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INTRODUCTION

1.1 Motivation and objective

In order to optimize oil production many technologies have been developed, which
has led to complex networks of wells that produce varying amounts of oil, water and
gas from multiple zones (Aspelund and Midttveit, 1996). These complex completions
make it possible to increase the maximum recovery of the oil reserves in the field
which are at present about 35− 50% on average (Kersey, Gysling and Bostick, 1999;
Kapteijn, 2003). Managing these ’smart wells’, e.g. by adjusting the valves in the
pipe network, requires accurate downhole-production monitoring to obtain detailed
information on the flow in the pipes and through the reservoir.

Modern fiber-optic-sensor technology provides a means, as reported by Gysling,
Vandeweijer and van der Spek (2000), to obtain real-time data of the pressure and
the temperature fluctuations at the pipe walls within the networks of oil wells. These
sensors can also be employed for downstream-process monitoring. This raises the
important question what information about the flow or the well might be extracted
from these pressure and temperature recordings.

The signals that have been recorded so far suggest the existence of sound waves
which propagate through the flow, typically with frequencies in the range 200 −
2000Hz. The origin of these sound waves is unknown. They may be generated by
the flow at some particular locations along the pipe due to the presence of entrances,
fittings, bends, etc. and subsequently propagate through the multiphase flow in a
wave-like manner. Other possible sources of sound are the turbulent fluctuations of
the flow or sources outside the pipes.

The flow in the pipes basically consists of oil and water. Due to the high pressure
downhole gas is usually dissolved in the liquids, mainly in the oil, but upon flowing
downstream the pressure in the flow decreases and as a result the gas may come out
of solution in the form of bubbles which coagulate into larger bubbles further down-
stream. Yet, sometimes the gas and even sand are present downhole. Oil-water flows
appear in a rich variety of flow patterns which all have different acoustic properties.
Many of them resemble a random medium that modulates pressure waves in a ran-
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dom manner. Hence, interpreting the pressure recordings and relating them to flow
parameters such as the flow rate or the volume fractions of the phases, or even to the
flow configuration, let alone to the origin of the sound, is a hard problem.

At present, information on the volume fractions of homogeneous mixtures of oil
and water is obtained by measuring the transit time of the acoustic waves as they
propagate along different sensors in the pipe through cross-correlating their record-
ings (Gysling et al., 2000). The ratios of the well-known distances between the sen-
sors and the corresponding transit times yield estimates of the sound speed of the
flow. Given the acoustic properties of the individual phases the volume fractions of
the oil and of the water are estimated by Wood’s relation (Wood, 1941) with an ex-
pected accuracy of 5−10%. In this approach the generation and dissipation of sound
waves between two sensors is neglected, as well as the possible frequency depen-
dency of the sound speed. A better understanding of the acoustics of mixtures of
oil and water will probably lead to an improvement of this technique. In addition,
knowledge on the acoustics of other flow configurations may yield an extension to
the technique above or, perhaps, even better ways to extract information from the
pressure recordings.

This study involves a theoretical analysis of the physical mechanisms that play a
role in the propagation of sound through oil-water flows in pipes. The aim is to find
characteristic acoustic properties that depend on the flow configuration and on the
physical properties of the two phases. These characteristic properties, such as the
propagation speed and the attenuation of the sound waves, may be recognized in the
recorded signals and provide information on the flow.

1.2 Acoustics of two-phase flows in pipes

Although an extensive literature exists on sound propagation through gas-liquid flows,
the number of studies on the acoustics of liquid-liquid flows in pipes is small. Most
studies on sound propagation through two-phase systems are focussed on dispersions
of gas and liquid. These exhibit significant resonance effects when it is the gas that
forms the dispersed phase. Also, damping in these flows is substantial. Compared to
gas-liquid systems the contrast in density and in compressibility is much smaller in
liquid-liquid dispersions, which implies that resonance effects are smaller and do not
dominate the acoustics. Hence, although the physics of the acoustics of oil-water dis-
persions and for gas-liquid dispersions is essentially the same, different mechanisms
dominate. Some studies involve the acoustics of well-separated gas-liquid flows (e.g.
Morioka and Matsui, 1975; van Wijngaarden, 1976; Sinai, 1984). In contrast to dis-
persions these resemble the liquid-liquid variant better, at least mathematically, and
provide a good starting point to a part of this study.

The propagation speed of sound waves propagating through the flow configura-
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tions as mentioned above and also other flow configurations is often calculated from
models that describe the two-phase flow in the pipe. These models consist of a system
of one-dimensional convection equations whose actual form depends on the specific
flow configuration. The effects of the other spatial dimensions as well as effects
like those due to the presence of the wall are included in terms of empirical closure
relations. Some of the eigenvalues corresponding to the characteristics of this hy-
perbolic system of equations are then taken as the sonic velocities (e.g. Lee, Chang
and Kyungdoo, 1998). In this manner expressions are found for the sound speed
in various flow configurations. Unfortunately, the physical mechanisms that cause
attenuation and the frequency dependency of the sound velocity are not clearly un-
covered in this approach. An example is the effect of multiple scattering which, as
will be shown here, plays an important role in the acoustics of oil-water flows.

The propagation of sound in circular ducts filled with a homogeneous medium has
been investigated extensively. Among the pioneers were Lord Rayleigh (1896),von
Helmholtz (1863) and Kirchhoff (1868). The acoustics of a wider range of systems
including sound waves in pipes are discussed in more recent textbooks by for instance
Morse and Ingard (1968), Pierce (1981) and Crighton, Dowling, Ffows Williams,
Heckle and Leppington (1992).

One of the aspects that play a role in the acoustics in pipes is the influence of
the wall elasticity. Although the wall elasticity is negligible for very stiff steel pipes
that are filled with a gas, when the pipes are filled with hardly compressible liquids
the flexibility of even steel pipes should not be ignored (Lafleur and Shields, 1995).
It means that the pipe walls have a non-zero impedance which may affect both the
phase velocity and the attenuation of the sound waves. These effects are probably
small in pipes surrounded by a stiff medium like water or rock, as in the wells. The
two effects will be ignored throughout this thesis, but can be taken into account by a
adding a small correction to the speed of sound of the medium.

The flows through which pressure disturbances propagate have nonuniform veloc-
ity distributions over the cross-section of the pipe. Since the sound speeds in oil-water
flows are much higher than the flow speeds that occur in practice the influence of the
flow velocity is expected to be negligibly small and will be ignored in this study; i.e.
the flow is assumed to be in rest.

1.3 Overview of this thesis

In this thesis the acoustics of oil-water flows is analyzed for various flow configu-
rations. In Chapter 2 a brief overview will be given of oil-water flow patterns that
occur in pipes. The rich variety of configurations that is observed will be discussed
on the basis of several papers on experimental observations illuminated by sketches
and photographs.
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The distribution of the phases in many of the flow configurations does not vary
appreciably with axial position along the pipe, as in dispersed and stratified flows. In
Chapter 3 the acoustics of these flows will be analyzed. First the equilibrium speed
of sound, being the sound speed for very low frequencies such that non-equilibrium
effects become negligibly small, will be derived for well-separated flows in which
the phases are able to move freely relatively to each other and for dispersions where
this is not the case. Furthermore, the effects of attenuation, e.g. by boundary layers
at the pipe wall and by the relative motion between the phases, will be discussed.

The frequency range of interest presumably warrants to restrict attention to purely
one-dimensional modes of sound propagation. To what extent the one-dimensional
approach is judicious will be inquired in Chapter 4. The modes and the corresponding
cutoff frequencies will be calculated for core-annular and stratified configurations as
well as the dispersion of the fundamental mode.

When the flow configuration exhibits a phase distribution that varies along the
pipe, sound waves are reflected, which complicates the acoustics considerably. In
Chapter 5 methods are introduced that provide a means to calculate the propaga-
tion of sound in these configurations when the phase distribution varies gradually or
abruptly.

The methods introduced in Chapter 5 may be usefully applied to periodic or ’close
to periodic’ flows. Chapter 6 involves the properties of perfectly periodic flows such
as slug flows or stratified flows for which the interface is not plane but wavy. The ideal
situation of perfectly periodic flows is not realistic. True slug flows, for instance,
are close to periodic but the periods differ in a random way. How these random
deviations affect the acoustic properties of perfectly periodic flows will be the content
of Chapter 7. When the random deviations become large the periodic structure cannot
longer be recognized. These fully random flows resemble stratified configurations
where larger oil bubbles flow on top of a layer of water.
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2.1 Introduction

Before turning to the acoustics of oil-water flows in pipes first an overview will be
given of what has been observed in experiments with respect to the distribution of the
phases. The study of the acoustics in this thesis will be based on the characteristic
patterns of the phase distribution that have been observed in the experiments.

The distribution of two immiscible fluids flowing through a pipe shows a rich
variety of flow patterns, flow configurations, or flow regimes which depend on the
physical properties of the two fluids, like the densities, the viscosities, the interfacial
tensions, etcetera, as well as on the properties of the duct and the flow rates of the
two fluids.

Gas-liquid flows have been studied and are still being studied intensively. On the
other hand detailed information on the flow of oil and water in pipes is lacking. The
flow structure in the two systems is quite different. Where gas-liquid systems are
characterized by extreme density and viscosity contrasts, liquid-liquid flows have
similar densities whereas the viscosity contrast covers a range over several orders
of magnitude. Also, the lower free energy at the interface allows the formation of
shorter interfacial waves and smaller droplet or bubble sizes of the dispersed phase,
(Trallero, Sarica and Brill, 1997). Consequently, the size of the parameter space is
larger for liquid-liquid flows and the classification of liquid-liquid flows into basic
flow configurations is even more complicated than for gas-liquid systems. Figure 2.1
shows sketches by Brauner and Moalem Maron (1999) of many different flow pat-
terns observed in horizontal oil-water systems. In practice the orientation of the pipes
is, of course, not always perfectly horizontal and, depending on the angle of inclina-
tion of the pipe, an even richer variety and more complex types of flow configurations
can be observed. Obviously, the influence of the pipe inclination is caused by gravity
and is therefore negligible when the density of the phases are more or less equal.

Due to the high density contrast and the small viscosity of gases the settling of
drops by gravity takes place more rapidly in gas-liquid systems than in liquid-liquid
systems. Therefore dispersions are a more common structure in liquid-liquid flow
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FIGURE 2.1: Sketches of various flow patterns (by Brauner and Moalem Maron, 1999).

configurations. They appear as a stable flow patterns when the motion of the fluids
is sufficiently intense; i.e. the dispersive forces by turbulence must overcome the
resisting gravity field and surface tension. Dispersions also arise when some mixing
device is used and even sustain far downstream as long as coalescence is minimal,
e.g. when gravity effects are small (Brauner, 2001). Otherwise, these dispersions are
unstable and will develop into a different flow pattern.

2.2 Experimental observations of flow patterns in pipes

Among the first experimental studies on liquid-liquid flows is that of Charles, Govier
and Hodgson (1961) who present results of experiments on the flow of oil and water
with approximately equal densities of 998kgm−3 in a horizontal pipe with a 2.64cm
inner diameter and length of 7.3m. The viscosities of the oils were 6.29mPas,
16.8mPas, and 65.0mPas. The superficial velocities (the volume flow rate divided
by the cross-section of the pipe) varied between 0.012ms−1 and 0.073ms−1 for the
oil and between 0.024ms−1 and 0.85ms−1 for the water. The flow patterns turned
out not to depend much on the oil viscosity. Sketches of what was observed for the
oil with a viscosity of 16.8mPas are shown in figures 2.2 and 2.3 (left), taken from
the original paper. In each of the three sets the water flow rate is fixed and the oil flow
rate decreases from top to bottom. In the words of the authors, as the oil flow rate
is decreased for a fixed water flow rate the flow pattern changes from a dispersion of
water in oil, through concentric oil in water, oil slugs in water, oil bubbles in water,
to oil drops in water. As the total volume flow rate of the two fluids increases the in-
terface between the fluids seems to become less ‘smooth’: there is more mixing and
more variation in the drop sizes, and parts of the interface have a wavy appearance.
Note that in all cases, except the water drops in oil configuration, it is the water that
wets the pipe wall.



2.2. EXPERIMENTAL OBSERVATIONS OF FLOW PATTERNS IN PIPES 7

FIGURE 2.2: Sketches of horizontal oil-water flows (by Charles et al., 1961). The fixed
water velocities are 0.03ms−1 (left) and 0.21ms−1 (right).

Russel, Hodgson and Govier (1959) describe similar experiments, but here the oil
density is smaller (834kgm−3) than that of the water. The pipe diameter in this
experiment is somewhat smaller, D = 2.45cm, and the pipe length slightly larger,
L = 8.6m. Figure 2.3 (right) shows sketches of the flow configurations for a fixed
superficial water velocity of 0.86ms−1 when the oil-water volume ratio takes the
values Rv = 0.14, Rv = 0.47 and Rv = 0.92. The influence of gravity is clearly
visible. When the oil fraction is small the oil phase tends to form long elongated bub-
bles which develop into a more stratified pattern when the oil fraction is increased.
By further increasing the oil fraction the flow takes a pattern consisting of three strat-
ified layers where the one in the middle becomes mixed; the two phases occur as a
dispersion in the other phase.

Other sketches of oil-water flow patterns where the phases have different densities
are shown in figure 2.4, which was taken from a paper by Trallero et al. (1997).
These authors studied the flow of a mineral oil and water in a horizontal pipe with
an inner diameter of 5.01cm and a length of 15.54m. The viscosity and the density
of the oil were 28.8mPas and 884kgm−3, and those of the water 0.97mPas and
1037kgm−3, respectively. The superficial velocities of the two phases were in the
range 0.01 − 1.60ms−1. The upper two sketches in the left column of figure 2.4
show that for low and roughly equal volume flow rates of the two phases a stratified
flow was observed. The oil was on top. As the flow rates were increased the interface
became wavy and broke up. Near the interface oil droplets were found in the water,
and water droplets in the oil. The other four sketches in the figure illustrate what was
observed at high flow rates. When the volume fractions of the phases were rather
different the liquid that has the lowest value formed droplets that were dispersed in
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FIGURE 2.3: Left: same as the in previous figure, but with a water velocity of 0.62ms−1.
Right: sketches of horizontal oil-water flows where the phases have different densities (by
Russel et al., 1959); the water velocity is 0.86ms−1.

FIGURE 2.4: Sketches of horizontal oil-water flows (by Trallero et al., 1997).
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the liquid with the high volume fraction. The authors called these flow configurations
emulsions of water in oil or emulsions of oil in water. When the volume fractions
were approximately equal complex patterns were found consisting of two separated
layers in which droplets were densely dispersed.

Angeli and Hewitt (2000b) studied horizontal oil-water flows with a low viscosity
contrast (µoil = 1.6mPas, ρoil = 801kgm−3) in steel and acrylic pipes. The mixture
velocity was varied from 0.2ms−1 to 3.9ms−1 and the input water fraction ranged
from 6% to 86%. Flow patterns are usually determined visually by means of a trans-
parent pipe or window. However, due to multiple reflections it is often difficult to
identify accurately the phase distribution, especially for complex and rapidly varying
interfaces. Figures 2.5 and 2.6 make this point clear.

The flow patterns that were observed were various different forms of stratified
flows: with a wavy interface; with drops at the interface, figure 2.5 (top); with
three layers with a layer of drops in between layers of pure oil and pure water, fig-
ure 2.5 (bottom); with two layers where one layer with drops was on top of or below
a layer of the continuous phase, figure 2.6 (top). When the mixture velocity was
increased a fully dispersed or mixed pattern occurred of one phase into the other, fig-
ure 2.6 (bottom). Wether the oil or the water is the continuous phase depends on the
input water volume fraction, low values yield a water in oil dispersion, high values an
oil in water dispersion. The transition of the one dispersion into the other one (phase
inversion) did not take place at a particular input water volume fraction. Within a cer-
tain intermediate regime the two phases were observed to be periodically continuous
and dispersed in waves, see also figure 2.1p.

Although the flow regimes identified in the steel and in the acrylic pipe were ob-
served to be similar, also some differences were found. The patterns in the steel pipe
were more disturbed than those in the acrylic pipe; i.e. the stratified wavy regime
was very narrow and the mixed region started at lower velocities. Angeli and Hewitt
(2000b) attribute this difference to the higher, turbulence generating, wall roughness
of the steel pipe wall. The second difference that they mention is that the oil con-
tinuous regimes are more persistent. These patterns change into other regimes only
beyond a wide range of mixture velocities and water fractions, wider than in steel
pipes. They explain this by the differences in wettability of the pipe wall. Since the
oil more easily wets the acrylic wall than the steel wall the continuous oil patterns
occurs over a wider range of flow conditions.

The flow patterns become very different when the oil is very viscous as shown by
the sketches in figures 2.7 and 2.8 (by Joseph et al., 1997). The first figure shows
sketches of regimes in horizontal pipes that resemble the patterns from figure 2.2
of equal density oil-water flows. Still, the influence of gravity is clearly visible as
the oil phase has the tendency to rise towards the top of the pipe. Additionally,
ripples are formed on the long oil bubbles or on the core while in the experiments
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FIGURE 2.5: Stratified Wavy with Drops (SWD) flow pattern (Top) and Three Layer (3L)
flow pattern (Bottom) in an acrylic pipe (Angeli and Hewitt, 2000b).
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FIGURE 2.6: Stratified Mixed with water layer (SM/water) flow pattern (Top) and
Mixed (M) flow pattern (Bottom) in an acrylic pipe (Angeli and Hewitt, 2000b).
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FIGURE 2.7: Sketches of flow patterns in horizontal flows (flowing from the right to the left)
with a lighter oil phase (from Joseph et al., 1997)

of Charles et al. (1961) the bubbles rather break up into smaller bubbles. More in-
depth analyzes of rippled cores lubricated by water can be found in for example
Ooms, Segal, Meerhof and Oliemans (1984). A profound description of the vertical
flows in figure 2.8 is given by Bai, Chen and Joseph (1992) who did experiments on
water-lubricated pipelining of viscous oil, µoil = 601mPas, in a vertical pipe where
the flow rates were small, less than 0.9ms−1. The core in vertical up-flows often
takes the shape of the so-called bamboo waves. In down-flow systems only the short
bamboo waves appear and instead of the long bamboo waves corkscrew waves occur.
Besides viscous oils the core can also consist of well-dispersed water drops in oil.
These emulsions may be formed to have an effective high viscosity which has similar
properties and patterns as described above, even though the viscosity of the pure oil
phase itself is low (Ho and Li, 1994).

2.3 Drop sizes in dispersions

Many experiments on droplet sizes have been carried out (e.g. Collins and Knud-
sen, 1970; Karabelas, 1978; Angeli and Hewitt, 2000a; Simmons and Azzopardi,
2001). The order of magnitude of the drop sizes were in the range up to 0.5mm (e.g.
Simmons and Azzopardi, 2001) and in the range up to several millimeters in other
systems (Angeli and Hewitt, 2000a). Estimates of the droplet sizes are required to
determine the attenuation of sound in dispersions. Therefore, relations that provide
the drop size in terms of system parameter such as the flow rate and the physical
properties of the phases would be advantageous.
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FIGURE 2.8: Sketches of flow patterns in up-flows in a vertical pipe (left); in down-flows in
a vertical pipe (right) (from Joseph et al., 1997)

Theories on drop or bubble sizes in dispersions are mostly based on the work by
Kolmogorov (1949) and Hinze (1955) who considered the breakup of a single drop
in a infinite flow field where coalescence does not occur.

According to a brief review of Brauner (2001) of their theory, they argue that in
turbulent flows regions where viscous shear is relevant are small compared to the size
of the largest drops. Therefore, the dominant external stress working on the drops is
the dynamic pressure of the turbulent eddies of the drop size d. The maximum drop
size follows from a balance between the drop surface energy and the turbulent energy,

4σ

dmax
≈ 1

2ρcu
′2, (2.1)

with ρc the density of the continuous phase. For homogeneous isotropic turbulence
the turbulent kinetic energy may be related to the rate of turbulent energy dissipa-
tion ē,

u′2 = 2(ēdmax)2/3, (2.2)

as long as

lk =
(

µ3
c

ρ3
c ē

)1/4

� dmax < D/10, (2.3)

where µc denotes the dynamic viscosity of the continuous phase, lk the Kolmogorov
microscale and D/10 the length scale of the energy containing eddies in a pipe with
diameter D, (Hinze, 1959). The relation between the turbulent energy dissipation
and the maximum drop diameter then follows from equations 2.1, 2.2,

dmax

(ρc

σ

)3/5
ē2/5 = C. (2.4)
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The constant C = 0.725 is determined by fitting experimental data of various liquid-
liquid dispersions. The corresponding critical Weber number, denoting the ratio be-
tween the external force τ that tends to deform the largest drops and the counteracting
surface tension force,

Wecrit =
τdmax

σ
, (2.5)

has the value 1.17. This value agrees with the theoretical value obtained when con-
sidering the resonance frequencies of liquid drops (Sevik and Park, 1973).

The turbulent energy dissipation in pipe flows may be related to the frictional pres-
sure drop,

ē =
4τUc

Dρc(1 − εd)
=

2U3
c f

D

ρm

ρc(1 − εd)
. (2.6)

Here f is the friction factor.
The maximum drop size prediction by Hinze (1955) then becomes

(
dmax

D

)
0

= 0.55We−0.6
c

(
ρm

ρc(1 − εd)
f

)−0.4

, (2.7)

with Wec = ρcU
2
c D/σ. Correlations for the friction factor f can be used to close

equation 2.7, for instance by Blasius’ equation f = 0.046/Re0.2
c , with Rec =

ρcDUc/µc. In the dilute limit, εd � 1, the mixture density may be approximated
by

ρm = εdρd + (1 − εd)ρc ≈ (1 − εd)ρc (2.8)

and hence, the last term in equation 2.7 may be omitted as long as the bulk density of
the dispersed phase is not much larger than that of the continuous phase, like in gas-
liquid mist flow where the liquid forms the dispersed phase. Hinze’s theory predicts
the maximum drop size in dilute dispersions fairly well for a variety of two-phase
systems, as long as dmax < D/10, (e.g. Karabelas, 1978). The mechanisms that
cause breakup in systems with larger drops or bubbles and denser dispersions are
more complicated and still subject to research (e.g. Lasheras, Eastwood, Martı́nez-
Bazán and Montañés, 2002; Risso and Fabre, 1998). For these flows Hinze’s theory
underpredicts the actual drop sizes as measured in experiments. Hence, it cannot be
employed in the calculation of the attenuation of the sound waves in these dispersions.
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3.1 Introduction

In this chapter the acoustics of two-phase flows in pipes are considered for flow con-
figurations that do not vary with position along the pipe. Examples of these config-
urations are dispersions where the volume fractions of the phases are constant with
position along the pipe. Here the length scale of the phase distribution is very small
compared to the wavelength such that the system resembles a single phase fluid with
effective acoustic properties. Other examples are well-separated flows, such as core-
annular flows or stratified flows. The latter may consist of two layers with the lighter
fluid flowing on top of the heavier fluid, but also three layer systems where two lay-
ers of the pure phases are separated by a dispersion of the one fluid in the other or a
mixed layer where the two phases are dispersed into each other.

In the next section the main properties of low frequency sound waves in pipes are
briefly discussed focussing on the differences of the acoustics of single phase flows,
dispersed flows and separated flows. In the following sections the propagation speed
and the attenuation of sound waves will be analyzed in more detail for dispersed
and separated systems illuminated by several examples of flows as described in the
previous chapter.

3.2 Sound velocity in pipes

The speed of sound is usually meant to be the velocity of propagation of small ampli-
tude pressure perturbations when non-equilibrium effects are negligibly small. How-
ever, in general only very low frequency sound waves actually do propagate with this
velocity. For higher frequencies non-equilibrium effects affect the actual propagation
speed of the waves.

Pierce (1981) gives limiting expressions for the speed of sound for very low and
for very high frequencies for a medium that is in rest, unbounded and consists of a
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single phase. In this case the linearized energy equation reads

ρ0T0
∂s

∂t
= κ0∇2T, (3.1)

where s and T denote the entropy and the temperature perturbations, respectively.
ρ0, T0 and κ0 denote the density, the temperature and the thermal conductivity, re-
spectively, evaluated for undisturbed conditions. Since the entropy and temperature
perturbations vary on the acoustic time and length scales, time and the spatial coor-
dinates should be expressed in terms of angular frequency ω and the wave number
k = ω/c of the acoustic waves, respectively. As long as the waves have a constant
amplitude the magnitude of the term in the left-hand side of equation 3.1 is pro-
portional to the frequency whereas the magnitude of the term in the right-hand side
varies proportionally to the square of the frequency. Then in the limit of very low fre-
quencies the generation of heat through conduction becomes negligibly small from
which it follows that the entropy must be constant. Therefore, in the zero frequency
limit the equilibrium speed of sound is given by the derivative of the pressure to the
density for isentropic conditions,

c2
s =

(
dp

dρ

)
s

. (3.2)

In the high frequency limit the conduction of heat fully dominates the energy bal-
ance. As a result the temperature remains constant and the speed of sound should be
evaluated for isothermal conditions. The frozen sound speed is in this case given by

c2
T =

(
dp

dρ

)
T

. (3.3)

The equilibrium and the frozen speed of sound are the low and high frequency lim-
its of the true propagation speed of sound waves in an infinite medium. In order to
estimate whether the actual frequency is small or large the relaxation frequency of
thermal conduction is introduced as the reciprocal of the time scale of thermal con-
duction in which locally heat is generated through conduction. An expression for this
frequency follows from equation 3.1,

ftc =
c2

2πkH
, (3.4)

where kH = κ0/(ρ0Cp) denotes the thermal diffusivity of the fluid. For atmospheric
conditions typical values for the relaxation frequency are ftc ∼ 109Hz in air and
even higher in water, ftc ∼ 1012Hz. The equilibrium speed of sound is clearly the
appropriate one when dealing with low frequency sound waves (f � ftc) in single
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phase infinite media. Throughout this thesis the speed of sound of the pure fluids is
evaluated for isentropic conditions.

The non-equilibrium effect of heat conduction plays a role in the attenuation and
dispersion of acoustic waves in an infinite domain. However, when dealing with low
frequency sound waves in pipes (compared to ftc) its influence is negligible and will
be ignored in this thesis. When sound propagates through a single phase fluid in a
pipe the most significant non-equilibrium effect is associated with the adjustment of
the fluid velocity and temperature to that of the pipe wall. The result is a frequency
dependent small correction to the propagation speed that would occur for equilibrium
conditions, and more importantly, a frequency dependent attenuation of the distur-
bances as they travel through the pipe. For a detailed discussion on the effects of heat
conduction on the propagation of sound waves the reader is referred to, for instance,
Pierce (1981) or Lighthill (1978), but also many other textbooks cover this topic.

