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NOMENCLATURE

(Most symbols used once and explained in the text are not listed.)

Symbol Description Unit

Ap valve port area m2

Cp specific heat at constant pressure J/kgK
Cv specific heat at constant volume J/kgK
CFL Courant-Friedrich-Lewy number -
c speed of sound m/s
cg gas force coefficient of valve -
dsr sealing rim length of valve m
E total energy density J/kg
eres restitution coefficient -
Fg gas force acting on valve plate N
H total enthalpy density J/kg
h valve opening m
he enthalpy density J/kg
hmax maximum valve opening m
hpl preload distance m
i

√
−1 -

k spring stiffness N/m
k̄ wavenumber m−1

kc characteristic condition number -
k(2), k(4) artificial dissipation coefficients -
Lg total edge length of valve plate m
Lp valve port length m
M local Mach number -
m effective plate mass kg
n unit normal vector -
p static pressure Pa
patm atmospheric pressure Pa
pup pressure of flow at valve inlet Pa



vi

R ideal gas constant J/kgK
R1 inner radius of model valve plate m
R2 outer radius of model valve plate m
Re Reynolds number -
r radial position m
Sh Shear number -
St Strouhal number -
T temperature K
t time s
t− time instant just before collision s
t+ time instant just after collision s
Ur preconditioning reference velocity m/s
u, v, w Cartesian components of the velocity vector m/s
V volume m3

x, y, z Cartesian coordinates m
Y admittance of pipe m4s/kg

Greek Symbols

α vena contracta factor of valve -
β complex-valued circular frequency s−1

β(4) artificial dissipation coefficient -
γ ratio of specific heats (= Cp/Cv) -
∆p pressure difference across valve Pa
∆t time-step s
ε preconditioning cut-off parameter -
ε(2), ε(4) artificial dissipation coefficients -
εc valve flow compressibility factor -
ζ damping constant of spring Ns/m
θ inclination of plate rad
µ dynamic viscosity Pas
ν kinematic viscosity (= µ/ρ) m2/s



vii

ρ mass density kg/m3

ρup mass density of flow at valve inlet kg/m3

Φv volume-flow rate in valve m3/s
ω real-valued circular frequency s−1

Notations

ṡ time derivative of s, i.e. ds
dt

[...] functional argument
sign[s] sign of s (sign[s] = 1 for s > 0 and sign[s] = −1 for s < 0)
δs variation or accuracy of s
s vector (bold normal)
S matrix (bold capital)

Abbreviations

1D one-dimensional
2D two-dimensional (planar)
3D three-dimensional
CFD computational fluid dynamics
Eq. equation
Fig. figure
JST Jameson-Schmidt-Turkel (flux scheme)
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INTRODUCTION

1.1 Motivation of Research
Reciprocating compressors are widely used in gas transportation, gas storage and petrochem-
ical industries. Reciprocating compressors are able to compress gas in a wide range of pres-
sure ratios within a large range of flow rates (e.g. Cierniak 2001). The compressor can be con-
sidered as the heart of an installation and must operate reliably for several years. A schematic
diagram of a reciprocating compressor is shown in Fig. 1.1. Characteristic of the way of op-
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FIGURE 1.1: Sketch of a single-acting reciprocating compressor.

eration of such a compressor is: i) a periodically increasing and decreasing chamber volume
(cylinder) controlled by the action of a reciprocating piston, and ii) suction and discharge of
gas governed by ports which are alternatively openend and closed at certain intervals. These
opening and closing elements are called valves. Fig. 1.2 shows the indicator diagram and
opening of valves during a cycle for the case of an ideal working compressor, i.e. isentropic
compression and expansion of a calorically perfect gas with fully closed valves. During dis-
charge at pressure pd the suction valve is assumed to be fully closed and the discharge valve is
assumed to be fully open. During suction at pressure ps the discharge valve is assumed to be
fully closed and the suction valve is assumed to be fully open. However, actual compressor
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FIGURE 1.2: Ideal reciprocating compressor cycle: (a) indicator diagram (pcyl is the cylin-
der pressure, Vcyl is the cylinder volume), (b) opening of valves.

cycles show a different behaviour, i.e. during discharge and suction, respectively, the cylinder
pressure reaches values above pd and below ps, respectively, as a result of pressure losses in
the valves. These valve pressure drops can introduce expensive pressure losses (e.g. Frenkel
1969). Furthermore, the valves can show flutter, i.e. the valve opening h does not always
behave like a step function in time t as shown in Fig. 1.2b, but often shows oscillations∗.

At the end of the 19th century a newspaper presented the Hall air compressor†. The last
sentence of that article showed a rather optimistic view about the lifetime of these compres-
sors: ”(...) and they are not liable to get out of order, even when run at high speeds”. However,
a compressor is a complex machine and many things can go wrong. A worldwide distributed
and returned questionnaire (Leonard 1996) identifies the compressor valves as primary cause
(36%) of unscheduled reciprocating compressor shutdowns (Fig. 1.3a). This figure only

(a) (b)
FIGURE 1.3: (a) Unscheduled reciprocating compressor shutdowns. From Leonard (1996).
(b) Example of a compressor valve. From http://www.hoerbiger-compression.com.

∗In Section 3.5 a reciprocating compressor system is considered quantitatively. The simulations show some
non-ideal behaviour as discussed above.

†The Hall air-compressor, Science (1889) 14, 431-432.
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shows the reliability of an operating compressor. However, human error in maintenance can
account for up to 15% of machine failures (Middleton 2001). Fig. 1.3b shows the geometry
of a typical valve as it is used today, indicating its geometric complexity. It is designed to
avoid, minimize, or delay, typical damage during operational conditions, e.g. i) fracture of
sealing elements due to liquid slugs or high impact speeds resulting from stiction, ii) spring
failure, and iii) high pressure losses due to clogging of flow channels. Examples of failure are
given in Fig. 1.4. Practice shows that there is a direct connection between impact speed and

(a) (b)
FIGURE 1.4: (a) Impact failure of valve plate caused by stiction. (b) Spring failure due to
abrasive wear. From Stehr et al. (2003).

fracture behaviour. Non-parallel collisions can lead to locally high loads, crack generation
and eventually fracture. Crack growth models have been reported in literature (e.g. Pandey
and Chand 2003). Böswirth (2000) formulated a hypothesis to explain valve fracture:

• The cause of fracture is the non-parallel impact of the plate with high impact speed.
The occurrence of valve plate tilting -especially at the closing event- is in practice a
highly frequent phenomenon.

• At non-parallel impact large local peak values of the tangential tensions are generated
because of the so-called Dynamic Stress Concentration Effect. This effect occurs when
the propagation speed of the contact front equals the speed of the elasticity waves,
which induces a strong increasing tension peak leading to radial cracks. The general
tension level resulting from elasticity waves causes cracks to grow until fracture occurs.

This Dynamic Stress Concentration Effect has been observed in numerical simulations by
Spiegl et al. (1999). At present the usual method to aim at sufficiently long valve lifetime is
twofold. Firstly, the impact velocity is reduced by making use of computer simulations of
plate motion and changing design parameters. Either traditional valve models are employed
(Section 3.5) or mechanical stresses in a colliding plate are computed without taking into
account gas flow behaviour. Secondly, non-parallel collisions are reduced by increasing the
distance between springs and by using non-linear springs.
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1.2 Dimensionless Numbers
For more than a hundred years reciprocating compressors have been the ’working horses’
boosting the pressure of gases in various consumer and industrial applications. Much of
the design knowledge has been acquired by experience, rather than by academic research
(Steinrück 2003). The process for the market release of a new compressor valve usually
consists of i) the prototype phase, in which different design principles are investigated, and
ii) the field test phase, in which the life time requirements have to be met (Ottitsch and
Scarpinato 2000). The prototype phase consists of finding a compromise between e.g. the
available effective valve area, the required spring force for closing of the sealing element, the
allowable valve pressure losses and the required operating conditions.

Prediction of the behaviour of the flow and the structural dynamics of a compressor valve
by academic research encounters several difficulties. Most of these difficulties are related
to fluid dynamical phenomena, i.e. the flow is expected to be a three-dimensional turbulent
compressible flow, with i) fast transient (i.e. unsteady) processes, ii) large variations in lo-
cal Mach number, iii) moving solid boundaries with complex geometries (and possibly plate
elasticity waves) and iv) possibly multi-phase flow due to lubrication oil contamination and
condensation. Additionally, the inlet and outlet boundary conditions of the valve flow are
difficult to formulate because of the interaction of the valve with its environment (i.e. cylin-
der and plenum chamber / piping system). In some compressors the piston even overlaps
the valve ports at minimum cylinder volume. In order to formulate the objective of our re-
search we reduce the problem of compressor valves to the problem of a calorically perfect
gas flowing through a valve with a single rigid plate.

Although structural details may differ considerably, the principle of operation of all types
of automatic valves is similar (Touber 1976). Therefore, it is possible to distinguish the same
basic functional elements in valves of different design, see Fig. 1.5. Consider the suction-
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FIGURE 1.5: Sketch of a compressor valve with details of various elements (h denotes the
valve opening).

and discharge of gas, respectively. When gas is flowing from the high pressure side in the
plenum chamber or cylinder, respectively, through the port, it separates at the edges of seat
and plate. Because of the action of the gas force the plate is pushed against the limiter (also
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referred to as guard), which is assumed to be fixed in space (in absence of damper plates).
Fig. 1.6 shows a typical time history of the valve opening h as function of time t. Initially the

h

t

FIGURE 1.6: Typical valve opening in a real compressor cycle. After Touber (1976).

valve plate is pressed against the seat. The leakage flow through the valve is determined by
the equilibrium between the pressure gradient force along the flow channel and the viscous
force. A lubrication theory assuming a fully developed viscous channel flow will be adequate
because Uh2

νL � 1, where U is the characteristic flow speed, ν is the kinematic viscosity
and L is the channel length. As the valve opens (ḣ > 0) stiction effects due to the unsteady
viscous flow force and possibly the presence of oil will be important. When stiction has been
reduced the valve opens quite rapidly to reach its maximum opening hmax, as the plate is
pressed against the limiter. For a typical design, the valve plate is light in order to reduce the
time delay due to inertia. During this opening phase the flow through the valve will need a
time interval of the order L/U to approach a quasi-steady condition, where U ≡

√
2
ρ∆p for

a given pressure difference ∆p across the valve and a fluid density ρ. The typical ratio of
opening time τ and convection time L/U is

τU

L
= O(102), (1.1)

so that the flow is quasi-steady during the opening event. A second effect of the opening
event is that the valve plate pushes away the air cushion between the downstream-facing side
of the plate and the limiter. This results in an essentially unsteady flow which we will assume
to be inviscid. The flow separation at the edges of the valve will result in turbulent free jets
in which energy is dissipated. This dissipation and the resulting pressure built up in the air
cushion will slow down the valve as it approaches the limiter. Potential rebound of the plate
will be countered by the resulting low pressure in this air cushion when the valve tries to move
away from the limiter. Valve closure will only occur when the pressure difference across the
valve has dropped sufficiently to allow the spring force to close the valve. This complex
behaviour induced by the presence of the air cushion at the limiter results in an effectively
zero recovery of the plate kinetic energy during the interaction with the limiter. The collision
is non-elastic. The interaction between the valve and its environment ( d

dt∆p) is responsible
for a relatively slow valve closing compared to the valve opening. The closing event of the
valve is rather complex. It is postulated that the plate hits the seat at one point because the
plate is not parallel to the seat. This results in a rocking motion with several rebounds because
there is some kinetic energy recovery during a collision.
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One could characterize the flow through the valve during most of its cycle as a quasi-steady
subsonic flow with a high Reynolds number. In terms of the Strouhal number St based on
the piston frequency f and the flow channel length L we have

St ≡ fL

U
= O(10−4) � 1, (1.2)

so that a quasi-steady flow approximation could be reasonable. The typical Reynolds number
is

Re ≡ Uhmax

ν
= O(104) � 1, (1.3)

so that the free jets formed by flow separation at the valve outlet will be turbulent. The
channel geometry ratio is

hmax

L
= O(1), (1.4)

which implies that we do not expect the establishment of a fully developed channel flow, i.e.
we expect Rehmax

L � 1. Because the flow will remain subsonic, i.e.

M ≡ U

c
< 1, (1.5)

where c is the speed of sound, compessibility effects are considered to be corrections of
essentially incompressible flow behaviour.

In the present study we focus on all the flow conditions as described above. The viscous
dominated flow for very small valve openings or the unsteady flow in the air cushion between
the plate and the limiter will only be discussed briefly. Characterization of compressor valves
requires determination of a large number of parameters. Some important parameters are
presented in Table 1.1. These parameters are applicable to a broad range of different types of

TABLE 1.1: Range of important parameters for compressor valves.

Description Value
maximum plate height 1 - 3 mm
port area 15 - 35 cm2

resonance frequency 20 - 80 Hz
discharge pressure (25 - 250) × 105 Pa
piston frequency 10 - 30 Hz
process gas H2, CO2, CO, NH3, air

compressor valves and their range is estimated from data available in the literature.
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1.3 Objective and Approach
In order to obtain results which are applicable to valves of different design, we consider the
valve as a black box, see Fig. 1.7. The overall behaviour of a compressor valve is described in

h

Φin
v

pin

Φout
v

pout
Compressor

Valve

FIGURE 1.7: Sketch of a compressor valve as a black box (p is the pressure, Φv is the volume-
flow rate and h is the valve opening).

terms of valve parameters (such as semi-empirical flow coefficients and ratios of geometrical
length scales). The variables that characterize this overall behaviour should be related to each
other, viz. i) upstream pressure pin and downstream pressure pout and upstream volume-
flow rate Φin

v and downstream volume-flow rate Φout
v , and ii) valve opening h. Naturally the

question rises of how to relate these variables. In general gas flowing through the valve results
in plate motion. The gas force acting on the plate is a function of the valve pressure difference
or flow rate and valve opening. The plate forms a bluff body in the flow and mutually changes
the valve flow rate. Therefore, the flow rate must be related to the pressure difference and the
valve opening. These phenomena form the base of the fluid-structure interaction mechanisms
that must be considered.

For more than a century people have been modeling these mechanisms in valves of various
types, i.e. not only compressor valves but also e.g. mechanical heart valves, clarinets and
water pumps. The majority of these theories makes use of semi-empirical coefficients. These
coefficients must be determined experimentally for steady flows. Numerous studies even
assume these coefficients to be unity. We will refer to these theories as traditional valve
theories. The objective of the present research is twofold, i.e.

• the analysis of the semi-empirical coefficients as they appear in traditional valve theory,

• the validation of the quasi-steady flow assumption in traditional valve theory.

The first objective is related to prediction of coefficients that are defined with experimen-
tally obtained data. Are we able to estimate theoretically the parameter dependence of these
coefficients? If not, are we able to predict these coefficients by making use of Computational
Fluid Dynamics? We will use the flow model based on the Euler equations for conserva-
tion of mass, momentum and energy in a three-dimensional inviscid compressible flow. It
is expected that the local Mach number varies substantially within the flow. Therefore local
preconditioning of these equations is necessary in order to increase the convergence speed of
the numerical method. Furthermore, the flux scheme is modified to yield accurate solutions
of the flow field in regions characterized by very low Mach number. What is the difference
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between semi-empirical relations for valves of different geometry? To that aim we will com-
pare experimentally obtained coefficients for a commercially available compressor valve and
a model valve of own design. This model valve has a less complex geometry than a compres-
sor valve and is more suited for Computational Fluid Dynamics analysis and for theoretical
modeling.

The second objective is related to the question whether the quasi-steady flow assumption
used in the traditional valve theories can predict the actual behaviour in compressor valves.
In most articles dealing with valves, the response of the environment of the valve is empha-
sized to explain instabilities. However, we will not consider the subject of self-excited valve
vibrations (by means of laboratory experiments). Are we able to design a method to measure
simultaneously the instantaneous valve pressure difference, the instantaneous valve flow rate
and the instantaneous valve opening? This would allow to isolate the valve behaviour from
its environment in the measurement method, in order to validate the traditional valve theory
for unsteady flow conditions.

1.4 Outline of Thesis

In order to put the objective of the present research in a relevant perspective, a literatury
survey is performed. Chapter 2 discusses the historical developments of valve design, appli-
cation, research and modeling. The valve theories are characterized by distinguishing four
items, i.e. i) fluid dynamics, ii) structural dynamics, iii) flow force on plate and iv) valve envi-
ronment. These valve theories often emphasize issues related to the immediate surroundings
of the valve and comprise rather simple steady flow models. Therefore Section 2.3 discusses
the valve physics with concepts available in the literature on fluid dynamics.

In Chapter 3 these traditional valve theories are assigned to one theory which we will refer
to as the Basic Valve Theory. This chapter investigates the linear and non-linear properties
of this theory by means of stability analysis and numerical simulations. Subsequently a the-
oretical prediction of the parameter dependence of the semi-empirical coefficients is given.
Section 3.4 suggests some model improvements concerning unsteady flow effects. Finally, a
full compressor system is analysed in order to show the diagnostic properties of the simple
Basic Valve Theory.

Chapter 4 presents the numerical algorithms that are employed to compute the flow through
a valve. Special attention is given to the concept of local preconditioning of the Euler equa-
tions because this technique is necessary to obtain accurate solutions within acceptable com-
putation time for flows in which parts of the flow can be considered incompressible. Several
test cases show the ability of the method to simulate steady and unsteady low Mach number
flows.

Chapter 5 presents the experimental methods that are employed to validate the Basic Valve
Theory for unsteady flows. First the design of the model valve is discussed. Special attention
is given to the valve plate displacement measurements. The values of the unsteady valve
pressure difference and the volume-flow rate are obtained by making use of the linear theory
of sound propagation and superposition of dynamic and static quantities. The well-known
Two-Microphone Method is discussed and extended for application in the time domain.

Chapter 6 shows the semi-empirical coefficients of the model valve and some reverse flow
effects. The ability of the preconditioned Euler method to predict these coefficients is dis-
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cussed. The Basic Valve Theory considers quasi-steady flow. Therefore this model is vali-
dated for unsteady flow conditions. The collisions of plate with seat and limiter are discussed.
Finally, the results for the model valve are compared with a commercially available compres-
sor valve.

In Chapter 7 conclusions are drawn with respect to the objective of this study. Additionally,
a discussion is presented on the limitations of the present computational and experimental
method. Finally, a future line of research is suggested.
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2.1 Introduction
Valves are older than human life and could already be found in the hearts of mammals and
dinosaurs to enable the pumping of blood through the body. When the giraffe lowers its head
to drink, valves in the arteries in the neck close to stop the blood flowing to the brain. In the
Ancient Roman Time valves were used in piston pumps (Fig. 2.1). Their function was to

(a) (b)
FIGURE 2.1: (a) Roman piston pump (double acting), (b) classic water pump (single acting).
From http://www.hp-gramatke.net.

suck water out of a reservoir. They can be dated from 250 BC. Section 2.2 presents a brief
historical overview of valve application and research. The summary of valve theories will be
used to justify the objective of this thesis. Finally, Section 2.3 presents the fluid dynamics
framework in which compressor valve theories should be placed in.
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2.2 Survey of Literature
Literature dealing with the subject of valves ranges over a wide field of application. Therefore
the first distinction in this survey will be non-compressor valves versus compressor valves.

2.2.1 Non-Compressor Valves
Heart Valves In traditional Galenic physiology (second century) there were two types

of blood with distinct pathways and functions, relating to the liver, the heart and the brain.
Blood was assumed to originate in both the liver and the heart without returning to it. Around
1510, Leonardo da Vinci was the first to carry out a detailed hemodynamic study of the aortic
valve and identified the small valves as one-way mechanical regulating valves (Gharib et al.
2002). At present we know that the vortex in the sinus cavity initiates valve closure in early
deceleration, even though the inflow velocity is still directed forward (Van Steenhoven and
Van Dongen 1979). In 1628, William Harvey published his famous Exercitatio Anatomica in
which he stated the circulation of blood and the heart as a driving pump.

Today the number of publications on (mechanical or artificial) heart valves is overwhelm-
ing. Some of the major problems with these valves are haemolysis (disruption of red blood
cells), thrombus formation and tissue overgrowth. These problems are closely related to the
flow pattern in the vicinity of the heart valves. Often in vivo and in vitro experimental data are
difficult to obtain (e.g. Horsten 1990, Firstenberg et al. 2000, Bluestein et al. 2000, Marassi
et al. 2004). In a number of studies the unsteady Navier-Stokes equations are solved in a 2D
computational model, restricted to laminar flow and a fixed valve (e.g. Horsten 1990, Huang
et al. 1994, Rosenfeld et al. 2002). These numerical simulations predict vortex shedding fre-
quencies and magnitude and spatial distribution of fluid stresses. More realistic simulations
are performed when fluid-structure interaction is taken into account in a 3D computational
model (e.g. De Hart et al. 2003). These numerical simulations show that e.g. the aortic root
compliance has a significant contribution to the functionality of the valve.

Industrial Revolution Many of the important inventions of the Industrial Revolution
required much more power than horses or water wheels could provide. Industry needed a
new, cheap and efficient source of power and found it in the steam engine.

In 1698, Thomas Savery patented the first practical steam engine, which acted as pump
to drain water from mines. The valves were the only moving parts and had to be operated
by hand. In 1712, Thomas Newcomen invented another steam engine, which contained a
large rocking beam. One of his improvements was that of replacing the manual operation
of valves by an automatic device whereby the valves were triggered by a rod connected to
the main beam, with each valve counterbalanced to give a quick cut-off and opening action
which could not be performed by the slow-moving beam. The valves controlled the intake
of steam, the injection of a spray of water to condense the steam, and the snifting valve to
exhaust the condensate and the air introduced into the cylinder with the steam. Contrary
to persistent legend, James Watt did not invent the steam engine. He reduced the cost of
operating condensing engines and made it possible to use these engines for other kinds of
work than pumping. Watt took out his first patent for the separate condensor in a steam
engine in 1769.

Valves were necessary to admit the steam in order to act upon the piston, and to release it
after the work has been performed. So valves were an important detail in the design of an
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engine. The evolution of steam valves is clearly discussed in the textbooks of Buchanan and
Watkins (1976) and Rolt (1963). The application of Watt’s steam engine is overwhelming. It
varies from usage in e.g. the coal industry (drainage pumps for mine shafts), the iron industry
(to power reciprocating compressors!), the textile industry (spinning and weaving) to usage
in the transportation industry (steam locomotives and steam ships).

Fuel-Injection Valves Today’s internal combustion engine designs demand low emis-
sions, fuel economy and reliability with high power output. The design requirements for
more efficient and environmentally clean engines result in the need for detailed fluid flow
data in the valves. Separation of the inlet flow around the valve gap is frequently analysed
experimentally under conditions with fixed valve lifts (e.g. Weclas et al. 1998, Maier et al.
2000a, Maier et al. 2000b, Belmabrouk and Michard 2001, Milton et al. 2001). The ex-
periments comprise the measurement of mass-flow rate, pressure drop, spatial and temporal
distributions of velocity components for valves of different geometry. The results show that
the four-mode model∗ widely used in literature is not sufficient to describe the complex flow
separation process. The onset of instability of a fuel-injection valve can be characterized
from simple fluid-structure interaction models. Resonances could be addressed to leakage-
flow pulsations when the valve model couples a body oscillator (mass-spring system) to a
fluid (Helmholtz) oscillator (e.g. Naudascher and Rockwell 1994).

Musical Reed Instruments In most applications valve instabilities are not desired and
research aims to avoid these instabilities. Literature exists of e.g. gate vibrations (Kolkman
1980), fuel-injection valve oscillations and artificial heart valve instabilities. However, in
musical reed instruments oscillations are essential.

Since the early work of Backus (1963) and Nederveen (1969), which was based on a linear
stability analysis, many papers have been published dealing with non-linear solutions of the
reed excitation problem. Consider a simplified model of a clarinet, where acoustical oscil-
lations are coupled to mechanical vibrations (e.g. Rienstra and Hirschberg 2001). A linear
stability analysis then determines the threshold of the pressure above which oscillations oc-
cur and the frequency of the most unstable mode. However, the coupling between a body
oscillator and a fluid oscillator can feature complex phenomena. In 1920, Vogel found that
the dominant frequency of flow oscillations in a reed pipe as function of the pipe length
is characterized by subsequent jumps near resonance points, as well as by hysteretic shifts
of these jumps depending on whether the pipe length is increased or decreased (e.g. Nau-
dascher and Rockwell 1994). Hirschberg et al. (1990) postulated the occurence of hysteretic
behaviour of the volume-flow rate to pressure relationship in reed instruments. This has not
been confirmed by experiments.

Musicians are familiar with the influence of the vocal tract on both timbre and pitch. Fritz
et al. (2003) presented a mechanism in which the playing frequency will shift by changes in
the vocal tract geometry, as musicians claim to do. Dalmont et al. (2003) presented a method
for measuring the static non-linear pressure - flow rate relation of a clarinet mouthpiece. It
was shown that the ratio of the effective surface of the jet and the reed opening are constant

∗The four-mode model characterizes the flow separation in a valve gap by distinguishing four regimes as function
of the valve opening.
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within a large range of openings. This corresponds to the Basic Valve Theory which will be
described in Section 3.2.

In the field of biomechanics, research focuses on voiced sound production produced by a
modulation of the flow while the vocal folds are self-oscillating. Typically, the glottis (i.e. the
narrow opening between the vocal folds) forms a converging channel when the vocal folds
are separating and a diverging channel when the vocal folds are approaching. In the literature
many articles can be found on quasi-steady theories for the flow, experimental work and to
a lesser extent numerical simulations (e.g. Hofmans 1998, De Vries et al. 2002, Vilain et al.
2004). Research aims at the development of prosthetic vocal folds and the development of
artificial speech models.

Safety Relief Valves Safety relief valves are commonly used in e.g. steam generation
processes, nuclear power plants and hydraulic circuits for protecting pressure loaded vessels
and pipelines against overpressure. In the literature, criteria are described for the different
assumed reasons for valve oscillation. The most commonly applied rules in practice to avoid
oscillations are discussed in e.g. Cremers et al. (2001). They found that none of these rules
is adequate for a broad range of conditions. Hayashi et al. (1997) studied the instability of a
pilot-type poppet valve circuit (consisting of a valve, an upstream plenum chamber, a supply
pipeline and an orifice between the plenum and pipeline). Although the valve rests on the seat
stably for a supply pressure lower than the cracking pressure†, the circuit becomes unstable
for an initial disturbance beyond a critical value. This self-excited vibration is found to follow
the Feigenbaum route to chaos.

Some Other Valves In engineering there exist many non-compressor valve types other
than the ones mentioned above. Butterfly valves are one of the oldest types of industrial
valves known, because they have been used extensively for steam engines. They are mainly
used for both on-off and throttling services involving large flows of gases and liquids at low
pressure (e.g. Huang and Kim 1996, Caillé and Laumonier 1998, Danbon and Solliec 2000).
A V-ball valve is a control valve used in many industrial applications. Testing of Strouhal
frequency for shed vortices in a wide range of operating conditions is often considered (e.g.
Merati et al. 2001). Sub-Kelvin refrigerators use special working fluids and special low-
temperature valves. Research aims at minimizing the leakage rates (e.g. Miller and Brisson
1999). Air release valves are designed to remove undissolved gas bubbles from pipelines
carrying multi-phase fluids. Reseach aims to characterize pressure surges (e.g. Lee 1999).
Check valves are commonly used when sustained reverse flow in a pipeline is not allowed.
The check valve closes under reverse flow and valve slam is common. Kruisbrink (1996)
presented a semi-empirical method to describe the hydrodynamic behaviour of check valves
in pipeline systems. McElhaney (2000) reported a review and analysis of check valve fail-
ures. Applications of microvalves can be found in medicine, where drug-delivery systems
are planned for implantation, as well as in chemical analysis systems. Ulrich and Zengerle
(1996) found the direction of the net fluid transport through the valve to depend on the driving
frequency of the pressure, i.e. a micropump was born.

†The cracking pressure is the pressure difference at which the valve starts to open.
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2.2.2 Compressor Valves
Main objective in this subsection is to extract from literature a historical line in the devel-
opment of compressor valve theories. Quantitative aspects will be presented in Chapter 3
and experimental techniques will be discussed in Chapter 5. The literature can be found in
various sources, i.e.

• proceedings of the bi-annual International Compressor Engineering Conference at Pur-
due,

• proceedings of the bi-annual European Forum for Reciprocating Compressors,

• proceedings of the bi-annual International Conference on Compressors and their Sys-
tems of IMechE and City University in London,

• monographs, which are not easily accessible for some readers because of the frequent
use of the German language (e.g. Frenkel 1969, Thiel 1990, Böswirth 2000),

• publications in international journals (to a lesser extent).

Pioneering Work The work of Westphal in 1893 became a milestone for the computa-
tion of valve openings, see e.g. Thiel (1990). The model contained an equation of motion for
the valve plate, using a spring force, gravity force and flow force. The flow force was mod-
elled as the valve pressure difference times the port area. The continuity equation, assuming
incompressible flow, contained the change of flow rate caused by the plate motion. Costagli-
ola (1950) was the first to model the behaviour of compressor valves in the full environment
of a reciprocating compressor. The flow through the valves is modelled based on steady isen-
tropic flow through an orifice, thus taking into account subsonic compressibility effects. It
is assumed that the valve plate does not rebound, when reaching the limiter. Two empirical
coefficients had to be found from steady flow experiments. Costagliola compared his theory
with experiments and assumed the discrepancies to be caused by leakage and heat transfer.
The valve opening was recorded as function of time by making use of a mechanical device.
In the following decades Costagliola’s work forms a starting point for numerical simulations
(first on analog-, later on digital computers) of reciprocating compressors. In the middle of
the 20th century, compressor valve theories were at the dawn of evolution in many directions.

Semi-Empirical Theories Linke et al. (1974) were the first to incorporate a restitution
coefficient for plate collisions. Comparison of the valve opening predicted by simulations and
the one measured in experiments yielded good agreement, although several coefficients were
used as ’fit-parameters’. Hamilton and Schwerzler (1978) realized the importance of predict-
ing valve impact speeds for the estimation of valve lifetime. They correlated the impact speed
to the compressor speed, although some discrepancies between theory and experiments occur
in the closing times of the valves.

Gas pressure oscillations are inherent to the suction and discharge processes of reciprocat-
ing compressors. These processes yield a time dependent pressure distribution in the plenum
chambers and piping system. In practice significant pressure oscillations can be present and
these may affect both the valve operation and the thermodynamic performance of the com-
pressor. In addition, the high sound pressure level radiated from the compressor can be
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undesired. Early investigations of the interaction of compressor valves with the acoustics in
the plenums and discharge lines have been performed by e.g. Elson and Soedel (1974). The
acoustical plane wave theory applied to the plenum chambers and piping system yielded good
agreement with experiments. MacLaren et al. (1975) considered the equations for conserva-
tion of mass and energy for the plenums and the 1D Euler equations for the piping system.

The first time a semi-empirical theory included the 2D motion of the valve plate was given
by Machu (1994). This theory closely matches real valve plate motion, i.e. i) a plate tumbling
on the seat does not seal the valve port tightly, hence pressure gradients remain small; and ii)
impact speeds are higher, resulting from the high angular acceleration of the plate after the
first impact of the plate in oblique position. This theory was elaborated by Machu (2001).
Two semi-empirical coefficients as function of the valve opening were used, that need to be
determined from steady flow experiments. Unfortunately, not all the necessary parameters
(e.g. eccentricities of forces or peripheral plate stiffness) are always known in detail.

Oil films between valve plate and seat have been shown to cause the plate to adhere to the
seat and open much later than they would have in the absence of oil. This phenomenon is
referred to as valve stiction and has been studied both analytically (e.g. Khalifa and Liu 1998,
Böswirth 2000) and experimentally (e.g. Touber 1976, Joo et al. 2000). However, in practice
different operating conditions may appear, i.e. i) the oil management arrangement in the
compressor determines the amount of oil, and ii) viscosity will not remain constant because of
heat transfer and unsteady concentration of refrigerant in the oil. Recently, Böswirth (2001)
presented some engineering tools to reduce the high impact speeds of the valve plate resulting
from oil stiction.

For high efficiency of the compressor the maximum valve opening should be rather large.
However, to obtain reliability and long lifetime of the valve this opening should be small.
Selecting materials with higher resistance to impact stresses, such as non-metallic sealing
elements, could enable simultaneous improvement of valve efficiency and valve life (e.g.
Artner 1999, Spiegl et al. 1999, Artner and Spiegl 2001). In the last two references the
impact of a valve plate in oblique position against a seat is simulated with a Finite Element
Method. However, coupling of the elastic deformations with the flow is absent.

Computational Fluid Dynamics Cyklis (1994) was amongst the first ones to inves-
tigate the suitability of Computational Fluid Dynamics (CFD) for analysis of compressor
valves. The computed steady planar mass-flow rate as function of the pressure difference was
slightly lower than measured data. The simplified geometry of a compressor valve consisting
of a radial diffuser with axial feeding is frequently used for CFD applications. Deschamps
et al. (1996) considered turbulent flow using the Renormalization Group k-ε model and fixed
walls. The pressure distribution along the front disc showed good agreement with experimen-
tal data, for different valve openings and Reynolds numbers. However, Pérez-Segarra et al.
(1999) considered three different k-ε turbulence models and showed significant difference in
computed flow force and effective flow area. This outcome agrees with the comparisons of
Ottitsch and Scarpinato (2000) applied for different types of valves. A next step in using CFD
for compressor valves was the computation of fluid-structure interaction. Until 1999 almost
all investigations available in literature related to compressor valves either model the struc-
tural dynamics in detail but pay little attention to the description of the flow field, or focus
on the fluid dynamics without considering the coupling between plate motion and pressure
distribution on the plate. Matos et al. (1999) considered axisymmetric laminar flow around
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a circular plate with prescribed pressure difference. The structure was modelled as a mass-
spring system with a single degree of freedom. The gas force is found to be in phase with the
harmonically varying pressure difference, except near valve closure when this force experi-
ences a temporary drop. When both pressure difference and flow force become negative, the
mass-flow rate at the exit becomes negative too.

A next step in using CFD for compressor valves was the computation of flow around in-
clined disks. Possamai et al. (2001) computed laminar flow between concentric inclined
disks and conclude that this flow is significantly affected by the inclination for inclinations
as small as 0.1◦. For some combinations of Reynolds number, valve opening and inclina-
tion, the pressure distribution showed regions of negative pressure difference which produce
a restoring moment tending to force the disks to become parallel. The state-of-the-art of
parallel plate movement is the work of Matos et al. (2002) who computed axisymmetric tur-
bulent flow around a circular plate which is modelled as a mass-spring system. Plate impacts
against the limiter and compressibility effects have not been considered yet.

2.2.3 Summary of Valve Theories
The number of publications on valve theories is overwhelming. In order to extract the his-
torical line of theory developments, literature is ordered by distinguishing four items, i.e. i)
fluid dynamics, ii) structural dynamics, iii) fluid-structure interaction and iv) valve environ-
ment. Table 2.1 summarizes some literature chronologically. It reveals that for most of the
cases a valve is considered as a mechanical device, and fluid dynamical aspects are secondary
for valve design. Even today, papers appear in which practical conclusions are drawn from
semi-empirical valve theories. Additionally, it reveals the emphasis that authors have put on
the valve environment. Self-excited valve vibration mechanisms are often related to acous-
tical feedback from the valve environment, whereas e.g. flow separation and flow inertia in
the valve is ignored. Only during the last decade the use of Computational Fluid Dynamics
is increasing rapidly to replace the semi-empirical valve theories. Advances are made from
1D to 3D flows and from laminar to turbulent flows‡. Increase of computer capacity and
speed, additional to developments in CFD algorithms, can be seen as the reason for these
improvements.

