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I

This chapter gives a brief introduction to the motion of heavy particles and droplets in
gas flows. Each one of the next chapters is provided with an additional introduction
dedicated to the particular aspects of the subject treated in that chapter.

1.1 Etymological aspects of dispersed two-phase flow

The present thesis is devoted to the study of droplets and particles in gas flows. In
order to determine relevant characteristics of droplet- and particle-laden flows, it is
instructive to look at the etymology of the words ‘droplet’, ‘particle’ and ‘gas’.

The word ‘droplet’ is derived from the onomatopoeia ‘drop’ [71], ‘let’ being a
diminutive conjugation which has become rather obsolete in english.∗ Thus, we see
a droplet is traditionally regarded as a relatively small amount of liquid.

The english word ‘particle’ is related to the latin word ‘particula’, which itself is
the diminutive form of ‘partis’, in english ‘part’ [71]. So, ‘particle’ means something
like ‘small part’.† Etymology apparently suggests that particles are relatively small;
in addition, since a ‘part’ denotes a fraction of a larger quantity, we may conclude
that particles can be found in large groups.

Finally, the word ‘gas’ is an originally dutch derivation from the Greek word
‘chaos’, made by the flemish scientist Jan Baptista Van Helmont (1580-1644) [71].
He used it in order to describe the large number of degrees of freedom in the motion
the gas molecules. The word ‘gas’ was first used in a scientific treatise in 1779, in
the context of turbomachinery. Since the word ‘gas’ obtained its own meaning, in the
beginning of the 20th century the word ‘chaos’ could be used to denote something
different, namely an extreme sensitivity to initial conditions in dynamical systems.

∗Other examples of the diminutive ‘-let’ are leaflet, piglet, starlet and wavelet. The dutch counterpart
‘-el’ (druppel) is used in words like ‘trommel’ (trom), ‘stengel’ (stang), ‘eikel’ (eik) and ‘ijzel’ (ijs).

†The meaning of ‘particle’ as ‘small part’ is not restricted to english and Romance languages like
french (particule), italian (particella) and spanish (partı́cula); remarkably enough, even the dutch and
german translations of ‘particle’, ‘deeltje’ and ‘Teilchen’, respectively, share the literal meaning of
‘small part’.
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From these findings, we can deduce the following:

- Droplets and particles are small;

- Particles can be found in large groups;

- Gas is a collection of chaotically moving molecules.

These preliminary remarks can be seen as a prelude to the present thesis, in which we
study the motion of groups of particles and droplets due to their interactions with gas
flows. In this thesis, the emphasis is on the motion of heavy particles, i.e. particles
with a much higher mass density than the surrounding fluid.

1.2 Particle-laden flows in Nature and industry

Flows which contain large groups of relatively small particles and/or droplets are fre-
quently observed in Nature and in industry. One can think of the transport of ash
and stones during the eruption of a vulcano, soot in exhaust pipes of cars, dispersed
fuel droplets in combustion chambers, and the ubiquity of particles in the process
industry. Since the introduction in 1924 of the first spin dryer, produced by the Sav-
age Arms Corporation in America‡, more and more people have acquired their own
droplet-laden flow at home.

In order to describe some characteristic properties of dispersed multiphase flows,
below we treat three examples in some more detail.

1.2.1 Formation of rain droplets in turbulent clouds

Despite the familiarity of the phenomenon, the development of rain showers is not yet
completely understood and therefore subject to many studies (see e.g. the review ar-
ticle by Shaw [89] for references). In general terms, three stages can be distinguished
in the process of rain drop formation. Initially, tiny droplets form by condensation
of water vapor on preexisting aerosol particles that serve as condensation nuclei; the
typical diameter of these droplets is of the order of microns. If the conditions allow,
the droplets grow on to a diameter of millimeters in a subsequent stage. Finally, the
droplets are large enough to fall, under the influence of gravity, through the cloud
and reach the ground.

Observations and experimental results show that the entire process from the forma-
tion of tiny droplets to the actual precipitation can take place in approximately half
an hour. Such a small time scale could never be possible if the droplets grew only
due to condensation (see e.g. [89] for a first estimate). Hence, droplets must collide

‡See http://thefusebox.ce-electricuk.com.
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and coalesce in order to achieve the explosive growth necessary to produce particles
large enough to fall from a cloud.

It was long thought [80] that gravitational coalescence, during which a large droplet
falls through a quiescent fluid overtaking smaller droplets, is the most effective mech-
anism of coalescence. In the past decade, however, an alternative explanation has
been proposed [24], [89]: the influence of turbulence on the distribution of droplets,
generally phrased ‘preferential concentration’.