If the medium consists of two phases the situation is more complicated, even with-
out the presence of the pipe wall. When the phases are intimately connected, as when
one of the phases is finely dispersed in the form of droplets in the other continuous
phase, the equilibrium sound velocity of the medium should be considered as the
velocity of propagation of pressure waves when the droplet temperature and size are
always those that they would be for equilibrium conditions (given the actual value of
the pressure that is imposed by the perturbation). When subject to pressure fluctua-
tions the two phases would accelerate differently because of the contrast in density.
However, at low frequencies the viscous forces dominate the inertial forces due to
the intimate connection of the two phases. The velocity of the droplets is in that case
equal to the velocity of the surrounding fluid. The influence of the density contrast
increases with frequency and diminishes the effect of the viscous force. The result
is that the drops cannot follow the surrounding fluid perfectly anymore and assume a
different velocity than that of the surrounding fluid. The velocity difference between
the two phases permanently tends to relax towards its equilibrium value of zero. Also
the temperature difference between the two phases is in a permanent relaxation pro-
cess towards its equilibrium value of zero. Yet, the two relaxation processes only
reach full equilibrium in the zero frequency limit. In equilibrium the temperatures in
the two phases are the same (Temkin, 1992).

It is these relaxation processes towards equilibrium that give pressure wave propa-
gation in dispersions its interesting properties. These may be very different depend-
ing on the fluids that form the dispersion and on the constitution of the dispersion. In
many cases the wave velocity and attenuation strongly depends on the frequency. The
equilibrium sound velocity is then the low frequency extreme; the high frequency ex-
treme, in which the phases are free to move relative to each other and the conduction
of heat across the interfaces is absent, is the frozen sound velocity.

In annular flows or stratified flows the phases are not intimately connected, in other
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words well-separated. Then the propagation of pressure waves is more reminiscent
of that in single phase flows. The proper approach is to consider the sound propa-
gation for equilibrium conditions as that when the phases are free to move relative
to each other for the condition that the pressure be continuous across the interface as
well as the component of the induced velocity that is normal to the interface. Non-
equilibrium effects are now associated not only with adjustment of temperature and
velocity near the wall of the pipe, but also at the interface between the fluids. These
processes are similar in nature, and it is likely that the adjustment process near the
wall is the dominant effect. After all, the velocity difference between the phases at
the interface will be smaller than the velocities of the two phases near the wall of the
pipe. It is noted that a brief discussion of what this approach would give in the case
of gas-liquid flows is given by van Wijngaarden (1976).

3.2.1 Separated composition

Let us proceed by considering a composition where the phases are free to move rela-
tively to each other and not intimately connected. Suppose that oil and water occupy
well-separated parts of the cross-section of a pipe, as for instance in stratified flows,
annular flows or slug flows. The two phases are denoted by the subscripts i = 1, 2.
Let the undisturbed flow be at rest and the two phases in this undisturbed case have
densities ρ0i and occupy cross-sections A0i. When the frequency tends to zero the
motion is purely longitudinal. Then for each of the phases i the conservation equation
of mass reads

∂(ρiAi)
∂t

+
∂(ρiAiui)

∂x
= 0. (3.5)

Upon linearizing and employing the definition of the bulk modulus K (also called the
modulus of elasticity),

Ki =
(

ρi
dpi

dρi

)
0

= ρ0ic
2
0i, (3.6)

where the subscript 0 denotes the evaluation for undisturbed conditions, one obtains

A0i

Ki

∂pe,i

∂t
+

∂Ai

∂t
= −∂(A0iui)

∂x
, (3.7)

with ui the induced velocity and pe,i the excess pressure over the undisturbed value.
In the following the subscript 0 is omitted as it is understood that all physical proper-
ties are to be evaluated for undisturbed conditions. It is recalled that the two phases
are considered to be separately in thermodynamic equilibrium and have a different
temperature since the conduction of heat across the interface is neglected. Since the
wavelength is very long compared to the pipe diameter the pressures in the two phases
must be the same. Then the condition that the pressure be continuous across the in-
terface is automatically satisfied. The total area that is covered by the two phases is
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just the cross-section of the pipe, which is a constant. Adding the linearized mass
conservation equations of the two phases yields

∂pe

∂t
= −K

∂u

∂x
, (3.8)

where, upon introducing the holdup α = A1/A as the fraction of the cross-section
that is covered by phase 1, the bulk modulus of the two-phase medium is given by

1
K

=
α

K1
+

1 − α

K2
, (3.9)

and the mean induced velocity by

u = αu1 + (1 − α)u2. (3.10)

In each phase the momentum conservation equation reads

ρi

(
∂ui

∂t
+ ui

∂ui

∂x

)
= −∂pe

∂x
. (3.11)

Linearizing and adding gives, with use of equation 3.10,

∂u

∂t
= −1

ρ

∂pe

∂x
, (3.12)

where the effective density ρ is given by

1
ρ

=
α

ρ1
+

1 − α

ρ2
. (3.13)

Combining equations 3.8, 3.12 yields the wave equation for the excess pressure,

∂2pe

∂t2
=

K

ρ

∂2pe

∂x2
. (3.14)

It is clear that the sound velocity is given by c2 = K/ρ. This expression can be
written in terms of the holdup α as

c2

c2
1

=
α + (1 − α)/ρ∗
α + (1 − α)/K∗

, (3.15)

where ρ∗ = ρ2/ρ1 and K∗ = K2/K1 denote the density ratio and the ratio of the
bulk moduli, respectively. Another quantity of interest is the acoustic impedance.
Waves that have the form

pe(±x/c − t), u(±x/c − t) (3.16)
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are solutions to equations 3.8, 3.12 if pe/u =
√

Kρ. This ratio of the excess pressure
and the induced velocity in the direction of sound propagation is called the acoustic
impedance. For separated configurations the impedance, Z =

√
Kρ, is given by

Z2

Z2
1

=
1

α + (1 − α)/K∗
1

α + (1 − α)/ρ∗
, (3.17)

where the impedance of phase 1 is given by Z1 = ρ1c1.

A different way of writing the equations above follows from introducing the acous-
tic admittance Y of the two phases as the reciprocal of the impedance Z,

Yi =
1√
Kiρi

, (3.18)

i.e. in each phase as the ratio of the induced velocity in the direction of sound prop-
agation and the pressure excess. Then Ki and ρi may be written in terms of the
admittance and the speed of sound as 1/Ki = Yi/ci and 1/ρi = ciYi. The effective
quantities now become, according to equations 3.9, 3.13,

1
K

=
Y

c
= α

Y1

c1
+ (1 − α)

Y2

c2
,

1
ρ

= cY = αc1Y1 + (1 − α)c2Y2. (3.19)

In terms of these new variables the wave equations 3.8, 3.12 yield

∂pe

∂t
= − c

Y

∂u

∂x
,

∂u

∂t
= −cY

∂pe

∂x
. (3.20)

Lighthill (1978) explains that these are the general equations governing longitudinal
pressure wave propagation in tubes and channels. Within this longitudinal theory the
waveguide properties are even allowed to vary with the axial position in the pipe.
The two-phase pipe flow problem that we are concerned with here is a special case
in which both the local sound speed and the local admittance may vary with position
along the tube, as a consequence of variations in the cross-sectional areas covered by
the two phases.

3.2.2 Dispersed composition

In contrast to flows where the phases are able to move freely relatively to each other
consider an oil-water flow where one of the fluids is homogeneously dispersed as
droplets in the other fluid such that the phases are intimately connected and have the
same velocity. In section 3.2 the influence of heat conduction on the speed of sound
was briefly discussed for single phase flows. In that section it was explained that
the linearized energy equation in the zero frequency limit yields a constant entropy
because the temperature gradients are negligibly small for long wavelengths and so is
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the conduction of heat. In dispersions the two phases respond differently to pressure
perturbations since their thermodynamic properties differ. The result is a temperature
jump across the interfaces which leads to the conduction of heat. The argument for
single phase flows that the conduction of heat is negligible in equilibrium does not
apply to heat conduction across interfaces in dispersions. Instead, in the fully relaxed
state of equilibrium not only the pressure must be the same in the two fluids, but also
the temperature.

Yet, the relaxation frequency of heat conduction across the interface is very small
in oil-water flows according to a rough estimate of Temkin (1992),

ft =
6ν2ρ∗Cp,2

d2Pr2Cp,1
, (3.21)

where d denotes the diameter of the droplets, Cp the isobaric heat capacity, ν the
kinematic viscosity and Pr the Prandtl number. It is recalled that the asterisk denotes
the ratio of the particular fluid properties of phase 2 and phase 1; here the dispersed
phase is taken as phase 1. To give an example suppose that the dispersion consists
of water and kerosene in the extreme case of very small droplets, d = 0.2mm. Then
the estimate gives ft = 1Hz when it is the water that is the dispersed phase and ft =
12Hz when it is the oil that forms the dispersed phase. It is noted that ft decreases
with the square of increasing drop diameters, which means that the expected value
of ft will be much smaller in dispersions with larger drop diameters. Temkin (1992)
also gives an estimate of the relaxation frequency of the relative motion between the
phases,

ftr =
18ν2ρ∗

d2(1 + ρ∗/2)
. (3.22)

Typical values for kerosene-water dispersions are ftr = 173Hz for water drops dis-
persed in kerosene and ftr = 87Hz when it is the oil that forms the dispersed phase.
The frequency range of interest is much larger than these values of the relaxation fre-
quencies. Since ft is much smaller than ftr and heat conduction significantly affects
the speed of sound the conduction of heat is considered as frozen in the derivation
of the equilibrium speed of sound that will be given below. Strictly, it is not the true
equilibrium speed of sound, but the special limit where the relative motion between
the phases is fully relaxed and the process of heat conduction is frozen. In bubbly
liquids, air bubbles in water, say, the values of the relaxation frequencies according
to the expressions above are about ft = 9600Hz and ftr = 220Hz. It is clear that
heat conduction cannot be ignored in this case.

Let α be the volume concentration of the droplets, and ρ1 and ρ2 the densities of
the droplets and the continuous phase, respectively. Then the effective density ρ ∗ of

∗Note that here ρ denotes the effective density of a dispersion and should not be confused by the
effective density of a separated flow as discussed in the previous section.
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the oil-water dispersion equals

ρ = αρ1 + (1 − α)ρ2, (3.23)

or in terms of the mass concentration of the droplets φ, i.e. the mass of droplets in a
unit mass of the dispersion,

1
ρ

=
φ

ρ1
+

1 − φ

ρ2
. (3.24)

For equilibrium conditions the droplets simply follow the motion of the surrounding
fluid due to the viscous forces so that the mass fractions are constant,

φ =
αρ1

ρ
= constant. (3.25)

An expression for the bulk modulus of the dispersion is now obtained by consid-
ering how the density changes due to a compression for isentropic conditions in the
two phases separately. By means of differentiating equation 3.24 one finds

1
K

=
1

ρc2
=

1
ρ

dρ

dp
=

φρ

ρ2
1

dρ1

dp
+

(1 − φ)ρ
ρ2

2

dρ2

dp

=
φρ

ρ1

1
ρ1c2

1

+
(1 − φ)ρ

ρ2

1
ρ2c2

2

. (3.26)

This shows, by employing equations 3.25, 3.23, that

1
K

=
α

K1
+

1 − α

K2
, (3.27)

which is the same expression for K as for separated compositions. Some manipula-
tion yields two alternative expressions for the speed of sound,

c2
1

c2
=

α2

φ
+

(1 − α)2

(1 − φ)c2∗
, (3.28)

and
c2
1

c2
= (α + (1 − α)/K∗) (α + (1 − α)ρ∗) . (3.29)

In the literature equation 3.29 is referred to as Wood’s equation (Wood, 1941). The
acoustic impedance is in the case of dispersed flows given by

Z2

Z2
1

=
α + (1 − α)ρ∗

α + (1 − α)/K∗
, (3.30)

where it is recalled that Z1 = ρ1c1 denotes the impedance of the pure phase 1.
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Temkin (1992) includes heat conduction across the interfaces at the calculation of
the sound speed and derives expressions for the effective entropy and thermodynamic
properties of suspensions. For the equilibrium sound speed he finds an expression
that differs from Wood’s equation. Only when the ratios of the isobaric and the
isochoric specific heats, γ = Cp/Cv, are equal to one for the two phases then the two
expressions for the sound speed are the same. This condition applies approximately
to water but not in general for liquids; kerosene has for instance a specific heat ratio
of about 1.2. The common assumption that the value of γ is close to one for liquids
is not correct (see e.g. Garvin, 2002).

The difference between the two expressions for the equilibrium sound speeds are
small for dilute dispersions of gas bubbles in water, or rather, ’conceptual’ in the
words of the author. Still, the author mentions (in Temkin, 2000) experimental data
by Karplus (1961) of the speed of sound in bubbly liquids at low frequencies (250Hz,
which is smaller than ft in bubbly liquids). The data is in agreement with his theo-
retical prediction of the sound speed whereas Wood’s relation overestimates the data
slightly. He also shows in the same paper (on theoretical grounds) that in oil-water
dispersions the deviation is significant. Yet, the frequency range of interest is much
higher than the relaxation frequency of heat conduction and it expected that Wood’s
relation gives better predictions on the sound speed as long as the frequencies are
not too low. For frequencies that are much higher than the relaxation frequency of
the relative motion between the two phases, f � ftr, the speed of sound as given
by Wood (1941) should be corrected. This correction, however, is very small (see
Temkin, 2000) and will be ignored in this thesis.

3.2.3 Examples

In this section we will give some examples of the above expressions for the sound
velocity for the specific case of oil-water flows. In what follows we take the oil to
have density ρoil = 800kgm−3 and sound velocity coil = 1200ms−1, while the
water has density ρwater = 1000kgm−3 and sound velocity cwater = 1500ms−1.
Figure 3.1 shows that the effective density of the separated flow increases almost
linear with the volume fraction of water. Moreover, the difference in effective density
in a dispersed and a separated composition is very small. The modulus of elasticity is
the same for the two configurations. Consequently, the difference in speed of sound
and impedance for the two configurations is small as can be seen in figure 3.2 where
the two quantities (in terms of those in pure water) of the two-phase flow smoothly
increase from their value in pure oil to that in pure water as the volume fraction of
water is increased from 0 to 1. In the two-phase flow literature equation 3.29 is
sometimes taken to apply to all sorts of flow configurations. The figure shows that if
that expression is used to infer the volume fraction of water from measurements of the
sound speed this may lead to a very slight overestimate when the flow is separated.
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FIGURE 3.1: Density and bulk modulus of a water-oil mixture
for a dispersed (dotted) and a stratified (solid) flow in terms of
their values in pure water. ρ∗ = 800/1000, c∗ = 1200/1500.
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FIGURE 3.2: Speed of sound and impedance of a water-oil mix-
ture for a dispersed (dotted) and a stratified (solid) flow in terms
of their values in pure water. ρ∗ = 800/1000, c∗ = 1200/1500.
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FIGURE 3.3: Density and bulk modulus of an oil-gas mixture
for a dispersed (dotted) and a stratified (solid) flow in terms of
their values in pure oil. ρ∗ = 2/800, c∗ = 400/1200.
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FIGURE 3.4: Speed of sound and impedance of an oil-gas mix-
ture for a dispersed (dotted) and a stratified (solid) flow in terms
of their values in pure oil. ρ∗ = 2/800, c∗ = 400/1200.
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FIGURE 3.5: Solid: speed of sound and impedance of an
stratified water-oil flow in terms of their values in pure water,
ρ∗ = 800/1000, c∗ = 1200/1500. Dotted: same with 1% gas
dispersed in the oil, ρ∗ = 792/1000, c∗ = 140/1500.

In practice small amounts of gas are sometimes dispersed through the oil. Fig-
ure 3.3 illustrates that the modulus of elasticity in this case is dominated by the gas
and thus very small except for a very high volume fraction of oil. The effective den-
sity as function of the holdup has a similar shape for separated flows. However, in
dispersed flows the effective density varies linearly with the holdup. This has a dra-
matic effect on the sound velocity, see figure 3.4. Here the gas is assumed to have
density ρgas = 2kgm−3 and sound speed cgas = 400ms−1. In a dispersion the speed
of sound drops down to a level even far below cgas. For example when the gas volume
fraction is increased from 0 to 0.01 (i.e. to 1%) the sound velocity of the dispersion
drops from 1200ms−1 to only about 200ms−1. In separated configurations the speed
of sound takes the (constant) sound velocity of the gas over almost the whole holdup
range. Only when the medium is close to the liquid phase the speed of sound abruptly
inclines to its value in pure oil. The impedance varies with the oil volume fraction in
a similar way as the modulus of elasticity.

The reduced effective stiffness of liquids by the presence of gas substantially
changes the sound speeds of oil-water flows when a small amount of gas is dispersed
in the oil. In Figure 3.5 the speed of sound and impedance in a separated oil-water
flow is compared to the same configuration but now with oil in which 1% of gas is
present, so that the sound speed of the oil is reduced to 140ms−1. It is clear that
the influence of the presence of the gas on the acoustic properties of the three-phase
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medium is huge. In fact, the presence of just a bit of gas reduces the effects of non-
uniform liquid properties to higher order details. Note, equations 3.13, 3.23, that the
effective density determines the difference in acoustic properties between a separated
and a dispersed flow. Since the presence of a small amount of gas hardly affects the
density of the oil phase the flow configuration, separated or dispersed, influences the
acoustic properties in a similar small way as in the case where the gas is absent; i.e.
a three phase dispersion yields approximately the same curves as in figure 3.5.

3.3 Attenuation of sound waves

Some sources of attenuation are related to the diffusion of momentum and heat within
the bulk of the flow which would also occur in an infinite medium in the absence of
walls. Additionally, dissipation of acoustic energy occurs in a boundary layer near
the pipe wall. Pierce (1981) explains that in waveguides consisting of a single phase
medium it is the attenuation due to the presence of the wall that is dominant. Both
the velocity and the temperature fluctuations are adjusted to the value of zero at the
wall when it is hard and conducts heat well. This leads to the formation of a thermal
and a viscous boundary layer. According to Morse and Ingard (1968) the thicknesses
of the viscous and the thermal boundary layers, also called the penetration depths,
may be estimated by

dv =

√
2ν

ω
, dt =

√
2ν

ωPr
, (3.31)

respectively. In the case of liquids the Prandtl number Pr is usually larger than one.
Therefore in liquids the viscous boundary layer is thicker than the thermal one and
contributes the dominant part to the attenuation of sound waves. In dispersions the
dissipation in the bulk of the flow is larger than in single phase flows because of
the friction between the two phases when the drops move relative to the surrounding
fluid. Moreover, the adjustment of the temperature difference between the two phase
through heat conduction is a significant source of dissipation. These two effects
produce substantial contributions to the total attenuation of the sound waves, this
besides the friction near the wall.

It is noted that at very low frequencies the penetration depths may become in the
order of magnitude of the pipe diameter. Obviously, the non equilibrium effects are
no longer confined in thin boundary layers at the all but are present in the entire
cross-section of the pipe (e.g. Tijdeman, 1975). However, this plays only a role for
frequencies below the frequency range of interest.

3.3.1 Frictional attenuation near the wall

According to Lighthill (1978) the viscous boundary layer in single phase flows gen-
erates a defect of volume flow as induced by the excess pressure. For monochromatic
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waves this defect may be incorporated in the linearized momentum equation of a
single phase flow,

∂u

∂t
= −1

ρ

∂pe

∂x

[
1 − s

A0

√
iν
ω

]
, (3.32)

where s and A0 are the perimeter and the cross-section of the pipe, respectively, and ν
the kinematic viscosity. It is noted that the monochromatic waves are proportional to
e−iωt instead of the convention eiωt that is used by Lighthill (1978). For circular ducts
the ratio A0/s can be written in terms of the diameter of the pipe as A0/s = D/4.
It follows from equation 3.32 that the reciprocal of the density, 1/ρ, may be replaced
by

1
ρ

[
1 − 4

D

√
iν
ω

]
(3.33)

to include the wall friction. Since the linearized equation of continuity remains
unaltered and so does the bulk modulus, the speed of sound c =

√
K/ρ and the

impedance Z =
√

Kρ are to be replaced by

c

[
1 − 4

D

√
iν
ω

]1
2

and Z

[
1 − 4

D

√
iν
ω

]−1
2

, (3.34)

respectively.
When the medium consists of two separated fluids the wall boundary layer is sim-

ilar in nature. The defect of the volume flow then consist of two contributions. For
each of the phases the associated defects are included in the linearized momentum
equation as,

∂αu1

∂t
= − α

ρ1

∂pe

∂x

[
1 − s1

A1

√
iν1

ω

]
, (3.35)

∂(1 − α)u2

∂t
= −(1 − α)

ρ2

∂pe

∂x

[
1 − s2

A2

√
iν2

ω

]
. (3.36)

Adding these two equation yields a modified form of equation 3.12,

∂u

∂t
= −1

ρ

∂pe

∂x
+

1
ρ

∂pe

∂x

[
ρ

ρ1

s1

s

√
ν1 +

ρ

ρ2

s2

s

√
ν2

]
4
D

√
i
ω

. (3.37)

Upon introducing the perimeter fraction

σ = s1/s, and thus s2/s = 1 − σ, (3.38)
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the reciprocal of the effective density of the separated composition may be replaced
in the same way as above but now with an effective viscosity that is given by

√
ν =

ρ

ρ1
σ
√

ν1 +
ρ

ρ2
(1 − σ)

√
ν2. (3.39)

For a given flow configuration the volume fraction α is related to the perimeter
fraction. In core-annular flows only the annulus wets the wall. The perimeter fraction
is thus equal to zero (given that phase 2 covers the annulus). In order to obtain the
relation between α and σ for stratified flows consider the sketch of the cross-section
of the pipe in figure 3.6 (left). The fraction σ of the perimeter s that is covered by
phase 1 may be expressed in terms of the angle θ,

σ =
s1

s
=

2θR

2πR
=

θ

π
. (3.40)

Then the area that is covered by phase 1 is equal to

A1 =
2θ

2π
πR2 − R2 sin θ cos θ = R2

(
θ − 1

2 sin 2θ
)
. (3.41)

Dividing A1 by the total cross-section of the pipe leads to an expression of the volume
fraction α of phase 1 in terms of the angle θ,

α =
A1

A
=

1
π

(
θ − 1

2 sin 2θ
)
. (3.42)

Combining equations 3.40, 3.42 yields

α = σ − 1
2π

sin 2πσ. (3.43)

Unfortunately, its analytical inverse cannot be written down in closed form. There-
fore expressing σ in terms of α has been done numerically. The result is shown in
figure 3.6 (right).

For harmonic waves, p ∼ eiω(x/c−t), the corrected factor 1/c in the exponent can
be approximated as

1
c

[
1 + 1

2(1 + i) 4
D

√
ν
2ω

]
. (3.44)

The real part of the correction means a (usually negligibly small) reduction of the
wave speed, the imaginary part describes the attenuation of the waves due to wall
friction. Substituting the imaginary part in the exponent of a harmonic wave,

p ∼ e−x
√

2νω
Dc , (3.45)
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FIGURE 3.6: Left: cross-section of the pipe containing a stratified configuration. Right:
perimeter fraction σ in terms of the volume fraction α for a stratified configuration in a
circular pipe.

shows that the attenuation length, being the reciprocal of the attenuation coefficient,
due to wall friction should be taken as

Lwf = 1/γwf =
Dc√
2νω

. (3.46)

The adjustment of the velocities of the two phases to each other at the interface is
a similar process as the adjustment of velocity at the pipe walls. In the absence of
friction the velocity difference between the two phases follows from the linearized
momentum equation. Since the pressure tends to be uniform over the cross-section
for low frequencies and so its derivative with respect to x the mass flow in the two
phases must be the same, ρ1u1 = ρ2u2, and hence the velocity difference becomes
u1−u2 = u2(ρ∗−1). For liquid-liquid flows the density ratio ρ∗ is close to one which
results in a small velocity difference compared to u1 and u2 which are to be adjusted
near the wall. The friction near the wall clearly dominates the viscous attenuation
above the friction at the interface in this case. It is noted that this is not the case for
separated gas-liquid flows.

3.3.2 Attenuation in dispersions

In dispersions the attenuation in the bulk of the flow cannot be neglected with respect
to the dissipation near the wall of the pipe. The relative motion between the drops
and the surrounding fluid causes a viscous dissipation of sound waves. In addition,
the sound waves attenuate through the conduction of heat across the interfaces. These
two mechanisms are the main two non-equilibrium effects next to the adjustment of
the velocity and the temperature perturbations to their values at the wall. The two
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effects are essentially correlated but within the approximation where the dimension-
less parameter (γ−1)νω/(cPr), evaluated for the surrounding fluid, is small the two
effects may be treated separately (Epstein and Carhart, 1953).

The most widely used theory on dissipation of sound waves in dilute dispersions is
the ECAH-theory, named after Epstein and Carhart (1953) and Allegra and Hawley
(1972). The first paper is concerned with absorbtion of sound by water fog in air. In
the second paper the theory is generalized to suspensions of rigid particles in a fluid,
but is also, according to the authors, generally applicable to dilute dispersions consist-
ing of two fluids. In the paper they present experiments on the attenuation of sound in
an emulsion of toluene droplets in water, an emulsion of liquid and solid hexadecane
particles in water and suspensions of polystyrene spheres in water. The results are in
agreement with the theory. Furthermore, the authors show that the ECAH-theory is
equivalent to the work by Isakovich (1948) in the limit of long wavelengths.

In the theory the attenuation produced by the presence of particles is written in
terms of three contributions to the attenuation coefficient. In this linear theory the
different attenuation coefficients being the reciprocals of the associated attenuation
lengths of the particular process, may be added to give the total attenuation coeffi-
cient,

1/Latt = 1/Lwf + 1/L01 + 1/L02 + 1/L1. (3.47)

The terms denote attenuation through wall friction, heat conduction in the pure phases,
heat conduction across the interfaces and viscous dissipation at the interfaces, respec-
tively. The attenuation due to the conduction of heat in the pure phases is negligibly
small and therefore the term 1/L01 is omitted. The final two contributions to the
attenuation in equation 3.47 are given in terms of the wavelength by

λ/L02 = 3
2παc2T0Cp,2ρ

2
2

[
β2

ρ2Cp,2
− β1

ρ1Cp,1

]2
ReH(X2,X1)

X2 , (3.48)

λ/L1 = 3πα (ρ∗ − 1) Re(iF (Y2, Y1)), (3.49)

where β denotes the coefficient of thermal expansion, T0 the undisturbed temperature
and X = R/dt and Y = R/dv the ratio of the droplet radius and the penetration
depths (see equation 3.31) of thermal and shear waves, respectively. Hence

X = R

√
ωPr
2ν

, Y = R

√
ω

2ν
. (3.50)

The functions H and F are given by

H = Hn/Hd, F = Fn/Fd, (3.51)

where
Hn = [1 + (1 − i)X2] [(1 − i)X1 − tanh((1 − i)X1)] , (3.52)
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FIGURE 3.7: Left graph: attenuation per diameter due to wall friction of a 1000Hz sound
wave varying with the volume fraction of water in a stratified flow (solid), in a kerosene core
surrounded by a water annulus (dashed), in a dispersion of water in kerosene (dotted left), in
a dispersion of kerosene in water (dotted right). Right graph: the same but with the kerosene
replaced by gas.