‡Actually the problem of theoretical prediction of turbulence is still unsolved (e.g. Gharib 1996).
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TABLE 2.1: Evolution of valve theories (CF/IF = compressible/incompressible flow, SF/UF
= steady/unsteady flow, FEM/FDM/FVM = finite element/difference/volume method, MS =
mass-spring system, D = damping coefficient).

Authors Valve Type & Fluid Structural Coupling
Environment Dynamics Dynamics Force Coeff.

Westphal (1893) liquid pump 1D, IF, SF MS, D:0 1
Costagliola (1950) recip. compressor 1D, CF, SF MS, D:0 empirical
Linke et al. (1974) recip. compressor 1D, CF, SF MS, D:1 empirical
MacLaren et al. (1975) two-stage rec.compr. 1D, CF, SF MS, D:1 constant
Thomann (1976) plug valve + pipe 1D, IF, SF MS, D:0 constant
Touber (1976) recip. compressor 1D, CF, SF MS, D:1 empirical
Nieter and Singh (1984) recip. compressor 1D, CF, SF MS, D:1 ?
Den Hartog (1985) fuel-injection valve 1D, IF, SF MS, D:1 1
Ingard (1988) plug valve + pipe 1D, IF, SF MS, D:1 1
Thiel (1990) liquid pump 1D, IF, SF MS, D:1 empirical
Horsten (1990) mechanical heart 2D, IF, UF linked rigid exact

valve FEM, laminar segments
Huang et al. (1994) mechanical heart 2D, IF, UF fixed exact

valve FDM, laminar
Cyklis (1994) recip. compressor 2D, CF, SF fixed exact

FVM
Deschamps et al. (1996) circular plate valve 2D, IF, SF fixed exact

FVM, turbulent
Hayashi et al. (1997) poppet, pl.ch.+pipe 1D, IF, SF MS, D:1 empirical
Kerh et al. (1997) control valve 2D, IF, UF MS, D:1 exact

in pipe FEM
Khalifa and Liu (1998) circular plate valve 2D, IF, SF MS, D:0 visc. theory
Pérez-Segarra et al. (1999) circular plate valve 2D, IF, UF fixed exact

FVM, turbluent
Matos et al. (1999) circular plate valve 2D, IF, UF MS, D:1 exact

FVM, laminar
Tarnopolsky et al. (2000) reed valve, cylinder 1D, IF, UF MS, D:1 1.5
Böswirth (2000) comp., cyl.+pl.ch. 1D, CF, UF MS, D:1 empirical
Machu (2001) circular plate valve 1D, IF, SF MS, D:0 empirical

2D tumbling
Possamai et al. (2001) inclined disks 3D, IF, SF fixed inclined exact

FVM, laminar
Matos et al. (2002) circular plate valve 2D, IF, UF MS, D:1 exact

FVM, turbulent
Misra et al. (2002) control valve 1D, IF, SF MS, D:1 constant
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2.3 Valves and Fluid Dynamics
The preceding section shows that in literature involving semi-empirical valve theories, the
valve environment is often emphasized and simple flow models are employed. This section
aims to discuss the valve physics with the concepts available in the literature of fluid dynam-
ics.

The central problem of external fluid dynamics is the prediction and/or measurement of the
force and moment exerted upon a body immersed in an arbitrary flowfield by the surrounding
fluid (Quartapelle and Napolitano 1983). In case of incompressible flow, only two general ex-
pressions are available: i) the force acting on a sphere immersed in a steady viscous creeping
flow, and ii) the force acting on an arbitrary 3D body immersed in an irrotational unsteady
flow§. For compressor valves both results are not applicable. Characterizing compressor
valves can be considered as a problem involving almost every subject of fluid dynamics.
These subjects are e.g. multi-phase internal flow, unsteady 3D high-Reynolds number flow,
moving boundaries, boundary layer separation and compressibility effects (perhaps even tran-
sonic flow). The moving part of a compressor valve can be considered as a sharp-edged bluff
body. The flow around sharp-edged bluff bodies has been investigated extensively. There-
fore, in the following paragraphs phenomena related to such flows reported in literature are
discussed.

Flow around Fixed Objects with Steady Inlet Flow Fage and Johansen (1927) were
amongst the first to determine the flow behaviour behind a very long flat plate experimentally.
Fig. 2.2 shows the flow situation schematically. Smoke photographs reveal the essential
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FIGURE 2.2: Flow of air around an inclined flat plate of infinite span.

features of the flow. At the edges, thin sheets of vorticity are generated, which separate the
freely-moving fluid from the ’dead-water’ region in the wake of the plate. At some distance
behind the plate, these vortex sheets -on account of their lack of stability- roll up and form a
vortex street. One of the earliest theories for calculating the resistance of the plate¶ has been
developed by Kirchhoff and Rayleigh. They obtained the expression

f =
π sin θ

4 + π sin θ
ρU2Ln, (2.1)

§Moreover, for the case of steady 2D inviscid irrotational flows, Blasius has derived general relationships for
both the force and moment exerted by the flow, see e.g. Batchelor (2000).

¶Note that for steady irrotational flow D’Alembert’s paradox holds, i.e. the inviscid fluid offers no resistance to
a non-accelerating object. Kirchhoff developed the 2D ’free-streamline theory’, see e.g. Batchelor (2000).
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for the flow force per unit length in spanwise direction, where θ is the plate angle, ρ is the
fluid density, U is the velocity of the undisturbed fluid, L is the length of the plate and n is
the outward pointing unit normal vector of the plate area at its downstream side. According
to wind-tunnel experiments, it appears that this theory considerably underestimates the force
acting on the plate. The vortices generated at each edge pass downstream with a frequency
which increases as the inclination θ of the plate decreases. The frequency at constant incli-
nation is proportional to the wind speed. The longitudinal spacing of the vortices decreases
as the inclination of the plate decreases. The vortices pass downstream at a speed which in-
creases as the inclination decreases. Vorticity is shed from the two edges at the same rate.
This rate decreases slowly as the inclination θ decreases.

Popiel and Turner (1991) presented experimentally obtained visualization results of the
high blockage flow behind a flat plate in a rectangular channel, see Fig. 2.3. Flow past a

L

R

h

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������
���������������
����������

���������
���������
���������
������

FIGURE 2.3: Length of recirculating wake in a planar high blockage flow.

normal flat plate in an infinite domain (external flow) is characterized by a recirculating wake,
surrounded by two separated shear layers springing from the edges of the plate and at some
conditions by regular vortex shedding. However, when the frontal area of the blunt object
relative to the channel cross section, i.e. the blockage ratio L/h, becomes sufficiently large
(internal flow), significant changes in the mean flow distribution occur and vortex shedding
may be suppressed. No large-scale (of order L) regular vortex shedding could be found by
Popiel and Turner. Three regions of distinct flow behaviour could be distinguished depending
on the ratio of recirculating wake length and channel height R/h as function of the Reynolds
number Re (based on mean gap velocity and channel height h).

• Laminar Region. At low Reynolds number (Re < 300), the flow in the wake was char-
acterized by the presence of two large elongated and essentially-steady ’twin vortices’
(for L/h = 0.5, R/h = 1.2 and for L/h = 0.7, R/h = 1.3).

• Transient Region. For 300 < Re < 8000 the flow in the near-wake is characterized by
a growing instability of the initially-laminar free shear layers.

• Turbulent Region. When Re > 8000 the flow in the wake is characterized by a mixture
of small and large eddy scales and a very strong reverse flow along the axis. The
turbulence appears to be initiated in the free shear layers at the separation points and
then develops further due to strong interactions between the side wall jet-like flow and
the reversed flow in the wake.

Chow et al. (1995) investigated the interaction between a planar inviscid jet flow and a
finite-length flat plate, see Fig. 2.4. When the impinging jet approaches a flat plate of infinite
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FIGURE 2.4: Schematic sketch of a planar jet past a plate.

length in the normal direction, i.e. L → ∞ and θ = 90◦, the interior portion of the jet slows
down due to the obstruction of the plate, while the free surfaces gradually turn in the direction
of the plate. A stagnation point appears on the front surface of the plate, and the jet is divided
in two separated jets. The method of hodograph transformation has been employed to solve
the problem in the incompressible potential flow approximation. In this method the local
speed of magnitude U , streamline angle of the flow, jet width b and plate angle θ are treated
as independent variables. Other quantities including the coordinates are treated as dependent
variables. When the plate has an angle of attack θ = 90◦, numerical computations show that
a jet deflection of ∼ 90◦ is obtained when L/b ∼ 4.

Flow around Fixed Objects with Pulsating Inlet Flow Sung et al. (1994) presented a
numerical study of the planar inviscid separated flow around a flat plate. The plate is placed
normal to the direction of the inlet flow, consisting of a mean velocity and a harmonically
pulsating part. The temporal behaviour of vortex shedding patterns is investigated over a
range of two externally specified parameters, i.e. the pulsation amplitude and the pulsation
frequency fp. When fp is low, the shedding frequency fs is nearly constant, i.e. independent
of fp. The vortex shedding is modulated at a lower frequency ∼ |fp − fs|. However, when
fp exceeds a certain threshold value lock-on of the shedding frequency is observed as fs ∼
0.5fp. The range of fp in which lock-on takes place is broadened as the pulsation amplitude
is increased.

Flow around Forced-Moving Objects It is well recognized that vortex streets are formed
in the wake of bluff bodies over a wide range of Reynolds numbers. The periodic shedding
of vortices may result in a considerable fluctuating load on the body. When the shedding
frequency is close to one of the characteristic frequencies of the body, resonance of the body
can cause damage. On the other hand, when the body is periodically oscillated by external
forcing, the shedding frequency may be shifted from its natural shedding frequency to the
forcing frequency. This lock-on of vortex shedding induced by rotational oscillations of a flat
plate normal to a uniform flow in its neutral position has been studied experimentally by Chen
and Fang (1998), see Fig. 2.5. The Reynolds number (based on free-stream velocity U and
plate length L) is set in the range 3000 − 8000. The forcing frequency is set to a fixed value,
between 0.8 and 1.2 times the natural shedding frequency of the stationary flat plate normal
to the flow, while the angular forcing amplitude is varied to search for the lock-on regime.
This regime is found to become narrower with increasing U . For forcing frequencies below
and above the natural frequency, significant differences are observed in the distributions of



22 CHAPTER 2. VALVES IN NATURE AND ENGINEERING

U

x

y

L

�����������������������������������������������������������������

������
������
������
������
������
������
���

FIGURE 2.5: Rotationally oscillating flat plate.

the time-averaged and fluctuating pressure on the plate surface.
Investigations of flows with moving boundaries are mostly experimental studies. Only a

few papers report analytical solutions. Goldsworthy (1953) considered an idealized valve
consisting of two cones, initially joined at their apices. By prescribing the cross-section as
a special function of space and time, the quasi-1D Euler equations can be transformed to
obtain simple unsteady motion in the transformed space-time plane. The solution yields e.g.
the distribution of Mach number as function of space over time. Recently, Pullin and Wang
(2004) considered planar inviscid starting flow around a flat plate. By prescribing the plate
motion as a power-law form in time, the force on the moving plate can be split into the added
mass force (attached flow) and the vortex force (separated flow).

Fluid-Structure Interaction The interaction of a flexible structure with the flow around
it gives rise to a rich variety of physical phenomena with applications in many fields of engi-
neering, e.g. the stability and response of aircraft wings, the flow of blood through arteries,
the response of bridges and tall buildings to wind, the vibration of turbine and centrifugal
compressor blades and the oscillation of heat exchangers. The modeling of fluid-structure
interaction has been reviewed recently by Dowell and Hall (2001), who put emphasis on the
flow rather than on the structure. They report applications largely drawn from aerospace
applications. Our primary interest comprises the moving non-deforming valve plates in a re-
ciprocating compressor. Therefore the fluid-structure interactions are illustrated with some
elementary examples, proposed by Naudascher and Rockwell (1994).

Consider a stationary body placed in a flow. The flow force acting on the body can be
subdivided into a mean and a fluctuating part, F̄ + F [t]. The former is of interest for the
mean hydrodynamic loading of a structure. The latter is caused by flow fluctuations that are
produced either by an extraneous source such as turbulence or by a flow instability such as
vortex shedding. In cases of an extraneous source, F [t] remains independent of the motion
of the body h[t] except for added-mass and fluid-damping effects. In cases of flow instability,
F [t] is altered when the body starts moving. If a body is free to vibrate (Fig. 2.6), therefore,
one must distinguish between the corresponding extraneously- and instability- induced exci-
tation. Consider a body with mass m, structural damping coefficient ζ and spring stiffness k,
then the equation of motion equals

mḧ + ζḣ + kh = F. (2.2)

In case the flow force would be a function of time only, e.g. F = F̂ eiωt and h = ĥeiωt for
ω ∈ R and i ≡

√
−1, the familiar resonance curves of mass-spring systems will appear (Fig.
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FIGURE 2.6: Freely moving body surrounded by fluid flow.

2.7). However, in practice the need for fluid-structure interaction modeling is inevitable,
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ζ3

FIGURE 2.7: Resonance curves of a mass-spring system (ζ1 < ζ2 < ζ3).

i.e. F = F [h, t]. Simplified by the use of linear expressions, the fluctuating force can
generally be described in terms of components in phase with the acceleration ḧ, speed ḣ and
displacement h of the body, i.e.

F [t] = −m′ḧ − ζ ′ḣ − k′h. (2.3)

The equation of motion then indicates that the system behaves like a body oscillator with
added mass m′, added damping ζ ′ and added stiffness k′, undergoing free vibration. In the
absence of damping (ζ + ζ ′ = 0), the natural frequency of the system is

f0 =
1

2π

√

k + k′

m + m′ . (2.4)

Consider the following example in which the added coefficients are expressed in terms of
flow physics. An infinitesimally thin circular disk with radius R is moving with velocity U
parallel to its axis in an infinite mass of stagnant fluid, see Fig. 2.8. Lamb (1932) derived two
limiting solutions analytically:

• Consider a steady translation of the disk in a Stokes flow with dynamic viscosity µ.
Then the resistance force experienced by the disk is 16µRU . The added damping is
therefore ζ ′ = 16µR.
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RU

FIGURE 2.8: Disk moving in an infinite mass of fluid.

• Consider the irrotational unsteady inviscid flow of a fluid with density ρ. Then the
kinetic energy of the fluid is 4

3ρR3U2, yielding an added mass of m′ = 8
3ρR3.

Note that in both cases the system is unconditionably stable (ζ ′ ≥ 0). Considering the com-
plex case of a compressor valve (Section 1.2), it seems that prediction of the behaviour of the
flow and the structural dynamics by academic research introduces severe difficulties.

If a body vibrates in a flow, the added coefficients can become negative as a result of mech-
anisms by which energy is transferred from the flow to the body. The body vibrations become
self-excited. To see whether this can occur, it is convenient to analyse purely harmonic mo-
tion, e.g. h = ĥ sin ωt. Consider small vibration velocities, so that F [t] is linearly related to
h, ḣ and ḧ, defined by F [t] = F1 sinωt + F2 cos ωt. Then the work done by the fluid force
acting on the body is

W =

∫

cycle
F [t] dh =

∫ 2π/ω

0

F [t] ḣ dt = πF2ĥ. (2.5)

Only a force in phase with the velocity ḣ and working in the same direction will transfer
energy. In general one can distinguish three mechanisms which are responsible for valve
instabilities, i.e.

• acoustical feedback (e.g. Thomann 1976),

• flow inertia (e.g. Kolkman 1980),

• flow separation (e.g. Van Zon 1989).

When Eq. (2.5) is written as function of the added coefficients, i.e.

W = −ζ ′πωĥ2, (2.6)

it is clear that only a negative ζ ′ can cause self-excitation. The drawback of the analysis using
added coefficients, or stability diagrams based on them, is their failure to predict non-linear
behaviour. They are appropriate if one wishes to predict processes involving small amplitudes
such as the onset of vibration from rest (’soft’ excitation). In cases involving large amplitude
fluid forces (’hard’ excitation), for which a finite disturbance is required to trigger the body
vibration, the expression for F [t] would have to contain higher-order terms (e.g. ζ ′′ḣ2 and
ζ ′′′ḣ3).
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VALVE THEORY

3.1 Introduction
The literature survey in Chapter 2 reveals that most valve theories make use of semi-empirical
coefficients. Although since the 1990s Computational Fluid Dynamics and laboratory exper-
iments are used more intensively, today’s publications still involve the traditional valve theo-
ries in which the valve environment forms the major difference. In the following section the
most reduced form of the traditional valve theories appearing in the literature is described,
which we will refer to as the Basic Valve Theory. It is followed by an analysis of the semi-
empirical coefficients for a circular disk valve. Furthermore, the Basic Valve Theory with
unspecified coefficients is analyzed by means of linear stability analysis (rocking valve plate,
valve positioned at downstream end of pipe, valve positioned at downstream end of pipe with
flow originating from reservoir) and non-linear analysis (valve with flow originating from hy-
drodynamic or gasdynamic pipe flow, valve closure events). The discussion on valve theory
is elaborated by making use of unsteady flow effects that are known in literature on insect
flight and lubrication theory. Finally, an application of the Basic Valve Theory is presented
by investigation of a leaking valve in a two-stage reciprocating compressor.

3.2 Basic Valve Theory
Although structural details may differ considerably, the principle of operation of all types
of automatic valves is similar (Touber 1976). It is possible to distinguish the same basic
functional elements in valves of different design, see Fig. 3.1. During discharge gas is flowing
from the high pressure side in the cylinder through the port and separates at the edges of seat
and plate. The maximum opening of the valve is attained when the plate is pushed against
the fixed limiter. The elements of the Basic Valve Theory are described below.

Fluid Dynamics Consider quasi-steady flow. Then the volume-flow rate Φv is expressed
as

Φv = α εc Lgh

√

2

ρup
∆p, (3.1)

where Lg is the total edge length of the plate, h is the valve opening (commonly referred to
as valve lift or plate height, see Fig. 3.1), ρup is the upstream density, ∆p is the valve flow
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FIGURE 3.1: Sketch of various elements of a compressor valve during discharge.

pressure difference, α is a semi-empirical coefficient and εc is the compressiblity factor.
In case of incompressible flow εc = 1. Compressibility effects are accounted for by choos-

ing εc equal to 1 − 1
γ

∆p
pup

. This factor is obtained by assuming steady isentropic flow of a
calorically ideal gas with a ratio γ of specific heats (e.g. Fox and McDonald 1994, Brower
et al. 1993). When the pressure ratio ∆p/pup exceeds 1 − ( 2

γ+1 )
γ

γ−1 , the gas velocity be-
comes critical and the valve is referred to as choked. For air γ = 1.4 and we obtain choking
if ∆p/pup > 0.47.

The effects of viscosity and vena contracta after flow separation are taken into account by
the semi-empirical coefficient α ∼ O{1}. When a 2D planar jet flow emerges from a slit
in a thin plate of infinite extent, the vena contracta factor (ratio of jet cross-section and slit
area) was found by Helmholtz as π

π+2 = 0.61 via Kirchhoff’s free-streamline theory (e.g.
Batchelor 2000). However, valve flows are not inviscid planar flows through a slit in an
infinitely extended thin plate. The coefficient α is found to depend on Reynolds number and
geometry (e.g. Touber 1976). It is expressed as function of h. Minute modifications of the
shape of the edges of the orifice have drastic effects on α. Determination of α[h] is performed
by obtaining a (quasi-)steady flow, i.e. a hovering valve plate, and measuring the values of h,
Φv and ∆p.

Structural Dynamics The majority of valve theories consider the moving parts of a
valve as a mass-spring system with a single degree of freedom, i.e.

{

md2h
dt2 + ζ dh

dt + k(h + hpl) = Fg , 0 < h < hmax
dh
dt [t+] = −eres

dh
dt [t−] , h[t±] ∈ {0, hmax}

(3.2)

where m is the plate mass, ζ is the damping constant, k is the spring stiffness, hpl is the
preload distance, t is the time and Fg is the gas force acting on the valve plate. The valve
plate is limited in its travel by the valve seat (h = 0) and by the limiter (h = hmax). When
a moving body impacts a fixed wall it will bounce with a velocity that is generally lower
than the velocity before impact. The restitution coefficient eres is related to the ratio of
plate kinetic energy just after (t+) and just before (t−) the collision. This coefficient cannot
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be predicted from the elastic properties of the materials alone, there are many other (fluid-
structure interaction) effects involved.

In order to correct for the inertial effect of the spring, the mass m in equation (3.2) must
include the equivalent mass of the spring. The equivalent mass can be estimated theoretically
if one assumes a quasi-static deformation of the spring (Method of Rayleigh). In the case
of a coil spring, the coil is assumed to be helically wound with equal distances between
the windings, see Fig. 3.2. The mass of the spring is denoted by m∗. It is assumed that

ξ

dξ

`

h

FIGURE 3.2: Equivalent spring mass.

the free end of the spring has displacement h and velocity ḣ. It is assumed further that an
intermediate point of the spring at a distance ξ from the fixed end, has a velocity ξ

` ḣ, where
` is the instantaneous length of the spring. Consider the system to vibrate with one degree
of freedom. The kinetic energy dE∗

kin of an element of the spring with length dξ is equal to
1
2

dξ
` m∗( ξ

` ḣ)2. The kinetic energy of the valve-spring system is then equal to

Ekin =
1

2
mḣ2 +

ξ=`∫

ξ=0

dE∗
kin =

1

2
(m +

1

3
m∗)ḣ2. (3.3)

Thus the inertial effect of the spring can be accounted for by adding a mass of one third of
the spring mass, to the mass of the valve plate.

Fluid-Structure Interaction The gas force acting on the plate is modelled as the force
exerted on the plate in quasi-steady flow, i.e.

Fg = cg Ap ∆p, (3.4)

where Ap is the port area. The semi-empirical coefficient cg ∼ O{1} is determined by
obtaining a (quasi-)steady flow, i.e. a hovering valve plate, and measuring the values of h and
∆p. Coefficient cg is expressed as function of h, i.e. cg[h].

In fluids such as water one should add to this quasi-static force a force proportional to the
valve plate acceleration. This force takes into account the acceleration of the fluid around
the valve plate and corresponds to an added mass (Section 2.3). When wave propagation is
neglected this added mass is determined by means of potential flow theory for an incompress-
ible fluid (e.g. Kolkman 1980). When compressibility is significant this effect is included in
the acoustical impedance representing the environment of the valve.
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Valve Environment Based on Eqs. (3.1) - (3.4) several types of valves can be mod-
elled. This is related to the simplicity of the theory and the unspecified relations for α[h] and
cg[h]. This leaves the valve environment to determine the type of valve and its field of ap-
plication. Common elements of the valve environment are a pipe segment, plenum chamber
or an infinitely large reservoir. Self-excited vibration mechanisms are often related to water
hammer and/or acoustical feedback (in the downstream piping) from the valve environment
(e.g. Misra et al. 2002). In Section 3.5 an application of the Basic Valve Theory is presented
in which the valves interact with the complex environment of a reciprocating compressor.

3.3 Analysis of Basic Valve Theory
We have defined the valve model as it is used traditionally in engineering (Section 3.2). In
this Basic Valve Theory the semi-empirical coefficients α and cg are set to be functions of
the valve opening h. It is however not certain whether this is sufficient. For e.g. a clarinet
reed (Hirschberg et al. 1990) the hysteresis effects cannot be explained by the Basic Valve
Theory. Therefore the coefficients should also be functions of the valve speed ḣ, i.e. α[h, ḣ]
and cg[h, ḣ]. The question of the validity of the Basic Valve Theory will be addressed in
Chapter 6, in which we discuss the dynamics of a model valve.

This section presents mainly an analysis of the Basic Valve Theory with unspecified semi-
empirical coefficients α[h] and cg[h]. Firstly, the parametric dependence of these coefficients
for a circular disk valve is investigated. Secondly, linear stability analysis is applied on several
systems (rocking valve plate, valve positioned at downstream end of pipe, valve positioned at
downstream end of pipe with flow originating from reservoir). Thirdly, non-linear analysis is
applied on several systems (valve with flow originating from hydrodynamic or gasdynamic
pipe flow, valve closure events).

3.3.1 Semi-Empirical Coefficients
The Basic Valve Theory needs to be closed with the semi-empirical coefficients α[h] and
cg[h]. Formally these coefficients should be determined experimentally for a hovering valve
plate. However, in this subsection two examples will yield a first insight of the parametric
dependence of these coefficients.

Consider steady incompressible axi-symmetric flow around a circular disk valve (Fig. 3.3),
where R1 is the port radius, R2 is the disk radius and h the valve opening. The cross-section
of the boundary of the axi-symmetric control volume CV used for analysis is shown as a
dashed line.
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FIGURE 3.3: Circular disk valve.

Viscous Flow As a first limiting case we consider a Stokes flow. Conservation of mass
and momentum for fully developed purely radial steady flow (uz = 0) in the region R1 ≤
r ≤ R2 yield,

1

r

∂

∂r
(r ur) = 0, (3.5)

0 = −∂p

∂r
+

µ

r

∂

∂r
(r

∂ur

∂r
) − µ

r2
ur + µ

∂2ur

∂z2
, (3.6)

0 = −∂p

∂z
, (3.7)

where ur is the radial component of the velocity vector u, p is the pressure, µ is the dynamic
viscosity and (r, z) are the cylindrical coordinates. Eq. (3.5) gives ur = C[z]/r and Eq.
(3.7) gives p = p[r]. Substituting these relations into Eq. (3.6), splitting the r-dependent and
z-dependent parts, applying the no-slip boundary conditions ur[z = 0] = ur[z = h] = 0,
pressure condition p[r = R2] = p2 and the flow rate condition

∫ h

0
ur[r, z] 2πr dz = Φv ,

yield the solution for the velocity- and pressure distribution, i.e.

ur[r, z] =
3Φv

πr h
(
z

h
)(1 − z

h
), (3.8)

p[r] = p2 +
6µΦv

π h3
ln[

R2

r
]. (3.9)

The gas force Fg on the plate can be determined by integrating the pressure over the plate
surface, yielding

Fg = (p1 − p2)S1 +

R2∫

R1

(p[r] − p2)2πr dr =
1

ln[S2

S1
]
(p1 − p2)(S2 − S1), (3.10)

where S1 ≡ πR2
1, S2 ≡ πR2

2 and p1 is the pressure for r < R1, assumed to be constant.
The two semi-empirical coefficients can be determined as α ∝

√

(Φv h) ∝ √
∆p h2 and

cg = S2/S1−1
ln[S2/S1]

.
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Inviscid Flow As a second limiting case we consider an inviscid flow within the valve.
Assume uniform flow at the inlet surface and in the region (R1 ≤ r ≤ R2, 0 ≤ z ≤ h). The
integral conservation form of the mass and momentum equations yields,

∫

cs

u · n dS = 0, (3.11)

ρ

∫

cs

u (u · n) dS = −
∫

cs

pn dS − Fsez, (3.12)

where the spring force Fs is balanced by the resulting gas force. The pressure distribution
along the surfaces (R1 ≤ r ≤ R2, z ∈ {0, h}) can be determined by substitution of the
velocity distribution (ur ∝ 1/r) in Bernoulli’s relation. This configuration is a diffusor, i.e.
the fluid particles are transported towards a state of increasing pressure. The gas force acting
on the disk can be found to be

Fg = {1 − ln[
S2

S1
] +

4π

S1
h2}1

2
ρu2

2S2, (3.13)

where u2 is the outlet velocity. However, the h2-term is not significant since the uniform flow
assumption is not realistic in case of flow separation (h is large). Fig. 3.4a reveals that for
S2/S1 � 1 and a moderate value of h/R1, the gas force is negative, i.e. the flow tends to
close the valve and a steady flow can only be maintained when an external force pulls the disk
from the seat. Assume for convenience that h � R1 and R1 ≈ R2. The two semi-empirical
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FIGURE 3.4: Circular disk valve: (a) inviscid flow force, (b) coefficients. Curved lines are
sketched.

coefficients can then be determined as α ≈ 1 + 2(h/R1)
2 and cg ≈ 1 + 8(h/R1)

2.

Coefficients In order to obtain an estimate for the valve opening dependence of the semi-
empirical coefficients, i.e. α[h] and cg[h], the two limiting cases are presented in Fig. 3.4b. It
is stated that this result is only an approximation of the actual flow. The viscous flow solution
can only apply to very small valve openings, while the inviscid flow solution can only apply
to large valve openings.
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3.3.2 Linear Stability Analysis

Stability analysis is based on the study of small perturbations around a steady state by analyz-
ing the properties of the linearized equations. Stability analysis yields valuable information
to avoid or explain undesired valve oscillations. In the following, examples are presented
of: i) a rocking valve plate, ii) a valve positioned at the downstream end of a pipe in which
the flow emerges into free space (the flow in the pipe is assumed to be incompressible), iii)
an extension of case ii) in which the flow is originating from a reservoir connected to the
upstream side of the pipe, and finally iv) an extension of case ii) in which acoustical waves
are considered in the pipe flow.

Rocking Valve Plate Consider a stationary valve in a steady flow, where the valve plate
is in oblique position. This example is based on the monograph of Böswirth (2000), see Fig.
3.5. The valve consists of two circular disks connected by a rigid rod. Each disk closes a
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FIGURE 3.5: Valve plate in oblique position (k is the total spring stiffness, Mo is the resultant
moment).

hole as shown in the top view of Fig. 3.5. The two holes have a distance 2b from each other
and are positioned in an infinite plate. The valve is supported by means of two linear springs
at a distance 2a from each other. Assume small tilting angles of the plate, i.e. |θ| << 1.
We decompose the position of the stationary valve into a parallel-plate part H and a tilting-
plate part hr. The latter is defined at the center of the right-hand side inflow port area. The
gas forces Fr and Fl acting on the right- and left part of the valve plate, respectively, are
approximated by application of Eq. (3.4), i.e.

Fr = (cg[H] +
dcg

dH
hr)

1

2
Ap∆p, (3.14)

Fl = (cg[H] − dcg

dH
hr)

1

2
Ap∆p. (3.15)
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The resultant moment Mo on the valve plate around the axis of symmetry equals

∑

Mo = +a
1

2
k(hpl + H − a

b
hr) − a

1

2
k(hpl + H +

a

b
hr) − b Fl + b Fr , (3.16)

where hpl is the preload distance of the springs. The oblique plate becomes divergent if
∑

Mo > 0, i.e.
(

hpl + H

cg[H]

)
dcg

dH
>

a2

b2
, (3.17)

where we found from the equilibrium state that ∆p =
k(hpl+H)
Apcg[H] . For given cg , H and b

divergence can thus be avoided by two mechanical precautions:

• decreasing preload distance hpl,

• increasing inter spring distance 2a.

The valve dynamics can be revealed by setting the resultant moment equal to
∑

Mo = Jθ̈,
where the moment of inertia of the plate is given by J =

∫
r2 dm. The normal distance

between the axis of rocking and the infinitesimally small mass element dm of the plate is
denoted by r. We neglect the mass of the springs, i.e. m∗ = 0. For small tilting angles, i.e.
|θ| << 1, this yields the linear equation θ̈ + ω2θ = 0, where

ω2 =
ka2

J
[1 − b2

a2

dcg

dH

Ap∆p

k
]. (3.18)

If the mass is concentrated in the plate only for |r| < a, and dcg

dH ≡ 0, then the circular rocking

frequency reduces to ω =
√

3 k
m . Thus the rocking plate frequency is a factor

√
3 ≈ 1.73

larger than the resonance frequency of a valve with a single translational degree of freedom.

Low Frequency Added Mass Effect of Pipe Flow Consider the steady flow through a
valve mounted at the end of a pipe (Fig. 3.6a). The gas force acting on the valve plate depends
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FIGURE 3.6: (a) Pipe-valve system. (b) Stability map hydrodynamic pipe flow.

on the valve opening h and the pressure difference ∆p. However, the pressure difference is a
function of the valve volume-flow rate Φv and the valve opening. This forms the base of the
fluid-structure interaction mechanism. Consider the valve to be opened (0 < h < hmax) and
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the flow to possess a negative pressure gradient along the valve (pu − patm > 0). The pipe
inlet pressure pin and the valve outlet pressure patm are assumed to be constant. We assume
incompressible flow (εc = 1) in the valve and inviscid incompressible 1D flow in the pipe.

• The governing equations are

mḧ + ζḣ + k(h + hpl) = cg[h]Ap(pu − patm), (3.19)

Φv = α[h]Lgh

√
2

ρ
(pu − patm), (3.20)

pin − pu =
ρL

Ac
Φ̇v, (3.21)

where ρ is the density, assumed to be constant, and Ac is the cross-sectional area of the
pipe with length L. Eq. (3.19) resembles the valve structural dynamics (Eqs. (3.2,3.4)).
Eq. (3.20) relates the valve flow rate to the valve opening and pressure difference (Eq.
(3.1)). Eq. (3.21) ensures the conservation of momentum of the pipe flow.

• For the stability analysis decompose the variables into a steady-state and a perturba-
tion: h[t] ≡ H + ĥ[t], Φv[t] ≡ Φ0

v + Φ̂v[t] and pu[t] ≡ Pu + p̂u[t] and assume the
perturbations to be much smaller than the steady-state quantities. The steady-state then
satisfies the following set of equations:

k(H + hpl) = cg[H]Ap∆P, (3.22)

Φ0
v = α[H]LgH

√
2

ρ
∆P , (3.23)

pin − Pu = 0, (3.24)

where we define ∆P ≡ Pu − patm.

• Linearizing the system of equations for small perturbations yields

m
d2

dt2
ĥ + ζ

d

dt
ĥ + kĥ = cg[H]App̂u +

dcg

dH
ĥAp∆P, (3.25)

Φ̂v = α[H]LgH
1√
2ρ

∆P−1/2p̂u + α[H]Lgĥ

√
2

ρ
∆P

+
dα

dH
ĥLgH

√
2

ρ
∆P , (3.26)

−p̂u =
ρL

Ac

d

dt
Φ̂v. (3.27)

• Rather than solving the perturbations (ĥ[t], Φ̂v[t], p̂u[t]) explicitly, we seek a solution in
the form of a harmonic function∗, i.e. ĥ[t] ≡ ĥeβt, Φ̂v[t] ≡ Φ̂veβt and p̂u[t] ≡ p̂ueβt

∗The complex exponent βt does not include the imaginary unit in order to solve the characteristic equation with
real coefficients.
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for complex frequencies β ≡ βR + iβI , where i =
√
−1. The quasi-steady solution is

stable when Re[β] < 0. Substitution of this form of the perturbations yields the system:








mβ2 + βζ + k −

dcg
dH

Ap∆P 0 −cg [H]Ap

−
dα
dH

LgH

√

2
ρ

∆P − α[H]Lg

√

2
ρ

∆P 1 −α[H]LgH(2ρ∆P )−1/2

0
ρL
Ac

β 1













ĥ

Φ̂v
p̂u



 =





0
0
0



 . (3.28)

• A non-trivial solution is obtained when the matrix is singular (determinant is zero).
This yields the characteristic equation:

Aβ3 + Bβ2 + Cβ + D = 0, (3.29)

where

A = mρLA−1
c α[H]LgH(2ρ∆P )−1/2, (3.30)

B = m + ζρLA−1
c α[H]LgH(2ρ∆P )−1/2, (3.31)

C =

{

ζ + ρLA−1
c α[H]LgH(2ρ∆P )−1/2(k − dcg

dH Ap∆P )

+ρLA−1
c cg[H]ApLg

√
2
ρ∆P ( dα

dH H + α[H])
, (3.32)

D = k − dcg

dH
Ap∆P. (3.33)

The analytical solution β of the characteristic equation can be found by using Cardano’s
method. The polynomial discriminant determines the type (number of unequal real
roots) of the solution. However, we avoid this cumbersome method by using the Routh-
Hurwitz theorem. In order to yield solutions in the left half-plane, i.e. Re[β] < 0, the
three Hurwitz determinants must be positive, i.e.