Preferential concentration refers to the non-uniform distribution of particles or
droplets as a consequence of small-scale turbulent motions. Due to the density
difference between the particles and the carrier flow, particles are expelled from re-
gions of high vorticity and accumulate in regions of high strain. Preferential concen-
tration has been widely observed both in experiments [23] and in numerical simula-
tions [59],[91]. The degree of particle aggregation has a strong dependence on the
value of the Stokes number, i.e. the particle relaxation time τp made dimensionless
by the Kolmogorov time scale τη of the turbulent motion; qualitatively, for very small
Stokes numbers particles tend to follow fluid streamlines, and for very large Stokes
numbers particles do not respond to the fluid motion significantly during the lifetime
of an eddy. Although preferential concentration can be observed for a wide range
of Stokes numbers, the effect is most important when the Stokes number is of order
unity. Indeed, in a recent publication, Bec et al. [9] report, after having done ex-
tensive direct numerical simulations in stationary homogeneous turbulence, that the
maximum clustering takes place when the Stokes number is approximately 0.6.

The relation between preferential concentration and the formation of cloud droplets
has been explained by Balkovsky et al. [5], and by Falkovich et al. [24]: due to their
inertia, droplets concentrate in strain regions on the smallest scales of the turbulent
flow in the cloud. Since the collision rate (i.e. the number of collisions per unit of
volume per unit of time) is to good approximation proportional to the particle number
density squared [89], [93], it is expected that preferential concentration has a major
effect on the probability of collisions and coalescence.

The example of droplet formation in clouds illustrates that (i) in turbulent flows,
droplets and particles are likely to distribute non-uniformly, (ii) inter-particle colli-
sions can have an important influence, both qualitatively and quantitatively, on the
properties of droplet-laden flows.

1.2.2 Formation of protoplanets in stellar systems

Stars condense from interstellar dust [50], an interstellar medium consisting mostly of
gas containing a mixture of solid particles. Both observational and numerical studies
suggest that, as the central star contracts, around it material remains that contains a
part of the initial angular momentum of the whole system. In this so-called nebula,
the centrifugal force balances the stellar gravity in the radial direction and a disk is
formed.
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As the dust settles towards the midplane of this disk, it is somehow accumulated
into protoplanetary objects of the size of approximately 10 km, which later grow
on to become planets and moons. Barge & Sommeria [6] explained the transition
from a primarily gaseous protoplanetary disk to a limited number of large objects by
emphasizing the inherent property of inertial particles to distribute non-uniformly in a
gas flow. This explanation was further elaborated by Bracco et al. [15], who assumed
that the nebular disk sustains turbulence. Since the turbulence is approximately two-
dimensional, large vortices are formed in the process of the inverse cascade of kinetic
energy from small to large scales.

Bracco et al. found that in the two-dimensional turbulent flow heavy particles are
quickly ejected from cyclonic vortices, i.e. regions where the vorticity is high and
has the same sign as the main rotation of the flow. First, the dust particles in the solar
nebula are concentrated in the high-strain regions between vortices. Subsequently,
remarkably enough, the particles concentrate inside anticyclonic vortices, i.e. regions
where the vorticity is high and has a sense opposite with respect to the main rotation
of the flow. The reason for this particle accumulation lies in the Coriolis force, as
Provenzale explains [79]. The particles remain trapped in the anticyclonic vortices for
a very long time, and have thus the opportunity to collide and to agglomerate. Later,
Chavanis [16] studied the formation of the Solar System, showing a strong correlation
between the regions where particles have the highest probability to accumulate and
the positions of the largest planets, i.e. Jupiter and Saturn.

The example from planet formation shows that the motion of heavy particles in
gas flows is not only influenced by the local properties of the gas at the position of
the particle, but also by the presence of a rotation of the whole system. Due to this
rotation, particles may accumulate in vortices instead of in high-strain regions.

1.2.3 Particle separation processes

When natural gas is extracted from the earth, it contains several unwanted compo-
nents such as water vapor and dust. Since these components are undesired, they need
to be separated as quickly as possible after the production from the wells.

Traditionally, the separation of water vapor and impurities from natural gas is
achieved by cooling the mixture in order to condense the vapor. In a subsequent stage,
the vapor is filtered from the gas. This process has the drawback that it requires an
apparatus of considerable size, which makes it impractical to use on off-shore plat-
forms.

Recently, the company Twister B.V.§ has developed a new type of gas-liquid sepa-
rators. Inside these separators, the natural gas is expanded to low pressures. In this ex-
pansion the gas cools to low temperatures while the flow reaches supersonic speeds.
In this expansion process, high values of the cooling speed are achieved resulting in

§See www.twisterbv.com.
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F 1.1: Configuration sketch of a gas-liquid separator with a helical vortex
filament in the deposition section. The contaminated gas is accelerated through the
converging-diverging nozzle (left part). Droplets are expelled in the separation sec-
tion (right part); the swirl is induced by a delta-wing attached to the wall. (This
picture has been provided by Twister B.V..)

a highly supersaturated state of the gas. As a consequence, homogeneous conden-
sation occurs with vapor components such as water condensing to droplets, which
can be separated from the flow by applying a swirl; due to the density difference, the
droplets are expelled from the flow in a similar way as happens in a spin dryer.