Hd = [(1 − i)X1 − tanh((1 − i)X1)]+[1 + (1 − i)X2] κ∗ tanh((1−i)X1) (3.53)

and κ denotes the thermal conductivity. Furthermore,

Fn = h2(Ŷ2)Q − ν∗ρ∗Ŷ2h1(Ŷ2)j2(Ŷ1), (3.54)

Fd =
[
3ρ∗h2(Ŷ2) + 2(ρ∗ − 1)h0(Ŷ2)

]
Q − ν∗ρ∗Ŷ2h1(Ŷ2)j2(Ŷ1)(ρ∗ + 2), (3.55)

with

Q = Ŷ1j1(Ŷ1) − 2(1 − ν∗ρ∗)j2(Ŷ1), Ŷ1 = (1 + i)Y1, Ŷ2 = (1 + i)Y2. (3.56)

The functions jk, hk denote the kth-order spherical Bessel functions of the first and
the third kind (1st spherical Hankel function), respectively. In the relations on the
damping per wavelength, equations 3.48, 3.49, the drop radius R and the frequency f
only appear in the penetration depths X and Y . Since they are both proportional to
R
√

f also the damping per wavelength is a function of R
√

f , or alternatively, of
R2f . The attenuation coefficients per unit length of the pipe (1/L02 and 1/L1) are
found by dividing equations 3.48, 3.49 over the wavelength λ = c/f .

3.3.3 Examples

In order to estimate the importance of the different sources of attenuation in specific
configurations as described in Chapter 2 some examples are given of flows consisting
of kerosene and water. In addition, systems are considered where the flow consists
of water and gas in order to illustrate what this approach means when the properties



3.3. ATTENUATION OF SOUND WAVES 33

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

α

ν/
ν 1

stratified
core−annular
dispersed

0 0.2 0.4 0.6 0.8 1

10
−4

10
−2

10
0

10
2

α

ν/
ν 1

stratified
core−annular
dispersed

FIGURE 3.8: Effective viscosity varying with α corresponding to the configurations as in
figure 3.7 for kerosene-water (left) and for gas-water (right).

of the fluids have a larger contrast. It is noted that in the approach of determining
the attenuation in separated configurations, only the friction near the wall is taken
into account. The effects of damping at the interface between the two fluids is ne-
glected. For gas-liquid systems the dissipative effects at the interface are substantial
and should not be ignored. The properties of all fluids are tabulated below.

ρ [kgm−3] c [ms−1] ν [10−6 m2 s−1] Cp [Jkg−1 K−1] Pr β [10−3 K−1] γ

water 1000 1500 1.0 4190 8.1 0.21 1.0
kerosene 790 1324 2.7 2010 28 0.99 1.2

gas 2 400 15 1012 0.7 3.48 1.4

Let us start with some examples of the friction near the wall according to equa-
tions 3.46, 3.39. Three different flow configurations are considered. The first is a
stratified flow of kerosene flowing on top of a layer of water. In this case the perime-
ter fraction σ of phase 1, the water, is related to volume fraction α according to
equation 3.43. In figure 3.6 (right) this relation is visualized. The second flow con-
figuration is a core consisting of kerosene embedded in a water annulus. Here the
wall is wetted by the water and thus is the perimeter fraction always equal to 1 and
does not depend on the volume fraction, except for, of course, the situation where α
takes a value close to one such that width of the annulus becomes smaller than the
boundary layer thickness. This effect is ignored in the following; i.e for all values of
α, even for α = 1, it is the water that is assumed to wet the pipe wall. For these two
cases the wall friction is calculated by employing the effective viscosity and equa-
tions 3.13, 3.15. In the third example the medium consists of a dispersion of water
drops in kerosene for α < 0.5 and a dispersion of kerosene drops in water when
α > 0.5. The corresponding phases that wet the wall and determine the viscosity in
equation 3.46 are the kerosene and the water, respectively. Wood’s relation is used
for the speed of sound c in this case.
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FIGURE 3.9: Attenuation per wavelength in a dispersion of 10% kerosene in water (left) and
10% water in kerosene (right) by thermal conduction (dotted) and by viscous shear (solid).
The range of R2f covers frequencies up to 3000Hz and droplet radii up to 2mm.

In figure 3.7 (left) the attenuation coefficients of the three configurations are plot-
ted against the volume fraction of the water, in terms of the pipe diameter D. The
frequency of sound waves is taken as 1000Hz. The largest damping occurs in the
dispersion of water in kerosene. At α = 0.5 the attenuation coefficient obviously
drops. After all for α > 0.5 the dispersion is considered to consist of kerosene drops
in water. The water wets the pipe wall in that case and since water has a smaller
viscosity than kerosene the damping coefficient will be smaller. For all volume frac-
tions of the water the damping remains decreasing with α. This can be explained by
noting that the sound speed of these dispersions slightly increases with α and that the
attenuation coefficient is proportional to the reciprocal of the speed of sound.

In figure 3.7(right) the kerosene has been replaced by gas. In this case the damping
in dispersions of gas in water increases with α because here the speed of sound does
not increase but drops (quite steeply for small α) with the volume fraction of the wa-
ter. When the volume fraction is larger than 0.5 the situation is similar, but now the
sound speed increases and consequently the attenuation decreases. The other lines
in the figures clearly show the influence of the effective density on the effective vis-
cosity. For the core-annular configuration the perimeter fraction has a constant value
of one and thus, see equation 3.39 and figure 3.8, is the square root of the effective
viscosity proportional to the effective density; hence, D/Lwf ∼ ρ/c. For kerosene
and water the increasing density ’wins’ slightly over the increasing speed of sound.
In the gas-water analogue the effective density and the sound speed hardly vary ex-
cept for values of α that are close to one. The attenuation coefficient in stratified
water-kerosene flows diminishes gradually with α. Only close to α = 0 and α = 1
the curve becomes steep. Upon considering the relation for the effective viscosity,
equation 3.39, and noting that the effective density changes almost linearly with α,
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FIGURE 3.10: Attenuation coefficient in a dispersion of 10% kerosene in water due to
viscous shear (left) and due to thermal conduction (right) for several drop radii.
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FIGURE 3.11: Total attenuation in a dispersion of 10% kerosene in water (left) and 10%
water in kerosene (right) due to viscous shear, thermal conduction and wall friction for several
drop radii. The dotted lines denote the wall friction only.

see figure 3.1, it becomes clear that the reason for this sudden change of slope has to
be sought in the dependency of the perimeter fraction σ on α. Figure 3.6 (right) shows
that the graph of σ(α) is very steep at the domain boundaries of α. Consequently, the
transition of the viscosity of pure water towards that of the pure kerosene takes place
rapidly near the boundaries of α.

In the gas-water analogue the effective density is almost constant up to α = 0.9
and then increases abruptly to its value of pure water. This means that the ratio of the
effective density and the density of the pure gas, ρ/ρ2, in the second term in equa-
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tion 3.39 corresponding to the gas phase becomes very large. This is clearly visible in
the graph where the attenuation coefficient increases rapidly to values beyond those
of the pure fluids and then falls back to the value of the pure water.

The next example is concerned with the attenuation in dispersions. Also here the
dispersion consists of kerosene and water. Since in the ECAH-theory the interac-
tion between the drops is neglected the attenuation coefficient is proportional to the
volume fraction. In this example it has the value of 10%. Figure 3.9 shows the
attenuation per wavelength varying with R2f as a result of thermal conduction (dot-
ted) and of viscous shear (solid). The dispersion plotted in the left figure is that of
kerosene in water while in the right figure it is opposite. It appears that the damping
in the kerosene in water dispersion is approximately a factor two larger. The shape
of all curves is similar and it is clear that the thermal damping is dominant. More-
over, the two damping coefficients per wavelength have a maximum. Figure 3.10
visualizes the damping per unit length of the pipe for several drop sizes ranging from
R = 210−3mm to R = 2mm. The maxima in figure 3.9 are also recognized in
figure 3.10 as for increasing drop size the damping goes up to its largest value for
R = 0.02mm and then decreases again. As discussed in section 2.3, in experiments
drop sizes have been observed in the range up to R = 0.3mm and in the range up
to several millimeters in other experiments. Figure 3.11 shows the total attenuation,
including wall friction, of sound waves in dispersion for drops that have the sizes
as observed. In addition, the attenuation due to the friction near the wall is included
separately in the graphs. In the two graphs in the figure the damping in the bulk of the
dispersion is in the same order of magnitude as the damping due to the wall friction.
Yet, for the smallest drops the wall friction contributes only to a small extent to the
total attenuation.

3.4 Discussion

In this chapter the propagation properties of low frequency sound waves in separated
and dispersed two-phase flows in pipes were considered. Expressions were derived
for the density, the bulk modulus, the speed of sound and the impedance of the two-
phase configurations as mentioned above. The derived relations suggest that these
acoustic properties of oil-water flows for the two considered configurations are almost
the same. Gas-water systems, however, do exhibit differences. Whilst the speed of
sound in dispersions drops to values even below the sound speed of the pure fluids in
stratified flows the sound speed is very close to that of the gas, except for very large
volume fractions of water.

Non-equilibrium effects due to viscous friction near the wall and relaxation mech-
anisms in dispersions result mainly in the dissipation of sound; the speed of sound
and the impedance as in the equilibrium situation are hardly affected. The attenu-
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ation length due to wall friction was for the analyzed systems about 700 − 1400m
in oil-water flows and 10 − 1000m in gas-water systems at 1000Hz. However, fric-
tion at the interfaces between the phases was not taken into account. Especially for
gas-water flows the associated damping is presumably significant. For the attenua-
tion in dispersions the theory of Epstein and Carhart (1953) and Allegra and Hawley
(1972) was employed. At 1000Hz the attenuation length was found to be in the range
500 − 1000m for dispersions of 10% kerosene in water and only slightly smaller for
dispersions of 10% water in kerosene for drop sizes of 0.2 − 2mm.
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WAVEGUIDE MODES

4.1 Introduction

The previous chapter involved the propagation properties of sound waves in pipes
containing a two phase composition whose phase distribution does not vary with the
position along the pipe. The wavelengths were supposed to be long compared to the
diameter of the pipe, which justifies the approach of considering longitudinal waves.
In this chapter it will be investigated to what extent this one-dimensional approach is
judicious and to what degree the sound speed depends on the frequency. In addition,
it will be shown how the waveguide modes as for single phase flows are affected when
the flow consists of two phases.

In the next section the maximum frequency for which the propagation of sound is
purely one-dimensional, i.e. the cutoff frequency, will be calculated analytically for
single phase compositions. Above this cutoff frequency also the higher dimensional
waveguide modes may propagate through the pipe in addition to the one-dimensional
fundamental mode. In literature the fundamental mode is often called the plane wave.
Presumably, the low frequency range of interest (200 − 2000Hz), compared to the
cutoff frequency, warrants to restrict attention to the purely longitudinal modes of
sound propagation. Yet, it is expected that in two-phase flow configurations the cut-
off frequencies differ from the ones in single phase flows, although the differences
are probably small in oil-water flows where the two phases have similar acoustical
properties. A second difference is that the waves in single phase flows are, in the ab-
sence of non-equilibrium effects, not dispersive below the smallest cutoff frequency.
This is not obvious in two-phase flows. To what extent the cutoff frequencies of the
waveguide modes are affected by medium inhomogeneities will be considered in the
following sections as well as the effect on the propagation of the fundamental mode.

Calculating the waveguide modes of two-phase configurations is more complicated
than those of single phase flows. Exceptions of this are uniform dispersions, which
may be considered as single phase flows that have particular effective acoustic prop-
erties as derived in the previous chapter. The waveguide modes will therefore be
the same as the ones of single phase flows. Calculating the modes of well-separated
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configurations by means of the same analytical method that is used for single phase
flows is only possible for some particular flow configurations. One of these config-
urations is the core-annular configuration whose waveguide modes are discussed in
section 4.3. Unfortunately, the modes of stratified flows cannot be computed analyt-
ically in this way, at least not in circular waveguides. Instead, a numerical approach
will be employed.

To the author’s knowledge, among the first who have investigated the waveguide
modes of stratified flows are Morioka and Matsui (1975). They derived analytically
the dispersion relation for two-dimensional ducts containing a stratified gas-liquid
configuration and solved it numerically. The fact that the density ratio is very small
in gas-liquid flows has not been employed in their work and, hence, their dispersion
relation also holds for oil-water systems. Sinai (1984) solved the dispersion relation
as well and noticed a second class of solutions. The appearance of two classes of solu-
tions is due to the huge density contrast between liquids and gases. The author argues
by means of asymptotic solutions that the waveguide should in fact be considered as
two separate waveguides that are coupled only slightly; one waveguide contains pure
gas and the other pure liquid. In oil-water systems the contrast in density is much
smaller and as a consequence only one class of solutions is expected. In section 4.4
the dispersion relation found by Morioka and Matsui (1975) will be extended to the
three-dimensional case of a square duct containing a stratified configuration. The re-
sults give much insight into the acoustics of stratified flows in circular ducts as will
become clear upon comparing them to the results of the numerical computations for
circular ducts.

4.2 Single phase composition

The behavior of sound waves in waveguides is described by many authors (e.g. Morse
and Ingard, 1968; Lighthill, 1978; Pierce, 1981) in terms of waveguide modes. Con-
sider for instance a circular waveguide with a constant radius R filled with a single
phase medium with sound speed c. Then any travelling monochromatic sound wave
with an angular frequency ω may be expressed in terms of an expansion in waveguide
modes,

p =
∞∑

m=0

∞∑
n=0

amnpmn(r, θ)ei(kmnx−ωt), (4.1)

where pmn(r, θ) expresses the shape of the mode and kmn denotes the corresponding
wavenumber. This expression satisfies the wave equation in cylindrical coordinates
if (

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

ω2

c2

)
pmn = k2

mnpmn. (4.2)
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The squares of the wavenumbers, k2
mn, are the eigenvalues to the Helmholtz operator

in the left-hand side of equation 4.2; pmn are the corresponding eigenfunctions. This
eigenvalue problem may be written in terms of the resonance frequencies ωmn or
wavenumbers κmn,

ω2
mn = ω2 − k2

mnc2, κmn = ωmn/c. (4.3)

In terms of the latter equation 4.2 becomes(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
pmn = −κ2

mnpmn. (4.4)

It is clear that −κ2
mn are the eigenvalues to the Laplace operator whereas the associ-

ated eigenfunctions pmn are, obviously, identical to the ones of the related Helmholtz
operator. Equation 4.4 has the form of the Helmholtz equation and its solutions are
readily found to be

pmn(r, θ) = e−imθ [Jm(κmnr) + bmnYm(κmnr)] , (4.5)

where Jm and Ym are the mth order Bessel functions of the first and of the second
kind, respectively. The coefficient bmn must be zero since the functions Ym are singu-
lar at the origin while the solution must remain finite. In addition, for a hard-walled
pipe the eigenfunctions pmn should satisfy the boundary condition of zero normal
derivative on the wall. For these conditions the eigenfunctions become

pmn(r, θ) = e−imθJm(κmnr), (4.6)

where the values of κmn are to be determined from the condition

J ′
m(κmnR) = 0. (4.7)

Here J ′
m denotes the derivative of Jm with respect to its argument. For each integer

value of m there exists a discrete set of values κmn, each of which satisfies equa-
tion 4.7. Introduce the notation

αmn =
κmnR

π
=

ωmnR

πc
. (4.8)

Then for a few of the smallest κmn the corresponding numerical values of αmn can
be inferred from table 4.1.

The fundamental mode, p00(r, θ) = 1, has ω00 = 0 and corresponds to strictly
one-dimensional waves with angular frequency ω and propagating with the sound
speed c of the medium. For kmn > 0 the waveguide modes travel with phase velocity

ω

kmn
= c

ω

(ω2 − ω2
mn)

1
2

, (4.9)
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α00 = 0.0000 α01 = 1.2197 α02 = 2.2331
α10 = 0.5861 α11 = 1.6970 α12 = 2.7140
α20 = 0.9722 α21 = 2.1346 α22 = 3.1734

TABLE 4.1: Values of αmn for a single phase configuration.

exceeding the sound speed c. These modes are dispersive, and have group velocity
(energy propagation velocity)

dω

dkmn
= c

(ω2 − ω2
mn)

1
2

ω
, (4.10)

which is always lower than c. Equation 4.9 shows that a waveguide mode can only
propagate when ω > ωmn. The modes for which the cutoff frequency is greater than
the frequency, ωmn > ω are evanescent waves. These modes attenuate,

pe ∼ e−x/Latt , with Latt =
c

(ω2
mn − ω2)

1
2

(4.11)

the attenuation length. For frequencies less than ωM , where ωM is the smallest posi-
tive eigenfrequency, wave motion is confined to strictly one-dimensional propagation.
For the cylindrical hard-walled pipe ωM = ω10, so that for frequencies

f < fM =
0.5861c

2R
(4.12)

it is permissible to restrict attention to strictly one-dimensional propagation. In oil-
water flows the sound speeds c lie within the range 1200 − 1500ms−1. For a typical
experiment in a pipe with diameter 2R = 0.1m, say, the lowest cutoff frequency
is about 7033Hz, much higher than the frequencies that concern us here. Still, the
cutoff frequency as derived above is only valid for a single phase systems and not for
a two-phase configurations.

4.3 Waveguide modes in a core-annular composition

The analytical modal expansion as derived in the previous section is based on the
circular symmetry of the waveguide walls; that is in cylindrical coordinates the pipe
wall is located along a curve of a constant radius r = R. Then equation 4.2, or rather
equation 4.4, may be solved by means of separation which means that the modes are
of the form pmn(r, θ) = Fmn(r)Gmn(θ). The modes of a two-phase configuration
still satisfy equation 4.2 but with the difference that now the speed of sound varies
over the cross-section of the pipe, so(

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

ω2

c(r, θ)2

)
pmn = k2

mnpmn. (4.13)
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A consequence is that separation is in general not possible for an arbitrary phase dis-
tribution over the cross-section. Therefore the analytical modal expansion for a single
phase configuration cannot easily be extended to pipes with a two-phase composition.
Exceptions, however, are configurations with a particular (cylindrical) symmetry; i.e.
the interfaces between the phases must be located along surfaces of constant radius r
or angle θ.

A physically relevant example of a configuration that satisfies this condition is a
core-annular flow where the core consists of fluid 1 and is surrounded by an annulus
of fluid 2, see figure 2.1 (k,l) and figure 2.2 (2). The interface is located at r =

√
αR,

where α denotes the volume fraction of phase 1. The speed of sound c(r, θ) then
takes the value c1 for r <

√
αR and c2 for r >

√
αR. In each phase i = 1, 2 the

general solution to equation 4.13 may be written as

pmn,i = amn,ie−imθ [Jm(κmn,ir) + bmn,iYm(κmn,ir)] , (4.14)

where

κ2
mni

=
ω2

c2
i

− k2
mn, (4.15)

This equation relates κmn1 to κmn2 ,

k2
mn =

ω2

c2
1

− κ2
mn,1 =

ω2

c2
2

− κ2
mn,2, (4.16)

or, alternatively,

κ2
mn,2 = κ2

mn,1 +
ω2

c2
1

(
1
c2∗

− 1
)

. (4.17)

As before c∗ = c2/c1 denotes the ratio of the speed of sound in the annulus to that in
the core.

As a first condition we again require a finite pressure everywhere in the core and
since the functions Ym are singular in the origin the coefficient bmn,1 must be zero.
In the annulus the normal component of the velocity must be zero at the (hard) wall
which determines bmn,2,

J ′
m(κmn,2R) + bmn,2Y

′
m(κmn,2R) = 0. (4.18)

It is recalled that the prime denotes differentiation with respect to the argument.
Along the interface between the core and the annulus continuity of pressure requires
that m must have the same value in the two solutions (as already anticipated in the
notation). The waveguide modes are specified by connecting the solutions in the two
phases via the coefficients amn,1, amn,2 by requiring continuity of pressure and of
normal velocity across the interface. This yields

amn,1Jm(κmn,1

√
αR)=amn,2

[
Jm(κmn,2

√
αR)+bmn,2Ym(κmn,2

√
αR)

]
(4.19)
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and

amn,1κmn,1ρ
−1
1 J ′

m(κmn,1

√
αR) =

amn,2κmn,2ρ
−1
2

[
J ′

m(κmn,2

√
αR) + bmn,2Y

′
m(κmn,2

√
αR)

]
, (4.20)

respectively. The amplitudes amn,i may be cancelled from equations 4.19, 4.20 to get
the dispersion relation

Jm(κmn,1
√

αR)
J ′

m(κmn,1
√

αR)
= ρ∗

κmn,1

κmn,2

Jm(κmn,2
√

αR) + bmn,2Ym(κmn,2
√

αR)
J ′

m(κmn,2
√

αR) + bmn,2Y ′
m(κmn,2

√
αR)

, (4.21)

where ρ∗ = ρ2/ρ1 denotes the density ratio. An important difference between the
dispersion relation for the single phase composition and equation 4.21 is the explicit
appearance of the frequency via κmn,1, and κmn,2 (see equation 4.17). This means
that κmn,1(ω), and κmn,2(ω) depend on the frequency and so does the shape of the
mode, given by equation 4.14. The phase velocity follows from one of equation 4.15,

ω

kmn
= c1

ω

(ω2 − c2
1κ

2
mn1

(ω))
1
2

. (4.22)

The group velocity becomes

dω

dkmn
= c1

(ω2 − c2
1κ

2
mn1

(ω))
1
2

ω − 1
2

d
dω (c2

1κ
2
mn1

(ω))
. (4.23)

Alternatively, the phase velocity and the group velocity may be expressed in terms
of c2 and κmn2 . The frequency dependency of κmn1 , κmn2 implies that even the
fundamental mode is essentially dispersive unlike the fundamental mode of single
phase configurations. Moreover, the relation for the group velocity of single phase
configurations, equation 4.10, differs from equation 4.23 by the second term in the
denominator. The product of the phase speed and the group velocity is no longer
equal to the square of the equilibrium speed of sound c as given by equation 3.15 as
in the single phase case.

4.3.1 Dispersion of the fundamental mode

In the limit of very low frequencies, ω → 0, sound waves only propagate in the
fundamental mode (m = n = 0). Also, the associated wavenumber must be real and
therefore the term c1κ1 must even be smaller than the frequency, see equation 4.16.
In other words the arguments of the Bessel functions in equation 4.21 must be small.
In order to find an approximation to the propagation speed of low frequency waves
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FIGURE 4.1: Reduction of the phase speed (solid) and the group velocity (dashed) in terms
of equilibrium sound speed varying with the frequency for a core-annular configuration with
α = 0.6 for oil in water with c∗ = 1500/1200, ρ∗ = 1000/800 (left); for gas in water with
c∗ = 1500/400, ρ∗ = 1000/2 (right).

the Bessel functions are expanded in the neighborhood of zero by means of Maple,

J0(z) = 1 − z2

4
+ O(z4), J1(z) =

z

2
+ O(z3),

Y0(qz)
Y1(z)

= O(z),
Y1(qz)
Y1(z)

=
1
q

+ O(z2). (4.24)

Then the dispersion relation, equation 4.21, reduces to

κ2
00,2(1 − α) + ρ∗κ2

00,1 = O(ω4). (4.25)

Substitution of equation 4.16 yields an expression that gives the phase velocity,

ω2

k2
= c2

1

(1 − α)/ρ∗ + 1
(1 − α)/(ρ∗c2∗) + 1

+ O(ω4), (4.26)

which is the same as equation 3.15 in section 3.2.1 but demonstrates that the funda-
mental mode is dispersive unlike the fundamental modes of single phase waveguides.
Unfortunately, an analytical expression of the dispersion term is hard to find due to
the nonlinearity in the dispersion relation, even in the approximated form. A nu-
merical solution as visualized in figure 4.1, however, shows that the decrease of the
phase speed and the group velocity with the frequency is extremely small. Further
parameters of the configuration are given in the caption of the figure. For the oil-core
surrounded by water (left) the phase speed (solid) is at 3000Hz about 0.04% smaller
than the equilibrium sound speed as given by equation 3.15. The maximum drop of
the group velocity (dashed) is about 0.12%. For a configuration with gas surrounded
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FIGURE 4.2: Shape of the fundamental mode, p00, for the configurations as described in
figure 4.1 for f = 1000Hz.

by water the decrease is even smaller, namely about 0.005% for the phase speed and
0.015% for the group velocity. So here both the phase and the group velocity are
smaller than the equilibrium sound speed. It is clear that dispersive effects of the fun-
damental mode are negligibly small in the frequency range of interest. That also the
shape of the fundamental mode varies with the frequency is visualized in figure 4.2.
The graphs in the figure shows the real part of pmn (see equation 4.14), normalized
upon the maximum value of the mode for a frequency of f = 1000Hz. The left
graph shows the case where the core consists of oil surrounded by water while the
right graph corresponds to the system where the oil is replaced by gas. In both cases
the shapes of the modes are almost plane although the graphs might give the impres-
sion that this is not the case. In contrast to the oil-water system where the pressure
varies gradually over the whole cross-section of the pipe the mode of the gas-water
system is more or less plane in the core compared to the pressure variation in the
water annulus. In the core the mode actually resembles the fundamental mode of a
pipe that contains a single phase medium; i.e. the water acts as a hard wall to the gas.

4.3.2 Cutoff frequencies

Sound only propagates in the fundamental mode when the frequency is below the
smallest of the cutoff frequencies. Analogues to the cutoff frequencies in single phase
configurations, see equation 4.3, the terms c1κ1(ω) and c2κ2(ω) in equation 4.15 may
be considered as resonance frequencies. Yet, since they depend on the frequency
itself this notation might be confusing. The true resonance frequencies satisfy, see
equation 4.16,

ωmn = c1κ1(ωmn) or, equivalently, ωmn = c2κ2(ωmn). (4.27)
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FIGURE 4.3: Smallest values of αmn as a function of the holdup. Oil core in a water annulus,
ρ∗ = 1000/800, c∗ = 1500/1200 (left); Water core in a oil annulus, ρ∗ = 800/1000,
c∗ = 1200/1500 (right); m = 0 (black), m = 1 (red), m = 2 (blue), m = 3 (magenta),
m = 4 (yellow).

Then substitution of ωmn = c1κmn,1 and ωmn = c2κmn,2 in equation 4.21 leaves
an equation that expresses the cutoff frequencies (in the dimensionless form ω̂mn =
ωmnR/c1) in terms of the holdup α, the density ratio ρ∗ and the speed of sound
ratio c∗,

Jm(ω̂mn
√

α)
J ′

m(ω̂mn
√

α)
= ρ∗c∗

Jm(ω̂mn
√

α/c∗) + bmn,2Ym(ω̂mn
√

α/c∗)
J ′

m(ω̂mn
√

α/c∗) + bmn,2Y ′
m(ω̂mn

√
α/c∗)

, (4.28)

For a single phase composition the eigenfrequencies are proportional to the equilib-
rium speed of sound. In order to compare the eigenfrequencies of a core-annular com-
position to those of a single phase flow the sound velocity c1 appearing in the non-
dimensional eigenfrequency should be replaced by the equilibrium speed of sound c
of the two-phase medium, given by equation 3.15. Similar to the definition of αmn

(see equation 4.8) we introduce the notation

βmn =
ω̂mnc1

πc
=

ωmnR

πc
. (4.29)

Then the cutoff frequencies are given by

fmn =
βmnc

2R
. (4.30)

It is noted that the limiting values of βmn for α → 0 or α → 1 must tend to the values
of αmn of a single phase configuration.