AB > 0, (3.34)
BC − AD > 0, (3.35)

AD > 0. (3.36)

For convenience we assume that the damping constant of the spring ζ = 0 and obtain

χ ≡ 1 + dα
dH

H
α[H] > 0

Ψ ≡ 1 − dcg

dH
hpl+H
cg[H] > 0

}

→ stability, (3.37)

indicating that not only the function value of the coefficients α and cg , but also their deriva-
tives with respect to H are important quantities for local stability. The variables χ and Ψ
will be used in the following paragraph. Fig. 3.6b shows the stability map. It follows that
if α and cg are constants, i.e. χ = 1 and Ψ = 1, the valve is stable. It is known in litera-
ture on flow-induced vibrations that unstable behaviour requires multiple-degrees of freedom
(Naudascher and Rockwell 1994).
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Influence of Plenum Chamber Consider the situation of gas flowing into a large plenum
chamber, subsequently entering a pipeline and then encountering a valve before exiting into
the atmosphere (Fig. 3.7a). The example of the preceding paragraph is extended by inclusion

Ψ

χ

(
ΩH
Ωv

)2

Ψ = −2(1 +
hpl
H

)χ

(a) (b)

Vpc

in

valve

L

Stable

Stable

0

FIGURE 3.7: (a) Plenum chamber - valve system. (b) Stability map.

of a plenum chamber. We assume a calorically perfect gas to flow through this chamber
without heat transfer. Furthermore in the energy balance of the gas in the chamber we neglect
the kinetic energy at the inlet, outlet and chamber. The governing equations for the system
are:

m
d2h

dt2
+ ζ

dh

dt
+ k(h + hpl) = cg[h]Ap(pu − patm), (3.38)

Φv = α[h]Lgh

√

2

ρpc
(pu − patm), (3.39)

ppc − pu =
ρpcL

Ac

d

dt
Φv, (3.40)

d

dt
ppc =

γ

Vpc
(pinΦv,in − ppcΦv), (3.41)

d

dt
(
ppc

ργ
pc

) = 0, (3.42)

where subscript pc denotes the plenum chamber, subscript in denotes the plenum inlet and γ
is the ratio of specific heats. We assume the thermodynamic state of the gas in the plenum
inlet to be equal to that in the plenum chamber (pin = ppc and Tin = Tpc). Furthermore we
assume the plenum inlet volume-flow rate Φv,in to be a given constant. The flow through the
pipe is assumed to be inviscid and incompressible.

The five variables in the governing equations are decomposed into a steady state and a
perturbation, i.e. h[t] ≡ H + ĥ[t], pu[t] ≡ Pu + p̂u[t], ρpc[t] ≡ ρ0 + ρ̂[t], Φv[t] ≡ Φ0

v +Φ̂v[t],
ppc[t] ≡ Pu + p̂pc[t]. When the governing equations are linearized in their perturbations
around the steady state, a homogeneous system of equations for the perturbation variables
is obtained. Assume the perturbations to be proportional to eβt where β ∈ C. Then the
following characteristic polynomial is derived,

Aβ4 + Bβ3 + Cβ2 + Dβ + E = 0, (3.43)
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where {A,B,C,D,E} are functions that depend on the steady-state. Stable solutions are
obtained when Re[β] < 0. Again this form is suited for application of the Routh-Hurwitz
theorem, which states that all solutions of the polynomial lie in the left-half plane when all
Hurwitz determinants are positive, i.e. when AB > 0, BC − AD > 0, AB(CD − BE) −
A2D2 > 0 and AE(AB(CD − BE) − A2D2) > 0 the solution is stable. For convenience
we assume that the damping constant of the spring ζ = 0. Then Fig. 3.7b shows the stability
diagram, where the following symbols are used,

Ω2
H ≡ γAcPu

ρ0LVpc
, (3.44)

Ω2
v ≡ k

m
, (3.45)

where 1
2π ΩH is the Helmholtz frequency†, 1

2π Ωv is the valve resonance frequency and pa-
rameters χ and Ψ are defined in Eq. (3.37). Note that when ΩH

Ωv
→ 0 (e.g. very large plenum

chamber or very small plate mass) the situation of hydrodynamic pipe flow is obtained (Fig.
3.6b). On the other hand, when ΩH

Ωv
→ ∞, only for values of χ and Ψ inside the triangular

area a stable solution is obtained.

Influence of Acoustical Response of Pipe The preceding paragraphs considered hydro-
dynamic pipe flow. In this paragraph acoustical perturbations of the pipe flow are considered,
i.e. the flow through the pipe obeys the 1D Euler equations for conservation of mass, mo-
mentum and energy. It is assumed that the gas is a calorically perfect gas. We will investigate
the coupling of valve dynamics with the pipe acoustics. Therefore assume a non-colliding
valve plate, subsonic mean flow with small perturbations and an open pipe inlet‡.

The linearized problem involves four unknowns, i.e. the flow pressure perturbation p̂[x, t],
the flow velocity perturbation û[x, t], the flow temperature perturbation T̂ [x, t] and the valve
opening perturbation ĥ[t], where x ∈ [0, L] is the space coordinate along the pipe and t
denotes the time. The governing equations are the linearized Euler equations:

∂

∂t





p̂
û

T̂



+ S0
∂

∂x





p̂
û

T̂



 = 0, (3.46)

subject to the boundary conditions at x = 0, i.e.

p̂[x = 0, t] = 0, (3.47)
T̂ [x = 0, t] = 0, (3.48)

coupled to the linearized equations of valve motion and valve flow rate at x = L, i.e.

c1ĥ + c2
d

dt
ĥ + c3

d2

dt2
ĥ = p̂[x = L, t], (3.49)

ĥ = c4p̂[x = L, t] + c5û[x = L, t] + c6T̂ [x = L, t]. (3.50)
†Helmholtz resonators are discussed in many textbooks (e.g. Crighton et al. 1992).
‡A certain amount of gas in the immediate vicinity of the pipe inlet is in motion together with the gas in the pipe.

This effect can be accounted for by assuming that the amount of gas involved in the flow process is larger than the
amount contained in the pipe volume. In the literature it is common to express the extra amount of gas in terms of
equivalent pipe length L∗. This end correction should be subtracted from L in order to obtain the actual pipe length.
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The constants {S0, c1, ..., c6} ∈ R are given by the steady-state situation. Matrix S0 is
determined from the linearized Euler equations in primitive variables form, i.e.

S0 =





u0 γp0 0
ρ−1
0 u0 0
0 (γ − 1)T0 u0



 , (3.51)

where {p0, u0, T0, ρ0} are the mean flow pressure, velocity, temperature and density, respec-
tively, all assumed to be constant. The valve coefficients are

c1 =
kΨ

cg[H]Ap
, (3.52)

c2 =
ζ

cg[H]Ap
, (3.53)

c3 =
m

cg[H]Ap
, (3.54)

c4 = −H(1 − ∆P/p0)

2χ∆P
, (3.55)

c5 =
Ac

χα[H]Lg

√

2∆P/ρ0

, (3.56)

c6 = − H

2T0χ
, (3.57)

where ∆P ≡ p0 − patm. Rather than solving the linear system of coupled partial differen-
tial equations (where boundary conditions are functions of the solution), a stability diagram
will be obtained. We will follow the approach of Thomann (1976) who considered a plug
valve. However, we apply the Basic Valve Theory as defined by Eqs. (3.1) - (3.4). A major
simplification is that the Basic Valve Theory assumes quasi-steady flow. It does not take into
account the effect of valve motion on the fluid flow through the valve. By adjusting the semi-
empirical coefficients this theory describes reasonably well the behaviour of many different
valves. For reasons of convenience we assume that the structural damping of the valve is zero
(for compressor valves this damping is indeed very small), i.e. c2 = 0.

Consider a particular solution of the hyperbolic system of Eq. (3.46), i.e.

p̂[x, t] =
[

−Aeβ(t+ x
c0−u0

) + Beβ(t− x
c0+u0

)
]

ρ0c0, (3.58)

û[x, t] =
[

+Aeβ(t+ x
c0−u0

) + Beβ(t− x
c0+u0

)
]

, (3.59)

T̂ [x, t] =
[

−Aeβ(t+ x
c0−u0

) + Beβ(t− x
c0+u0

)
] c0

Cp
, (3.60)

where {A,B, β} ∈ C are unknown constants, Cp is the specific heat at constant pressure
and c0 ≡

√

γp0/ρ0 is the speed of sound. In the beginning of this paragraph we assume
subsonic mean flow. Consider the mean flow directed from left (x = 0) to right (x = L),
i.e. 0 < u0 < c0. The first term on the right-hand side of each equation (Eqs. 3.58 -
3.60) represents a left (upstream) traveling wave, while the second term represents a right
(downstream) traveling wave. When Eqs. (3.58) - (3.60) are substituted in Eqs. (3.49) -
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(3.50) for x = L, an equation with two unknowns, i.e. β and A/B, is obtained. Substitution
of Eq. (3.58) in Eq. (3.47) (or Eq. (3.60) in Eq. (3.48) for x = 0) yields A = B. After some
algebra, an implicit algebraic equation is obtained, i.e.

eβ̄(N1 + β̄2)N2 + β̄2 + N3 = 0, (3.61)

where the unknown dimensionless frequency is β̄ ≡ 2L
c0(1−M2)β and the Mach number M ≡

u0/c0. The three (real-valued) dimensionless parameters are

N1 =

(
2L

c0(1 − M2)

)2
k

m

(

Ψ +
2χ(1 +

hpl

H )
∆P
γp0

( 2
M − 1) + 1

)

, (3.62)

N2 =

∆P
γp0

( 2
M − 1) + 1

∆P
γp0

( 2
M + 1) − 1

, (3.63)

N3 =

(
2L

c0(1 − M2)

)2
k

m

(

Ψ − 2χ(1 +
hpl

H )
∆P
γp0

( 2
M + 1) − 1

)

. (3.64)

Parameters N1 and N3 are related to the product of pipe echo time 2L
c0(1−M2) and valve

resonance frequency 1
2π

√
k
m .

Neutral stability requires the real part of β̄ to vanish, say β̄ = iβI . Then Eq. (3.61) is
split into a real part and an imaginary part, yielding N1 = ±N3 or N2 = 0 or (−1)n(N1 −
n2π2)N2 + N3 − n2π2 = 0, where n ∈ Z. In order to identify regions of stable solutions
for the latter conditions we consider an arbitrary point on a neutral stability line (Fig. 3.8a).
The line with slope 1 represents odd values of n, while the line with slope -1 represents even

N3 − n2π2

(N1 − n2π2)N2

N3

N1

(a) (b)

Slope = +1

Unstable

Stable

Slope = −1

2

2Slope = +|N  |
Slope = −|N  |

Slope = +1

FIGURE 3.8: Stability maps gasdynamic pipe flow: (a) discrete variables, (b) continuous
variables.

values of n. Eq. (3.61) is reformulated as F{N1,N2,N3}[β̄] = 0. We vary parameter N3

infinitesimally, while monitoring the variation of β̄, i.e.

δF = 0 → ∂F

∂β̄
|ns δβ̄ +

∂F

∂N3
|ns δN3 = 0, (3.65)
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where subscript ns denotes neutral stability. The real part of β̄ is found to change as

δβR

δN3
=

(−1)1+n

(N1 − n2π2)N2
. (3.66)

This yields the stability diagram spanned by continuous variables, see Fig. 3.8b. Each ’but-
terfly’ center is located at (N1 = n2π2, N3 = n2π2). When N2 > 0 the grey areas represent
stable solutions, when N2 < 0 the grey areas represent unstable solutions.

In the field of compressor manufacturing the valve plate mass m is reduced as much as
possible. This reduces the valve plate momentum during impacts and this increases the
valve resonance frequency far above the piston frequency. Furthermore the pressure drop
∆P
γp0

across the compressor valve is reduced as much as possible. This increases the compres-
sor efficiency. For M = 5 × 10−2 and ∆P

γp0
= 10−2 it follows that N2 = −2.36, indicating

that the grey areas in Fig. 3.8b represent unstable solutions. Furthermore the slope of the
boundary lines in the stability map is not extremely steep (±67◦). Apparantly the stability of
the system is very sensitive to the values of N1 and N3 (representing the pipe echo time and
valve resonance frequency). When it is postulated that the pipe-valve system considered is
representative for experimental setups in laboratories or for acoustical effects in reciprocating
compressor systems, special care should be taken to control instabilities.

3.3.3 Non-Linear Time Domain Analysis
The governing equations of the examples in the preceding subsection cannot be solved an-
alytically because of their non-linear nature. Therefore, this subsection aims to investigate
non-linear behaviour by means of numerical simulations in the time domain.

Hydrodynamic Pipe Flow Consider again the flow in the system consisting of a valve
positioned at the downstream end of a pipe (Fig. 3.6a). We recall Eqs. (3.19) - (3.21) and
take into account plate collisions and a pulsation source, i.e.

{
mḧ + ζḣ + k(h + hpl) = cg[h]Ap(pu − patm) , 0 < h < hmax

ḣ[t+] = −eresḣ[t−] , h[t±] ∈ {0, hmax}
(3.67)

Φv = α[h]Lgh

√
2

ρ
(pu − patm), (3.68)

p0 + p̂sin[ωt] − pu =
ρL

Ac
Φ̇v, (3.69)

where p̂ is the pulsation amplitude of the pressure and ω ∈ R is the circular frequency of
the pulsation. In order to solve this system numerically, consider a set of first-order ordinary
differential equations (ODEs) for the unknowns s1 complemented by algebraic equations
(AEs) for the unknowns s2, i.e.

{
d
dts1 + f [s1, s2] = 0,
s2 + g[s1, s2] = 0.

(3.70)

Then updates of variables s1 and s2 in time can be performed by splitting the ODEs and AEs,
i.e. {

sn+1
1 = sn

1 − ∆t f [sn
1 , sn

2 ],
sn+1
2 = −g[sn+1

1 , sn
2 ],

(3.71)
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where s[t = n∆t] is denoted by sn for n ∈ N. In this formulation the plate speed and plate
height are independent variables, i.e. s1 = (ḣ, h,Φv)T and s2 = pu. The collision time tc
of plate with seat or limiter is approximated by a linear interpolation of the time before the
collision t− = tn and the time after the collision t+ = tn+1, i.e.

{

limiter → tc = (hmax−h−)t+ − (hmax−h+)t−

h+ −h−

seat → tc = h+t− −h−t+

h+ −h−

(3.72)

similar to e.g. Hayashi et al. (1997). In order to illustrate typical results of the model, con-
sider a valve with semi-empirical coefficients cg[h] = 1.2 + 0.1( h

hmax
) + 0.1( h

hmax
)2 and

α[h] = 0.7 − 0.1( h
hmax

)2. The pressure difference across a fully closed valve for which
the valve tends to open is referred to as the cracking pressure. This pressure is assumed to
be k hpl

cg[h=0]Ap
= 2256 Pa. Figs. 3.9 and 3.10 show some results of the simulations, where

fpuls ≡ 1
2π ω is the pulsation frequency. The inlet pressure is forced to start oscillating after
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FIGURE 3.9: Simulation results of valve opening versus time for (a) ω√
k/m

= 0.50 and (b)

ω√
k/m

= 1.50. Parameters: ζ
mω = 0.0, hpl

hmax
= 1.50, Ap

L2
g

= 1.56 × 10−3 and time-step

∆t ω
2π = 10−4.

one pulsation period. The valve immediately starts to react on the pulsation source because
the pipe flow is incompressible. After approximately two pulsation periods a periodic solu-
tion is reached. In case of a high pulsation frequency level, the dynamic response of the valve
is a smaller amplitude oscillation (compare to Fig. 2.7). Fig. 3.10a shows that for the case
of ω/

√

k/m = 0.50 the valve dynamics can be considered as quasi-steady. For the higher
pulsation frequency ω/

√

k/m = 1.50 significant deviation from a quasi-steady response is
observed (Fig. 3.10b). However, the present results should be compared to experimental data
of unsteady flow in order to draw conclusions about the validity of the results of the Basic
Valve Theory.

The simulation method can also be used to verify the stability diagram (Fig. 3.6b). To that
aim we added to the constant pipe inlet pressure a single sine pulse of half a period. The
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FIGURE 3.10: Simulation results of valve opening versus valve pressure difference for (a)
ω√
k/m

= 0.50 and (b) ω√
k/m

= 1.50. Parameters: ζ
mω = 0.0, hpl

hmax
= 1.50, Ap

L2
g

=

1.56 × 10−3 and time-step ∆t ω
2π = 10−4.

amplitude was set to a very small value. The criterion of stability was checked by monitoring
the valve opening, i.e. a stable solution should not increase the valve opening after some
transient oscillations. Indeed, the diagram of Fig. 3.6b was found to be correct (four data
points in every quadrant).

Additional simulations have been performed to study plate collisions (Eq. 3.67). Just
before the plate hits the seat, strong reverse flow is observed because the valve pressure
difference becomes unrealistically high. Numerically stable results have not been obtained.
This can be related to the assumption of an incompressible pipe flow. Indeed we will see in
the following paragraph and in Section 3.5 that when the valve environment includes effects
of compressibility, the Basic Valve Theory is able to capture valve closures. Now we will
proceed with the same configuration, however, including compressible pipe flow.

Gasdynamic Pipe Flow In this paragraph we consider the 1D Euler equations of a calor-
ically perfect gas for the flow in the pipe. The coupling of valve dynamics with a compress-
ible pipe flow has not been reported in literature. We only found the paper of Frommann and
Friedel (1998) who considered the opening event of a safety relief valve. However, they did
not report in which way the valve upstream pressure is updated. In agreement with experi-
mental data severe oscillations were predicted.

When we assume subsonic flow, two characteristics are directed downstream and one char-
acteristic is directed upstream§. At the pipe inlet we prescribe a constant temperature and a
given velocity as harmonic function of time. At the pipe outlet we supply the pressure im-
plicitly by application of the Basic Valve Theory, i.e.

x = 0 :
∂u

∂t
+ (u − c)

∂u

∂x
=

1

ρ c
{∂p

∂t
+ (u − c)

∂p

∂x
}, (3.73)

§The subject of boundary conditions for compressible flows will be discussed in detail in Section 4.3.3.
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x = L :
∂T

∂t
+ u

∂T

∂x
=

1

ρ cp
{∂p

∂t
+ u

∂p

∂x
}, (3.74)

x = L :
∂u

∂t
+ (u + c)

∂u

∂x
= − 1

ρ c
{∂p

∂t
+ (u + c)

∂p

∂x
}, (3.75)

where Eq. (3.73) is used for updating p at the pipe inlet, Eq. (3.74) is used for updating T at
the pipe outlet and Eq. (3.75) is used for updating u at the pipe outlet. The problem is how
to update the pipe outlet pressure. The 1D Euler equations are discretized by making use of
the Finite Volume Method. Time discretization is performed with Heun’s predictor-corrector
method and for the flux Roe’s scheme is employed (Roe 1981, Roe 1986).

We developed the following algorithm for updating the pipe outlet pressure pn
u → pn+1

u in
the ghost cell located at the downstream side of the pipe outlet:

1. estimate p∗u = pn
u,

2. reconstruct the ghostcell with the left state (Eq. (3.74) and Eq. (3.75)),

3. reconstruct the ghost cell with the right state (
√

ρΦv = α[hn+1]Lgh
n+1
√

2(p∗u − patm)),

4. compare
√

ρΦv|left with
√

ρΦv|right,

5. is difference small enough? → yes: exit, no: p∗u = patm + 1
2 (α[hn+1]Lgh

n+1)−2 <√
ρΦv >2 where <

√
ρΦv >≡ 1

2 (
√

ρΦv|left +
√

ρΦv|right) and go to item 2.

Fig. 3.11a shows a comparison of valve dynamics obtained by employing gasdynamic pipe
flow and the one using hydrodynamic pipe flow, for the same valve and pipe. In order to
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FIGURE 3.11: Unsteady flow in pipe-valve system: (a) non-colliding plate, (b) valve closure
event for gasdynamic pipe flow.

check for consistency (ability of simulating a steady flow) we force the pipe inlet to start to
pulsate after one pulsation period. In case of hydrodynamical pipe flow the valve starts to
react immediately (t fpuls = 1), while in case of gasdynamical pipe flow the valve starts to
react when the fastest wave arrives at the pipe outlet, i.e. t fpuls = 1.223.
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Problems were found during valve closure events (parallel plate collisions with the seat),
i.e. the number of iterations necessary for convergence increases to infinity. Therefore an
alternative algorithm was developed. An algebraic equation on discrete level was extracted
from the previous algorithm, from where pn+1

u must be solved. It can be shown that this
equation is a third-order polynomial. The numerical solution is found by using Newton-
Raphson’s method (e.g. Kreyszig 1993). In order to handle valve closure events, the algorithm
presented above was complemented by setting the pipe outlet ghost cell velocity equal to the
plate velocity after collision. The pressure and density in this ghost cell are computed from
the downstream traveling Riemann invariants. This new algorithm is found to be able to
simulate valve closure events (Fig. 3.11b)!

Valve Opening Speed versus Closing Speed In Section 1.2 it is noticed that the opening
event of a valve in a reciprocating compressor occurs in a shorter time interval than the closing
event (Fig. 1.6). In order to investigate whether this effect can be explained by the Basic Valve
Theory, we consider a valve with prescribed pressure difference, i.e.

{
mḧ + kh = cgAp∆p , 0 < h < hmax

ḣ[t+] = −eresḣ[t−] , h[t±] ∈ {0, hmax}
(3.76)

∆p = p̂sin[ωt], (3.77)

where we assume the gasforce coefficient cg to be constant, the absence of damping (ζ = 0)
and the absence of preloading (hpl = 0). Furthermore we assume a slowly varying pressure
difference (ω = 0.03

√

k/m), semi-elastic collisions (eres = 0.1) and a pulsation amplitude
that is slightly larger than would be necessary to move the plate quasi-steadily to the limiter
(p̂ = 1.05khmax

cgAp
). Solving the system numerically yields a non-monotonous valve opening

h[t] initiated by a positive value of ∆p, see Fig. 3.12a. After several collisions of the plate
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with the limiter, the plate is pushed steadily against this limiter. When the pressure difference
equals approximately 95 % of its amplitude, the plate is released from the limiter with zero
speed. The non-monotonous decreasing valve opening continues until after a single collision
of the plate with the seat the valve is fully closed. Fig. 3.12b shows the plate speed as
function of time. It is observed that the averaged speed during the opening event is larger
than the averaged speed during the closing event. The first peak after opening shows a speed
of +21 mm/s while the first peak after plate release from the limiter shows a speed of -7 mm/s.
These different values can thus only be related to the different pressure rate of change. More
specifically, it appears that

| d
dt (∆p)|closing

| d
dt (∆p)|opening

= 0.30 and
|ḣ|closing

|ḣ|opening

= 0.35. (3.78)

In a reciprocating compressor the rate of change of pressure difference across a valve is
caused by the interaction of this valve with its environment. As we will see in Section 3.5,
indeed not only ∆p but also | d

dt (∆p)| will be different for the opening and closing event.
The early opening event in a real compressor valve involves effects of unsteady viscous flow.
These effects together with some other extensions of the Basic Valve Theory is discussed in
the following section.

3.4 Extended Valve Theory
The Basic Valve Theory as defined in Section 3.2 is able to account for fluid-structure inter-
action. However, the fluid dynamics model assumes quasi-steady flow, while many unsteady
flow effects could be present in compressor valves. Therefore this section aims to extend the
Basic Valve Theory with theories available in the literature for representing unsteady flow
effects.

3.4.1 Hovering Insect Flight
Insects were the first animals to evolve active flight (Dickinson et al. 1999). Among insects,
we find animals capable of taking off backwards, flying sideways and landing upside down.
While such activities involve many physiological specializations that are poorly understood,
perhaps the greatest puzzle is how flapping wings can generate enough force to keep an in-
sect in the air (Dickinson et al. 1999). Conventional aerodynamic theory is based on rigid
wings moving at constant velocity. When insect wings are placed in a wind tunnel and tested
over the range of air velocities that they encounter when flying in nature, the measured forces
are substantially smaller than those required for active flight (Ellington 1984a). Thus, some
mechanism increases the lift produced by a wing, above that which it could generate accord-
ing to conventional aerodynamics.

Direct measurements of the forces produced by flapping wings suggest that the aerody-
namics of insect flight (Fig. 3.13) may be explained by the interaction of three mechanisms
(e.g. Ellington 1984b, Ellington 1984c, Dickinson et al. 1999): i) Delayed stall. During the
translational parts of the stroke, when the wings sweep through the air at a large angle of at-
tack, large transient circulations can be developed before the separation associated with stall
begins. ii) Rotational circulation. The force peak at the end of each half-stroke could be
caused by the wing’s own rotation serving as a source of circulation to generate an upward



§3.4. EXTENDED VALVE THEORY 45

FIGURE 3.13: The wing tip path of a hummingbird. From Ellington (1984a).

force. iii) Wake capture. During stroke reversal the wing can extract energy from the shed
vorticity of the previous stroke. Present research of Dickinson aims to find a general theory,
incorporating both translational and rotational mechanisms, to explain the diverse patterns of
wing motion of different species of insects (e.g. Dickinson et al. 1999, Birch and Dickinson
2001, Fry et al. 2003).

During operation of a compressor valve, the plate motion has a translational and a rotational
(rocking) part. Because unsteady drag forces is a more difficult topic of ’speculation’ than
unsteady lift forces, the rocking of a valve plate could be surveyed with wake vorticity models
(like Ellington 1984b, Ellington 1984c) and flow visualization techniques.

3.4.2 Unsteady Valve Flow
The Basic Valve Theory assumes quasi-steady flow. This subsection presents quantitative
extensions of the Basic Valve Theory, which we will refer to as the Extended Valve Theory,
by taking into account some unsteady flow effects.

Lubrication Theory We will use the theory of capillary flow between valve plate and
seat to reformulate the Basic Valve Theory for very small valve openings. As illustrated
in Fig. 3.15, we consider a circular disk valve where the port has radius R1 and the disk
has radius R2. The pressure in the port is assumed to be constant and equals the upstream
pressure pu. The downstream pressure is denoted by pd. The flow is assumed to be axisym-
metrical incompressible and cylindrical coordinates r and z are used to denote positions. At
low Reynolds numbers in thin films, the Navier-Stokes equations reduce to the Reynolds
equations of hydrodynamic lubrication, i.e.

∂p

∂z
= 0, and

∂p

∂r
= µ

∂2ur

∂z2
, (3.79)

where p is the pressure in the film, µ is the dynamic viscosity and ur is the radial veloc-
ity component. Before the present analysis continues we note that Ishizawa et al. (1987)
presented a more elaborated theory about unsteady laminar flow between parallel disks in
motion. Their analysis takes into account inertial terms, non-linear convective terms and
two velocity components. However, the methods of asymptotic/multifold series expansion
involve many coefficient-functions in order to describe the general solution. We only seek
a simple extension of the Basic Valve Theory that takes into account some unsteady flow
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FIGURE 3.14: Capillary flow in circular disk valve.

effects during valve opening and closing events. The integration of Eq. (3.79) for thin films
yields a parabolic radial velocity distribution, i.e.

ur =
1

2µ

dp

dr
z(z − h), (3.80)

where the no-slip condition has been applied at z = 0 and z = h. The volume-flow rate at
radial position r equals

Φv[r] =

h∫

0

ur[z]2πr dz = −π

6

r

µ

dp

dr
h3. (3.81)

Conservation of mass yields

Φv[r] = Φv[R1] − π(r2 − R2
1)

dh

dt
. (3.82)

Equating Eq. (3.81) and Eq. (3.82) yields

r
dp

dr
=

6µ

h3

dh

dt
(r2 − R2

1) + R1

(
dp

dr

)

R1

. (3.83)

Let the normalized radius r/R1 ≡ ξ and R2/R1 ≡ X , then integration of Eq. (3.83) with
respect to variable ξ yields

p =
3µ

h3

dh

dt
R2

1(ξ
2 − 2 ln ξ) + ln ξ

(
dp

dξ

)

1

+ C , (3.84)

for 1 ≤ ξ ≤ X . The boundary conditions p = pu at ξ = 1 and p = pd at ξ = X determine
the values of C and (dp/dξ)1 as follows,

C = pu − 3µ

h3

dh

dt
R2

1, (3.85)
(

dp

dξ

)

1

=
1

ln X

{

pd − pu +
3µ

h3

dh

dt
R2

1(1 − X2 + 2 ln X)

}

, (3.86)
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which lead to the following equation for the pressure distribution in the film,

p − pd = (pu − pd)

(

1 − ln ξ

ln X

)

+
3µ

h3

dh

dt
R2

1

(

ξ2 − 1 +
ln ξ

ln X
(1 − X2)

)

. (3.87)

The force acting on the plate, introduced by the capillary flow, equals

Fcap =

R2∫

R1

p 2πr dr =

X∫

1

p 2πR2
1ξ dξ

= πR2
1

{

X2pd − pu − (X2 − 1)(pd − pu)

2 ln X

}

+

µ

h3

dh

dt

3π

2
R4

1

(

1 − X4 +
1 − 2X2 + X4

ln X

)

. (3.88)

The first term on the right hand side, in addition to (pu − pd)πR2
1, gives rise to a steady-

flow force Fsf on the disk due to the pressure difference pu − pd. This force vanishes if
that pressure difference is zero (identical to Eq. (3.10)). The second term gives rise to an
unsteady-flow force Fuf which vanishes in case the viscosity is zero, in case the valve is
fixed (ḣ = 0) or in case the contact area is zero (X = 1). These forces are derived by
integrating the pressure distribution over the entire disk area, i.e. from ξ = 0 to ξ = X .
Therefore the total force acting on the plate can be expressed as the sum of the following two
components, i.e.

Fsf =

(
X2 − 1

2 ln X

)

πR2
1(pu − pd), (3.89)

Fuf =
µ

h3

dh

dt

3π

2
R4

1

(

1 − X4 +
1 − 2X2 + X4

ln X

)

. (3.90)

Note that the terms between large brackets only depend on the geometry. The presence of h3

in the denominator of the unsteady-flow force causes this force to decrease rapidly as the film
is dilated (ḣ > 0) under the action of the steady-flow force.

In the following example we will reconsider the case of hydrodynamic pipe flow, see Eqs.
(3.67) - (3.69). However, the gas force acting on the plate will be split in two regimes, i.e.

Fg =

{

c1Ap(pu − patm) + c2
µR4

1

h3 ḣ , 0 < h ≤ 0.1dsr

cg[h]Ap(pu − patm) , 0.1dsr < h < hmax

(3.91)

where the coefficients are computed from the port area in the case of hydrodynamic pipe
flow and a sealing rim length of 1.0 mm, i.e. c1 = 1.03 and c2 = −1.71 × 10−4. It
appeared that the time-step has to be set on a very small value (∆tfpuls = 10−5, where
fpuls ≡ ω

2π ) in order to obtain numerically stable solutions. Fig. 3.15 shows some results.
When the plate collides against the limiter, the plate kinetic energy is recovered partly and
results in discontinuous derivatives of the pressure difference across the valve as function
of time. However, rather than employing a restitution coefficient for the seat the gas force
switches to the case of unsteady Stokes flow for very small valve opening (h/hmax = 0.05).
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FIGURE 3.15: Lubrication flow for small valve opening: (a) plate height, (b) pressure differ-
ence across valve. Parameters: ω

√
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mω = 0.0, hpl

hmax
= 1.50 and

Ap

L2
g

= 1.56 × 10−3.

This results in a leakage flow of 3×10−5 m3/s at a constant opening of h/hmax = 2×10−4.
The pressure difference across the valve increases significantly but remains finite (although
the flow is incompressible). Deverge et al. (2003) observed that the unsteady lubrication flow
theory of Reynolds predicts the collision event of a vocal fold with a straight uniform channel
better than the unsteady inviscid flow theory. The extension of the Basic Valve Theory for
very small valve opening seems reasonable provided that the valve closes with parallel plate
motion.

Plate Speed and Fluid Inertia Westphal (1893) already takes into account the ’breath-
ing’ of a valve when the plate speed is significant. St Hilaire et al. (1971) show that the
pressure forces developed in the unsteady potential flow past a harmonium reed excite the
reed vibration. Flow visualization studies are performed which indicate that the jet instability
is not important in exciting the reed vibration.

The volume-flow rate of the Basic Valve Theory (Eq. (3.1)) is based on the exit flow
conditions. However, even for incompressible flow the valve outlet flow rate Φout

v (at the
outer edge of the plate) is not identical to the valve inlet flow rate Φin

v (at the port area) when
the plate is in motion, i.e.

Φout
v = Φin

v − Av
dh

dt
, (3.92)

where Av is the valve plate area. When the valve is opening with speed dh/dt > 0, the outlet
flow rate will be slightly smaller than the inlet flow rate, due to the ’fluid suction’ under the
plate created additional volume.

When the port length of a valve is large, one may expect valve flow inertia effects to play
a role in the valve dynamics. The Basic Valve Theory is based on a modified form of the
Bernoulli equation for steady flow. However, for unsteady valve flows the pressure difference
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can have a phase-shift in time compared to the flow rate, i.e.

∆p =
1

2
ρ

(
Φv

α Lgh

)2

+ ρ
Lp

Ap

d

dt
Φv , (3.93)

where Lp is the port length.

3.5 Diagnostics of Leaking Valves in Reciprocating Com-
pressors

This section presents an example of the application of the Basic Valve Theory¶. Consider a
two-stage air compressor, where two single-acting compressors are connected with an inter-
cooler. This machine sucks air from a reservoir with a low pressure ps. The compressed air
discharging from the stage-one compressor is flowing through a pipe and cooled in the in-
tercooler. The intercooler consists of a tube bundle with counter-current flowing cold water.
After heat exchange the air is compressed in the stage-two compressor. The air flow that is
discharged from the stage-two compressor has high pressure pd.

We wish to locate a defective valve by making use of experimental data. The data con-
sists of the temperature at the suction- and discharge chambers as well as the pressure just
downstream of the intercooler. Fig. 3.16 shows a sketch of the configuration. The full list of
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FIGURE 3.16: Sketch of a two-stage air compressor. Valves are indicated with a ’`’-symbol.
The arrows indicate positive flow.

symbols that is used in this section is presented in the nomenclature of Appendix B.1. The
governing equations are presented in Appendix B.2.

The strategy of locating the defective valve is the following. Firstly, the periodic solution
of the non-failing system is characterized. Secondly, four simulations are performed where in
each case one valve is leaking. Comparison of the changes of temperature and pressure at the

¶This problem of leaking valves was formulated as a task in the 2nd Students Workshop (Poland, 2004) of the
European Forum for Reciprocating Compressors.
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monitoring positions with the measured data, should yield a unique location of the defective
valve.

The input parameters of the program can be found in Appendix B.3. Some key parameters
are in the common practice range, i.e. the stroke 2x1 = 2x2 = 89 mm, cylinder clearance
2Vmin1/Vcyl1 = 2Vmin2/Vcyl2 = 18%, piston frequency ω/2π = 12.5 Hz and valve reso-
nance frequency 1

2π

√

k/mv = 50 Hz.
The mathematical model (Appendix B.2) consists of a set of non-linear ordinary differen-

tial equations (ODEs) supplemented with algebraic equations (AEs). The numerical solution
is obtained by applying the explicit Euler discretization scheme for the ODEs. A very small
time-step is used to avoid numerical instability. Fortunately, for this set of equations and
available computer capacity, computation time is not an issue. Every equation of motion for
a valve plate, Eqs. (B.11) - (B.14), is split into two equations for independent variables h
and dh

dt . In this way the resulting ODEs system is reduced to first order. The second part
of the iteration step is performed by updating the remaining quantities governed by the AEs
(Eq. (3.70) and Eq. (3.71)). The initial condition must be chosen with care, to avoid nu-
merical instability! This is done by splitting the stage-one and stage-two parts. In stage one
every pressure is set equal to ps while in stage two pd is used. In order to gain insight in
the dependence of the solution on parameters, we simplify the model by setting: ζ = 0,
α[h] = α is constant and cg[h] = cg is constant for the valve dynamics, αs = αd = αi and
As = Ad = Ai for the orifices, Liu = Lid and λ = 0 for the pipe flow.