Two different concepts have been developed by Twister B.V.. The first concept,
which is depicted schematically in Fig. 1.1, consists of a converging-diverging noz-
zle, followed by a deposition section in which a swirling flow is established. The
swirl is introduced by means of a delta-wing type of vortex generator. The flow field
is characterized by a region with concentrated vorticity of helical (i.e. spiralling)
shape, which is supposed to force the droplets from the flow to the pipe wall.

In the second concept, sketched in Fig. 1.2, the processes of condensation and
separation are combined in one section. Upon entering the apparatus, the gas is
accelerated in both axial and azimuthal direction. The flow expands to low pressure
and temperature and reaches a supersonic speed. This causes the vapor components
of the gas to homogeneously condense to droplets. Due to the swirl, the droplets are
forced towards the wall, where they deposit.

The flow through both configurations of the gas-liquid separator is highly com-
plex. The flow Reynolds numbers Re = UD/ν = O(106), where U denotes the
magnitude of the mean velocity and D is the diameter of the pipe in the gas-liquid
separator; ν denotes the kinematic viscosity of the gas. The following effects play an
important role: a high cooling speed in the flow expanding to supersonic speed, the
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F 1.2: Configuration sketch of a gas-liquid separator with axisymmetric flow.
The contaminated gas is brought into rotation, and then accelerated. (This picture
has been provided by Twister B.V..)

release of latent heat during the condensation of vapor, a non-uniform deposition of
droplets, and the interaction between the turbulent flow and the motion of droplets.
An understanding of these processes is fundamental in order to enable optimizations
of the performance of the separator.

1.3 Objectives of the present study

In the present thesis, we study the motion of heavy particles in the presence of re-
gions with concentrated vorticity, and the motion of heavy particles and droplets in
a turbulent boundary layer of a swirling flow in a pipe. These research topics are
related to the industrial gas-liquid separators discussed in section 1.2.3. The results
of the present research provide some fundamental knowledge about the dynamics of
heavy particles in gas flows.

The following research questions are addressed in the present thesis:

- Is it possible to derive some general criterion for the accumulation of heavy
particles in gas flows?

- How do heavy particles and droplets move in the presence of regions with
concentrated vorticity inside a circular pipe?

- On which parameters does the particle deposition on the pipe wall in high-
speed swirling flows depend?

- What is the influence of inter-particle collisions and coalescence on the depo-
sition rates in turbulent boundary layers?
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Generally spoken, two different approaches can be taken in the study of the mo-
tion of particles. Firstly, the so-called Eulerian approach refers to the study and the
modelling of the motion of particles in a fixed frame of reference. In contrast, in
the Lagrangian approach each individual particle is followed along its trajectory.¶ A
fundamental problem in modelling any dispersed two-phase flow arises from the fact
that the equations describing the carrier flow are formulated in an Eulerian fashion,
whereas the equation of motion of particles is formulated in a Lagrangian fashion.

In the present research, we choose to employ a Lagrangian formulation. The ad-
vantage of this formulation is that no approximations have to be made to the particle
equations of motion. In addition, it is physically more insightful since each parti-
cle can be traced individually. As a result, both trajectories of individual particles
and distribution patterns of a group of particles are readily obtained from Lagrangian
simulations.

1.4 Thesis outline

The present thesis is devoted to the motion of heavy particles and droplets near re-
gions of concentrated vorticity and the motion of heavy particles and droplets in
turbulent boundary layers. The thesis is organized as follows.

In Chapter 2, we present the equation of motion for heavy particles and droplets
in a gas flow. We show that the Stokes drag and gravity are the dominant forces
when the particles have a small size and a high density compared to the density of
the carrier fluid. In addition, we relate the accumulation of small heavy particles to
the local properties of the carrier flow field.

Part I is devoted to the motion of heavy particles in flows generated by strong
vortices. In Chapter 3, results are presented for heavy particles in a closed circular
domain containing one point vortex. The motion of heavy particles in a closed circu-
lar domain containing two point vortices is studied in Chapter 4. Finally, Chapter 5 is
dedicated to the motion of heavy particles in the three-dimensional flow field induced
by a helical vortex filament in an infinite straight tube of circular cross-section.

In Part II, we discuss the motion of heavy particles and droplets in turbulent bound-
ary layers. The flow field along the particle trajectory is modelled using a stochastic
method. In Chapter 6, the most important properties of stochastic differential equa-
tions are presented. In Chapter 7, we study the dynamics of heavy particles and
droplets in the turbulent boundary layer over a flat plate. Results for the motion of
heavy particles and droplets in the turbulent boundary layer in a swirling flow in a
pipe are presented in Chapter 8.

Finally, conclusions and recommendations for future research are formulated in
Chapter 9.