As an example consider the core and the annulus consisting of oil and water, re-
spectively. Then for a few of the smallest cutoff frequencies the corresponding values
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of βmn varying with α are presented in figure 4.3 (left). For α = 0, α = 1 the cor-
responding values of βmn are, as expected, those of the single phase medium. The
lowest cutoff frequency increases at most about 9% for α = 0.33 compared to the
single phase case. Figure 4.3 (right) shows the values of βmn for the same system but
now with the phases exchanged. Although core-annular configurations with a water
core and an oil annulus have, to our knowledge, not been observed in experiments it
indicates that when c∗ < 1 and ρ∗ < 1 the lowest cutoff frequency is smaller than
the corresponding value for a single phase composition. In this case the lowest cut
off frequency is about 8% smaller (for α = 0.48) than that for a single phase compo-
sition. The shape of the smallest waveguide modes (besides the fundamental mode)
at the corresponding resonance frequencies are shown in figures 4.5 and 4.6 (middle)
for the configuration where the oil covers the core (α = 0.6). The modes are almost
identical to the modes of a single phase configuration (top). Only at the interface
between the phases the pressure derivative normal to the interface jumps in order to
satisfy the continuity of normal velocity. This jump, however, is small because of the
small density ratio. Being ahead of the following example, in the gas-liquid case the
density ratio is large. The corresponding modes at the bottom of the figures indeed
kink much more.

The next example involves a gas core surrounded by a water annulus. In this flow
the contrast of the phase properties is large compared to the previous example, typ-
ically ρ∗ = 1000/2, c∗ = 1500/400. Figure 4.4 suggests that the graphs of βmn

varying with α may be split up in two branches. One branch starts at α = 0 and the
second one at α = 1. The values of βmn are larger than one would expect based
on single phase flows. An explanation for this is that for a large density ratio the
coupling between the waves in the two phases through the conditions at the inter-
face becomes weak and, in fact, the waveguide should be viewed as two separate
waveguides. Sinai (1984) who studied the modes of a two-dimensional waveguide
consisting of a stratified composition with a light fluid above a layer of a heavy fluid
called these two branches the lighter-fluid modes and the heavy-fluid modes. The
reason for this naming becomes clear by taking the limit ρ∗ → ∞. The dispersion
relation, equation 4.21, then simplifies into

J ′
m(κmn,1

√
αR)

(
Jm(κmn,2

√
αR) + bmn,2Ym(κmn,2

√
αR)

)
= 0. (4.31)

The first term,
J ′

m(κmn,1

√
αR) = 0, (4.32)

corresponds to the gas modes and may be viewed as the dispersion relation of a single
phase composition in a hard-walled pipe with radius

√
αR as discussed in section 4.2.

For these modes we recall the notation as for single phase systems,

αmn =
κmn

√
αR

π
=

ωmn
√

αR

πc1
. (4.33)
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FIGURE 4.4: Smallest values of βmn varying with α for a gas core in a water annulus
according to equation 4.29. The dots denote the approximation of equation 4.35. ρ∗ =
1000/2, c∗ = 1500/400; m = 0 (black), m = 1 (red), m = 2 (blue), m = 3 (magenta),
m = 4 (yellow).

Then the cutoff frequencies corresponding to the gas modes are given by

fmn =
αmnc1

2R
√

α
, (4.34)

where the values of αmn can be found in table 4.1. It is clear in figure 4.4 that
when α → 1 the values of αmn indeed tend to the values in table 4.1. The cutoff
frequencies according to equation 4.34 are related to βmn as

βmn =
αmnc1√

αc
. (4.35)

This expression is visualized in the form of the dots in figure 4.4 and it is clear that
equation 4.34 gives a good approximation to the cutoff frequencies of the gas modes
of the gas-liquid core-annular configuration.

Setting the second term in equation 4.31 to zero yields

Jm(κmn,2

√
αR)Y ′

m(κmn,2R) − J ′
m(κmn,2R)Ym(κmn,2

√
αR) = 0. (4.36)

This relation corresponds to the liquid modes and is the same as the dispersion rela-
tion of an annular waveguide with outer diameter R surrounded by a hard wall and a
free surface at r =

√
αR, thus with p = 0 on the inner radius instead of the boundary

conditions as given by equations 4.19, 4.20. An exact solution to equation 4.36 has
not been found, only limiting values for α → 0 and for α → 1.

In the limit α ↓ 0 the second term in equation 4.36 becomes dominant through
Ym which is singular in the origin yielding J ′

m(κmn,2R) = 0. Hence, the dispersion



50 CHAPTER 4. WAVEGUIDE MODES

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

FIGURE 4.5: Shape of the smallest waveguide modes. Top: a single phase system; mid-
dle: the oil-water configuration as in figure 4.3 (left) for α = 0.6; bottom: the gas-liquid
configuration as in figure 4.4 (left) for α = 0.6; left: p10, right: p20.
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FIGURE 4.6: Continuation of figure 4.5; left: p01, right: p30.
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relation for a single phase medium is recovered as it should be. The cutoff frequencies
corresponding to the liquid modes when α → 0 are thus given by

fmn =
αmnc2

2R
, (4.37)

where the values of αmn are given in table 4.1. Unfortunately, the limiting values are
not clearly visible in the figure 4.4 since the curves are quite steep near α = 0.

The limiting values of the cutoff frequencies for α → 1 are found by noting that
then κmn,2R becomes very large and therefore the Bessel functions in equation 4.36
may be approximated by (Abramowitz and Stegun, 1965)

Jm(bz) ≈
√

2
πbz

[cos(z − q) cos([1 − b]z) + sin(z − q) sin([1 − b]z)] ,

Ym(bz) ≈
√

2
πbz

[sin(z − q) cos([1 − b]z) − cos(z − q) sin([1 − b]z)] ,

J ′
m(z) ≈ −

√
2
πz

sin(z − q), Y ′
m(z) ≈

√
2
πz

cos(z − q), (4.38)

where q = (m + 1/2)π/2, b =
√

α, z = κmn,2R. Substitution of these approxima-
tions in equation 4.36 results, after some manipulation, in

cos ((1 − b)z) = cos
(
(1 −

√
α)κmn,2R

)
= 0. (4.39)

The cutoff frequencies are now given by

fmn =
(1/2 + n)c2

2(1 −√
α)R

. (4.40)

Remarkable is the fact that the subscript m has dropped out of the equation; i.e. all
cutoff frequencies associated with a particular value of m converge to the same value
when α → 1.

In practice, the volume fraction of the gas phase will not assume the small values
for which the liquid modes govern the smallest cutoff frequencies. It is the cutoff
frequencies of the gas modes as approximated well by equation 4.34 that govern the
resonances of the waveguide.

4.4 Waveguide modes in a stratified composition

When the composition of the medium in the pipe is stratified the circular symmetry
is broken and analytical solutions cannot be obtained by separating the Helmholtz
equation. A numerical solution, however, is obtained by means of a finite element
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method which is included in Matlab. In order to gain insight into the sound trans-
mission in stratified pipe flows the similar case of a square duct of width L = 1 is
considered as well. The main advantage of a square duct is that the interface between
the phases coincides with a line of constant y and accordingly the solutions to the
Helmholtz equation (in cartesian coordinates),(

∂2

∂x2
+

∂2

∂y2
+

ω2

c2
i

− k2
mn

)
pmn,i = 0, (4.41)

may be calculated in the two phases i separately and be connected. The two solu-
tions pmn,i that satisfy the hard-wall condition read

pmn,1 = amn,1 cos(mπy) cos(κmn,1z), (4.42)

pmn,2 = amn,2 cos(mπy) cos(κmn,2(1 − z)), (4.43)

where

κ2
mn,1 =

ω2

c2
1

− k2
mn − (mπ)2, κ2

mn,2 =
ω2

c2
2

− k2
mn − (mπ)2. (4.44)

Consequentially, κmn1 and κmn2 are related,

κ2
mn,2 = κ2

mn,1 +
ω2

c2
1

(
1
c2∗

− 1
)

. (4.45)

Upon requiring continuity of pressure and the normal component of induced velocity
across the interface at y = α one finds the dispersion relation

κmn,1ρ∗ tan(κmn,1α) + κmn,2 tan(κmn,2(1 − α)) = 0. (4.46)

This dispersion relation was found earlier by Morioka and Matsui (1975) who con-
sidered pressure-wave propagation in two-dimensional separated gas-liquid flows.
The exact form differs slightly, however, as they used exponential functions in equa-
tions 4.42, 4.43 instead of harmonic functions. Moreover, the value of m is equal to
zero in two dimensions whereas the effect of the third dimension is simply caught by
taking nonzero values of m.

4.4.1 Cutoff frequencies

Again, the cutoff frequencies ωmn follow from equation 4.44 by setting k = 0 yield-
ing

ω2
mn = c2

1

(
κ2

mn,1 + (mπ)2
)

= c2
2

(
κ2

mn,2 + (mπ)2
)
. (4.47)

The values of βmn, defined as before, become

βmn =
ωmnR

πc
(4.48)
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FIGURE 4.7: Smallest values of αmn as a function of the holdup for a stratified composition
of oil and water in a circular pipe (left) and in a square duct (right); ρ∗ = 800/1000, c∗ =
1200/1500. m = 0 (black), m = 1 (red), m = 2 (blue), m = 3 (magenta), m = 4 (yellow).

for the circular duct, and

βmn =
ωmnL

2πc
(4.49)

for the square duct. They are visualized as a function of the holdup α in figure 4.7 for
an oil-water system, ρ∗ = 800/1000, c∗ = 1200/1500. It is noted that exchanging
the phases gives the same solution to βmn (when α is replaced by 1−α) in contrast to
the core-annular composition. The left graph shows the numerically calculated cutoff
frequencies for a circular pipe. Here the lines are all black since the labels m are, of
course, not present in the finite element approach. The right plot shows the values of
βmn for the square duct. A remarkable difference with core-annular systems is that
the modes which are the same at α = 0 split up in two different curves and come
back together at α = 1. This can be explained by considering a hard-walled square
duct filled with a single phase medium. Then the eigenfunctions read

pmn = cos(mπy) cos(nπz), (4.50)

and it is clear that exchanging particular values of m and n yields the same eigen-
frequency; i.e. the modes may be rotated over 90◦ and still satisfy the Helmholtz
equation. However, for a two-phase stratified composition the value of κmn,1 is in
general not an integer and can, consequently, not be exchanged with m. The rotated
mode only satisfies the Helmholtz equation in a modified form. When ρ∗ and c∗
are close to one (close to a single phase medium) the modification will be small, at
least at low frequencies, and the two corresponding cutoff frequencies will differ only
slightly. In core-annular system this splitting up does not occur because of the axial
symmetry. That ρ∗ and c∗ must be close to one can be illuminated by considering a
gas-liquid system. The shape of the modes that correspond to the four smallest cutoff
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FIGURE 4.8: Smallest values of αmn as a function of the holdup for a stratified composition
of gas and water in a circular pipe (left) and in a square duct (right). The dots denote the
approximations of equations 4.54, 4.56; ρ∗ = 2/1000, c∗ = 400/1500; m = 0 (black),
m = 1 (red), m = 2 (blue), m = 3 (magenta), m = 4 (yellow).

frequencies are plotted in figure 4.9. The two modes at the top seem rotated versions
of each other but are actually slightly different. The same can be observed at the
second pair of modes (middle). The bottom of the figure shows the first two modes
of the configuration where the oil has been replaced by gas. These modes differ so
much that they cannot be regarded as a pair.

Figure 4.8 shows the values of βmn, according to equations 4.48, 4.49, for the
same systems but with ρ∗ = 2/1000, c∗ = 400/1500. Also here the liquid modes
and the gas modes are recognized as well as modes that are independent of α except,
perhaps, when α is close to one.

These modes have not been detected in two-dimensional analyzes, (e.g. Morioka
and Matsui, 1975; Sinai, 1984) and are due to the third dimension. The importance of
these modes is clearly visible in the figure; they correspond to the smallest cutoff fre-
quencies! In particular for larger volume fractions the cutoff frequencies are factors
smaller than the cutoff frequencies following from the two-dimensional approach.

In the limit ρ∗ → 0 the dispersion relation, equation 4.46, may be approximated
by

sin(κmn,2(1 − α)) cos(κmn,1α) = 0. (4.51)

The gas modes are given by sin(κmn,2(1 − α)) = 0, exactly the dispersion relation
for a rectangular hard-walled duct with an aspect ratio of 1/(1 − α) filled with a
single phase medium. Upon defining

βg,mn =
ωmnL

2πc2
= 1

2

√
n2

(1−α)2
+ m2, (4.52)
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the cutoff frequencies of the gas modes become

fmn =
βg,mnc2

L
. (4.53)

For n = 0 the cutoff frequencies are independent of the holdup for all values of m.
When α = 0 the values of βg,mn become 0, 1

2 , 1
2

√
2, 1, . . ., exactly the values of a

single phase configuration. Substitution of βg,mn in equation 4.49 for βmn gives

βmn =
c2

c
1
2

√
n2

(1−α)2
+ m2, (4.54)

This approximation to the cutoff frequencies is visualized in figure 4.8 (right) in the
form of the dots and they clearly fit the curves very well.

The liquid modes follow from cos(κmn,1α) = 0, the dispersion relation for an
open rectangular duct with aspect ratio 1/α,

βl,mn =
ωmnL

2πc1
= 1

2

√
(n+1/2)2

α2 + m2. (4.55)

Numerical values of βl,mn at α = 1 are approximately: 1
4 , 0.559, 3

4 , . . .. These values
can hardly be observed in figure 4.8 (right) because of the large inclination of the
curves. Yet, closer inspection showed that the curves associated with the liquid modes
indeed assume these values at α = 1. The value of βmn according to these liquid
modes,

βmn =
c1

c
1
2

√
(n+1/2)2

α2 + m2, (4.56)

is shown in figure 4.8 (right) in the form of dots. Also the liquid modes are approxi-
mated very well by equation 4.56.

4.5 Discussion

The smallest of the cutoff frequencies is the upper limit to the frequency range in
which only the fundamental mode propagates. In single phase configurations this
fundamental mode has a shape that is plane and is not dispersive. In contrast, the
fundamental modes in core-annular and in stratified flows do not have a uniform
pressure over the cross-section. The deviation from plane and the differences in the
dispersive properties, however, are negligibly small for gas-water and oil-water sys-
tems, at least for frequencies that are smaller than, roughly, a few times the smallest
cutoff frequency. Therefore, the frequency range of interest warrants to restrict atten-
tion to one-dimensional waves only.

The cutoff frequencies as those of a single phase flow are hardly affected by
medium inhomogeneities when the flow consists of oil and water, two fluids with
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FIGURE 4.9: Shape of the first four waveguide modes for a stratified configuration of oil
on top of water. The volume fraction of the water is α = 0.4. Top: p1, p2; middle: p3, p4.
Bottom: the shape of the first two waveguide modes, p1 and p2, for the same system but with
the oil replaced by gas.
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similar acoustic properties. This is not the case for gas-water flows. In core-annular
flows it is the gas that basically forms the waveguide as long as the volume fraction
of the gas is larger than roughly 0.1. Below this value the liquid phase comes into
play and determines the smallest cutoff frequency instead of the gas phase. Core-
annular configurations for which the gas volume fraction is smaller than 0.1 have, to
the author’s knowledge, not been observed in experiments. The cutoff frequencies of
the gas modes are well approximated by a simple relation.

For stratified flows a numerical approach demonstrated that also here the gas modes
cause the smallest cutoff frequency. Above a volume fraction of the water of about
0.9 it is a liquid mode that determines the smallest cutoff frequency. Stratified con-
figurations of oil and water have modes that occur in pairs of two almost identical
modes. This can be explained by effects of symmetry. These pairs do not occur in
core-annular flows nor in stratified gas-water flows.

A square duct containing a stratified composition has similar acoustic properties
as the same configuration in a circular pipe and is an extension of the analyzes of
Morioka and Matsui (1975) and Sinai (1984) of a two-dimensional duct. The third
dimension yields the appearance of a new branch of gas modes. The associated cutoff
frequencies are the smallest of the system and resemble the ones of stratified gas-
water flows in a circular pipe; they should not be ignored upon estimating the upper
limit of the frequency range where only the fundamental mode propagates. The cutoff
frequencies corresponding to the two branches of modes of the square duct containing
a stratified gas-liquid flow are approximated well by means of simple relations.
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5.1 Introduction

In the previous two chapters the propagation of sound was discussed for two-phase
flows whose phase distribution does not vary with the axial position along the pipe;
e.g. separated flow and dispersed flows as sketched in figure 2.1 (a, c, i, k, etc.).
In addition, flows have been observed whose composition does vary along the pipe.
Examples of these flows are intermittent flows where the one phase forms large bub-
bles in the other phase, see figure 2.1 (q,r), figure 2.2 (3,4,7,8). Another example
of intermittent configurations are flows whose composition alternates between single
phase parts and dispersed parts, see figure 2.1 (p). Intermittent flows have the spe-
cial property of being more or less periodic. Their characteristic acoustic properties
will be analyzed in detail in the next two chapters. Also separated flows that have a
wavy interface are examples of (more or less) periodically varying systems. Other
examples of systems where the composition varies are separated flows in which the
interface exhibits a form of mixing of the one phase into the other, see figure 2.1 (b, c,
d). These volume fraction fluctuations have a random character of which the length
scale is small.

In this chapter we will develop mathematical tools to analyze the propagation of
longitudinal waves through axially varying configurations. Two types of variations in
acoustic properties may be distinguished. The first type is concerned with a varying
speed of sound c, resulting in changes of the local wavenumber. The second type
is the variation in impedance. When waves propagating through a medium reach a
change in impedance they are reflected.

If the impedance of the system varies only gradually within the wavelength of
the sound waves these reflections are minimal. Section 5.3 concerns configurations
where the acoustic properties of the flow vary only gradually within a wavelength. In
this case the small effects of reflections are neglected.

The resulting approximation, however, breaks down when the impedance fluctu-
ates abruptly; i.e. the impedance varies substantially within one wavelength. Then
reflections must not be neglected. Also, when waves propagate over (small), but
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many, impedance fluctuations the net effect upon the propagating waves may be-
come significant over distances that cover many wavelengths because of effects of
multiple scattering.

A more general technique than the one mentioned above is the transfer-matrix
method, which describes the propagation of longitudinal waves through waveguides
essentially containing an arbitrarily axially varying medium. This method includes
the reflections of waves and thus the effects of multiple scattering. In this method the
configuration is regarded as a stepwise varying medium; i.e. the waveguide consists
of a sequence of sections with constant (effective) acoustic properties ρ and K (or
alternatively c and Z) that change abruptly at interfaces with the subsequent sections.
Expressions for the effective acoustic properties in each section were found in Chap-
ter 3 for separated and dispersed configurations. Besides these also other expressions
may be used. For instance a section that consists of three stratified layers where a dis-
persion of oil and water is located between a layer of pure oil and one of pure water
as a generalized form of the relations for separate systems as discussed in Chapter 3.

Within these sections the exact solution to the Helmholtz equation is readily found
in terms of two constants that are expressed in terms of the wave field in the sections
up- and downstream. All of these constants are related to each other since pressure
and induced velocity are continuous across the interfaces.

5.2 Longitudinal waves

In Chapter 3 expressions have been found that describe the propagation of longitudi-
nal sound waves through some relatively simple flow configurations such as separated
and dispersed flows. These equations have the generic form

∂

∂t

(
p
u

)
=

[
0 −K

−1/ρ 0

]
∂

∂x

(
p
u

)
, (5.1)

where K denotes the bulk modulus of the two-phase medium and ρ the effective
density. Both depend on the flow configuration. p and u are the excess pressure and
the mean induced velocity, respectively. When K and ρ do not vary along the pipe
the equation simplifies into

∂2p

∂t2
=

K

ρ

∂2p

∂x2
, (5.2)

which is the usual wave equation. The term K/ρ is the square of the sound speed c
of the two-phase flow. The product Kρ equals the square of the impedance Z, which
is the ratio of the pressure excess and the mean induced velocity in the direction of
sound propagation.

As mentioned briefly in section 3.2.1, within the one-dimensional theory K and
ρ are even allowed to vary with the axial position along the pipe. In that case the
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wave equation governing the excess pressure becomes, upon eliminating u from
equation 5.1,

∂2p

∂t2
= K(x)

∂

∂x

(
1

ρ(x)
∂p

∂x

)
(5.3)

as the equation describing sound waves in two-phase pipe flows.
Instead of studying the acoustic field varying with position and time it is common

to choose position and frequency as variables by applying the Fourier transform.
Upon taking the disturbances harmonic in time, i.e. proportional to exp(−iωt), the
mass and momentum conservation equations reduce to two coupled linear ordinary
differential equations,

d
dx

(
p
iu

)
=

[
0 ρ(x)ω

−ω/K(x) 0

](
p
iu

)
, (5.4)

which may be written as the Helmholtz equation,

ρ(x)
d
dx

(
1

ρ(x)
dp

dx

)
+

ω2

c2(x)
p = 0. (5.5)

In case the densities of the two fluids are identical as in the experiments by Charles
et al. (1961) (see section 2.2), the density can be taken out of the derivative. The result
is the usual Helmholtz equation but with a speed of sound that varies with position
along the pipe.

5.3 Gradually varying composition

Simple approximate solutions to equation 5.3 exists for the case in which the flow
properties vary only gradually. Then one would expect that the wave propagates
with the local sound speed c(x), and with only very little reflection of energy. Thus,
if it is assumed that the energy flux, i.e. p2/Z, remains constant an approximate
solution to equation 5.3, for a wave moving downstream∗, should have the form (see
Lighthill, 1978)

p(x, t) =

√
Z(x)
Z(0)

f

⎛
⎝t −

x∫
0

c(x′)−1dx′

⎞
⎠ , (5.6)

where f(t) is the waveform at x = 0 and
∫ x
0 c(x′)−1dx′ is the time it takes for

the wave to travel from 0 to x. The corresponding expression for a wave travelling

∗Downstream denotes the direction of positive x, upstream the direction of negative x.
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FIGURE 5.1: Critical frequency as given by equation 5.12 varying with the wavelength of
the interface waves. (left) oil-water system; (right) gas-water system.

upstream is

p(x, t) =

√
Z(x)
Z(0)

g

⎛
⎝t +

x∫
0

c(x′)−1dx′

⎞
⎠ . (5.7)

Substitution of either of these approximations into the exact equation 5.3 shows that
the relative error is, for a monochromatic wave with radian frequency ω,

cZ
1
2

ω2

d
dx

(
1
2
cZ

1
2
dZ−1

dx

)
, (5.8)

or alternatively,

1
2

[
3
2

1
Z

dZ

dx
− d2Z

dx2
/
dZ

dx
− 1

c

dc

dx

]
1
Z

dZ

dx
/

(ω

c

)2
. (5.9)

This implies that the accuracy is good when the relative rates of change of c and of Z
and of the derivative of Z all have small ratios to the wavenumber ω/c = 2π/λ,
where λ is the wavelength of the monochromatic wave. In other words, the wave-
length should be small compared to the length scales that characterize the relative
rates of change of these quantities. Equations 5.6, 5.7 are equivalent to the usual geo-
metrical acoustics approximation. A formal WKB-approach to the solution of equa-
tion 5.3 would yield these as a first-order solution.

As a practical example to get some insight in the significance of equation 5.9 when
the volume fractions of an oil-water system vary with the axial position, consider
a stratified oil-water system; ρ2/ρ1 = 800/1000, c2/c1 = 1200/1500. Suppose
that to the mean volume fraction, α = 0.5 say, a small periodic component with a
wavelength L and an amplitude of 0.1 is added, so

α(x) = 0.5 + 0.1 sin(2πx/L). (5.10)
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Upon introducing the following frequencies,

fc =
c

2π

1
c

dc

dx
, fZ =

c

2π

1
Z

dZ

dx
, fZ′ =

c

2π

d2Z

dx2
/
dZ

dx
, (5.11)

the frequency of the sound waves must be much larger than the critical frequency,
defined as

f � fcrit. = max(|fc|, |fZ |, |fZ′ |), (5.12)

in order to have a small relative error on applying the approximation to the acous-
tics of this system. Figure 5.1 (left) shows the critical frequency varying with the
wavelength L of the interface waves. In addition, the graph is given for basically the
same system but now for a dispersion with a periodically fluctuating volume fraction.
Wether the oil-water system is stratified or dispersed has not much influence on the
critical frequencies. Figure 5.1 (right) shows the results when the oil is replaced by
gas, ρ2/ρ1 = 2/1000, c2/c1 = 400/1500. In these gas-water systems the disper-
sions have a lower and the stratified flows a higher critical frequency than the ones of
oil-water systems. Experiments by Trallero (1995) suggest that the wavelength of the
interfacial waves in an oil-water stratified wavy flow is roughly two pipe diameters.
That would mean that for a pipe with a diameter of D = 0.1m the frequency must
be much larger than about 150Hz.

All these values of fcrit. suggest that the theory is probably applicable to these
flows. Yet, effects of multiple scattering are not taken into account. Especially in
periodic flows the many small reflections may add up to significant values. This
example should be considered as an indication of the magnitude of the relative error
varying with α according to equation 5.9. In this sense the figure shows that even a
small variation (0.1) of the volume fraction over distances smaller than about 0.1m
results in unacceptably large relative errors in the frequency range of interest when
this method is applied.

5.4 Sound transmission as matrix multiplication

A method that does include reflections is the transfer-matrix method. Figure 5.2
visualizes what this method means. The left figure (top) shows a flow of oil bubbles
(grey) in water which is regarded as a stepwise varying medium (bottom) consisting
of stratified oil-water sections (grey) and sections of pure water. In the figure also the
convention is given for the numbering of the interfaces and the sections. The plot at
the right shows how a more gradually varying flow may be considered as a stepwise
varying medium.