After approximately 50 cycles the transient effects have disappeared and a periodic solution
is established. Figures 3.17-3.19 characterize this periodic solution for the case of normal
operating valves. The indicator diagrams (Fig. 3.17a) reveal that the work transferred by
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FIGURE 3.17: Simulation results for the non-failing system: (a) indicator diagrams, (b) tem-
perature monitoring.

the piston to the gas (−
∮

p dV ) is approximately equal for both stages, although the total
cylinder volume of stage 1 is larger than of that of stage 2. Non-constant discharge pressure
at the top of each diagram indicates pressure loss across the discharge valve. At each stage,
the temperature in the discharge chamber is significantly higher than in the suction chamber
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due to adiabatic compression (Fig. 3.17b). The peak flow rates in the discharge valves have
rather large values compared to the flows through the orifices and the suction valves (Fig.
3.18). The flow through the discharge valve of stage two will even be reversed for some time
(Fig. 3.18b). In stage one the suction and discharge is occurring rather smoothly, while in
stage two the suction and discharge flow rate reveal plate impacts on the seat (Figs. 3.18 and
3.19a). A Poincaré map, also referred to as a phase-plane plot, reveals periodic behaviour
of the valve dynamics (Fig. 3.19b). The collisions of plate with seat (h = 0) or limiter
(h = hmax = 1 mm) induce non-linear behaviour and could result in chaotic limit cycles.

The modeling of a compression system requires modification when a defective valve is
taken into account. It is expected that a defective valve has different properties than a non-
failing valve. Oblique collisions of valve plate with seat (and limiter) eventually yield a
fatigue problem. After crack propagation in the plate, fracture occurs and a part of the valve
plate will break. The parameters {mv, k, cg, Lg} are expected to decrease while ζ might
increase.

It is proposed to model a defective valve with a single parameter, i.e. the reducing gap
length ∆Lg . See Fig. 3.20. The new effective plate mass is reduced proportionally to ∆Lg .

Flow

R

2R

1

Broken part

FIGURE 3.20: Top view of valve with partially broken ring plate, Lg = 2π(R1 +R2)−∆Lg .

The broken plate part is modelled as an orifice with a flow area proportionally to the maxi-
mum valve opening, i.e.

mv → mv

(

1 − ∆Lg

Lg

)

, (3.94)

Φs1 sign[psc1 − p1]
√

2ρsc1|psc1 − p1|
→ α[hs1](Lg − ∆Lg)hs1

︸ ︷︷ ︸

reduced area

+ α[hmax]∆Lghmax
︸ ︷︷ ︸

leakage area

. (3.95)

The equation for the flow rate is given only for the suction valve of stage one. Similar ex-
pressions hold for the three remaining valves, Eqs. (B.20) - (B.22).
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The following table presents the simulation results for the case of compression with a
single defective valve. The sign inside parentheses indicates an increased (+) or decreased

TABLE 3.1: Maximum Values in Periodic Solution.

Defect pid (bar) Tdc1 (◦C) Tsc2 (◦C) Tdc2 (◦C)
none 2.06 194 28 176
s1 1.82(−) 207(+) 28 186(+)
d1 1.88(−) 233(+) 28 184(+)
s2 3.36(+) 238(+) 32(+) 209(+)
d2 3.49(+) 243(+) 27(−) 262(+)

(−) value relative to the normal (defect=none) case, with the same accuracy as tabulated.
Before we draw conclusions, let us briefly summarize the situation.

A two-stage compression system with intercooler is considered (Fig. 3.16). Various simpli-
fications with respect to the actual situation are introduced. These simplifications include e.g.
single-acting (rather than double-acting) compressors, calorically perfect gas, perfect heat
exchange in intercooler, adiabatic processes in cylinder room, harmonic motion of piston, no
leakage at piston rings, constant semi-empirical coefficients for valve dynamics, incompress-
ible frictionless flow in pipelines and a single defective valve only. These model assumptions
have led to a well-conditioned problem, while keeping the phenomena of interest such as
fluid-structure interaction behaviour of valve dynamics and reversed flow in orifices. The
conclusive results of the simulations are summarized in Table 3.1. It shows that only one sit-
uation (out of four) yields the same trend as monitored in the experiments, i.e. an increment
for all measured quantities (Tdc1, Tsc2, Tdc2 and pid). From this we conclude that the suction
valve of stage-2 is the leaking valve.

Finally, we shall discuss the mechanism of the pressure and temperatures increments. Con-
sider the suction valve of the stage-2 compressor to be defective. When the cylinder vol-
ume of stage-2 is decreasing, adiabatic compression will rise the pressure and temperature in
the cylinder. However, air is discharging not only at the valve d2! Although valve s2 will
close (h = 0), the hot air will discharge through this valve because a leakage flow area of
α[hmax]∆Lghmax persists! Therefore, in the next stroke, hot air with relatively high pres-
sure will be sucked into the same cylinder. Indeed, Fig. 3.21 demonstrates these effects. In
the case of defective valve s2, an increased suction pressure can be observed (Fig. 3.21a).
Additionally reversed flow is observed through this leaking suction valve (Fig. 3.21b).
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4.1 Introduction

This chapter presents the numerical algorithms that will be employed to compute the flow
through a valve. The computational results of the fluid-structure interaction processes of
valves are presented in Chapter 6.

The valve flow is expected to have fixed separation points at the edges of seat and plate
(Fig. 1.5). In Chapter 2 the problem of turbulence modeling of flows around sharp edges was
briefly touched. For the high Reynolds number flows we expect the boundary layers on the
port walls and plate to be very thin. Therefore the Euler equations, describing inviscid, non-
heat conducting compressible flows, will be used to model the flow processes. At sharp edges
the effect of viscosity is accounted for by the Kutta condition which requires the velocity to
be finite at the sharp edge, accomplished automatically by the artificial viscosity of the flux
scheme. Additionally, compressor valves have rather complex geometries. Therefore we
wish to solve the Euler equations in three spatial dimensions with an unstructured mesh.

It is well known, that it is difficult to solve the equations of compressible flow with Compu-
tational Fluid Dynamics for low Mach numbers. Preconditioning methods have been devel-
oped with the aim of solving nearly incompressible flow problems with numerical algorithms
designed for compressible flows. These developments are motivated by several observations.
First, there exist flow problems in which part of the flow region is essentially incompressible
with locally small Mach numbers, whereas significant compressibility effects occur in other
regions of the flow. Second, engineers prefer to use existing compressible flow codes over the
broadest range of flow conditions possible in order to avoid dealing with multiple flow codes.
In our case, the flow through a compressor valve is expected to belong to the class of mixed
compressible/incompressible flows. Additionally, an available compressible flow method∗ is
chosen to be the base of the algorithms used for simulating valve flows.

The difficulty in solving the compressible flow equations for low Mach numbers is associ-
ated with the following. Time-marching schemes provide good numerical stability and con-
vergence characteristics when solving compressible flows at transonic and supersonic Mach
numbers. At low speeds, however, system stiffness resulting from disparate particle and
acoustic velocities causes convergence rates to deteriorate. The ideas of low Mach number
preconditioning and artificial compressibility are combined into a unified approach, designed

∗Dr. F. Put and Mr. P.H. Kelleners provided the source codes of EFD-Flow and MeshMan, which is gratefully
acknowledged.
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to enhance convergence rates of time-marching schemes for solving flows of variable density
at all speeds.

In Section 4.2 the basic features of the computational method are presented. In Section
4.3 the subject of local preconditioning is presented in detail. Finally, Section 4.4 presents
several test cases that show the ability of the present preconditioned Euler method to simulate
steady and unsteady low Mach number flow.

4.2 Flow Solver

The flow solver EFD-Flow (3D steady inviscid compressible flows of a mixture of real gases
with condensation, developed by Dr. F. Put) has been modified for simulation of flows of
a single calorically perfect gas. This section presents the main part of that computational
method. Preconditioning methods and time accuracy will be treated in the subsequent section.

Governing Equations The governing equations of motion for an inviscid flow without
heat conduction are the Euler equations. Consider the spatially fixed finite volume V , also
referred to as control volume, formed within the closed bounding surface S = ∂V . The
unit normal vector of S is denoted by n, pointing into the region exterior to V . The Euler
equations, expressing conservation of mass, linear momentum and total energy are given by:

∂

∂t

∫∫∫

V

w dV +

∫∫

S

© F · n dS = 0, (4.1)

where t is the time and w is the vector of the conserved variables

w = (ρ, ρu, ρv, ρw, ρE)T . (4.2)

In Cartesian coordinates the inviscid flux tensor F is given by

F =









ρu
ρuu + pex

ρuv + pey

ρuw + pez

ρuH









, (4.3)

where ρ is the density, u = uex+vey+wez is the Cartesian velocity vector and p is the static
pressure. The total energy per unit mass E is related to the total enthalpy per unit mass H by
H = E + p/ρ, where H = he + 1

2 |u|2 and for the present calorically perfect gas he = CpT .
The static temperature is denoted with T and the specific heat at constant pressure is denoted
with Cp which is constant. The equation of state for a perfect gas is p = ρRT , where R is
the ideal gas constant.

Finite Volume Method The Euler equations are discretized spatially using a Finite Vol-
ume Method wherein the physical domain is subdivided into small nondeforming tetrahedral
volumes, also referred to as cells. The flow field is represented by associating with each
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control volume V , consisting of cells or parts of consecutive cells, a distinct value of the
discretized solution vector,

w̄ ≡ 1

V

∫∫∫

V

w dV. (4.4)

The vector w̄ is the cell-averaged value of the solution vector, and substitution of its definition
in the integral equation (4.1) yields

∂w̄

∂t
+

1

V

∫∫

S

© F · n dS = 0. (4.5)

The surface integrals are evaluated by i) dividing the cell surface into discrete faces and ii)
introducing the discrete flux tensor F̄. These fluxes are assumed to be constant over each face
area S, yielding

dw̄

dt
+

1

V

∑

faces

(
F̄ · nS

)

face
= 0. (4.6)

Mesh Configuration The Finite Volume Method is applicable to arbitrary control vol-
umes, which is a favorable aspect because compressor valves have complex geometries. The
building block for the mesh used to discretize the three-dimensional space is the tetrahedron,
see Fig. 4.1a. The black dots indicate the position of the nodes or vertices. The lines be-
tween the nodes are called edges. To simplify the following discussion we will consider the
two-dimensional case. The simplex in two dimensions is the triangle. In a triangular mesh
in which the triangles form the control volumes, the fluxes are restricted to the edges of the
triangles. The waves carrying the information on the flow state are then restricted to only
three directions. In order to circumvent this limitation a dual mesh is used. In the dual mesh,
where the vertices become the new cell centers, new surface elements are defined, see Fig.
4.1b. The volume of a dual mesh (indicated in Fig. 4.1b by shaded regions) contains only one

(a) (b)

FIGURE 4.1: (a) Tetrahedron in 3D. (b) Triangular grid with dual mesh in 2D.

node of the triangular grid. The flow solver uses a median dual mesh because of its algebraical
straightforwardness and its robustness. The construction of this dual mesh is the following.
From the centroid of every triangle, lines are drawn to the midpoints of the three edges of the
triangle. The triangle is now divided into three quadrilaterals. Each quadrilateral is uniquely
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connected to a dual volume. By performing this operation on all triangles in the original
tetrahedral mesh, the associated median dual mesh is constructed. In this study geometries
and tetrahedral meshes are generated by making use of the commercial package ICEM-CFD.
The generation of the dual mesh in performed with the inhouse developed package MeshMan
(developed by Mr. P.H. Kelleners).

Flux Distribution The fluxes through the faces of the control volumes will be computed
across the faces separating the volumes. On the median dual mesh the fluxes will be directed
along the edges, see Fig. 4.2. The flux at the face related to an edge is computed by an

N2

N1

S2

S1

FIGURE 4.2: Two surface elements S1 and S2 related to edge N1-N2 in a two-dimensional
mesh. The projection of tetrahedrons on a plane gives triangular elements. Flow variables
are evaluated at the nodes (•), which form the cell centers of the dual mesh.

operator reconstructing the flux at the surface, only using the flow states at both endpoints of
the edge, say nodes N1 and N2. So the reconstructed flux will be identical for both surfaces
S1 and S2. For this edge, we only need to store the sum of the contribution of surfaces S1
and S2.

Suppose we solve the discretized Euler equations for every control volume, one after an-
other. For every control volume we then need to compute the fluxes over the faces bounding
the volumes. The result is, that at all faces in the flow domain, in between two control vol-
umes, the flux is computed twice. The expense can be prevented by unique orientation of the
surfaces with respect to the edges, and performing the flux distribution in a different manner.
On unstructured meshes (e.g. Mavriplis 1997), there are no major directions, along which
to define positivity with respect to surface normals, as is employed for structured meshes.
However, faces are related to edges and edges can be oriented in a uniform way. An edge
connects two vertices or nodes and so two neighboring control volumes. The indices of these
two nodes are used to orient the edge and so the associated surface.

Consider the discretized flux term
∑

faces

(
F̄ · nS

)

face
in Eq. (4.6). The flux vectors f are

calculated by a loop over all stored surfaces and distributed in the following way:

fnew
N1 = fold

N1 + F̄ · nS, (4.7)

fnew
N2 = fold

N2 − F̄ · nS. (4.8)



§4.2. FLOW SOLVER 59

Riemann Problem Consider the following initial-value problem, resembling the one-
dimensional Euler equations:

∂w

∂t
+

∂f

∂x
= 0, t > 0,−∞ ≤ x ≤ ∞, (4.9)

w[x, 0] = w0[x],

where w = (ρ, ρu, ρE)T and flux f = (ρu, ρu2+p, ρuH)T . As usual, the following relations
hold: E = e + u2/2 = H − p/ρ and for a calorically perfect gas p = (γ − 1)ρe, where e is
the internal energy per unit mass and γ = Cp/Cv .

In the 3D Finite Volume Method, the fluxes at each surface element are calculated based
on this initial-value problem, which makes sense because a flow is locally one-dimensional in
first approximation. When w0[x] is divided into a constant left and a different but also con-
stant right state, the Riemann problem is obtained (e.g. Laney 1998). Because the analytical
solution is given in an implicit way, the evaluation of this analytical solution is too expensive
for practical use. Therefore we will use an approximate Riemann solver. We introduce the
discrete representation xj = j∆x, tn = n∆t and suppose that wn

j is some approximation
to w[xj , tn]. For the numerical solution of Eq. (4.9), consider approximations wn+1

j defined
by the explicit scheme:

wn+1
j = wn

j − ∆t

∆x
(fn

j+1/2 − fn
j−1/2), n ∈ N, j ∈ Z, (4.10)

where ∆t and ∆x are respectively the time and space step. Here, the numerical flux defined
by fn

j+1/2 = fn
j+1/2[w

n
j ,wn

j+1], is assumed to satisfy the consistency condition fn
j+1/2[w,w] =

f [w].

Flux Computation Roe (1986) gives a comparative description of the upwind schemes
developed in the early 1980s, generally classified into the so-called flux-vector and flux-
difference splittings, and points out their successes and failures. In the final stage of the
present research it was found that upwind schemes are not suited for the computation of in-
viscid flows in valve-like geometries, even upon preconditioning of these schemes. Therefore
a central difference scheme was implemented, which we will discuss in the following.

The spatially discretized flux terms in Eq. (4.6) are effectively computed with central
differencing. As a consequence, the numerical dissipation which is inherently present in the
discretized form of the governing equations is in general not sufficient to stabilize the time
evolution of the system of equations. To prevent odd-even decoupling and to stabilize the time
evolution of the system it is necessary to add artificial dissipation to the system of discretized
equations. In the literature one can find a large variety of artificial dissipation terms. The only
restriction is that the artificial dissipation should be of the same order of magnitude or less
than the truncation error in order to have no effect on the formal accuray of the discretization
of the system of partial differential equations.

The artificial dissipation scheme used in the present research is essentially the one intro-
duced by Jameson et al. (1981). This scheme, commonly referred to as the JST scheme,
has been used and tested in a large number of studies (e.g. Pulliam 1986, Chima et al. 1987,
Caughey and Turkel 1988, Jorgenson and Chima 1989, Sirbaugh 1995, Kok 1998, Van No-
ordenburg 1999, Hulshoff et al. 2001). In combination with a Runge-Kutta time integration
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scheme (to be discussed later), it is a highly popular scheme mainly due to its simplicity,
robustness and computational efficiency.

As stated before, at every surface element a local Riemann problem is considered. Let j
and j + 1 be given states, i.e. nodes which represent the dual mesh cell centers (Fig. 4.3).

j j+1 j+2j−1

Flux

j+1/2

FIGURE 4.3: Local Riemann problem. The numerical flux at interface j + 1/2 is computed
as function of the flow variables evaluated in cell-centers {j − 1, j, j + 1, j + 2}.

Then the flux tensor to be evaluated at surface j + 1/2 is expressed as

Fj+1/2 =
F[wj ] + F[wj+1]

2
− Dj+1/2, (4.11)

where the first term on the right-hand side is the central differene flux tensor and dj+1/2 ≡
Dj+1/2 · n is the dissipation flux vector defined as a blending of second-order differences
(to obtain acceptable representations of shock waves) and fourth-order differences (to damp
high wave number modes and to prevent odd-even decoupling) of the modified conservative
variables, i.e.

dj+1/2 = Rj+1/2

{

ε
(2)
j+1/2(ŵj+1 − ŵj) − ε

(4)
j+1/2(ŵj+2 − 3ŵj+1 + 3ŵj − ŵj−1)

}

,

(4.12)
where ŵ is the vector (ρ, ρu, ρv, ρw, ρH)T . The scaling factor Rj+1/2 ensures that the
dissipation fluxes have the correct magnitude compared to the convection fluxes. It is defined
as the average of the spectral radius of the Euler flux Jacobian, related to the local maximum
wave speed, i.e.

Rj+1/2 =
1

2
(Rj + Rj+1), Rj = |uj | + cj , (4.13)

where uj is the local advection speed and cj is the local speed of sound. The coefficients of
the second-order and fourth-order differences are adapted to the flow, i.e.

ε
(2)
j+1/2 = MIN{k(2)ν̄,

1

2
}, (4.14)

ε
(4)
j+1/2 = MAX{k(4) − β(4)ν̄, 0}, (4.15)

where ν̄ is a shock sensor, i.e.

ν̄ = MAX{νj , νj+1}, (4.16)

νj =

∣
∣
∣
∣

pj+1 − 2pj + pj−1

pj+1 + 2pj + pj−1

∣
∣
∣
∣
. (4.17)
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Typical values for the constants k(2) and k(4) are in the ranges 1
4 to 1

2 and 1
64 to 1

32 , respec-
tively (Swanson and Turkel 1997) and β(4) = 2 (Wesseling 2001). Note that the numerator
in Eq. (4.17) is proportional to the second-derivative of the pressure at cell j. Near shocks,
ε
(4)
j+1/2 is switched off, since then ν̄ will be large. In smooth regions of the flow for which ν̄

is small, ε
(2)
j+1/2 will be small and the fourth-order dissipation takes over.

The computation of the dissipation terms for unstructured meshes is more complex than
for structured meshes. Therefore we explain the method that has been implemented by con-
sideration of the two-dimensional case (Fig. 4.4). We wish to compute the Laplacian ∇2ŵa

b b

b

b
b

b6

5 4

3

2

1

a

FIGURE 4.4: The dissipation in internal cell a depends on the Laplacian in cells a and
{b1, ..., b6} (two-dimensional mesh). The grey area represents the dual mesh volume Va.

and bi-harmonic ∇4ŵa in dual mesh cell a. Therefore two loops over all connectors (edges)
are processed, i.e.

∇2ŵa ≈ 1

Va

∑

j=1,6

ŵbj
− ŵa

||xbj
− xa||

Sabj
, (4.18)

∇4ŵa ≈ 1

Va

∑

j=1,6

∇2ŵbj
−∇2ŵa

||xbj
− xa||

Sabj
, (4.19)

where operator ∇4 ≡ ∇·∇(∇2). The first loop computes the control-volume averaged value
of the Laplacian of a quantity by application of Gauss divergence theorem on the gradient
of that quantity. This Laplacian is stored in each cell-center. The second loop computes the
bi-harmonic in a dual mesh cell-center by application of Gauss divergence theorem on the
gradient of the Laplacian.

Consider again the one-dimensional case of Fig. 4.3. For smooth flows the dissipation
terms must be related to third-order differences at the interfaces. For interface j + 1/2 this
yields

∂3ŵj+1/2 ≈ ∂2ŵj+1 − ∂2ŵj = ŵj+2 − 3ŵj+1 + 3ŵj − ŵj−1, (4.20)
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which requires data from four cells. For cell j the fourth-order dissipation term is computed
by subtracting the third-order differences at the neighboring interfaces, i.e.

∂4ŵj ≈ ∂3ŵj+1/2 − ∂3ŵj−1/2 = ŵj−2 − 4ŵj−1 + 6ŵj − 4ŵj+1 + ŵj+2, (4.21)

which requires data from five cells.

Temporal Discretization When the discretized integral equations Eq. (4.6) are applied
to each cell of the computational domain, a system of coupled ordinary differential equations
is obtained. An explicit time-stepping scheme is used to discretize the time derivative and
flux terms in Eq. (4.6). Consider the system of spatially discretized equations, i.e.

dw

dt
+ f [w] = 0, (4.22)

where vector w is the cell-averaged value of the converved variables and vector f is the
discrete flux vector. The explicit `-stage modified Runge-Kutta method for updating wn to
wn+1 reads

w0 = wn,

wk = w0 − αk∆tf [wk−1], k = 1, ..., ` (4.23)
wn+1 = w`,

where the time is discretized as tn = n∆t.
The traditional four-stage modified Runge-Kutta method, wich is second-order time-accurate,

has coefficients αk ∈ { 1
4 , 1

3 , 1
2 , 1}. We will use this low-storage method as a relaxation pro-

cedure to obtain the steady-state solution.
Consider the flux vector to be split into a central difference term f (cd) and a dissipation term

f (dis), i.e. f ≡ f (cd) − f (dis). Substitution of the flux vector in Eq. (4.23) and introducing
coefficients βk yields

wk = w0 − αk∆t(f (cd)[wk−1] − f
(dis)
k ), (4.24)

f
(dis)
k = βkf

(dis)[wk−1] + (1 − βk)f (dis)[wk−2]. (4.25)

The coefficients αk are chosen to maximize the stability interval along the imaginary axis and
the coefficients βk are chosen to increase the stability interval along the negative real axis.
This method is commonly referred to as Jameson’s modified Runge-Kutta method. We will
use a four-stage scheme with two evaluations of the artificial dissipation analog to Jameson
(1995). Its coefficients are

α1 = 1
3 , β1 = 1 ,

α2 = 4
15 , β2 = 1

2 ,
α3 = 5

9 , β3 = 0 ,
α4 = 1 , β4 = 0 .

(4.26)

For time marching towards a steady state, computation time is minimized when time in-
tegration in every control volume is related to its allowable maximum time-step determined
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by numerical stability. This procedure is called local time-stepping†, where the time-step is
defined as

∆t = CFL
1
4V 1/3

|u| + c
, (4.27)

where CFL ∼ 1 is the Courant-Friedrich-Lewy number, V is the volume of the control
volume, u is the local velocity vector and c is the local speed of sound.

Boundary Conditions The preceding paragraphs deal with the computation of fluxes
between control volumes in the interior of the computational domain. Volumes on the bound-
ary of this domain, however, share interfaces with this boundary. Depending on the character
of the boundary, fluxes over these surfaces need special treatment. At all boundaries, dummy
cells (also referred to as ghost cells) located outside the computational domain are intro-
duced. These dummy cells have an associated state vector which is updated according to the
character of the boundary.

Two types of boundary conditions are implemented, i) permeable boundaries (subsonic
in/outflow) and ii) solid walls. Permeable boundaries will be discussed in detail in Section
4.3.3. At solid walls a simple but robust boundary condition is used, see Fig. 4.5. The

Nb

S Sb1n1 2nb2

FIGURE 4.5: Two-dimensional mesh near solid wall.

physical wall is indicated by the thick solid line, while the relevant part of the boundary of
the control volume next to the wall is indicated by the thick dashed line. The wall related
surface vector is Sb n ≡ Sb1 n1 + Sb2 n2. Consider the Euler equations in differential form.
Then the constraint u ·n|b ≡ 0 transforms into ∇p ·n|b ≡ 0. This shows that the pressure pb

at the boundary node Nb can be used in an unmodified way at surface Sb in order to update
the flux. In summary, the flux vector F̄ · nS (related to the control volume associated with
node Nb) is updated by adding pbSb(0,n · ex,n · ey,n · ez, 0)

T to this flux vector.

†In case of time accurate simulations, the time-step for all cells must be the same. This global time-step is
commonly varied every time by forcing it to be the minimum of all local time-steps, provided that this global time-
step is small enough to capture all physical time scales.



64 CHAPTER 4. COMPUTATIONAL FLUID DYNAMICS

4.3 Local Preconditioning

4.3.1 Literature Survey

The numerical solution of the Navier-Stokes equations is complicated in the case of incom-
pressible flow, by the lack of an independent equation for the pressure (e.g. an equation of
state, relating pressure and density). The absolute pressure is of no significance in an incom-
pressible flow, only the gradient of the pressure affects the flow field. One way to overcome
this difficulty was first developed by Chorin (1967), who transformed the equations into a
hyperbolic system of equations in pseudo-time. A second way to overcome this difficulty is
to construct the pressure field so as to guarantee satisfaction of the continuity equation, see
e.g. the SIMPLE pressure-correction algorithm of Patankar (1980).

Turkel (1987) was amongst the first researchers to generalize the method of Chorin of
pseudo-compressibility to low speed compressible flow. Turkel concludes with the notion that
many authors had already successfully used variations of pseudo-compressibility precondi-
tioning for both the incompressible and compressible flow equations. The various approaches
used in these papers have been unified and generalized by Turkel (1987).

Volpe (1993) examined the performance of three compressible flow methods at low free-
stream Mach numbers. Consider the two-dimensional inviscid steady flow over a circular
cylinder. The surface pressure coefficient has been used as the error indicator, as e.g. errors
in any one of the conservative variables would show up as errors in the surface pressure
coefficient. Consider computations for various meshes and for Mach numbers M of 0.1,
0.01 and 0.001. For a fixed mesh, the error in the numerical solution increased as the Mach
number was decreased! The solution for the M = 0.001 case was so poor that symmetry was
lacking, even though the numerical solution had reached a steady state (the maximum residual
in the density field reduced to machine accuracy)! The discrepancy between computed and
analytical solutions decreased when the mesh was refined.

Turkel et al. (1994) examined how preconditioning can be used to improve the accuracy of
the steady-state numerical solution, in case of small Mach numbers. They found necessary
properties of the artificial viscosity, in order to have convergence as the Mach number goes
to zero.

Until 1996 the design of local preconditioners has been solely based on eigenvalue analy-
sis. However, Darmofal and Schmid (1996) showed that the eigenvector structure also has an
influence on the performance of preconditioners. Due to the lack of eigenvector orthogonal-
ity, small perturbations in a linearized evolution problem can be significantly amplified over
short time scales, while the long time behaviour of the system is governed by the eigenvalues.
However, for a nonlinear problem, this short time non-normal growth may completely alter
the mean state, resulting in a significant lack of robustness.

The basic goal of preconditioning is to reduce the stiffness of the system, which results in
convergence acceleration for time-marching methods. This, though, is not the only possible
benefit of preconditioning. Lee (1998) discussed several design criteria for local precondi-
tioning of the Euler equations. These criteria are based on the following list of major benefits.

• Removal of stiffness. Local preconditioning can reduce the stiffness of the Euler equa-
tions, caused by the range of characteristic speeds. In the nearly incompressible flow
regime the stiffness can be entirely removed. In the transonic flow regime, it can be
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substantially reduced. In practice, the condition number (i.e. the ratio of largest-to-
smallest wavespeed) becomes a function of the cell aspect ratio.

• System behaves as a scalar equation. Preconditioning makes the Euler equations be-
have more like a scalar equation, because the spread amongst all eigenvectors is re-
duced. This property is advantageous in applying additional convergence-acceleration
techniques.

• Accuracy preservation for M → 0. In the limit of low Mach number M , the accuracy
of the spatial discretization can be improved by preconditioning the artificial dissipa-
tion term.

• Decoupling of Euler equations. Some preconditioning matrices have the property of
decoupling the entropy equation from the Euler equations. Such decoupling allows the
development of genuinely multidimensional discretizations.

Though local preconditioning provides several benefits, these come at the expense of robust-
ness. Lee (1998) presents four reasons for instability in a stagnation region:

• Unstable local time-step. As the local Mach number M decreases, the allowable local
time-step for the preconditioned equations increases as M−1, possibly varying strongly
from cell to cell.

• Degeneration of eigenvectors. Small M reduces the orthogonality between eigenvec-
tors, increasing the chance of transient growth, since the eigenvector basis is not effec-
tively spanning the solution space.

• Flow angle sensitivity. The flow angle varies substantially around a stagnation point,
and the preconditioned system may be over-sensitive to this variation in flow direction.

• Vorticity production. In planar inviscid flows, vorticity is merely convected with the
flow speed, production is caused only by wall motion or a shock. However, the precon-
ditioned system may have artificial vorticity production terms, which effect is amplified
around stagnation points, where velocity and pressure fields vary substantially.

It can be shown (e.g. Gustafsson 1980) how to derive the singular limit of the Euler
equations when the Mach number M goes to zero. When the Euler equations are non-
dimensionalized, solutions can be sought in the form of an asymptotic expansion in powers
of M (see Appendix A). Collecting terms with equal power of M , shows that in the limit
of incompressible flow the pressure is constant in space up to variations of order M 2. Fur-
thermore it can be shown that the limit solutions satisfy the equations for incompressible
(inviscid) flow. Guillard and Viozat (1999) presented an asymptotic analysis in powers of M
of the flux-difference splitting approximations of the Euler equations in the limit of low M .
They proved that the solutions of the discrete system contain pressure variations of order M .
This explains why these kind of approximations of the Euler equations cannot compute accu-
rately low-speed flow. Preconditioning of the numerical dissipation tensor allows to recover
a correct scaling of the pressure.

An overview of the status-quo of preconditioning for the steady-state compressible inviscid
fluid dynamic equations is presented by Turkel (1999) and Venkateswaran and Merkle (1999).
They also consider extensions to the Navier-Stokes equations.
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4.3.2 Time-Derivative Preconditioning
This subsection follows the preconditioning method of Weiss and Smith (1995) because it
can be considered as a rather simple form out of all potential preconditioners, while the
wavespeed modification in the subsonic region is suited for the present flow regime.

Preconditioning Matrix The governing equations of motion for an inviscid compress-
ible flow without effects of heat conduction are the Euler equations. In a Cartesian coordinate
system these Euler equations, expressing conservation of mass, linear momentum and total
energy are given by:

∂w

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0, (4.28)

where w is the vector of conserved variables

w = (ρ, ρu, ρv, ρw, ρE)T , (4.29)

and f , g and h are the convective flux vectors

f = (ρu, ρu2 + p, ρuv, ρuw, ρuH)T ,

g = (ρv, ρuv, ρv2 + p, ρvw, ρvH)T , (4.30)
h = (ρw, ρuw, ρvw, ρw2 + p, ρwH)T ,

where t is the time, x, y, z are the Cartesian components of the position vector, ρ is the
density, u, v, w are the Cartesian velocity components in the x, y, z directions, respectively
and p is the static pressure. The total energy per unit mass E is related to the total enthalpy
per unit mass H by H ≡ E + p/ρ, where H ≡ he + 1

2 |u|2 and he = CpT . The static
temperature is denoted with T and the specific heat at constant pressure is denoted with Cp.
For flows of variable density fluids, an equation of state, typically of the form ρ = ρ[p, T ]
must be specified additionally.‡

The derivation of the preconditioning matrix begins by transforming the dependent vari-
ables in Eq. (4.28) from conserved variables w to primitive variables q as follows:

∂W

∂Q

∂q

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0, (4.31)

where q = (p, u, v, w, T )T and the Jacobian ∂W
∂Q

is given by

∂W

∂Q
=









ρp 0 0 0 ρT

ρpu ρ 0 0 ρT u
ρpv 0 ρ 0 ρT v
ρpw 0 0 ρ ρT w
ρpH − 1 ρu ρv ρw ρT H + ρCp









, (4.32)

where ρp = ∂ρ
∂p |T and ρT = ∂ρ

∂T |p. The choice of primitive variables q as dependent variables
is a natural choice when solving incompressible flows. Furthermore, the choice of pressure as

‡For didactic reasons the implicit assumption of a calorically perfect gas, i.e. p = ρRT and constant Cp, is
postponed.
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a dependent variable allows the propagation of acoustic waves in the system to be modified.
This becomes clear when we transform Eq. (4.31) by multiplying with the transformation
matrix K as follows:

(

K
∂W

∂Q

)
∂q

∂t
+ K(

∂f

∂x
+

∂g

∂y
+

∂h

∂z
) = 0, (4.33)

where

K =









1 0 0 0 0
−u 1 0 0 0
−v 0 1 0 0
−w 0 0 1 0
|u|2 − H −u −v −w 1









. (4.34)

The matrix pre-multiplying the time derivative in Eq. (4.33) is given by

K
∂W

∂Q
=









ρp 0 0 0 ρT

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
−1 0 0 0 ρCp









. (4.35)

Upon inspection of Eqs. (4.33)-(4.35) we see that e.g. the term ρp that multiplies the pressure
time derivative in the first-row equation controls the speed of propagation of acoustic waves
in the system. It is interesting to note that, for a calorically perfect gas, ρp = 1/RT = γ/c2

where R is the ideal gas constant, c is the acoustic velocity (speed of sound in a quiscent
medium) and γ = Cp/Cv where Cv is the specific heat at constant volume, whereas for
incompressible flow ρp = 0, consistent with the notion of infinite pressure wave speeds.
Thus, if we replace ρp by a term proportional to the inverse of the local velocity squared, we
can control the eigenvalues of the system such that they are all of the same order.

We precondition the system by replacing the matrix given by Eq. (4.35) with the precon-
ditioning matrix

Γ =









Θ 0 0 0 ρT

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
−1 0 0 0 ρCp









, (4.36)

where Θ is given by

Θ =
1

U2
r

− ρT

ρCp
. (4.37)

Here Ur is a reference velocity defined as follows:

Ur =







εc, if |u| < εc
|u|, if εc < |u| < c
c, if |u| > c

, (4.38)
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where ε is a small number (∼ 10−5) included to prevent singularities at stagnation points§.
The form of Eq. (4.37) ensures that for a calorically perfect gas, as Ur → c, Θ reduces to
γ/c2, consistent with the non-preconditioned Eq. (4.35).

The preconditioned system is obtained by substitution of Eq. (4.36) for Eq. (4.35) in Eq.
(4.33) and premultiplying the result by K−1 to yield

P−1 ∂q

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0, (4.39)

where

P−1 = K−1Γ =









Θ 0 0 0 ρT

Θu ρ 0 0 ρT u
Θv 0 ρ 0 ρT v
Θw 0 0 ρ ρT w
ΘH − 1 ρu ρv ρw ρT H + ρCp









. (4.40)

When we write Θ = (Θ− γ
c2 ) + γ

c2 it is seen easily that in case of preconditioning additional
terms appear in the Euler equations. These terms are ( 1

U2
r
− 1

c2 )∂p
∂t (1, u, v, w,H)T and vanish

when Ur → c.
It is not necessary to multiply P with Jacobian ∂W

∂Q
in order to obtain a system in con-

servation form. The density is not very appropriate for almost incompressible flow. Spatial
derivatives of the density are almost zero and hence not suited for use in artificial viscosity.
Consider the primitive variables q to be updated according to

∂q

∂t
+ P(

∂f

∂x
+

∂g

∂y
+

∂h

∂z
) = 0. (4.41)

Then the matrix P equals

P =











|u|2U2
r

2CpT − uU2
r

CpT − vU2
r

CpT −wU2
r

CpT
U2

r

CpT

−u
ρ

1
ρ 0 0 0

− v
ρ 0 1

ρ 0 0

−w
ρ 0 0 1

ρ 0
|u|2
2ρCp

ξ − T
ρ − u

ρCp
ξ − v

ρCp
ξ − w

ρCp
ξ 1

ρCp
ξ











, (4.42)

where ξ = (1 +
U2

r

CpT ). Rather than updating the conservative variables by matrix multiplica-
tion, these variables are updated by employing the updated primitive variables.

