645E — 07,
Ag = 4.854679E — 05, A; = 6.496841F — 03, Ao = 7.188601,
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with dimension [A;] = [kg/m3K"].

The specific heat for the phases are also assumed constant. They are evaluated as
a function of an initial, averaged temperature. The temperature is averaged for each
phase separately. The specific heat of the gas (steam) at constant pressure obeys

Opy(T) = Ag — A1T + AsT? [J/kgK], (4.52)
where

Ay = 1.5643478E — 02, A; = 1.5543478, Ay = 4.217E + 03,
(4.53)

with the dimension [4;] = [J/kgKT!]. The specific heat of steam at constant vol-
ume is obtained from

Cuy(T) = Cpy(T) — R[J/kgK], (4.54)
The parameter R is the specific gas constant which for steam equals
R =461.519[J/kgK].

The specific heat capacity for liquid (water) is assumed to have the same value at
constant pressure and volume. It reads

Cp(T) = Ag — A\T 4 AgT? — A3T3 + AT — AsT [J/kgK],  (4.55)

where

Ao = 3.46362F — 09, A; = 6.004644F — 06, Ay = 4.01443E — 03,
As = 1.311501, Ag = 2.09999F + 02, As = 1.504741E + 04,

with the dimension [4;] = [J/kgK 1]

The dynamic viscosity is a function of the temperature. Its value is updated after
each time step of the simulation. For vapour the viscosity coefficient reads (Schmidt,
(1982))

B ) 4 b T* et J i
o) = po(ry el £ 35 (1) (5 =1 kfmsl. @50

wl®) = (1) N (Z ax (?)k> ot @
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The quantities 7™ and v* are the absolute temperature and the specific volume, re-
spectively, at the critical point. For steam, their values are

T* = 647.27[K], v* = 3.147 - 1073 [m? /kg].

The quantities b;; and a; are constants which values are given in Tab.(1.1) and
Tab.(1.3), respectively. The reader can find the tables in App.(A). For the liquid,
the dynamic viscosity assumes the form

w(T) =10 exp (—Ag + AT + AT — A3T?) [kg/ms], (4.58)

where
Ag = 2.471E + 01, Ay = 4.209E + 03 [K],
Ay =4.527TE — 02[K Y], A3 = 3.376E — 05 [K 2],

The heat conductivity coefficient, just like the dynamic viscosity, is updated every
time step of the calculation. Its estimate is a function of temperature and density. The
density is temperature dependent only for the purpose of the evaluation of the heat
conductivity coefficient. The density is obtained from (4.50) and (4.51).The relation
for the heat conduction coefficient is common for steam and water. It assumes the
form (Schmidt, (1982))

AT, p) = Mo + A+ AX[J/msK], (4.59)
where
T 1/2 3 T\"
Mo(T) = (T*) 2. a; (T*) [J/msK], (4.60)

2
Np) = by + by (p’i) + by exp <31 <pp* + BQ) > [J/msK] 4.61)

and
AT, p) = (dl (7;)10 + d2> <p’i>18 exp <01 <1 - <;’*)2'8>>+
d3S <pp*>qiexp<§?z <1—;>R>+d4 exp(cz (g)li Cs (pp*>5>,

with dimension [.J/msK]. The variables, appearing in (4.60), (4.61), (4.62), are as

(4.62)
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follows

Q=2+ C5(AT*) 6,

ﬁf:Q(i)Jrl,
s (4.63)
S =Cs(AT*) 7,
« | T
AT = T*—1'+C4.

The constants a, b, B, C and d are given in Tab.(1.2) in App.(A). The term p*
represents the density at the critical point. For water the critical density amounts

p* = 317.7[kg/m?].

4.6 Boundary conditions

The set of governing equations, including the transport equation for the void frac-
tion and the relations for the physical properties, is associated with a single control
volume. The assembly of control volumes constitutes the computational domain, i.e.
system. It is possible to solve the system only if the number of unknown elements
is equal to the number of equations. The formulation of the model is completed by
specifying boundary and initial conditions.

4.6.1 Initial conditions

The initial conditions require physical consistency of all flow variables at the start of
the simulation. For an incompressible flow it is sufficient to set an initial velocity and
void fraction distribution in the computational domain. The level of the pressure is
irrelevant for the further evolution of the flow, thus any initial level of its distribution
is theoretically satisfactory. However, due to the fact, that the simulation algorithm
uses the pressure distribution associated with a previous time step, it is required to
initialize the pressure in accordance with velocity and density (if the gravitational
force is present). This will decrease the computational effort at the beginning of the
simulation (Ubbink, 1997). Since the flow is incompressible, the temperature remains
independent of the pressure or density, thus its initial distribution may be arbitrary.
Nevertheless, if one intends to simulate additional, temperature driven processes,
such as a phase transition, it is clear, that the value of the temperature must correspond
to that of the real system.

4.6.2 Physical boundaries

From the mathematical point of view there are two types of physical boundary condi-
tions, namely Dirichlet and von Neumann conditions. The first applies to specifying
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the value of the variable at the boundary and the second condition represents speci-
fying the normal component of the gradient of the variable. However, in the light of
the complex behaviour of gas-liquid flows, these straightforward conditions do not
suffice. It is preferable to define conditions that depend on the sort of boundaries and
physical characteristics of the flow in the neighbourhood of the boundary.

At an inflow boundary of the computational domain the distribution of the velocity
is specified. The pressure is unknown and its boundary value is obtained from extrap-
olation from the interior of the domain. For the void fraction, one uses the Dirichlet
condition, which implies that at the inlet one needs to specify a (Renardy and Re-
nardy, (1991); Ubbink, 1997). The temperature is extrapolated from the interior of
the domain using of the zero-gradient boundary condition.

The outflow boundary should be positioned as far from the region of interest of
the flow as possible. In general, variables at the outlet need to be defined in such a
way, that overall mass conservation is satisfied. There are two schemes used in this
research, which fulfil this restriction. The choice of the approach depends on the case
studied.

The first scheme assumes a fixed or averaged pressure at the outlet, with the zero-
gradient (Versteeg and Malalasekera, (1995)) condition for the velocity. Neverthe-
less, this approach may be used only if one is certain, that there is no large velocity
variation at the outflow boundary or that the pressure distribution is approximately
constant. This restriction excludes the case of e.g. a fluid of high density with the
gravitational force acting; if for example the outlet is a vertical plane the influence of
the hydrostatic force will distort the constant pressure distribution so much, that the
fixed pressure type of the boundary condition cannot be used.

The second scheme employes the extrapolation of flow quantities from the interior of
the domain to the boundary. Thus, the velocity at the outflow has the same direction
at the internal side of the domain, next to the boundary. Subsequently, the velocity at
the outlet is scaled in such a way, that the overall mass in the system is conserved.
For the temperature the zero-gradient boundary condition is used. The void fraction,
assuming small variations of the flow at the boundary, is extrapolated in the same
manner as the temperature.

For solid boundaries, such as walls, a commonly utilised assumption has been im-
plemented. The approach, termed zero slip condition, sets the flow velocity equal to
the velocity of the boundary (Richardson, (1989)). Moreover, due to wall imperme-
ability, there is no convection through the boundary. These assumptions cause, that
the wall contributions in the convective terms of the governing equations disappear.
The consequences of the no-slip boundary conditions appear also in the viscous term,
namely

Tnn = 24 (au"> =0 (4.64)
on wall
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and
8Ut

Tnt = <) # 0, (4.65)
on wall

where the subscripts n and ¢ indicate the normal and tangential direction to the bound-
ary.

It suffices, that the no-slip boundary condition is applied to other flow variables, such
as the void fraction (Kothe and Mjolsness, (1992)) or the temperature.

However, the pressure boundary condition requires consistency with velocity. For a
fluid remaining at rest, in case the gravitational force acts, the momentum equation

reduces to
/pﬁdS = /ng. (4.66)
Q

o0

Equation (4.66) imposes the gradient boundary condition related to the gravitational
acceleration (Ubbink, 1997).

The last category of boundaries is the symmetry plane. The plane assumes the
mirror counterpart of flow parameters at the other side of the plane. Consequently, at
the plane of symmetry the normal component of the gradient of scalar quantities and
of tangential components of the velocity are zero while the normal component of the
velocity equals zero. There is no a flux across the plane of symmetry. The contri-
bution of the symmetry plane to the convective terms in the conservation equations
vanishes. The mirror condition also implies that the tangential gradient of the normal
component of velocity component is zero, thus the viscous term reads

Tom = 24 (8”"> £0 (4.67)
on sym
and 9
T = 12, (4.68)
on

where the subscripts n and ¢ indicate the normal and tangential direction at the bound-
ary.







NUMERICAL APPROACH

To solve the set of governing equations, one needs to carry out their discretization
preserving the conservation laws underlying them.

The present implicit discretization of the equations has been developed for a two-
dimensional, structured grid. The discretized equations are collected in a matrix
equation type of form representing the set of equations for the computational domain
considered. The matrix equation is subsequently solved by the so-called Incomplete
LU (Lower Upper) Decomposition. This method is also known as the Strongly Im-
plicit Procedure (SIP) proposed by (Stone, (1968)).

Considered is two-phase, vapour-liquid flow consisting of constant-density phases.
Since flow quantities are averaged over a given control volume using the Finite Vol-
ume method (Sec.(4.1)) combined with the Volume of Fluid approach (Sec.2.4.3),
the flow is regarded as a mixture of a vapour and a liquid. Consequently, the flow
behaves as quasi-compressible, in spite of the velocity field having a zero divergence
in absence of a phase transition. To tackle this kind of flow problems, the solution
algorithm, termed Semi Implicit Method for Pressure Linked Equations (SIMPLE),
has been chosen (Caretto, Gosman, Patankar and Spalding, (1972)). The algorithm
requires linearisation of the momentum equation, consequently it constitutes an it-
erative scheme. This approach is described in detail in (Peri¢ and Ferziger, (1996)),
where the method is used for a single-phase, incompressible flow. In this research the
approach has been adapted to vapour-liquid flows in which phase transition occurs.
SIMPLE has been coupled with the Energy of Fluid method (EOF) ((Anghaie and
Ding, (1996); Anghaie and Ding, (1997))), which is used for the evaluation of the
divergence of the velocity field.

As mentioned in Sec.(3.3), EOF operates on the enthalpy of the flow. The method
utilizes the so-called energy fraction defined as the ratio of the enthalpy contained in
one of the phase of the vapour-liquid mixture and the latent heat necessary to change
the state of aggregation of the entire amount of that phase present in the control vol-
ume, see (3.45). The mentioned enthalpy applies to the heat exceeding the enthalpy
at the state of thermodynamic equilibrium. The energy fraction assumes values be-
tween minus one and plus one. Negative values are associated with condensation




68 CHAPTER 5. NUMERICAL APPROACH

and, in particular, the minimum value, minus one, appears when the entire vapour
content in the control volume transfers to liquid. Positive values of the fraction ap-
ply to evaporation. A value of zero corresponds to the situation of thermodynamic
equilibrium, i.e. no phase transition. The problem of the phase change and its con-
sequences for the model has been described in Chapter (4). However, in Chapter (4)
the discussion has been confined to the situation in which the phase transition occurs
in a control volume containing pure vapour or pure liquid. In this section the model
is generalized to cases in which transition appears in a control volume containing a
vapour-liquid mixture.

The Volume of Fluid method uses the void fraction as the indicator for the distri-
bution of the phases in the computational domain. The equation for the transport of
the void fraction, (4.36), is treated in a special way which includes some additional
numerical procedures. These procedures increase the resolution of the interface. The
discretization of the transport equation for the void fraction is discussed in Chapter
(6).

As mentioned in Sec.(4.5), the physical properties of the vapour are those of steam,
whereas these for liquid represent water.

5.1 Spatial discretization

The Finite-Volume method averages values of flow variables and properties over a
given control volume. The averaged value is associated with the value of the flow
variable at the centre of gravity of the computational cell. In case all variables and
properties are taken as the spatially centred values, one deals with a so-called co-
located grid discretization scheme ((Peri¢ and Ferziger, (1996))). The grid utilized in
the present research is structured, which means that each cell has four neighbours and
a grid line of a given direction can intersect a grid line in the other direction only once
in the entire computational domain. The co-located grid arrangement has significant
consequences for the discretization procedure, namely it necessitates approximating
the flux terms at the boundaries of the control volume. Variables at such a cell face are
interpolated (in the interior of the domain) or extrapolated (at domain boundaries).
Due to the interpolation, additional problems arise associated with unphysical oscilla-
tions of variables, termed odd-even decoupling (Peri¢ and Ferziger, (1996); Banerjee,
Takahira and Takahashi, (2004); Banerjee, Takahira and Horiuchi, (2003)). To over-
come this problem, some additional, numerical procedures have been implemented
which improve the interpolation schemes, substantially damping the oscillations. The
basic interpolation scheme has second-order accuracy in space, but the mentioned im-
provements use higher-order approximations. The exception is made for the energy
equation, where for the purpose of smoothness of the solution first-order accurate
interpolation in space has been used. Thus, formally, the global spatial accuracy of
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FIGURE 5.1: Computational molecule in case of a two-dimensional, structured grid.

the scheme is first-order. The scheme is designed such that it uses only five points in
its computational molecule, see Fig.(5.1). This substantially simplifies constructing
the matrix equation of the discretized equations.

5.1.1 Basic geometrical quantities

All flow variables are cell-averaged quantities positioned at mid point P of the cell.
The mid point is the position vector

- 1 . . .
P= 1 (Tne + Tnw + Tse + Tsw) 5 (5.1)

where Z,;, denotes the corner points of the cell. For the purpose of interpolation the
vector between node P and the neighbouring nodes, at N B, is required, see Fig.(5.1)
where N B = E. This vector is obtained from

d=NB - P=3iyp— Tp. (5.2)
A surface vector, normal to the cell face, the e face, reads
Se = (84, Syn)' = & X (Fre — Tse) - (5.3)

The area of the face of the control volume is

Sy = 1/S2, +52 . (5.4)
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The last important geometrical quantity is the volume of cell P, given by
e a.a.a) =
Qp =3 (S x 8+ 5. x 8,) 2., (5.5)

where S is the surface vector of a cell face. This vector, for one of the faces, e.g. e,
reads

‘S_:e = (va Sy)T = Tpe — Tse- (5.6)
5.1.2 Basic terms of spatial discretization

There are two types of terms in the governing equations, namely volume and surface
integrals.

The volume integrals are approximated as the value of the variable ¢ averaged
over the control volume, multiplied by the volume of the control volume. For control
volume P the integral reads, dividing the equation by Qp

1 ~Y
Qp/mmz¢a 5.7)
Qp

which constitutes a second-order accurate approximation.
The approximation of the surface integral is taken as the sum of products of the
variable value interpolated to the cell face and the vector normal to the cell face.

| U (N
Sb/f@mmﬂbgmwmw, (5.8)

oNp

with f denoting the flux vector. The basic interpolation scheme is of second order.
The interpolation procedure employs the spatial weighting factor ¢, such that the
variable ¢ at face nb is computed as

Gnb = CupPp + (1 — Cub) PN B, (5.9)

where
‘N#B . n%)

Cnb = T,

with the vectors N B and nb the position of the neighbouring node and the position of
the point at the center of the cell face positioned in between P and N B, respectively,
see Fig.(5.1). In the case of a uniform mesh (,;, = 1/2. Some face values are
approximated by an interpolation of higher order. This will be discussed later.

(5.10)
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5.2 Discretization of governing equations

5.2.1 Unsteady term

In the formulation used in this research the unsteady term has the same form for each
equation. The spatial discretization leads to an ordinary differential in time, such that

99

ot
The left-hand side of (5.11) is approximated by a first-order scheme. The unknown
value of ¢, at a subsequent time step, is obtained from

=f(to(t)). (5.11)

" =" + f (tnr1, 0" ) At + O (AF), (5.12)

where superscript n + 1 is the shorthand notation of time ¢ + At, whereas n denotes
previous time ¢. The function f at time ¢ + At is estimated using the value of ¢
at the subsequent time ¢ + At ((Peri¢ and Ferziger, (1996))). The graphical repre-
sentation of the approach is shown on Fig.(5.2). This time-discretization scheme is

f(to(t))

f(t +at, @t + at))

ft, o(t)

t t +at t

FIGURE 5.2: Graphical representation of the Euler implicit approximation of a time
derivative.

termed implicit or backward Euler. Finally, averaging of the time derivative yields
the discretised unsteady term

7’L+1 n
QP@tQ/¢dQN¢ B = Ay = Supy G13)
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where 0 o
p
Ayp = A7 Sup = A—IZQP. (5.14)
The process is iterative, the variable ¢71§+1 the result of the present iteration. In this

case, if it is necessary for the sake of clearness, the variable ¢"*! will be replaced by
¢*+1 .

5.2.2 Convective term

For every governing equation, the convective term is treated implicitly. Thus, the
value of the variables in the flux terms is unknown and appears as part of the solution.
The implicit scheme increases the numerical stability of the calculation process (Perié
and Ferziger, (1996)). Approximations for the flux term, used for the momentum
and the energy equations are not the same. The choice of two different schemes is
motivated by characteristic features of the equations. These features will be discussed
in the subsequent paragraphs.

The convective term, contributing to the momentum equation, is discretised by
the Central Difference Scheme (CDS) which requires the addition of so-called ar-
tificial dissipation terms. The scheme has second-order accuracy and is used in
simulations of multi-phase as well as single-phase flows. It obtains the variable at
the cell face by linear interpolation using (5.9). However, the second-order accu-
racy of the scheme is deteriorated by the oscillatory behaviour of the result (Perié
and Ferziger, (1996); Banerjee, Takahira and Takahashi, (2004)). Suppose an equi-
distant, one-dimensional, co-located grid, for which a discretised surface integral is
computed, see (5.8). The approximation of the variable at the cell face is performed
by (5.9). Then, the summation over the two boundaries of the cell, cancels the con-
tribution of the variable at point P. Consequently, effectively the scheme uses a
grid twice as coarse. Moreover, the scheme for the variable at the central node in-
volves contributions from two neighbouring control volumes, without contribution
from the central one itself. Thus, the result shows a decoupled solution characterised
by oscillations, see Fig.5.3. Implementation of artificial dissipation terms, involv-

@

NN\

ww w P E EE

FIGURE 5.3: Decoupled behaviour of the CDS solution on one dimensional scheme.

ing the second and fourth derivative of ¢, cures the problem. Originally, the method




5.2. DISCRETIZATION OF GOVERNING EQUATIONS 73

has been utilized for damping unphysical oscillations of variables, which occur as
the result of the sharp discontinuity e.g. a shock wave, (Pulliam, (1986); Beam and
Warming, (1976); Steger, (1986)). In the scheme used for the present research, the
velocity field, from the point of view of the mathematical model, is continuous ev-
erywhere in the domain. However, the control-volume averaging in the discretization
results in an artificial discontinuity at the boundaries of each control volume. The
higher the velocity gradient, the larger the discontinuity in the control-volume aver-
aged velocity. Taking this into account, implementation of artificial dissipation seems
to be a suitable solution. Hence, the flux term of the momentum equation, for a given
iteration, reads

/ pu (@i.i) dS =Y [p;;bu;;gl (@5-7) Sy + D@ + DA | | (5.15)

In this scheme, the density and the normal component of velocity are evaluated at the
previous time (iteration) all at the face of the control volume and are assumed known.

The unknown component of the face velocity, ui}fl is given by
wirt = Cuup™ 4 (1= Gu) uls. (5.16)

The term D) is the second-order artificial dissipation, which reads
D@ = @ | (uifg — up™), (5.17)

where €@ is the dimensionless pressure-controlled parameter discussed later. The
term 7i* represents the mass flux defined as

The second-order artificial dissipation has the implicit form. The second-order arti-
ficial dissipation term, when summed over all faces, results in a term proportional to
the Laplacian of u. The fourth order dissipation term, D(4), is explicit and reads

DW = e | (uyyp — Bulpir + 3up — Uip) (5.19)

where subscript NN B denotes the node positioned next to NB + 1, such as F'E,
WW, NN and SS; see Fig(5.1). If subscript N B + 1 indicates node F, then N B —
1 denotes W and the other way round. The same rule applies to N and S. The
fourth-order artificial dissipation term, when summed over all faces, results in a term
proportional to the bi-harmonic of u. The factor ¢(*) reads

6(4) = MAX (0, b1 — b2€(2)) 5 (520)
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where

(5.21)

@ = MIN <a1,a2 |pNB+1 — 2Pp +pNB—1}> )

|4pinit|
with the initial pressure, p;n;:, Which is the constant initial pressure set at the start
of the computation. Parameters a1, a2, by and by are constants. Typically, it is a
matter of experience how to define ¢ and €™ or how to select proper values of
the constants. However, it is important to realise, that the artificial dissipation terms
modify the original flux term, thus they should be kept as small as possible while still
maintaining stability (Pulliam, (1986)). The general form of the convective term now
reads

S it = Apuptt > Ay puits = Sep, (5.22)
nb NB
where
Ao = 3 [ i),
nb

ACNB = m:b (1 - C) - ’m*‘nb 6(2)’

Se, = —DW,

(5.23)

The convective term contributing to the energy equation employs the first-order

approximation of the flux, namely the Upstream Differential Scheme (UDS). The
choice of this scheme has been dictated by the requirement to obtain a smooth so-
lution for the energy. Unlike CDS, the monotonicity of the solution is independent
of the magnitude of the gradient of the flow variable. This is an essential feature
required for handling additional, temperature driven occurrences in the flow, such as
phase transition. The disadvantage of UDS is its dissipative character which causes
an underprediction of gradients of the solution.
The specific internal energy of a mixture, present in the equation, is defined as the
sum of the energy of the vapour and the liquid within the control volume. The sum
is obtained employing (2.37). The energy of an individual phase of the mixture is
defined as the product of the specific heat at constant volume and temperature. How-
ever, the specific heats of steam and water differ substantially and implementation of
the mixture energy involving different specific heats is avoided by taking the specific
heat of water equal to that of steam, while the right-hand side of the equation has
been rearranged maintaining the correct form of the equation, see Sec.(4.2.3). The
convective term of the energy equation for a given iteration reads

/ pCuyT (.7) dS = " rigyet?, (5.24)
o9 nb
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where, according to UDS, the face value of the energy is approximated by

Cu,THtt ifm >0
*+1 *+1 g-P =
e =Co " = {Cv T i < 0 (5.25)
9+ NB :
The general form of the term is given by
Z ey CogTitt = A, TEt +> " Ay Th (5.26)

nb

where
p =Y 1m5Cuy for >0,
nb 5.27
Acyp =y Cog  forrm < 0.