5.4.1 Transfer matrices

Suppose that the waveguide consists of a number of sections with constant proper-
ties, separated by acoustically compact discontinuities. Let section n have length ln,
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FIGURE 5.2: Examples of how the two-phase flow is regarded as a stepwise varying
medium. Flow with oil bubbles in water (left); Linearly increasing volume fraction (right).

sound speed cn and impedance Zn. The interface at x = xn separates section n − 1
upstream from section n downstream, see figure 5.2 (left). The pressure within each
section may be taken to consist of the sum of a wave moving in the downstream direc-
tion (denoted +) and a wave moving in the upstream direction (denoted −). Then it
follows from equation 5.4 that for a monochromatic component with frequency ω the
pressure and induced velocity in section n between xn and xn+1 may be expressed
as

pn(x) = p+
n eiω(x−xn)/cn + p−n e−iω(x−xn)/cn , (5.13)

un(x) =
p+

n

Zn
eiω(x−xn)/cn − p−n

Zn
e−iω(x−xn)/cn . (5.14)

Imposing continuity of pressure and induced velocity at each of the discontinuities,
which is consistent with equation 5.4, yields at x = xn+1

p+
n+1 + p−n+1 = p+

n eiωln/cn + p−n e−iωln/cn , (5.15)

1
Zn+1

(
p+

n+1 − p−n+1

)
=

1
Zn

(
p+

n eiωln/cn − p−n eiωln/cn

)
. (5.16)

For N discontinuities this gives 2N equations for the 2N + 2 unknowns p+
n and

p−n , (n = 0, 1, . . . , N), in terms of given values for Zn and ln. The system of equa-
tions may for instance be closed by setting p−N = 0 (no wave coming from far down-
stream) and specifying the value of p+

0 (the incident signal on x = x1).
An elegant way of formulating this scheme is by introducing the state variable pn,

a vector whose components are p+
n and p−n . The equations 5.15, 5.16 can then be

written as the transformation

pn+1 = T npn. (5.17)
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To obtain the transfer matrix T n, first write the two equations 5.13, 5.14 as a rela-
tionship between the state vectors yn = [pn, iun]T and pn:

y = Cn(x)p, (5.18)

where

Cn(x) ≡
[

eiω(x−xn)/cn e−iω(x−xn)/cn

i
Zn

eiω(x−xn)/cn − i
Zn

e−iω(x−xn)/cn

]
. (5.19)

The transformation (5.17) now follows from

pn+1 = C−1
n+1(xn+1)Cn(xn+1)pn = T npn, (5.20)

with the transfer matrix

T n ≡ 1
2

[
(1 + Zn+1/Zn)eiωτn (1 − Zn+1/Zn)e−iωτn

(1 − Zn+1/Zn)eiωτn (1 + Zn+1/Zn)e−iωτn

]
. (5.21)

Here we have introduced the transit time τn = ln/cn as the time it takes for the
sound wave to pass through layer n. The T n matrix may also be written in terms
of the transmission and reflection coefficients of a wave in a medium with intrinsic
impedance Zn+1 incident upon a discontinuity to a medium with impedance Zn.
These are

Tn+1,n =
2Zn

Zn + Zn+1
, Rn+1,n =

Zn − Zn+1

Zn + Zn+1
, (5.22)

respectively. In terms of these the transfer matrix reads

T n =
1

Tn+1,n

[
eiωτn Rn+1,ne−iωτn

Rn+1,neiωτn e−iωτn

]
. (5.23)

The determinant of the transfer matrix T n equals det(T n) = Zn+1/Zn.
Note that when one prefers to work with the state variable yn one can express the

state at xn+1 in terms of the state at xn as

y(xn+1) = Cn(xn+1)C−1
n (xn)y(xn) = Mny(xn), (5.24)

with

Mn ≡
[

cos(ωτn) Zn sin(ωτn)
−1/Zn sin(ωτn) cos(ωτn)

]
. (5.25)

Since the pressure and the induced velocity are continuous across a discontinuity, i.e.
pn(xn+1) = pn+1(xn+1) and un(xn+1) = un+1(xn+1), the subscript n of p and u is
dropped. The determinant of this transfer matrix is det(Mn) = 1. Its eigenvalues are
e±iωτn .
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Suppose now that the medium has N compact variations of acoustic properties.
In other words, the medium consists of N − 1 sections that all may have a different
sound speed and impedance. Repeated application of the transfer matrices then yields
the state of the medium at xN in terms of that at x1 as

y(xN ) = MN−1MN−2 . . .M2M1y(x1), (5.26)

or,
pN = T N−1T N−2 . . .T 2T 1p1. (5.27)

5.4.2 Effective impedances

To see what this entails and to establish the relation with methods using effective
impedances, consider a wave of pressure I incident from the right, i.e. propagating
in the upstream direction, on the discontinuity at xN . This results in a reflected
downstream propagating wave of pressure R, and a transmitted upstream propagating
wave of pressure T to the left of x1.

First we look at a description using the transfer matrix M. The states at x1 and
at xN are prescribed by

y1 =
[

T
−iT/Z0

]
, yN =

[
R + I

i(R − I)/ZN

]
, (5.28)

respectively. The problem is to express T and R in terms of I . Substitution of
equation 5.28 in equation 5.26 gives[

R + I
i(R − I)/ZN

]
= MN−1MN−2 . . .M2M1

[
T

−iT/Z0

]
. (5.29)

Upon defining a vector W as[
W1

iW2

]
= MN−1MN−2 . . .M2M1

[
−Z0

i

]
, (5.30)

it follows from equation 5.29 that

(R + I) = W1
T

−Z0
, (R − I)/ZN = W2

T

−Z0
, (5.31)

or equivalently,

R

I
=

W1/W2 − ZN

W1/W2 + ZN
,

T

I
=

−Z0(R/I + 1)
W1

. (5.32)

The ratio R/I may be interpreted as the effective reflection coefficient for the layered
medium; i.e it is the reflection coefficient for a wave in a medium with impedance
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ZN incident on a medium with effective impedance Ze = W1/W2 (in accordance
with equation 5.22).

The appearance of an effective impedance may be explained by substituting the
definition of the effective impedance Ze(x) ≡ p(x)/u(x) in (5.24),[

1
i/Ze(xn+1)

]
p(xn+1) = Mn

[
1

i/Ze(xn)

]
p(xn). (5.33)

The recurrence relation for the effective impedance is recovered by taking the ratio
of these two equations,

Ze(xn+1) = Zn
Ze(xn) + iZn tan(ωτn)
Zn + iZe(xn) tan(ωτn)

. (5.34)

The transmission through the system can now be evaluated as follows. If one defines
the effective impedance of the medium at x1 as Ze(x1) = Z0 then repeated applica-
tion of equation 5.34 yields the effective impedance Ze(xN ). This immediately gives
the amplitude of the reflected wave,

R

I
=

Ze(xN ) − ZN

ZN + Ze(xN )
. (5.35)

The transmission through one layer follows equations 5.33, 5.25 as

p(xn)
p(xn+1)

=
(

cos (ωτn) + i
Zn

Ze(xn)
sin (ωτn)

)−1

. (5.36)

At xN one has p(xN ) = R + I so that repeated application of (5.36) yields the
transmitted wave as

T

I
= (R/I + 1)

N−1∏
n=1

(
cos (ωτn) − i

Zn

Ze(xn)
sin (ωτn)

)−1

. (5.37)

The acoustic field within the system for instance at xi follows from

p(xi)
I

= (R/I + 1)
N−1∏
n=i

(
cos (ωτn) − i

Zn

Ze(xn)
sin (ωτn)

)−1

. (5.38)

Moreover, in the same fashion the pressure can be calculated within a section, at x =
xj in layer i say, by splitting the section i in two sections. Then the local effective
impedance is given as by equation 5.34,

Ze(xj) = Zi
Ze(xi) + iZi tan(ω(xj − xi)/ci)
Zi + iZe(xi) tan(ω(xj − xi)/ci)

, (5.39)

and hence p(xj) becomes

p(xj)
I

=
p(xi+1)

I

(
cos (ωτj,i+1) − i

Zi

Ze(xj)
sin (ωτj,i+1)

)−1

, (5.40)

where τj,i+1 = (xi+1 − xj)/ci.
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5.4.3 Effective reflection and transmission coefficients

The same problem can be described in terms of T matrices. Instead of effective
impedances, now effective reflection coefficients appear which can be calculated
recursively as well. This approach for computing the reflection and transmission
through a layered medium has recently been applied by Munday, Brad Bennett and
Robertson (2002) to study the effects of small defects on the propagation character-
istics in an acoustic band gap system. We will make further reference to this work in
Chapter 6.

In terms of the state vectors pi the state immediately to the right of xN is now
given by

pN =
[

R
I

]
, (5.41)

whereas the state immediately to the right of x1 may be found by means of equa-
tion 5.18,

p1 = C−1
1 (x1)y1 = C−1

1 (x1)
[

T
−iT/Z0

]
=

T

T1,0

[
R1,0

1

]
. (5.42)

Similar as in the precious section a vector W is defined as[
W1

W2

]
= TN−1TN−2 . . .T2T1

[
R1,0

1

]
, (5.43)

in terms of which equation 5.27 can simply be written as[
R
I

]
=

T

T1,0

[
W1

W2

]
. (5.44)

The pressures of the reflected and transmitted waves therefore follow from

R/I = W1/W2, T/I = T1,0/W2. (5.45)

In this description the ratio W1/W2 plays the role of an effective reflection coeffi-
cient, which is defined as R−

e (xn) = p+
n /p−n . Here, the minus sign corresponds to

the negative direction in which the incident propagates.
Upon inserting the effective reflection coefficient in equation 5.20,[

R−
e (xn+1)

1

]
p−n+1 = T n

[
R−

e (xn)
1

]
p−n , (5.46)

one finds by taking the ratio of these equations and using equation 5.23 a recurrence
relation for the effective reflection coefficient,

R−
e (xn+1) =

R−
e (xn) + Rn+1,n e−2iωτn

R−
e (xn)Rn+1,n + e−2iωτn

. (5.47)
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The relation is closed according to equation 5.43 by specifying the effective reflection
coefficient at x = x1, R−

e (x1) = R1,0. Then the reflection from the entire medium
follows from applying equation 5.47 N − 1 times.

The transmission through one section follows from equation 5.46 in the form of an
effective transmission coefficient,

T −
e (xn+1) =

p−n
p−n+1

=
Tn+1,n

R−
e (xn)Rn+1,neiωτn + e−iωτn

. (5.48)

At an arbitrary interface at x = xn the wave p−n may be written in terms of p−k at an
arbitrary interface at x = xk downstream,

p−n
p−k

=
k∏

m=n+1

T −
e (xm). (5.49)

For k = N equation 5.49 expresses p−n in terms of the incident wave p−N = I .
The wave T/I that is transmitted through the entire medium, also through x = x1,
becomes T1,0p

−
1 /p−N , see equation 5.42.

Instead of having an incident wave I immediately to the right of x = xN one may
also have an incoming wave from far upstream incident on the interface at x = x1.
The state immediately to the right of xN is now given by

pN =
[

T
0

]
, (5.50)

whereas the state immediately to the right of x1 may be found by means of equa-
tion 5.18,

p1 = C−1
1 (x1)y1 = C−1

1 (x1)
[

I + R
i(I − R)/Z0

]
=

1
T1,0

[
I + RR1,0

IR1,0 + R

]
. (5.51)

Similar to the previous case an effective reflection coefficient is defined as

R+
e (xn) = p−n /p+

n , (5.52)

where the plus-sign corresponds to the positive direction in which the incident wave
propagates. It is noted that in general R+

e (xn) �= 1/R−
e (xn) since the layered

medium is subject to different boundary conditions. Substitution of R+
e (xn) in equa-

tion 5.20 yields [
1

R+
e (xn)

]
p+

n = T−1
n

[
1

R+
e (xn+1)

]
p+

n+1. (5.53)
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Again by taking the ratio of these equations one obtains a recurrence relation for the
effective reflection coefficient,

R+
e (xn) =

Rn,n+1 + R+
e (xn+1)

(1 + Rn,n+1R+
e (xn+1)) e−2iωτn

, (5.54)

which is closed by p−N = 0 (no wave from far downstream) and therefore R+
e (xN ) =

0. Applying equation 5.54 N − 1 times gives the effective reflection coefficient
R+

e (x1), which gives the reflected wave at the left of x = x1,

R+
e (x1) =

I + RR1,0

IR1,0 + R
, so

R

I
=

1 −R+
e (x1)R0,1

R+
e (x1) −R0,1

. (5.55)

By defining an effective transmission coefficient as

T +
e (xn+1) =

p+
n+1

p+
n

=
Tn,n+1

(1 + R+
e (xn+1)Rn,n+1)e−iωτn

, (5.56)

the transmission through some number of layers, e.g. from xk to xn downstream, is
caught by multiplying these effective transmission coefficients,

p+
n /p+

k =
n∏

m=k+1

T +
e (xm). (5.57)

The transmitted wave to the right of x = xN follows from equation 5.51,

T/I =
1 + R1,0R/I

T1,0

N∏
m=2

T +
e (xm). (5.58)

5.5 Green function

When subject to a distribution of sources the sound field is obtained by calculating
the convolution integral of the source distribution and the Green function, which is
the solution to equation 5.5 where the Dirac delta function δ(x − xs) is added to the
right-hand side.

In order to calculate the Green function let us introduce subfield 1 as the acous-
tic field from the first case in section 5.4.3, thus induced by an incoming wave I−,
incident from far downstream on x = xN and the second case as subfield 2; i.e.
the acoustic field induced by an incoming wave I+, incident from far upstream
on x = x1. Then due to the linearity of the governing equations an arbitrary field
can be written as a linear combination of these two subfields. Instead of by an in-
coming wave the field may also be induced by a source located in layer n, say, at xs
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between xn and xn+1. The induced upstream and downstream propagating waves p−n
and p+

n may be viewed as incoming waves incident on x = xn and x = xn+1, re-
spectively. In the following we will determine how the sound energy delivered by the
source is divided between these upstream and downstream propagating waves.

If the medium were homogeneous and had a sound speed of the layer in which the
source is located the Green function would be

gn(x, xs) =
cn

2iω

{
e−iω(x−xs)/cn x < xs

eiω(x−xs)/cn x > xs
. (5.59)

The presence of the discontinuities can now be accounted for by adding the homoge-
neous solution,

pn(x, xs) = p̂+
n eiω(x−xn)/cn + p̂−n e−iω(x−xn)/cn + gn(x, xs), (5.60)

or, alternatively,

pn(x, xs)=
{

p̂+
n eiω(x−xn)/cn + (p̂−n + g−n )e−iω(x−xn)/cn xn < x < xs,

(p̂+
n + g+

n )eiω(x−xn)/cn + p̂−n e−iω(x−xn)/cn xs < x < xn+1
, (5.61)

where
g−n =

cn

2iω
eiω(xs−xn)/cn , g+

n =
cn

2iω
e−iω(xs−xn)/cn . (5.62)

For xn < x < xs the terms (p̂−n + g−n ) and p̂+
n may be considered as the incoming

wave incident on x = xn and its reflected wave, respectively. Their ratio is equal
to the effective reflection coefficient, p̂+

n = R−
e (xn)(p̂−n + g−n ), representing the

medium at x < xn. The medium downstream, x > xn+1, is included by the effective
reflection coefficient, R+

e (xn) = p̂−n /(p̂+
n + g+

n ). Upon expressing p̂+
n and p̂−n in

terms of g+
n , g−n and R+

e (xn), R−
e (xn) one obtains[

p̂+
n

p̂−n

]
=

1
1 −R−

e (xn)R+
e (xn)

[
R−

e (xn)(g−n + R+
e (xn)g+

n )
R+

e (xn)(g+
n + R−

e (xn)g−n ).

]
. (5.63)

The pressure distribution in the layered system can be calculated by applying the
method given in the previous section separately to the systems to the left of xn and
to the right of xn+1. Upon inserting the above expressions for p̂+

n and p̂−n in equa-
tion 5.61 it becomes clear that amplitude of the upstream running wave incident on
the medium to the left of xn is

p−n = p̂−n + g−n =
g−n + g+

n R+
e (xn)

1 −R+
e (xn)R−

e (xn)
(5.64)

and that the amplitude of the downstream running wave incident on the medium to
the right of xn+1 is

p+
n = p̂+

n + g+
n =

g+
n + g−n R−

e (xn)
1 −R+

e (xn)R−
e (xn)

. (5.65)
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Equations 5.64, 5.65 show that resonances occur when the two effective reflection
coefficients are reciprocals, R−

e (xn) = 1/R+
e (xn), and since the modulus of the ef-

fective reflection coefficients is smaller or equal than 1 this condition is only satisfied
if |R−

e (xn)| = |R+
e (xn)| = 1 and if arg (R−

e (xn)) + arg (R+
e (xn)) = 0. It is noted

that if the effective reflection coefficients are reciprocals somewhere in the pipe they
must be everywhere, see section 5.4.3.

5.6 Discussion

Two methods have been presented that describe the acoustics of longitudinal acoustic
waves in pipe flows whose composition varies with axial position in the pipe. In the
first method, presented in section 5.3, reflections of waves are neglected and the
energy flux is assumed to remain constant. This method fails when the impedance
fluctuations are substantial within a wavelength of the sound waves. Also, many
negligibly small impedance fluctuations may add up to substantial reflections when
the pipe is long enough. In these two cases reflections cannot be ignored.

The second method is the transfer-matrix method, presented in section 5.4, which
governs the acoustics of basically all phase distributions for frequencies smaller than
the smallest cutoff frequencies of the system. In this method the medium is regarded
as stepwise varying. The resulting transfer matrices express the wave amplitudes in
one section to those in neighboring sections. The complete field may be computed by
first determining the effective reflection coefficients of all layers and then the effec-
tive transmission coefficients through a recurrence relation. Also, the Green function
for this stepwise varying medium was derived. This revealed that the medium up-
stream, say, is fully characterized by the effective reflection coefficient R−

e (xn) and
only affects the (complex) amplitude of the sound field downstream. The acoustic
field upstream and downstream of the source may, except for their amplitudes, be
calculated separately as if the medium at the other side of the source is absent.

Although the one-dimensional approach is justifiable to waves having a frequency
below the cutoff frequency the longitudinal wave approximation in spatially varying
systems is more complicated. When the sections consist of pure fluids or disper-
sions, the shape of the fundamental mode over the cross-section is plane. If also
the interfaces are plane then the shape of the wave front will remain plane and tak-
ing into account the higher waveguide modes is not required to ensure continuity
of pressure and induced velocity everywhere across the interface. In this case the
one-dimensional formulation as presented is generally applicable. When sections
consist of a stratified composition the shape of the fundamental mode is not perfectly
plane, see Chapter 4. This leads to a ’mismatch’ of the mode at plane interfaces to
sections containing a single phase medium, a dispersion or a stratified composition
with a different composition. Due to this mismatch higher modes come into play
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and although these modes are attenuating they might still be present at the next inter-
face, especially for frequencies close to the cutoff frequency, and affect the acoustic
field resulting from this one-dimensional approach. Yet, these effects are very small
since the shapes of the fundamental modes in two-phase flows are all very close to
plane. Moreover, the evanescent modes attenuate in the sections and may be ignored
when the sections are much longer than the attenuation length. This is referred to
in literature as the wide spacing approximation, (e.g. Devillard, Dunlop and Souil-
lard, 1988; Evans and Linton, 1994).
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6.1 Introduction

Flows of large bubbles of oil in water, see figure 2.1 (q,r) and figure 2.2 (3,4,7,8),
are examples of intermittent flows. In these flows the composition changes abruptly
with time when one observes the flow at a certain fixed position in the pipe. Other
intermittent configurations are flows whose composition alternates between single
phase parts and dispersed parts, see figure 2.1 (p). Intermittency also occurs in gas-
liquid systems. Slug flows for instance consist of alternating parts of a liquid or a
dispersion of gas bubbles in water (the liquid slug) and a stratified part of liquid and
gas which contains the gas plug. Both parts together form a unit of a flow that is
close to periodic. The distribution of oil drops surrounded by water in the pipe is
also more or less uniform and, consequently, this flow structure is close to periodic
as well. Another example of flows that exhibit periodicity are stratified flows with a
wavy interface.

In practice, intermittent flows as observed in experiments are not perfectly peri-
odic; the lengths of all parts deviate in general from their mean value as well as other
parameters like the volume fractions of the phases in the stratified part or in the dis-
persed part as in slug flows. In order to gain insight into the propagation of sound
through these flows here they are first assumed to be perfectly periodic. In the next
chapter the effects on the propagation of sound waves will be analyzed when the
lengths of the parts fluctuate randomly around their mean value.

An inquiry of the acoustics of perfectly periodic flows will be the content of this
chapter. In the next section the transfer matrices as discussed in the previous chapter,
will be derived for the units (periods) of the periodic flows that consists of two parts
whose acoustic properties are constant over the full length of each part. These units
may be used to model slug flows or flows of large bubbles of oil in water. Repeated
application of the associated transfer matrices provides a means to analyze the sound
propagation through these flows.

Transfer matrices for other periodic flows like stratified wavy flows require a dif-
ferent approach since the volume fractions vary more gradually instead of abruptly as
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in, for instance, slug flows. One period of these flows will be regarded as a stepwise
varying medium consisting of a certain number of parts each one having constant
acoustic properties.

How the transmission properties of periodic flows depend on the properties of
the transfer matrices, in other words the properties of one unit, will be discussed in
section 6.3.

The final section concerns the transmission properties of the waves when one unit
is changed as an introduction to more realistic intermittent flows where the units are
not all the same but vary around their mean value in a random way.

6.2 Sound transmission through periodic flows

6.2.1 Transfer matrices for periodic flows

Slug units

A gas-liquid slug flow may be decomposed in ’slug units’, in which each unit consists
of a dispersed or a single phase part and a separated part. Flows of large oil bubbles in
water have a similar structure; one part is a single phase flow of water while the other
part consists of pure oil or a separated flow of a core annular form. Also, periodic
flows of parts of pure water separated by parts containing a dispersion of oil in water
have this structure. In the following the units of all periodic flows that consist of two
parts are referred to as slug units.

Now, let the slug unit consist of a dispersed or single-phase flow of length ld
with sound speed cd and impedance Zd, followed downstream by a separated flow
of length ls, sound speed cs and impedance Zs, see figure 6.1. Sound transmission
through this slug unit is then characterized by applying equation 5.17 twice. The
components of the transfer matrix T now read

T11 =
(Zs + Zd)2

4ZsZd
eiω(τs+τd) − (Zs − Zd)2

4ZsZd
e−iω(τs−τd),

T12 = −(Zs + Zd)(Zs − Zd)
4ZsZd

eiω(τs−τd) +
(Zs + Zd)(Zs − Zd)

4ZsZd
e−iω(τs+τd),

T21 =
(Zs + Zd)(Zs − Zd)

4ZsZd
eiω(τs+τd) − (Zs + Zd)(Zs − Zd)

4ZsZd
e−iω(τs−τd),

T22 = −(Zs − Zd)2

4ZsZd
eiω(τs−τd) +

(Zs + Zd)2

4ZsZd
e−iω(τs+τd), (6.1)

where the transit times τs = ls/cs and τd = ld/cd are introduced as the times needed
by a wave to travel through the slug part and the dispersed section, respectively. A



6.2. SOUND TRANSMISSION THROUGH PERIODIC FLOWS 77

pn+1
-

n-1

+p

d

x n

n+1
p

n+1

+

p -
n

n

ds s

n+1n

n-1 n+1

x n+1

dn sn

n-1

FIGURE 6.1: Sketch of a series of slug units, n−1, n and n+1,
consisting of a stratified part s and a dispersed part d.

simplification of the notation by introducing the reflection and transmission coeffi-
cients as defined by equation 5.22 results in

T11 =
[
eiω(τs+τd) −R2

d,se
−iω(τs−τd)

]
/Td,sTs,d,

T12 =
[
−Rd,seiω(τs−τd) + Rd,se−iω(τs+τd)

]
/Td,sTs,d,

T21 =
[
Rd,seiω(τs+τs) −Rd,se−iω(τs−τd)

]
/Td,sTs,d,

T22 =
[
−R2

d,se
iω(τs−τd) + e−iω(τs+τd)

]
/Td,sTs,d. (6.2)

For completeness it is noted that the transfer matrix M for a slug unit has compo-
nents

M11 = cos(ωτs) cos(ωτd) − Zs/Zd sin(ωτs) sin(ωτd),

M12 = (Zd/ω) sin(ωτd) cos(ωτs) + (Zs/ω) cos(ωτd) sin(ωτs),

M21 = −(ω/Zd) sin(ωτd) cos(ωτs) − (ω/Zs) cos(ωτd) sin(ωτs),

M22 = cos(ωτs) cos(ωτd) − Zd/Zs sin(ωτs) sin(ωτd). (6.3)

If the flow is not perfectly periodic the same matrices T , M may be derived, but
they will, in principle, be different for all units.

Stratified wavy units

Instead of a slug flow whose units consist of two parts, the volume fractions of the
phases in stratified wavy configurations vary more gradually. Similarly, a unit may
be defined for these periodic flows. Suppose the flow is stratified with fluid 2 flowing
on top of fluid 1. The speed of sound and the impedance then follow from equa-
tions 3.15, 3.17 as a function of α. Now, let the volume fraction α vary periodically
with the axial position along the pipe as

α(x) = α0 + ∆α sin(2πx/L), (6.4)
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FIGURE 6.2: Sketch of a unit of a stratified wavy flow including
its representation in the stepwise varying medium method with
M = 10 sections.

where L is the wavelength of the interface waves (the length of the unit), α0 the mean
volume fraction and ∆α the amplitude of the interface waves.

The corresponding transfer matrix T of one unit may be obtained by regarding the
flow as a stepwise varying medium. One unit of length L is divided into M sections
separated by M + 1 interfaces, see figure 6.2. The nth section between xn and xn+1

consists of a separated flow with a constant volume fraction

αn = [α(xn) + α(xn+1)]/2 (6.5)

and a transfer matrix T n. The transfer matrix T of one unit is found upon multiplying
all matrices T n according to equation 5.27,

T = T M−1T M−2 . . .T 2T 1. (6.6)

In practical situations, the amplitude ∆α is usually small. Yet, if the amplitude is
increased to very large values while the volume fraction is limited to the range [0, 1];
in other words,

α(x) =
{

min(α0 + ∆α sin(2πx/L), 1) for x ≤ L/2
max(α0 + ∆α sin(2πx/L), 0) for x > L/2

, (6.7)

then the T -matrix resembles the transfer matrix of a slug unit whose two parts consist
of the phase 2 and the phase 1 as in the stratified flow. The length of each part is equal
to L/2. This result provides the means to analyze how the properties of the transfer
matrix are affected when the abrupt variations in the acoustic properties are slightly
moderated as in practical situations.

6.2.2 Finite periodic flows

Having determined two types of transfer matrices let us now consider the idealization
of a flow as a chain of identical units of length L (which is L = ls + ld for slug units).
The description of sound transmission through finite periodic systems becomes par-
ticularly simple by repeated application of the T -matrix in its diagonalized form.
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In order to diagonalize the T -matrix first its eigenvalues are to be determined.
Since the determinant of T is equal to one, the eigenvalues of the transfer matrix are
roots of the characteristic equation

λ2 − tr(T )λ + 1 = 0, (6.8)

and depend only on the trace of the T -matrix,

λ1,2 = 1
2tr(T ) ±

√
1
4tr(T )2 − 1. (6.9)

In case of slug units the trace is equal to

tr(T ) =
2

Td,sTs,d

[
cos ω(τs + τd) −R2

d,s cos ω(τs − τd)
]
, (6.10)

or, alternatively,

tr(T ) = 2 cos(ωτd) cos(ωτs) −
(

Zs

Zd
+

Zd

Zs

)
sin(ωτd) sin(ωτs). (6.11)

For the units of stratified wavy flows the trace of the transfer matrix has to be calcu-
lated numerically.

The eigenvectors of T may be written as (1, ξ1) and (ξ2, 1), with

ξ1 = −(T11 − λ1)/T12, ξ2 = −(T22 − λ2)/T21, (6.12)

and may be used to form the matrices

P =
[

1 ξ2

ξ1 1

]
, P−1 =

1
1 − ξ1ξ2

[
1 −ξ2

−ξ1 1

]
. (6.13)

The matrix T can now be decomposed as

T = PDP−1, (6.14)

with D = diag(λ1, λ2).
The M -matrix has the same eigenvalues as the T -matrix. Its eigenvectors may be

written as (1, ξ̂1) and (ξ̂2, 1), where now

ξ̂1 = −(M11 − λ1)/M12, ξ̂2 = −(M22 − λ2)/M21. (6.15)

These may be used to form a Q-matrix as follows

Q =
[

1 ξ̂2

ξ̂1 1

]
, Q−1 =

1

1 − ξ̂1ξ̂2

[
1 −ξ̂2

−ξ̂1 1

]
, (6.16)
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and the matrix M can be decomposed as

M = QDQ−1, (6.17)

where as before, D = diag(λ1, λ2).
Now, if the state pn is known, the state at x = xn+k is given by

pn+k =
n+k∏
m=n

Tpn = PDkP−1pn = c1λ
k
1(1, ξ1) + c2λ

k
2(ξ2, 1), (6.18)

where (c1, c2) = P−1pn. For instance, suppose that the flow consists of a finite
number, N say, of units. Consider a downstream propagating wave I just to the right
of the interface at x = x1. This will result in an upstream propagating reflected
wave R, and downstream of x = xN in a transmitted wave T . The wave motion just
to the right of x = xN then yields the vector c as[

c1

c2

]
=

T

1 − ξ1ξ2

[
1

−ξ1

]
. (6.19)

Alternatively, the state at x = xN can be written in terms of the eigenvectors of the
T -matrix as [

p+
N+1

p−N+1

]
=

[
T
0

]
=

([
1
ξ1

]
− ξ1

[
ξ2

1

])
T

1 − ξ1ξ2
. (6.20)

This wave structure is now translated k units upstream by repeated application of the
transfer matrix T . This leads to[

p+
N+1−k

p−N+1−k

]
=

(
λ−k

1

[
1
ξ1

]
− λ−k

2 ξ1

[
ξ2

1

])
T

1 − ξ1ξ2
. (6.21)

Continuing this process up to k = N shows that the transmission and reflection
coefficients of N units are given by

T

I
= λN

1

1 − ξ1ξ2

1 − (λ1/λ2)Nξ1ξ2
,

R

I
= ξ1

1 − (λ1/λ2)N

1 − (λ1/λ2)Nξ1ξ2
, (6.22)

two simple relations giving the reflection and transmission coefficients in terms of
the eigenvalues and the corresponding eigenvectors of the transfer matrix of one unit.