The goal is to obtain the steady-state solution of the Euler equations, i.e. ∂f
∂x + ∂g

∂y + ∂h
∂z =

0. However, when the implemented preconditioned equations are solved numerically, the
following system is approximated to a certain convergence level: P( ∂f

∂x + ∂g

∂y + ∂h
∂z ) = 0.

The question rises whether the latter system has the same solution as the original system.

§Weiss et al. (1999) considered an additional limitation on Ur by prohibiting amplification of pressure perturba-
tions, i.e. εc → ε

√

∆p/ρ. In general, global preconditioning uses a constant reference velocity, while local precon-
ditioning can be divided into global- and local cut-off. A more elaborate discussion is presented in Venkateswaran
et al. (2003).



§4.3. LOCAL PRECONDITIONING 69

In order to prove that the preconditioned system has a trivial solution, the determinant of P

should be determined, i.e.

det [P] =
U2

r

ρ4Cp
. (4.43)

The prove of a trivial solution (i.e. ∂f
∂x + ∂g

∂y + ∂h
∂z = 0) is completed when we show that

det[P] 6= 0 for any situation. This implies that the situation of Ur → 0 is prohibited, which
is true because min[Ur] = εc > 0.

Wave Velocities In order to obtain the wave velocities that are present in the precon-
ditioned system, consider one-dimensional flow. Locally a three-dimensional flow can be
considered one-dimensional, let’s say in ex direction.¶ The characteristic form of Eq. (4.39)
is obtained by deleting g and h, transforming ∂f

∂x into ∂f
∂q

∂q

∂x and deleting v and w, yielding:

∂

∂t
q′ + S

∂

∂x
q′ = 0, (4.44)

where q′ = (p, u, T )T and

S =






βU2
r u ρU2

r 0
ρ−1 u 0

u
Cpγp (U2

r − γRT )
U2

r

Cp
u




 . (4.45)

The eigenvalues of matrix S are obtained by solving det[S − λI] = 0, yielding the wave
velocities of the preconditioned system, i.e. λ = {u, u′ + c′, u′ − c′} where

u′ = u(1 − a)

c′ =
√

a2u2 + U2
r

a = (1 − βU2
r )/2

β = ρp +
ρT

ρCp

For an ideal gas β = (γRT )−1 = c−2. When Ur = c (at sonic speeds and above), a =
0 and the eigenvalues of the preconditioned system take their traditional form {u, u ± c}.
When Ur → 0 (at low speeds), a → 1

2 and all eigenvalues become of the same order as
u. Even for incompressible fluids (β ≡ 0), a = 1

2 regardless of Ur! In order to show that
the preconditioned system remains well conditioned at all speeds, in the following we will
introduce the so-called characteristic condition number.

¶Consider the three-dimensional Euler equations in symmetric quasi-linear form, i.e. ∂
∂t

U+A
∂

∂x
U+B

∂
∂y

U+

C
∂
∂z

U = 0, where the state vector is defined by dU = ( dp
ρc

, du, dv, dw, dp − c2dρ)T . Consider the flow in the

direction of some unit vector n. Then the Euler equations reduce to ∂
∂t

Un+An(n·∇)Un = 0, with matrix An =
Anx + Bny + Cnz . State vector Un is defined by dUn = DdU, where D is a diagonal matrix with diagonal
elements {1, nx, ny , nz , 1} and others zero. The eigenvalues of matrix An are λ = {u ·n,u ·n,u ·n,u ·n± c},
where u = (u, v, w)T is the Cartesian flow speed vector (Lee 1998).
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In the field of Computational Fluid Dynamics, two important cases must be distinguished
while computing steady flows.

• In order to satisfy the well-known CFL stability condition, the propagation distance of
all waves must remain within the numerical support of the discretization scheme. For
explicit methods, this limits the time-step to a multiple of the cell length divided by the
magnitude of the fastest wavespeed.

• Convergence, however, will be dominated by the number of iterations required for the
slowest waves to propagate across the computational domain.

Thus, a useful quantity in designing preconditioners is the characteristic condition number
kc, which is defined as the ratio of largest-to-smallest wavespeed. The goal is to minimize
kc. Consider the convective speed u to be positively defined, i.e. u > 0. Then kc =
(u′ + c′)/MIN[u, |u′ − c′|]. In case of the (unpreconditioned) Euler equations this yields

Euler: kc =
M + 1

MIN[M, |M − 1|] , (4.46)

where the Mach number is defined as M = u/c. Fig. 4.6 shows kc as function of the Mach
number M for the Euler equations as well as for the preconditioned system,

precon. Euler: kc =

√

4 + (1 − M2)2 + (1 + M2)
√

4 + (1 − M2)2 − (1 + M2)
, (4.47)

when ε → 0. Consider the Euler equations. The smallest characteristic condition number is
obtained when M = 1

2 , resulting in kc = 3. At low Mach numbers, the entropy mode is the
slow mode (convecting with the flow speed) which is moving much slower than the acoustic
speed. At sonic conditions, the slow mode corresponds to the upstream-running acoustic
wave. Clearly, when M → 0 or M → 1, kc → ∞ and convergence difficulties are expected.

Consider the preconditioned system. When the Mach number approaches zero, the char-
acteristic condition number is bounded, i.e. when M → 0 then kc →

√
5+1√
5−1

≈ 2.62. When

M → 1, kc → 1+M
1−M , yielding a limit behaviour identical to the Euler equations. When

the flow in a stagnation region is considered, i.e. |u| ≤ εc, preconditioning is performed at
constant reference velocity Ur. It can be shown in this case, that the condition number can be
infinitely large after all, i.e. when M → 0 it follows that kc ∼ ε/M → ∞. This might result
in a severe lack of robustness of the method.
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FIGURE 4.6: Characteristic condition number for subsonic flow.

4.3.3 Boundary Conditions
The flow through a valve is considered to be compressible and subsonic. The common way
of imposing boundary conditions is to use characteristic boundary conditions (e.g. Tannehill
et al. 1997), in this case for the preconditioned system.

Characteristic Formulation In order to obtain the characteristic form of the precondi-
tioned Euler equations, the one-dimensional wave equation derived as Eq. (4.44) is used.
The common strategy is to calculate first the left eigenvector associated with each of the
three eigenvalues of matrix S. Subsequently these left eigenvectors will be multiplied with
Eq. (4.44), yielding the characteristic equations. The left eigenvector ` related to eigenvalue
λ can be derived from ST

` = λ`. The complete form of the latter is





βU2
r u ρ−1 u

Cpγp (U2
r − γRT )

ρU2
r u

U2
r

Cp

0 0 u










`1
`2
`3



 =





λ`1
λ`2
λ`3



 . (4.48)

Solving for ` by taking λ1 = u, λ2 = u′ + c′ and λ3 = u′ − c′, respectively, yields:

`λ1
∝ (

1

ρCp
, 0,−1)T , (4.49)
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`λ2
∝ (1,

ρU2
r

u′ + c′ − u
, 0)T , (4.50)

`λ3
∝ (1,

ρU2
r

u′ − c′ − u
, 0)T , (4.51)

respectively. Finally, the characteristic formulation is obtained when one multiplies the ma-
trix [`λ1

, `λ2
, `λ3

]T with Eq. (4.44), yielding the compatibility equations

∂T

∂t
+ u

∂T

∂x
=

1

ρCp
[
∂p

∂t
+ u

∂p

∂x
], (4.52)

∂u

∂t
+ (u′ + c′)

∂u

∂x
=

u − (u′ + c′)

ρU2
r

[
∂p

∂t
+ (u′ + c′)

∂p

∂x
], (4.53)

∂u

∂t
+ (u′ − c′)

∂u

∂x
=

u − (u′ − c′)

ρU2
r

[
∂p

∂t
+ (u′ − c′)

∂p

∂x
], (4.54)

along dx
dt = u, dx

dt = u′ +c′ and dx
dt = u′−c′, respectively. In case of no preconditioning, i.e.

Ur → c so u′ → u and c′ → c, the familiar characteristic formulation of the Euler equations
appears (e.g. Laney 1998).

Inlet Flow Consider the inlet boundary of a compressible flow. When subsonic one-
dimensional flow is considered, one characteristic {u′ − c′} is propagating upstream, while
two characteristics {u, u′ + c′} are propagating downstream. Thus two variables must be
imposed, while one variable must be constructed from the flow domain. See Fig. 4.7a.

u’+c’ u’−c’
t

uu’−c’ u

(b) Outlet Boundary (x=0)(a) Inlet Boundary (x=0)
00

CFD domain CFD domain

u’+c’
t

xx

FIGURE 4.7: Boundary characteristics for subsonic flow. The ghost cells (not shown) located
outside the computational (CFD) domain have an associated state vector which is updated
by employment of the characteristic(s) leaving the CFD domain.

In the case of gas flow through a valve in an experimental setup, an appropriate boundary
condition would be fixing the inlet velocity u and the inlet temperature T . At the inlet bound-
ary this then fixes c and therewith u′ and c′. Now the pressure p can be updated. Setting
∂u
∂t ≡ 0 in Eq. (4.54) leads to

∂p

∂t
= (u′ − c′)

ρU2
r

u − (u′ − c′)

∂u

∂x
− (u′ − c′)

∂p

∂x
. (4.55)
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This yields the pressure p at the inlet boundary at the new time level.

Outlet Flow Consider subsonic one-dimensional flow at the outlet boundary. Then two
characteristics {u, u′+c′} are pointing out of the flow domain, while one {u′−c′} is pointing
inwards, see Fig. 4.7b. This yields the constraint of imposing one boundary variable and
constructing two boundary variables. The static pressure p is set as a constant at the boundary,
while constructing the density ρ and convective speed u explicitly in time. We choose to
construct the temperature rather than the density for reasons of accuracy at very-low Mach
number flow.

Eq. (4.53) is used in an unmodified way to determine u of the inlet ghost cells at every
time-step, because ∂p

∂t ≡ 0. Eq. (4.52) relates the static temperature entropy wave to the
static pressure entropy wave. Again it can be used in an unmodified way. The equations to
be implemented are given by:

∂T

∂t
= −u

∂T

∂x
+

u

ρCp

∂p

∂x
(4.56)

∂u

∂t
= −(u′ + c′)

[
∂u

∂x
+

u′ + c′ − u

ρU2
r

∂p

∂x

]

. (4.57)

This yields the temperature T and the velocity u at the outlet boundary at the new time level.
The subject of boundary conditions is discussed extensively by Poinsot and Lele (1992).

They state that if the order of the spatial accuracy near the boundary is equal to the scheme
order minus one, the overall accuracy of the scheme is not affected. Therefore, since the JST
scheme is second-order accurate, we will use first-order spatial accuracy to discretize Eqs.
(4.55) - (4.57). The temporal discretization of Eqs. (4.55) - (4.57) is performed with the
same algorithm as the internal cells, i.e. Jameson’s modified Runge-Kutta method.

4.3.4 Flux Scheme

Premultiplying the time derivative by a matrix changes the pseudo-time behaviour of the
system, see e.g. Eq. (4.39), and enables the acceleration of the convergence to a steady state.
Turkel et al. (1994) showed that most central difference schemes and upwinding schemes do
not have the correct asymptotic behaviour as the Mach number approaches zero. This effect
results, if obtainable, in an inaccurate steady-state solution of the governing equations. To
correct this, one needs to change the upwinding or equivalently the artificial dissipation of
the scheme.

Artificial dissipation is essential to eliminate spurious high wavenumber modes in the solu-
tion. Flux schemes can be classified into two families: i) central difference schemes, wherein
the dissipation is added as an explicit step through the introduction of higher-order derivative
terms, ii) upwind schemes, where the dissipation is an inherent part of the spatial discretiza-
tion. In general, one can express the numerical flux as consisting of a central difference
contribution and a dissipation/diffusion contribution. To maximize efficiency and accuracy, it
is necessary that the dissipation reflects the new eigenvalues when preconditioning is applied.

In the present research preconditioning of upwind schemes has been considered to some
extent, however, without succes for the cases of valve flow. Therefore we adopted the JST
scheme for which the artificial dissipation can be controlled explicitly. Because the scaling
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factor Rj+1/2 in the dissipation terms of the flux is a scalar, preconditioning of this flux is
rather straightforward, i.e.

dj+1/2 = Rj+1/2

{

ε
(2)
j+1/2(qj+1 − qj) − ε

(4)
j+1/2(qj+2 − 3qj+1 + 3qj − qj−1)

}

, (4.58)

where
Rj+1/2 =

1

2
(Rj + Rj+1), Rj = MAX{u′

j + c′j , |u′
j − c′j |}, (4.59)

where u′ = |u|(1 − a) and c′ =
√

a2|u|2 + U2
r are the modified wavespeeds. The precon-

ditioning matrix is multiplied with the central difference flux vector only. The dissipation
vector is added separately, where the modified conservative variables ŵ are replaced by the
primitive variables q. As the local Mach number approaches zero, the dissipation scaling
factor becomes of the order of the velocity magnitude, rather than the speed of sound.

4.3.5 Time Accuracy
Steady Flow: Local Time-Stepping Following Weiss and Smith (1995), the precon-

ditioned Euler equations are discretized spatially by preconditioning the discretized Euler
equations, i.e.

dq̄

dt
+ P

1

V

∑

faces

F̄ · nS = 0, (4.60)

where P is evaluated at the dual mesh cell centroids (i.e. the nodes). This type of discretiza-
tion is thus allowed only, when it is assumed that P = P[q] is constant in space within
a control volume. However, spatial accuracy has a meaning in the steady-state only. This
steady-state is not a function of matrix P because it is under no circumstances singular.

Apart from implementing the preconditioning matrix, preconditioned characteristic bound-
ary conditions and preconditioned flux scheme, the time-step should also be modified accord-
ing to the new eigenvalues. In case of solving the preconditioned Euler equations (4.60), the
denumerator |u| + c in Eq. (4.27) is replaced by MAX{u′ + c′, |u′ − c′|}, i.e.

∆t = CFL
1
4V 1/3

MAX {u′ + c′, |u′ − c′|} , (4.61)

where u′ = |u|(1 − a) and c′ =
√

a2|u|2 + U2
r . This means that the local time-step will be

increased substantially when the local Mach number is very low. In case of preconditioning,
considering magnitudes of the local velocity vector -instead of the maximum of all directional
wavespeeds- is argumented by the local clustering of eigenvalues which turns the system to
behave as a scalar equation (Lee 1998).

Unsteady Flow: Dual Time-Stepping In order to overcome the problem of preserving
time accuracy when employing the preconditioning method, a dual time-stepping procedure
is employed. This involves an inner iteration loop in pseudo-time that is wrapped by an
outer loop stepping through physical time. Thus, the flow field at each physical time level is
treated as a steady-state problem in pseudo-time, with appropriate source terms to provide an
influence of the flow history on the current time level. In this way, the physical time-step is
not affected by the stiffness of the system.
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In the following, physical time is denoted with t and pseudo-time is denoted with τ . Con-
sider the preconditioned spatially discretized Euler equations,

P−1 ∂q

∂τ
+

∂w

∂t
+ Res[w] = 0, (4.62)

where we omit overbars for the volume-averaged values of q and w and where the residual
equals Res ≡ 1

V

∑

faces F̄ · nS. Note that as τ → ∞, the first term vanishes and the original
Euler equations are recovered. The physical time-dependent term is discretized in an implicit
fashion by means of a second-order-accurate, three-point backwards difference in time, i.e.

∂w

∂t
[tn+1] =

3w(n+1) − 4w(n) + w(n−1)

2∆t
+ O(∆t2), (4.63)

where integer n denotes the physical time level, i.e. t = n∆t. This result is obtained after a
Taylor series expansion of w [tn] evaluated at time tn−1 and tn−2, i.e.

w [tn−1] = w [tn] − ∆t
∂w

∂t
[tn] +

1

2
∆t2

∂2w

∂t2
[tn] + O(∆t3), (4.64)

w [tn−2] = w [tn] − 2∆t
∂w

∂t
[tn] + 2∆t2

∂2w

∂t2
[tn] + O(∆t3), (4.65)

where subtraction of Eq. (4.65) from four times Eq. (4.64) yields Eq. (4.63). In order to
start the procedure the solution at time t = ∆t is computed using a first-order-accurate, two-
point backwards difference scheme. A multistage Runge-Kutta algorithm is used to drive the
pseudo-time derivative to zero,

q(0) = q [τ ]
{

P−1 +
3

2

∆τ

∆t

∂W

∂Q

}(k−1)

∆q(k) = −αk∆τ

{
3w(k−1) − 4w(n) + w(n−1)

2∆t
+ Res(k−1)

}

q [τ + ∆τ ] = q(m) (4.66)

where k = 1, 2, ...,m is the stage counter, αk is the multistage coefficient for stage k and
∆q(k) ≡ q(k) − q(0). The pseudo time loop drives the solution from n to n + 1 as τ → ∞.
The term 3

2
∆τ
∆t

∂W
∂Q

is formed on base of an implicit treatment of the physical time derivative
term in pseudo time. The matrix that multiplies ∆q(k) is inverted analytically and evaluated
in a pointwise fashion at stage k − 1, i.e.

{

P−1 +
3

2

∆τ

∆t

∂W

∂Q

}−1

=

1

ρΥ1









1
2 |u|2ζ1 −uζ1 −vζ1 −wζ1 ζ1

−u 1 0 0 0
−v 0 1 0 0
−w 0 0 1 0

1
2 |u|2ζ2 − T −uζ2 −vζ2 −wζ2 ζ2









,(4.67)

where

Υ1 = 1 +
3

2

∆τ

∆t
, (4.68)
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Υ2 =
1

RT
+

1

Υ1

(
1

U2
r

− 1

c2

)

, (4.69)

ζ1 =
ρ

Υ2CpT − 1
, (4.70)

ζ2 =
Υ2T

Υ2CpT − 1
. (4.71)

The pseudo-time derivative is driven to zero in the inner iteration loop. The convergence
criterion is defined in a formal way by

MAXi L2

[
∂q

∂τ |i
P(∂w

∂t + ∇ · F)|i

]

≤ εconv, (4.72)

where εconv is a small number. The L2-norm of all cells is then computed for every compo-
nent i = {1, ..., 5} of the column vector separately. The maximum value of these components
determines whether the solution is temporary in a steady state. This formal convergence crite-
rion appears to require an excessive amount of computation time. Therefore we will monitor
the non-dimensionalized residuals L2[

∂w
∂τ ] only. Weiss and Smith (1995) noticed that after

30 iterations in pseudo time, the residual associated with the continuity equation decreased
at least one order of magnitude. The physical (also referred to as global) time-step ∆t is
limited only by the level of desired temporal accuracy. The pseudo (also referred to as local)
time-step ∆τ is determined by the stability condition Eq. (4.61) with ∆t replaced by ∆τ .
Liu et al. (1998) note that the global time-step cannot be chosen to be very small, i.e. when
∆τ/∆t > 1 slow convergence is observed.

4.4 Test Cases
In order to test the Euler method for its capability of the numerical schemes to operate prop-
erly, several test cases have been considered. For the non-preconditioned Euler method ver-
ification and validation was performed successfully for the following cases: steady uniform
flow, steady bump channel flow, steady Prandtl-Meyer expansion, steady 15◦-wedge channel
flow, unsteady flow in Sod’s Riemann problems and unsteady flow in a 2D Riemann problem
of interacting shock waves with expansion fans. However, considering supersonic flows or
shock waves are not proper test cases for our goal to simulate subsonic valve flows. Therefore
the following test cases (while emphasizing preconditioning modifications) are discussed in
more detail.

Steady Uniform Flow Consider a channel with a square cross-section (0.2×0.2m2) and
a length L = 20m. The dual mesh containing 580 nodes is generated on a mesh with 1044
tetrahedrons. We want to obtain a steady flow, while employing Jameson’s modified Runge-
Kutta time marching method, from a non-uniform initial condition. This initial condition is
constructed from the outlet static pressure, inlet temperature and a velocity distribution equal
to

u[x, t = 0] = (1 + 0.1cos[2πx/L])uinex, (4.73)

where uin is the inlet (x = 0) boundary condition for the velocity. In order to test the
preconditioned Euler method the Mach number is set to M = uin/cin = 0.01 and the cut-off
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parameter (in the Weiss & Smith preconditioning matrix) is ε = 0.005. The JST artificial
dissipation parameters are set to k(2) = 0, β(4) = 0 and k(4) = 0.0313. Fig. 4.8 shows
the effect of time-derivative preconditioning convergence acceleration. The steady-state flow
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FIGURE 4.8: Time marching of initially disturbed uniform flow at low Mach number (—,
Euler; – –, preconditioned Euler).

is approximated more accurately by decreasing residuals. These residuals are normalized to
yield unity at the first iteration. The residuals for the momentum density in the x-direction
show a similar behaviour, except that at the first few iterations a significant increment can be
observed for the case without preconditioning. The trivial solution equals the steady uniform
flow determined by the three boundary conditions (inlet velocity, inlet temperature and outlet
pressure) in absence of lateral velocity components.

Steady Irrotational Flow around Joukowski Aerofoil In case of inviscid fluid-structure
interaction simulations, the pressure is an important variable because it provides the coupling
mechanism between fluid and structure. However, pressure-velocity decoupling in the steady
state solution can often be observed when very low Mach number flow is simulated. Even
in case of preconditioning the flux scheme dissipation terms can scale incorrectly (e.g. Ed-
wards and Liou 1998). In order to investigate this potential effect in the present method, an
analytical solution of the flow field for M → 0 is desired. Therefore we choose to simulate
the steady irrotational flow around a Joukowski aerofoil. Appendix A presents the rationale
of the limit of incompressible flow by lowering the Mach number.

The method of conformal mapping provides the tool to transform a circle in the z-plane
into the desired geometry in the ζ-plane, see Fig. 4.9. The complex coordinates are defined
by z = x + iy and ζ = ξ + iη where i =

√
−1. We define the circle by the relation

(x+λ)2 + y2 = R2, where the origin of the circle with radius R is located at (−λ, 0), where
λ/R = 1

10 . When the conformal mapping ζ = z + a2

z is used, where we specify a = R − λ,
the Joukowski profile of Fig. 4.9b is obtained.

In order to be able to simulate the flow around an aerofoil with an Euler method, the Kutta
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FIGURE 4.9: A circle in the z-plane (a) is mapped into a Joukowski aerofoil in the ζ-plane
(b), λ/R = 1

10 .

condition is required. For the symmetrical aerofoil in Fig. 4.9b this is obtained when the
flow has zero degrees of attack. In order to save computation time, only half of the domain
is considered, justified by the symmetric flow solution with respect to the axis η/R = 0.
Irrotational flow around a plane two-dimensional object is nonunique because it allows an
arbitrary circulation to be added to the flow (e.g. Kundu 1990). Here we force the circulation
to be zero, and obtain the Kutta condition, by applying a wall boundary condition at η = 0
outside the profile.

The analytical solution is obtained by making use of the complex velocity potential W [z]
of the flow around a circular cylinder. The velocity components in the ζ-plane are obtained
by

uζ − ivζ =
dW

dζ
=

dW

dz
/
dζ

dz
=

1 − R2

(z+λ)2

1 − a2

z2

U∞, (4.74)

where U∞ is the free-stream velocity. The numerator represents the superposition of a
uniform flow and a dipole (positioned at the center of the circle) flow field. The veloc-
ity components in the ζ-plane as function of ζ are obtained by substituting z = z[ζ] into
Eq. (4.74). The complex coordinate z is obtained from the ζ-plane by the inverse trans-

formation z = 1
2ζ +

√
1
4ζ2 − a2. The static pressure is determined by Bernoulli’s equation

p∞+ 1
2ρU2

∞ = pζ + 1
2ρ(u2

ζ +v2
ζ ). The flow exhibits no singularity at the cusp-shaped trailing

edge, i.e. lim
z→a

(uζ − ivζ) → a
RU∞ (using the rule of l’Hôspital).

The flow domain (ζ-plane) is discretized by generation of a 2D triangular mesh. After a
one-cell extrusion process the prisms are converted to tetrahedral elements, which are used
as input for the generation of the median dual mesh. The boundaries of the computational
domain must be far away from the profile in order to simulate the theoretical model. The
flow domain is chosen as a box of length 30R, height 12R and width 1

50R. In order to
validate whether the length and height of the domain is large enough, the method of char-
acteristic boundary conditions is employed and deviations in flow variables are monitored at
the boundaries. The initial condition equals the state spanned by the constant boundary con-
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ditions, where the Mach number M equals 0.01. Other parameters are: k(2) = 0, β(4) = 0,
k(4) = 0.01, CFL = 0.5 and in case of preconditioning ε = 0.005. The pressure coefficient
is defined by cp = p−p∞

1
2 ρU2

∞

. Fig. 4.10 shows the results when the Euler method is used without
the implementation of preconditioning. We see that the computed velocity distribution is too
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FIGURE 4.10: Flow around Joukowski aerofoil, M = 0.01. (a) Pressure coefficient and (b)
scaled velocity magnitude, on aerofoil after 20×103 pseudo time-steps. Preconditioning is
not applied (— , analytical solution; ◦, simulation). The length of the aerofoil (projected on
the ξ-axis) is denoted by L.

low. An even more serious problem is concerned with the pressure distribution. Increasing
the number of iterations towards steady-state does not cure this accuracy problem. Fig. 4.11
shows the results when the Euler method is used for preconditioning switched on. We see
that the distribution of velocity and pressure on the aerofoil is in good agreement with the
analytical solution. At 20×103 iterations the outlet velocity varies less than 0.3% of the inlet
velocity. This suggests that the non-reflecting boundaries are indeed sufficiently far away
from the aerofoil.
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FIGURE 4.11: Flow around Joukowski aerofoil, M = 0.01. (a) Pressure coefficient and (b)
scaled velocity magnitude, on aerofoil after 20×103 pseudo time-steps. Preconditioning is
applied (— , analytical solution; ◦, simulation). The length of the aerofoil (projected on the
ξ-axis) is denoted by L.

Finally, some additional tests have been performed.

• Consider the flow solution after 20×103 pseudo time-steps for the preconditioned Euler
method. When the dissipation coefficient k(4) is decreased to 0.005, a restart shows an
unstable solution. After approximately 103 iterations the residuals go to infinity and
the flow near the stagnation point becomes supersonic. This indicates that choosing the
dissipation coefficients should be taken with care.

• Consider the inlet Mach number to be set to 0.01. When preconditioning is switched
on, while the flux scheme is not preconditioned, the method results in an unstable so-
lution (negative density) after a few iterations. When preconditioning is switched off,
while the flux scheme is preconditioned, the solution becomes unstable after a few hun-
dred iterations. This suggests that consistency in the development of a preconditioned
Euler method is required.

• Consider again the inlet Mach number to be set to 0.01. First, the case for cut-off
parameter ε = 0.1 is compared with the case for ε = 0.005. It is observed that a faster
convergence, but inaccurate solution, is obtained when the cut-off parameter ε exceeds
M . Second, the case for cut-off parameter ε = 0.001 is compared with the case for
ε = 0.005. The convergence speed of the case for ε = 0.001 appeared much less than
the case for ε = 0.005. Although M exceeds ε in both cases, the local Mach number
could be smaller than ε. However, after convergence the minimum local Mach number
appeared still larger than ε. This suggests that ε cannot be very small. Turkel (1999)
notes that the reasons for this effect are still unclear.
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Unsteady Separated Flow around Inclined Plate Yeung and Parkinson (1997) pro-
posed an analytical model for the steady inviscid separated flow around an inclined 2D flat
plate. At an inclination smaller than 90◦, the Kutta condition is satisfied at both leading and
trailing edge of the plate. A boundary condition is formulated based on some experimental
results, but no additional empirical information is required. The predicted pressure distribu-
tions on the surface for a wide range of angle attack are found to be in good agreement with
experimental data. In a recent study by Yeung and Parkinson (2000), their model was com-
pleted by incorporating a wake width model. It allows the base pressure, which was treated
before as an empirical input, to be determined theoretically. To the opinion of the author, the
success of Yeung & Parkinson suggests that the Euler equations can be used to predict the
flow force of high-Reynolds number flows around sharp-edged blunt objects. Both models
are validated by the experimental work of Fage and Johansen (1927). Fig. 4.12 shows the
flow situation schematically.

θ

y L

U 8

x

FIGURE 4.12: Sketch of flow around plate with length L and inclination θ.

In order to validate the preconditioned Euler method for capturing steady and unsteady
high-Reynolds number flows, we will first investigate quasi-steady flow around a flat plate
and subsequently the phenomenon of vortex shedding from this flat plate. The wind-tunnel
geometry of Fage & Johansen is used to generate a mesh around the plate. In the experiments
this plate has a triangular cross-section. We circumvent mesh generation difficulties near the
edges by considering a rectangular shape with the same length and thickness. We consider
one plate angle, viz. θ = 69.85◦. In the experiment at a distance of 8L, with plate length L,
downstream of the plate center the flow velocity is time-dependent, i.e. oscillatory. However,
in the limit of large lateral distances (> 4L) the flow reaches a small fluctuating velocity
with a mean speed of 1.05U∞. We apply Bernoulli’s law (justified by Yeung & Parkinson)
to obtain the outlet pressure as function of the inlet pressure and inlet temperature. The
experiments are characterized by the Reynolds number Re = U∞L/ν ∼ 1.5 105 and Mach
number M∞ = U∞/c∞ ∼ 4.5 10−2.

The first activity consists of obtaining, when possible, a steady flow for M∞ = 4.5×10−2

by means of the local time-stepping procedure (Section 4.3.5). Preconditioning is switched
on with cut-off parameter ε = 0.01. Other parameters are CFL = 0.1, k(2) = 0.1875,
k(4) = 0.1250 and β(4) = 1.0. After 20 × 103 iterations it appeared that the pressure
distribution on the upstream-facing side of the plate is found to be in good agreement with
the experimental data except for the nodes adjacent to the edge nodes. Near these edges
the pressure showed unphysical peak values (cp ≡ p−p∞

1
2 ρU2

∞

was approximately 1.5 too high!).
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Upon inspection of parameter dependence of this solution this effect was found to be related
to the fourth-order differences in the flux dissipation terms. Several restarts were performed
while lowering the dissipation coefficients each run. Fig. 4.13 shows the pressure distribution
for the case with k(2) = 0.08 and k(4) = 0.02 after a restart of 500 iterations. The pressure
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FIGURE 4.13: Pressure coefficient on upstream-facing side of 69.85◦ inclined plate.

distribution of the simulation is found to be in good agreement with the experimental data.
However, the residuals are found to be reduced to a certain level only. This might indicate
that the solution is essentially unsteady. Indeed, the pressure distribution on the downstream-
facing side of the plate is found to fluctuate in pseudo time, approximately in the range
cp ∈ (−1.3,−0.4). According to the measurements of Fage & Johansen the time-averaged
pressure distribution on the downstream-facing side of the plate is approximately constant,
i.e. cp ∼ −1.36. Fig. 4.14 shows the velocity field of the flow around the plate at the same
pseudo time instant as the previous figure. Flow separation at the sharp edges is observed
together with the ’recirculation zone’ in the wake of the plate. Additionally we can observe
clearly a stagnation point at each side of the plate. Consider the quasi-steady flow solution in
the region upstream of the plate. The iso-Mach line M = ε encloses a flow region around the
stagnation point with a length scale of ∼ 1

4L. In this region preconditioning is applied with
a reference velocity that is not equal to the local speed magnitude, but equal to εc, see Eq.
(4.38).

In order to test the dual time-stepping algorithm, time-accurate simulations are performed.
The quasi-steady flow solution is used as initial condition. Fage & Johansen recorded velocity
fluctuations by means of the hot-wire technique. Similarly we will monitor the velocity
magnitude at the position (x/L = 5.0, y/L = 2.5). The experiments recorded a shedding
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FIGURE 4.14: Velocity field of quasi-steady flow around 69.85◦ inclined plate.

period of 64 ms. Based on this time scale the physical time-step is set to ∆t = 0.5 ms.
This time-step equals 1% of the experimentally measured shedding period (Weiss and Smith
(1995) set the time-step to 4% of the shedding period). Various numbers of iterations of
the inner loop are tested, yielding the residuals to decrease sufficiently. Table 4.1 shows
the related Strouhal numbers St = fL

U∞

, where f is the frequency of vortex shedding. The

TABLE 4.1: Strouhal number versus number of pseudo time-steps (∆t = 0.5 ms).

nr. of ∆τ steps (-) St (-)
30 0.06
50 0.11
70 0.13
90 0.14

experimental data of Fage and Johansen (1927) yield a Strouhal number of St = 0.156
which is slightly higher than the one we observed at the largest chosen number of pseudo
time-steps. However, it indicates that the time-accurate preconditioned Euler solver is able
to represent unsteady flows at low Mach numbers with respect to upstream-facing pressure
distribution and shedding frequency. This statement is in agreement with the results presented
by Kiya and Arie (1977). They compared their inviscid vortex shedding model for an inclined
plate (60◦) with a.o. the experimental data of Abernathy (1962) and Fage and Johansen
(1927). Based on the same definition of the Strouhal number Kiya & Arie showed that their
inviscid model yields a smaller Strouhal number (St = 0.14) than the experiments of Fage
& Johansen (St = 0.17) and the experiments of Abernathy (St = 0.19). The larger Strouhal
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number for experimental flows can be understood by the increase of the length scale (effective
plate length > L) due to viscous effects. An example of the fluctuating velocity profile from
our simulations is given in Fig. 4.15. The dual mesh has been generated from a two-cells
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FIGURE 4.15: Fluctuating velocity of the flow around 69.85◦ inclined plate at the monitoring
position (x/L = 5.0, y/L = 2.5) for ∆t = 0.5 ms and 90 pseudo time-steps.

lateral tetrahedral mesh. Therefore we monitor the velocity magnitude at both the right- and
left wall boundary of the computational domain. Fig. 4.16 shows the Mach number contours
at time t = 0.4 s. The phenomenon of vortex shedding is clearly observed. As mentioned by
Luo (2004) the instability of shear layers is not observed. It is expected that this effect can be
observed when viscosity terms are added to the Euler equations, i.e. when the Navier-Stokes
equations are considered.
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FIGURE 4.16: Mach number contours (0.01 ≤ M ≤ 0.08, 15 levels) of unsteady flow around
69.85◦ inclined plate at time t = 0.4 s. The actual computational domain is x ∈ (−1.2, 1.2)
m and y ∈ (−1.1, 1.1) m. Dual time-stepping with ∆t = 0.5 ms and 90 pseudo time-steps.
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5.1 Introduction

Semi-empirical expressions for the dynamical response of compressor valves employ as basic
state variables: the valve opening h, the pressure difference ∆p across the valve and the
volume-flow rate Φv through the valve. Simulations using the Basic Valve Theory raise
many questions, even when the valve is embedded in a well-defined environment. In order to
validate the Basic Valve Theory an experimental method is required which is able to measure
accurately the instantaneous valve opening h[t], the instantaneous valve volume-flow rate
Φv[t] and the instantaneous valve pressure difference ∆p[t].