5.2.3 Surface source terms
Momentum equation

The momentum equation contains the surface integral associated with the surface
force, namely the pressure and the viscous stress.
The term containing the pressure is discretized using

- [vitds ==Y piyiisun (5.28)

a0 nb

where p;, is evaluated using the standard CDS. Consequently, the general form of
the term reads

= piSne == > _ (Gupp + (1 = Cub) P B) Sns = Spp- (5.29)
nb

The diffusive term in the momentum equation is
/TﬁdS =é, / (TwaNg + Toyny) dS + €, / (Tyana + Tyyny) dS, (5.30)
o o0 [2/9]

where € is the unit vector in the x-direction or y-direction. Here one considers the
x-component of the momentum equation. This contribution consists of two parts, the
contribution due to 7., and 7,,. Consider the contribution due to 7, first.
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In the discretization the integral is replaced by a summation over the four faces of the
control volume, i.e.

/mnx ds = Z {ma = gﬂ (6.17)] (S7.2,) =

nb
o0
%,: -zunb <6§; )nb - %Nnb (ﬁﬁ) Zb] St (5.32)
5 [ (o)D) () T
| dq ) q )

The last term has been added in order to introduce partly implicit discretization. The
final result is

u*+1 u*+1
/szxn:p as = Z /LnbNBT

o0N

Su* ([ ou Su 7Sl | (5.33)
2 tny <5>5 ((5 )iz“( aﬂiznb) B
Z/ﬁnb* (v U,) o

Terms of the form (d¢/dx),,, are the face value of the gradient of ¢ in z direction.
The gradient is first evaluated using (5.8) and then interpolated to the face by (5.9),
namely

nSx b nannb
(5) (5ensen), (5o )b

f 1 —
Sz - Cnb QP + ( Cnb) QNB

ou’*
|nSnb| + Unb < Sz )nfznmb +

(5.34)

The subscript x,, »; next to the face notation, .S, denotes the component of the vector
normal to cell face nb, in direction x. The discretization of the velocity divergence,
present in (5.33), will be discussed in Sec.(5.3). The divergence at the cell face is
approximated by equation (5.9). The term before the last term of the right hand side
of (5.33) is the so-called Deffered Correction (Peri¢ and Ferziger, (1996); Khosla
and Rubin, (1974)) which provides the correction associated with non-orthogonality
between vector d and face normal 77.S. The general form of (5.33) reads

/ Taae dS = =Aqpup™ =Y Aqiypuig + Saip, (5.35)
Bl nb
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where

1Sy,
Aaip :Zﬂnb‘ b|,
nb ‘(ﬂ
Sy,
AleB = _Mnb‘ b‘a
q

sine =3 (57 ) (55 o (55 ) ) )
2/ 5 *

Zunbg (Va’) i Tt

nb

The contribution due to 7, is discretized explicitly. For the x-direction it reads

ou* ov*
/Tmyny dS = %M’nb (<6y>nb + (&L‘)nb) Syn,nb = Sd2P (537)

o0N

(5.36)

Energy equation

The source term in the energy equation is associated, as discussed in Sec.(4.2.3),
with the amount of energy contained in one of the phase of a vapour-liquid mixture,
that will be converted from sensible heat into latent heat or the other way around,
depending on the direction of the phase transition.
The discretised energy equation assumes, that a phase change may begin in a control
volume that is filled by pure vapour or, by pure water, or by a mixture of these two. In
the case of a mixture, the amount of energy associated with latent heat, and released
or absorbed during a phase transition, is dependent on the content of water or steam.
In order to evaluate this energy in a quantitative way, one needs to consider the system
separately, for the substance undergoing the transition and for the substance generated
in the phase transition.

In the case of the medium undergoing the phase change, one may assume that when
the process is accomplished the temperature of the substance will be the saturation
value. Thus, the amount of exchanged energy reads

(5.38)

n n n QP 1
5 - {apngvg (T —Th:,) 2 condensation,
prP1 —

(1—a?) plg—z?Cvl (Tp—T,) % evaporation.
Like the medium undergoing phase change, the generated substance will have the
temperature of saturation at the moment the phase transition is accomplished. How-
ever, one may not assume that in the control volume the newly produced phase will




78 CHAPTER 5. NUMERICAL APPROACH

occupy the same volume as this before the transition. Suppose the case of evapora-
tion. The generated vapour will in general not fill the entire space that was occupied
by the vapour at the initial instant. Consequently, when the evaporation is accom-
plished, the vapour content of the control volume will consist of the newly generated
vapour and the vapour that already existed before the evaporation began. Thus, the
energy content will be somewhere between that of the state of saturation and that of
the vapour before the transition. The difference between the new energy state and
that at the beginning of the process gives the energy exchange (temperature drop) for
the vapour.

The first step to find the difference is the evaluation of the relation between the vol-
ume of the generated substance and the volume of the phasic content of the substance
in the control volume. The relation is given by

ny pLdp
Q (l_aP) Pg ZEQP .
Q = o T evaporation,
n n
lov (ap-i-(l—aP) 7IT> Qp
Pg tp
n po @ (5.39)
Q2 b T P .
= m condensation.

The derivation of the forms of the numerators and denominators can be found in
Sec.(5.3), see (5.50) and the relevant part of (5.51). The term ¢}, /l}; denotes the
relation between superheating or super-cooling energy and the latent heat, see(5.49).
The volumetric amount of the generated substance in the control volume reads

ap + 0a)Qp  evaporation,

0 (5.40)
I (ah + 0a) Qp =
QgCV
n Pg 99%
P ) ln

(a’p + da)Qp  condensation.

Al n Pg 94p
((1 ap) + b l;g)

The term d« denotes the change of the void fraction in the control volume caused by
the phase transition. For details, see Sec.(5.3), equation (5.54). Finally, the difference
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of energy brought about by the appearance of generated substance is defined by

8q

n (1_O‘P)il7P n QOp
ngUg (TP Tsatp) ( n+< ) o0 7;) (Oép‘f‘(sOé) AL
alh L
_Spm = . gpigji 541
Q
pgc—f]‘l’Cw (TP Tgltp) L P,,g 0 (ap+da) 7~
((-op)+ape i)

The upper line of (5.41) applies to evaporation, whereas the lower one applies to
condensation. Summation of (5.41) and (5.38) gives the rate of the energy change
in the control volume during the phase transition, see Sec.(4.2.3). The energy source
term present at the right hand side of the energy equation is now

Qt’/‘ans = (Spp1 + SpPQ) . (5.42)

As seen, the void fraction «, the temperature 7" and the temperature of saturation 74
in (5.38-5.41) originate from the previous time step, because they represent the initial
conditions of the phase change.

The diffusion term in the energy equation consists of heat conduction and the work
done by the viscous stresses. The heat conduction term is discretized in an implicit
form with the Deffered Correction term accounting the non-orthogonality between
the vector d and the normal to the cell face. The conduction term reads

/)\ (VT) 7S =S Ay NE P |iiS| 4
e} nb M
oT* oT™* oT* oT™* nS
ol () gt (57) 80 -(55) (50 )
ox nb 6y nb ox nb 5?/ nb ‘d ‘
(5.43)
The last term of the right hand side of (5.43) is the Deffered Correction.
The general form of (5.43) reads
/ AN(VT) itdS = = Aa, 5 =7 Aays TRE + St (5.44)
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where

S
Agp = /\nbg,
nb d

S
AleB = _)\nb|‘d_,"7

B 5T 5T oT* 0T\ \[S)]
Sa1 P—%b:)\nb << M)irn,nb"i_ ( @)iy"ﬂl) B <( (h’),ix_‘_ ( 5.@)71@) 7

The detailed derivation of the form of (5.43) is given in App.(B.2.1).

The second part of the diffusion term is associated with the work done by viscous
stresses. This part of the energy equation is discretized explicitly. The discretised
term assumes the form

Q/ (?6) Q2 2up ((‘i;;)i + <5§;>i> Qp+
e (G50, -5 () (50),) e = e

The detailed derivation of (5.46) is given in App.(B.2.2).

(5.45)

(5.46)

5.2.4 Volume source term

There is only one volume source term appearing in the momentum equation. It is as-
sociated with the gravitational force acting volumetrically on the substance contained
in the control volume. The discretised volume source term reads

/,og’dQ = —ppgflp = Sgp. (5.47)
Q

5.3 Discretization of divergence of velocity field

In section (4.4), the derivation of the velocity divergence has been described. How-
ever, this mathematical model is limited to cases where a control volume, at the
beginning of the phase transition process, is filled by pure steam or pure water. The
description in this section includes the situation where the control volume may also
be filled by a steam-water mixture. The model will be discussed using the discrete
form of the equations.
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The volumetric amount of a pure substance that undergoes the phase transition has
been defined by (3.45). If the substance occupies only a part of the cell, this amount
is equal to

(5.48)

for evaporation and condensation, respectively. The term dq} /I represents the rela-
tion between the superheating or the super-cooling energy and the latent heat, namely

oqp  Cpr (TP — Titu,)

mo % ’

(5.49)

where subscript k£ denotes the phase relevant to the direction of the phase transition.
The volume of the vapour resulting from evaporation, {;, or the volume of the vapour
undergoing condensation, €24, equals

57L
Q= (1—ap) 2200

l’rL
Pa 'p (5.50)

n 04p Qp

Qg:apl

where subscripts [ and g denote evaporation and condensation, respectively. The
volume occupied by the vapour-liquid mixture upon accomplishment of the phase
transition equals the sum of {2p and the volume increment or decrement (depending
on the direction of the transition) 6€), ., namely

Sq
l pg P (5.51)

0
nPQP + OéPQp — aP l?’LPQP

n 0GP
Qp+dQ.=(1—a’p)Qp + p—ap n
Rearrangement of (5.51) yields the volume change

50 = <”’ - 1) (1-ab) 5‘{LPQP,
Pg Up

5 (5.52)
Pg qP
Q. = 1] —=—=—Qp
P = ap <pl > I
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The void fraction in volume 2p + €2 and 2p + €. is equal to the sum of oy and
the void fraction change, da. ., and reads

Q) Q
b 4 Sa, = 2PUP N
Qp + 682 (5.53)
ablp — Q) )
b+, =L~ 9
P c QP+6QC )

for evaporation and condensation, respectively. Assuming that the void fraction in the
volume Qp + 6 or Qp + 6€). equals that in 2p. Rearrangement of (5.53) yields
the change of the void fraction, dc ¢, in the control volume considered, namely

o — Oz?ﬁQp-FQl o
°T Qp+ 6. L
O — O (5.54)
5ac:u—a§é.
Qp + 682,

The formula for the velocity divergence, (4.42), has been derived in Sec.(4.4). Sub-
stitution of (5.54) in (4.42) finally gives the discretised equation for the divergence of
the velocity field caused by the evaporation or condensation

- —pg 0
/ (v.a’) A0 = PPy 0cq) (5.55)
Pec Al
Q
where p, . is the density in the control volume resulting from the phase transition.
This density is given by

Pe,c = p}; - (pl - Pg) 5ae,c> (5.56)

where the term (p; — pg) dce  originates from (4.37).

5.4 Pressure correction

The pressure correction procedure belongs to the group of methods termed projection
methods. In general, the procedure results in a velocity field that does not satisfy the
continuity equation. This field is then corrected by subtracting a term expressed in
the form of a pressure gradient.

The general form of the momentum equation is given by employing coefficients
derived in the preceding subsections

Apilptt + > Anpilyy = ot + SE, (5.57)
nb
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where
AP = AuP + AcP + Ad1p7
AN = Acyp + Adiyg (5.58)
gp = gup + gcp + gdlp + ngP + ggp.

The momentum equation is treated implicitly, thus the velocity in some terms of the
equation is unknown. The additional complexity is the non-linear character of the
equation, since coefficients A and S depend on u"Jrl Solution of the momentum
equation of this type, with known value of all Velomty independent variables, would
give a result satisfying the continuity equation. However, this is not possible because
the number of unknowns is larger than the number of equations. To overcome the
problem, the values of the variables and dependent flow properties, incorporated in
the coefficients, are predicted on the basis of their value at the previous time step.
In this way the momentum equation becomes linear, nevertheless, the velocity dis-
tribution resulting from the solution does not satisfy the continuity equation. Con-
sequently, computed velocity and pressure constitute an intermediate solution which
needs to be corrected. In the light of this, the notation of equation (5.57) must be
reconsidered, namely

pip T+ Z Anpiyy =S5, + Sp. (5.59)

The corrections change the form of (5.59), such that
Ap(apt+ip) ZANB (aa+ ) == PiuiSu—Vp'Qp+Sp. (5.60)
nb

The relation between the velocity and pressure corrections follows from (5.60) and
reads

(5.61)

where the term ) Ay BJ’ ~ B has been dropped, which is common practice for the
nb
SIMPLE method. This is the main reason for the decrease of the convergence rate of

the iterative system. There are some procedures which improve the convergence, but
description of them is beyond the scope of this study.

The continuity equation imposes the zero velocity divergence in the case phase
transition is not present. In presence of phase transition, the discretized divergence is
equal to that defined by (5.55). Assuming that the velocity u”‘Jrl + o' p satisfies the
continuity equation, one obtains

Z T Sy = — Y Wb 7Sny + Saivp (5.62)
nb
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where, according to (5.55)

Pl — Pg 5ae,cQ
—Z0Op.
Pec Al

Sdivp = (5.63)

Finally, substitution of (5.61) in (5.62) yields the pressure correction equation,

{2 PN —Pp 9 ) B
> <A>nb (W (92,45, =

nb (5.64)
Z Urlzrlﬁsnb - Sdivp - Scorrpa
nb

where the face value of (£2/A),,, is evaluated using (5.9). The last term at the right-
hand side of (5.64) is the correction to the pressure term on the left hand side. The
pressure correction gradient is discretized using the standard CDS scheme, which
will result in an oscillatory character of the pressure correction. The correction Scory
corresponds to the central difference approximation of the third derivative of the pres-
sure, namely

Scorrp:

Q S 45, sp* sp* (5.65)
) [ 2B TYn ) (== dp +(——) d
%}: <A>nb (diﬁ SIn+dy Syn n <(pNB pP) << o >nb +( 6y >nby>)

b

The detailed derivation of (5.65) and (5.64) is given in App.(B.3). The correction
detects oscillations and smoothes them. It may be factorised by a constant without
affecting the consistency of the approximation (Peri¢ and Ferziger, (1996)). The
magnitude of this factor depends on the flow conditions. The procedure has been
devised for improvement of the pressure-velocity coupling on co-located grids (Rhie
and Chow, (1983)).

The general form of the pressure correction equation reads

Appp + > Anppiyp = Sp, (5.66)
nb
where

Q S2 452
A — o Tn Yn
P Z <A>nb (d:tsl‘n +dyS n) b7

nb

Q 52 4+ §2
Ang — — <A> on 7 (5.67)
nb T Tn + dyS n ) b

—x+1 —
Sp = § un—li_ TSpp — Sdivp - Scorrp-
nb
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The coefficients and unknowns associated with each control volume are assigned in a
matrix-vector form solved using the SIP procedure. The pressure correction equation
results in the pressure corrections which adjusts the pressure p* directly, such that

]fk+1 =p*+p. (5.68)

The volume flux correction is obtained directly from the pressure correction equation.
The corrected flux, for an individual cell face, reads

W RS = @ lis — <Q> <p/NB_p/P> (S2 +52) (5.69)
nb nb A b da:an + dyS )b Tn Yn/) nb

The velocity correction is estimated based on (5.61) and, like the pressure, the veloc-
ity distribution is updated directly as

-

’EL*+1 — u*+1 + u/

I

(5.70)

ﬁ*+1 _ U*+1 + )’U,,

The updated velocity distribution satisfies the continuity equation, but not the mo-
mentum equation. Hence, the velocity field and adjusted volume fluxes are used
again to evaluate the coefficients in the momentum equation and execute the next it-
eration. In the course of the iterative procedure the numerical error is assumed to tend
asymptotically to zero, i.e. machine accuracy. Consequently, values of the pressure
correction, hence also the flux and velocity corrections, will decrease to machine-
zero. Then the subsequent time step is carried out. The entire procedure is illustrated
in the block scheme shown in Fig.(5.6) in Sec.(5.7).

5.5 Boundary conditions

The conditions at the physical boundaries have been discussed in Sec.(4.6). The most
important numerical approximations will be explained here.

Dirichlet and von Neumann types of conditions do not suffice in all cases. There-
fore, an extrapolation procedure is necessary. A second order extrapolation is used in
the computational method, which defines the value of variables at the boundary. The
value of variables at boundary B is computed from

&y

PB (¢p — ), (5.71)
NP

¢ = ¢p +

&y

where the subscript B denotes the variable positioned at the boundary node. The

notations ‘cf ‘ and ‘cf ‘ indicate distances between the node P and the boundary
PB NP




86 CHAPTER 5. NUMERICAL APPROACH

FIGURE 5.4: Arrangement of control volumes at a domain boundary.

node and between the node N, positioned right behind the node P (see Fig.(5.4)), and
the node P, respectively. As mentioned in Sec.(4.6), the outflow boundary condition
of the momentum equation needs to be treated in a special way in case the pressure
distribution departs substantially from constant. The algorithm allows for conserva-
tion of mass in the domain. Velocities at the outflow boundary are extrapolated using
the von Neumann approach and then scaled, such that

Vit + S5+
up = up— i (5.72)

out

where le and Vout are volume fluxes summed at the inflow and outflow boundaries,
respectively, whereas Sg;,, is the velocity divergence summed over the whole domain.
The algorithm for the velocity in j direction is analogous. The velocity at the bound-
ary is evaluated based on the value of the variables at the previous iteration, thus the
contribution of the outflow boundary condition is added to the source term of the
momentum equation.

The viscous terms in the momentum equation requires some attention. For a sym-
metry plane, the algorithm takes into account that velocity at node P, adjacent to the
boundary, is not always perpendicular to the boundary face. The vector connecting
node P and B is also not always normal to the face. Consequently, the formula for
the viscous force at the plane of symmetry, for the horizontal direction, reads

TrnSan sym =
*+1
Up 2 up 5
o <de$n’3ym + dySyn:sym Frosym darS:Emsym + dySyn,sym xmsym)
VE 2 Lo
’ » Stnsym S - = (V.ﬁ) s .
Msym dJESZEn,sym + dysynsym Tn,sym ™~ Yn,sym 3,U'sym sym T, sym

(5.73)
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Subscript n of S denotes the normal to the boundary. The velocity field divergence
has been derived in Sec.(5.3). This term is extrapolated to the boundary using the
zero-gradient boundary condition.

In case of a rigid boundary the velocity at node P is first projected onto the direc-
tion tangential to the boundary. With the vector d, pp perpendicular to the rigid wall
one finds

_ up 2
?nthwaz = —Hwal S wal
* S, ot T dySy, o ;’ l (5.74)
vp vl
S. g -z (V. ) S .
uwaldxsxmwal —i-dySymwal Twal ™~ Ywal 3,Uwal u wal Tnwal

The derivation of (5.73) and (5.74) is given in App.(B.1).

5.6 Strongly Implicit Procedure (SIP)

5.6.1 Matrix arrangement

As shown in the preceding subsections, each of the individual discretized equations
can be expressed in a compact form using the coefficients A and the source term .5,
such that
Apop + Z ANpoNB = Sp. (5.75)
nb

The number of equations and number of unknowns must be equal in order to be able
to solve the system of discretized equations. For each control volume one obtains
equations containing unknowns which number depends on the size of the computa-
tional molecule. This molecule, for a two dimensional scheme, for the discretization
described in the previous subsections, incorporates five nodes, see Fig.(5.1). The
equations are collected in a matrix system containing the matrix A for the coeffi-
cients, ¢ for the unknowns and S for the source term, i.e.

Ag = S. (5.76)

The arrangement of matrix A depends on the numbering algorithm for the control
volumes in the computational domain. In this study cells are numbered starting from
the left lower corner of the domain, proceeding upwards, line after line in a regular
manner. This way of labelling is termed lexicographic ordering. For each control
volume there is one row of the matrix depending on the number of the control volume
and the size of the molecule of the numerical scheme. For the two dimensional case,
the five node computational molecule and a structured grid, matrix A has a poly-
diagonal, symmetric structure. The example of the matrix generated for a square
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computational domain of the dimension 4 x 4 control volumes reads

[ApAN O 0 A 0 0 0O OO O OOODO
AsApAy 0 0 A 0 0 0 0O 0O O OO OO
0 AsApAy 0 0 A, O 0 0 0 0 0O 0 OO
0 0 AsApAN O 0 A 0 0 0 0 0O O OO
Aw 0 0 AgsApAy 0 0 A 0 0 0 0 0 O O
0Aw 0 0 AsApAxy 0 0 A 0 0 0 0 O O
0 0Aw 0 0 AsApAnN O 0 A 0 0 0 0 O
A - 0 0 0OAw 0 0 AsApAN O 0 A 0 0 0O O 5.77)
0 00 0OAw 0 0 AsApAny O 0 A0 0 O ’
0 000 0OAy 0 0 AsApAy 0 0Ag 0O O
0 000 0O 0Ay 0 0 AsApAN 0 0 A O
0 00O 0O 0 0Aw 0 0 AsApAN O 0 Ag
0 00O 0O 0 O0 0OAwy 0 0 AsApANO O
0 00O 0 0 O0O0 0Ay 0 0 AsApAN O
0 OO OO 0O OO0 O0 0Ay 0 0AgApAN
| 000 00 O0O0O0O0O0 0AwO 0AsAp |

It is easy to estimate, that the matrix for a domain of n; x n; control volumes, would
have nf X n? elements, hence the amount of necessary storage is substantial. How-
ever, one can take advantage of the sparseness of the matrix and of its diagonal struc-
ture. Thus, in place of the full matrix containing individual rows of the matrix, five
arrays with the diagonal elements suffice. The distance between the central coeffi-
cient, Ap, and the neighbour coefficients, Ay and Ag, in the 4 direction (horizontal
for matrix A) is n; elements, the same as in j direction. This leads to the conver-
sion between the position in the domain, the compass indices of the element and its

storage location in the array, see Tab.(5.1)

Location in a domain | Compass indices | Array location
i,] P l=({—-1)nj+j
1— 1,7 W l—n;
i,j—1 S -1
1,]+1 N [+1
1+ 1,5 E [+ mn;j

TABLE 5.1: Conversion between a grid, compass and storage array locations.