6.2.3 Examples

As an example, consider the extreme case of a flow in a pipe in which over a length
of 10m there exists a series of 4 water sections separated by 3 sections of oil. The
length of the water sections is taken as lw = 1m and those of the oil sections
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FIGURE 6.3: Left: energy transmission as a function of frequency for a system consisting of
4 sections with water and 3 sections with oil (N = 4), ν = 2/7, ζ = 1.1, L = 10m. Right:
for a stratified wavy system (N = 10) with α0 = 0.5, ∆α = 0.1, L = 0.2m; oil-water
(solid), gas-water (dashed).

as lo = 2m. The seven sections are embedded in two half-infinite sections of oil.
The densities and the sound speeds of the oil and the water are taken as ρo =
800kgm−3, ρw = 1000kgm−3, co = 1200ms−1, cw = 1500ms−1. This means
that the transit times are τo = 1/600s and τw = 1/1500s. A sound wave is inci-
dent at x = x1 on the first water layer resulting in a transmitted wave T just to the
right of the fourth water section. The amplitude I of the incident wave is defined at
x = x1 − lo; in other words, one oil section in front of the first water section. Then
the medium consists of N = 4 slug units with a total length of 12m consisting of
pure oil (the ’dispersed’ part) and of pure water (the ’stratified’ part). The energy
transmission coefficient |T/I|2 is obtained by applying equation 6.22 with N = 4
and is presented in figure 6.3 (left) as a function of the frequency. The figure shows a
clear band structure of the transmission varying with the frequency.

A second example involves a stratified wavy flow of oil and water. The fluid prop-
erties are the same as in the previous example. The volume fraction varies according
to equation 6.4 with α0 = 0.5, ∆α = 0.1 and L = 0.2m. The number of units is
N = 10 which means that the total length becomes 2m The units themselves are di-
vided into M = 50 sections which is more than enough to ensure a converged transfer
matrix T of the unit. The 10 units are embedded in two half-infinite sections whose
compositions are purely stratified with α = 0.5. The solid curve in figure 6.3 (right)
shows the energy transmission coefficient of this example whereas the dashed line
shows the transmission coefficient for an identical system where the oil is replaced
by gas (ρ = 2kgm−3, c = 400ms−1). A band structure as appearing in the graph
of the previous example cannot be observed in this frequency range for the oil-water
flow. Only one (wider) gap is visible at approximately f = 3275Hz. This value is
beyond the frequency range of interest and, hence, the gap does not play a role in
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the propagation properties of low frequency sound waves of this configuration. The
first band in the transmission through the gas-water system is clearly present at about
f = 1000Hz. The second gap occurring at about f = 2000Hz is much smaller.

The appearance of a band structure in the transmission of waves in periodic media
is a well-known phenomenon in many fields of physics as for instance in optics,
electronics and solid state physics.

6.3 Bloch waves

6.3.1 Pass bands and stop bands

That the transmission properties of waves travelling through a finite periodic medium
exhibit a band structure can be understood from the properties of sound transmission
through a periodic system of infinite extent for which the propagation structure ex-
hibits a translational symmetry. For such a system Bloch’s theorem applies, which
states that the wave motion has a spatial dependence

P−1p(xn+1) = DP−1p(xn) (6.23)

and so is completely determined by the eigenvalues of the transfer matrix. The
eigenvalues may be expressed as eiκL with L the length of a unit and κ the Bloch
propagation constant. The role that κ plays becomes clear (see Harris, 2001) by let-
ting x ∈ 〈xn, xn + L] be the coordinate within a unit and z(x) = P−1p(x) the
global wave at x. This global wave vector z(x) consists of a downstream and an
upstream propagating component, not to be confused with the local waves p+(x)
and p−(x) which actually form the global wave, see equation 6.23. The down-
stream running component of the global wave, z1x, satisfies the functional equation
z1(x + L) = eiκLz1(x). The solution equals

z1(x) = eiκxφ(x), with, φ(x + L) = φ(x), (6.24)

a periodic function that may be expressed in terms of a Fourier series with coeffi-
cients cj , say. Therefore, the time harmonic field z1(x)e−iωt may written as

z1(x)e−iωt =
∞∑

j=−∞
cje−i2πj/Lei(κx−ωt). (6.25)

and it is clear that κ plays the role of the wave number. This wave number κ is
related to the structure of the considered unit through the eigenvalues λ1,2 which
satisfy equation 6.8. Since the product λ1λ2 = det(T ) = 1 the eigenvalues may be
written as λ1 = eiκL, λ2 = e−iκL and consequently

λ1 + λ2 = 2 cos(κL). (6.26)
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Moreover, equation 6.8 shows that the square of the sum of the eigenvalues is equiv-
alent to

(λ1 + λ2)2 = (tr(T )λ1 − 1) + (tr(T )λ2 − 1) + 2 = (λ1 + λ2)tr(T ) (6.27)

and one readily finds from equations 6.26, 6.27 that

cos(κL) = 1
2tr(T ). (6.28)

Three cases may arise:

1. The eigenvalues λ are complex conjugates with modulus 1 corresponding to
real values of κ when

| cos(κL)| = |12tr(T )| < 1. (6.29)

Frequencies for which the eigenvalues are complex belong to pass bands.

2. The eigenvalues are real reciprocals, λ2 = λ−1
1 , corresponding to imaginary

values of κ when

| cosh(Im(κL))| = |12tr(T )| > 1. (6.30)

These represent exponentially growing and decaying solutions due to con-
structive interference of the reflected waves This phenomenon is referred to
as Bragg scattering. Frequencies for which this occurs form the stop bands.
The corresponding attenuation coefficient per unit length, β, is given by

βL = |ImκL|. (6.31)

3. The eigenvalues are equal, λ1 = λ2 = ±1, when

|12tr(T )| = 1. (6.32)

These frequencies signify the boundaries between pass bands and stop bands.

The values of cos(κL) as a function of the frequency are presented in figure 6.4
for the examples of figure 6.3. It is clearly visible that the frequencies for which
| cos(κL)| exceeds one correspond to the gaps in figure 6.3. Furthermore, the figure
suggests that the band structure has a periodic structure, which suggests the need for
a deeper analysis.
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FIGURE 6.4: Values of cos(κl) = 1
2 tr(T ) varying with the frequency f . Left: For the slug

flow of figure 6.3 (left). Right: for the stratified wavy flows of figure 6.3 (right); oil-water
(solid) and gas-water (dashed).

6.3.2 Structure of the bands of slug flows

In order to analyze the band structure corresponding to slug flow the following di-
mensionless parameters are introduced,

2πf = ωτ, ν = τd/τ, 2ζ = Zd/Zs + Zs/Zd, with τ = τd + τs. (6.33)

From equation 6.11, we then obtain

cos(κL) = cos(2πfν) cos(2πf [1 − ν]) − ζ sin(2πfν) sin(2πf [1 − ν]), (6.34)

which expresses the wave number κ in terms of the three parameters f , ν and ζ. The
boundaries between stop and pass bands follow from

| cos(2πfν) cos(2πf [1 − ν]) − ζ sin(2πfν) sin(2πf [1 − ν])| = 1. (6.35)

A general solution to equation 6.35 is hard to obtain, but for the special case in which
the transit times τs and τd are equal (i.e. ν = 1/2) progress can be made fairly easily.
A layered medium with equal travel times in the layers is known as a Goupillaud
medium. Strictly, for a Goupillaud medium periodicity is not required, so here we
are dealing with a special case. Equation 6.35 now reduces to

| cos2(πf) − ζ sin2(πf)| = 1 (6.36)

and, hence, the boundaries of the bands are given by

fb = k, fb = k ± 1
π

tan−1

√
2

ζ − 1
, k ∈ N. (6.37)
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FIGURE 6.5: Frequency band structure of a periodic slug flow
for ζ = 1.1 which is typical for oil-water flows. Stop bands are
shaded.

For other values of ν equation 6.35 has been solved numerically. Figures 6.5 and 6.6
show fb as a function of ν for the values ζ = 1.1 and ζ = 100, respectively. Be-
cause tr(T ) is not affected upon exchanging the subscripts s and d of the parameters,
the band structure is symmetric with respect to ν = 1/2. So, it is sufficient to re-
strict attention to values of ν in the range [0, 1/2]. Note that in the two figures the
value ν = 1/2 corresponds to the Goupillaud medium just mentioned, for which the
band structure is described by equation 6.37. Clearly, the values fb = k are isolated
‘stop points’ rather than bands. Real stop bands are centered around the frequen-
cies f = k + 1/2 and have width

1 − (2/π)tan−1(2/(ζ − 1))1/2. (6.38)

The example of figure 6.5, with ζ = 1.1, is for a periodic system of slug units that
consist of a part of pure oil and one of pure water. A real oil-water flow would have
a value of ζ that is closer to 1, and the stop bands would be even narrower than in the
figure. The band structure is in this case close to periodic in ν and is approximately
given by

fb =
[
1
2
− 1

π
tan−1

√
2

ζ − 1

]
sin(πνk) +

k

2
, k ∈ N. (6.39)

The example of figure 6.6, with ζ = 100, is more typical for gas-liquid slug flows
where the gas volume fraction in the stratified section is 11%. Here, except for rather
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FIGURE 6.6: Frequency band structure of a periodic slug flow
for ζ = 100 which is typical for gas-liquid flows. Stop bands are
shaded.

small values of ν, i.e. when the gas plugs are very short, we see that the pass bands
are extremely narrow. Due to the large impedance mismatch gas-liquid slug flows
do not transmit low frequency sound waves very well. In the limit ζ → ∞ the band
boundaries are given by sin2(2πfν) sin2(2πf [1 − ν]) → 1/ζ2, which means that
they can be approximated by the functions

fb = k/(2ν), fb = k/(2[1 − ν]), k ∈ N. (6.40)

Sound wave transmission in a one-dimensional layered waveguide in the form of
a ”water duct filled with many air blocks” was also recently studied by Luan and Ye
(2001a, 2001b). They derive an expression for the band structure which is equal to the
one given here, but restrict their numerical examples to systems for which the volume
fraction of the gas (i.e. the ratio of the length of the gas blocks to that of the water
blocks) is extremely small, typically 10−5 − 10−4. In our notation this would mean
excessively small values of ν, and so their work seems not to be of much practical
value for gas-liquid flows in pipes. The band structures they present, for example
figure 2b of their first paper, agree very well with those in our figures 6.5 and 6.6.

The harmonic functions that appear in equation 6.34 suggest that there is a period-
icity in the band structure. Such periodicity in f is found when n1ν = n2(1 − ν),
for some positive integers n1 and n2. This means that ν/(1 − ν), i.e. the ratio of
the travel times in the two sections that form a slug unit, is rational. Let ν = k/n
with k, n the smallest possible positive integers. Then the period in tr(T )(f) (and
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thus in the eigenvalues) equals the denominator n. In one period n the cosines and
the sines in equation 6.34 with arguments 2πfν and 2πf(1 − ν) pass through k and
n − k periods, respectively. This does not imply that the band structure has exactly
that same period. In order to show this, again let ν = k/n, with k, n the smallest
possible integers, and note that k and n − k cannot both be even. Then

tr(T )(f) = tr(T )(f + n), (6.41)

and inspection shows that also

tr(T )(f + n/2) = ±tr(T )(f), (6.42)

where the plus sign is for the case in which k and n − k are both odd. Upon taking
squares the minus sign is cancelled, so the period in (tr(T ))2 and thus in the band
structure is half the period in tr(T ). This periodicity in the band structure can be
clearly seen in Figures 6.5 and 6.6. For instance, take ν = 1/3. Then the period
in tr(T ) equals n = 3 and the distance between the nodes in the figures takes the
expected value 3/2.

It is noted that in periodic media in which identical homogeneous sections are
separated by compact scatterers gaps occur when the length L of the sections is half
a wavelength λ. These systems have Goupillaud properties and thus is the first gap
given by f = 1/(2τ). Upon substituting f = c/λ and τ = L/c one readily finds
the expected L = λ/2. These systems are fully transparent to waves when L =
λ/4, which is exactly the center of the first pass band. Yet, these rules of thumb
do in general not apply to systems built up of slug units, only when the units have
Goupillaud properties or when the impedance contrast is small, like for oil-water slug
flows. The gas-liquid systems of figure 6.6 which have a large impedance contrast
prove this point.

6.3.3 Examples

Relation to finite periodic flows

Returning now to the system of finite extent, i.e. the example of figure 6.3 (left),
where the parameters take the values ζ = 1.1 and ν = 2/7 ≈ 0.286. The boundaries
between the stop and the pass bands, i.e. the values of fb as given by equation 6.39,
are given (in Hz) in the table below.

1: 190 236 5: 1042 1100
2: 400 458 6: 1264 1310
3: 631 657 7: 1500
4: 843 869

There is obviously a close agreement with the band structure that was found in fig-
ure 6.5 (left). It is noted that for ν = 2/7 the band structure is periodic in f with
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FIGURE 6.7: Attenuation coefficient per unit. Left: for the system of figure 6.3 (left) where
ν = 2/7, ζ = 1.1. Right: for the stratified wavy configurations of figure 6.3 (right) where
α0 = 0.5, ∆α = 0.1; oil-water (solid), gas-water (dashed).

period 7/(2τ) = 1500Hz, which provides a simple means to determine the band
gaps at higher frequencies.

The transit time and the value of ν in stratified wavy flows may be defined as

τ =

L∫
0

c(x)−1dx and ν =
1
τ

L/2∫
0

c(x)−1dx, (6.43)

respectively. Then the numerical values of the two for the example of figure 6.3 (right)
on the stratified wavy flow of oil and water become τ = 1/6549s and ν = 0.49. The
flow is very close to a Goupillaud medium and, hence, its first band gap is given
by f = 1/2τ = 3274Hz, very well approximating the value of f = 3275 in the
figure. In order to estimate the width of the band one may use equation 6.38. Un-
fortunately an estimate of ζ for stratified wavy flows has not been found. The pa-
rameters of the stratified wavy flow of gas and water become τ = 1/2002s and
ν = 0.50. Here the flow is even closer to a Goupillaud medium. Its band gaps become
f = 1/2τ = 1001Hz and f = 1/τ = 2002Hz, also in very good agreement with the
figure. The latter would be a ’stop point’ rather than a band in a perfect Goupillaud
medium but can clearly be observed as a (small) band in the figure. The expected
gap at f = 3000Hz is, however, absent. This will be explained later. Clearly, the
locations of the gaps of stratified wavy flows are quite well estimated, at least in these
cases, by those of a Goupillaud medium even though these flows are not composed
of slug units.

Figure 6.7 shows the attenuation coefficients per unit according to equation 6.31
for the examples above. The graphs agree qualitatively well with the band structure
of figure 6.3. Yet, quantitatively the values do not agree with the gaps in the figure.
For example the value of the second gap in figure 6.7 (left) is about 0.14. This means
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FIGURE 6.8: Attenuation coefficient per unit for a slug
unit (solid) containing a part of pure water and a part of
pure oil with ld = ls = 1 (L=2), and for a stratified
wavy unit with α0 = 0.5, ∆α = 2, L = 2.

that the expected value of the energy transmission coefficient is exp(−0.14 · 2N) ≈
0.33. The factor two has to be added because figure 6.3 (left) shows the square of
|T/I|. The transmission coefficient of the second gap of the oil-water slug flow in
figure 6.3 (left) has the value of about 0.11, a factor three lower. The reason for this
difference is the finite length of the system in figure 6.3.

When the number of units becomes very large the transmission coefficient as given
by equation 6.22 becomes, at least for frequencies in band gaps,

T

I
= λ−

1 N
1 − ξ1α2

ξ1ξ2
. (6.44)

Here the real λ1 is defined as the largest eigenvalue and λ2(= 1/λ1) the smallest. It
is noted that the modulus |ξ1ξ2| = 1 for frequencies in band gaps. Upon substituting
λ1 = exp(|Im(κL)|) = exp(βL) in equation 6.44 the modulus of the transmission
coefficient becomes ∣∣∣∣TI

∣∣∣∣ = e−βLN |1 − ξ1ξ2|. (6.45)

Then the waves attenuate with a attenuation coefficient per unit of βL. The factor
|1− ξ1ξ2| is a value in the range [0, 2]. For completeness, for large N the modulus of
the reflection coefficient R/I tends to one for frequencies in a band gap.

Relation between slug units and stratified wave units

The band structure of transmission coefficient varying with the frequency occurs for
slug flows and stratified wavy flows. A major difference, however, is that the bands
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FIGURE 6.9: Left: attenuation coefficient per unit for the two gaps between f = 1500 −
2200Hz for a stratified wavy configuration with α0 = 0.5, L = 2 and with amplitudes
1 (dotted), 2 (dash-dot), 4 (dashed) and for a slug flow (solid) with ld = ls = 1. Right:
corresponding volume fraction of the water α.

of slug flows remain present as the frequency increases while the expected bands of
stratified wavy flows are absent at higher frequencies; see for example the expected
but missing band at f = 2002Hz of the gas-water flow of figure 6.7 (right). The
reason for this is that in stratified wavy systems the wavelengths corresponding to
higher frequencies become smaller than the length scale in which the impedance
varies. The consequence is that reflections become weaker; the medium tends to a
more gradually varying medium where the WKB-method as described in section 5.3
applies. In slug flow this does not occur, simply because here the impedance varies
discontinuously and the variation of the impedance remains abrupt regardless of the
frequency.

In order to estimate how the band structure is affected when the discontinuous
variation of the impedance of slug flows is slightly moderated, the case is considered
where the two parts of a slug unit both have a length of 1m; so ld = ls = 1m (L =
2m). The two parts consist of just water and of just oil. This system is resembled
by a stratified wavy flow of oil flowing on top of water that has a volume fraction
α according to equation 6.7 with α = 0.5, say, and with a large amplitude ∆α. In
figure 6.8 the band structure is presented in the form of the attenuation coefficient per
unit βL for ∆α = 2. As the first gap is approximately the same for the two systems,
the gaps of the stratified wavy flows decrease relatively to the ones of the slug flow
when the frequency goes up. Moreover, a small gap of the stratified wavy flow may
be recognized at f = 3000Hz whereas the corresponding one of the slug flow is
absent. This is due to the fact that f = 3000Hz is a ’stop point’ instead of a gap for
the slug flow, but a band for the stratified wavy flow which has a slightly different
value of ν. Figure 6.9 (left) shows the gaps between f = 1500Hz and f = 2200Hz
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in more detail for ∆α = 1, ∆α = 2 and ∆α = 4. Figure 6.9 (right) visualizes the
corresponding values of α. It is clear that the attenuation coefficients corresponding
to the gaps drop when the amplitude ∆α decreases. Furthermore, the changing value
of ν affects the location of the gaps. It shifts to a slightly lower frequency when the
amplitude ∆α decreases.

It is noted that for a pipe with a diameter of 0.1m the slope of the interface ranges
from about 0.3 for ∆α = 1 to infinity for the slug flow. A slope of 3.4 corresponding
to an amplitude of ∆α = 4 seems a more realistic value for real intermittent flows.
The band structure as for idealized slug flow is not much affected in this case, at least
not for frequencies up to 2000Hz.

6.4 Defect modes

Although wave propagation in periodic waveguides has been a subject of intensive
research for mechanical, optical and electronic systems, publications that are con-
cerned explicitly with acoustic wave propagation in fluid dynamical systems are rare.
Examples are the papers by Bradley (1994a, 1994b) and, more recently, of Robert-
son, Ash and McGaugh (2002) and Munday et al. (2002). These last authors study
sound propagation in straight pipes, that are given periodic waveguide properties. In
the first reference this is achieved by attaching a dangling side branch system to the
pipe and in the second reference by varying the cross-section of the pipe. Munday
et al. (2002) look at what happens when there is a defect in the periodicity of the
wave guide, in their case when one of the pipe sections is given a different length.
It is instructive to repeat their analysis, extend it a little bit, and then show what it
implies for sound transmission in an oil-water slug flow. For instance how the band
structure is affected when the flow is not perfectly periodic.

The waveguide of Munday et al. (2002) is a PVC pipe of length 157.9cm, the
diameter of which varies periodically from 1.9cm to 3.2cm. The 1.9cm diameter
sections have a length of 17.7cm, and the length of the 3.2cm diameter sections is
17.4cm, which means that the waveguide has almost the properties of a Goupillaud
medium. The authors do not mention the physical properties of the fluid medium
inside the pipe, but if we assume that it is air with density 1.3kgm−3 and sound
speed 340ms−1 (ν = 0.50, ζ = 1.6) the transmission coefficient for the system
would be that shown in figure 6.10. There are band gaps between 330 − 640Hz and
1300 − 1610Hz.

Now, suppose that the middle section is given a different length, e.g. that is
changed in the first case by a factor 1.97 and in the second case by a factor 0.76.
Figure 6.11 (which is equivalent to figure 5(b) in Munday et al. (2002)) shows what
happens. The whole band structure is modified, with the most prominent feature that
a defect mode appears in a stop band. The waveguide becomes ’transparent’ for a
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FIGURE 6.10: Energy transmission as a function of frequency
in the periodic waveguide studied by Munday et al. (2002).
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FIGURE 6.11: As in figure 6.10 but with the length of the middle section increased by a
factor 1.97 (left) and a factor 0.76 (right).
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FIGURE 6.12: Energy transmission as a function of frequency for a system
consisting of 4 sections with water and 3 sections with oil, but with the
length of middle section (with oil) doubled. (ν = 2/7, ζ = 1.1, L = 10 m).

very narrow range of frequencies within the stop bands, around 491Hz and 1474Hz
in the first case and around 326Hz and 1395Hz in the second case.

The phenomenon of defect modes is fruitfully used in optics (e.g. Fowles, 1968)
where a stack of dielectric films with alternating indices of refraction is used. The
layer in the middle is doubled in length. The result is a multilayer Fabry-Perot inter-
ference filter that is only transparent for a very narrow frequency band while the light
waves of other frequencies are reflected. These filters are superior compared to other
filters because of the lower absorbtion and the higher reflectance.

What Munday et al. (2002)) do not show is that the breakup of the band structure
also depends on the choice of the section that is given a different length. This is
illustrated in figure 6.13 for a Goupillaud medium consisting of 9 sections of which
the length of one of the sections is doubled, a different section in each of the graphs.

It should be pointed out that the appearance of a well-defined, narrow band gap
within the stop bands as found by Munday et al. (2002) is due to the fact that their
waveguide had Goupillaud properties. In the oil-water slug flows found in practice,
of course, this will usually not be the case. The consequence is that it is much harder
to obtain information from the observed breakup of the band structure. To illustrate
this the calculations of the example of figure 6.3 (left) (which is not close to a Goupil-
laud medium) is repeated, but now with the middle section doubled in length. The
result is shown in figure 6.12, and a comparison with figure 6.3 makes this point clear.
Moreover, in oil-water flows defects will not appear at one location in the pipe. In
fact the lengths of, basically, all sections deviate from their values in a perfectly pe-
riodic composition. This complicates considerably the extension of the transmission
properties of periodic systems to those of systems that are close to periodic.
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FIGURE 6.13: Energy transmission as a function of frequency in a Goupillaud medium with
9 sections of which one section has a length that is twice as large. In the upper graphs this
is the 1st section (left) and the 3rd section (right), in the graphs in the middle row the 7th

(left) and the 9th section (right), and in the graphs in the bottom row the 2nd (left) and the
4th section (right).
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6.5 Discussion

Flows of large oil bubbles in water, gas-liquid slug flows or flows of water with clouds
of dispersed small oil bubbles are examples of intermittent flows. The composition of
these flows varies abruptly with position along the pipe. In the idealized situation in-
termittent flows have a perfectly periodic structure. Also stratified flows with a wavy
interface are examples of periodic flows, but here the acoustic properties vary more
gradually. One period of the two classes of these periodic flows was represented by a
slug unit and a stratified wavy unit. The corresponding transfer matrices were derived
by means of the transfer-matrix method, which provided an analytical relation to the
transfer matrices for slug units. The transfer matrices associated with the stratified
wavy units were calculated numerically.

Upon diagonalizing the transfer matrices expressions were found that relate the
transmission and the reflection coefficients of a chain of units to the eigenvalues and
eigenvectors of the transfer matrix. The transmission coefficient as a function of
the frequency for sound waves propagating through finite periodic flows has a band
structure. For certain frequency bands (the stop bands) waves attenuate and do not
propagate through the pipe unlike the waves of frequencies corresponding to the pass
bands.

This band structure of the transmission coefficient can be understood by consider-
ing an infinite pipe where Bloch’s theorem applies. The properties of the resulting
Bloch wavenumber are directly related to the eigenvalues of the transfer matrix of
a slug unit. Asymptotic solutions to the band structure were found for flows with a
very low and a very high impedance contrast, in terms of the transit time of a unit τ
and two parameters ν and ζ that are related to the ratio of the transit times through
the two section of a slug unit and the impedance contrast, respectively. When the
impedance contrast is low the stop bands are narrow, in contrast to those of gas-water
flows. In the latter case the stop bands are very wide which indicates that actually
sound waves of almost the full frequency range do not propagate through gas-water
slug flows at all.

Upon generalizing the definition of ν the locations of the stop band centers for
stratified wavy flows are approximately given by the same relations as those for slug
flow. Yet, a generalized form of ζ and consequently relations for the width and the
attenuation coefficient of the band gaps have not been found. Numerical simulations
demonstrate that the first stop band for stratified wavy oil-water flows exceeds the
frequency range of interest. The gas-water analogue, however, showed a very clear
stop band. Except for frequencies in this stop band sound propagates well through
stratified wavy gas-water flows unlike sound waves in gas-liquid slug flows. The high
value of the attenuation coefficient for frequencies of the first band gap may provide
a means to estimate the interface wavelength of stratified wavy gas-liquid flows.

When the frequency increases the composition of the stratified wavy flows varies
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more gradually on the scale of the corresponding wave length of the sound waves.
The result is that the attenuation coefficients of the band gaps decrease. This is not the
case for slug units where the composition varies abruptly. Even when the abrupt vari-
ations in composition are somewhat moderated the band structure is not significantly
affected. For stratified wavy flows, however, only a few gaps at low frequencies were
observed in the examples. For high frequencies the waves propagate without being
reflected significantly.