¶It is noted that both the Eulerian and Lagrangian frame were first derived by Euler [45].
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In this chapter, the equation of motion is presented for a solid, rigid particle in a
non-uniform flow. It is assumed that the particle does not influence the flow field
(one-way coupling). It will be shown that the Stokes drag and gravity are the domi-
nant forces in the case of small heavy particles and droplets in gas flows, so that the
equation of motion can be simplified considerably. The simplified equation of mo-
tion can be solved analytically for linear velocity fields, as is shown in section 2.2. In
section 2.3, we use the simplified equation of motion in order to derive some general
properties of particle accumulation in any smooth flow. We show that the dissipative
nature of the equation of motion causes a continuous decrease of the phase space
volume occupied by a group of particles. However, this does never result in an accu-
mulation of particles to one point from all directions in phase space simultaneously.
In addition, we show that in physical space small heavy particles are expelled from
high-vorticity regions and concentrate in high-strain regions.

2.1 Equation of motion of rigid spherical particles

We consider a rigid spherical particle with radius ap and density ρp in a non-uniform
velocity field ũ(x̃, t̃) of a fluid with kinematic viscosity ν and density ρ. The accel-
eration of the particle is described by the equation of motion, here given in the form
presented by Maxey & Riley [58]:

dx̃p

dt̃
= ũp,

mp
dũp

dt̃
= (mp − m f )g + m f

(Dũ
Dt̃

)

x̃=x̃p(t̃)
− 1

2
m f

d
dt̃

[

ũp −
(

ũ +
a2

p

10
∇2ũ

)

x̃=x̃p(t̃)

]

+

−6πapρν

[

ũp −
(

ũ +
a2

p

6
∇2ũ

)

x̃=x̃p(t̃)

]

+

−6πa2
pρν

t̃
∫

0

1
√

πν(t̃ − τ̃)

(

d
dτ̃

[

ũp −
(

ũ +
a2

p

6
∇2ũ

)

x̃=x̃p(τ̃)

]

)

dτ̃, (2.1)
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where x̃p is the position of the particle, ũp is the velocity of the particle, g is the
acceleration of gravity vector, mp = 4πρpa3

p/3 is the mass of the particle, m f =

4πρa3
p/3 is the mass of the fluid displaced by the particle. Finally, the terms

(

ũ +
(a2

p/10)∇2ũ
)

x̃=x̃p(t̃) and
(

ũ + (a2
p/6)∇2ũ

)

x̃=x̃p(t̃) denote the average velocity of the
carrier fluid over the particle volume, and the average velocity of the carrier fluid
over the particle surface, respectively. Although these velocities are seemingly not
meaningful (there is no fluid in the region occupied by the particle, so it does not
have any velocity either), they can be regarded as some measure for the velocity of
the carrier fluid in the vicinity of the supposedly very small particle.

The terms on the RHS of Eq. (2.1) denote buoyancy, a force due to the accelera-
tion of the undisturbed fluid, an inertia force of added mass, a viscous drag force, and
finally a viscous force due to unsteady relative acceleration (also known as the Bas-
set history force), respectively. Eq. (2.1) is valid for situations in which the particle
Reynolds number Rep ≡ 2|ũp − ũ|ap/ν = O(1), i.e. Stokes flow is assumed around
the particle [58].

Upon dividing the second equation of Eq. (2.1) by mp, the following equation is
obtained:

dx̃p

dt̃
= ũp,

dũp

dt̃
= (1 − ρ

ρp
)g +

ρ

ρp

(Dũ
Dt̃

)

x̃=x̃p(t̃)
− 1

2
ρ

ρp

d
dt̃

[

ũp −
(

ũ +
a2

p

10
∇2ũ

)

x̃=x̃p(t̃)

]

+

− 1
τp

[

ũp −
(

ũ +
a2

p

6
∇2ũ

)

x̃=x̃p(t̃)

]

+

−
ap

τp

t̃
∫

0

1
√

πν(t̃ − τ̃)

(

d
dτ̃

[

ũp −
(

ũ +
a2

p

6
∇2ũ

)

x̃=x̃p(τ̃)

]

)

dτ̃, (2.2)

where τp is defined as the particle response time, equal to:

τp ≡
2
9
ρp

ρ

a2
p

ν
. (2.3)

If the density and the viscosity of the surrounding fluid are uniform, the particle
response time τp is a constant.

In the present thesis, we consider particles and droplets which have a much higher
density than the surrounding fluid: ρp � ρ. In addition, we assume the particle
radius to be so small that a2

p|∇2ũ| � |ũ|. The Basset history term is neglected under
the assumption that the accelerations of the carrier flow field are sufficiently small,
e.g. shocks are not present [95]. Using these assumptions, which are relevant for
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many applications in Nature and industry, Eq. (2.2) can be approximated by:

dx̃p

dt̃
= ũp,

dũp

dt̃
=

1
τp

(

ũ − ũp
)

+ g, (2.4)

where ũ = ũ(x̃p(t̃), t̃) is written for the sake of brevity. Apparently, the Stokes drag
and gravity are the dominant forces.