5.6.2 Direct solution

The commonly used algorithm for solving a problem involving large matrixes is the
decomposition of matrix A in the product of two triangular matrices, namely the




5.6. STRONGLY IMPLICIT PROCEDURE (SIP) 89

lower L and the upper U,
A=1LU. (5.78)

The non-zero elements of the lower matrix are positioned in the area downwards of
the main diagonal. The upper matrix is structured the other way round. To render the
factorization process unique one demands that the main diagonal of L or alternatively
of U consists of unit elements. The algorithm for evaluation of individual elements
of both matrixes is straightforward and based on Gauss elimination, see (Peri¢ and
Ferziger, (1996)). In general, it assumes that the first row of the upper matrix remains
unchanged. With the assumption that the unit elements are positioned on the main
diagonal of L, one computes individual elements of the matrixes using the relations

j—1
Lij = <Az-j = LikUkj> Ul forj<i—1 (5.79)
k=1
and
1—1
Uij=Aij— Y LaUy forj >i. (5.80)
k=1

Notation ¢j refers to the position of an element in the matrix, but not in the grid.
According to the terminology used for Gauss elimination, the decomposition will be
termed forward elimination, i.e. opposite to the backward substitution which is the
final step of the algorithm.

The solution of the set is then split in two stages. The matrix equation may be
written as

Ap=L(U¢) =LY = S. (5.81)

Initially one calculates the variable Y knowing L and S. This is performed using
backward substitution. Then the sought variable ¢ is computed using

Up=Y (5.82)

which, because of the triangular character of U, is also computed by backward substi-
tution. Though the described algorithm is straightforward, it cannot take advantage
of the sparse, diagonal structure of the original A matrix. Moreover, it requires a
large storage effort, because, unlike A, matrixes L and U are not sparse, nor diago-
nal. Thus LU-decomposition is more applicable to cases for which the structure of
A is not arranged in the way shown in (5.77).

In order to decrease the calculation and storage effort one turns to iterative meth-
ods, in which an initial guessed solution leads to the final solution of (5.76).
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5.6.3 SIP

The iteration method hinges on finding a matrix M which is as good an approxi-
mation of A as possible. Additionally, it is required, that the decomposition of M
produces two triangular matrixes L and U that are sparse and diagonal. Moreover,
the location of their diagonals must be related to that of matrix A. The construction
of lower and upper matrices saves substantially on computational and storage effort.
Thus, the relation

Méb=S (5.83)

gives an approximation of ¢. The magnitude of the difference between ¢ and the
solution of (5.76) depends on the difference between M and A. The rate of conver-
gence of the iteration procedure is strongly associated with the difference between
M and A. Consequently, one needs to find an algorithm allowing the fast evaluation
of L and U which product gives an excellent approximation to A.

The product of the sparse diagonal L and U gives a matrix with seven diagonals.
Five of them refer to those of A and the two extra ones correspond to the nodes N W
and SW, see Fig.(5.5). The location of the nodes in the domain is shown in Fig.(5.1).
The matrix M may be expressed as

FIGURE 5.5: Illustration of the product of L and U resulting in M.

M=LU=A+N, (5.84)

where IV is the matrix required to resolve A from M = LU, such that M is a good
approximation of A. The obvious choice for M is that it contains the same elements
as those in A plus the two additional diagonals corresponding to nodes NW and
SW, which are contained in N. Consequently, the elements in M, according to the
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rules of matrix multiplication, can be expressed in terms of elements of L and U

My = Aw = Ly,

Myw = Nyw = LZWUJZV_nj,

Mg = Ag = Lk,

Mp = Ap = LU ™ + LU + L, (5.85)
My = Ay = UYL,

Msw = Nyw = LU,

Mg = Ap =ULLY,

where [ indicates the position in the one dimensional arrays in which the elements
of each diagonal are stored. Solution of the elements of L and U (5.85) is possible.
However, the resulting algorithm does not converges sufficiently fast, because one
does not control the influence exerted by IV on ¢. In order to decrease this impact
Stone proposed (Stone, (1968)) an M such, that the five diagonals referring to those in
A nearly cancel the extra ones added by V. To achieve this objective, values of non-
zero elements of N ¢ are decreased by subtraction of ¢’. The latter is approximated
by variables in the vicinity of nodes NW or SW. The approximation is of the second
order and reads

Onw =7 (¢w + on — op) |

5.86
Psw =7 (ds + o5 — dp), 680

where -y is a positive constant. The choice of its value is a matter of experience, how-
ever, Stone recognised that v < 1 ensures stability of the calculation process. Equa-
tion (5.86) modifies the general form of the discretized governing equation, (5.75),
such that its left hand side reads

Apop + Awow + Asos + Andn + Appp+

(5.87)
Nyw (onw — dvw) + Nsw (dsw — dsw) -
Rearrangement of (5.87) using (5.86) yields
(Ap+yNnw +vNsw) op+(Aw —vNnw) ow +(As —yNsw) ¢s+ (5.88)

(AN —YNyw) ¢s + (Ap — YNsw) ¢ + Nnwonw + Nswdsw -

The form of (5.87) constitutes the basis for constructing the modified M, which is
now equivalent to the sum of A and the modified N. The adjusted matrix N com-
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prises now five diagonals instead two, namely
Mw = Aw —yNyw = Liy,
Myw = Nnw = LlVVU]lV_nja
Mg = Ag — yNsw = L,
Mp = Ap +~ (Nyw + Now) = Ly Ui ™ + LU + L, (5.89)
MN = AN’YNNW = UJZVLIP,
Mgw = Nyw = LU,
Mg = Ag —yNgw = ULLb.
Only the two diagonals of N, Ny and Ngy, remain unchanged. Now one can
express all elements of NV in terms of L and U. Consequently, knowing the elements
of A the diagonals in L and U can be computed.
The procedure of estimating the lower and upper matrixes is equivalent to the for-
ward elimination in the classical way of the constructing an LU decomposition which

leads to a full triangular form of both matrixes.
The lower and upper matrixes are the basis for the iteration algorithm

(A+ N)p=Nop+S. (5.90)
Further rearrangement of (5.90) leads to
(A+N)p=(A+N)p—(Ap—95). (5.91)

Since the right hand side of (5.90) is assumed to be known, the equation can be solved
for ¢. The outcome is a subsequent guess for the result, namely

(A+N) " = (A+ N) g™ — (Ap" — S), (5.92)

where superscript n denotes the level of the iteration. The equation (5.92) may be ex-
pressed using the difference between the ¢ resulting from two subsequent iterations,

5n+1 — ¢n+1 o ¢n (593)

and the residual,
R"= S — A¢™. (5.94)

Equation (5.92) using (5.93) and (5.94) reads
(A+ N)o"t = Rr" (5.95)

or
LU = R™. (5.96)
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The remainder of the algorithm has been described earlier in this section and is similar
to the calculation process associated with the standard LU factorisation. At the first
step one solves (5.96) for Y, namely

LUt = Lyt = R". (5.97)
Subsequently, having Y determined, one proceeds to the final step of the iteration
Us"tt =Y (5.98)

to find 6"+, Taking advantage of the sparse, diagonal character of A, constructing L
and U such that they have a similar structure to A and finally, the efficient evaluation
of elements in N makes the SIP algorithm an efficient way for solving the large set
of equations. The method is characterised by a high rate of convergence, (Peri¢ and
Ferziger, (1996)), and within couple of iterations residual R™ obtains an acceptable
level.
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5.7 Block scheme of algorithm

Variables initialization:
p", u” v, o, T, (Ou)”

Physical properties
update of gas-liquid mixture

n+1
nit+1
nit+1
n+1

Q< CTDO

n+1

(Ouy™

due to temperature variation

Divergence of velocity field,

l p" p" u" V', o, T, (Cu)

Momentum equation:
-velocity and volume flux field

i p" p" u', v, o, T, (Ou)

Pressure correction equation:
-pressure, velocity field update,
-volume, mass flux update

i o b Uy T ()

Void fraction tracking:

-void fraction transport equation,
-ULTIMATE - QUICKEST scheme,
- CICSAM scheme

i o0 U v o, T ()

Physical properties
update of gas-liquid mixture
due to new a distribution

Energy equation
-new temperature
distribution calculation

P p" UV o, T (Ou)"

l pLput v o T, (Ou)

0P UV o T (L)

Convergence control:

numerical error>threshold -> next iteration

l

FIGURE 5.6: Block scheme of the algorithm. Nomenclature: p - pressure, u - horizon-
tal component of velocity, v - vertical component of velocity, p - gas-liquid mixture
density, T - temperature, (Vu) - divergence of a velocity field.

[
[
[
[

numerical error <threshold -> next time step l
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In this chapter the transport equation for the void fraction, (4.38) is discussed in more
detail. The algorithm for its solution differs from that used for the other equations in
the system. The equation is solved using the split operator scheme. The algorithm
assumes (in the case of two dimensions) a two step process of convection of the
void fraction within a time step. Each step, termed a sweep, represents advection
of the variable along an individual coordinate direction. The first sweep results in
an intermediate distribution of the void fraction, whereas the second sweep gives the
final result for a given iteration. The process is commutative and leads to accurate
mass conservation in the system. In order to satisfy the volume (mass) conservation
constraint the Eulerian-Lagrangian scheme has been utilized.

Unlike the other equations, the transport equation for the void fraction is consid-
ered in an explicit way. Hence, it is assumed, that all elements of the convective
term are known at the iteration considered and follow from the previous iteration.
The Volume of Fluid method, implemented in the Finite Volume approach, dissipates
the interface in space preserving continuity of flow quantities. However, this scheme
deteriorates the physical representation of phasic regions, thus, additional numerical
algorithms have been implemented in order to improve the sharpness of the interface.
This is done in the framework of the Volume of Fluid method, with conservation of
the continuous distribution of flow quantities across the phasic boundary. The al-
gorithms, termed ULTIMATE and QUICKEST, have been initially devised for the
one-dimensional case. Since here a two-dimensional flow is considered, these two
methods need to be extended. The adaptation was possible employing the CICSAM
algorithm. In general, the methods use higher order interpolation algorithms for the
convective term present in the transport equation for the void fraction. The influence
of the flux rate is also taken into account. The description of the algorithm can be
found in Sec.6.2 and Sec.(6.3).
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6.1 Split operator scheme

For the sake of simplicity, the description is started for the case without phase tran-
sition. Thus, the velocity field, for incompressible flows, remains free of divergence,
ie.
/%MQ = / (@.it) dS = 0. 6.1)
Q o0
This condition, for the discretized fluxes associated with a two-dimensional, rectan-
gular control volume, is written as

> (i) Snp = 0. (6.2)

nb

Though the integration of the fluxes over all boundaries of the control volume results
in zero, this is not necessarily the case for the sum of the contribution of two opposite
boundaries, hence

Z UewSew 7 0,

(6.3)
E Uns ns I

where the subscripts ew and ns denote, using the compass notation, the east-west and
north-south faces of the control volume, respectively. One of the situations described
by (6.3) is illustrated in Fig.(6.1). Since volume flux w,,5,, is not equal to u,.S.,
according to (6.2), the ’excess’, or 'missing’ volume flux must leave, or enter, the
control volume through the south and north boundary. This volume flux is the sum
of v,,.Sy, and v Ss. Figure (6.1) also shows the identity

Z UewSew = — Z UnsSns» (6.4)

which will be used for constructing a separate sweep for each of the two directions.
In absence of phase transition, the transport equation for the void fraction « reads,
see Sec.(4.3),

% / adQ + / o (@.ii) dS = 0. (6.5)
Q oN

The void fraction transport equation for the first, horizontal direction, in the dis-
cretized form, reads

Q
(ap — ap) AL + Z al UewSew = ap Z Uew Sews (6.6)
ew ew
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FIGURE 6.1: Graphical representation of fluxes associated with the control volume.

where the asterisk denotes an intermediate value of the variable. The right-hand side
of (6.6) constitutes the correction source term. Since the left-hand side employs the
void fraction, the right-hand side, the net divergence, has the same form, thus, « is
also present there. The void fraction at the right-hand side of (6.6) is unknown, thus
the first, horizontal sweep is implicit. The intermediate distribution of the variable is
the basis for the Lagrangian sweep which is explicit. Its discretised form reads

(OéP+1 - CYP) Kt + %s: ansvnssns =ap ;S: UTLSS”S' (67)

Superscript * 4+ 1 denotes the void fraction at the subsequent iteration. In case « is
the final result for a given time step the subscript is replaced by n + 1.

To illustrate how the algorithm works, consider a domain comprising of nine con-
trol volumes, see Fig.(6.2). The middle volume is filled by vapour indicated by
a = 1. The rest of the control volumes are filled by liquid, thus oo = 0 there.
The velocity field for the central control volume is shown in Fig.(6.2). For the sake
of simplicity, the area of the faces of the control volumes as well as the time step are
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a=0 a=0 a=0
NW N . NE

_ ~ O0=1 - 5
a=0 w U | \\\.F’ Welale E

0=0 SW a=0 S o=0 SE

FIGURE 6.2: Part of the computational domain consisting of nine control volumes.

set as unity. The Eulerian sweep for the node P results in

. 1
AR T

ew ew

(6.8)

Thus, the void fraction «* in all the control volumes, except the middle one, is zero.
In the middle control volume « is less than unity. The subsequent, Lagrangian sweep
results in the final distribution all over the domain and gives

a}‘jl = ap, ozg"'l = afflvs, a*NH = a}+1vn. (6.9)
Now, the procedure is completed and summation of the void fraction over the domain
should give the initial value of . Taking into account (6.8) and (6.9), the summation
reads

1
Za*Jrl _ a;+1+a*s+1+a}«v+1 = ! (1 + ZUm) = J%”svns (6.10)
ns

ew Uew

Employing the identity (6.4), the last term on the right hand side of (6.11) results in
one. Thus, the overall value of a**! in the domain amounts to this at the beginning.
This proves, in the case considered, that the volume of a convected fluid is conserved
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in a natural way. This is necessary from the point of view of preserving mass con-
servation in the system. The reverse order of the sweeps, namely Lagrangian explicit
and subsequently Eulerian implicit, will give the same result for the above example.
However, in general it is not the case and in terms of mass conservation the combi-
nation Eulerian-Lagrangian sweep is better than the reverse one, see (Scradovelli and
Zaleski, (2003)).

The procedure results in an accurate conservation of mass, see (Scradovelli and
Zaleski, (2003)). Earlier versions of the split operator algorithm for the transport
equation did not consider the net divergence, resulting in a distribution of the void
fraction after each sweep. This used to cause undershoots or overshoots of the void
fraction (Aulisa, Manservisi, Scradovelli and Zaleski, (2003)), i.e. the volume of the
flow was not conserved. Missing or exceeding volumes were corrected such that

a+(l—a)=1. (6.11)

If mass is not conserved, one observes unphysical jumps or drops of temperature.
This will be shown in Chapter (7), where the two different versions of the split oper-
ator algorithm will be applied.

Phase transition modifies the formulas for the two sweeps. In the Eulerian step
one needs to add the divergence of the velocity field and take into account the new
distribution of « caused by phase transition. Finally, the net divergence resulting from
the sweep also requires adjustment. The first step of the algorithm is now formulated
as

* n Q n *
(aP - aP) E * ; (Oé + oo +1)ew uewsew -

o (Z UewSew + > (iL.7) Sew> + (ﬁ.a) Q,

where the divergence of the velocity field on the right-hand side of (6.12) is evaluated
using the EOF method, see Sec.(5.3). The values of the divergence at the bound-
aries of the control volume, e.g. (.77) Sy, are obtained from their approximation
at the cell face. The term §a*! denotes the variation in the void fraction caused
by the phase transition, see (5.54). Since the Eulerian sweep contains all quantities
associated with the divergence due to the phase transition, the resulting intermediate
distribution of the void fraction already incorporates the source effects for . Conse-
quently, the form of the Lagrangian sweep remains unchanged, see (6.7).

(6.12)

6.2 ULTIMATE QUICKEST scheme

In the past decades much effort has been invested in deriving a proper discretiza-
tion for the advection of flow quantities. The key problem is the evaluation of flow
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field variables at the control volume boundary. In order to increase accuracy of the
algorithm, a higher order interpolation appears to be required. However, standard
procedures assuming orders higher than one produce spurious oscillations; more-
over, increasing the order of interpolation does not guarantee a smoother distribution
of the variables. It has been observed that algorithms of odd order of interpolation
give better results than these of even order of approximation. Furthermore, there is
no interpolation that, regardless of its order, while used without improvements, pro-
duces satisfactory output. The widely used procedure is to switch from a higher order
interpolation to a first order interpolation or eventually to blend these interpolation
schemes in regions of sharp gradients. However, the first order approach is severely
dissipative in nature. The effect of dissipation increases proportional to the mag-
nitude of the gradient of the convected variable. To avoid these disadvantages, the
algorithms used in the present research have been improved. In the present section
the one-dimensional scheme is considered, see Fig.(6.3). The further extension to a

I I I T I I T T I I I I I I I I I I I I I I I IO IR R NS

A e S e S

Qp
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UeSe I.E

e

s

FIGURE 6.3: One-dimensional arrangement of discretised space.

two-dimensional arrangement will be discussed later.
6.2.1 QUICKEST

According to the advection algorithm (Leonard, (1991)), the control-volume aver-
aged value of «v at node P, at time step At is considered as

bt = a (P, At) = a (P —u(P,0) At,0). (6.13)

Expansion of O/I?Ll in a series in space gives

aptt = ap+ f(9), (6.14)

where, taking into account the argument of « at the right hand side of (6.13), £ is also
a function of position in space and time, i.e.

E=yg(x(P)—u(P0)AL), (6.15)
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where x denotes the position in one-dimensional space. Further expansion of the
function f in terms of a polynomial leads to

1
f (f) = g (O/]LD—FJ: - O/ILD—J:) + 552 (O/]LD—HE - 20/113 + O/]LD—LE) + ( o ) : (616)
Assuming the second order of the expansion, one obtains
a?fl =ap+&(ap, —ap_,)+ (0)2. (6.17)

For a one-dimensional scheme the transport equation for the void fraction, in absence
of phase transition, does not have a source term. Unsteady, pure advection of the
control-volume averaged value of o may be written as

0 1 1 o

/adQ:— (ati) .71 dS. (6.18)

Qp
Gp 89

Discretization of (6.18) assumes the form of the second-order approximation for

o5, namely

il on UeSe AL Uy S AL
ap T =ap— < Op Qe — 0 aw> . (6.19)
Now, comparing (6.19) and (6.17), it is easy to recognize links between individ-
ual terms of the equations. Notice, superscripts n applying to the face values of « in
(6.17) are dropped, because these variables are time dependent. Clearly, higher orders
of approximation of (6.17) are also possible, however, Leonard (Leonard, (1991))
recognized that the second order scheme resulted in a low level of error in the distri-
bution of a, i.e. also one that is acceptable for the purpose of this research.

The face values of «, appearing in (6.19), must be averaged in time, since the
transport equation contains an unsteady term. To maintain the second-order accuracy
of the scheme in all dimensions, effective cell-face boundary values of the convected
variable are estimated from the second-order time averaging. If o/, is the instanta-
neous value of the void fraction at a face of the control volume, then the averaged
value over time reads, e.g for face nb,

At
1 UnpAtSpy , 4, n

nb = A7 /@;zb dt = oy, — % (any — ap)- (6.20)

0

The term in front of the parenthesis at the right hand side of (6.20) is the CFL number.
Hereinafter, the notation ¢ will refer to the CFL number, thus (6.20) is rewritten in
the form

Qnp = app — Cnp (0 — A'p) (6.21)
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or
Qnpp = (1 - cnb) a?Lb =+ Cnba%- (6.22)

The choice of the spatial approximation for the face value of « is arbitrary, however,
as shown in (Leonard, (1991); Ubbink, 1997), the third order quadratic upstream
interpolation (QUICK) scheme gives satisfactory results. This interpolation, for the
e boundary of the control volume and with the assumption that the flux direction is
from w to e, assumes the form, see (Leonard, (1997)),

oo = 5 (0 +a}) + é (2% + ) . 6.23)
Substitution of (6.23) and a similar expression for the w boundary in (6.21) and sub-
sequently (6.21) in (6.19) gives the value of ap at the new time. This procedure
involves the pure QUICKEST (QUICK with Estimated Streaming Terms) algorithm,
however, it does not guarantee an accurate distribution near a region of high gradients.
In particular, for shocks, the algorithm cannot handle the compressive character of the
distribution while also an oscillatory behaviour results and the scheme is dissipative.
Consequently, without additional numerical procedures aiming at improvement of
QUICKEST the method is not adequate for the present purpose.

6.2.2 Normalized variable

For the evaluation of the face value of the void fraction, two nodes are involved,
adjacent to the face, and one additional node positioned right behind the face neigh-
bouring nodes, dependent on the direction of the flow. Variation of flow directions
combined with the various possible signs of the gradient in « implies that a large
number of cases has to be considered, if one maintains the compass notation. A
convenient way to avoid this is to normalize the notation. Simultaneous notation of
involved nodes, which indicates their dependence on flow direction rather than their
position in the domain, eliminates ambiguity and further limits cases that need to be
considered. At this point one introduces the donor-acceptor concept for characteriz-
ing the control volumes (nodes). From the donor control volume, D, a flux emanates
and enters the acceptor cell, A. The upstream control volume, U, is positioned behind
D when looking in downstream direction, see Fig.(6.4). Hence, the notation depends
on the flux direction, but not on the orientation of the domain. The normalised value
of the void fraction at any point x between the nodes A and U reads

a(:c)—aU.

a(z) = (6.24)

A —Qy

It is clear, that the normalized values for the upstream and acceptor nodes are

ay =0, o =1. (6.25)
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FIGURE 6.4: Donor-acceptor arrangement. U - upstream cell, D - donor cell, A -
acceptor cell.