In the literature measurements of both the static component of ∆p and Φv for a fixed valve
opening has been discussed abundantly. A challenging difficulty is the measurement of the
dynamic component of Φv , additional to the instantaneous values of h[t] and ∆p[t]. Some
examples of experimental methods related to valve dynamics are presented in the follow-
ing. MacLaren et al. (1975) measured both instantaneous valve opening and instantaneous
valve pressure difference (of cylinder and plenum chambers) for a reciprocating compres-
sor system. Thomann (1978) conducted an experiment to check his linear stability analysis
(Thomann 1976) of a valve connected to a pipe. To that aim the static component of mass-
flow rate and the instantaneous valve motion (force transducer) was measured. Ziada et al.
(1986) and Ziada et al. (1987) investigated self-excited vibrations of compressor plate valves
under steady state conditiones. Simultaneous measurements were performed of the instanta-
neous valve opening (four proximity transducers), the instantaneous valve pressure difference
and the static component of the mass-flow rate (orifice plate). Ishizawa et al. (1987) consid-
ered the case of flow between parallel disks with a forced sinusoidally oscillating gap width.
Measurements were performed of the instantaneous gap width (capacitive transducer), the
instantaneous fluid pressures on the lower disk (five positions) and the instantaneous hydro-
dynamic force (load cell) acting on the lower disk. Van Zon (1989) and Van Zon et al. (1990)
considered the flow through a reed valve. The instantaneous volume-flow rate is determined
by measurements of the outlet flow speed (hot wire anemometry). The instantaneous valve
opening is measured optically. The valve pressure difference is constant for an oscillating
reed because of the large volumes of the reed environment. Tarnopolsky et al. (2000) also
considered an oscillating reed valve and measured the static component of the volume-flow
rate (rotameter), the instantaneous pressure difference and the instantaneous valve opening
(accelerometer).
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This chapter presents the experimental method to obtain data for the validation of the Basic
Valve Theory for unsteady flow conditions. The experimental results concerning the physics
of valve dynamics are discussed in Chapter 6. In order to investigate the plate motion and
the flow in compressor valves, a simplified compressor valve, referred to as model valve,
has been designed (Section 5.2). The experimental setup is presented briefly in Section 5.3.
Elaboration of the measurement of the instantaneous valve opening can be found in Section
5.4. The measurement of the static components of the valve pressure difference and the
valve volume-flow rate is discussed in Section 5.5. The dynamic components of both valve
pressure difference and valve volume-flow rate are obtained by making use of the linear
theory of sound propagation. To that aim the model valve is connected to the end of a pipe
from which the flow is originating out of a pulsation source. The Two-Microphone Method
has been extended for signal reconstruction along this pipe in the time-domain (Section 5.6).
Finally, the determination of the mechanical valve parameters is presented in Section 5.7.

5.2 Design of Model Valve
Compressor valves have rather complex geometries. Although the present experimental
method has been tested successfully on a commercially available compressor valve, con-
sidering a simplified valve is more suited for Computational Fluid Dynamics and theoretical
modelling. Therefore a model valve has been designed, comprising a geometry that is less
complex than a compressor valve, but maintains the essential features of compressor valves.
The similarities and differences between the model valve and a commercially available com-
pressor valve will be discussed in Chapter 6. Fig. 5.1 shows a photograph of the model valve
and a sketch of the ring plate. Fig. 5.2 shows the model valve assembly with detailed legend.

(a) (b)

2

d dsr sr

1

R

Guiding Hole

Plate

Port

Flow

R

FIGURE 5.1: (a) Photograph of partially dismantled model valve. The flow direction is indi-
cated with arrows. (b) Sketch of partial bottom view of photograph (R1 is the inner radius
and R2 is the outer radius of the ring plate, dsr is the sealing rim length).
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FIGURE 5.2: Model valve assembly (A: seat, B: ring plate, C: limiter, D: spring, E: glasfiber
connector, F: imbuss screw to adjust the position of the glasfiber, G: high-tolerance ring to
adjust the maximum valve opening, H: locking nut, I: guiding rod, J: nylon tube connected to
the plate).

The seat is compatible with a flange, which can be connected to pipe segments (diameter
pipe is 101.6 mm). During operation gas is flowing through the port area and separates at the
edges of the movable valve part (an aluminium ring plate, Fig. 5.2: B). The limiter (Fig. 5.2:
C) is connected to the seat by a centrally positioned cylinder. The maximum valve opening
is adjustable by an intermediate ring (Fig. 5.2: G) between seat and limiter. The tolerance of
this ring thickness must be very low (0.02 mm) in order to minimize plate obliqueness when
pushed against the limiter. Quasi one-dimensional motion of the plate is forced by three
guiding rods (separated azimuthally 120◦, Fig. 5.2: I). At the downstream side of the plate,
a nylon tube (Fig. 5.2: J) is connected to the plate to avoid jamming of plate movement and
to force a single degree of freedom (at the expense of additional structural damping, which
can be determined empirically). The seat and limiter are constructed from brass, because this
material is relatively easy to manufacture, while it is strong enough to sustain plate impacts.
To avoid undesired plate vibrations and damping (by means of a gas pocket) the limiter is
modified in the region of the guiding rod by removal of brass. Three preloaded springs (Fig.
5.2: D) are positioned in limiter holes (separated azimuthally 120◦). In the center of every
spring a glasfiber is positioned, mounted on the limiter, to measure the valve opening (Section
5.4).
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5.3 Experimental Setup
In order to measure the three valve state variables h, Φv and ∆p simultaneously, the setup
sketched in Fig. 5.3 has been realized. Air is compressed by a screw compressor (adjustable
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FIGURE 5.3: Experimental setup (MV: manual valve, CV: control valve, Mic.: microphone,
Ch.Am.: charge amplifier, PC+Acq.: personal computer and acquisition interface, L: laser,
S: silicon sensor).

capacity up to 1400 m3/hour at atmospheric pressure) to a pressure of 8 bar. The gas is flow-
ing via a large vessel (4 m3) through a moisture filter and a dust filter. Steady volume-flow
rates in the model valve are determined by i) measuring local values with a turbine flow meter,
and ii) correcting for the compressibility of the air (Section 5.5). A pressure regulator (CV1)
reduces the pressure from 8 bar to atmospheric pressure, thereby preventing pressure pulsa-
tions generated further downstream from traveling upstream towards the turbine meter. The
pulsation source is a rotating cylinder, which blocks the flow periodically (Peters 2001). The
Two-Microphone Method is used to determine the dynamic pressure and dynamic volume-
flow rate, just upstream of the model valve (Section 5.6). The static component of the pressure
difference across the model valve is measured using a strain gauge transducer (Section 5.5).
The opening of the model valve is measured with a light intensity method (Section 5.4).
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5.4 Valve Plate Displacement
Early measurements of valve plate displacement have been carried out in the 1930s. The
plate was connected to a movable arm carrying a writing stylus. In subsequent decades, many
non-contact measurements were performed, e.g. inductive or capacitive transducers (Touber
1976). However, in general displacement sensors have several disadvantages, e.g. sensitivity
to temperature changes, lack of commercial availability, large physical dimensions relative to
the valve system, restriction to dynamic measurements, small spatial resolution, restriction to
metallic materials, and unconvenient displacement range.

A rather new class of methods for monitoring the valve opening is the use of optical sen-
sors, like the Laser Doppler Vibrometer method (Buligan et al. 2002), the Endoscope Video
method (Ludu et al. 2000), or the Fiber Optic Displacement method (Prasad and Woollatt
2000).

In the present setup three independent glasfiber bundles are connected to the valve limiter
(Fig. 5.1a and Fig. 5.2: E). At every connector laserlight (Thorlabs CPS194, power is 8 mW,
wavelength is 820 nm) is reflected at the downstream side of the valve plate. Fig. 5.4 shows a
sketch of this situation. This light is captured by the same fiber bundle and sent to an amplified
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FIGURE 5.4: Sketch of valve assembly to measure the instantaneous valve opening h (A:
plate, B: limiter, C: spring, D: glasfiber bundle, E: emitted and reflected laserlight).

silicon detector (Thorlabs PDA55, peak response is 0.6 A/W for 960 nm, 0.9 V/µW at 50 Ω
and 40 dB gain for 820 nm). The output is directed to the data acquisition system (DIFA,
8 input channels). The intensity of the reflected light is a measure for the distance between
plate and fiber’s end, and thus for the valve opening. The aluminium plate surface has a high
reflection coefficient for the nearly-infrared light. Therefore on the commercially available
non-metallic compressor valve plate an aluminium layer has been coated. Calibration takes
place by inserting thin rods (feeler gauges) with well-known thicknesses (δh < 0.02 mm)
between seat and plate. Every glasfiber has to be calibrated independently, because fiber
mountings (laser, limiter and sensor) are set manually. Typical calibration curves are shown
in Fig. 5.5. A common problem of displacement transducers is the offset and range required.
At the critical distances, the reciprocal sensitivity increases dramatically, i.e. dh/dVsensor →
∞. When the plate is close to the fiber’s end (h is large), an offset phenomenon can be
expected because the fiber’s end is not a point. When the plate is far away from the fiber’s
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FIGURE 5.5: Valve opening calibration. For every fiber a separate curve is fitted, using a
third-order polynomial; hmax = 3.14 mm.

end (h is small), the captured light intensity is weak. Therefore a curve fitting of a third-order
polynomial is used, which requires at least five data points to obtain a regression coefficient.

A limitation of the method is the detection of the valve plate displacement in the case of a
rocking valve plate. Calibration of h is performed for situations in which the plate is parallel
to the seat’s surface. However, the reflected light intensity is a function of the plate tilting
angle too. Only for a few angles the calibration can be carried out. Therefore quasi one-
dimensional plate motion must be enforced by making use of guiding rods (commercially
available compressor valves have guiding rods to prevent plate rotation), at the expense of
additional structural damping. The plate obliqueness should be checked on acceptability after
each measurement. A related limitation of the method is the detection of h for a colliding
valve plate.

5.5 Static Measurements

5.5.1 Valve Pressure Difference

When the air is flowing through the model valve, a piezo-resistive transducer (Druck, DPI
145) determines the static component of the valve pressure difference ∆p (with accuracy
δ ∆p = 1Pa + 0.05%∆p). As the valve is mounted at the end of the pipe, the flow down-
stream of the valve emerges into the laboratory. The ambient pressure is therefore used as
reference to define ∆p. For steady pipe flow, the pressure difference across the pipe be-
tween pressure transducer and model valve is negligible compared to the pressure difference
∆p across the model valve. When an unsteady flow component is superimposed, the time-
averaged value of ∆p increases due to non-linearity (∆p ∼ Φ2

v). Fig. 5.6 illustrates the
change (8%) in measured mean pressure at the onset of valve oscillation. Before resonance
sets in (t < 70 s), the valve plate displacement follows the duty cycle of the screw compres-
sor. This demonstrates that the static component of the pressure difference across the valve
should be determined from the time-averaged value of ∆p during unsteady flow, rather than
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FIGURE 5.6: Increase of time-averaged ∆p at onset of unsteady flow. (a) valve opening; (b)
pressure difference.

using measured values of ∆p for steady flow conditions.

5.5.2 Valve Volume-Flow Rate
The steady flow rate at the location of the turbine meter (Instromet Q75K) is determined by
measuring the frequency of the turbine rotation speed (7555.26 pulses per m3). For local
pressures up to 16×105 Pa and for local volume-flow rates between 10 and 100 m3/hour,
the measurement error is less than 1%. By assuming one-dimensional steady non-leaking
flow of an ideal gas, the valve volume-flow rate Φv is obtained by correcting the measured
volume-flow rate Φv, TM for the drop in gas density, i.e.

Φv =

(
pTM

pup

)(
Tup

TTM

)

Φv, TM , (5.1)

where subscript TM denotes measurements at the turbine meter and subscript up denotes
the inlet position of the model valve. The temperature measurements (with thermocouples)
revealed that the static component of the pipe flow can be considered as an isothermal flow,
i.e. TTM ≈ Tup.

5.6 Dynamic Measurements: Two-Microphone Method

5.6.1 Introduction
The unsteady values of ∆p and Φv are obtained by making use of the linear theory of
sound propagation and superposition of dynamic quantities and static quantities. The Two-
Microphone Method (Chung and Blaser 1980b, Chung and Blaser 1980c, Chung and Blaser
1980a, Bodén and Åbom 1986, Åbom and Bodén 1988) is used to reconstruct the acous-
tic waves at the inlet of the model valve. A common procedure is to apply this method in
Fourier space (at a single frequency). However, we are interested in reconstruction in the
time domain, and therefore the method must be extended by using multiple modes. Three
piezo-electric transducers, also referred to as microphones (PCB 116A, resonant frequency
is 125 kHz, typical sensitivity is 1400 pC/MPa) are mounted flush in the pipe wall (Fig. 5.3).
A pistonphone (Brüel & Kjaer, type 4220) is used to calibrate the transducers and charge
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amplifiers (Kistler, type 5007, bandwidth 0.1 Hz < f < 22 kHz) with an accuracy better than
1 Pa for 250 Hz. A typical amplitude of the pressure oscillation at the fundamental frequency
is 600 Pa. The charge amplifiers are set to filter signals outside the range 2 Hz < f < 1 kHz.

5.6.2 Wave Reconstruction
When the one-dimensional Euler equations are linearized, plane wave solutions for the pres-
sure amplitude and velocity amplitude are obtained. The present flow is a low Mach number
flow, which implies in first approximation identical wave numbers∗ for upstream- and down-
stream traveling waves, i.e. k̄ = ω/c0, where ω is the circular frequency and c0 is the speed
of sound. The experiments are performed at conditions that corrections for i) Doppler ef-
fects and ii) visco-thermal effects are not necessary, because i) M = u0/c0 � 1 (typically
1.5 × 10−2) and ii) Sh = D

2

√

ω/ν � 1 (typically 2.3 × 102), where u0 is the mean flow
velocity, D is the pipe diameter and ν is the kinematic viscosity (e.g. Peters et al. 1993).

Consider the dynamic pressure in Fourier space, i.e.

p[x, ω] = p+[x, ω] + p−[x, ω] =

∞∫

−∞

p[x, t] e−iωtdt, (5.2)

where p+ is a traveling pressure wave in positive x-direction (upstream) and p− is a traveling
pressure wave in negative x-direction (downstream), see Fig. 5.7. This decomposition can be

p+p−

x xi j x

FIGURE 5.7: Wave decomposition for acoustical flow in pipe (xi and xj: position of micro-
phones, p−: left traveling wave, p+: right traveling wave).

written as

p+[x, ω] = p̂+[ω]e−ik̄x, (5.3)

p−[x, ω] = p̂−[ω]e+ik̄x, (5.4)

where p̂ is the complex amplitude, i2 ≡ −1 and ω is the circular frequency.
The reflection coefficient Rx is defined as the ratio between the complex amplitudes of the

upstream- and downstream traveling waves,

Rx ≡ p−[x, ω]

p+[x, ω]
. (5.5)

The transfer function Hij of two measured signals at positions xi and xj is defined as

Hij ≡ p[xi, ω]

p[xj , ω]
. (5.6)

∗The quantity k is reserved for the valve spring stiffness. We will use k̄ for the wave number.
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Using Eqs. (5.2)-(5.6) the transfer function can be written as

Hij =
e−ik̄(xi−x) + Rxeik̄(xi−x)

e−ik̄(xj−x) + Rxeik̄(xj−x)
. (5.7)

When the wave number k̄ and transfer function Hij are known, the reflection coefficient at
position x can be determined, i.e.

Rx =
e−ik̄(xi−x) − Hije

−ik̄(xj−x)

Hijeik̄(xj−x) − eik̄(xi−x)
. (5.8)

We can write Eq. (5.2) as p[x, ω] = (1 + Rx)p+[x, ω] by making use of Eq. (5.5). When we
substitute Eq. (5.3) into this equation and apply this to position xi, we obtain

p[x, ω] =
1 + Rx

1 + Rxi

eik̄(xi−x)p[xi, ω]. (5.9)

Eq. (5.9) can be put in a useful formulation after some algebra, i.e.

p[x, ω] =
p[xi, ω] sin[k̄(xj − x)] + p[xj , ω] sin[k̄(x − xi)]

sin[k̄(xj − xi)]
, (5.10)

which shows that the pressure at position x is a weighed average of the pressures measured
at positions x = xi and x = xj . Full reconstruction of the pressure in time, at any position
x, is obtained after an inverse Fourier transformation, i.e.

p[x, t] =
1

2π

∞∫

−∞

p[x, ω] eiωtdω. (5.11)

Note that multiplication of the weight factors in the frequency domain is analogous to a
convolution product in the time domain.

Volume flow rate fluctations can be determined by making use of the momentum equation
of the linearized Euler equations, i.e.

∂u

∂t
= − 1

ρ0

∂p

∂x
, (5.12)

where u = u[x, t] is the velocity amplitude and ρ0 is the mean density. When Eqs. (5.2)-(5.4)
are substituted into this relation we obtain,

u[x, ω] =
1

ρ0c0
(p+[x, ω] − p−[x, ω]). (5.13)

The volume-flow rate amplitude Φv[x, t] = u[x, t]A can be written as

Φv[x, ω] =
A

ρ0c0

(
1 − Rx

1 + Rx

)

p[x, ω], (5.14)



96 CHAPTER 5. LABORATORY EXPERIMENTS

where A is the cross-sectional area of the pipe†. We finally obtain a relation for the volume-
flow rate after some algebra,

Φv[x, ω] = −i

(
A

ρ0c0

)
p[xi, ω] cos[k̄(xj − x)] − p[xj , ω] cos[k̄(x − xi)]

sin[k̄(xj − xi)]
. (5.15)

Finally, the wave reconstruction in the time domain at any position x yields,

p[x, t] =
1

2π

∞∫

−∞

p[xi, ω] sin[k̄(xj − x)] + p[xj , ω] sin[k̄(x − xi)]

sin[k̄(xj − xi)]
eiωtdω,(5.16)

Φv[x, t] =
iY

2π

∞∫

−∞

p[xj , ω] cos[k̄(x − xi)] − p[xi, ω] cos[k̄(xj − x)]

sin[k̄(xj − xi)]
eiωtdω,(5.17)

where the positions of the two microphones are denoted by xi and xj . The admittance Y =
A

ρ0c0
. Traditionally this method is used for analysis in the frequency domain. Eqs. (5.16) and

(5.17) contain weight factors of the measured pressure fluctuations as function of ω = k̄c0,
yielding convolution integrals for time domain analysis.

Fluctuations of the gas density are not reconstructed, although the evaluation of semi-
empirical valve coefficient α, by means of Eq. (3.1), requires the computation of the valve
inlet flow density ρup. Neglecting the fluctuations of the gas density is justified by the acous-
tical approach, i.e. ρ[x, t]/ρ0 � 1.

5.6.3 Time and Frequency Filtering
The acquisition interface samples data from the microphones. Therefore wave reconstruction
(Eqs. (5.16) and (5.17)) is performed at a discrete level by using the inverse Fast Fourier
Transform (e.g. Lynn and Fuerst 1994). Because this algorithm assumes periodic signals,
wrap-around (aliasing) errors are reduced by multiplying the dynamic pressure with the Bing-
ham window (Fig. 5.8), i.e.

win =







1
2 − 1

2cos[ πt
εwTm

] , 0 < t
Tm

< εw

1 , εw < t
Tm

< 1 − εw
1
2 − 1

2cos[ π
εw

(1 − t
Tm

)] , 1 − εw < t
Tm

< 1
(5.18)

where Tm is the total measuring time and εw is a cut-off parameter. From the three micro-
phone signals the pair is chosen that has the highest coherence (based on the cross spectrum
and the power spectra).

In order to prevent the introduction of large errors during the reconstruction (Eqs. (5.16)
and (5.17) can become singular), the frequency filter of Bodén and Åbom (1986) is applied,
i.e.

0.1π < k̄|xj − xi| < 0.8π . (5.19)

In Fourier space the remaining modes are zero-padded. Note that the measured spectrum
peaks should be located in this interval, in order to apply the reconstruction method safely. In

†Note that p+[x, ω] = 1
1+Rx

p[x, ω] and p−[x, ω] = Rx
1+Rx

p[x, ω]. From Eq. (5.14) we immediately see the

familiar relation between Rx and the complex acoustic impedance z ≡
p[x,ω]
u[x,ω]

, i.e. z
ρ0c0

= 1+Rx
1−Rx

.
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FIGURE 5.8: Bingham window win (εw = 0.1). During the measuring time Tm, approxi-
mately 8.3 periods of the test function ptest are processed.

our case e.g. |xj − xi| = 0.60 m, yielding 28 Hz < 1
2π ω < 228 Hz. This interval encloses

typical valve resonance frequencies and typical pulsation sources from the by-pass system.

The issue of modelling the valve as a black box, naturally raises the question how to define
the valve inlet. Reconstruction of the root-mean-square pressure amplitude as function of
coordinate x reveals that the valve flow inlet can be defined at the geometrical inlet plane
(Fig. 5.9). The valve is acoustically compact, i.e. the smallest acoustical wavelength is
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FIGURE 5.9: Example of (a) pressure spectrum at x = 0.50 m, and (b) spatial wave recon-
struction from microphones located at x = 0.50 m and x = 1.10 m. The sampling frequency
is 800 Hz. All significant modes are captured in the filter of Bodén & Åbom. The valve inlet
is located at x = −0.34 m and the by-pass end point is located at x = 2.52 m.

much larger than then largest geometrical length scale of the valve. The reconstruction of the
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root-mean-square pressure amplitude uses Parseval’s identity (e.g. Kreyszig 1993), i.e.

1

Tp

∫ Tp

0

p[x, t]2dt = a2
0 +

1

2

∞∑

n=1

(a2
n + b2

n), (5.20)

where pressure p[x, t] has time period Tp and mean value a0. Furthermore {an} are the
Fourier cosine coefficients and {bn} are the Fourier sine coefficients, all related to the recon-
structed discrete spectrum p[x, ω] (Eq. 5.10).

The dominant mode in the spectrum (Fig. 5.9a) has a frequency of 50.4 Hz. It has been
tested that there is no interference with electrical supply sources (50 Hz). The valve reso-
nance frequency (27 Hz) is not observed in the spectrum. Therefore the valve oscillation is
acoustically driven, in agreement with the experiments of Ziada et al. (1986).

Simultaneous pressure measurements at three different locations along the pipe makes it
possible to illustrate the quality of the reconstruction procedure. In the following, the acoustic
wave is reconstructed from microphones 1 and 2 at the location of microphone 3. A typical
result of the reconstruction in the time domain is shown in Fig. 5.10. This case represents a
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FIGURE 5.10: Comparison of dynamic pressure: —, measurement; – –, reconstruction. The
microphones at x1 = 0.50 m and x2 = 1.10 m are used to reconstruct the pressure waves at
x3 = 1.70 m (the admittance Y = 1.92 × 10−5 m4s/kg).

valve plate oscillating with large amplitude.
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5.7 Mechanical Parameters of Valve
The effective plate mass m is obtained by measuring the weight of the plate (including 3 nylon
tubes) and adding the effective spring mass (inertial effect of one coil spring equals one third
of its mass). The damping coefficient ζ is obtained by generating an underdamped oscillation
for the case without flow. The amplitude of h decays exponentially in time (Fig. 5.11a). The
spring stiffness k is determined by measuring static force and static valve opening h, while
the gravity force of added objects of known mass tend to open the valve (Fig. 5.11b). The
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FIGURE 5.11: Determination of (a) damping coefficient ζ (slope ∝ ζ), and (b) spring stiffness
k (slope ∝ k−1).

preload distance hpl, total edge length Lg and maximum valve opening hmax are obtained
by measuring geometrical length scales of valve and springs. The port area Ap is determined
from the port length and volume (known from density and mass) of removed brass after
milling. Finally, Table 5.1 presents the numerical values of the mechanical parameters of the
model valve.

TABLE 5.1: Mechanical parameters of model valve.

Parameter Symbol Value
effective plate mass m 38.54 × 10−3 kg
damping coefficient ζ 1.45 Ns/m
spring stiffness k 1116 N/m
preload distance hpl 3.06 mm
maximum valve opening hmax 3.14 mm
port area Ap 26.61 × 10−4 m2

total edge length Lg 471.2 mm
sealing rim length dsr 1.00 mm
port length Lp 16.00 mm
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VALVE DYNAMICS

This chapter presents the results that are obtained with the computational method (Chapter 4)
and the experimental method (Chapter 5) applied to the flow in valves. Steady flow through a
valve for the case of a hovering plate and for the case of a fixed plate is considered in Section
6.1. Unsteady flow through a valve with freely moving valve plate is considered in Sec-
tion 6.2. Finally, Section 6.3 presents a comparison between the results for a commercially
available compressor valve and for the model valve.

6.1 Semi-Empirical Coefficients

6.1.1 Laboratory Experiments
The semi-empirical coefficients α[h] and cg[h] are obtained by generating a (quasi-)steady
flow in the present experimental setup (Section 5.3). This flow is a result of fluid-structure
interaction, because for a hovering valve plate the spring force k(h + hpl) is balanced by the
gas force acting on the plate. The steady gas force results in a unique combination of the
valve opening h and i) the volume-flow rate Φv in the valve, i.e. Φv[h], and ii) the pressure
difference ∆p across the valve, i.e. ∆p[h]. This (quasi-)steady state of the valve is obtained
by distinguishing six states (Fig. 6.1). Consider the case of a fully closed valve that responds
to a slowly opening upstream located control valve. Then the following subsequent states
will appear:

1. fully closed valve,

2. at very small valve openings resonance sets in, the plate is colliding against the seat
and later on against the limiter,

3. fully opened valve.

When the upstream located control valve is slowly closed, the following subsequent
states appear:

4. (quasi-)steady state,

5. at very small valve openings resonance sets in, the plate is colliding against the seat
(slowly opening the control valve does not switch the system back to state 4) but to
state 2)),
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FIGURE 6.1: History of valve opening during slowly changing pressure difference (six states
are distinguished, sample frequency is 100 Hz).

6. fully closed valve.

During state 4) the coefficients α[h] and cg[h], which are defined by respectively Eqs. (3.1)
and (3.4), are determined (see Fig. 6.2). In Fig. 6.2 the valve opening h denotes the averaged
value of the three-point measurement of the present setup. Parabolic regression fits of the
coefficients α[h] and cg[h] appeared to be adequate. The standard deviation of h[t] is less
than 1% of its mean value. For the model valve the present results show an almost constant
value of 1.2 for the gas force coefficient cg and a slightly decreasing value from 0.9 to 0.7 for
the flow coefficient α. For a ring plate compressor valve Frenkel (1969) reports α monoton-
ically decreasing from 0.8 to 0.5 and cg monotonically increasing from 1.0 to 1.3, both for
h/hmax ∈ (0.2, 1.0).

6.1.2 Computational Fluid Dynamics

One of the objectives of this study is to investigate the ability of the preconditioned Euler
method (Chapter 4) to predict the semi-empirical coefficents α[h] and cg[h]. The mesh-
related computational methods for the flow around valve-like boundaries (i.e. geometries
with sharp edges, (multiple) 90◦ flow direction changes and internal (small gap) flow) that are
reported in the literature deal mostly with incompressible viscous flow (e.g. Deschamps et al.
1996, Kerh et al. 1997, Pérez-Segarra et al. 1999, Matos et al. 1999, Ottitsch and Scarpinato
2000, Possamai et al. 2001, Matos et al. 2002). Fewer methods consider compressible viscous
flow (e.g. Cyklis 1994, Nkonga 2000, Will and Flade 2003). No studies have been reported
concerning inviscid compressible flow, i.e. the Euler equations. Almost all computational
studies solving the multi-dimensional Euler equations are dealing with external flow around
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FIGURE 6.2: Measured semi-empirical coefficients as function of h/hmax for the model
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aerodynamically shaped bodies. In Section 4.1 we discuss the motivation of employing the
preconditioned Euler method for unstructured meshes to tackle the problem of Computational
Fluid Dynamics for compressor valves. If such a method is successful it would be very helpful
in the design of valves and it would reduce the need for costly manufacturing processes
and laboratory experiments. In the following paragraphs we discuss the geometry and mesh
generation, the flow around a fixed plate and the flow around a hovering plate, respectively.

Geometry and Mesh For the purpose of validating valve theories, a model valve has
been designed (Section 5.2) with a less complex geometry than commercially available com-
pressor valves. In the laboratory this model valve is embedded in a system of two flanges.
The system is mounted on the pipe end of the experimental setup (Fig. 5.3). In the present
computational study the geometry of the model valve and the system of flanges of the ex-
perimental setup is adapted slightly, to enable mesh generation without employing extremely
specialized features of the mesh generation program.

The three port channels of the experimental model valve are combined into one port chan-
nel with inner radius Ri and outer radius Ro. Key parameters are the cross-sectional port area
Ap and the total edge length Lg of the plate. These parameters Ap and Lg are kept equal to
the ones of the experimental model valve, while the inner radius Ri and outer radius Ro of
the three port channels are modified to determine the computational geometry with a single
port channel. Solving the system

Ap = π(R2
o − R2

i ),

Lg = 2π( Ri − dsr
︸ ︷︷ ︸

inner radius of plate

+ Ro + dsr
︸ ︷︷ ︸

outer radius of plate

),
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where dsr is the sealing rim length (Fig. 5.1b), for these two radii yields the transformations

Ri = 31.00 mm → 31.85 mm,

Ro = 44.00 mm → 43.15 mm.

In order to save computation time we consider axi-symmetric non-swirling flow (as first order
approximation of the flow in the experiments) by solving the three-dimensional Euler equa-
tions in a ’piece-of-pie’-like geometry. Fig. 6.3 shows the mesh in the meridian plane of the
computational domain.

FIGURE 6.3: Geometry and coarse mesh of the model valve suited for computational fluid
dynamics. This plane (z = 0) shows the faces of the tetrahedral elements located on the
plane z = 0 as a mesh of triangular elements. The inlet plane is x = 0.0 mm, the outlet
plane is x = 121.2 mm and the axis of symmetry is the x-axis.

Alternatively, the Euler equations formulated in cylindrical coordinates could have been
considered (e.g. Put 2003). However, source terms (∝ 1/r) would appear and local precon-
ditioning of the new ’hyperbolic’ system would induce additional difficulties.

The three-dimensional mesh is generated by filling the ’piece-of-pie’-like geometry with
tetrahedral elements. In this way the aspect ratio of all elements are close to unity. Simula-
tions with a mesh that was generated by rotational extrusion of a pure two-dimensional (pla-
nar) triangular mesh (where the pentahedral- and pyramid elements are converted to tetra-
hedral elements) resulted in unstable solutions caused by the stagnation flow computed on
distorted stretched cells. A ’piece-of-pie’ angle of 30◦ was chosen, because any smaller an-
gle yields severe difficulties in mesh generation procedures (even for ’thin-cuts’) and larger
angles lead to a too large number of elements (leading to unacceptable computation times
or requiring too much computer memory). Furthermore, an extension of the domain in axial
direction was applied because the flow showed reversal at the exit plane, resulting in a switch
in the appropriate characteristic boundary condition.
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Fixed Valve Plate Laboratory experiments were conducted by fixation of the plate at a
large opening of h = 1.70 mm (to be discussed in Section 6.1.3, h/hmax = 0.54). The valve
boundary conditions for this experiment are: inlet speed uin = 0.75 m/s, inlet temperature
Tin = 290.5 K and outlet pressure pout = 102335 Pa. The measured time-averaged pressure
difference then equals ∆p = 2787 Pa. The question arises whether it is possible to predict
this pressure drop by employing the Euler method for (un)steady flows. The flow can be
characterized with an inlet Mach number of Min = 2 × 10−3 and a mean gap flow Mach
number of Mgap = 0.20. Thus application of preconditioning seems necessary because the
range in local Mach numbers is large (slow convergence) and the minimum value is very low
(inaccurate solution).

Unfortunately, numerical solutions with sufficient accuracy have not been obtained. The
problem is related to numerical instabilities driving the residuals towards infinity. These
problems and several solution approaches that have been considered are summarized in the
following:

• Effects of Geometry and Mesh.

1. When a mesh is generated by rotational extrusion of a triangular mesh over a small
angle, say 5◦, numerical simulations start to get unstable in the regions of the domain
where the cells have large aspect ratios. This typically occurs near the edges in the
gap between seat and plate. Mesh generation for smaller angles yields severe problems
near the axis of symmetry.

2. Often the simulations result in reversed flow at the outlet boundary. A common
procedure to cure this problem in external flows is to extend the computational domain
in axial direction with a coarser mesh. However, the flow in a valve can not be consid-
ered as the analogy of an external flow that separates from a bluff body. In that case
the shed vortices are convected with a mean stream and numerically filtering (coarse
mesh) of the flow fluctuations results in the proper number of outward directed char-
acteristics. When the flow in a valve separates at the sharp edges of plate and seat, a
jet is generated. It is not clear whether the solution of the preconditioned Euler method
would convergence towards a situation in which this jet would develop in a vortex or
not. Computations for the flow through a stepwise convergent channel (Appendix C)
show that a separation bubble is growing in pseudo-time until reversed flow occurs at
the outlet plane. Domain extension with a coarser mesh did not cure this problem.

3. Some numerical instabilities (for k(2) > 0) are related to the unrealistic formation
of regions with local supersonic flow near boundary edges of 90◦. When these angles
are modified to 45◦ no numerical instabilities were observed in these regions. The case
of flow around a diamond-shaped object with 90◦ top angle yielded numerically stable
solutions. The case of external flow around a 90◦ inclined plate yielded numerically
stable solutions. However, including a ’valve port’ in the preceding case gave rise to
instability problems (Appendix C).

• Effects of Artificial Dissipation.

1. The numerical values of the artificial dissipation coefficients k(2) and k(4) have to be
chosen with care. On the one hand, these coefficients should be large enough to avoid
numerical instability. On the other hand, these coefficients should be small enough to
obtain accurate results.
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2. Consider the case of the model valve and the initial condition to be equal to the
inlet speed vector, the inlet temperature and the outlet pressure. Then the artificial dis-
sipation coefficients should be relatively large to avoid numerical instability, since the
initial condition does not approximate the (expected) final solution very well. How-
ever, the strategy of lowering these coefficients (to obtain an accurate solution) for
certain intervals in pseudo-time (see Section 4.4) does not cure the problem. When the
dissipation coefficient is large (typically k(4) = 0.3), numerical mass sinks (the local
Mach number is typically M ≈ 10−4) can be observed in the internal flow domain and
mass sources (the local Mach number is typically M ≈ 10−3) can be observed in the
nodes on the solid walls. When k(4) = 0.3 was lowered the sources disappeared. How-
ever, in parts of the computational domain where the flow has large velocity gradients,
numerical instability sets in.

3. Consider the case of k(2) > 0 and the observation of the appearance of numerical
instabilities near the solid wall boundary cells. It has been observed that settting k(2)

to zero (and β(4) = 0) delays the appearance of numerical instability near these solid
wall boundaries.

4. Consider the case of flow reversal at the outlet. Setting the dissipation to zero in
the outlet-facing internal cells resulted still in flow reversal, slightly earlier in pseudo
time. Making the factor k(4) a function of the axial position (increasing with x) led to
divergence.

• Effects of Initial Condition.

In most studies local time-stepping towards the steady state is performed from an initial
condition in which the flow variables have a constant value (equal to the inlet- and
outlet boundary values). In case this initial state deviates largely from the physical
solution, numerical instabilities may lead to divergence of the numerical procedure.
Therefore other types of the initial condition may be sought for. In case of a ’regular’
domain (e.g. Appendix C) the concept of domain partitioning can be applied for the
initial state rather easily. The initial condition is set at different values for different
parts of the domain. Compared to the constant initial condition, partitioning increases
the convergence rate, provided that some knowledge of the solution is used. However,
for ’irregular’ domains like compressor valves, domain partitioning of the initial state
is not straightforward. Applications of ’Riemann-like’ states and setting the solid wall
boundary-facing cells to zero speed have not been successful for the model valve.