The equation of motion Eq. (2.4) can be made dimensionless by means of a typical
length scale L and a typical time scale T . The result is:

dxp

dt
= up,

dup

dt
=

1
St

(

u − up
)

+
1

Fr2
g
|g| , (2.5)

where St denotes the Stokes number defined by St ≡ τp/T , and Fr is the Froude
number defined by Fr ≡ T −1

√

L/|g|.

2.2 Analytical solutions of particle equation of motion

For some simple flows, the equations of motion Eq. (2.5) can be solved analytically.
In the present section, first a general solution is provided. Subsequently, the general
solution is applied to two archetypical two-dimensional flow fields.

Mathematically, Eq. (2.5) is a system of first-order ordinary differential equations
of the form:

dχ
dt
= F(χ, t), (2.6)

where χ is a column vector containing both the position and the velocity of the parti-
cle: χ ≡ (xp,up)T .

If the Froude number Fr � 1 so that the effect of gravity can be neglected, and if
the carrier flow velocity u is a time-independent linear function of the spatial coordi-
nates, then F(χ, t) = F(χ), with F linear in χ, and Eq. (2.5) can be solved analytically.
Under these assumptions, the equation of motion of heavy particles becomes:

dxp

dt
= up,

dup

dt
=

1
St

(

[σ]d xp − up
)

, (2.7)

where the matrix [σ]d is the rate-of-deformation tensor which contains the spatial
derivatives of the velocity field: its elements are σi j ≡ ∂ui/∂x j. Eq. (2.7) has the
form:

dχ
dt
= Mχ, (2.8)

where M is the following matrix:

M =
( [

0
]

d
[

I
]

d
1
St

[

σ
]

d
−1
St

[

I
]

d

)

. (2.9)
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Here, [0]d and [I]d denote a d × d-dimensional null matrix and identity matrix, re-
spectively. Since the matrix M is time-independent, the solution of this system has
the following general form:

χ(t) =
2d
∑

k=1

akrk exp
(

λkt
)

, (2.10)

where λk denotes the k-th eigenvalue of the matrix M, and d denotes the dimension
of the physical space, i.e. d = 2 for a two-dimensional flow, and d = 3 for a three-
dimensional flow. The vector rk is the right eigenvector corresponding to λk, and the
coefficients ak can be determined from the initial condition χ(t = 0) = χ0.

The eigenvalues λ can be determined from det(M − λI) = 0:

0 = det
( −λ[I]d

[

I
]

d
1
St

[

σ
]

d −( 1
St + λ

)[

I
]

d

)

. (2.11)

With help of a Gauss-Jordan transformation, we obtain:

0 = det
( −λ[I]d

[

I
]

d
[

0
]

d −( 1
St + λ

)[

I
]

d +
1
λSt

[

σ
]

d

)

. (2.12)

This is equivalent to:

0 = det
(

1
St

[

σ
]

d −
( λ

St
+ λ2)[I

]

d

)

. (2.13)

It is clear that the d eigenvalues of the matrix [σ]d, α say, are related to λ as follows:

λ2 +
λ

St
=
α

St
. (2.14)

The solution for λ is:

λi =
−1 +

√
1 + 4Stαi

2St
, λi+d =

−1 −
√

1 + 4Stαi

2St
, (2.15)

for i = 1, . . . , d.
If the d right eigenvectors of [σ]d are denoted by si, associated to the eigenvalues

αi, then the right eigenvectors of M, rk, associated to the eigenvalues λk, are:

ri =
[

si, λisi
]T
, ri+d =

[

si, λi+d si
]T
, for i = 1, . . . , d. (2.16)

It is noted that the eigenvectors rk are not orthogonal; in particular, the product ri ·
ri+d , 0 in general.
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2.2.1 Linear flow fields in two dimensions

For a two-dimensional flow, M in Eq. (2.8) is:

M2D =



































0 0 1 0
0 0 0 1

1
St
∂u
∂x

1
St
∂u
∂y − 1

St 0
1
St
∂v
∂x

1
St
∂v
∂y 0 − 1

St



































. (2.17)

The characteristic polynomial for the eigenvalues of M2D is:

λ2
(

λ +
1
St

)2
− λ

St

(

λ +
1
St

)(

∂u
∂x
+
∂v
∂y

)

+
H
St2
= 0, (2.18)

whereH is defined as:

H ≡
(

∂u
∂x

)(

∂v
∂y

)

−
(

∂u
∂y

)(

∂v
∂x

)

. (2.19)

If the carrier flow is incompressible (∇ · u = 0), the four eigenvalues of M2D are:

λi =
−1 ±

√

1 ± 4St
√
−H

2St
. (2.20)

Example I: separation point type of flow

The incompressible flow near a separation point can be modelled by a linear strain
field. The flow field is linear in the coordinates x and y. At the position of the particle
(xp, yp), the velocities in horizontal and vertical direction are given by:

u = −Kxp, v = Kyp, (2.21)

with K ∈ R
+.