The above feature illustrates the useful character of normalized variables, such that
whenever a variable assumes a value outside the range between zero and one, it indi-
cates an extremum of the function. Therefore, it is easy to detect oscillatory behaviour
of the void fraction.

The effective « face value, given by (6.22), reads in the terms of normalized vari-
ables

2

Hence, the normalized face value of « is a function of the normalized void fraction
in the donor cell only, while the CFL number appears as a parameter, i.e.

Gy = f (G)) (6.27)

The function given in (6.27) may be illustrated in the so-called normalized variable
diagram (NVD) which is a convenient tool describing the functioning of the relation.
Such diagrams are shown in the following sections.

1 1
Ay = (1 — cnp) ( (a@ph+1)+ 3 (1-— 2&%)) + cp@h. (6.26)

6.2.3 Universal Limiter - Hyper-C

The normalized variable allows for the evaluation of the function relating the effec-
tive, time-averaged, normalized face value of the void fraction and the normalized
value of « for the donor cell. The method constitutes a convenient and straightfor-
ward tool for checking the monotonicity of the void fraction distribution. Universal-
ism of the idea relies on the independency on the order of approximation used for
the calculation of the face value o, , see (6.22). Nevertheless, the computational
molecule involved in an approximation cannot exceed a five node stencil, e.g. an ac-
ceptable scheme is the donor-acceptor-upstream scheme. Non-monotonic behaviour
of a distribution becomes evident as values of the normalized variable outside the
range [0, 1]. Clearly, the necessary condition is that the variable is positioned be-
tween an acceptor and upstream cell. Thus, the monotonic condition for a donor cell
requires

ah € 0,1]. (6.28)
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The effective, normalized face value at the face between the donor and acceptor, is
subject to an additional constraint. This limitation is depicted in Fig.(6.5) which
shows the monotonicity-maintenance criteria for the void fraction at the faces of the
control volume. For the e face, the constraint of monotonicity imposes

flux direction

FIGURE 6.5: Monotonicity-maintenance criteria for the faces of the control volume.

ap < ae <1 (6.29)

If a maximum of the void fraction appears in the vicinity of the e face, the value
of &, exceeds one. In the case of a minimum, one observes a negative value of
the normalized void fraction. The spurious extremums are effectively eliminated by
imposing the constraint

Gy = & for @& ¢ [0,1]. (6.30)

This influences the distribution &,;, = f(a&},) shown in the NVD. The function
passes through points (0,0) and (1, 1), regardless of the order of approximation.
Beyond the range [0, 1], the function is the line given by (6.30), see (6.6) or (6.7).

The QUICKEST algorithm is not able to handle high gradients of the convected
variable. The method dissipates artificially a shock-like gradient, thus, the distri-
bution of the variable becomes smooth. With the help of the monotonicity criteria
described above, an effective improvement of QUICKEST is constructed. The con-
dition of monotonicity for the face w is written, see Fig.(6.5), as

G € [0,65] . (6.31)

The equation for the void fraction at the new time, (6.19), normalized and expressed
in terms of the donor-acceptor notation, reads

aptt = a — (celte — Cwbu) - (6.32)
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Rearrangement of (6.32) yields the value of « of the e face:

Ge=— (&% — &%) + “a,. (6.33)
Ce e

The monotonicity condition (6.31) shows, that &, will not be negative for the dis-
tribution shown in the Fig.(6.5). One can easily imagine that the larger the gradient
of the void fraction between nodes U and D the more &;), tends to zero. Clearly, an
extreme case is the case that &, = 0. In such situation, a jump in &" takes place
somewhere between face w and node D. This implies that 5/,5“ will become zero as
the effect of advection. Thus, the jump proceeds towards the e face and the form of

(6.33) simplifies to
de = 2. (6.34)

The approach leading to (6.34) is termed Hyper-C and represents the most com-
pressive method for capturing the shock-like behaviour of flow parameters. In com-
bination with the monotonicity criteria described above, the results remain free of
oscillations. The relation &, = f (&%) is shown in NVD, Fig.(6.6), with the CFL
number as parameter. Although the algorithm allows maintaining a high level of res-

Cp=!

FIGURE 6.6: NVD for Hyper-C.

olution, it may not be used on its own. Since it handles very well a step change in
variables, it is also responsible for artificial stepping of gradients which are supposed
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to be smooth (Lafaurie, Nardone, Scardovelli, Zaleski and Zanetti, (1994); Leonard,
(1991)). Hyper-C flattens local extremums, which is known as the ’clipping’ defect.
Consequently, the algorithm may only be used in combination with other approxima-
tion methods, where Hyper-C operates as an universal limiter.

6.2.4 ULTIMATE QUICKEST

In this subsection the combination between Hyper-C and QUCKEST will be de-
scribed. The oscillatory behaviour of the QUICKEST scheme when used alone is
effectively damped by the monotonicity criteria incorporated in the construction of
Hyper-C. In order to keep a good resolution of a step-like behaviour of a convected
variable the QUICKEST algorithm is switched automatically to Hyper-C, if one ex-
pects the appearance of high gradients. The combination of the two methods in de-
picted in the NVD for ULTIMATE QUICKEST, see Fig.(6.7). Figure (6.7) shows,

FIGURE 6.7: NVD for ULTIMATE QUICKEST.

that for small values of a7, Hyper-C is active. According to (6.24), the normal-
ized value for the donor cell denotes the relation between the donor-upstream and
acceptor-upstream gradients. If this value is small one may expect a step in the vari-
able. Then, this shock behaviour is conserved by Hyper-C. The higher the value of
a’, the gentler the distribution of variables, thus, the scheme switches to QUICKEST.
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The ULTIMATE QUICKEST algorithm reads

5 MIN (Gnpg, Gy, ) for @y € [0, 1],
[0
e g for 6% ¢ [0, 1],

(6.35)

where ap, and apyp,, denote the normalized face values of the void fraction evalu-
ated by QUICKEST and Hyper-C, respectively. Leonard (Leonard, (1991)) shows,
that the limited QUICKEST algorithm for most practical solutions is the best of the
algorithms using a five points upstream-donor-acceptor stencil. Figure (6.8) shows
the result of a simulation of a pure advection for different types of the initial dis-
tribution. The test cases were carried out by Leonard (Leonard, (1991)) in the one-
dimensional domain. The initial distribution of the convected variable assumes one
of three shapes, namely the step, sine-squared and semi-ellipse. The figure illus-
trates the differences in performance between algorithms. It is clear, that the limited
QUICKEST is far superior to any other scheme shown.

6.3 CICSAM differencing scheme

CICSAM is the acronym of Compressive Interface Capturing Scheme for Arbitrary
Meshes. The algorithm adapts the ULTIMATE QUICKEST one-dimensional scheme
to a multi dimensional scheme. In the one-dimensional scheme the gradient of the
void fraction has only one possible direction. However, in two-dimensional space this
is not necessarily true. In such a situation, the direction of the gradient of the void
fraction may vary dependently on the orientation of the gas-liquid interface. This is
taken into account by the weighting factor y.;. which controls the contribution of the
ULTIMATE QUICKEST and the pure Hyper-C algorithms in the evaluation process
for the normalized face value of .. Hence, the value of &,,; is found from the relation

dnb = ’Ycic&H + (1 - ’Ycic) @UQ- (636)

The weighting factor in (6.36) depends on the angle 6 at which the interface is in-
clined with respect to the flow direction, see Fig.(6.9). Since one uses a split operator
scheme and a uniform grid, the flow direction for each sweep coincides with the di-
rection of the vector connecting the nodes of the donor and acceptor control volumes.
This results in

Vo)
I (6.37)
(%), 1]

D

The weighting factor in then computed according to

cos (260) + 1 1>
2 ) )

6 = arccos

Yeic = MIN <k’)/cic (6.38)
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FIGURE 6.8: Results of one-dimensional advection for different numerical schemes;
a) ULTIMATE second-order upwind; b) ULTIMATE Fromm; c¢) ULTIMATE
QUICKEST. The CFL number for all cases: c¢=0.05. The graphs taken from
(Leonard,(1991)).

where k.. > 0 is the factor controlling the contribution of the algorithms in the
evaluation of ¢,;,. The recommended value of k., is 1.0 (Ubbink, 1997), however,
it is a matter of experience which value is the most suitable for a particular simulation.
Once the interface is parallel or nearly parallel to the flow direction, .. tends to zero.
Consequently, one may expect a mild gradient passing the considered face, thus, the
ULTIMATE QUICKEST, with the pure QUICKEST, will play a role. Otherwise, if
the interface tends to be perpendicular to the flow direction and the gradient increases
its steepness, 7ycic increases giving priority to Hyper-C.

Since, the normalized, time-averaged, face value of « is known, evaluating its
actual value is straightforward. For the normalized value, (6.24), the actual face
value yields

Onp = dnbaﬁ + (1 — dnb) 047(}. (6.39)

In order to eliminate ag; from (6.39), the same equation, (6.24), but for the donor
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FIGURE 6.9: The angle theta between the vector connecting the centroids of the
donor acceptor cells and the direction of the interface gradient.

cell, is used. Consequently,

n ~n n
Qp —aply

U= 6.40
T T Ay (6.40)
Substitution of (6.40) in (6.39), gives
anp = (1 = Bup) o + Brpas, (6.41)
where R .
Brb = a{“’iﬁ:f} (6.42)
—ap

In the algorithm the face values of the void fraction are substituted in equation (6.19),
where, for a two-dimensional scheme, source terms appear at the right hand side
of the equation. These terms are associated with the divergence resulting from the
sweep, see (6.1), and if occurring the divergence from the phase transition. The
procedure for the evaluation of the void fraction at the face is repeated for each sweep
of the Eulerian-Lagrangian algorithm. This finally leads to the new distribution of «
at the new time.







RESULTS

7.1 Single phase flow

This section is devoted to results of the flow around hydrofoil NACA 0015 in a chan-
nel. The results of the simulation, give insight in effects brought about by various
discretization methods for the convective term in the momentum equation. These
methods considered are: a blend of UDS (Upstream Differential Scheme) and CDS
(Central Differential Scheme) with emphasis on UDS; a blend of UDS and CDS with
emphasis on CDS; and, CDS improved by artificial dissipation. The latter has been
described in detail in Sec.(5.2.2). Methods with the UDS and CDS blend are first-
order accurate schemes in space and time. CDS improved by artificial dissipation is
second-order accurate in space and first-order in time. Since the energy equation does
not take part in these simulations, the global accuracy in space for the CDS method
with artificial dissipation is second-order.

Three test cases are discussed. The calculations have been carried out in the com-
putational domain illustrated in Fig.(7.1). The domain has been split into two blocks.
One block wraps around the hydrofoil, the other block, the front block extends be-
tween the hydrofoil and the inlet plane. The latter block is necessary in order to
minimize the spurious effects of the variation of the pressure at the inlet of the com-
putational domain. Since the inlet of the block around the hydrofoil is too close to
the hydrofoil, a constant pressure boundary condition at the inlet of this block would
give inaccurate results. Introduction of the front block solves this problem. The front
block is discretised with an H-type grid of 16 x 26 control volumes, whereas the block
around the hydrofoil of C type consists of 134 x 41 control volumes, see Fig.(7.2).
This is the basic grid. At the end of this section the influence of the grid density on
the results is considered.

The flow is assumed incompressible and inviscid. The simulation is carried out
neglecting effects of gravity. Inlet velocity, directed horizontally, amounts to us, =
12[m/s]. The angle of attack of the hydrofoil is 6°. At the outlet, a constant pres-
sure boundary condition is imposed. The outlet pressure is taken equal to po, =
74175[Pa). The density is taken equal to p = 999[kg/m?]. Phase transition is ab-
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FIGURE 7.1: Geometry of the computational domain for NACA 0015 at 6° angle of
attack.
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FIGURE 7.2: Grid. The front block 16 x 26 cells; the second block 134 x 41 cells.

sent.

Since the flow is inviscid and gravitational forces are not present, one may establish
criteria that determine the quality of numerical results. The absence of viscous forces
implies that the resultant drag force exerted by the flow on the hydrofoil (or any
other object) must be zero. Once gravitational forces are neglected, according to the
Bernoulli equation, the value of the total pressure must be constant everywhere in the
domain. Additionally, following the theory of the flow around a body and employing
the Kutta condition, there are two stagnation points, one at the leading and one at the
trailing edge. At these points the velocity becomes zero and the value of the static
pressure is equal to that of the total pressure.

The following results comprise illustrations of static and total pressure distribu-
tions, velocity vectors around the hydrofoil as well as drag and lift forces. Provided




7.1. SINGLE PHASE FLOW 113

are plots of the pressure coefficient, defined as

p—p
Cp="F—5" (7.1)
75 PU

and the total pressure coefficient, defined as

_ Pt — Po

Cpt
3PuZ

) (7.2)

with p, = p + 1/2p|@? and distributions of static and total pressure as well as
tangential velocity on the hydrofoil surface are also provided.

7.1.1 UDS/CDS blend 75 %

It is well known, that UDS, which is first order accurate, underestimates the values of
the variables. This is caused by the fact that variables which are to be evaluated at the
boundary of the control volume are taken equal to those at the centroids of the control
volume. Consequently, in a region with high gradients, where the difference between
values at adjacent nodes is substantial, one may expect that the difference of the value
at the cell face and that at the centroid is also substantial (Leonard, (1979)). Clearly,
the coarser the grid, the larger the underestimation of the variable. Refinement of
the grid decreases the magnitude of the underestimation. Only infinitesimally small
cells would give the exact result. The advantage of UDS is that the scheme provides
unconditional numerical stability.

In this test case the UDS scheme is blended with CDS. The approach is constructed
such that the contribution of UDS and the part of CDS (the unknown velocity at the
considered control volume) is regarded implicitly, whereas the rest of the CDS term
(the known velocity at adjacent control volumes) is explicit. The blending parameter
is a user controlled coefficient. Here, in order to emphasize the effect of UDS, the
contribution of the UDS scheme has been set at 75%.

The underestimation appears in regions of high gradients. For the flow around the
hydrofoil this region is positioned at the leading and at the trailing edge of the profile,
where the flow stagnates. Underestimation of velocity takes place at the nose, at the
second point above the stagnation point. This is the region of the largest changes of
the velocity, from about zero to the highest value in the domain. Since, the highest
velocity is underestimated and it contributes in the evaluation of the velocities at the
subsequent nodes at the suction side, the velocity at neighbouring cells also has a
too low magnitude. One can observe this effect comparing Fig.(7.4c) and Fig.(7.6c).
The profiles of velocity at the suction side indicate that at a small distance from the
surface a stronger dissipation of kinetic energy appears. This numerical dissipation
has an effect on the static pressure which is also lower than expected (compare the
pressure plots in Fig.(7.4c) and Fig.(7.6¢) or Fig.(7.8c)). The underestimation of the
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two variables superimposes resulting in a deterioration of the distribution of the total
pressure, as well as the total-pressure coefficient. Since in Fig.(7.4) the distribution
of the total pressure should be a straight line, the values at the suction side are sub-
stantially lower than those at the pressure side, see Fig.(7.4b) and Fig.(7.4c). These
losses in the total pressure are also observed in the total pressure isolines, Fig.(7.3b),
where the region of dissipated energy is observed at the leading edge and visible far
behind the trailing edge. Although, both, the static pressure and the velocity, have a
contribution in the total pressure, the velocity plays the major role as it appears as a
non-linear term in the Bernoulli equation. The underestimation of the static pressure
is also expressed by the drag force which amounts to 351.17[N/m)], see Fig.(7.4a).
Since calculations are carried out in two dimensions, the dimension of the drag and
lift force is given in Newton per meter in the third direction. Since the flow is inviscid
the value of the drag force should be zero. Since the scheme has a contribution of
CDS, the results are not free from oscillatory effects. These are observable in regions
of high gradients, i.e. at stagnation points. At the leading edge, one can notice the
considerable overshoot in the total pressure, see Fig.(7.4c) and Fig.(7.4b). Since the
value of total pressure is more sensitive to changes in the velocity than in the static
pressure, one may assume that the reason lies in the overestimation of the velocity.
The overestimated value is placed at the neighbour node, towards the suction side.
The possible explanation of the effect will be given in the following subsection. Os-
cillatory behaviour also appears on the lower side of the profile, at the trailing edge,
see Fig.(7.4c).

The plots in Fig.(7.4c) for the tangential velocity along the contour of the hydrofoil
should show closed lines, whereas at the trailing edge, one can see a discontinuity in
the distributions. It results from the way the grid has been constructed. Since the
grid is of C type and consists of quadrilateral cells, the two control volumes which
boundaries are next to the trailing edge, contact each other only at their two corners.
Surface values of variables are obtained from extrapolation from centroids to cell-
boundary midpoints. In the cell-centered scheme the flow quantities are not known
at the corners, thus the trailing edge value is not included in the plot.

7.1.2 UDS/CDS blend 5%

In this test case, the dominant scheme, CDS, is of second order. It produces spurious
oscillations in the distribution of the variables due to the odd-even decoupling dis-
cussed in Chapter (5) and (Leonard, (1979)). The decoupling results in the so-called
checkerboard pattern of the variable distribution. Clearly, the higher the gradients of
the variable the stronger the oscillation. In extreme cases, particularly in structured,
thus quadrilateral, grids the oscillatory behaviour may result in loss of numerical sta-
bility in the course of the calculation. Therefore, in the test case, described in the
present subsection, the UDS scheme has been incorporated as a smoother of oscilla-
tions, which maintains numerical stability.
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FIGURE 7.3: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
a = 6° peo = T4175[N/m?]. UDS/CDS 75%. C-type grid 134 x 41 control volumes.
The computed total pressure py. ., = 1.46103[bar]. a) static pressure isolines; b)
total pressure isolines; c) velocity vectors.
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FIGURE 7.4: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
o = 6° poc = TA1T5[N/m?|. The computed total pressure py,,,,, = 1.46103[bar].
UDS/CDS 75%. C-type grid 134 x 41 control volumes. a) drag and lift force as func-
tion of time; b) coefficients of total, C'p;, and static pressure, C'p; c) total pressure,
Py, Static pressure, p, and tangential velocity, vel.
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Oscillations appear in regions of high values of the gradient. This can be observed
in Fig. (7.6¢) and (7.6b). The oscillations of the velocity at the pressure side begin
to appear in the region right downstream of the stagnation point. The shorter the dis-
tance to the trailing edge the larger the amplitude of the oscillations, see the velocity
plot in Fig.(7.6c). At the leading edge, one can see the unphysical peak in the total
pressure and its coefficient. It shows up as the white spot at the nose of the profile in
Fig.(7.5b). This extremum is positioned at the node right above the stagnation point.
In this region the highest gradient of the velocity appears. Since CDS is the domi-
nant scheme, according to the above discussion on its drawbacks, the contribution of
variables at the node just above the stagnation point in the evaluation of the velocity
played a minor role. Thus, clearly the velocity has been estimated with variables
at the stagnation point and at a point in the region of the highest velocities. Large
values of the velocity above the considered node probably led to the overestimation
of the variable in the control volume the node belongs to. In two dimensions, CDS
forms a checkerboard pattern of values. This means that oscillations propagate in
both directions of the grid. This is confirmed by Fig.(7.5b), where the wiggles ap-
pear at the suction and pressure side, and propagate in the direction normal to the
hydrofoil. The problem associated with the velocity distribution does not affect the
pressure. Values of the velocity at peaks and minimums are used in the evaluation
of fluxes through the boundaries of the control volume. Assuming second-order in-
terpolation of the variable on the boundary, see (5.9), one obtains the flux estimated
on the basis of an averaged velocity which cancels the oscillation. Thus, fluxes are
evaluated with good accuracy. Pressure correction is calculated on the basis of inte-
grated fluxes over the boundaries of the control volume, see (5.64). Since the gradient
of the correction may cause oscillatory behaviour of the correction distribution, the
additional term with the third derivative of the pressure is employed to eliminate
this spurious effect, see (5.64). Taking this into account, there is no reason that the
pressure correction should depart from a smooth distribution. Therefore the pressure
distribution remains smooth, see the static pressure plot in Fig.(7.6c) and the static
pressure coefficient in (7.6b). The averaged velocity, particularly at the cell face, is
approximately correct, thus the estimation of the pressure leads to a high level of
accuracy. This is also evident in the drag force, which amounts to 34.68[N/m| only
and a substantially higher value of the lift force, see Fig.(7.6a). This is a huge differ-
ence in comparison to the outcome described in Sec.(7.1.1). The proper estimation of
the velocity also affects the total pressure. In Fig.(7.6¢) and (7.6b), one can observe
that the distributions are approximately straight lines (except close to the trailing and
leading edge), for the total pressure and its coefficient, respectively. Comparing the
results of the UDS dominated scheme with the CDS dominated scheme, it is con-
cluded that on the same grid the latter gives substantially better results, much larger
tangential velocities, lower static pressure (higher lift, lower drag) and lower values
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FIGURE 7.5: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
a = 6°, poo = TALT5[N/m?). UDS/CDS 5%. C-type grid 134 x 41 control volumes.
The computed total pressure py,,, = 1.46103[bar|. a) static pressure isolines; b)
total pressure isolines; c) velocity vectors.
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FIGURE 7.6: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
a = 6°, poo = TALT5[N/m?]. UDS/CDS 5%. C-type grid 134 x 41 control volumes.
The computed total pressure py,,,,, = 1.46103[bar]. a) drag and lift force as function
of time; b) coefficients of total, C'p;, and static pressure, Cp; c) total pressure, py,
static pressure, p, and tangential velocity, vel.
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of the numerics-induced losses/gains of total pressure.
7.1.3 CDS and artificial dissipation

To cure the drawbacks associated with the oscillatory behaviour of CDS, an addi-
tional term has been added to the convective term of the momentum equation, namely
artificial dissipation. The main concept of the method employing CDS with artifi-
cial dissipation has been described in (Jameson, Schmidt and Turkel, (1981); Pul-
liam, (1986)). In the present method the artificial dissipation consists of two terms,
the second order implicit and the fourth order explicit dissipation term. The general
concept is that the fourth-order dissipation plays the role of the odd-even oscillation
damper, whereas the second-order one is supposed to control the stability in regions
with large gradients. The dissipation term is constructed such, that the higher the
second-order dissipation term the lower the fourth-order one, see (5.20) and (5.21).