• Effects of Boundary Condition.

1. Often the simulations result in reversed flow at the outlet boundary. Unfortunately,
most of the simulations carried out in the present study were automatically stopped
by the growth of numerical instabilities near the outlet. During the last period of
the present research the following alternative was applied. Employing the new out-
let boundary condition u · n = 0 (in addition to p = pout) in case of flow reversal,
did not yield numerically stable solutions. After a substantial time unrealistically high
values for the density were observed in the vicinity of the solid wall and the outlet
boundary.

2. In order to start the local time-stepping algorithm with a high flow rate, the outlet
pressure can be set to an unrealistic low value for a certain number of time-steps. How-
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ever, it was observed that the increment of this pressure towards the physical boundary
value must be very low to maintain numerical stability. Thus this procedure could be
useful only when e.g. multigrid or parallel multi-block algorithms increase the compu-
tation speed.

• Effects of Preconditioning.

1. When preconditioning is switched on, the numerical instabilities have been found
to get initiated earlier in pseudo time. Using a smaller CFL number could prevent the
solution to become unstable (e.g. Lee 1998). In the case of the external flow around a
90◦ inclined plate, setting CFL = 0.1 rather than CFL = 0.5 resulted similarly in a
numerically unstable solution after a factor 5.2 larger number of iterations.

2. For the case of the model valve, no systematic study has been presented on the effects
of the cut-off parameter ε. In the case of flow through a port and around a 90◦ inclined
plate, very low temperatures in the low-speed (M ∼ 10−3) wake of the plate resulted
in numerical instabilities (Appendix C). The inlet Mach number was 4.5 × 10−2 and
preconditioning was switched on with ε = 10−2. Simulations with cut-off parameter
equal to 10−3 yielded a lower convergence rate and numerically unstable results earlier
in pseudo time.

Fig. 6.4 shows the result of the velocity field in a modified model valve. This modified
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FIGURE 6.4: Velocity field of 2D planar flow in modified model valve after 5000 pseudo
time-steps (Min = 0.15, k(2) = 0.2, β(4) = 1.0, k(4) = 0.15, preconditioning switched off).
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model valve forces the flow to be 2D planar since the lateral length is relatively small (di-
mensions are 171.3 × 51.0 × 1.0 mm3). The solution has not been converged towards a
steady-state, because of the problem of numerical instability. Nevertheless this solution sug-
gests that the flow regime as sketched by Böswirth (2000) could be present, see Fig. 6.5.
When the left subfigure in Fig. 6.5 is compared with the non-converged solution in Fig. 6.4,

FIGURE 6.5: Process gas is often contaminated with small solid particles that deposit in
compressor valves. Valves with intensively separated flows (left) require shorter maintenance
intervals. In left figure: Ablöseblase = ’separation bubble’, Staugebiet = stagnation region,
Ablösegebiete = ’dead water’ regions. From Böswirth (2000).

several similarities can be observed. Firstly, in both cases at the port entrance a ’separation
bubble’ is present. However, in the Euler method i) the vorticity is generated artificially via
flow separation at sharp edges, and ii) the reattachment length of the shear layer is not steady.
This observation is presented in more detail in Appendix C for the case of the flow through
a stepwise convergent channel. Secondly, the flow approaching the plate in the internal part
of the port is stagnating. Fig. 6.4 shows a stagnation point on the plate, while in Fig. 6.5
the stagnation region is sketched with a dashed line. Thirdly, the flow separates at the sharp
edges of the seat and plate and forms a jet. However, the ’dead water’ regions characterized
by low local Mach number is likely to be essentially unsteady. In Fig. 6.5 a small vortex is
sketched in the ’dead water’ region between plate and shear layer originating from the plate.
In the non-converged solution of the Euler method two vortices are present. This suggests
that the flow is indeed unsteady. Unfortunately, the numerical simulation terminates because
of numerical instability (supersonic flow in the upper gap between seat and plate).

We feel that the concept of local preconditioning of the Euler equations is not suited for
highly stagnated flow regions in complex geometries. Furthermore, for unstructured meshes
there is a fundamental problem of accurately approximating the third-order difference at
solid wall boundary faces. The present assumption of equal Laplacian in ghost cell and
boundary cell could yield an inaccurate description of the fourth-order dissipation term of
the control volume next to the boundary. Additionally, the present node-centered (i.e. dual-
mesh) method could also give inaccurate discretizations near plane solid wall boundaries.
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This boundary flux is computed by assigning zero normal velocity at the boundary interface.
However, the flow evaluation is assigned to the node which lies on this solid wall. No articles
have been published so far on the subject of unstructured preconditioned Euler methods for
stagnated flow regimes. However, Lee (1998) gives a clear overview of the ’major problems
plaguing Euler preconditioners’ and illustrates the loss of robustness around stagnation points
already for a simple two-dimensional stagnation flow field.

Hovering Valve Plate The hovering valve plate is an example of a (simple) fluid-structure
interaction phenomenon. However, successful application of the preconditioned Euler method
has not been obtained, since this method could not be applied successfully to the preceding
case of a fixed valve plate. Prediction of semi-empirical coefficients α[h] and cg[h] must be
performed by fixation of the valve opening h in the computational domain and adaptation of
the inflow and outflow boundary conditions. For a certain inlet speed, a pressure difference
must be computed for the (unsteady) valve flow. The gas force acting on the plate must be
computed by integration of the pressure along the plate surface. The boundary conditions
must then be adapted to yield a gas force that is equal to the steady spring force k(hpl + h).
First approximations are obtained by forcing the inlet speed on base of the measured volume-
flow rate and adaptation of the valve outlet pressure. The ’converged’ pressure drop then
determines the computed α[h] and cg[h]. When adaptation of the outlet pressure is absent,
two values of cg[h] must be plotted, i.e. one based on a spring force and the other based on
the integrated pressure force acting on the hovering plate.

6.1.3 Reverse Flow
It is expected that when a compressor valve experiences strong backflow pulsations (for a
discharge valve: in the plenum chamber, for a suction valve: in the cylinder) or the valve is
nearly closed, flow reversal in this valve can occur. In order to estimate the flow coefficient
α[h] for reverse flow, the valve-flanges system was mounted on the pipe end with the valve
limiter upstream. The plate was fixed along the guiding rods and the glasfibers were removed.
Care has been taken that the flow is not disturbed by the modifications.

Valve theories often include the factor sign[∆p] in the volume-flow rate equation (Eq.
3.1), i.e.

Φv = α[h] sign[∆p]Lgh

√

2

ρup
|∆p| , (6.1)

enforcing that the square-root is operating on a non-negative number. During flow reversal
the flow rate gets only a minus sign, implying the same flow resistance. However, this is
not realistic. Idelchik (1994) showed that the flow around a single movable (top-hinged) flap
has a higher resistance coefficient (i.e. 1/α2 is larger) when the flow is entering the device
with smaller port area (intake configuration) with respect to the higher port area (exhaust
configuration) for any flap angle. The magnitude of the vena contracta factor for the case
of reverse flow is not the same as for the case of regular flow. Results of the model valve
indeed show this behaviour, see Fig. 6.6. When the pressure difference increases the flow
rate increases too. However, for a small valve opening (h = 0.83 mm) this effect is not as
pronounced as for a large valve opening (h = 1.70 mm). For the same flow rate reversing
the flow direction results in an additional pressure drop. Furthermore Fig. 6.6 has a lower
flow rate below which we do not show experimental data. This is related to an increased



110 CHAPTER 6. VALVE DYNAMICS

x

x

p (Pa)

v
(m

3 /s
)

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

Φ

∆

FSI

FSI

FIGURE 6.6: Steady flow through model valve with fixed valve opening: —, normal flow
direction; – –, reverse flow. h = 0.83 mm is denoted by © and h = 1.70 mm is denoted by
∆. The case of a hovering valve plate is denoted by FSI and symbol ×.

measurement error when the turbine meter is used for local volume-flow rates less than 10
m3/hour. In order to present the change in vena contracta factor during flow reversal, we
define the Reynolds number using the port length Lp and a mean flow velocity in the port
cross-sectional area Ap, i.e.

Re = ρ
Φv

Ap

Lp

µ
, (6.2)

where µ is the dynamic viscosity. Although characterizing the flow regime would be more
logical when the valve opening h is used as length scale, we prefer to use the constant pa-
rameter Lp rather than h because the latter is a variable for the case of the full unsteady flow
problem. Fig. 6.7 shows a sketch of the setup. The plate is fixed by inserting rings/nuts be-
tween the plate and both limiter and seat at the location of the three guiding rods. In this way
the plate cannot move and the flow is not disturbed, but the total thickness of these rings must
be precisely the same as the maximum valve opening. The high Reynolds number flow is ex-
pected to form jets at different positions. Fig. 6.8 shows the vena contracta coefficient during
flow reversal. Flow coefficient α is observed to decrease with approximately 0.2, within a
wide range of the Reynolds number, indicating an increased flow resistance during reversal
(from —to – –lines). Furthermore, when the pressure difference is increased in several steps
and subsequently decreased in several steps, hysteresis is not observed for the flow in a valve
with a fixed plate.
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FIGURE 6.7: Sketch of flow around a fixed valve plate in (a) normal and (b) reverse direction.
The case of reverse flow (b) could also consist of fully separated flow from the plate, rather
than reattached flow.
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FIGURE 6.8: Steady flow through model valve with fixed valve opening: —, normal flow
direction; – –, reverse flow. h = 0.83 mm is denoted by © and h = 1.70 mm is denoted by
∆.



112 CHAPTER 6. VALVE DYNAMICS

6.2 Unsteady Flow

6.2.1 Restitution Coefficient
The valve plate is limited in its travel by the valve seat (h = 0) and by the limiter (h =
hmax). When a moving body impacts a fixed wall it will bounce and reverse its direction of
motion with a velocity that is generally lower than the velocity before impact. The restitution
coefficient eres is defined in Eq. (3.2), i.e.

dh

dt
[t+] = −eres

dh

dt
[t−], h[t±] ∈ {0, hmax}. (6.3)

This coefficient cannot be predicted from the elastic properties of the valve material and ge-
ometry alone. There are many other (fluid-structure interaction) factors involved. In absence
of flow, visual observation suggests inelastic (eres = 0) impacts. When a mathematical model
of a compressor considers such inelastic valve plate collisions, conditions for transitions be-
tween several phases of operation (e.g. expansion, suction valve plate in motion and suction
valve fully open) have to be taken into account (e.g. Touber 1976). However, online sampling
of h[t] reveals that at timescales of O{10−3 s} and length scales of O{10−4 m} semi-elastic
collisions occur. Fig. 6.9 presents an example of the plate height and plate speed as func-
tion of time for two collision events between the valve plate and limiter. Based on multiple
rebounds the model valve has the following restitution coefficients:

• for limiter eres = 0.2 ± 0.1,

• for seat eres = 0.3 ± 0.1.

Similar to compressor valves, severe tumbling effects are only present when the valve plate is
close to the seat. This discussion is continued in Section 6.3 (compressor valve) and Section
7.1 (conclusions).

6.2.2 Validation of Basic Valve Theory
The Basic Valve Theory is a closed description when coefficients α[h] and cg[h] are known.
However, we wish to ask ourselves whether the flow through a valve with oscillating plate
can be described with a quasi-steady flow model. Validation of this statement can be sought
in several ways. One way is to integrate the equations of motion of the plate, Eq. (3.2), for
prescribed experimentally determined valve pressure difference ∆p [t] and to compare the
simulation results for h[t] with the experimentally measured plate height. Consider the valve
to remain open and exclude collisions, i.e. 0 < h < hmax. Then the equation of plate motion
can be written as a coupled system with two independent variables h and ḣ, i.e.

d

dt
s + As = f [s, t], (6.4)

where unknown s ≡ (ḣ, h)T , matrix A =

(
ζ/m k/m
−1 0

)

and source term f = (− k
mhpl +

cg[h]
Ap

m ∆p[t], 0)T with the mechanical valve parameters: damping coefficient ζ, spring stiff-
ness k, effective plate mass m, preload distance hpl and port area Ap. Because matrix A is



§6.2. UNSTEADY FLOW 113

t (ms)

h
/h

m
ax

(-
)

dh
/d

t(
m

/s
)

20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

1.5

h / hmax (-)
dh/dt

FIGURE 6.9: Collisions between plate and limiter for the model valve. The valve opening
h/hmax is measured (hmax = 3.14 mm, sampling frequency is 3.2 kHz). The plate speed
dh/dt is computed from h[t] with the central difference scheme.

constant a semi-implicit time integration can be performed for unknown sn+1, i.e.

sn+1 − sn

∆t
+ A

1

2
(sn+1 + sn) = f [sn, tn], (6.5)

where time tn = n∆t for integer n and time-step ∆t.
Consider the following experiment in which the model valve is mounted on the end of a

pipe. Firstly, a steady flow is generated which includes a hovering valve plate. Secondly, the
pulsation source is activated leading to a rotating hollow cylinder in the by-pass (see Fig. 5.3).
In order to avoid undesired acoustical oscillations, the control valve located just downstream
of the pulsation source (not drawn in Fig. 5.3) was fully closed during the generation of
the steady flow. Thirdly, this control valve is opened while the hollow cylinder is rotating
already. Fig. 6.10a shows a typical result of comparison between simulation and experiment.
The frequency and phase angle of every mode are in good agreement, while the predicted
amplitude is too large. The algebraic flow rate relation, Eq. (3.1), can be used to compare
the dynamic flow coefficient (α based on experimentally determined Φv[t], h[t] and ∆p[t])
with the quasi-steady flow coefficient (α[h] based on experimentally determined h[t]), see
Fig. 6.10b. In this case predicting the flow force with the quasi-steady flow assumption
yields moderate to good agreement. However, the predicted flow rate through the valve by
employing the quasi-steady flow assumption displays large deviations from the measured
flow rate. Fig. 6.10c reveals that hysteretic changes in flow pattern should be taken into
account. The hysteresis in the flow coefficient can certainly not be explained by inertial
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FIGURE 6.10: Validation of Basic Valve Theory: —, experiment; – –, theory. (a) valve open-
ing; (b) flow coefficient as function of time; (c) flow coefficient as function of valve opening
for t ∈ (0, 250) ms. Parameters: ζ

mΩ = 0.12, k
mΩ2 = 0.29, hpl

hmax
= 0.97, Ap

L2
g

= 1.20×10−2,
where Ω is the circular frequency of the fundamental mode of pulsation. The sampling fre-
quency is 15.9 Ω

2π = 1
∆t .

effects in the flow, because the Strouhal number∗ St= O{10−3} is much too low. We expect
this effect to be caused by a periodically detaching (α ≈ 0.7) and reattaching (α ≈ 1.0)
separated flow from the seat. These two dinstinct flow regimes are sketched by Böswirth
(2000) for the opening phase of a compressor valve, see Fig. 6.11. The counterclockwise
direction of the hysteresis is also reported by Van Zon (1989) and Van Zon et al. (1990). The
volume-flow rate during the opening stage is smaller than the one during the closing stage,
i.e. Φv[h, ḣ > 0] < Φv[h, ḣ < 0].

∗The Strouhal number is based on the fundamental frequency of the flow rate, mean valve opening and mean
valve outlet velocity.
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FIGURE 6.11: Flow regimes in a valve during the opening phase. A separation bubble (left)
is generated on the seat and becomes longer until a jet (right) is generated. From Böswirth
(2000).

In the following analysis the Basic Valve Theory is extended, referred to as the Extended
Valve Theory, taking into account:

• the flow inertia in the valve port, i.e.

∆p =
1

2
ρ

(
Φv

αLgh

)2

+ ρ
Lp

Ap

d

dt
Φv, (6.6)

• the plate speed, modulating the outlet flow rate, i.e.

Φv = αLgh

√

(
2

ρ
∆p) − π(R2

2 − R2
1)

dh

dt
, (6.7)

• the laminar gap flow for h < 0.5 dsr, i.e.

∆p =
6µ

πh3

(
dsr

R2 − R1

)

Φv, (6.8)

where Lp is the axial port length, R1 and R2 are the inner radius and outer radius of the
ring plate, respectively. The dynamic viscosity is denoted by µ and the sealing rim length
is denoted by dsr. Laminar flow is expected when the plate is positioned parallel to the seat
at very small valve opening. Therefore the extrapolation of the fitted curves for the semi-
empirical relations cg[h] and α[h] (Fig. 6.2) should be interpreted with care for h/hmax <
0.2. Steady flow in that region has not been obtained in the present study.

Employing the Extended Valve Theory to the conditions of Fig. 6.10 (h/dsr > 1.3 where
dsr/hmax = 0.3) does not improve the predictions of the Basic Valve Theory significantly,
i.e. the standard deviations are

σ[hBV T − hEV T ]/hmax = 1.3 × 10−4,

σ[Φv,BV T − Φv,EV T ]/Φv,mean = 6.1 × 10−4,

for t ∈ (0, 250) ms. Subscript BV T denotes the Basic Valve Theory (Section 3.2) and
subscript EV T denotes the Extended Valve Theory (Eqs. 6.6 - 6.8).
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6.3 Model Valve versus Compressor Valve
The model valve has been designed in the parameter range (plate mass m, spring stiffness
k, preload distance hpl, port area Ap, sealing rim length dsr and maximum valve opening
hmax) of a commercially available compressor valve. However, several differences have been
introduced (Table 6.1). The plate of the compressor valve has been coated on the downstrean

TABLE 6.1: Design differences between model valve and compressor valve.

Item Compressor Valve Model Valve
port channels convergent, multiple concentric prismatic, single ring
valve plate disk with holes, non-metallic ring plate, aluminium
discharge channels divergent prismatic
guiding rods two, near center three, near pipe wall

side with an aluminium layer in order to reflect laser light with a high efficiency. The two
guiding rods of the compressor valve prevent plate rotation. Plate rotation could change the
flow behaviour significantly. However, for the compressor valve these rods are located at a
small radius relative to the valve axis of symmetry, increasing the possibility of plate rocking
(Fig. 6.12). For the compressor valve the possibility of plate jamming during operation would

(a) (b)

Guiding Hole

Plate Guiding Hole Plate

FIGURE 6.12: Guiding holes in valve plate: (a) compressor valve, (b) model valve.

be increased when these holes are located further away from the axis of symmetry. For both
valves the plate has sharp edges at the up- and downstream side. In both cases air cannot flow
through the springs. Furthermore, in contrast with the model valve, the compressor valve has
slightly convergent channels in the seat and slightly divergent channels in the limiter.

Fig. 6.13 presents the steady flow effects by comparison of the semi-empirical coefficients
for the two valves. The coefficients of the model were already shown in Section 6.1.1. The
compressor valve has similar global properties, viz. gas force coefficient cg ≡ Fg

Ap∆p > 1

(Eq. 3.4) and flow coefficient α < 1. However, the compressor valve shows an increasing
value of the gas force coefficient with increasing valve opening while the model valve shows a
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FIGURE 6.13: Semi-empirical coefficients: —, model valve; – –, compressor valve. Gas force
coefficient cg is denoted by © and flow coefficient α is denoted by ∆.

constant coefficient cg . Furthermore the vena contracta factor α is decreasing with increasing
valve opening for both valves. It seems that for h/hmax → 0 the coefficient α has the same
value (≈ 0.9) for both valves. Unfortunately this limit of a steadily closing valve has not
been measured (due to the onset of resonance for small valve openings). The extrapolation
of α and cg for h/hmax → 0 is not meaningfull because viscous effects become dominant.

For unsteady flow we observed severe plate obliqueness (rocking) of the compressor valve.
The valve plate displacement method did not yield accurate results for the plate height. There-
fore the Basic Valve Theory could not be validated and no dynamic measurements of the valve
state variables ∆p and Φv are presented. Fig. 6.14 shows typical time traces of the colliding
plate of the compressor valve. It is observed that when the plate collides against the limiter
(Fig. 6.14a), the light intensity method yields valve openings larger than its physical maxi-
mum, i.e. h > hmax, which is not realistic. Furthermore it is observed that when the plate
collides against the seat (Fig. 6.14b), the light intensity method yields valve openings smaller
than its physical minimum, i.e. h < 0, which is also not realistic. Both cases show that when
the plate angle is large, the light intensity method needs improvement.

The unsteady flow effects are presented by comparison of the restitution coefficents during
the discharge process (Table 6.2). Collisions of the plate against the limiter resulted in nearly

TABLE 6.2: Restitution coefficients of model valve and compressor valve.

Compressor Valve Model Valve
Limiter ≈ 0 0.2 ± 0.1
Seat > 0 (rocking) 0.3 ± 0.1(rocking)

parallel impacts for both valves. The compressor valve showed ideal behaviour (eres ≈ 0)
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FIGURE 6.14: Collision events of compressor valve for (a) plate-limiter and (b) plate-seat.
Measured time traces are shown for three glas fibers (hmax = 2.42 mm, sampling frequency
is 12.8 kHz).

of nearly inelastic collisions (Fig. 6.14a). The restitution coefficient for the seat could not be
determined accurately for the compressor valve because of large plate angles (Fig. 6.14b).
Clearly these collisions are not inelastical. The model valve has a slightly larger restitution
coefficient for its seat compared to its limiter.

It is observed that the plate has almost parallel impacts against the limiter while the impact
against the seat often occurs in severe oblique plate positions. This suggests that there is
an ’air cushion’ between plate and limiter, that acts as a fluid damper. For the plate-seat
interaction such a cushion is apparantly not present. For the compressor valve the following
observations enhance this hypothesis:

• Plate collisions against the limiter: The maximum plate height is reached at glas fiber,
say, 1 only, while the minimum plate height is reached at glas fiber, say, 2 only (Fig.
6.14a).

• Plate collisions against the seat: The maximum plate height is alternatively reached at
glas fibers 1 and 2 (Fig. 6.14b). This can be related to plate rocking in which the axis
of symmetry is passing through to the two guiding holes.

Furthermore, the parallel impacts are enhanced by the large spring force acting on the plate
(in opposite direction to the gas force) in case h approaches hmax. This spring force is
decreased when the plate collides on the seat (h = 0).
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Reciprocating compressors are widely used in gas transportation, gas storage and process
industries. The compressor valves are the primary cause (36%) of unscheduled compressor
shutdowns (Section 1.1). Semi-empirical expressions for the dynamical response of com-
pressor valves use the valve opening h, the pressure difference ∆p across the valve and the
volume-flow rate Φv through the valve as basic state variables (Sections 2.2 and 3.2). In the
gas industry these traditional valve models are used to predict the performance of complex
reciprocating compressor systems. An example (Section 3.3) has been presented where the
position of a defect valve can be deduced from experimentally obtained data on pressure and
temperature increments at certain monitoring positions. The goal of the present study has
been twofold, i.e. i) analysis of the semi-empirical coefficients as they appear in traditional
valve theories and ii) validation of the quasi-steady flow assumption by means of accurate
dynamic measurements of the valve state variables.

7.1 Conclusions

Semi-Empirical Coefficients In order to be able to compare the results of different valve
designs, all of the traditional valve models have been captured in a single model, which we
refer to as the Basic Valve Theory (Section 3.2). The two semi-empirical coefficients involved
are the flow coefficient α[h] (Eq. 3.1), also referred to as vena contracta factor, and the gas
force coefficient cg[h] (Eq. 3.4). For the steady flow through a circular disk valve two limiting
cases (Section 3.3.1) have been considered: Stokes flow and inviscid flow. For a small valve
opening Stokes flow is assumed, leading to α ∝ h2 (for given ∆p) and cg > 0 (independent
of h). Inviscid flow analysis yields α ≈ 1 and cg ≈ 1.

Experiments have been conducted to determine the relationship between the semi-empirical
coefficients and the valve opening (Table 7.1). Linear stability analysis of a valve interacting
with its environment (Section 3.3.2) suggests that the derivatives dα/dh and dcg/dh are im-
portant parameters. This is demonstrated for the case of self-excited valve vibrations due to
acoustic coupling. The coefficient cg was determined from experiments in which the valve
plate is hovering, i.e. the steady gas force acting on the valve plate is balanced by the spring
force. However, conducting experiments with a nearly steady flow across a hovering valve
plate is not an easy task. Therefore in Table 7.1 the coefficients related to small valve open-
ings are followed by the question mark and only the trend (increasing or decreasing value for
ḣ > 0) is indicated. The theory (Section 3.3.1) is only able to predict the gas force coefficient
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TABLE 7.1: Semi-empirical coefficients of several valves. CACV is a commercially available
compressor valve as described in Section 6.3. In case of a range (→) the valve opening h is
assumed to increase.

Coef- Circular disk valve Model valve CACV Ring plate valve
ficient (analytical) (single ring plate) (plate with holes) (Frenkel 1969)
α < 1 (small h) 0.9? → 0.7 0.9? → 0.5 0.8? → 0.5

> 1 (large h)
cg > 1 ≈ 1.2 1.2? → 2.0 1.0? → 1.3

cg correctly as a number approximately equal to one, while the vena contracta factor α can-
not be predicted with uniform inviscid flow theory. The two compressor valves (i.e. CACV
and ring plate valve) have gas force coefficients that increase with the valve opening. Our
specially designed model valve has a constant gas force coefficient cg . The measured vena
contracta factor α for h/hmax > 1

4 decreases with increasing valve opening h .
It is expected that when a compressor valve experiences strong backflow pulsations, or

when the valve is nearly closed, flow reversal in the valve can occur. In order to estimate
the flow coefficient α[h] for reverse flow, the valve was positioned with the limiter upstream
(Section 6.1.3). The plate was fixed along the guiding rods. Two cases were investigated,
i.e. h/hmax = 0.26 and h/hmax = 0.54. In case of flow reversal, the flow coefficient α is
observed to decrease with approximately 0.2 compared to the case of normal flow direction,
independently of the Reynolds number.

An alternative way of determining the semi-empirical coefficients α[h] and cg[h] could be
the application of Computational Fluid Dynamics (e.g. Deschamps et al. 1996, Pérez-Segarra
et al. 1999, Ottitsch and Scarpinato 2000). Most CFD methods employ turbulence models
suitable for incompressible flow. The preconditioned Euler method (Chapter 4) as an alter-
native to the existing methods, has not been applied successfully in the present study. Effects
of geometry, mesh, artificial dissipation, initial condition, boundary conditions and precon-
ditioning have been explored extensively (Section 6.1.2). However, all studies resulted in
numerically unstable solutions. On the other hand, this method has been applied successfully
on several test cases, e.g. the steady irrotational flow around a Joukowski aerofoil and the
unsteady separated flow around an inclined plate (Section 4.4). The loss of robustness in
stagnation regions of the flow field has not been elaborated much in the literature (Lee 1998).
In order to compute the flow in a compressor valve by application of the preconditioned Euler
method, the study should be focused on the subject of local time-stepping algorithms in stag-
nation regions of the flow. Employing viscous flow methods including turbulence models in
regions of separated flow, is expected to yield severe interpretation problems of the averaged
flow quantities (e.g. Gharib 1996, Pérez-Segarra et al. 1999, Ottitsch and Scarpinato 2000).
Therefore we feel that the study of valve flows by means of Direct Numerical Simulation
is the only direction of research which will yield accurate results, provided that computer
capacity and speed is increased significantly.
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Valve Dynamics In order to validate traditional valve models for unsteady flow, accurate
experiments have been realized (Chapter 5) to measure simultaneously the valve opening h,
the pressure difference ∆p across the valve, and the volume-flow rate Φv through the valve.
The experimental method employed provides both the mean values of ∆p and Φv (Section
5.5), as well as the fluctuating part of these quantities. The method achieves an accuracy of
δh/hmax < 2%, δ∆p/∆p[hmax] < 1% and δΦv/Φv[hmax] < 2%.

Results for unsteady flow through the model valve (Section 5.2) show that the Basic Valve
Theory (Section 3.2) is able to predict the gas force acting on the valve plate reasonably
accurately (Section 6.2.2). However, for a given pressure difference, the flow rate through
the valve is underpredicted (Section 6.2.2). The Basic Valve Theory has been extended, tak-
ing into account flow inertia in the port, valve ’breathing’, and laminar gap flow restistance
(Section 3.4.2). Results show that the extended theory does not describe the fluid-structure
interaction better than the Basic Valve Theory. Furthermore these results show that the model
for the volume-flow rate Φv should be improved in order to predict the observed fluctations
and hysteresis in the vena contracta factor α of approximately 30% (Fig. 6.10c). The hys-
teresis in α cannot be explained by inertial effects in the flow because the Strouhal number
St= O{10−3} is much too low. We expect this effect to be caused by a periodically detaching
and reattaching flow, separated from the seat. The fact that in our experiments extensions of
the Basic Valve Theory do not significantly improve its performance cannot be generalized to
actual situations in compressor valves. The large number and the large range of parameters
in valve design (plate mass, spring stiffness, preload distance, geometry of valve port, etc.)
has to be explored further before one can generalize our conclusions.

Collisions of the plate against the seat and the limiter are commonly modelled by means
of a restitution coefficient eres. Experiments with the model valve (Section 6.2.1) and a
compressor valve (Section 6.3) showed that for both valves this coefficient for the limiter has
a lower value than for the seat. In addition it is observed that the plate has almost parallel
impacts against the limiter while the impact against the seat often occurs in severe oblique
plate positions. It suggests that for the limiter there is a ’gas pocket’ or ’air cushion’ between
plate and limiter, that acts as a fluid damper. For the plate-seat interaction such a cushion is
not present. The observation of oblique plate impacts at the seat rather than at the limiter is
consistent with Böswirth’s hypothesis (Section 1.1).



122 CHAPTER 7. CONCLUSIONS AND DISCUSSION

7.2 Discussion
Limitations of the Experimental Method Compressor valves have non-parallel plate

impacts during the closure events. In our experimental method the valve plate displacement
method can only be applied when the plate angle θ is not large. The model valve plate,
however, is forced to move nearly purely translational in which the angle θ cannot exceed
approximately 0.5◦. Light intensity measurements for oblique plate positions showed no
significant dependence on this angle. Improving the present method by calibration of the light
intensity method for oblique plate positions could be useful for compressor valves. However,
preliminary calibrations showed that only a few number of plate angles could be measured,
limited by the usage of feeler gauges.

Measurement of semi-empirical coefficients for small valve openings (h/hmax < 0.25) is
difficult because of the coupling between valve oscillations and pipe flow acoustical modes.
For small valve openings, resonance sets in and destroys the required steady valve flow. In
the field of wind instrument research, often an orifice plays the role of a non-linear absorber,
suppressing possible reed oscillations (Dalmont et al. 2003). The present experimental set-up
could be improved (to determine α[h] and cg[h] for small h) by employment of this technique.
Alternatively the usage of a short pipe element (i.e. a large acoustical fundamental frequency)
or the implementation of damping devices (Peters 2001) could avoid valve oscillations.

The presented dynamic measurements of the valve state variables, by employment of the
pulsation source by-pass in the present setup, resulted in an acoustically driven valve os-
cillation (Section 5.6). However, the ratio of pulsation frequency fp and valve resonance
frequency fv could be an important parameter in valve design (fp/fv = 1.9 in Fig. 6.10). It
is known from in-situ measurements of the cylinder pressure in a reciprocating compressor
that when the piston drives the cylinder volume towards its minimum, standing waves in the
cylinder gas modulate the discharge flow with a large frequency (fp/fv > 1). Note that the
piston frequency is always smaller than fv . In order to conduct experiments in a wide range
of the parameter fp/fv , the pipe in the present setup must have a larger length because of the
frequency restriction in the Two-Microphone Method (Eq. 5.19).

Future Computational Studies The Basic Valve Theory relates the valve state variables
by means of semi-emipirical coefficients. Although some effects of flow compressibility can
be taken into account (Eq. 3.1), the valve is assumed to be an acoustically compact area. This
means that valve closure events feature huge pressure peaks for given flow rates. In Section
3.3.3 it was found that the Basic Valve Theory can handle valve closures, provided that the
valve environment is a compressible medium. However, whether a semi-empirical approach
can be used to predict valve closing events is still an open question.

Computational studies of the flow topology through valves with moving boundaries are
slowly appearing in literature (e.g. Matos et al. 1999, Nkonga 2000, Will and Flade 2003, Sti-
jnen et al. 2004) and could be used to validate semi-empirical theories for unsteady flow sit-
uations. From the upcoming algorithms handling moving boundaries (e.g. fixed mesh meth-
ods (Lattice Boltzmann, Level Set, Cartesian Cut-Cell), moving mesh methods (Arbitrary
Euler-Lagrange), vortex methods (no mesh at all) and space-time discontinuous Galerkin
methods) only a few studies have been published dealing with the fully closing event of a
valve (e.g. Stijnen et al. 2004). When applying Finite-Volume, Finite-Element or Finite-
Difference methods to the problem of closing valves, one has to deal with a collapsing mesh.
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A pilot study for the present research revealed that a Finite-Difference integrated space-time
method cannot be applied for vanishing domains (Van den Berg 2002). The CFL-condition
induces the computation time to increase without bound. Finite-Volume- and Finite-Element
integrated space-time methods are capable of handling vanishing domains, provided that the
unstructured mesh has a high quality.

The results for the model valve suggest that the gas force acting on the plate can be con-
sidered to be a quasi-steady force, while the flow rate does not behave quasi-steadily. This
could explain why research engineers in the compressor community have difficulties predict-
ing the valve impact speeds ḣ[t±], while the trend of valve opening h[t] can be predicted
rather accurately. Moreover, impact speeds should be key parameters in valve design, rather
than effective flow area solely. In the literature (Section 2.2.2) differences are reported in
computational results for the computed valve flow force and the effective flow area employ-
ing different turbulence models. Therefore if valve dynamics cannot be predicted accurately
with semi-empirical theories, valve dynamics provide a fine challenge.

Future Flow Regime Studies In the present study a model valve (reflecting basic proper-
ties of a compressor valve) has been designed to investigate the flow by means of analytical,
computational and experimental methods. We learned that the geometry of such a model
valve must be simplified considerably in order to be able to study the fluid dynamical effects
of valves over a wide range of parameters. Therefore we propose a future line of research in
which the flow regime is subject of interest, rather than the flow force acting on the plate. It
is recommended that the model valve is designed such that the flow can be approximated as
a planar 2D flow (similar Ansatz as Horsten (1990)). This would allow convenient compar-
ison with analytical/numerical predictions of the flow properties. Additionally, forcing the
plate motion with a truly single-degree of freedom could be accomplished more easily (e.g.
guiding rails) than for the present model valve. When different experiments are performed
for i) a fixed plate with a pipe flow pulsation source, and ii) a forced-oscillating plate without
pipe flow pulsation source, effects of the valve flow inertia and the plate speed momentum
injection could be decoupled. Additionally, the case in which the valve opening becomes of
the order of the sealing rim length (h ≈ dsr) can be considered accurately. The flow regime
is expected to change due to reattachment of the separated shear layer. The influence of the
driving frequency on this effect (vena contracta factor) is at present not known.

The recovery of plate kinetic energy after collision with the limiter is lower than for the
case of collision with the seat (see e.g. Fig. 6.14). This effect could be related to the presence
of an ’air cushion’ between plate and limiter. Similar to the work of Deverge et al. (2003) one
could apply the equation for conservation of mass and the Bernoulli equation for unsteady
flow. This yields the pressure distribution in the gap between plate and limiter. Integrating the
pressure over the plate surface yields the gas force acting on the plate. This force depends on
the sign of the plate motion (sign[ḣ]) because of the direction of the jet flow separated from
the edges of plate and limiter. Comparison of the plate motion obtained from measurement
with that obtained from theory could fortify the arguments for the presence of an ’air cushion’.
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This appendix shows that in case of low Mach number flow, the Euler equations reduce to
the incompressible inviscid flow equations. The first section follows the textbook approach
of Kundu (1990), while the second section follows the elaborated approach of Guillard and
Viozat (1999).