The eigenvalues can be obtained from Eq. (2.20), whereH = −K2. If St ≤ {4K}−1,
then all eigenvalues are real:

λ1 =
−1 +

√
1 − 4StK

2St
,

λ2 =
−1 +

√
1 + 4StK

2St
,

λ3 =
−1 −

√
1 − 4StK

2St
,

λ4 =
−1 −

√
1 + 4StK

2St
. (2.22)
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The corresponding right eigenvectors are:

r1 =
[

1, 0,
−1 +

√
1 − 4StK

2St
, 0

]T
,

r2 =
[

0, 1, 0,
−1 +

√
1 + 4StK

2St
]T
,

r3 =
[

1, 0,
−1 −

√
1 − 4StK

2St
, 0

]T
,

r4 =
[

0, 1, 0,
−1 −

√
1 + 4StK

2St
]T
. (2.23)

Finally, the constants ai are found from imposing the initial conditions xp(0) = x0,
yp(0) = y0, up(0) = u0 and vp(0) = v0:

a1 =
xoλ3 − u0

λ3 − λ1
,

a2 =
yoλ4 − v0

λ4 − λ2
,

a3 =
xoλ1 − u0

λ1 − λ3
,

a4 =
yoλ2 − v0

λ2 − λ3
, (2.24)

Insertion of Eq. (2.22), Eq. (2.23) and Eq. (2.24) in Eq. (2.10) yields the solution for
xp(t), yp(t), up(t) and vp(t).

Because only λ2 is positive and all the other eigenvalues are negative, the par-
ticle motion at large times is dominated by a motion away from the origin, in the
y-direction, for all initial conditions except y0 = 0 and v0 = 0.

If St > {4K}−1, then the following eigenvalues are obtained:

λ1 =
−1 + i

√
4StK − 1

2St
,

λ2 =
−1 +

√
4StK + 1

2St
,

λ3 =
−1 − i

√
4StK − 1

2St
,

λ4 =
−1 −

√
4StK + 1

2St
, (2.25)
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with corresponding right eigenvectors:

r1 =
[

1, 0,
−1 + i

√
4StK − 1

2St
, 0

]T
,

r2 =
[

0, 1, 0,
−1 +

√
4StK + 1

2St
]T
,

r3 =
[

1, 0,
−1 − i

√
4StK − 1

2St
, 0

]T
,

r4 =
[

0, 1, 0,
−1 −

√
4StK + 1

2St
]T
. (2.26)

The coefficients ai are again given by Eq. (2.24).
The results for λ2 and λ4 have not changed compared to Eq. (2.22); this means that

the particle trajectory will converge towards a motion in y-direction for large times
also if St > {4K}−1. The eigenvalues λ1 and λ3, however, form a pair of complex
conjugates with real part smaller than zero, and their corresponding eigenvectors
point in the x-direction only. The physical significance of this result is, that a particle
with St > {4K}−1 describes an oscillatory motion around the y-axis while converging
to it [57].

In Fig. 2.1, we present the resulting particle trajectories for StK = 1 and for StK =
1/10. Indeed, we see that for the case StK = 1, the particles cross the y-axis. The
strict distinction between small particles with St ≤ {4K}−1 and large particles with
St > {4K}−1 may result in different behaviour in real flows in which the dominant
eddy frequency is K. Small particles will follow fluid trajectories closely and stay
with the eddy. In contrast, large particles move from one eddy to another.

Example II: solid body rotation

A solid-body rotation flow is characterized by a uniform, non-zero vorticity over the
whole domain. The linear flow field at the position of the particle is given by:

u = −Ωyp, v = Ωxp. (2.27)

The eigenvalues, obtained from Eq. (2.20) withH = Ω2, are:

λ1 =
−1 +

√
1 + 4iStΩ
2St

,

λ2 =
−1 +

√
1 − 4iStΩ
2St

,

λ3 =
−1 −

√
1 + 4iStΩ
2St

,

λ4 =
−1 −

√
1 − 4iStΩ
2St

. (2.28)
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F 2.1: Trajectory of a heavy particle in a linear strain field, released at (x, y) =
(5, 1). Their initial velocity is equal to the local carrier flow velocity. The lines
St = 0 correspond to trajectories of passive tracers (streamlines). a) St = 0.1/K; b)
St = 1/K.
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Separation of the real and imaginary parts yields:

λ1 =
1

2St
(−1 +Cr + iCi

)

,

λ2 =
1

2St
(−1 +Cr − iCi

)

,

λ3 =
1

2St
(−1 −Cr − iCi

)

,

λ4 =
1

2St
(−1 −Cr + iCi

)

, (2.29)

where the variables Cr and Ci are defined as:

Cr ≡
√

1
2
+

1
2

√

1 + 16St2Ω2,

Ci ≡
√

−1
2
+

1
2

√

1 + 16St2Ω2.