The value of the dissipation coefficients depends on the particular simulation.
Many test cases has been carried out to determine proper values for the coefficients.
For the test case described here the coefficients are chosen as:

-a] = 1/8,
-ag = 1/8,
~by =1/32,
-by =1.6.

The first visual effect in the plots of the velocity distribution around the hydro-
foil surface, is that of effectively damped oscillations. The oscillations disappeared
almost over the whole length of the pressure side, see Fig.(7.8c). However, at the
stagnation points, specifically the rear stagnation point, there is still some oscillation
present. Nevertheless, at the nose of the profile the magnitude of the peak in the
total pressure remained approximately the same as in the case of the dominant CDS
method. Since, the second-order dissipation term in the dissipation is responsible for
overshoots in regions of very high gradients, it seems to be clear, that increasing the
value of this term might improve the result. However, this affects the magnitude of
the fourth-order dissipation term which attains lower values and does not perform as
well. Clearly, it is also possible to decouple the two terms and let them act separately.
Then, although the fourth-order term was set at a proper level, the second-order one,
higher than in this simulation, would affect not only the solution in the region of the
high gradient, but also in the rest of the domain. This would provide a too large over-
all dissipation, such as in the case of the dominant UDS. Hence, the current value of
the second-order dissipation term is maintained.

The total pressure is influenced by the velocity and the pressure. Since both quan-
tities are represented correctly, the total pressure is a straight line in the regions of
smooth velocity distribution, see Fig.(7.8c) and Fig.(7.8b). Moreover, the value of
the total pressure approximately coincides with the exact one.

The oscillations of the velocity near the hydrofoil surface have been effectively
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removed. The distribution of the static pressure does not have to be affected by the
oscillatory behaviour of the velocity. However, values of the pressure can deteriorate
if the overall prediction of the velocity departs from the correct one. The artificial
dissipation constitutes an additional term, of the same order, or of higher order as the
truncation error, which for finite mesh changes the original form of the convective
term in the momentum equation. Thus, it is important to realize that this added term
modifies the momentum equation and the coefficients used should be kept as small
as possible while still maintaining stability (Pulliam, (1986)) and allowing for more
realistic distributions of the variables free of oscillations. Apparently, in the case of
the present simulation, the artificial dissipation affected the velocity, affecting only
slightly the distribution of the static pressure. It is evidently revealed by the value of
the drag force, which amounts to 20.67[N/m], see Fig.(7.8a). This particular result
is not ideal. However, the overall outcome appears as the most accurate one among
the three schemes described in this section.

To analyze the influence of the grid resolution, two additional simulations have
been performed, one on a coarser grid, one on a finer grid. For the one assuming
the coarse discretization, the grid 68 x 22 control volumes has been used. The grid
with 266 x 80 control volumes has been used for the simulation assuming the finer
resolution. The results are illustrated in Fig.(7.9) in which for the three schemes the
drag force is shown as function of the number of iterations. This figure shows that the
finer the grid the lower the value of the drag force. It also shows that the rate of con-
vergence of the method depends on the number of grid points, i.e. the finer the grid
the slower the convergence rate of the numerical procedure. The CDS method with
artificial dissipation requires an order of magnitude more iterations than the blended
schemes. Figure (7.10) shows the relation between numerical error (drag force) and
number of control volumes used to discretize the computational domain for the three
discretization schemes described above. Figure (7.10) shows that the UDS/CDS 75%
scheme features the largest error, which decreases linearly with the average cell size.
The UDS/CDS 5% scheme shows a reduced error which still decreases linearly with
cell size. The CDS-plus artificial dissipation scheme converges almost quadratically
with cell size. The non-linear behaviour of this scheme is caused by the decrease
in the grid spacing. The value of the second-order artificial dissipation is controlled
by factor ¢ which is given by the minimum function, see (5.21). Since the size
of control volumes tends to zero the second-order derivative of pressure decreases
too. Eventually, the second-order derivative has such a small value that it controls
the value of ¢(?) instead of the constant a;. This situation corresponds to a change of
the discretization scheme, therefore the results for the CDS-plus artificial dissipation
scheme do not correspond to results for precisely the same scheme.
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FIGURE 7.7: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
a = 6° ps = T4175[N/m?]. CDS coupled with the artificial dissipation. C-type
grid 134 x 41 control volumes. The computed total pressure p.,, = 1.46103[bar].
a) static pressure isolines; b) total pressure isolines; c) velocity vectors.
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FIGURE 7.8: Results for flow around the hydrofoil NACA 0015 u~, = 12[m/s],
a = 6° poo = T4175[N/m?2]. CDS coupled with the artificial dissipation. C-type
grid 134 x 41 control volumes. The computed total pressure p,,, = 1.46103[bar].
a) drag and lift force as function of time; b) coefficients of total, C'p;, and static
pressure, C'p; c) total pressure, py, static pressure, p, and tangential velocity, vel.
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artificial dissipation.
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FIGURE 7.10: Numerical error as function of number of control volumes in the com-
putational domain; dimensionless h is defined as the square root of the number of
control volumes in the computational domain, |le| = D/0.5pu’.c, with D - drag
force [N/m] and c - the hydrofoil chord. Dashed line - UDS/CDS scheme, blend
75[%]; dash-dotted line - UDS/CDS scheme, blend 5[%]; c) solid line - CDS with
artificial dissipation.

7.2 Free surface capturing

This subsection is devoted to the validation of the mathematical and numerical model
for the case in which a gas-liquid interface is present. Phase transition is not active.
The flow is incompressible, viscous without effects of turbulence. The gravitational
force acts. Physical properties of the liquid phase are those for water at a temperature
of 15°C" and at atmospheric pressure. For the gaseous phase properties are set for air
at the same conditions as for water. Properties are shown in Tab.(7.1). In the momen-

Phase | p[kg/m?] | plkg/ms]
gas 1.23 1.76e-05
liquid | 998.85 0.00115

TABLE 7.1: Physical properties for vapour and liquid water at the temperature of
15°C.
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tum equation the second-order accurate, spatial discretization, CDS with artificial
dissipation, has been used. For the energy equation the spatial discretization has first-
order accuracy and uses the pure UDS method. First-order accurate discretization in
time has been used. For capturing of the free surface the standard VOF technique
has been used. The standard test case is considered, namely the collapse of a water
column (Harlow and Welch, (1965); Ramaswamy and Kawahara, (1987); Koshizuka
and Oka, (1996)). The simulation follows the experiment carried out by Martin and
Moyce (Martin and Moyce, (1952)) in which a water column was at one of the nar-
rower sides of a container. At the initial instant, the bulk of the liquid was constrained
by a diaphragm. The diaphragm was suddenly lifted to release the column. This was
done fast enough to not affect the flow itself. The cross-section of the experimen-
tal setup is illustrated in Fig.(7.11) where the water column is set at the left side of
the container. The rectangular base of the column has the dimension a x a. The
height is 2a. It has been assumed, that viscous forces associated with the front and
rear rigid boundary of the vessel, are neglected. Thus, the experiment provides a
two-dimensional situation and due to this it is suitable for the CFD method described
in the present work. Martin and Moyce considered the propagation of the front of
the column in the horizontal direction (collapse of the top surface of the column was
also measured) in a container which is not constrained at the right side. The current
simulation, however, assumes the vessel is to be constrained by an impermeable rigid
boundary, see Fig.(7.11). The boundary is set at a distance of 4a from the left wall of
the vessel. It is similar to the experiment of Koshizuka (Koshizuka and Oka, (1996)),
which will be used here for qualitative comparison. Until the front of the column
impinges on the right boundary, it is assumed that the front and the top of the column
will behave in the same way as in the unconstrained vessel. Thus, the experiment car-
ried out by Martin and Moyce serves the quantitative assessment of the quality of the
numerical results. The discretised computational domains are shown in Fig.(7.12).
The domain on the right consists of 82 x 82 control volumes with a column base of
a = 57.15[mm], equal to the one of Martin and Moyce. Results for this domain will
be used for the quantitative comparison. For the qualitative assessment, the second
domain on the left of Fig.(7.12) will be utilized. This consists of 82 x 52 control
volumes with the column base a = 146[mm], equal to the one of Koshizuka. For
the rigid boundaries bounding the domain, the non-slip boundary condition has been
applied. At the top of the domain, where the outlet is assumed, the constant pressure
boundary condition is applied.

Aside from the quantitative evaluation of the propagation of the column front and
qualitative comparison to the results of the experiment of Koshizuka, an assessment
with respect to mass conservation has been carried out. In order to achieve the objec-
tive, the left and right rigid boundary of the 82 x 82 domain has been extended such,
that the water arising after the impingement onto the right wall leaves the domain
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FIGURE 7.11: Geometry of the experimental setup of Martin and Moyce (Martin and
Moyce, (1952)).

later than in the case of the domain with 82 x 52 control volumes. Because of this,
the evaluation can be carried on for a longer time. To visualize mass disappearance
or production, the energy equation has been employed. The initial temperature is
uniform, equal to 15°C. Each change of this value reflects the loss or appearance of
mass in the system. In this way, one reveals the importance of the implementation
of the term with the divergence of the velocity field in each step of the split operator
method applied to the transport equation for the void fraction, see Sec.(6.1).

First, the qualitative assessment will be shown. The propagation, impinging and
deformation of the gas-liquid interface is shown in Fig.(7.13) and (7.14). The time
interval between the photographs taken from the experiment of Koshizuka is 0.2[s].
They correspond to the time intervals of the plots with the computed void fraction
distribution.

At the beginning of the flow, gravitational forces make the column to change its
shape. The column starts to deform, its bottom part seeking the most stable state.
This state will finally be obtained, when the water covers the bottom of the vessel
and its kinetic energy lowers allowing the liquid to remain at rest. The observations,
as well as calculations have not been carried out until that moment. They are reported
up to the first second of the liquid motion. At that stage the liquid has a complicated
geometry of its interface and is certainly far from equilibrium. The scale of the
experimental setup and the time period for which the liquid motion was observed and
calculated, allows neglecting the viscous forces.

At the time 0.2[s] the front of the column has progressed to about 75 % of the
length of the bottom of the vessel. This result corresponds well with the photograph
taken at the same moment. The predicted interface shape is aligned smoothly, thus,
the monotonic behaviour of the void fraction is conserved. Also evident is the cir-
culatory flow induced in the air by the motion of the collapsing water column. At
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FIGURE 7.12: Computational domains for collapse of the water column. On the left
- 82 x 52 control volumes, the water column equal to one of Koshizuka (Koshizuka
and Oka, (1996)); on the right - 82 x 82 control volumes, the water column equal to
one of Martin and Moyce (Martin and Moyce, (1952)).

the subsequent stage the water impinges onto the right boundary (this has not been
shown in the figures). At this moment the kinetic energy of the water flowing along
the bottom transforms into the potential energy associated with the total pressure at
the stagnation point positioned somewhere at the location of the impingement. Since
there is not any constraint on the top, the liquid begins to rise, acting against gravita-
tional forces and forming the secondary column at the right boundary of the domain.
This moment has been captured at time 0.4[s] when the free surface of the water is
nearly parallel to the domain bottom. The top of the secondary column is elevated
such, that the liquid leaves the domain at the right upper corner. The subsequent stage
of the flow shows the moment when gravitational forces halt the upward motion of
the secondary column. At time 0.6[s] the flow nearly stops and the secondary col-
umn begins to deform at its side. The formed bump folds down capturing a portion
of air. During this process the front of the bump impinges on the gas-liquid surface.
The stream reaches the domain bottom, partially transforming its kinetic energy into
potential energy. Pressure increases causing the front jet of sprayed water droplets.
This has been captured at the time 0.8]s]. Since the methods for the transport of the
void fraction tend to keep the interface sharp, the sprayed droplets accumulate in a
structure in which the liquid has a high weight contribution. This affects the position
of the jet in the numerical simulation. It is lower than that in the corresponding pho-
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tograph (Ubbink, 1997).

Experiment shows, that the trapped gaseous structure, described above, is in the form
of a group of bubbles or a foam. The numerical methods tends to increase the reso-
lution of the interface, thus the simulation shows this structure as separated from the
bulk of the liquid. However, the contribution of the gas is lower than in the region
of the pure gas. The final captured stage, at time 1.0[s], shows the impingement of
the front onto the left wall. This process encapsulates a large portion of the sprayed
droplets. This is also revealed in the experiment. The numerical result corresponds
qualitatively well with the result of the experiment, showing the gas-liquid structure.
The position of the impingement also resembles that shown in the experiment.

The evaluation of mass conservation of the model will be discussed next. First the
quality of the two ways of approximation of the void fraction equation are compared.
The first way concerns the implementation of the divergence of the velocity field at
each step of the split operator method; the second one omits this. The purpose of
this paragraph is to reveal the importance of the divergence implementation in the
equation. Furthermore, it will be shown how it affects the numerical stability of the
solution and the quality of the results.

The transport equation without the divergence term included, results in problems
associated with maintaining the void fraction in the range between zero and one.
Each excursion of the value out of this range, corresponds to the existence of holes
or excesses of mass in the bulk of the considered phase. Most authors then routinely
redistribute the mass in the surrounding cells with some diffusion algorithm or reset
the volume fraction to one or zero, thus destroying mass conservation (Aulisa et al.,
(2003)).

To cure the problem, the divergence is computed in each step of the split operator
method, see Sec.(6.1).

The comparison between the two versions of the discretization of the transport
equation is carried out for the results achieved up to time t=0.43[s]. For the config-
uration of the grid and boundary conditions of the domain, the calculations without
the divergence become unstable at this time. The instability appears not in the form
of numerical divergence, but in the sense, that the value of the CFL number becomes
larger than unity.

In the test case of the water column collapse, it turns out, that the change of mass
summed up in the domain assumes positive values for the calculation without the
divergence. This denotes an increment of the mass of the liquid. The process is shown
in Fig.(7.15) where the dashed lines indicate the non-divergence simulation. In the
same figure one can see the solid lines representing the change of mass resulting
from the transport equation in which the divergence of the velocity field is used. The
difference between the results of the method that includes the divergence and the ones
of the method without divergence is substantial. It is remarkable, that the divergence
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FIGURE 7.14: Comparison of numerical simulation and experimental results of
Koshizuka (Koshizuka and Oka, (1996)). Time frames from 0.8[s] to 1.0[s]. The
numerical result shows the void fraction distribution and velocity vectors.

version of the transport equation tends to a loss in mass, because dm|[kg] assumes
negative values.

Mass variation can be expressed visually by the distribution of the temperature in
the system. This is illustrated for the non-divergence transport equation in Fig.(7.16).
Each portion of mass contains a certain amount of energy. In the energy equation, a
loss or gain of mass automatically causes a change of energy in the form of a tem-
perature change. This is shown in Fig.(7.16) for three points in time. For the sake of
clearness, these time points are also marked in Fig.(7.15) where the vertical, dashed
lines indicate the instants at which the distributions of temperature are presented.
In Fig.(7.16), one can observe, that the majority of the temperature changes assume
values below the initial temperature. This corresponds to a loss of mass. The tem-
perature field outlines the contour of the moving water column. The spots of lower
temperature appear in regions of the highest velocity gradients - at the lower part
of the column front and at the right upper corner of the column. Since the plot of
the mass conservation, given in Fig.(7.15), shows the mass change for the liquid, the
change of the temperature in Fig.(7.16) appears in the vapour side of the domain.
This is caused by the way in which the liquid mass is computed. This quantity has
been computed as the result of differences between the total volume of the domain
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FIGURE 7.15: Change of mass in the domain vs. time. Dashed lines - the trans-
port equation without the divergence; solid lines - the transport equation with the
divergence.

and the volume of the vapour in it, multiplied by the liquid density. Thus, a loss of
vapour mass appears as an increment of the liquid mass, in spite of the liquid mass
remaining at an acceptable level of accuracy. Consequently, the plot of the abso-
lute mass change in Fig.(7.15) expresses the equal but opposite drop of mass of the
vapour.

Mass conservation in the solution for the case with the transport equation incor-
porating the divergence is also studied for time up to ¢ = 0.276[s] when the liquid
(or rather droplets spread, see Fig.(7.18) at time ¢ = 0.276[s]) begins to leave the
domain. Figure (7.17) shows the decrease of the liquid mass, which is monotonic up
to the instant of the impingement of the water column front on the right boundary.
Since the result for the temperature field at ¢ = 0.165[s] in Fig.(7.18) reports regions
of higher temperatures, the decrement of the liquid mass may reflect an increment in
the mass of the vapour. At the location of the front impingement, one may expect a
stagnation point positioned at the right boundary. Such as in the test case concerning
the flow around the hydrofoil, see Sec.(7.1.3), the model fails at this point and in the
region around it where gradients are high. This failure in the prediction is visible
by the sudden drop of the liquid mass at time ¢ = 0.165]s], see Fig.(7.17). Unlike
the flow around the hydrofoil (with the artificial dissipation incorporated), the wake
of the erroneous distribution develops upwards along the rising water column at the
right boundary. This is evident by the steeper slope in the graph of the mass loss of
the liquid, see Fig.(7.17), and by the higher temperatures in the region of the evolving
liquid front, see Fig.(7.18). Notice, however, that the magnitude of the temperature
variation is not as high, as in the case of the transport equation without the diver-
gence incorporated. In the course of the elevation of the water column at the right
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FIGURE 7.16: Temperature variation caused by the lack of mass conservation. Result
for the case of the transport equation without the term with the divergence of the
velocity field.

boundary, its kinetic energy is transformed to potential energy. Thus, the magnitude
of the velocity decreases along with the velocity gradient. In these conditions mass
is conserved with a higher accuracy. This is clear from the decrement of the slope of
the graphs at the time close to ¢t = 0.276]s], see Fig.(7.17).

Further quantitative evaluation follows the experiment carried out by Martin and
Moyce (Martin and Moyce, (1952)). In this paragraph, the calculated propagation of
the front of the water column is compared to its experimental counterpart. Collapse
of the column top is also investigated.

Since the model does not incorporate reconstruction subroutines of the interface,
the problem of extraction of data appeared. Since there is not an exact interface, it has
been assumed, that the interface is always perpendicular to the rigid boundary. Thus,
in the control volume positioned in the neighbourhood of the wall, the position of
the interface is determined by the value of the void fraction. Clearly, a lack of exact
information on the location of the interface provides an uncertainty in the evaluation.
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FIGURE 7.17: Change of mass in the domain vs. time. Results of the method with the
transport equation with the divergence included.

However, because of the methods of interface sharpening, see Sec.(6.2) and Sec.(6.3),
the thickness of the free surface is comparable to the mesh size.

The propagation of the column is described by dimensionless parameters. The
dimensionless time is defined as

T =1t\/2g/a or T =1\/g/a, (7.3)

where a is the initial width of the column base, g denotes the value of the gravitational
acceleration and ¢ is the time. The dimensionless 7' is used for the front propagation,
whereas 7 is used for the top collapse. The spatial parameters are determined as the
relation between the actual position of the interface and its initial position. The initial
position for the front is the base of the column and for the top, the column height,
namely in dimensionless form

X =x/a and H = h/2a. (7.4)

respectively.

The results are given in Fig.(7.19). The predicted speed of the collapse of the
column top corresponds well with the experimental result. However, the front prop-
agation is somewhat overpredicted. This is also reported by Ubbink (Ubbink, 1997).
The reason for this is the difficulty to determine the exact position of the leading edge
of the front. A thin layer of liquid shoots over the bottom and the rest of the bulk flow
follows shortly behind it (Ubbink, 1997).

From a qualitative point of view the test case corresponds with the experiment
carried out by Koshizuka. Due to the numerical improvements of the standard VOF
approach, the interface is sharp and monotonic. All deformations of the free surface,
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FIGURE 7.18: Temperature variation in the domain caused by lack of mass conser-
vation. The transport equation with the divergence of the velocity field. The upper
row - void fraction distribution, the lower row - temperature distribution.

observed in the experiment, coincide with the distribution of the void fraction, see
Fig.(7.13) and Fig.(7.14). Due to the sharpening tendency of the model some regions
of the domain show clusters of the liquid bulk instead of sprayed droplets or foam
structures which appear in the experiment.

The quantitative analysis reveals good agreement of the results of the simulation
and those of the experiment carried out by Martin and Moyce. As long as high gradi-
ents of the flow variables do not appear, accuracy of the numerical outcome remains
at an acceptable level. However, sudden changes of parameters, such as in the case of
the region close to the stagnation point, cause failures in the prediction. Employment
of the term with the divergence of the velocity field in the split operator method de-
creases the error substantially. Nevertheless, the result still departs from reality, from
a point of view of mass conservation. A possible reason of the problem lies in the
order of the time discretization used in the model. A higher order discretization for
the time dependent terms or at least a decrease of the time step is expected to increase
the quality of the results.
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FIGURE 7.19: Comparison of the experimental results of Martin and Moyce and data
extracted from the present calculations.

7.3 Free surface capturing with phase transition incorpo-
rated

In many industrial systems, cooling processes play a vital role. A very good example
is a power plant system in which partially condensed steam flows out of a steam tur-
bine. In order to increase the efficiency of the thermodynamic cycle, further cooling
of the vapour is necessary. This can be carried out in a direct contact mode with vari-
ous types of equipment, such as a pool condenser or any other device in which direct
contact between the two fluids takes place.

In this subsection, a numerical simulation is described which considers the cooling
appearing in a system with injection of a liquid coolant into a duct or a pool in which
a hot liquid and vapour are present. Thus, it involves the complex dynamic process
consisting of injection of the coolant jet; its deformation before impingement on the
free surface; the impingement itself; entrainment and encapsulation of large gaseous
structures in the bulk of the hot liquid and finally, entrainment of vapour bubbles,
caused by viscous forces which drag the vapour below the free surface. All of this is
accompanied by thermodynamic processes of condensation and evaporation. Hence,
the distribution of the temperature in the system is to be determined as part of the
solution. This section considers the physics of the phenomena.