A.1 Local Mach Number
Compressiblity effects are determined by the magnitude of the local Mach number, defined
as

M =
u

c
, (A.1)

where u is the magnitude of the local speed of the flow, and c is the local speed of sound
given by

c2 =

(
∂p

∂ρ

)

S

, (A.2)

where the subscript S signifies that the partial derivative is taken at constant entropy. To
assess how large the local Mach number has to be for the compressiblity effects to be appre-
ciable in a steady flow, consider the 1D continuity equation for steady flow, i.e.

u
∂ρ

∂x
+ ρ

∂u

∂x
= 0. (A.3)

The incompressibility assumption requires that

|u∂ρ

∂x
| � |ρ∂u

∂x
| ⇒ |δρ

ρ
| � |δu

u
|. (A.4)

Pressure variations can be estimated from the definition of c, giving

δp ∼ c2δρ. (A.5)

Conservation of momentum of the inviscid steady flow requires that

uδu ∼ δp

ρ
. (A.6)
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Combining Eqs. (A.5) and (A.6), we obtain

δρ

ρ
∼ u2

c2

δu

u
. (A.7)

Finally, comparing Eqs. (A.4) and (A.7), we find that variations in the density are negligible
if

M2 � 1. (A.8)

A.2 Global Mach Number
In order to assess whether the governing equations for unsteady 3D inviscid flows can be re-
duced to the governing equations for incompressible flows, we start with the Euler equations
for a calorically perfect gas, i.e.

∂

∂t
ρ + ∇ · (ρu) = 0, (A.9)

∂

∂t
(ρu) + ∇ · (ρuu) + ∇p = 0, (A.10)

∂

∂t
(ρE) + ∇ · (ρuE + up) = 0, (A.11)

p = (γ − 1)ρ

[

E − 1

2
u · u

]

, (A.12)

where the closed system of equations has the unknowns {ρ,u, p, E}. The second step con-
sists of non-dimensionalization of these equations with the dimensional reference quantities
{ρ∗, u∗, ρ∗(a∗)2, (a∗)2}, respectively. The reference length scale is δ∗ and the reference time
scale is δ∗/u∗. These scales are the maximum values of the initial condition, where the speed
of sound a∗ is determined from (a∗)2 = γ max[p(x, t = 0)]/ρ∗. When we substitute these
scales into the Euler equations, and denote the non-dimensional variables with a tilde, the
following set of equations is obtained,

∂

∂t̃
ρ̃ + ∇̃ · (ρ̃ũ) = 0, (A.13)

∂

∂t̃
(ρ̃ũ) + ∇̃ · (ρ̃ũ ũ) +

1

M2
∗
∇̃p̃ = 0, (A.14)

∂

∂t̃
(ρ̃Ẽ) + ∇̃ · (ρ̃ũẼ + ũp̃) = 0, (A.15)

p̃ = (γ − 1)ρ̃

[

Ẽ − 1

2
M2

∗ ũ · ũ
]

, (A.16)

where M∗ = u∗/a∗ is the global (reference) Mach number. The third step is the asymptotic
expansion of the solution in powers of the Mach number M∗, for M∗ → 0, i.e.







ρ̃
ũ

p̃

Ẽ
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ρ̃0

ũ0

p̃0

Ẽ0







+ M∗







ρ̃1

ũ1

p̃1

Ẽ1







+ M2
∗







ρ̃2

ũ2

p̃2

Ẽ2







+ O(M3
∗ ) (A.17)
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When this expansion of the solution is substituted in the non-dimensional Euler equations,
terms with the same order of M∗ can be collected, yielding

• Order O(M−2
∗ ):

∇̃p̃0 = 0, (A.18)

• Order O(M−1
∗ ):

∇̃p̃1 = 0, (A.19)

• Order O(1):

∂

∂t̃
ρ̃0 + ∇̃ · (ρ̃0ũ0) = 0, (A.20)

∂

∂t̃
(ρ̃0ũ0) + ∇̃ · (ρ̃0ũ0 ũ0) + ∇̃p̃2 = 0, (A.21)

∂

∂t̃
(ρ̃0Ẽ0) + ∇̃ · (ρ̃0ũ0Ẽ0 + ũ0p̃0) = 0, (A.22)

p̃0 = (γ − 1)ρ̃0Ẽ0, (A.23)

• Order O(M∗):

∂

∂t̃
ρ̃1 + ∇̃ · (ρ̃0ũ1 + ρ̃1ũ0) = 0, (A.24)

∂

∂t̃
(ρ̃0ũ1 + ρ̃1ũ0) + ∇̃ · (ρ̃0ũ0 ũ1 + ρ̃0ũ1 ũ0 + ρ̃1ũ0 ũ0) + ∇̃p̃3 = 0, (A.25)

∂

∂t̃
(ρ̃0Ẽ1 + ρ̃1Ẽ0) + ∇̃ · (ρ̃0ũ0Ẽ1 + ρ̃0ũ1Ẽ0 +

ρ̃1ũ0Ẽ0 + ũ0p̃1 + ũ1p̃0) = 0, (A.26)

p̃1 = (γ − 1)
[

ρ̃0Ẽ1 + ρ̃1Ẽ0

]

. (A.27)

Eqs. (A.18) and (A.19) imply that the pressure is constant in space up to variations of O(M 2
∗ ),

i.e.
p̃(x̃, t̃) = P(t̃) + M2

∗ p̃2(x̃, t̃). (A.28)

The final step is to assume an open boundary, where the pressure is constant, i.e. p̃(x̃b, t̃) =
p̃b. For M∗ → 0 this means ∂

∂t̃
P = 0 and additionally ∂

∂t̃
p̃0 = 0. When the latter is used

together with Eq. (A.18), the order O(1) equation of state Eq. (A.23) yields

∂

∂t̃
(ρ̃0Ẽ0) =

1

γ − 1

∂

∂t̃
p̃0 = 0, (A.29)

∇(ρ̃0Ẽ0) =
1

γ − 1
∇p̃0 = 0. (A.30)

Combining these results with the order O(1) energy equation Eq. (A.22), yields the constraint

∇̃ · ũ0 = 0. (A.31)
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We conclude by the following summary: In the limiting case of M∗ → 0, the Euler equations
reduce to the equations for incompressible flow,

∇̃ · ũ = 0, (A.32)
∂

∂t̃
ũ + (ũ · ∇̃)ũ =

−1

ρ̃
∇̃p̃, (A.33)

where the pressure variations are constant in space up to O(M 2
∗ ).
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This appendix presents the governing equations of the two-stage compressor system as dis-
cussed in Section 3.5. For convenience, the complete nomenclature for these equations is
presented first.

B.1 Nomenclature

A cross-sectional area
Ap port area
cg gas force coefficient
Di pipe diameter
eres restitution coefficient
F gas force
h valve opening
k spring constant
L pipe length
Lg valve gap length
m mass in cylinder
mv effective plate mass
p pressure
R perfect gas constant
T absolute temperature
t time
V volume
x dynamic displacement of piston
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Greek Symbols

α flow coefficient
γ ratio of specific heats
∆Lg reducing gap length
ζ valve damping coefficient
λ wall friction factor
ρ density
Φ mass-flow rate
ω circular frequency of piston

Subscripts and Notations

cyl cylinder
d discharge
dc discharge chamber
i intercooler
id downstream of intercooler
iu upstream of intercooler
max maximum value
min minimum value
pl preload
s suction
sc suction chamber
w cooling water
1, 2 stage 1 or 2
± before (-) or after (+) collision

[· · ·] functional argument
sign[arg] sign = +1 when arg > 0, else sign = −1
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B.2 Governing Equations
Cylinders The pistons are considered to move harmonically (crank rod length � piston

rod length), i.e.

x1 =
Vcyl1 − 2Vmin1

2Acyl1
sin[ωt], (B.1)

V1 =
1

2
Vcyl1 − Acyl1x1, (B.2)

for the stage-one compressor, and

x2 =
Vcyl2 − 2Vmin2

2Acyl2
sin[ωt], (B.3)

V2 =
1

2
Vcyl2 + Acyl2x2, (B.4)

for the stage-two compressor. The air is considered to be a calorically perfect gas. The flow
of air in the cylinders is modelled by application of the conservation of mass and energy, i.e.

d

dt
m1 = Φs1 − Φd1, (B.5)

d

dt
p1 =

γ

V1

(
psc1

ρsc1
Φs1 −

p1

ρ1
Φd1 − p1

d

dt
V1

)

, (B.6)

ρ1 =
m1

V1
, (B.7)

for the stage-one compressor, and

d

dt
m2 = Φs2 − Φd2, (B.8)

d

dt
p2 =

γ

V2

(
psc2

ρsc2
Φs2 −

p2

ρ2
Φd2 − p2

d

dt
V2

)

, (B.9)

ρ2 =
m2

V2
, (B.10)

for the stage-two compressor. In the energy balance the kinetic energy of the gas is ne-
glected and heat exchange between the gas and piston or cylinder walls is ignored. Adiabatic
reversible processes are assumed, thus the isentropic flow state is changed by i) the work
transferred by the piston to the gas, and ii) the flow through the valves. In an operating com-
pressor, flow in directions opposite to the arrows in Fig. 3.16 may be present. In such cases
of reverse flow the energy equations (B.6) and (B.9) are modified with the proper upstream
pressure and upstream density.



132 APPENDIX B. TWO-STAGE AIR COMPRESSOR

Valve Dynamics The valves are considered as mass-spring systems with a single degree
of freedom, i.e.

{

mv
d2

dt2 hs1 + ζ d
dths1 + k(hpl + hs1) = Fs1 , 0 < hs1 < hmax

d
dths1[t+] = −eres

d
dths1[t−] , hs1[t±] ∈ {0, hmax}

(B.11)

{

mv
d2

dt2 hd1 + ζ d
dthd1 + k(hpl + hd1) = Fd1 , 0 < hd1 < hmax

d
dthd1[t+] = −eres

d
dthd1[t−] , hd1[t±] ∈ {0, hmax}

(B.12)

{

mv
d2

dt2 hs2 + ζ d
dths2 + k(hpl + hs2) = Fs2 , 0 < hs2 < hmax

d
dths2[t+] = −eres

d
dths2[t−] , hs2[t±] ∈ {0, hmax}

(B.13)

{

mv
d2

dt2 hd2 + ζ d
dthd2 + k(hpl + hd2) = Fd2 , 0 < hd2 < hmax

d
dthd2[t+] = −eres

d
dthd2[t−] , hd2[t±] ∈ {0, hmax}

(B.14)

where the restitution coefficient eres represents the semi-empirical description of the collision
events between valve plate and structure (seat or limiter). The gas force acting on the valve
plate is expressed as

Fs1 = cg[hs1]Ap(psc1 − p1), (B.15)
Fd1 = cg[hd1]Ap(p1 − pdc1), (B.16)
Fs2 = cg[hs2]Ap(psc2 − p2), (B.17)
Fd2 = cg[hd2]Ap(p2 − pdc2), (B.18)

where the gas force coefficient cg is a semi-empirical function of the valve opening. The
mass-flow rate through the valves is expressed as

Φs1 = α[hs1]Lghs1

√

2ρsc1|psc1 − p1| sign[psc1 − p1|], (B.19)

Φd1 = α[hd1]Lghd1

√

2ρ1|p1 − pdc1| sign[p1 − pdc1], (B.20)

Φs2 = α[hs2]Lghs2

√

2ρsc2|psc2 − p2| sign[psc2 − p2], (B.21)

Φd2 = α[hd2]Lghd2

√

2ρ2|p2 − pdc2| sign[p2 − pdc2], (B.22)

where the flow coefficient α is a semi-empirical function of the valve opening.

Plenum Chambers Conservation of mass applied to the air in the plenum chambers
(situated adjacent to the cylinders to suppress pulsations) yield,

d

dt
ρsc1 =

1

Vsc1
(Φs − Φs1) , (B.23)

d

dt
ρdc1 =

1

Vdc1
(Φd1 − Φi) , (B.24)

d

dt
ρsc2 =

1

Vsc2
(Φi − Φs2) , (B.25)

d

dt
ρdc2 =

1

Vdc2
(Φd2 − Φd) . (B.26)
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Conservation of energy applied to the air in the plenum chambers yield,

d

dt
psc1 =

γ

Vsc1

(
ps

ρs
Φs −

psc1

ρsc1
Φs1

)

, (B.27)

d

dt
pdc1 =

γ

Vdc1

(
p1

ρ1
Φd1 −

pdc1

ρdc1
Φi

)

, (B.28)

d

dt
psc2 =

γ

Vsc2

(
pi2

ρid
Φi −

psc2

ρsc2
Φs2

)

, (B.29)

d

dt
pdc2 =

γ

Vdc2

(
p2

ρ2
Φd2 −

pdc2

ρdc2
Φd

)

. (B.30)

For reverse flow, the remarks on Eqs. (B.6) and (B.9) are valid for Eqs. (B.27) - (B.30)
too. Incompressible flow through an orifice is considered when the gas enters at the suction
chambers and the gas leaves the discharge chambers, i.e.

Φs = αsAs

√

2ρs|ps − psc1| sign[ps − psc1], (B.31)

Φi = αiAi

√

2ρdc1|pdc1 − pi1| sign[pdc1 − pi1], (B.32)

Φi = αiAi

√

2ρid|pi2 − psc2| sign[pi2 − psc2], (B.33)

Φd = αdAd

√

2ρdc2|pdc2 − pd| sign[pdc2 − pd]. (B.34)

Effects of compressibility can be taken into account by multiplication of the flow rates with
1 − 1

γ
∆p
pup

, where ∆p is the pressure difference and pup is the upstream pressure.

Piping System and Intercooler Air is flowing from the discharge chamber of stage one
to the intercooler through a pipeline. After heat exchange in the intercooler the air is flowing
from the intercooler, through another pipeline, to the suction chamber of stage two. The pipe
flow is assumed to be an incompressible one-dimensional flow, i.e.

pi1 − piu =
Liu

Ai

d

dt
Φi + λ

Liu

Di

1

2ρdc1

(
Φi

Ai

)2

sign[Φi], (B.35)

pid − pi2 =
Lid

Ai

d

dt
Φi + λ

Lid

Di

1

2ρid

(
Φi

Ai

)2

sign[Φi], (B.36)

where the time-derivative term represents the flow inertia and λ is the wall friction factor. The
intercooler consists of a tube bundle with counter-current flowing cold water. It is assumed
that the pressure difference of the air flow is negligible during the intercooling. According to
the perfect gas law, then the product of density and absolute temperature is constant. There-
fore heat exchange from the hot air to the cold water is increasing the density of the air,
i.e.

piu = pid, (B.37)

ρid =
piu

RTw
. (B.38)
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B.3 Input Parameters

0.89 ×10−3 Vmin1 minimum volume cylinder 1 (m3)
0.31 ×10−3 Vmin2 minimum volume cylinder 2 (m3)
10.0 ×10−3 Vcyl1 total volume cylinder 1 (m3)
3.5 ×10−3 Vcyl2 total volume cylinder 2 (m3)
0.343 Dcyl1 diameter of cylinder 1 (m)
0.203 Dcyl2 diameter of cylinder 2 (m)
12.5 ω/2π frequency of piston (Hz)
50 ×10−3 mv valve plate effective mass (kg)
0.0 ζ valve damping constant (kg/s)
5000 k valve spring constant (N/m)
5.0 ×10−3 hpl valve preload distance (m)
1.0 ×10−3 hmax valve maximum opening (m)
0.1 eres valve restitution coefficient (-)
1.2 cg valve gas force coefficient (-)
0.6 α valve flow rate coefficient (-)
34.0 ×10−4 Ap valve port area (m2)
1.4 Lg valve gap length (m)
0.14 ∆Lg defect valve gap length removal (m)
1.0 ×105 ps suction pressure (Pa)
293.15 Ts suction temperature (K)
8.0 ×105 pd discharge pressure (Pa)
10.0 ×10−3 Vsc1 volume suction chamber 1 (m3)
20.0 ×10−3 Vdc1 volume discharge chamber 1 (m3)
20.0 ×10−3 Vsc2 volume suction chamber 2 (m3)
20.0 ×10−3 Vdc2 volume discharge chamber 2 (m3)
0.8 αi orifice flow rate coefficient (-)
2.0 ×10−2 Dor orifice diameter (m)
297.15 Tw temperature cooling water (K)
1.0 Li pipe length ic/compr (>0) (m)
2.2 ×10−2 Di pipe diamater ic/compr (m)
1.4 γ ratio of specific heats (-)
287.0 R ideal gas constant (J/kgK)
8.0 ×10−6 ∆t time-step (s)
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VENA CONTRACTA

C.1 Theory
The vena contracta effect causes a jet flow through the aperture, formed by the sharp edges
of seat and plate, which has a cross-sectional area that is smaller than the aperture itself.
The flow coefficient α was defined in Eq. (3.1) and is also referred to as contraction ratio,
vena contracta- coefficient/factor/parameter. In order to investigate the influence of both the
geometry and compressibility on this coefficient, this section considers the 2D planar flow
through a diaphragm (Fig. C.1). In this case we will define the vena contracta factor as the

S djpS S

FIGURE C.1: Sketch of streamlines of the planar flow through a diaphragm.

ratio of the jet area Sj and the diaphragm area Sd, i.e.

α[
Sd

Sp
,Mj ] =

Sj

Sd
, (C.1)

where this coefficient is a function of both the confinement ratio (diaphragm area Sd over
channel (pipe) area Sp) and the jet Mach number Mj .

Busemann (1937) employed the hodograph method for an incompressible planar flow and
derived an implicit expression for the contraction ratio α0 ≡ α[Sd

Sp
, 0], i.e.

α0 =
π

π + 2
(

1
α0

Sp

Sd
− α0

Sd

Sp

)

arctan[α0
Sd

Sp
]
. (C.2)
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The solution of Kirchhoff is found as the asymptotic solution by taking the limit of Sd � Sp.
This case resembles the incompressible flow through a hole in an infinitely extended thin
plate, resulting in α0 = π

π+2 ≈ 0.61. The solution of the implicit expression Eq. (C.2) is
shown in Fig. C.2. Note that for Sd

Sp
< 0.2 Kirchhoff’s result provides a good approximation.

Sd / Sp

α

0 0.25 0.5 0.75 1
0.6
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FIGURE C.2: Contraction ratio α[Sd

Sp
, 0] as function of the ratio of diaphragm area and pipe

cross-section (Eq. C.2).

Furthermore the limit of Sd

Sp
= 1 in Eq. (C.2) yields the trivial solution of a uniform flow,

i.e. α0 = 1. In case of an axi-symmetric incompressible flow through a diaphragm in an
infinitely extended thin plate the vena contracta factor is only slightly smaller than in case of
planar flow. Bloch (1969) found α0 = 0.59 for axi-symmetric flow, while Kirchhoff’s result
is 0.61 for planar flow.

In order to take into account effects of compressibility, several approaches are presented in
literature (e.g. Hofmans 1998). Chaplygin derived an exact solution for the planar compress-
ible flow through a hole in a thin plate ( Sd

Sp
� 1) by employing the hodograph method (Sears

1954). This solution is shown in Fig. C.3. The limit of Mj = 0 yields the incompressible
flow solution of Kirchhoff.

In order to approximate the general solution Hofmans (1998) proposed an interpolation
between the solutions of Busemann (1937) and (Sears 1954), i.e.

α[
Sd

Sp
,Mj ] = α[

Sd

Sp
, 0] + α[0,Mj ] − α[0, 0], (C.3)

where the last term is the famous result of Kirchhoff, i.e. α[0, 0] = π
π+2 .
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α

Mj

FIGURE C.3: Contraction ratio α[0,Mj ] as function of the jet Mach number for the flow
through a hole in an infinitely extended thin plate. From Sears (1954).

C.2 Computational Fluid Dynamics
For arbitrary Mach number and arbitrary diaphragm opening the preconditioned Euler method
(Chapter 4) seems to be suited for testing the hypothesis of Eq. (C.3). Local preconditioning
is necessary because i) the local Mach number in the whole domain is expected to vary sig-
nificantly for high jet Mach number flow, and ii) the minimum local Mach number could be
extremely low.

In the present computational study, numerically stable solutions have not been obtained.
Some of the difficulties in this study are illustrated in the following. In order to save com-
putation time the computational domain will be defined as the upper half in Fig. C.1, since
the solution is expected to be symmetrical. The numerical solution of the flow through the
diaphragm intended to become unsteady by means of vortex shedding. Rather than a di-
aphragm, a stepwise convergent channel has been considered. Figs. C.4 and C.5 show the
formation of the jet and the artificial recirculation region from the sharp edge. During the
local time-stepping procedure this region propagates towards the outlet boundary. As soon as
the outlet flow reverses an additional boundary condition of zero speed is applied.

Section 6.1.2 presents a computational study for the flow through the model valve. Effects
of geometry, mesh, artificial dissipation, initial condition, boundary condition and precon-
ditioning have been explored extensively. Unfortunately, solutions with sufficient accuracy
have not been obtained. However, the flow around a 70◦ inclined plate has been computed
successfully (Section 4.4). In order to investigate the applicability of the preconditioned Euler
method for computing valve flows, in the following several flow configurations are consid-
ered. Figs. C.6 and C.7 present the result of the local time-stepping algorithm applied for
the case of the external flow around a 90◦ inclined plate. Figs. C.8 and C.9 present the re-
sult of the local time-stepping algorithm applied to the internal flow in a valve configuration.
This configuration is adapted from the preceding case by inclusion of a port (h/dsr = 3 and
L/dsr = 15, where L is the plate length).
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FIGURE C.4: Jet formation in stepwise convergent channel after 5 × 103 iterations. Four
streamlines are shown in a contour plot of the local Mach number (Min = 0.15, k(4) = 0.01,
preconditioning switched off, domain dimensions are 5000 × 1000 × 10 mm3).

FIGURE C.5: Jet formation in stepwise convergent channel after 20 × 103 iterations. Four
streamlines are shown in a contour plot of the local Mach number (Min = 0.15, k(4) = 0.01,
preconditioning switched off, domain dimensions are 5000 × 1000 × 10 mm3).
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FIGURE C.6: Flow around 90◦ inclined plate, 4 streamlines are shown (104 iterations, con-
tour plot of Mach number for 0.01 ≤ M ≤ 0.05 and 15 levels, preconditioning switched on,
ε = 0.01, k(4) = 0.08, CFL = 0.1, Min = 4.5 × 10−2).
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FIGURE C.7: Flow around 90◦ inclined plate, 2 streamlines are shown (3 × 104 iterations,
contour plot of Mach number for 0.01 ≤ M ≤ 0.05 and 15 levels, preconditioning switched
on, ε = 0.01, k(4) = 0.02, CFL = 0.1, Min = 4.5 × 10−2).
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FIGURE C.8: Flow through port and around 90◦ inclined plate, 2 streamlines are shown
(50 × 103 iterations, contour plot of Mach number for 0.01 ≤ M ≤ 0.08 and 15 levels,
preconditioning switched on, ε = 0.01, k(4) = 0.02, CFL = 0.1, Min = 4.5 × 10−2).
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FIGURE C.9: Flow through port and around 90◦ inclined plate, 6 streamlines are shown
(50 × 103 iterations, contour plot of Mach number for 0.01 ≤ M ≤ 0.08 and 15 levels,
preconditioning switched on, ε = 0.01, k(4) = 0.02, CFL = 0.1, Min = 4.5 × 10−2).
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SUMMARY

Motivation & Objective. Reciprocating compressors are widely used in gas transportation,
gas storage and petrochemical industries. They are able to compress gas in a wide range
of pressure ratios and flow rates. In reciprocating compressors, the piston motion results
in periodic increases and decreases in the cylinder volume. The entry and exit ports to the
cylinder are regulated by valves that periodically open and close. The compressor can be
considered as the heart of an installation and must operate reliably for several years. The
compressor valves have been identified as the primary cause of unscheduled shutdowns of
reciprocating compressors.

The principle of operation of all types of automatic valves is similar, although structural
details may differ considerably. Therefore, it is possible to distinguish the same basic func-
tional elements in valves of different design. Consider the discharge of gas in a reciprocating
compressor. When gas is flowing from the high pressure side in the cylinder volume through
the port of the discharge valve into the plenum chamber, the flow separates at the sharp edges
of the seat and the plate. This plate is connected to a preloaded spring which on its turn is
connected to the limiter, which is fixed in space. Because of the action of the gas force, the
plate is pushed against the limiter. When the pressure in the cylinder volume of the compres-
sor becomes sufficiently low, the discharge process is stopped automatically, because the gas
force acting on the plate is not able to keep the valve open. The spring force pushes the plate
on the seat and closes the valve.

For more than a century people have been modeling the fluid-structure interaction phe-
nomena that are present in automatic valves. The majority of these theories makes use of
semi-empirical coefficients. These coefficients have to be determined experimentally assum-
ing quasi-steady flow. We refer to these theories as traditional valve theories. The objective
of the present research is twofold, i.e. i) the analysis of the semi-empirical coefficients as
they appear in traditional valve theory, ii) the validation of the quasi-steady flow assumption
in traditional valve theory.

Basic Valve Theory. The historical developments of valve design, application, research
and modeling have been discussed for different types of automatic valves as they appear in
nature and engineering. For most of the cases a valve is considered as a mechanical device
and for valve design fluid dynamical aspects are secondary. The traditional valve theories
have been unified in one theory which we refer to as the Basic Valve Theory. This theory
considers the valve as a black box and provides a semi-empirical description of the valve state
variables. The state variables are: i) the pressure difference across the valve, ii) the volume-
flow rate through the valve and iii) the valve opening (plate height). Linear and non-linear
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properties of this theory have been investigated by means of stability analysis and numerical
simulations. For two limiting cases, i.e. Stokes flow and inviscid flow, the coefficients in the
semi-empirical expressions have been obtained. In order to show the diagnostic properties of
the Basic Valve Theory, a two-stage compressor system has been analysed.

Computational Fluid Dynamics. The flow in a compressor valve can be characterized as
a high Reynolds number with a large variation in local Mach number. Therefore the present
computational study employs the flow model based on the Euler equations for describing
inviscid compressible flow. To handle the regions with low velocities, the method of local
preconditioning has been applied. Time-derivative preconditioning increases the convergence
speed of the method. Preconditioning of the artificial dissipation terms in the flux scheme
increases the numerical accuracy in regions with very low Mach number. The geometry
of compressor valves is rather complex. Therefore the Euler equations are discretized for
an unstructured mesh. Several test cases show the ability of the computational method to
simulate steady- and unsteady low Mach number flows. However, in the case of the flow
through valves, it has been found that this method suffers from numerical instabilities. Several
strategies to tackle this problem have been discussed, addressing modifications of: geometry
and mesh, artificial dissipation, initial condition and boundary conditions. We feel that the
preconditioned Euler method for unstructured meshes is not suited for computations of flows
with large stagnation regions such as occur in compressor valves.

Laboratory Experiments. A model valve has been designed with a geometry that is sim-
pler than commercial compressor valves. In the experimental setup this model valve has been
mounted at the end of a pipe. An experimantal method has been designed that is able to mea-
sure simultaneously the instantaneous pressure difference across the valve, the instantaneous
volume-flow rate through the valve and the instantaneous valve opening. Assuming acousti-
cal flow in the pipe, the Two-Microphone Method has been extended towards reconstruction
in the time domain of both the dynamic pressure and the dynamic flow rate. A light-intensity
method has been employed to measure the valve opening.

Steady flow experiments have been performed for a ’hovering’ valve plate. The semi-
empirical coefficients of the model valve and a commercially available compressor valve
have been compared. Reverse flow experiments showed an increased flow resistance that is
approximately constant for a wide range of the Reynolds number.

The Basic Valve Theory is based on steady flow characteristics. Therefore unsteady flow
conditions in the model valve have been considered in order to assess effects of unsteadiness
on the performance of the Basic Valve Theory. The instantaneous gas force was predicted
rather accurately by the theory. However, it has also been observed that flow hystersis ef-
fects are present. These effects are postulated to be caused by a periodically detaching and
reattaching flow at the seat. This hypothesis has been enforced by predicting the valve state
variables, employing the Extended Valve Theory. The Extended Valve Theory takes into ac-
count the flow inertia in the port and the plate speed. However, further exploration of the
validity of the Extended Valve Theory for a broader range of parameters has to be performed.

For a commercial compressor valve also unsteady flow experiments have been conducted.
For the limiter almost inelastic plate collisions have been observed. The collisions of the plate
with the seat resulted in severe rocking effects. These effects are postulated to be caused by
the absence of gas damping, the relatively low spring force and the position of the guiding
holes in the plate.



SAMENVATTING

Motivatie & Doel. Zuigercompressoren worden wereldwijd toegepast in de gas transport-,
gas opslag- en petrochemische industrie. Deze compressoren kunnen gas comprimeren in
een groot bereik van drukverhoudingen en debieten. In een zuigercompressor resulteert de
beweging van de zuiger in een periodiek toenemen en afnemen van het volume in de cilin-
der. De intree- en uitlaat poorten van dit volume worden geregeld door kleppen (ventielen)
die periodiek open en dicht gaan. De compressor kan als het hart van een installatie wor-
den beschouwd en dient gedurende vele jaren betrouwbaar te zijn. De compressor kleppen
kunnen worden geı̈dentificeerd als de hoofdoorzaak van onvoorziene compressor uitval.

Ondanks het feit dat geometrische details van de klep behoorlijk kunnen verschillen, is het
principe van de werking van alle typen compressor kleppen gelijk. Daarom kunnen dezelfde
basis elementen in diverse kleppen worden onderscheiden. Als gas van de hoge-druk zijde in
de cilinder door de poort van de ontlaadklep stroomt, zal de stroming loslaten aan de scherpe
randen van de zitting en de plaat. Deze plaat is verbonden met een voorgespannen veer die
op haar beurt is verbonden met het stop element. Dit stop element is gefixeerd. Door het gas
wordt de plaat tegen het stop element gedrukt. Als de druk in de cilinder van de compressor
afneemt neemt de gaskracht af, zodat als de gaskracht voldoende laag is de klep niet meer
open kan worden gehouden. De veerkracht drukt de plaat tegen de zitting, sluit de klep en
stopt automatisch het ontlaadproces.

Al meer dan een eeuw is de wisselwerking tussen fluı̈dum en klep in automatische kleppen
gemodelleerd. De meerderheid van deze modellen maakt gebruik van semi-empirische uit-
drukkingen. De parameters in deze uitdrukkingen dienen experimenteel bepaald te worden
voor stationaire stromingen. Deze modellen worden traditionele klep modellen genoemd. Het
doel van dit onderzoek is tweeledig: i) de analyse van de parameters in de semi-empirische
uitdrukkingen, en ii) de validatie van de aanname dat de stroming als quasi-stationair mag
worden beschouwd.

Basale Klep Theorie. In het proefschrift worden de historische ontwikkelingen van klep
ontwerp, toepassing, onderzoek en modellering gepresenteerd voor verschillende typen van
automatische kleppen zoals die voorkomen in de natuur en de techniek. In de meeste gevallen
wordt een klep beschouwd als een mechanisch apparaat waarbij voor het klep ontwerp de
stromingseigenschappen minder belangrijk worden geacht. De traditionele klep modellen
zijn gebaseerd op een theorie die we de Basale Klep Theorie noemen. Deze theorie beschouwt
de klep als een zwarte doos en geeft het verband tussen toestandsvariabelen middels semi-
empirische uitdrukkingen. De toestandsvariabelen zijn: i) de drukval over de klep, ii) het
volume debiet door de klep en iii) de klep opening (plaat hoogte). Lineaire en niet-lineaire
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eigenschappen van deze theorie zijn onderzocht middels een stabiliteits analyse en numerieke
simulaties. Voor twee limiet gevallen, namelijk de Stokes stroming en de niet-viskeuze stro-
ming, zijn de parameters in de semi-empirische uitdrukkingen bepaald. Om de voorspellende
waarde van de Basale Klep Theorie te onderzoeken is een twee-traps compressor systeem
geanalyseerd. Deze analyse is in staat om te indentificeren welke van de vier kleppen defect
is.

Numerieke Stromingsleer. De stroming door een compressor klep kan worden gekarak-
teriseerd als een stroming met een hoog Reynolds getal en met een grote variatie in lokaal
Mach getal. Daarom wordt in de numerieke studie gebruik gemaakt van de Euler vergelijk-
ingen voor de beschrijving van een niet-viskeuze compressibele stroming. Om de gebieden
met lage snelheden aan te kunnen wordt gebruikt gemaakt van lokaal preconditioneren. Dit
zorgt voor een verhoogde convergentiesnelheid en tegelijkertijd voor een nauwkeurige rep-
resentatie van de stroming in gebieden met een laag Mach getal. De geometrie van een
compressor klep en zijn directe omgeving is ingewikkeld. Daarom worden de Euler vergelij-
kingen gediscretiseerd op een ongestruktureerd grid. Diverse test problemen laten zien dat de
methode in staat is om zowel stationaire als instationaire stromingen met laag Mach getal te
simuleren. Echter, in het geval van een klepstroming zijn er geen numeriek stabiele oplossing-
en gevonden. Diverse strategieën om dit probleem op te lossen zijn besproken zoals aan-
passing van de geometrie, aanpassen van kunstmatige dissipatie, andere beginvoorwaarde en
verbeterde randvoorwaarden. De indruk bestaat dat de gepreconditioneerde Euler vergelijk-
ingen, gediscretiseerd op een ongestruktureerd grid niet geschikt is voor berekeningen van
stromingen met grote ’dood-water’ gebieden zoals de stroming in compressor kleppen.

Laboratorium Experimenten. Er is een modelklep ontworpen met een eenvoudigere geo-
metrie dan die van commerciële compressor kleppen. In de experimentele opstelling is de
modelklep bevestigd aan het uiteinde van een pijp. Een experimentele methode is ontworpen
om gelijktijdig het drukverschil over de modelklep, het debiet door de modelklep en de open-
ing van de modelklep te meten. Dit isoleert meettechnisch de klep van zijn omgeving zodat
de Basale Klep Theorie gevalideerd kan worden. De Twee-Microfoon Methode is uitgebreid
van analyse in het frequentie domein naar reconstructies in het tijd domein. Voor akoestis-
che golven in de pijp kan nu zowel de dynamische druk als het dynamische debiet worden
bepaald. Een licht-intensiteit methode wordt gebruikt om de klep opening te meten.

Stationaire stromingen zijn opgewekt voor een ’zwevende’ klep plaat. De parameters in de
semi-empirische uitdrukkingen bepaald voor de modelklep zijn vergeleken met die bepaald
voor een commerciële compressor klep. Experimenten waarbij de richting van de stroming
is omgedraaid lieten een constante verhoogde stromingsweerstand zien, dit voor een groot
bereik van het Reynolds getal.

De Basale Klep Theorie is gebaseerd op de aanname van een quasi-stationaire stroming.
Voor de validatie van deze aanname zijn experimenten uitgevoerd met instationaire stroming-
en door de modelklep. Het blijkt dat de gaskracht redelijk nauwkeurig wordt voorspeld door
de Basale Klep Theorie. Echter, er is ook waargenomen dat hysterese effecten optreden. De
hypothese is dat deze effecten worden veroorzaakt door het periodiek loslaten en opnieuw
aanhechten van de stroming over de klepzitting. Deze hypothese wordt versterkt door de re-
sultaten van een uitbreiding van de Basale Klep Theorie, waarin de traagheid van de gasstro-
ming in de poort zowel als de plaat snelheid in rekening worden gebracht. Echter, verder
onderzoek naar de uitbreiding van de Basale Klep Theorie is nodig in een grotere parameter
ruimte.
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Voor een commerciële compressor klep zijn instationaire stromingen onderzocht. Bij-
na inelastische botsingen tussen plaat en stop element zijn waargenomen. De botsingen
tussen plaat en zitting resulteerden in hevige schommel effecten. Deze effecten worden
toegeschreven aan: afwezigheid van gas demping, relatief kleine veerkracht en de positie
van de geleidingsgaatjes in de plaat.
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