When the length of a single section of a finite periodic flow is doubled defect modes
occur. In the stop bands narrow bands arise where the attenuation coefficient is much
smaller than in the remaining part of the gaps. The medium may even become fully
transparent at these frequencies. This remarkable phenomenon is an example of what
may happen when the periodicity of the medium is locally disarranged. In the next
chapter all sections will be (randomly) altered to model more realistic intermittent
flows.
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7.1 Introduction

In the previous chapter the acoustics of perfectly periodic flows were discussed. Such
flows are idealizations of stratified wavy flows and intermittent flows like gas-liquid
slug flows or flows of large bubbles of oil in water, see figure 2.1 (q,r) and fig-
ure 2.2 (3,4,7,8). In practice, these flows are not fully periodic. In gas-liquid slug
flows, for instance, the volume fractions of the gas in the stratified part (the plug)
and that in the dispersed part (the slug) differ with each slug unit. The lengths of the
parts may also vary appreciably. Furthermore, in flows of large oil bubbles in water
the sizes of the bubbles and the distances between them all differ in an apparently
random way.

This chapter involves the effects upon the band structure of the transmission co-
efficient of periodic flows when the lengths of the sections are varied at random. It
will be shown that these random variations in length give the sound transmission
remarkable statistical properties. By studying these statistics it may be possible to
find ways to extract information about the medium by measuring (stochastic) sound
propagation.

In order to illustrate some of the effects, first some examples will be given of a
system where an upstream propagating wave I is incident upon a randomly varied
periodic flow of length L resulting in a transmitted wave T . For simplicity the flow
is assumed to consist of alternating sections of just oil and just water, following the
main example in the previous chapter. Some of the statistical properties of the sound
transmission will be discussed on the basis of the extensive literature on waves in
random media and it will be demonstrated that the prominent quantity of interest for
these systems is the Lyapunov exponent and its reciprocal, the localization length.
The Lyapunov exponent associated with a pipe of finite length is a stochastic vari-
able. Section 7.3 discusses the conditions for which a remarkable property of the
probability distribution of the Lyapunov exponent, the single parameter scaling, ap-
plies. In section 7.4 more remarkable statistical properties will be presented with
respect to the distribution of energy in the pipe. In addition, it will be shown that the
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phenomenon of Anderson localization occurs in these systems.
Waves in random media are studied in many fields of physics. A famous paper

is that of Anderson (1958) in which the phenomenon of localization was introduced.
As Maynard (2001) explains, Anderson localization means that for certain conditions
the amplitudes of waves in a one-dimensional random medium may grow at certain
locations in the waveguide. At the two sides of the resulting peaks the wave ampli-
tudes decrease exponentially. Anderson localization was used to explain the metal-
to-insulator transition in disordered metals. The occurrence of the phenomenon in
oil-water slug flows will be presented in section 7.4.

Another field of physics where waves in random media are of interest is geo-
physics. Here it is attempted to obtain information on the randomly layered earth’s
crust by generating acoustic pulses at the surface and analyzing the reflected sound
waves (e.g. Shapiro, 1999; Papanicolaou, 1998). Waves in random media are also
studied in mechanics (e.g. Langley, 1995; Sobnack and Crighton, 1994) and in fluid
dynamics, for example in studies of gravity waves propagating in channels with an
irregular bottom (e.g. Ardhuin and Herbers, 2002; Devillard et al., 1988).

7.2 Break-up of the band structure

The oil-water slug flow that will be considered in the examples below is the periodic
system of figure 6.3 (left). However, the lengths of the two parts of each period∗, lo
and lw, and thus the transit times τo and τw vary in a uniformly random manner. This
means that each section i has length

li = 〈li〉 (1 + δ̃), (7.1)

where the mean lengths 〈li〉 are those of the periodic system; i.e. the oil sections
have a mean length 〈lo〉 and the water sections a mean length 〈lw〉. The random
variations δ̃ denote numbers that are chosen randomly from the interval [−δ, δ] with
a uniform probability distribution. δ signifies the degree of randomness and will be
called ’randomness’ in what follows. All randomly chosen numbers are statistically
independent of the others. It is recalled that the number that characterizes the ratio of
the impedances of the flow sections has the (constant) value ζ = 1.1 in this example.
Again, the mean lengths are 〈lw〉 = 1m, 〈lo〉 = 2m. The value of ν, the number that
characterizes the ratio of the transit times, basically differs per period but based on
the mean flow,

ν =
〈lw〉 /cw

〈lw〉 /cw + 〈lo〉 /co
, (7.2)

it has the value of ν = 2/7.

∗Since the flow is no longer perfectly periodic the term period is, perhaps, somewhat unsuitable in
this context; it is based on the mean flow.
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FIGURE 7.1: Energy transmission as a function of frequency for a system consisting of N/2
water and N/2 oil sections of randomly chosen lengths with 〈l1〉 = 1, 〈l2〉 = 2, ν = 2/7,
ζ = 1.1. Left: varying randomness with N = 400 and δ = 0.05 (top), δ = 0.1 (middle),
δ = 0.25 (bottom). Right: varying number of sections with δ = 0.05 and N = 800 (top),
N = 1600 (middle), N = 3200 (bottom).
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FIGURE 7.2: Ensemble average over 1500 realizations of the energy transmission as in
figure 7.1 with N = 400. Left: the mean energy transmission and its variance varying with
the frequency; δ = 0.05 (top), δ = 0.1 (middle), δ = 0.25 (bottom). Right: the variance
plotted against the mean; δ = 0.05 (top), δ = 0.1 (middle), δ = 0.25 (bottom).
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The system of figure 6.3 (left) contains 4 periods, thus 4 sections of oil and 4 sec-
tions of water (N=8 sections), and has a length of 12m. Figure 7.1 (left) shows what
happens to the energy transmission |T/I|2 when the system is much longer, 600m in
the mean (N=400 sections), and the randomness δ is increased from 0.05 to 0.1 and
0.25. For each graph of figure 7.1 a single realization was generated at random and
the energy transmission for that realization was calculated as a function of frequency.
The left graphs illustrate that the randomness breaks up the band structure (as given
by the table in section 6.3) and that as the randomness increases the system becomes
less and less transparent, in particular for the higher frequencies.

The graphs in figure 7.1 (right) are for another realization of the system in the upper
graph of figure 7.1 (left), but with a length that is doubled to 1200m (N=800). The
other two graphs illustrate what happens if for the same value of the randomness δ =
0.05 the length of the system is increased from 1200m to 2400m and 4800m. As
before, the system becomes less transparent, especially at the higher frequencies. The
graph suggests that each frequency has a ‘penetration depth’; a depth that is shorter
as the frequency is higher and also becomes shorter as the randomness increases. The
latter seems more effective in decreasing this penetration depth.

The energy transmission TL = |T/I|2 for a certain length L can be considered
as a stochastic variable. Rather than looking at values of this variable for individual
realizations of the system, it is more useful to study its statistical properties. Fig-
ure 7.2 (left) shows how for a mean length of L = 600m its average value 〈TL〉 and
its variance

VarTL =
〈
T 2

L

〉
− 〈TL〉2 , (7.3)

estimated by the mean and the variance of an ensemble of 1500 realizations, depend
on wave frequency f and randomness δ. The band structure of the original periodic
system is still clearly visible in the upper two graphs of figure 7.2 (left). The pass
bands, however, disappear as the randomness increases. The rate at which this hap-
pens is different for each pass band. Note that in the upper graph the variance in the
first few pass bands has a doubly peaked structure, a feature that is not present in
the fifth and higher pass bands. When the randomness is increased these peaks co-
alesce, and the variance in the low frequency pass bands behaves as that of the high
frequencies pass bands at lower values of the randomness. Moreover, the graphs of
figure 7.2 (left) and Figure 7.1 (left) show that the waveguide is not fully transparent
for any frequency; i.e. the randomness limits the penetration depth of all frequencies.

Something remarkable is found when for a large number of frequencies, from
both pass bands and stop bands of the original periodic waveguide, VarTL is plotted
against 〈TL〉. Figure 7.2 (right) suggests that there is a universal relation between the
two. Of course, as the randomness increases both the mean and the variance of TL

decrease, so all data points contract towards the origin, but nevertheless the gross
universal structure remains apparent.
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7.3 Statistical properties of transmitted waves

7.3.1 Lyapunov exponents

A very extensive literature exists on the propagation of classical waves in homoge-
neous random media† (e.g. Sheng, 1995; van Rossum and Nieuwenhuizen, 1999).
Rather than those of TL, it is common to study the statistics of the random variable

γL = −(1/2L) ln TL, (7.4)

i.e. the logarithmic decrement of the transmission coefficient |T/I| =
√
TL. The

limiting value for L → ∞ of γL is known as the Lyapunov exponent,

γ = lim
L→∞

γL, (7.5)

and therefore the stochastic variable γL may be defined as the Lyapunov exponent
associated with a system of length L. Also the limiting value for L → ∞ of the
ensemble average 〈γL〉 is equal to the Lyapunov exponent,

γ = lim
L→∞

〈γL〉 . (7.6)

For sufficiently large L (much larger than the localization length defined below) the
Lyapunov exponent γ can be estimated from γL and even more accurately from 〈γL〉.
The variable γL can be viewed as the spatially averaged attenuation coefficient for
waves propagating in a pipe of a finite length L. Note that γL is a spatially averaged
attenuation coefficient; the true attenuation of the waves in a typical realization of the
medium is not necessarily constant; i.e. when a wave propagates through the pipe
its amplitude may fluctuate and thus even grow in certain regions. Only on average
the wave attenuates with an attenuation coefficient γL. This implies that the recipro-
cal of γL should not be considered as a penetration depth; due to the growth of the
wave amplitudes in certain regions the wave energy may penetrate much deeper into
the medium than one would expect based on the value of 1/γL. Moreover, γL is a
stochastic variable which means that all realizations of the medium yield a different
value of γL. However, its variance reduces with increasing length of the pipe L, so
for a pipe of infinite length the variance tends to zero and, hence, the spatially av-
eraged attenuation coefficient has the same value for all realizations. The ensemble
averaged Lyapunov exponent 〈γL〉 may be regarded as the spatially averaged attenu-
ation coefficient of the ensemble averaged waves. For a clear example of a random
system where the statistics of the amplitude fluctuations are calculated analytically,
the reader is referred to Scott (1985).

†In these systems the medium is homogeneous but contains randomly located scatterers.
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An appropriate length scale of the amplitude fluctuations is the localization length
of the system which is defined as the reciprocal of the limiting value of γL, the Lya-
punov exponent γ,

Lloc = 1/γ. (7.7)

The localization length of the wave energy is half this value.
For a perfectly ordered periodic system of infinite length the Lyapunov exponent γ

is given by the imaginary part of the Bloch wavenumber, γ = |Imκ| (see equa-
tion 6.31), which is constant. This means that waves of frequencies in the stop bands
truly attenuate exponentially and that here the localization length may be regarded
as the penetration depth. In random systems all frequencies attenuate, but one can
consider a system of length L only as truly opaque for these waves when Lloc � L.

7.3.2 Single parameter scaling

A great discovery (Anderson, Thouless, Abrahams and Fisher, 1980) is that in ho-
mogeneous random media for certain conditions, the probability distribution of γL is
Gaussian, and that its moments all depend on one single parameter only, namely the
Lyapunov exponent γ. In particular one has

VarγL = 〈γL〉 /L. (7.8)

This relation is known as the single parameter scaling (SPS) (Deych, Yamilov and
Lisyanski, 2001).

The propagation of classical waves in one-dimensional disordered waveguides that
are periodic on average has also attracted considerable attention (e.g. McGurn, Chris-
tensen, Mueller and Maradudin, 1993; Nishiguchi, Tamura and Nori, 1993a; Frei-
likher, Lianski, Yurkevich, Maradudin and McGurn, 1995; Langley, 1995; Deych,
Zaslavsky and Lisyanski, 1997; Luan and Ye, 2001a) One of the interests is to what
extent the statistical properties of the waves resemble those of classical waves in one-
dimensional random homogeneous systems; in particular, for which conditions single
parameter scaling, as expressed by equation 7.8, also applies here (Deych, Lisyanski
and Altshuler, 2000).

Let us proceed by interpreting the data of figure 7.1 in terms of the Lyapunov expo-
nent γL as defined above and discuss the statistical properties of sound transmission
in random oil-water slug flows following the illuminating paper of Deych, Zaslavsky
and Lisyanski (1998). This paper is concerned with scalar waves in a superlattice
with properties such that, in our notation, ζ = 1.004 and ν = 0.477, so very close to
those of a Goupillaud medium where ν = 1/2.

Figure 7.3 (left) exemplifies again the break-up of the band structure of the periodic
system as given by the table in section 6.3. The ‘peaks’ of the Lyapunov exponent
correspond to the band gaps of the periodic system, whereas the valleys correspond
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FIGURE 7.3: Ensemble average over 1500 realizations of the Lyapunov exponent for the
system of figure 7.1 with N = 400. Left: the Lyapunov exponent and its variance varying
with the frequency; δ = 0.05 (top), δ = 0.1 (middle), δ = 0.25 (bottom). Right: the variance
plotted against the mean (dots) and the variance as given by the single parameter scaling
(solid); δ = 0.05 (top), δ = 0.1 (middle), δ = 0.25 (bottom).
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to the pass bands. As the randomness increases it destroys more and more the inter-
ference pattern of the perfectly ordered periodic system. The result is that the height
of the peaks diminishes, which implies that the localization lengths of frequencies in
the stop bands increase, or in other words, the system becomes less opaque for these
frequencies. The valleys on the other hand are found at greater heights, so that the lo-
calization length for frequencies in the pass bands becomes less, for these frequencies
the system becomes less transparent. As the randomness increases there is a growing
range of frequencies, expanding towards the lower frequencies, for which there is no
clear distinction between pass bands and stop bands anymore. For these frequencies
the medium has no ‘underlying’ periodicity; i.e. the medium can be considered as
fully random. That implies that the value of the Lyapunov exponent for this range of
frequencies is determined only by the ‘microstructure’ of the system; i.e. the values
of ζ (here 1.1) and ν (here 2/7). Moreover, figure 7.3 (left) shows that this value of
〈γL〉, which is nearly independent of the frequency, is approximately 0.02m−1, so
that the localization length of the wave energy is Lloc ≈ 25m; much less than the
length of the system (600m).

Figure 7.3 (left) also shows graphs of the variance of the Lyapunov exponent as
a function of frequency for the same systems. Upon comparing the two figures it
appears that already at low values of the randomness for most frequencies single pa-
rameter scaling applies, i.e. the Lyapunov exponent and its variance are related by
equation 7.8. This is confirmed by figure 7.3 (right) where for the entire frequency
range the variance of the Lyapunov exponent is plotted against the Lyapunov expo-
nent itself. Most of the points coincide with the straight line as given by equation 7.8.
The graphs in figure 7.3 (right) also show multi-branched structures which imply a
violation of single parameter scaling for certain frequencies. Inspection shows that
the different branches originate from frequencies belonging to different band gaps
of the original periodic system. In these band gaps the variance exhibits a doubly
peaked structure. The double lines which form each of the branches correspond to
different halves of the same band gap, precisely as was found by Deych et al. (1998).
As the randomness increases the band structure is broken up, especially at the higher
frequencies. Figure 7.3 shows that the double peaks and the corresponding multi-
branches disappear and that for an increasing range of frequencies single parameter
scaling is applicable.

7.3.3 Transition from periodic to fully random

In order to answer the question for which precise conditions single parameter scaling
applies, it is illuminating (Deych et al., 1998) to look at the behavior of the Lyapunov
exponent for frequencies within a band gap as the randomness is increased. For this
the band gap at 1071Hz between 1042Hz and 1100Hz is considered. The upper
two graphs in figure 7.4 (left) show the dependence of the Lyapunov exponent upon
the randomness δ for frequencies that belong to a pass band; here the band between
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FIGURE 7.4: Lyapunov exponent plotted as a function of the randomness δ for the system of
figure 7.1 with N = 400, ensemble average over 400 realizations. Left: for frequencies near
the gap at f = 1071Hz. Right: for frequencies near the gap at f = 4071Hz. The dashed
lines indicate that the particular frequencies belong to the stop band.
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FIGURE 7.5: The value of VarγLL/ 〈γL〉 plotted as a function of the randomness δ for
the system of figure 7.1 with N = 400, ensemble average over 3000 realizations. The four
frequencies in each graph correspond to the center of a pass band, the first gap boundary, the
center of the gap and the second gap boundary. Left: for frequencies around and in the gap
at f = 1071Hz. Right: for frequencies around and in the gap at f = 4071Hz.

869Hz and 1042Hz. The Lyapunov exponent has a universal behavior, which for
δ → 0 is given by 〈γL〉 ∝ δ2. The middle graph of figure 7.4 (left) shows that
significant changes in the shape of the function 〈γL(δ)〉 occur when the frequency
is increased from the pass band to the center frequency of the stop band (1071Hz).
For frequencies at the edges of the pass band (1042Hz and 1100Hz) 〈γL〉 ∝ δ2/3,
as δ → 0, but for frequencies in the band gap the Lyapunov exponent approaches
a nonzero value as δ → 0. The localization length decreases towards the center of
the band gap. The bottom graph in figure 7.4 (left) shows a similar behavior of the
Lyapunov exponent as the frequency increases through the right half of the band gap.

Universal behavior for all frequencies around and in the gap is lost for low values
of the randomness, indicating violation of the single parameter scaling, but is restored
above a critical value which is estimated as δcrit. ≈ 0.14. For comparison the behav-
ior of the function 〈γL(δ)〉 in the band gap between 4042Hz and 4100Hz is shown
in figure 7.4 (right). A similar qualitative change occurs, but here the universality is
restored at a much lower critical value of the randomness, δcrit. ≈ 0.04. The validity
of the single parameter scaling is presented in figure 7.5 for the two cases. In the
figure the function VarγLL/ 〈γL〉 is plotted against δ. A value of one indicates full
single parameter scaling according to equation 7.8. The graphs show that all curves
tend to a constant value of about 0.9, thus smaller than the expected value of one. The
reason for this difference is not clear, but has probably a numerical origin. The two
frequencies in each graph that correspond to the band edges (blue and black) exhibit
single parameter scaling, even for very low values of δ. The center of the gap (red)
and the center of the pass band (green) demonstrate single parameter scaling when
the randomness is larger than the critical randomness.
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The critical randomness may be explained by the randomization of the phases of
the waves. Within a section i the amplitude of the upstream and the downstream
running waves remains constant while their phases change with ±ωτi. This leads to
an interference pattern like the band structure as observed for perfectly periodic flows.
Varying the length of a section with δ̃ 〈li〉 leads to a relative phase shift between the
two waves of 2ωδ̃ 〈τi〉. Upon recalling that the random variations δ̃ are randomly
chosen numbers from the interval [−δ, δ] with a uniform probability distribution, the
relative phase shift covers the full range [0, 2π] if 2ω2δ 〈τi〉 = 2π and becomes thus
completely random. The relation expresses the ’full randomization randomness’ in
terms of the frequency and the mean transit time 〈τi〉.

Since the system contains water and oil sections one may define the ’full random-
ization randomness’ δrnd as

δrnd =
1
4f

min
[
〈τo〉−1 , 〈τw〉−1

]
. (7.9)

For the example above for f = 1071Hz and f = 4071Hz δrnd takes the values
δrnd = 0.14 and δrnd = 0.037, respectively. These values agree well with the critical
randomness as found in figures 7.4 and 7.5 which suggests that δcrit. and δrnd yield
the same values, at least for this system. It is noted that these values correspond to
the oil sections. Since the centers of the pass bands and the stop bands are the result
of the extremes of constructive and destructive interference the randomness has to
be larger than δrnd to overcome the underlying periodicity of the medium. At the
band edges small values of δ are already sufficient. This can clearly be observed in
figure 7.5.

Instead of relating δrnd to a certain given frequency, equation 7.9 also provides
the lowest frequency for which the phases of the waves can be fully randomized.
The limiting value of δ is 1 since larger values would yield negative section lengths.
Then according to equation 7.9 the associated frequency for the system above then
becomes f = 150Hz, which is located in the first pass band and is thus smaller than
the frequencies of the first band gap. Therefore the band gaps will be absent at this
maximum randomness. In this first pass band the system does not necessarily exhibit
single parameter scaling.

Moreover, when for some given randomness the phases of the waves are fully
random then for even higher frequencies the probability distribution of the phases
becomes uniform irrespective of the probability distribution of the section length
variations δ̃ (as long as the distribution is reasonably smooth). A further increase
of the frequency does not affect the statistics of the interference anymore. Hence, the
Lyapunov exponent tends to a constant in the high frequency limit.

It is perhaps worth mentioning that Luan and Ye (2001a),(2001b) have studied
whether single parameter scaling applies in their ‘water duct filled with many air
blocks’. For their system ν and ζ have the extreme values of ν = 4.4 10−4 and
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FIGURE 7.6: Ensemble average over 1500 realizations of the Lyapunov exponents varying
with the frequency for the system of figure 7.2. The solid and the dotted lines denote the invis-
cid and the viscous Lyapunov exponents, respectively, and the larger dots the approximation
equation 7.11; δ = 0.05 (left), δ = 0.25 (right).

ζ = 1697. They keep the length of the air blocks constant, but vary the length of
the water sections up to a randomness of δ = 1.0. They observe large deviations
from single parameter scaling as expressed by equation 7.8. Also, they observe that
for high values of the randomness (δ > 0.3) the variance of the Lyapunov exponent
is approximately constant above a certain frequency (as our simulations showed as
well), but that the Lyapunov exponent itself is not, or perhaps above a much higher
frequency.

7.3.4 Effects of dissipation

In the above analysis the effects of dissipation have been ignored. There is no ques-
tion that the scattering process is affected by dissipative attenuation (see e.g. Deych
et al., 2001).

As explained in section 3.3 dissipation can be included by modifying the effective
density of the medium, see equation 3.34. In the case of single phase sections as
for the system above, the dominant contribution comes from frictional attenuation at
the pipe wall, which can be incorporated easily by replacing the two different wave
speeds ci and the impedances Zi by

ci

[
1 − 4

D

√
iνi

ω

]1
2

and Zi

[
1 − 4

D

√
iνi

ω

]−1
2

, (7.10)

respectively, where D is the diameter of the pipe and νi the kinematic viscosity of
phase i.

In order to find a simple relation that includes the effects of dissipation one can
follow the often employed line of reasoning which considers wave attenuation due to
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multiple scattering and due to dissipation as independent processes. This implies that
the Lyapunov exponent for the dissipative system may be approximated by adding the
Lyapunov exponent of the inviscid system and the attenuation coefficient resulting
from wall friction, γwf ,

γL,vis = γL + γwf . (7.11)

The attenuation coefficient due to wall friction in section i can be taken as, see equa-
tion 3.46,

γwf,i =
√

2νiω

Dci
, (7.12)

and for the entire system as

γwf =
l1γwf,1 + l2γwf,2

l1 + l2
. (7.13)

For the example of figure 7.2 the kinematic viscosities of water and of oil are taken
as νw = 1 ·10−6m2 s−1 and νo = 9 ·10−6m2 s−1, respectively. The diameter of
the pipe is D = 0.1m. Figure 7.6 presents the Lyapunov exponent for the inviscid
and the viscous system including the approximation given by equation 7.11. It is
clearly visible that the approximation agrees very well with the full calculation. The
major effect of dissipation occurs in the pass bands of the system with the small ran-
domness, see figure 7.6 (left). Here the dissipation dominates the effects of multiple
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scattering while multiple scattering dominates the acoustics in the band gaps and at
higher degrees of randomness, see figure 7.6 (right).

In figure 7.7 the variance of the Lyapunov exponent (black dots) is plotted against
the mean value for the system of figure 7.6 (right). It is clear that the variance is
smaller than the value that the single parameter scaling yields as given by the black
line. Still, Deych et al. (2001) mention a correction to the regular single parameter
scaling of the form

Γ = VarγLL/ 〈γL〉 , (7.14)

which reduces to the regular single parameter scaling if Γ = 1. When the attenuation
coefficient due the wall friction (or another cause of dissipation) is much smaller than
the Lyapunov exponent, η = γwf/γL � 1, then the correction is given by

Γ = 1 − 2η log(1/η). (7.15)

The red dots in the figure denote the values of the variance as given by the modified
single parameter scaling. The figure shows that it agrees reasonably well with the
results of the full calculation given by the black dots.

7.4 Energy distribution in the pipe
Instead of analyzing the statistics of the transmitted waves and the Lyapunov expo-
nent as a characteristic exponent of the decay and growth of the waves in the wave-
guide we will proceed by describing some remarkable results concerning the sound
intensity |p|2/Z in the system, in particular the occurrence of Anderson localization.
Anderson localization means that the amplitudes of the waves do not decay exponen-
tially with the Lyapunov exponent as decay rate, but also grow at certain locations.

For the same system as above the energy distribution in the pipe will be presented
for three different frequencies, one is the center of a pass band, 955Hz, one is the
center of a stop band, f = 1071Hz, and the third one is the band edge at f =
1042Hz. It is recalled that the localization length of the energy, Lloc,en is half the
value of the localization length as given by equation 7.7, thus Lloc,en = 1/(2γ).

Figure 7.8 (left) presents the energy distribution for the band edge. When the ran-
domness is small, δ = 0.05, (top) Anderson localization is clearly present in the form
of three peaks. The lengths in which the peaks grow and decay is, indeed, roughly
the same as the localization length of Lloc,en = 13.5m. When the randomness in-
creases to δ = 0.1 only one main peak remains close to the source. Also here the
length scale in which the peak grows and decays is roughly the localization length of
Lloc,en = 12.4m, close to the value given above.

As mentioned earlier, the localization length should not be confused with the pene-
tration depth, as the figure clearly shows. Although the localization lengths of the two
systems are about the same, in the upper graph the energy penetrates roughly 150m
into the medium in contrast to the penetration depth of 50m in the bottom graph.
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FIGURE 7.8: Ensemble average over 105 realizations of the distribution of the sound inten-
sity versus the distance from the source (left). In the graphs at the right the standard deviation
is plotted against the mean. The frequency is f = 1042Hz which corresponds to a band
edge. Top: δ = 0.05, Lloc,en = 13.5m, C = 4.680; Bottom: δ = 0.1, Lloc,en = 12.4m,
C = 7.221.