The used model is two-dimensional and assumes some simplifications mentioned
in Sec.(1.2). A quantitative comparison with any experiment cannot be carried out,
however, a qualitative evaluation of the result is possible. The basis for the assessment
is given by the experiment performed by Bonetto and Lahey (Bonetto and Lahey,
(1993)) on the impingement of a round jet in a large pool. It was mainly aimed at
the evaluation of the velocity and the void fraction (gas) distribution carried by an
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impinging jet through the free surface. The jet was generated in a nozzle positioned
vertically a short distance above the free surface. The exit velocity of the jet was
of the order of 5[m/s]. The temperature of the jet and the water in the pool were
both equal to 90°C. The authors did not report, however, on the thermodynamic
effects of the process. Thus, there is no data on the rate of exchanged mass and
energy. The temperature of the water was kept approximately constant, thus the effect
of phase transition was kept relatively small. Pressure was set at the atmospheric
level. The main objective of the experiment was the better understanding of processes
associated with air entrainment into the bulk of the liquid. Air entrainment appears in
various phenomena, such as sea surface chemistry, breaking ocean waves, absorption
of greenhouse gases into sea water or breaking bow waves of ship hulls. The latter
causes a long wake on the sea surface and is obviously undesirable from a naval point
of view.

In the numerical simulation the case considered is similar to the one present in the
experiment. The computational domain differs from the geometry of the experimen-
tal setup. The size of the experimental setup is too large to be fully included in the
computational domain because of restrictions associated with the use of CPU time.
Thus, the computational domain has been confined to the size given in Fig.(7.20).
The flow present in the experiment is axisymmetric flow, whereas the numerical al-
gorithm constitutes the flow to be two-dimensional. Consequently, flow quantities
may not be compared quantitatively. However, the experiment provides information
on the void fraction propagation in the pool after the impingement of the jet. From
this point of view the experiment is relevant to the simulation and constitutes a proper
basis for a qualitative comparison of the numerical and experimental result.

In the numerical simulation, the flow is assumed to be incompressible, viscous
without effects of turbulence. The gravitational force acts. Phase transition is active.
Density of the liquid phase is assumed for water at the temperature of 371.15[K | and
at the atmospheric pressure. Density for the vapour phase is assumed for steam at
the temperature 375.15[K] and at the atmospheric pressure. The difference in the
density of water for compressible flow for the lowest temperature used in the simu-
lation and the temperature of saturation amounts to 4[%)]. The difference for steam
for the highest temperature used in the simulation and the temperature of saturation
is 0.57[%)]. Temperature dependent properties at the initial stage of simulation have
been assumed for water and steam. Temperatures, densities and temperature depen-
dent physical properties for the coolant, hot liquid and vapour are given in Tab.(7.2).
The computational domain, given in Fig.(7.20), assumes three rigid boundaries on
the top, bottom and right-lower side of the domain, the outlet at the upper right and
the inlet at the left upper corner. The computational domain is chosen such that the
ratio of diameter to height of the nozzle exit above the free surface in the experi-
ment is about equal to the ratio of the jest width to height above the free surface in
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Fluid Tinit[K] | pllg/m®] | prinitlkg/ms] | Ainie[J/msK]
vapour 375.15 0.56 1.23e-05 0.026
hot liquid 371.15 959.76 2.96e-04 0.68
cold liquid | 283.15 959.76 1.31e-03 0.58

TABLE 7.2: Physical properties for fluids used in the numerical simulation of the jet
of coolant injected into the pool filled by the hot liquid and vapour.

the computational domain. Also the velocity at which the jet hits the free surface
is about equal. In the experiment the jet is round and because the pool dimensions
are much larger than the jest diameter, the flow will be more or less axi-symmetric,
with the axis at the center line of the jet. In the case of the computation the geom-
etry is two dimensional, with the plane of symmetry at the center line of the jet. In
Fig.(7.20) the left side of the domain is the plane of symmetry which imposes sym-
metrical behaviour of the flow. The domain has been discretized with a uniform grid
of 100 x 71 control volumes, see Fig.(7.20). The inlet (left upper corner) brings the
coolant into the domain with a constant velocity of —1[m/s]. The void fraction at
the inlet is held constant, equal to zero. The no-slip boundary condition is imposed at
the rigid boundaries. At the symmetry plane the slip condition is applied. Since one
cannot assume a constant distribution of pressure and velocity at the outlet, the outlet
velocity is adjusted at each iteration such that overall mass conservation is assured.
This outlet boundary condition has been described in detail in Sec.(5.5). The pres-
sure at the top of the domain is the atmospheric pressure. In the momentum equation
the second-order accurate, spatial discretization, CDS, improved by artificial dissipa-
tion has been used. For the energy equation the spatial discretization has first-order
accuracy and uses the pure UDS method. First-order accurate discretization in time
has been used. Since the model uses a time discretization of first-order accuracy, the
time step used for the calculations is as low as 1 - 1075[s]. This diminishes problems
associated with mass conservation, reported in Sec.(7.2). The drawback of such a
low time step is very long CPU. In the test case discussed, CPU amounts to about
two weeks. In a case of a higher number of control volumes than this in this simula-
tion CPU will increase and the computational method loses its practical applicability.
Thus, the cure might be increasing the order of accuracy of the time.

For the purpose of qualitative assessment of the result two test cases are considered,
both assume the same initial data and boundary conditions. One of the cases assumes
that phase transition takes place, whereas the other does not. The first is used for
the evaluation of the effects brought about by the phase transition. These effects
are visually assessed through the distribution of temperature and void fraction in the
domain. Also the rate of vapour production or disappearance will be discussed.

The simulation begins with the assumption of a flat front of the jet. Immediately
after the beginning, the jet front starts to push away the bulk of the vapour in front
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FIGURE 7.20: Geometry and grid of the calculation domain. All dimensions are
given in meters.

of it. The vapour takes over part of the kinetic energy carried with the bulk of the
liquid. Hence, the vapour begins to move downwards and towards the sides of the
jet, flowing around the bulk of the coolant. This results in the deformation of the flat
surface of the jet. The initial evolution of the deformation of the jet is presented in
Fig.(7.21). Shown is the region above the free surface. The figure presents the void
fraction distribution and the relative velocity and pressure. The relative variables are
helpful in understanding the process. The reference point for the velocity and pres-
sure is the point in the region of the front where the highest pressure appears. From
a theoretical point of view this point is in the plane of symmetry. In order to describe
the deformation process one needs to imagine a situation of an observer positioned at
the reference point moving downwards with the coolant jet. Now, one may consider
the situation as the case of the flow around the front of the jet. Hence, the middle
of the front is a stagnation point in the relative velocity field and the point with the
highest pressure. At the left and right sides of the stagnation point a horizontal veloc-
ity component develops, increasing towards the edges of the front. Maximal values
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of the velocity are attained the jet edge. The velocity increase induces a decrease of
the static pressure. The jet is not a rigid object, and liquid flows from regions of high
pressure towards regimes of low pressure. This is the reason why the surface of the
front deforms, taking the form of a cavity positioned in the middle of the jet. Once
the cavity develops, the flow becomes more complex. In the vapour region two large
eddies appear caused by flow separation at the edge of the jet. The eddies are shown
in the pictures of the velocity at times ¢ = 0.1[s] and ¢ = 0.15[s].

At alater stage of the deformation process when the jet approaches the free surface,
one observes that the tips of the jet edge do not flow along with the main body of the
jet, but are slowed down, creating a vortex-like wake of dispersed liquid. In the
experimental investigation the reason of this are the effects of viscous forces at the
gas-liquid interface. These forces would drag the liquid tips away from the main
body of the jet, whereas the relative velocity of the vapour pushes the tips back to
the front. In the real situation there is a discontinuity between the liquid jet and the
vapour, thus the dragging is caused solely by viscosity of the fluids. However, since
the single field model does not assume discontinuities in flow parameters, regardless
whether the considered region contains the interface or not, the formation of the
vortex-like wakes is reinforced by the averaged velocity of the vapour-liquid mixture
in the region of the interface at the edges of the jet. In other words, the horizontal
velocity of the liquid tip increases due to the process of averaging. This results in a
higher rate of the formation of the vortex-like structures of the vapour-liquid mixture
than in case of the two-fluid model.

Further analysis of the evolution of the jet shape concerns the contraction of the
jet formed following the initial stage of the flow, developing up to moment the jet
impinges onto the free surface. To explain this, consider the pressure distribution
given in Fig.(7.21). Attime ¢t = 0.1[s] and ¢ = 0.15[s] the vapour flowing around the
front of the jet, flows around the surface of the jet sides. Since this surface is inclined
with respect to the vertical direction, due to the process of the front deformation, the
horizontal component of the velocity exerts a symmetric influence on the jet sides.
This increases the pressure in the bulk of the jet. This pressure is seen as the elon-
gated bright region in the pressure distribution at time ¢ = 0.1[s] and ¢ = 0.15[s] in
Fig.(7.21). Reinforced by the gravitational force, the higher pressure accelerates the
front region stretching the jet structure and causing the contraction.

All the time since the jet entered the domain phase transition occurs along the
sides of the coolant. In Fig.(7.22) the solution is presented without phase transition,
while in Fig.(7.23) and Fig.(7.24) phase transition has been activated. The occur-
rence of phase transition in the form of the velocity field divergence is illustrated in
Fig.(7.24). Clearly, the region with nonzero divergence coincides with the layer of
lowered temperature around the jet, see the series of pictures in Fig.(7.23). In gen-
eral, the distribution of the velocity divergence is dominated by condensation except
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in a few regions, where evaporation occurs.

The deformed front of the jet finally reaches the free surface. It happens at an
instant right before ¢t = 0.25[s], see Fig.(7.23) and Fig.(7.22). Due to the cavity a
portion of the vapour is encapsulated when the front tips of the jet reach the free
surface. The enclosed gaseous structure is subsequently carried with the flow of the
jet into the hot pool, flattened by the free surface meeting the jet, see pictures at
t = 0.25[s] in Fig.(7.23) and Fig.(7.22). This initial stage of the impact of the jet is
characterised by a high intensity of mixing between the liquid and the encapsulated
vapour. This is followed by a temperature drop in the bulk of the vapour. Thus,
one may observe the intensive condensation visible as the region with the dark blue
colour in Fig.(7.24) at time 0.25[s]. The condensation results in a decrease of the
vapour content in the region where the encapsulated vapour is squeezed out by the
jet. This region is positioned out of the centre of the jet, at the left side of the wave
induced by the impact of the jet on the free surface. The difference in the void frac-
tion distribution can be recognized in Fig.(7.23) and Fig.(7.22) at time ¢ = 0.25[s].
The void fraction distribution also differs at the right side of the wave. Apparently,
the process of condensation has increased the contribution of the liquid in front of the
wave crest. In the test case in which the phase transition is active, this has as result,
that the vapour-liquid mixture touches the crest of the wave. The result of the numer-
ical simulation without phase transition also reveals this structure, but now separated
from the bulk of the liquid wave. The temperature field is also visibly affected by the
phase transition. The layer next to the jet, above the impact region is warmer. Since
solely condensation occurs, the higher temperature is caused by the release of latent
heat contained in the vapour.

The further penetration of the coolant jet in the bulk of the hot liquid causes the
formation of a meniscus adjacent to the impinging jet. This meniscus develops down-
wards entraining a sheet of vapour into the pool. At a depth of about two thirds from
the undisturbed free surface level, the interface between the sheet and the bulk of the
hot liquid becomes unstable. The gravitational force begins to deform the shape of
the vapour sheet which finally collapses and encapsulates a portion of the vapour.
The instant of the beginning of the sheet deformation is captured in Fig.(7.23) and
Fig.(7.22) at time t = 0.5[s].

The wave induced by the jet impact onto the free surface proceeds from the region
of impact towards the outlet, flowing as the sheet-like structure on top of the surface.
The crest of the wave is elongated and forms a tongue with a vapour-liquid mixture.
The tongue, however, is different in the case with phase transition compared to the
case without phase transition. The result of the case with phase transition reveals a
smaller length of the tongue and a higher liquid content in it. Clearly, this is caused by
the condensation of the vapour. The condensation intensity is depicted in Fig.(7.24)
in the form of the divergence of the velocity field, equal to the production of vapour,
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ie. V.Z < 0 in the case of condensation. The condensation extends along the
free surface far beyond the tip of the tongue. Apart from the vapour sheet adjacent
to the jet, the highest intensity of the condensation is positioned in the tongue-like
region on top of the free surface. This phase transition process affects effectively the
temperature distribution along the surface, particularly in the frontal condensation
region. The temperature at this place is substantially lower in the case without phase
transition flow, compare Fig.(7.23) and Fig.(7.22) at time ¢ = 0.5]s].

Due to the features of the present method, which decreases interface diffusion, the
mentioned tongue is represented as an integral structure with a higher liquid content
rather than an assembly of tiny droplets, i.e. a spray. Thus, because of the weight
of the structure the gravitational force lowers its position on top of the free surface.
Comparing the rate at which the temperature wake develops towards the outlet, it is
seen that in the case without phase transition, the rate exceeds that of the test case
with phase transition. The reason lies in the momentum of the convected fluid. With
respect to momentum conservation, the velocity of the liquid must become lower,
when the mass of the convected fluid increases because of condensation of the vapour
surrounding the moving fluid.

The subsequent stage of the flow reveals encapsulation of a gaseous structure by
the deforming sheet of the vapour around the jet. The interface of the vapour with
the hot liquid deforms due to the gravitational force. The process is similar to that
observed during the water column collapse, see Sec.(7.2). The right boundary of the
sheet impinges onto the side of the jet. The impingement causes a temporal increase
of the static pressure at the point where the impingement takes place. The rise of
the pressure reinforces the jet velocity downwards into the computational domain.
The pressure also induces the upward flow which elevates the liquid adjacent to the
jet. The upward stream forms a liquid column, which in a three dimensional case
would be represented as a crown-like liquid structure around the jet. The tip of the
column undergoes quite rapid condensation, thus the contribution of liquid in the
vapour-liquid mixture at the top is larger for the case with phase transition. This is
illustrated in Fig.(7.23) and Fig.(7.22) at time ¢ = 0.75[s]. Due to the condensation
the column top obtains a sharper shape of the interface. The process affects the
temperature distribution of this structure. The temperature is higher for the case with
phase transition since latent heat transfers to sensible heat.

One can observe an interesting behaviour of the temperature distribution in the
layer flowing over the free surface in the result of the case without the phase transi-
tion. At the far right the temperature of the vapour increases at the outlet. The most
probable reason is a change of the flow field in this region caused by the boundary
condition which adjusts the velocity according to overall mass conservation. Appar-
ently, the mass conservation requires a decrease of the outlet flux, hence an outlet
velocity. Due to this the incoming flow is retarded rapidly at the boundary. Since it
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is not allowed to pass the outlet entirely, the only remaining way is an upward mo-
tion. Consequently, the boundary condition constitutes an artificial semi-permeable
boundary distorting the natural course of the flow.

At time t = 0.75[s], one of the most intensive condensation processes appears
in the wedge-like region of the vapour positioned between the mentioned upward
moving water column and the coolant jet, see Fig.(7.24). Though at this instant the
transition does not produce a visual difference in the void fraction distribution in
this region, the difference in temperature is certainly distinguishable. The area of a
lower temperature in the form of the green spot in the case without phase transition,
is larger than in the result with phase transition. The lower corner of the wedge-like
region may also be regarded as a residual of the meniscus mentioned earlier in this
paragraph. This, say, secondary vapour sheet is induced due to entrainment of the
liquid jet (Bonetto and Lahey, (1993)). In the course of the jet penetration into the
bulk of the hot liquid, the secondary sheet becomes unstable. This leads to more
or less periodic entrainment of vapour bubbles into the bulk under the free surface.
The entrainment is represented by the void fraction wake that extends along the jet,
below the free surface. The wake is clearly visible in Fig.(7.23) and Fig.(7.22) at time
t = 0.75[s]. However, due to condensation, the entrained gaseous structures in the
case with phase transition are smaller. The detail analysis of the entrainment effects
will be given later in this paragraph.

The large gaseous structure, encapsulated by the collapse of the primary vapour
sheet carried along with the coolant jet, experiences substantial deformation. This is
caused by the strong vortex field reinforced primarily by the collapsing vapour sheet
and secondarily by the jet reaching the bottom of the pool. It causes the static pres-
sure to increase coupled with the appearance of a stagnation point. The result is the
acceleration of the liquid on the bottom towards the outlet. The accelerated liquid
stream runs right beneath the gaseous structure, propelling a large eddy. The eddy
causes an instability of the structure interface leading to fragmentation in the case
of the simulation without phase transition. The case with phase transition, however,
does not show the fragmentation, but rather flattening and condensation at the rear
(with respect to the flow direction towards the outlet) of the structure. The conden-
sation occurring in the structure is intensive, see Fig.(7.24) at time ¢t = 0.75[s]. The
high rate of phase transition is caused by the cold liquid surrounding the gaseous
structure, delivered by the large eddy induced by the jet motion. Clearly, the phase
transition began right after the formation of the primary vapour sheet. Thus, the en-
capsulated amount of vapour was lower than in the case without phase transition. The
condensation continues, thus at the instant of the large deformation, unlike in the case
without phase transition, the size of the structure was sufficiently small to resist the
fragmentation.

The last stage of the flow reported in Fig.(7.23), Fig.(7.22) and Fig.(7.24) is cap-
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tured at time ¢ = 1[s]. The simulation without phase transition shows the evolution
of a lower temperature in the vapour at the outlet. The region with lower temperature
appears to retreat towards the interior of the domain. This is caused by the convected
fluid reaching the top of the domain. Since the outlet velocity is lower than that of the
incoming flux, an upward motion of the fluid appears. This numerical occurrence has
been explained above. Once the upward flux reaches the top, the flow is forced back
into the domain. One can see the same phenomenon in the case with phase transition,
however, it is less intensive. At time ¢ = 1[s] the entire free surface is covered by a
layer of colder fluid which brings about the condensation. Right below this layer one
can observe some white spots in the distribution of the temperature. These places of
higher temperature appear in both test cases. Clearly, this is not a physical effect.
The spots represent failures in mass conservation. The results of further calculations
(t = 1.045[s]) show that in the case without phase transition this effect disappears.
In the numerical simulation with phase transition, however, the temperature rise is
maintained, see Fig.(7.27). This affects the velocity field, because the higher tem-
perature causes unphysical evaporation. This is depicted on Fig.(7.28), where the
divergence of the velocity field is shown in a different colour scale than in Fig.(7.24).
This helps in distinguishing the regions of evaporation.

At the time ¢t = 1[s| the water column, generated because of the collapse of the
primary vapour sheet, breaks and proceeds towards the outlet. The collapsed column
assumes the shape of a wave on the free surface. The case with phase transition
shows a tip of condensed liquid on the wave crest, whereas in the simulation without
phase transition a sharp wave shape evolves. Clearly, this difference is caused by
condensation. The condensation also changes the wedge-like gaseous structure which
for the case with phase transition has a smaller area. The bottom corner of the wedge
has a larger contribution from the liquid than in the case without phase transition. The
vapour entrainment is visible in both cases. It is difficult to evaluate for which case the
process is more intensive. One may only expect that in the case of phase transition the
amount of vapour below the free surface will be lower due to the condensation. This
is indeed the case, at least, at time ¢ = 1.045[s], see Fig.(7.27). The result without
phase transition reveals a smooth, continuous vapour-liquid mixture wake extending
downwards from the lower corner of the wedge-like meniscus adjacent to the jet.
This structure gets thinner in the region closer to the bottom of the domain. A similar
structure is observed in the case with condensation, however, it is not continuous and
its thickness does not decrease in the downward direction.

At time ¢t = 1[s|, the large gaseous structure, encapsulated during the collapse of
the primary vapour sheet, has moved about one fourth of the domain length away
from the symmetry plane. The structure remains surrounded by cold liquid. Due to
the absence of condensation, the case without phase transition shows a vapour pattern
blanketing the top of the structure. This is not the case for the simulation with phase
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transition, where in the process of the phase transition the vapour pattern condensed.
Also due to the condensation, the gaseous structure contains a higher amount of liquid
than in the simulation without phase transition. One can also observe this at time
t = 1.045[s], see Fig.(7.27).

The subsequent part of this section is devoted to the qualitative evaluation of the
computed void fraction distribution below the free surface. The basis for the analysis
is the experiment carried out by Bonetto and Lahey (Bonetto and Lahey, (1993)).
These authors proved empirically, that a jet penetrating the liquid in the vessel creates
an annular meniscus or in other words, an annular thin gas sheet. This sheet becomes
unstable and collapses, entraining air bubbles underneath the free surface. At the
sheet bottom, the jet can be regarded as a purely one-phase stream. The bubble
entrainment is coupled with the spreading of the gas (void fraction) in the region
where the jet penetrates the bulk of the liquid. Consequently, beneath the bottom of
the sheet one can observe a two-phase flow, where the distribution of the void fraction
(bubble concentration and size) varies in the direction tangential and perpendicular
to the flow.

The experimental results are given as the void fraction as function of the distance
from the jet axis of symmetry and as function of the depth below the undisturbed
free surface. The results are given on Fig.(7.25) and Fig.(7.26). Figure Fig.(7.25)
shows three graphs. Each graph presents the void-fraction distribution at a different
depth, z, measured from the undisturbed free surface. The process of the gas phase
dispersion is observable in both directions, namely r (the distance from the symmetry
axis) and z (the depth). The reason of the dispersion lies in turbulence of the flow
which is expressed in terms of the turbulence intensity. The definition of this quantity
is the relation between the local, instantaneous velocity fluctuations and the mean
velocity of the flow. The turbulence intensity in the experiment has been reported as
amounting to 3%. The turbulence of the flow is mainly responsible for the process
of dispersion. A higher local velocity causes fragmentation of entrained bubbles.
Since the velocity may occur not only in vertical direction the dispersed bubbles are
spread in the direction perpendicular to the axis of symmetry as well as downwards
in the vessel. The peak of the void fraction function, present at the depth z = 1[mm],
decreases, getting broader in the process. The process of dispersion leads gas towards
the flow centre, namely the axis of symmetry. Consequently, the plot of « as function
of r at a depth of z = 18[mm] and z = 43[mm] has a value of « at the center
different from zero. The value of the void fraction at the axis increases with z in the
downward direction. This process is clearly illustrated in Fig.(7.26) which shows the
void fraction along the center line as function of depth z. The void fraction has a
maximum at about z = 40[mm]. The reason that the function begins to decrease is
the increase of the cross section of the jet, as it flows downwards into the vessel. The
increase of the cross section is not compensated, by the rate of bubble spreading, thus
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FIGURE 7.22: Flow without phase transition. Distribution of void fraction and ve-
locity vectors (left); distribution of temperature (right).
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FIGURE 7.23: Flow with phase transition. Distribution of void fraction and velocity
vectors (left); distribution of temperature (right).
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FIGURE 7.24: Flow with phase transition. Distribution of void fraction and velocity
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FIGURE 7.25: Void fraction vs. distance from the symmetry axis. a)z = 1[mm];
b)z = 18[mm]; c¢)z = 43[mm)]. Experiment by Bonetto and Lahey (Bonetto and
Lahey, (1993)) for round jet of 5[mm] diameter.

the void fraction decreases.