The corresponding right eigenvectors are:

r1 =
[

i, 1, iλ1, λ1
]T
,

r2 =
[

1, i, λ2, iλ2
]T
,

r3 =
[

i, 1, iλ3, λ3
]T
,

r4 =
[

1, i, λ4, iλ4
]T
. (2.30)

The solution for the position and the velocity of a particle follow from Eq. (2.10),
with the eigenvalues λk given by Eq. (2.29), the right eigenvectors rk given by Eq.
(2.30) and the coefficients ak given by:

a1 = A1 − iA2, a2 = A2 − iA1, a3 = A3 − iA4, a4 = A4 − iA3, (2.31)

with:

A1 =
1

4(C2
r +C2

i )

(

−Cix0 +
[

C2
r +C2

i +Cr
]

y0 − 2StCiu0 + 2StCrv0

)

,

A2 =
1

4(C2
r +C2

i )

(

[

C2
r +C2

i +Cr
]

x0 +Ciy0 + 2StCru0 + 2StCiv0

)

,

A3 =
1

4(C2
r +C2

i )

(

Cix0 +
[

C2
r +C2

i −Cr
]

y0 + 2StCiu0 − 2StCrv0

)

,

A4 =
1

4(C2
r +C2

i )

(

[

C2
r +C2

i −Cr
]

x0 −Ciy0 − 2StCru0 − 2StCiv0

)

, (2.32)

where x0 = xp(0), y0 = yp(0), u0 = up(0) and v0 = vp(0) denote again the initial con-
dition. Since λ1 and λ2 have a positive real part, it is clear that a particle, regardless
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of its initial condition, is eventually moving away from the center of rotation. (An
exception should be made for a particle released in the origin with zero velocity; in
this model there is no force to bring it into motion.)

The trajectories of two different heavy particles in a solid-body rotation flow field
are presented in Fig. 2.2. As expected, the particles are expelled from the core region,
and this effect becomes more important as the Stokes number increases.

2.3 Particle accumulation in any smooth flow

In this section, we investigate the motion of heavy particles in the 2d-dimensional
phase space of position and velocity, with d the dimension of physical space. Criteria
are derived for the non-uniform concentration of heavy particles in physical space.

2.3.1 Phase space volume occupied by a group of particles

Following the example of Ottino [73], we consider a 2d-dimensional ‘volume’ in
phase space χ, occupied by a group of particles. This ‘volume’ in phase space can be
denoted byV:

V(t) =
∫

V(t)

dV. (2.33)

The time development ofV is:

dV
dt
=

d
dt

∫

V(t)

dV. (2.34)

This can be expressed as:
dV
dt
=

∫

S(t)

dχ j

dt
n jdS, (2.35)

where S is the closed ‘surface’ of the ‘volume’ V, with unit vector n the external
normal to the surface. Using the theorem of Gauss, the following relation is obtained:

dV
dt
=

∫

V(t)

(

∂

∂χ j

dχ j

dt

)

dV. (2.36)

Inserting Eq. (2.6) yields:

dV
dt
=

∫

V(t)

(

∂

∂χ j
F j(χ, t)

)

dV. (2.37)
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F 2.2: Trajectories of heavy particles in a solid body rotation flow, released
at (x, y) = (1, 0). Their initial velocity is equal to the local carrier flow velocity.
The lines St = 0 correspond to trajectories of passive tracers (streamlines). a) St =
0.1/Ω; b) St = 1/Ω.
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From Eq. (2.5) it follows that ∂F j/∂χ j = −d/St, regardless of the carrier flow field
or gravity. Therefore, we obtain the following relation forV:

dV
dt
=
−d
St
V. (2.38)

with solution:
V(t) = V(0) exp

(−d
St

t
)

. (2.39)

It is clear that this system is dissipative, i.e. the 2d-dimensional ‘volume’ occupied
by a group of particles in phase space tends to zero exponentially [73].

The ‘volume’ V tends to zero faster for particles with smaller St. This can be
explained by the observation that the effect of the initial conditions for the motion of
smaller particles is not felt very long. Very large particles, on the other hand, continue
their route through space almost independently of the flow.

Particle accumulation from all directions in phase space

Now that we know that the volume in phase space occupied by heavy particles de-
creases continuously, it is interesting to see how this volume contraction is estab-
lished. In particular, we investigate whether it is possible that the volume in phase
space contracts in all directions simultaneously. If this is possible, it means that in
phase space a point can exist to which all particles in its vicinity are attracted.

First, we consider two particles that are very close to each other in phase space,
i.e. both their positions and their velocities are almost the same. Their positions in
phase space can be denoted by χ1 and χ2, respectively, so that their separation can be
denoted by R ≡ χ2 − χ1.

Using the equations of motion, Eq. (2.5), and assuming that the carrier flow field
is smooth, i.e. ∂ui/∂x j exists, the time change of R can be determined to be (up to
first order in |R|):

d
dt

R = MR, (2.40)

where M has the same form as in Eq. (2.9). Due to the possible non-uniformity and
unsteadiness of the carrier flow, the matrix M may be time-dependent. On the basis
of Eq. (2.40) and Eq. (2.9), we can determine some general properties of particle
accumulation in smooth flow fields.