In the graphs at the right-hand side of the figure the standard deviation, being
the square root of the variance, is plotted against the mean. In the top graph where
the randomness is small, a linear relationship between the standard deviation and
the mean is apparent, although the scatter is somewhat large. This changes as the
randomness is increased to δ = 0.1, as in the bottom graph where a very clear linear
relationship between the two can be observed. This remarkable universality can be
expressed as

Var
1
2 |p|2/Z] = C

〈
|p|2/Z

〉
(7.16)

where C is a constant which is estimated as C = 7.221 by means of the linear least
squares method.
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FIGURE 7.9: Ensemble average over 105 realizations of the distribution of the sound inten-
sity versus the distance from the source (left). In the graphs at the right the standard deviation
is plotted against the mean. The frequency is f = 1071Hz which is the center of a stop
band. Top: δ = 0.05, Lloc,en = 4.08m, C = 0.076; Middle: δ = 0.1, Lloc,en = 9.12m,
C = 6.050; Bottom: δ = 0.25, Lloc,en = 26.7m, C = 5.51.
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FIGURE 7.10: Ensemble average over 105 realizations of the distribution of the sound inten-
sity versus the distance from the source (left). In the graphs at the right the standard deviation
is plotted against the mean. The frequency is f = 955Hz which is the center of a pass
band. Top: δ = 0.05, Lloc,en = 219.2m, C = 3.257; Middle: δ = 0.1, Lloc,en = 60.2m,
C = 7.132; Bottom: δ = 0.25, Lloc,en = 24.2m, C = 7.25.
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For the upper graph the value of C is estimated in the same way as C = 4.680. As
far as we are aware, discussions on this phenomenon have not been given in literature.
Moreover, these values of C demonstrate that the standard deviation is larger than the
mean value, which implies that many realizations of the medium result in sound fields
that are far from the mean field, or, that the sound fields of few realizations extremely
differ from the mean field.

Figure 7.9 shows the same graphs but now for f = 1071Hz, a frequency from
a stop band. The upper graph of figure 7.9 (left) gives an example of the strong
decay of the sound intensity with distance for small values of the randomness δ =
0.05 (Lloc,en = 4.08m), while the middle graph of the figure again shows that at a
higher value of the randomness, δ = 0.1, more sound energy is found deeper into
the medium. The larger randomness increases the localization length up to Lloc,en =
9.12m, and again much of the sound energy is found at larger distances from the
source. The bottom graph where δ = 0.25 and Lloc,en = 26.7m shows that also here
the energy is confined in a region more close to the source. The required randomness
is, however, larger than at the band edge. This is in agreement with the break-up of
the band structure which is established at a much lower randomness at the band edges
than in the gaps or the pass bands.

The middle and the bottom graphs in figure 7.9 (right) suggest that the linear rela-
tion between the standard deviation and the mean may be established as the random-
ness becomes larger. In these graphs there is still considerable scatter, but the mean
squares method gives the values C = 6.050 and C = 5.51, respectively.

Figure 7.10 presents the same graphs but now for a frequency of f = 955Hz.
The upper left graph demonstrates weak localization, which occurs when the pipe
is longer than the localization length of Lloc,en = 219.2m but too short to allow
for a sufficient attenuation of the waves. In the middle plot where δ = 0.1 and
Lloc,en = 60.2m the strong form of Anderson localization is restored. In the graph
at the bottom the energy is again more confined to the left of the pipe whereas the
localization length, Lloc,en = 24.2m, is close to its value for the stop band with
δ = 0.25. The linear relation between the standard deviation and the mean is, as
at the band edge, established from δ = 0.1. The corresponding values of C are for
δ = 0.1 and δ = 0.25 equal to C = 7.132 and C = 7.25, respectively.

7.5 Discussion

The band structure of the transmission coefficient of periodic flows is broken up when
the lengths of the sections are varied at random. In particular at high frequencies the
flow becomes less transparent when the degree of randomness or the length of the
pipe increases. Because of the randomness of the medium also the corresponding
transmission coefficient is a stochastic quantity. Graphs of the variance of its proba-
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bility distribution plotted against the mean exhibit a universal structure.
A prominent quantity of interest in the statistics of the sound transmission is the

logarithmic decrement of the transmission coefficient, the Lyapunov exponent γL

associated with a system of finite length. When the length of the pipe tends to infin-
ity its value converges to the true Lyapunov exponent. The fact that the Lyapunov
exponent is the logarithmic decrement of the transmission coefficient suggests that
its reciprocal, the localization length, is a measure for the penetration depth of the
medium. This is not the case. Only on spatial average the waves attenuate with an
attenuation coefficient γL. Locally in the pipe the wave amplitudes may increase and
decrease and as a result the waves may penetrate much deeper into the medium than
one would expect based on the value of γL.

For certain conditions the statistics of the Lyapunov exponent γL show a remark-
able relation; the probability distribution is Gaussian while the associated variance
and thus all the higher moments are related to the mean value. This relation is called
the single parameter scaling.

The single parameter scaling was found to apply to certain homogeneous systems
containing randomly located scatterers. However, for certain conditions it also ap-
plies to random media that are periodic on average. The considered example suggests
a sufficient condition. That is the difference between the phases of the upstream and
downstream propagating waves must be fully random. This leads to a simple rela-
tion that expresses the ’randomization randomness’ δrnd in terms of the frequency
and the mean transit times. When the randomness δ is larger than δrnd the medium
overcomes its periodicity and becomes completely random, then the single parame-
ter scaling applies. This condition is too restrictive for most frequencies; at the band
edges a randomness that is much smaller than δrnd already yields single parameter
scaling.

Graphs of the energy distribution in the pipe make clear that the localization length
should not be confused with the penetration depth. The energy indeed remains con-
fined to the source, but does not attenuate exponentially with respect to the distance
to the source. Instead, the energy alternately grows and decreases at certain locations
in the pipe and as a result, peaks are formed. This phenomenon is called Anderson
localization.

Moreover, also the energy distribution shows remarkable statistics. For a suffi-
ciently large randomness the standard deviation is proportional to the mean. The
standard deviation is found to be much larger than the mean value. This implies that
it is questionable whether extracting information about these flows from recordings
of the sound waves is possible.
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8.1 Summarizing conclusion

Acoustic signals that are recorded in oil pipelines contain information about the flow
and the well. In order to extract this information from the pressure recordings, de-
tailed knowledge about the transmission properties of sound waves in the pipes is
required.

The flows in the pipelines of interest basically consist of oil and water, but some-
times also small gas bubbles or even sand may be present. The flows appear in a
rich variety of flow patterns such as dispersions of the one phase into the other, strat-
ified configurations where oil flows on top of a layer of water, possibly with a wavy
interface, or flows of large oil bubbles in water. In addition, combinations of these
patterns occur. These flow configurations have different acoustic properties.

The signals that have been recorded so far suggest the presence of sound waves in
the frequency range 200−2000Hz, which warrants to restrict attention to longitudinal
waves (i.e. the fundamental mode) only, as long as the frequencies in this range are
below the smallest cutoff frequency.

The cutoff frequency for a single phase flow of pure oil in a pipe with a diameter
of 0.1m is about 7000Hz, which indicates that indeed the condition is satisfied. The
smallest cutoff frequency as that of a single phase flow is hardly affected by medium
inhomogeneities when the flow consists of oil and water, two fluids with similar
acoustic properties. This is not the case for gas-water flows, where the smallest cutoff
frequencies are often higher than what one would expect based on the values for
single phase flows. In gas-water flows it is the gas that actually forms the waveguide,
unless the volume fraction of the gas is small. In addition, the fundamental mode
is hardly dispersive for oil-water systems and for gas-liquid systems as long as the
frequency is smaller than, roughly, a few times the smallest cutoff frequency; i.e. the
speed of sound is almost independent of the frequency.

The propagation properties of longitudinal sound waves in well-separated and in
dispersed two-phase flows in pipes were considered in Chapter 3. Expressions were
derived for the speed of sound and the impedance of these two-phase flows whose
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composition does not vary with axial position along the pipe. The derived relations
suggest that the acoustic properties of oil-water flows for the two considered config-
urations are almost the same. This is not the case for gas-water systems; the speed
of sound in gas-liquid dispersions drops to values even below the sound speed of the
pure fluids, whereas in stratified flows the sound speed is very close to that of the gas,
except for very large volume fractions of water.

Non-equilibrium effects due to viscous friction near the wall and relaxation mech-
anisms in dispersions result mainly in the dissipation of sound; the speed of sound
and the impedance as in the equilibrium situation are hardly affected. The attenuation
length due to wall friction is for the analyzed systems at 1000Hz about 700−1400m
in oil-water flows while the theory provides values in the range 10 − 1000m for
gas-water systems. It is noted that friction at the interfaces between the phases was
neglected. This is justified for oil-water systems but not for gas-liquid flows where
the induced velocities in the two phases differ considerably. In order to calculate the
attenuation in dispersions the theory of Epstein and Carhart (1953) and Allegra and
Hawley (1972) was employed. At 1000Hz the attenuation length was found to be in
the range 500 − 1000m for dispersions of 10% kerosene in water and only slightly
smaller for dispersions of 10% water in kerosene for drop sizes of 0.2 − 2mm.

In Chapter 5 two methods were presented that describe the acoustics of longitu-
dinal acoustic waves in pipe flows whose composition varies with axial position in
the pipe. In the first method reflections of waves are neglected and the energy flux
is assumed to remain constant. This method fails when the impedance fluctuations
are substantial within a wavelength of the sound waves. Moreover, many negligibly
small impedance fluctuations may add up to substantial reflections when the pipe is
long enough. In these two cases reflections cannot be ignored.

The second method presented is the transfer-matrix method, which may be em-
ployed to calculate the acoustics of basically all phase distributions. In this method
the medium is regarded as stepwise varying. The medium in each section may be sin-
gle phase, well-separated or dispersed. The required effective properties, the speed
of sound and the impedance, of these sections are given in Chapter 3. In addition, the
transfer-matrix method is generic so also other compositions of the sections may be
employed as long as they do not vary appreciably with axial position in the pipe and,
obviously, the speed of sound and the impedance are known. The resulting transfer
matrices express the wave amplitudes in one section to those in neighboring sections.
The complete field may be computed by first determining the effective reflection
coefficients of all layers and then the effective transmission coefficients through a re-
currence relation. Furthermore, the Green function for this stepwise varying medium
was derived. This revealed that the medium upstream, say, is fully characterized by
the effective reflection coefficient at the first interface upstream and only affects the
(complex) amplitude of the sound field downstream.
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The transfer-matrix method has been employed to calculate periodic flows as ide-
alized flows of large oil bubbles in water, gas-liquid slug flows and stratified flows
with a wavy interface. One period of these periodic flows was represented by a slug
unit or a stratified wavy unit. The corresponding transfer matrices for the units were
derived by means of the transfer-matrix method, which provided an analytical rela-
tion of the transfer matrices for slug units. The transfer matrices associated with the
stratified wavy units were calculated numerically. Expressions were found that relate
the transmission and the reflection coefficients of a chain of units to the eigenvalues
and eigenvectors of the transfer matrix.

The transmission coefficient as a function of the frequency has a band structure.
For certain frequency bands (the stop bands or band gaps) waves attenuate and do
not propagate through the pipe unlike the waves of frequencies corresponding to the
pass bands. This band structure of the transmission coefficient can be understood
by considering an infinite pipe where Bloch’s theorem applies. The properties of
the resulting Bloch wavenumber are directly related to the eigenvalues of the transfer
matrix of a slug unit. Asymptotic solutions of the band structure were found for flows
with a very low and a very high impedance contrast, in terms of the transit time of
a unit τ and two parameters ν and ζ that are related to the ratio of the transit times
through the two section of a slug unit and the impedance contrast, respectively.

When the impedance contrast is low the stop bands are narrow, in contrast to those
of gas-water flows. In the latter case the stop bands are very wide which indicates
that actually sound waves of almost the full frequency range do not propagate through
gas-water slug flows at all.

Upon generalizing the definition of ν the locations of the centers of the stop band
for stratified wavy flows are approximately given by the same relations as those for
slug flow. Yet, a generalized form of ζ and consequently relations for the width
and the attenuation coefficient of the band gaps have not been found. Numerical
simulations demonstrate that the first stop band for stratified wavy oil-water flows
exceeds the frequency range of interest. The gas-water analogue, however, showed a
very clear stop band. Except for frequencies in this stop band sound propagates well
through stratified wavy gas-water flows unlike sound waves in gas-liquid slug flows.
The high value of the attenuation coefficient for frequencies of the first band gap may
provide a means to estimate the interface wavelength of stratified wavy gas-liquid
flows.

In Chapter 7 it was shown that the band structure of the transmission coefficient
of periodic flows is broken up when the lengths of the sections are varied at random.
In particular at high frequencies the flow becomes less transparent when the degree
of randomness or the length of the pipe increases. Because of the randomness of
the medium also the corresponding transmission coefficient is a stochastic quantity.
Graphs of the variance of its probability distribution plotted against the mean exhibit
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a universal structure.
A prominent quantity of interest to study the statistics of the sound transmission is

the logarithmic decrement of the transmission coefficient, the Lyapunov exponent γL

associated with a system of finite length. When the length of the pipe tends to infin-
ity its value converges to the true Lyapunov exponent. The fact that the Lyapunov
exponent is the logarithmic decrement of the transmission coefficient suggests that
its reciprocal, the localization length, is a measure for the penetration depth of the
medium. This is not the case. Only on spatial average the waves attenuate with an
attenuation coefficient γL. Locally in the pipe the wave amplitudes may increase and
decrease and as a result the waves may penetrate much deeper into the medium than
one would expect based on the value of γL.

For certain conditions the statistics of the Lyapunov exponent γL show a remark-
able relation; the probability distribution is Gaussian while the associated variance
and thus all the higher moments are related to the mean value. This relation is called
the single parameter scaling, which was found to apply to certain homogeneous sys-
tems containing randomly located scatterers. However, for certain conditions it also
applies to random media that are periodic on average. The considered example sug-
gests a sufficient condition. That is the difference between the phases of the upstream
and downstream propagating waves must be fully random. This leads to a simple re-
lation that expresses the ’randomization randomness’ δrnd in terms of the frequency
and the mean transit times. When the randomness δ is larger than δrnd the medium
overcomes its periodicity and becomes completely random, then the single parame-
ter scaling applies. This condition is too restrictive for most frequencies; at the band
edges a randomness that is much smaller than δrnd already yields single parameter
scaling.

Graphs of the energy distribution in the pipe illuminate that the localization length
should not be confused with the penetration depth. The energy indeed remains con-
fined to the source, but does not attenuate exponentially with respect to the distance
to the source. Instead, the energy alternately grows and decreases at certain locations
in the pipe and as a result, peaks are formed. This phenomenon is called Anderson
localization. Moreover, also the energy distribution shows remarkable statistics. For
a sufficiently large randomness the standard deviation is proportional to the mean.

8.2 Applications to flow identification

At present, information on the volume fractions of homogeneous mixtures of oil and
water is obtained by measuring the transit time of the acoustic waves as they prop-
agate along different sensors in the pipe through cross-correlating their recordings
(Gysling et al., 2000). The ratio of the known distances between the sensors and the
corresponding transit times yield estimates of the sound speed of the flow. Given the
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acoustic properties of the individual phases the volume fractions of the oil and of the
water are estimated by Wood’s relation (Wood, 1941) with an expected accuracy of
5 − 10%.

This study has pointed out that other configurations hardly affect the speed of
sound as given by Wood’s relation as long as the medium does not vary significantly
with axial position in the pipe. The attenuation of sound waves is, however, different
in each configuration and may yield ways to distinguish different configurations.

Instead of recording sound that is induced naturally by the flow, one could also
think of generating sound actively. Then a way to extract information from the sound
recordings may be based on the resonance frequencies as presented in Chapter 4.
The different two-phase configurations exhibit certain characteristic distributions of
resonance frequencies. A sweep of sound containing a wide range of frequencies,
generated somewhere in the pipe yields an acoustic response where these resonances
may be recognized. Perhaps, then certain parameters of the flow configuration could
be extracted from these measured resonances.

When the flow is periodic or periodic on average with a low degree of random-
ness, the band gaps may be recognized in the signals. The location of the gaps is
related to the transit time of one period, while the width contains information on the
impedance ratio between the sections. However, it is demonstrated that the first stop
band for stratified wavy oil-water flows exceeds the frequency range of interest, this
in contrast to the gas-water analogue that showed a very clear stop band. Except for
frequencies in this stop band sound propagates well through stratified wavy gas-water
flows unlike sound waves in gas-liquid slug flows. The high value of the attenuation
coefficient for frequencies of the first band gap indicates that it is likely that the in-
terface wavelength of stratified wavy gas-liquid flows can be estimated by measuring
the location of the gap center.

Extracting information from the random flows as discussed in Chapter 7 is much
more complicated. The standard deviation of the energy distribution in the pipe is
found to be much larger than the mean value. This implies that it is questionable
whether extracting information about the flow is possible at all. However, upon not-
ing that the energy is positive, the fact that the standard deviation is larger than the
mean indicates that the probability distribution at a distance x from the source cannot
be symmetric. Therefore values of the energy that are larger than two times the mean
value may have a significant probability. It is also very well possible that realizations
having a low probability yield extreme energy distributions, which contribute appre-
ciably to the mean and the variance; i.e. the probability distribution of the 90% of the
realizations that yield the smallest amplitudes may have a smaller mean value and a
much smaller variance. Furthermore, also the conditional probability distribution of
the energy distribution as the probability distribution of the energy distribution given
the energy at a certain number of locations, may have a much smaller variance. These
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smaller values of the variance may yield ways to extract information about the flow.
The statistical relations such as single parameter scaling may be useful in the study
of the conditional probabilities.

In many studies on waves in random media the principle of time-reversal is em-
ployed (e.g. Fink, Cassereau, Derode, Prada, Roux, Tanter, Thomas and Wu, 2000).
That the medium is in rest, however, is a necessary condition to apply this principle.
This condition is, of course, not satisfied when dealing with the flowing oil-water
distributions in pipes but, perhaps, the lack of time-reversal may be used to obtain
information about the flow, in particular about the flow velocity.

8.3 Recommendations

So far the acoustics of oil-water flows has been studied analytically. In order to verify
whether the obtained results are in agreement with the acoustics in real pipelines,
experiments are required.

In the experiments it is important to realize that the attenuation lengths are in the
order of at least several hundreds of meters so that long pipes are presumably required
to measure the attenuation of the sound waves.

One of the aspects that may play a role in the experiments is the influence of the
wall elasticity on sound propagation. In order to estimate the effect, the pipe of the
experimental setup could be immersed in water.

Furthermore, small amounts of gas bubbles may be present in the liquids. This
would reduce the sound speed considerably and dominate the acoustics of liquid-
liquid flows. In that case the experiment does not represent the acoustics of liquid-
liquid flows in the downhole network where gas bubbles are usually not present. A
way to avoid the presence of gas is necessary to obtain meaningful results of the
experiments concerning the acoustics of oil-water flows.

The attenuation in dense dispersions is also a point of interest, as well as a bet-
ter understanding of the stochastic propagation and attenuation properties of sound
waves in random media.
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SUMMARY

Acoustic signals that are recorded in oil pipelines contain information about the flow.
In order to extract this information from the pressure recordings, detailed knowledge
about the transmission properties of sound waves in the pipes is required.

The flows in the pipelines of interest basically consist of oil and water and appear in
a rich variety of flow patterns. Examples of these patterns are dispersions, stratified
configurations in which oil flows on top of a layer of water, possibly with a wavy
interface, or flows of large oil bubbles in water. In addition, combinations of these
patterns occur. These flow configurations have different acoustic properties.

It has been suggested that the recordings show the presence of sound waves in the
frequency range 200 − 2000Hz, which warrants to restrict attention to longitudinal
waves, as long as the frequencies in this range are below the smallest cutoff frequency.
The cutoff frequency for a single phase flow of pure oil in pipes of interest suggests
that this condition is satisfied. Further analysis shows that the cutoff frequency is
hardly affected by medium inhomogeneities when the flow consists of oil and water,
two fluids with similar acoustic properties. In addition, the cutoff frequencies for cer-
tain gas-liquid configurations are investigated analytically and numerically, as well
as effects of dispersion of the fundamental mode.

The propagation speed and the acoustic impedance of longitudinal sound waves
in well-separated and in dispersed two-phase flows in pipes are discussed. Non-
equilibrium effects due to viscous friction near the wall and relaxation mechanisms
in dispersions are analyzed for oil-water flows and compared to results for gas-liquid
flows obtained with the same method. Here it is assumed that the flows do not vary
with axial position in the pipe and, hence, reflections do not occur.

Two methods are presented that describe the properties of longitudinal acoustic
waves in flows whose composition does vary with axial position in the pipe. In the
first method reflections of waves are neglected and the energy flux is assumed to re-
main constant. This method is not generally applicable. The second method is the
transfer-matrix method, which may be employed to calculate the acoustics of basi-
cally all configurations. In this method the medium is regarded as stepwise varying.
The medium in each section may be single phase, well-separated or dispersed. For
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each section a transfer matrix is calculated which expresses the wave amplitudes in
the section in terms of those in the next section.

The transfer-matrix method is employed to calculate periodic flows as idealized
flows of large oil bubbles in water, gas-liquid slug flows and stratified flows with a
wavy interface. One period of these periodic flows is represented by a slug unit or a
stratified wavy unit. The transfer matrices corresponding to these units are derived
and, by employing Bloch’s theorem, their eigenvalues are related to the transmission
properties of the periodic flows. It is shown that the transmission coefficient as a
function of the frequency has a band structure. For certain frequency bands (the stop
bands or band gaps) waves attenuate and do not propagate through the pipe, unlike
the waves of frequencies corresponding to the pass bands. The asymptotic behavior
of the band structure is analyzed for flows with a very low and for flows with a very
high impedance contrast.

In practice, two-phase pipe flows are not fully periodic. It is shown how the band
structure is affected when the lengths of the sections are varied at random. Because
of the randomness of the medium also the corresponding transmission coefficient
becomes a stochastic quantity, which exhibits remarkable statistics.

A prominent quantity of interest to study the statistics of the sound transmission is
the logarithmic decrement of the transmission coefficient, the Lyapunov exponent; its
reciprocal is called the localization length. For certain conditions the statistics of the
Lyapunov exponent show a particular relation, the single parameter scaling. Origi-
nally, the single parameter scaling was found to apply to certain systems containing
random scatterers. A sufficient condition for which it also applies to random media
that are periodic on average is suggested.

Finally, the energy distribution in the pipe is calculated for three different degrees
of randomness. It is shown that also the energy distribution shows remarkable statis-
tics. The likely occurrence of Anderson localization in acoustic wave propagation in
two-phase pipe flows is demonstrated.



SAMENVATTING

Akoestische signalen die worden gemeten in oliepijpleidingen bevatten informatie
over de stroming. Om deze informatie te extraheren uit de gemeten druksignalen is
gedetailleerde kennis nodig over de transmissie-eigenschappen van geluidsgolven in
buizen.

De stromingen in de betreffende oliepijpleidingen bestaan in het algemeen principe
uit olie en water en vertonen een rijke verscheidenheid aan stromingspatronen. Voor-
beelden van deze patronen zijn dispersies, gelaagde configuraties waarin olie boven
een laag water stroomt, mogelijk met een golvend contactoppervlak, of stromingen
van grote oliebellen die omgeven zijn met water. Bovendien komen ook combinaties
van deze patronen voor. Deze stromingspatronen hebben verschillende akoestische
eigenschappen.

De signalen die men dusver heeft gemeten suggereren de aanwezigheid van geluids-
golven in het frequentiegebied van 200− 2000Hz. Dit betekent dat de aandacht mag
worden beperkt tot longitudinale golven indien de frequenties lager zijn dan de laag-
ste afsnijfrequentie. De afsnijfrequentie voor een stroming die bestaat uit een enkele
fase van olie in een buis met een diameter die kenmerkend is voor de betreffende
oliepijpleidingen, suggereert dat aan deze voorwaarde wordt voldaan. Een verdere
analyse toont aan dat de afsnijfrequentie nauwelijks verandert wanneer het medium
niet homogeen is vanwege de aanwezigheid van olie én water, twee vloeistoffen
met soortgelijke akoestische eigenschappen. Daarnaast worden de afsnijfrequenties
voor gas-vloeistof configuraties zowel analytisch als numeriek onderzocht, net als de
dispersie-effecten van de fundamentele mode.

De voortplantingssnelheid en de akoestische impedantie van longitudinale geluids-
golven in buizen met daarin volledig gescheiden fluı̈da of dispersies van fluı̈da wor-
den behandeld. Niet-evenwichtseffecten die veroorzaakt worden door viskeuze wrij-
ving bij de wand en door relaxatiemechanismen in dispersies worden geanalyseerd
voor olie-water stromingen en vergeleken met het resultaat voor gas-vloeistof stro-
mingen. Hierbij wordt aangenomen dat de stromingen niet veranderen in de axiale
richting in de buis en dat reflecties dus niet voorkomen.

Twee methoden worden behandeld die het gedrag van longitudinale akoestische
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golven beschrijven in stromingen waarvan de samenstelling wel verandert in de axi-
ale positie in de buis. Bij de eerste methode worden de reflecties van de golven
verwaarloosd terwijl de energiestroom constant wordt verondersteld. Deze methode
is niet algemeen toepasbaar. De tweede methode is de overgangsmatrix-methode
die kan worden gebruikt om in principe alle stromingsconfiguraties door te rekenen.
Bij deze methode wordt het medium als stapsgewijs veranderend beschouwd. In
elke sectie kan het medium bestaan uit een enkele fase, uit een volledig gescheiden
stroming of uit een dispersie. Voor elke sectie wordt vervolgens een overgangsmatrix
berekend die de amplitude van de golven in de elke sectie relateert aan die in de
volgende sectie.

De overgangsmatrix-methode wordt gebruikt om periodieke stromingen uit te reke-
nen die geı̈dealiseerde stromingen zijn van grote oliebellen in water, van gas-vloeistof
propstromingen en van gelaagde stromingen met een golvend contactoppervlak. Eén
periode van deze stromingen wordt voorgesteld door een propeenheid of een golvend-
gelaagde eenheid. De bij deze eenheden behorende overgangsmatrices worden afge-
leid en hun eigenwaarden gerelateerd aan de transmissie-eigenschappen van de peri-
odieke stromingen door het theorema van Bloch toe te passen. Het wordt aangetoond
dat de transmissiecoëfficiënt als functie van de frequentie een bandstructuur heeft.
Voor zekere frequentiebanden (de stopbanden) dempen de golven uit en planten zich
niet voort door de buis, in tegenstelling tot de golven met frequenties die behoren tot
de doorlaatbanden. Het asymptotische gedrag van de bandstructuur wordt onderzocht
voor stromingen met een zeer laag en met een zeer hoog contrast in impedantie.

In werkelijkheid zijn twee-fase stromingen in buizen niet volledig periodiek. Het
wordt onderzocht hoe de bandstructuur verandert wanneer de lengtes van de secties
willekeurig worden gevarieerd. Vanwege het willekeurige karakter van het medium is
ook de bijbehorende transmissiecoëfficiënt een stochastische variabele die opmerke-
lijke statistiek laat zien.

Een belangrijke en relevante grootheid is het logaritmisch decrement van de trans-
missiecoëfficiënt, de Lyapunov exponent met als reciproque de lokalisatielengte. On-
der bepaalde voorwaarden bestaat er een zekere relatie in de statistiek van de Lya-
punov exponent, de enkele parameter schaling. Oorspronkelijk was de enkele param-
eter schaling van toepassing op bepaalde systemen die willekeurig vestrooiende ob-
jecten bevatten. Een voldoende voorwaarde wordt gesuggereerd waarvoor de schal-
ing ook van toepassing is op willekeurige media die gemiddeld gezien periodiek zijn.

Tenslotte wordt de energieverdeling in de buis uitgerekend voor drie verschillende
niveau’s van willekeur. Het wordt aangetoond dat ook de energieverdeling opmerke-
lijke statistiek vertoont en dat Anderson-lokalisatie van geluidsgolven zou kunnen
optreden in twee-fase stromingen in buizen.
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