The results of the calculations for the two-dimensional computational setup are
presented in Fig.(7.29) and Fig.(7.30). The first figure depicts the void fraction ver-
sus distance from the plane of symmetry, whereas the latter shows the void fraction
as function of the depth from the undisturbed free surface. Values of the void frac-
tion have been averaged in time similar to the procedure employed in the experiment.
The time span of averaging begins at time ¢ = 0.8[s| and ends at ¢ = 1.049[s]. It
is assumed that the initial instant of data extraction is not affected by the process of
the primary vapour sheet collapse. The levels at which data have been extracted are
indicated in Fig.(7.27) by the horizontal dashed lines. The levels have been cho-
sen according to the scale of the experimental vessel and that of the computational
domain. Thus, the graphs a) and b) in Fig.(7.29) correspond to those in Fig.(7.25).
Graph ¢) in Fig.(7.29), however, is not equivalent to its experimental counterpart. In
the experiment, the pool is much deeper than in the numerical simulation. Conse-
quently, graph c) in Fig.(7.29) represents the lowest possible level - the bottom in the
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FIGURE 7.26: Void fraction vs. depth measured from the level of the undisturbed free
surface. Experiment by Bonetto and Lahey (Bonetto and Lahey, (1993)) for round jet
of 5[mm] diameter.

numerical simulation, while in the experiment Fig.(7.25 c) is for a level still far away
from the bottom.

Graph a) in Fig.(7.29) for depth § = 0.0116[m] has the same trend as its coun-
terpart in Fig.(7.25). There is no vapour at the axis (plane) of symmetry. The void
fraction level increases up to a maximum at about = 0.025[m]. Then the void frac-
tion decreases rapidly confirming the trend appearing in the experiment. Computed
results are given for the case with phase transition and for the case without phase
transition. As expected, due to condensation, the peak of the void fraction for the
simulation with phase transition is lower than in case condensation is left out. Note
that the jet has contracted to about half its width at the moment it hits the free surface.

The trend line for graph b) differs however, from the corresponding one in the ex-
periment. The most remarkable difference is the absence of vapour at the plane of
symmetry. Furthermore, the void fraction in the case with phase transition as well as
the one in the case without phase transition does not propagate much towards higher
and lower values of x, contrary to the experiment, though some propagation takes
place. Some of the differences will be due to the axi-symmetric jet spreading more
rapidly towards its center than its two-dimensional counterpart. The lower rate of
propagation causes the peaks to remain approximately as broad as in graph a). The
local velocity fluctuations with the Reynolds number in the jet, for the experiment
and the numerical simulation, amounting to about 8e + 05, cause dispersion of the
void fraction in the horizontal direction. Since effects of turbulence are not handled
in the model, one may not expect any substantial changes in the distribution in the
horizontal direction. The resolution of the grid also influences dispersion of the void
fraction. Since the grid is rather coarse relative to the scale of the jet width, the grid
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FIGURE 7.27: Void fraction and temperature distribution at time t=1.045[s]. Simu-
lation with phase transition (upper); simulation without phase transition (lower).

resolution may be well to low to capture the phenomenon.

The distribution at the bottom of the domain has a completely different structure than
the one in graph ¢) of Fig.(7.25) which is much further away from the bottom. Al-
though a vapour contribution appears at the bottom of the domain, at the symmetry
plane, its existence may have a different origin than in the experiment. The impinging
jet encapsulates a portion of the vapour because of the presence of the cavity at the
impinging jet front. Distorted and partially squeezed out of the jet front, the encapsu-
lated gaseous structure is pushed down. Once the jet reaches the bottom, a stagnation
point is established. A residual of the gaseous structure followed by the jet is trapped
at the stagnation point. This gives a nonzero value of the void fraction at x = 0[mm]
in Fig.(7.29). The vapour contribution is present in the case of phase transition, as
well as in the case without phase transition.

The bottom distribution of Fig.(7.29) shows also further increments of the void
fraction. These represent the gaseous wake following the large gaseous structure, see
Fig.(7.27). Surprisingly, the average value for the case without phase transition is
lower than that for the case with phase transition. This is caused by the average mass
of the wake, which is, because of condensation, larger for the simulation with phase
transition. Due to this buoyancy forces cannot affect so much the vertical position of
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FIGURE 7.28: Distribution of void fraction and divergence of velocity field at time
t=1.045[s].

the structure. Since the maximal void fraction is approximately in the middle of the
wake, a lower position of the middle generates higher values of the void fraction at
the bottom of the domain.

The distribution of the void fraction versus the distance from the free surface is
shown in figure Fig.(7.30). The trend predicted by the case with phase transition and
the one without phase transition remains in good agreement with that of the experi-
ment. However, the void fraction in the numerical results, has a substantially lower
level. The reason are the local flow fluctuations which are the driving force for the
gas spreading in the experiment. As discussed, due to the model simplification omit-
ting effects of turbulence, the vapour dispersion in the numerical simulation appears
to be much less intensive than in the experiment. Consequently, the void fraction at
the plane of symmetry in the numerical simulation is lower than that at the axis in
the experiment. The distribution of the void fraction for the case with phase tran-
sition differs from the one for the case without phase transition. In the simulation
with phase transition the vapour dispersion is more intensive, thus, the values of the
void fraction are higher at smaller depths than in the simulation without phase tran-
sition. This is caused by the divergence of the velocity field which generates local
disturbances causing vapour propagation in horizontal direction. A mechanism that
causes the void fraction to decrease near the domain bottom is similar to that in the
experiment. The reason is that the jet gets wider as the distance from the free sur-
face increases. The void fraction propagation directed away from the symmetry axis
brings about a decrease of the void fraction at the axis. In the numerical results, how-
ever, this effect is magnified by the jet impingement onto the bottom. This reinforces
the jet widening.

Similar to the dam breaking problem, the gas-liquid interface is aligned monoton-
ically. The interface remains sharp even in regions of a complex interface shape.
The model is able to simulate phenomena associated with effects such as interface
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surface. Numerical results.

instability. The numerical simulation reflects the basic features of the experimental
result. These apply to the manner in which the gas is entrained in the bulk under-
neath the free surface. Appearance of an annular meniscus and unstable air sheet
that form the basis for bubble entrainment into the bulk of the liquid, is confirmed
by the numerical result. The numerical result also can handle vapour entrainment.
However, because effects of turbulence have not been included in the model, the de-
tail analysis of the computed void fraction distribution shows differences with that of
the experiment. The numerical simulations are also aimed at showing the feasibility
of the Energy of Fluid method. It is difficult to find an experiment that can be used
for validating the model, which is indispensable for the development of the phase
transition model. Furthermore, the experiment of (Bonetto and Lahey, (1993)) does
not provide data on phase transition; it was primarily carried out for the purpose of
studying air entrainment. Even if data were provided, the experiment constitutes a
binary thermodynamic system, air-water. A system in which two or more species
coexist cannot be treated by the phase transition model as it is presently implemented
in the numerical algorithm. However, one can notice some thermodynamically and
mechanically based phenomena, purely associated with the occurrence of phase tran-
sition, i.e. temperature rise caused by the release of latent heat. Another example is
the change of momentum brought about by the change of the vapour-liquid mixture
mass of convected structures due to condensation.







DISCUSSION

The presented algorithm is aimed at the prediction of multiphase flow with vapour-
liquid phase transition. In this chapter the general features of the implemented meth-
ods are summarized and discussed in view of alternative methods. This will show
advantages and disadvantages of the used phase transition model relative to other
methods. Also some possible further developments of the algorithm are discussed.

8.1 Interface capturing

The algorithm assumes a single field approach (Banerjee, Hewitt, Zaleski, Tryggva-
son, Koumoutsakos, Yadigaroglu and Ishii, (2004)) in the form of the Volume of Fluid
(VOF) method (Hirt and Nichols, (1981)). In this method a single set of governing
equations describes the two phases present in the flow. The set of basic equations
(continuity, momentum, energy) is complemented with an additional equation for
the transport of an indicator which allows distinguishing the phases in the domain.
This indicator can assume various forms (Unverdi and Tryggvason, (1992); Hirt and
Nichols, (1981)). In the case of the VOF method it is the ratio of the volume of the
gas and that of the gas-liquid mixture. No matter how this parameter is expressed, the
common advantage of the single field approach is that information on the geometry
of the interface does not need to be known a priori. The geometry of the interface is
to be calculated in the course of the computation. This is the important feature that
renders the method independent of, for example, empirical data bases for the partic-
ular type of flow, see Sec.(2.2). The single field approach does not require closure
relations associated with the particular type of gas-liquid interface. Such relations are
required in the alternative multi field approach. They constitute boundary conditions
for this sort of models. Since the relations are strongly dependent on the geometry
(topology) of the interface, it is difficult to evaluate or rather predict the flow quanti-
ties at the interface without exact information on interface position. Thus, in the case
of complex flow geometries or complex dynamics of the flow, e.g. such as the jet
impinging test case in Sec.(7.3), single field models have preference.
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However, it is important to realize, that the single field model has also disadvan-
tages. As mentioned in Sec.(2), once the flow is described with only a single set of
equations, the model requires the continuity of all flow-field variables, including the
void fraction. Consequently, the interface is not sharp but smeared out in space assur-
ing continuity. It depends on the flow type whether or not such approach is accurate.
In the case of the gas phase appearing in the form of a bubble cluster (foam) or the lig-
uid phase in the form of a droplet cloud, one may assume that the model predicts the
flow dynamics with acceptable accuracy. However, in the case of a sharp free surface,
e.g. stratified, stratified wavy flows, see Sec.(2.2), the method can fail. Taking this
into account numerical algorithms have been extended, see (Leonard, (1991)). The
extensions allow increasing interface resolution up to the scale of a single control
volume. A problem arises when the complex flow dynamics causes fragmentation of
phasic structures e.g. a water column collapse or an impinging jet, see Sec.(7.2) and
Sec.(7.3). Then, the structure of the flow cannot be uniquely classified as a flow with
a sharp free surface or that with dispersed phasic structures. To tackle the problem,
following (Leonard, (1997)) and (Ubbink, 1997), the current algorithm incorporates
a switching procedure that blends algorithms for the prediction of sharp interfaces
with those for smooth interfaces, see Sec.(6.2.4) and Sec.(6.3). This makes the algo-
rithm suited for the prediction of complex flows. However, the tendency of the used
methods to keep the interface sharp, sometimes deteriorates the solution. It applies
particularly to regions where one expects a smooth distribution of the void fraction.
Clearly, this is not a failure of the method, but rather requires adjustment of blending.
To improve the procedure of blending, however, one needs to know whether or not
dispersion of phasic structures takes place.

According to Zaleski (Scradovelli and Zaleski, (2003)) and Tryggvason (Unverdi
and Tryggvason, (1992)) it is possible to determine the exact position of the interface.
The methods of interface reconstruction or of grid adaptation, allow for assessment
of further physical quantities. These quantities play the role of closure relations for
other phenomena such as gas-liquid phase transition or phasic structure fragmenta-
tion. However, both of the mentioned approaches consider the detailed phasic struc-
ture of the flow, which includes individual phasic objects. Clearly, this limits the
methods to cases where the interface geometry is not very complex and the number
of phasic objects is not too large. The limitations are associated with the time re-
quired for the calculations. If the interface geometry is not sufficiently simple or the
number of objects is too large, the methods may not be feasible from a practical point
of view.
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8.2 Phase transition

Methods for modelling phenomena of gas-liquid phase transition can be classified
in two groups. The first group of methods treats the phase transition as a change of
physical properties of the vapour-liquid mixture, without considering the dynamics of
individual phasic structures appearing in the control volume because of the transition.
To this group of methods belongs the Energy of Fluid (EOF) method incorporated in
the current algorithm. The second class of methods focusses on the dynamics and
considers the number and behaviour of phasic nuclei. In these methods the bubble or
droplet growth model is considered.

Contrary to the EOF method, the second group of methods requires some initial
data without which prediction of the phase transition is not possible. These data in-
clude the number of phasic nuclei present in the bulk of the continuous phase, their
distribution, initial size and shape. For the sake of clarity, an example of the method
will be briefly given below. The entire algorithm is comprehensively described in
(Sauer, 2000). The model predicts the rate of expansion or shrinkage of vapour bub-
bles, dependent on the local thermodynamic conditions. Following (Sauer, 2000), the
rate of the transition in terms of the void fraction reads

do dnorR? dR

g ) e B 8.1

where R denotes the radius of the bubble, and ny denotes the concentration of nuclei
in the bulk of the liquid (number of nuclei per unit of volume of the liquid). Evalua-
tion of the rate of bubble size change, dR/dt, follows from a potential flow model of
the expanding or contracting sphere surrounded by liquid. Neglecting surface tension
and inertial effects and assuming that d R/dt is constant in time, the relation between
the velocity of the (growing) bubble boundary and pressure reads

dR 2 1pe — i \ /2
— =sgn(pg — 1) <!p§plpz!) , (8.2)

where p, is the pressure inside the bubble, whereas p; < p, is the pressure in the am-
bient liquid. Relation (8.2) is termed the Rayleigh (Young, (1989)) equation. Clearly,
(8.2) is applicable to phase transition in which the pressure plays the role of the driv-
ing force, e.g. cavitation. However, using thermodynamic relations the right hand
side of (8.2) can also be expressed in terms of temperature. This would be more
convenient for the temperature driven processes considered in this work. Many bub-
ble growth models have been developed, in which temperature appears at the right
hand side of (8.2), e.g. Plesset-Zwick or Mikic, see (Plesset and Zwick, (1954); Mi-
kic, Rohsenow and Griffith, (1970)). The major advantage of the approach described
is the direct relation between the phase change and the time rate of phase transi-
tion. This is developed on the basis of bubble dynamics. This feature of the model
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eliminates the need of artificial manipulation of the phase transition rate, which is
necessary in EOF methods. The EOF method assumes that the entire heat which ex-
ceeds the state of saturation is consumed in the phase transition during given time
step, regardless of the time step duration. This tends to a thermodynamic equilibrium
at the end of each time step. Thus, the approach does not give any information about
the rate of the process. The rate is controlled only by changing the magnitude of the
time step or by factorizing the magnitude of the divergence of the velocity field. The
latter is, of course, a purely artificial manipulation which is not related to the phase
transition dynamics. The magnitude of the velocity divergence factor can be esti-
mated using time characteristics of the phase transition associated with a particular
flow. Clearly, this limits the validity of the method to the range of available experi-
mental data. One can, of course, assume that a large enough time step is sufficient to
accomplish the transition process. This may happen in the case of absence or in the
case of a low rate of convection. Nevertheless, without an experimental data base,
this is only speculation. Since the current research is supposed to be an initial step
of modelling the phase transition employing the EOF method, the factorization in the
algorithm plays the role of a procedure which ensures numerical stability.

The bubble growth model requires a set of initial data. However, this type of model
assumes usually many simplifications. This is mainly caused by some technical ob-
stacles in extraction of experimental data (Yuan and Schnerr, (2003)). The shape of
the growing bubble is assumed to be spherical regardless of its size. For a larger size,
surface tension forces are smaller and the shape is controlled by the pressure gradient
in the bubble surroundings. Usage of relation (8.2) requires the knowledge of the
bubble concentration ng. This parameter can only be attained by experimental mea-
surement, but due to technical obstacles, bubbles of submicrometer scale can not be
detected (Yuan and Schnerr, (2003)). The assumption of a homogeneous distribution
of bubbles of the same initial radius may also not always be accurate.

The bubble growth model is difficult to implement for simulations in which the
initial phase distribution consists of a two phase flow of a single substance, e.g. the jet
impinging situation in Sec.(7.3). In such a situation the assumptions of equal initial
bubble radius in the entire domain and of a homogeneous distribution of bubbles
fail. Summarizing, EOF-like approaches appear to be favourable, since they do not
demand the type of data discussed. Once one knows the phase change rate, the EOF
method appears as an attractive method for the solution of multi-phase flows with
phase transition.

8.3 Recommendation for future research

The present algorithm has some simplifications, that limit its ability to predict the
flow. Some of the simplification are discussed here and possible solutions will be
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proposed.

The first problem concerns the single field approach and the integration of flow
field variables over the control volume. Since the model assumes continuity of vari-
ables all over the domain, physical quantities, including temperature, are averaged
over the region that may include a sharp interface. The averaging allows preserving
continuity and leads to interface spreading. For velocity and pressure one may as-
sume continuity of function value across the interface (neglecting surface tension),
this is not the case for temperature. Clearly, due to heat diffusion the temperature
field is continuous across the free surface, however, the scale of the layer over which
the temperature is equalized is much smaller than that of the control volume. The
averaging distorts the real, steep variation of the temperature across the interface.
The Energy of Fluid method uses the temperature as the driving force which gov-
erns the rate of phase transition. In the situation that the temperature is numerically
changed during the process of averaging, the rate of phase transition departs from
reality. This applies to the case of fluids remaining in rest as well as to these con-
vected in the domain. Particularly the latter rises a question concerning the accuracy
of the rate of phase transition. Suppose a one dimensional flow in a domain in which
the interface is convected. The temperature at both sides of the interface keeps the
fluids in a thermodynamic equilibrium. Neglecting heat diffusion (conduction), there
is no observable phase change. However, due to the averaging the temperature of one
of the fluids changes. Then one can observe a numerically induced evaporation or
condensation. Since the temperature depends on the weight contribution of the fluid
in the control volume, see (2.37), the higher contribution of the fluid the more the
temperature of the vapour-liquid mixture depends on the incoming fluid. The weight
contribution changes substantially only in the case of convection. Consequently, if
one considers phase transition in the presence of convection, the transition rate will
have a larger error than in the case of the transition occurring in a system remaining
at rest. At this point of the discussion it is concluded, that the single field approach
does not provide the proper accuracy of the temperature field. Since temperature is
the driving force for the transition, the difficulty is clear. A cure can be found in the
multi-field model applied to the energy equation, such that the temperature field is
regarded separately for each phase. This must be coupled, however, with algorithms
for interface reconstruction, since a single field model is employed for the rest of
the governing equations. This solution is applicable only for a situation in which
the interface characteristics are known in advance. In the case of a very complex,
interface geometry this solution cannot be used, because the reconstruction process
fails. This situation can take place in the case of bubble or droplet cloud formation.
Consequently, the cure limits the applicability of the method.

The rate of phase transition also depends on the surface tension present at the inter-
face. The current model does not take the surface tension into account. From a point
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of view of the dynamics of phasic structures, surface tension is a very important factor
influencing the rate of phase generation, particularly in the beginning of the transi-
tion. At this instant the surface tension exerts a strong influence on the shape of the
structure, acting against gravitational forces (if the structure is attached to a bound-
ary) and changing the thermodynamics of the system equilibrium, see Sec.(3.2). In
the case of a multi-field approach for the energy equation, incorporation of the surface
tension requires the reconstruction of the interface. Thus, it could be implemented
and used only for cases with a relatively simple geometry of the interface.

The gas-liquid phase transition is always three-dimensional in nature. In the case
of a bulk evaporation or condensation, the process of the transition begins with nucle-
ation of phasic microstructures which are assumed to be spherical at the beginning
of their existence. Phasic structures grow or shrink in three dimensions of space.
Consequently, in this type of transition the flow problem is not two-dimensional. A
possibility of the phase transition to be regarded as a two-dimensional phenomenon
exists only in the case of surface evaporation or condensation that appears at the free
surface. In such a situation one considers the phase change as a number of parti-
cles which are released from or absorbed by the surface. These phasic particles do
not generate spherical clusters in the bulk of the phase, that grow in space and time.
In a complex flow, however, such as that described in Sec.(7.3), surface as well as
bulk phase transition can appear. Consequently, in order to relax the limitation of
the algorithm, associated with its two-dimensionality, it is recommended to consider
extension of the method to three dimensions.
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CONSTANTS FOR

PHYSICAL PROPERTIES

i— 0 1 2 3 4 5
il
0 0.501938 0.162888  -0.130356  0.907919  -0.551119  0.146543
1 0.235622 0.789393 0.673665 1.207552  0.0670665 -0.084337
2 -0.274637  -0.743539  -0.959456  -0.687343  -0.497089  0.195286
3 0.145831 0.263129 0.347247 0.213486 0.100754  -0.032932
4 | -0.0270448 -0.0253093 -0.0267758 -0.0822904 0.0602253 -0.0202595
TABLE 1.1: Values of the constant b;; for Eq.(4.56) (Schmidt, (1982)).
Index} a[W/Km] | b[W/Km] B C d[W/Km)|
0 1.02811-1072 [-3.97070-10~! - - -
1 2.99621-1072 | 4.00302-10~! [-1.71587-10~! |6.42857-10~! |7.01309-10~2
2 1.56146-102 1.06 2.39219 -4.11717 1.18520-10~2
3 -4.22464-1073 - - -6.17937 1.69937.103
4 - - - 3.08976:1073 -1.02
5 - - - 8.22994.10~2 —
6 - - - 1.00932-10! -

TABLE 1.2: Values of constants used in Eq.(4.59) (Schmidt, (1982)).
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k 0 1 2 3
ay | 0.0181583 | 0.0177624 | 0.0105287 | -0.0036744
TABLE 1.3: Values of the constant ay, for Eq.(4.57) (Schmidt, (1982)).




DERIVATION OF SOME
NUMERICAL FORMULAS

For the sake of simplicity, in all subsections of this appendix, superscripts denoting an itera-
tion level will be left out.

B.1 Momentum equation

B.1.1 Viscous terms
Symmetry boundary

In this case the component of the viscous stress tangential to the plane of symmetry equals
zero and one has to deal with the normal component only. Therefore

7it = [(Fit) .i1] 7t = Tpn . (B.1)

The x-component of the viscous stress component normal to the boundary of the control
volume for the symmetry plane reads
TanS. (B.2)

Tn,sym *

The stress 7, is expressed by

— Upy — U 2 -
Tnn =2 sym L me sym (V_‘) I B.3

where u,, , and u,,, are velocities in the direction normal to the plane of symmetry, at points
B and P, respectively (see Fig.(B.1)). Term |67i| is the distance between node P adjacent to
the boundary and the boundary itself, see Fig.(B.1). Its value is calculated according to

~ 7 . - T 1
|071| = d.nl = (d:rexa dyey) (Srn,symv Syn,sy'm,) @ = -
dl'SwmsynL + dySyn,syrn ’
7S]

Since there is no flux through the boundary, velocity u,,, is zero. Velocity u,,,, is evaluated
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symmetry

FIGURE B.1: Symmetry boundary.

using
I o o T 1
Upp = Up.T = (uPea:, vpey) (Sg:nysymj ymym) 7S] =
B.5
UPSmn,sym + UPSyn,sym (B-5)
73S

Substituting (B.4) and (B.5) in (B.3), bearing in mind the assumption of non-permeability of
the boundary, yields

upS +’UpSy 2

o S S S 2, (G g
nn Hsym d’I'SI +dyS 3/J/sym sym ( )

Yn,sym

n,sym

Substitution of (B.6) in (B.2) gives the formula for viscous forces at the symmetry boundary
for the horizontal direction

TnnSIn,synzg
iy UpSe,, .ym + UPSyms?/m,S _gﬂ (ﬁ 12') g _

sym T, sym sym| V- Tysym

Y deSep sy T dySyym 0" 3 Y sym %Y
< 5 up @ o vp g (B.7)

—2llsym T sy “Hsym Tn,sym OV Yn,s
, SYM ,8Yym n,sym
demeym+dySyn,sym szzmSym+dySymsym
2

— S Hsym <€ﬁ) SI',L,sy'm.'
3 sym

The formula for the vertical direction is found analogously.

Rigid boundary

In this case the component of the viscous stress normal to the rigid boundary equals zero and
one has to deal with the tangential component only. Therefore

Fii = [(7) 4] £ = il (B.3)
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The x-component of the force of the shear stress for the rigid boundary in Cartesian coordi-
nate system reads

Tnth (B9)

wal *

Shear stress 7,,; is expressed as

Uty — U 2 —
Tnt = ﬂwal% - g,uwal (VU) wal’ (B.10)

where u;, and u;, are velocities in the direction tangential to the rigid boundary, at nodes
B and P, respectively (see Fig.(B.2)). Term |073| is the distance between node P adjacent to
the boundary and the boundary itself, see Fig(B.2). Its value is calculated according to (B.4).
Since one assumes the no-slip boundary condition at the wall, velocity u;, is zero. Velocity

rigid boundary

FIGURE B.2: Rigid boundary.

Uy, 1s evaluated using

‘ -

wip = iipd = (upp, 0PE)) (Spuns Syunt) = =

Uy

(B.11)

wal

uPwaal + ’UPSy

—

S

Substituting (B.4) and (B.11) in (B.10), bearing in mind the assumption of the no-slip bound-
ary condition, yields

~ upSm
Tnt = _/J/wald S
T

Tn,wal

war T UPSywaz 2 (_’ —»)
— Ztwar (V. : B.12
+ dySy SM ! b wal ( )

n,wal
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Substitution of (B.12) in (B.9) and incorporation of the divergence of the velocity field gives
the formula for the viscous forces at the rigid boundary for the horizontal direction

2 =
1 —
=S5 wal _7,Uwal(v~u> an,wal =
3 wal

~ uPSﬂ?waz Jr’UpSy
wal — —Hwal 4,9 +dySy

T wal

TntSe

nawal

up 2 vp
- S e — Huw Sz (B.13)
< Hwal 4.9, T dySy Twar  Mwal d,S T dyS Twal ywal>

nawal nawal Tn,wal Yn,wal

2 = )
_gﬂwal(v-@wa‘ls’zm,az .

The formula for the vertical direction is derived analogously.

B.2 Energy equation

The energy equation is considered in the form given in (4.35).
B.2.1 Heat conduction term

According to (5.43), the heat conduction term for a single boundary of the control volume
may be expressed as

Anb (67’) S, (B.14)

Since the vector connecting nodes P and NV is not necessarily in the direction normal to the
control volume boundary, the vector of the temperature gradient may be expressed as the

vectorial summation
(ﬁT)n - (W)d + ((ﬁT)n - (ﬁT)d) : (B.15)
see Fig.(B.3). Substituting (B.15) in (B.14)yields
Aut (V) 28 = A (VT) S+ 2 ((VT) .S = (VT) @S),  (B.16)

The value of A\ (ﬁT) ., .7.S may be expressed as

ITng — T
Ay (VT |7S| = ,\nbNTP 7S] . (B.17)
g
The same term may be written in the form
orT dy oT d o
A (VT) 4 [7S] = Ay () — + <> —< 1 |7s|, (B.18)
o nb d“ 6y nb d“

where gradient (07'/0zx),,, or (61'/dy),,, is to be evaluated using 5.34. Term A, (ﬁT) TSnp
n

may be expressed as

- e oT . oT R . T
Anb (VT)n S = A ((Ch@)nb €, <59>nb ey> (S2,€z, Sy.€y)" =

oT oT
()50 (), 5
ox nb 6y nb

(B.19)
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FIGURE B.3: Temperature gradient vectors.

Substitution of (B.17), (B.18) and (B.19) in (B.16) yields the formula for the heat conduction
at the control volume boundary, namely

Ing —1p

g

Anb (W) S 2 Ay 7S] +

| (B.20)
oT oT oT oT |72S
o\(5), 5 (5) 30 (5), - (5)..%)
’ ((5x>nb 52/ nb Y ow nb 6y nb Y ‘d“
B.2.2 Viscous term: Rayleigh dissipation function
The Rayleigh dissipation function is, according to (5.46), expressed by
/(?6) e (7V).ao. (B.21)

Q

For the sake of simplicity, the subscript indicating the considered node of the control volume
has been dropped. The tensor of viscous stresses reads

Rl

Tyz  Tyy
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The individual elements of matrix (B.22) read
~ 9 ou 2 [du n v - ou n v
Tex = <. T 5 < <~ | Tzxy = < <. ]
'uéx 3” ox Oy y=H oy O
" ov n ou ~ 9 ov 2 ou n ov
Tyr = e v p— - — = e e .
ve =P\ 5z Sy )’ Tyy 'uéy 3"\ Gz Sy

All gradients in (B.23) are approximated using (5.8). Expansion of the Rayleigh dissipation
function gives

—=\ - ) 5\ . ) o\ . R T
(7’ V) = ((TM&E + Txy&/) €, <Tyx5$ + Tyyéy) 6y> (uéy, véy) . (B.24)

Substitution of (B.23) to (B.24) leads to the relation
— = su\? sv\ su\? ou ov sv\?
T a2 — — — 2—— — -
(Tv) " u((ém) +<6y> >+u<<6y) * 5y§x+(§x)
g 57u ’ + 267“571) + 671} ’
3"\ bz ox oy Sy ’

which subsequently substituted in (B.21)yields the final form for the viscous forces, namely

(B.23)

(B.25)

(?ﬁ) RS
2 67’”2_'_ 671)2 O+ 5771'_’_5771 2_2 6£+512 0 (B.26)
g oz 0y a oy oz 3\dx Oy )

B.3 Pressure correction equation

The left-hand side of (5.64), containing the gradient of the pressure correction, may be writ-
ten, for a single boundary of the control volume, as

(Q) Vp.iiS = (Q) ' _C,I? + e (_T:ix J> o
A A7 (d'ﬁ) ('ﬁ (B.27)

Q r
(5) Beereis,
A nb

n

where the second part in the expression for 77 has been neglected. Distance (Jﬁ) originates

from the projection of vector d connecting nodes P and NV, onto the direction normal to the

boundary of the control volume, see Fig.(B.4). (Jﬁ) follows from

(4 ) _ d-iS  d.S,, +dySy, (B.28)

S 729
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FIGURE B.4: Projection of vector d on the direction normal to the boundary of con-

trol volume P.

Substitution of (B.28) in (B.27) reveals
/ o
<Q> ﬁp'.ﬁ5%<9> PN “ PP g =
A nb A nb (dﬁ)

n

Q p?VB_p/P Q|2 _ Y / / S§n+52n
(A)nbdxszn+dysn |7’lS‘ - A nb(pNB_pP) dzsmn+dys

The pressure gradient present in (5.65), namely

0 NS Q PNB — PP a2
<A>nb vpns B (A)nb deI" + dysyn |nS‘ B

0 ( ) 52 +82
A . PNB — PP —dz [ dy Sy”’

is obtained in the same manner. The second expression in (5.65) may be expressed as

2\ sem (e dS /oy dS?
(Vp) nS = (Vp) . (Jﬁ) = (Vp) . (JﬁS) =
(&), (5),%)

(B.29)

(B.30)

(B.31)
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Gradients (dp/dzx),,, or (0p/dy),,, are calculated using (5.34). Finally, combination of (B.31)
and (B.30) yields

Q Sgn—i—S;n op op
Scorrp— <A>nb<dxsxn+dy5yn b((pNB _pP) _<<5:L.)ncbiw +<(sy>nclfy>> . (B.32)




SUMMARY

Multiphase flows are usually accompanied by thermodynamic effects. These effects are as-
sociated with gas-liquid phase transition which can occur in a single fluid system as well as
in systems comprising more than one species. Appearance of the transition in a system has
substantial thermal and mechanical consequences, such as transfer of mass, momentum as
well as energy and change in the temperature field.

Flows coupled with phase change occur abundantly in nature. They are responsible for
atmospheric phenomena such as cloud formation, absorption of gases (including green house
ones) by sea water and many other phenomena of a global or local scale, which influences ev-
eryday life. Multiphase flows are also often present in many industrial applications in which
their physical features are advantageous or disadvantageous. Installations in the oil produc-
tion industry and energy production plants are examples of installations in which multi-phase
flows with phase transition appear. Phase transition is a desired phenomenon in vapour gener-
ation systems such as power plant boilers or water cooled nuclear reactors; as well as indirect
or direct contact vapour condensers or mass transfer equipment used e.g. for humidification.
Phase transition can also be an undesired phenomenon. It occurs in pumps and on ship pro-
pellers where because the pressure decreases considerably at the suction side of the impeller
or propeller blade, cavitation appears. This sort of transition can cause oscillations and may
threaten the structural integrity of the impeller or propeller.

Two driving mechanisms for phase transition inside a fluid can be distinguished. The first
is variation of the pressure leading to cavitation, whereas the second one is heat transfer
(temperature) resulting in boiling and evaporation/condensation.

For any kind of transition prediction of the flow is vital for designing industrial system
components and their efficient and reliable operation. Over the past decades researchers put
much effort in the development of algorithms capable of numerically simulate multiphase
flows with phase transition. The present study concerns the development of a method for the
prediction of multiphase flow with temperature-driven phase transition for which the geom-
etry of the gas-liquid interface is not known in advance. A single substance is considered
consisting of incompressible phases.

The gas-liquid interface in multiphase flows, with or without phase transition, involves a
discontinuity in the physical properties of the flow at the interface. This leads to difficulties
in preserving convergence in numerical algorithms for predicting single phase flows. The key
point of the present algorithm developed is the single field approach in the form of the Volume
of Fluid (VOF) method. The approach regards the gas-liquid flow as one field, smearing out
the discontinuity in the flow field quantities. The two phases are to be recognized by a Heav-
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iside step function. The argument of this function is the void fraction which is the ratio of the
volume of gas in the control volume and the volume of the infinitesimal control volume itself.
The void fraction distribution is obtained from a transport equation with additional terms to
satisfy mass conservation. The partial differential equation for the void fraction is solved
separately for each of the coordinate directions using a split operator method. Since flow
quantities are smoothed across the interface, a special numerical algorithm has been incor-
porated in order to maintain a high resolution of the interface. The algorithm comprises the
procedure of blending of two algorithms from literature: the Universal Limiter (ULTIMATE)
and the Quadratic Upstream Interpolation Estimated (QUICKEST). The blending procedure
was initially devised for one-dimensional computational domains. In order to extend the ca-
pability of the method to multi-dimensional flows, Compressive Interface Capturing Scheme
for Arbitrary Meshes (CICSAM) has been incorporated. This allows the calculation of flows
in two or three dimensional domains without jeopardizing interface resolution.

The set of governing equations is solved using a pressure correction algorithm adapted to
multiphase flow problems. The algorithm is based on the Semi Implicit Method for Pressure-
Linked Equations (SIMPLE). SIMPLE has been improved to handle the present collocated,
spatial discretization. The improvement concerns the artificial dissipation incorporated in the
momentum equation. This leads to the damping of unphysical oscillations resulting from the
collocated scheme.

The model for phase transition is based on the Energy of Fluid (EOF) method. The algo-
rithm utilizes the portion of the enthalpy of the fluid exceeding that at the state of saturation.
This portion of the enthalpy is then related to the latent heat necessary to change the state of
aggregation of the entire mass of the substance in the control volume. This relation allows
the evaluation of the volumetric amount of the substance which will transfer from vapour to
liquid or vice versa. The volumetric amount is related to the magnitude of the divergence
of the velocity field, which appears as source term in the right-hand side of the governing
equation for the void fraction.

Validation of the algorithm has been carried out for different flow types. The first group of
tests concerns the single phase flow around hydrofoil NACA 0015 in a parallel flow, aimed
at the assessment of the effects of the added artificial dissipation. The results show that the
method employing a central difference scheme with added dissipation gives the best results.
The subsequent simulations concerned a two phase flow without phase transition. The stan-
dard dam breaking problem has been used for the qualitative and quantitative evaluation of
the capability to capture a rapidly changing gas-liquid interface. It is shown that mass con-
servation has been improved by modification of the transport equation for the void fraction.
Finally, feasibility of the EOF method has been assessed with the simulation of a jet of liquid
coolant impinging on a free surface separating a hot liquid and its vapour present in the space
above the free surface.




SAMENVATTING

In meerfasen stromingen treden vaak thermodynamische effecten op. Deze effecten houden
verband met de faseovergang van gas naar vloeistof of omgekeerd. Faseovergang komt voor
in stromend medium dat uit een enkele stof bestaat als in stromend medium dat uit ver-
schillende stoffen bestaat. Fase overgang gaat gepaard met overdracht van massa, impuls en
energie en met veranderingen in het temperatuurveld.

In de natuur komen meerfasen stromingen met faseovergang veelvuldig voor. Deze stro-
mingen bepalen atmosferische verschijnselen als wolkenvorming, absorptie van gassen (in-
clusief broeikasgassen) door zeewater en vele andere verschijnselen op globale of lokale
schaal, die een invloed hebben op het dagelijkse leven. Meerfasen stromingen komen ook
veelvuldig voor in industrile toepassingen, waar hun fysische kenmerken zowel voor- als
nadelig kunnen zijn. Installaties in de olieproducerende industrie en elektriciteitscentrales
zijn voorbeelden van industrile installaties waarin meerfasen stromingen met faseovergang
optreden. Faseovergang is een gewenst fenomeen in dampgeneratie systemen zoals boilers
in centrales of in watergekoelde nucleaire reactors, zowel als in direct- of indirect-contact
condensors van massaoverdracht installaties als bevochtigers of drogers. Faseovergang kan
ook een nadelig verschijnsel zijn. Dit komt voor in pompen en bij scheepsschroeven, waar,
ten gevolge van de aanzienlijke afname van de druk aan de zuigzijde van de impeller van de
pomp en het blad van de schroef, cavitatie optreedt. Dit type faseovergang leidt tot trillingen
en kan de integriteit van de constructie van de pomp en scheepsschroef bedreigen.

Men kan onderscheid maken tussen twee bepalende mechanismen voor faseovergang bin-
nen in een medium. Het eerste mechanisme is de variatie van de druk in een stroming die
leidt tot cavitatie op plaatsen waar de druk onder de dampdruk komt. Het tweede mecha-
nisme is warmteoverdracht, waar bijvoorbeeld bij voortdurende toevoer van warmte (energie)
aan vloeistof de kooktemperatuur wordt bereikt en de vloeistof overgaat in damp, of omge-
keerd bij het ontrekken van energie aan damp de kooktemperatuur wordt bereikt en damp
tot vloeistof condenseert. Bij het ontwerpen van (componenten van) industrile systemen
waarin het gedrag van meerfasen stromingen met faseovergang bepalend is voor een efficint
en betrouwbaar gebruik, is de voorspelling van de stroming essentieel. Gedurende de laatste
decades hebben onderzoekers veel genvesteerd in de ontwikkeling van algoritmes voor de nu-
merieke simulatie van meerfasen stromingen met en zonder faseovergang. De huidige studie
betreft de ontwikkeling van een methode voor de voorspelling van meerfasen stromingen met
temperatuurgedreven faseovergang, waarin de geometrie van het gasvloeistof interface a pri-
ori onbekend is. De beperking hierbij is dat een medium bestaande uit een enkele stof wordt
beschouwd bestaande uit onsamendrukbare fasen.
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Het gasvloeistof interface in meerfasen stromingen, al dan met faseovergang, vormt in
de stroming een discontinuteit in de fysische eigenschappen van de stroming. Dit leidt tot
moeilijkheden in het behouden van de convergentie van numerieke algoritmes die zijn on-
twikkeld voor het voorspellen van stromingen van fluda bestaande uit een enkele fase. De
kern van het algoritme ontwikkeld in dit proefschrift is de zogenaamde single-field formu-
lering in de vorm van de Volume-of-Fluid (VOF) methode. In deze formulering wordt de
gasvloeistof stroming opgevat als een enkelvoudig veld, waarbij de discontinuteit in de stro-
mingsgrootheden wordt uitgesmeerd. Vervolgens worden de twee fasen gedentificeerd met
behulp van een Heaviside stapfunctie. Het argument van deze functie is de lokale waarde van
de dampfractie (void fraction), het quotint van het volume aan gas in en het totale volume
van een infinitesimaal controle volume. De ruimtelijke verdeling van de dampfractie volgt
uit een transportvergelijking met extra termen om het behoud van massa te waarborgen. De
partile differentiaal vergelijking voor de dampfractie wordt met een splitoperator techniek
gesplitst in elk van de cordinaatrichtingen. Het resulterende veld van stromingsgrootheden is
continu over het interface, waarna de resolutie van het interface wordt verkregen door middel
van een speciale numerieke procedure. Deze procedure bestaat uit een combinatie van twee
algoritmes uit de literatuur: het Universal Limiter (ULTIMATE) algoritme en het Quadratic
Upstream Interpolation Estimated (QUICKEST) algoritme. Oorspronkelijk was deze proce-
dure ontwikkeld voor eendimensionale rekengebieden. Ten behoeve van de uitbreiding naar
meerdimensionale stromingen is er het Compressive Interface Capturing Scheme for Arbi-
trary Meshes (CICSAM) aan toegevoegd. Met het resulterende algoritme is het mogelijk om
stromingen in twee- en driedimensionale gebieden te berekenen met behoud van de resolutie
van het interface.

Het set van beschrijvende vergelijkingen wordt opgelost met een drukcorrectie methode,
aangepast voor meerfasen stromingen. Het algoritme is gebaseerd op de numerieke procedure
die algemeen wordt aangeduid als de Semi Implicit Method for Pressure Linked Equations
(SIMPLE) procedure. Deze procedure is verbeterd ten behoeve van de huidige gecolloceerde
ruimtelijke discretisatie methode. De verbetering bestaat er uit dat kunstmatige dissipatie is
toegevoegd aan de impulsvergelijking. Dit resulteert in demping van de niet-fysische oscil-
laties die optreden in de gecolloceerde discretisatie formulering. Het model voor faseover-
gang is gebaseerd op de Energy-of-Fluid (EOF) methode. Dit algoritme maakt gebruik van
het deel van de enthalpie van het medium dat uitgaat boven dat van de verzadigingstoes-
tand. Dit deel van de enthalpie wordt vervolgens gerelateerd aan de latente warmte benodigd
om de aggregatietoestand van het medium in het controle volume te veranderen. Daarmee
kan dan het volume worden bepaald van het deel van de massa van het medium in het con-
trole volume dat van fase verandert. Dit volume is direct gerelateerd aan de grootte van
de divergentie van het snelheidsveld, welke als bronterm verschijnt in de transportvergeli-
jking voor de dampfractie. De validatie van de ontwikkelde methode is uitgevoerd aan de
hand van verschillende testgevallen. Het eerste testgeval betreft de een-fase stroming om het
NACAOQ01S5 profiel in een parallelstroming, gericht op de beoordeling van de effecten van de
toegevoegde artificile dissipatie. De resultaten geven aan dat de methode met een centraal
schema met toegevoegde artificile dissipatie het beste presteert. Het tweede testgeval betreft
een tweefasen stroming zonder faseovergang. Het standaard dambreuk probleem is gebruikt
voor een kwalitatieve en kwantitatieve evaluatie van de mogelijkheden van de huidige meth-
ode om een snelveranderend gasvloeistof interface numeriek te simuleren. De resultaten
laten zien dat de modificaties aan de transportvergelijking voor de dampfractie resulteren in
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een verbeterd behoud van massa. Tenslotte is de haalbaarheid van de EOF methode beo-
ordeeld voor het testgeval van een straal van koelvloeistof die het vrije oppervlak treft dat
het interface vormt tussen een hete vloeistof en de zich daarboven bevindende damp. Dit
testgeval laat zien dat dit soort complexe stromingen met de huidige methode numeriek kan

worden gesimuleerd.
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