If the separation between particles becomes smaller in all directions in phase space,
the following equation must hold:

d
dt
|R|2 < 0, ∀R. (2.41)

With Eq. (2.40) this can be rewritten to:

d
dt
|R|2 = d

dt
(

R · R)

= 2R · dR
dt
= 2R · (MR

)

< 0, ∀R, (2.42)
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i.e., the matrix M is negative definite.
The matrix M is negative definite if and only if the symmetric matrix MS , defined

as:

MS ≡
1
2
(

M + MT )

=













[

0
]

d
1
2
( 1
St

[

σ
]

d +
[

I
]

d
)

1
2
( 1
St

[

σ
]

d +
[

I
]

d
) − 1

St
[

I
]

d













, (2.43)

is negative definite, i.e. if all of its eigenvalues are negative. Due to the symmetry of
MS , all eigenvalues λS are real, and the corresponding eigenvectors are orthogonal
[48]. The eigenvalues follow from:

0 = det












−λS
[

I
]

d
1
2
( 1
St

[

σ
]

d +
[

I
]

d
)

1
2
( 1
St

[

σ
]

d +
[

I
]

d
) −( 1

St + λS
)[

I
]

d













. (2.44)

This equation can be simplified by Gauss-Jordan transformations, so that the follow-
ing matrix is obtained:

0 = det















−λS
[

I
]

d
1
2
( 1
St

[

σ
]

d +
[

I
]

d
)

[

0
]

d
1
λS

(

−( λS

St + λ
2
S
)[

I
]

d +
[

Σ̄
]

d

)















, (2.45)

where [Σ̄]d is a matrix defined by:

[

Σ̄
]

d ≡
1

4St2
[

σ + StI
]

d
[

σ + StI
]T
d . (2.46)

By definition, [Σ̄] is a symmetric, positive definite matrix, so its eigenvalues are
strictly positive and real. Eq. (2.45) shows that the d eigenvalues of Σ̄, β say, are
related to the eigenvalues λS of the matrix MS by:

λ2
S +
λS

St
= β. (2.47)

Clearly, each eigenvalue β is associated to two eigenvalues λS of the matrix MS :

λS ,i =
−1 +

√

1 + 4βiSt2

2St
, λS ,i+d =

−1 −
√

1 + 4βiSt2

2St
. (2.48)

Since all βi are real and larger than zero, half of the 2d eigenvalues λS are larger
than 0. Hence, matrix MS is not negative definite and thus a uniform accumulation
of heavy particles (in all directions of the phase space) is not possible in any flow
field. In summary, there is no possible flow field in which a group of heavy particles,
distributed uniformly in a small volume of phase space, converges simultaneously
to a single point in phase space; there is always at least one direction in which the
separation between particles grows.
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2.3.2 Accumulation of heavy particles in physical space

In many practical applications, it is more important to obtain information on the
distribution of heavy particles in physical space rather than in phase space. Therefore,
we determine a relationship between the concentration of particles in physical space
and the properties of the flow field.

The separation vector R, introduced in Eq. (2.40), can be expressed in terms of the
eigenvectors rk as follows:

R =
2d
∑

k=1

akrk, (2.49)

where ak are, possibly complex, coefficients. Then, the instantaneous change of the
separation vector R is, according to Eq. (2.40):

d
dt

R = MR =
2d
∑

k=1

ak rkλk, (2.50)

where λk denote the eigenvalues of the separation matrix M, which are given by Eq.
(2.15).

We now consider particles for which the Stokes number is small. The eigenvalues
λk can then be approximated by:

λi = αi − Stα2
i + O(St2), λi+d = −

1
St
− αi + Stα2

i + O(St2), (2.51)

where the term
√

1 + 4Stαi in Eq. (2.15) has been expanded in a Taylor series around
St = 0. It is noted that Eq. (2.51) is valid for any value of αi, either real or complex.

If the Stokes number is sufficiently small so that Stαi � 1, then disturbances in the
ri+d-direction are quickly damped out compared to disturbances in the ri-direction.
Therefore, only disturbances in the ri-direction, with 1 ≤ i ≤ d, can exist for a
sufficiently long time:

d
dt

R = MR '
d

∑

i=1

aiλiri. (2.52)

Concentration of particles in two dimensions

We first study the particle accumulation in two dimensions, i.e. d = 2. A group of
particles is supposed to occupy a relatively small area A, spanned by the two basis
vectors δ1 = a1s1 and δ2 = a2s2, where si is related to ri according to Eq. (2.16).
The size of the area is A = | det(δ1, δ2)|. In the course of time, the separation of the
particles in A increases or decreases according to Eq. (2.52); in the two directions we
have:

d
dt
δ1 = λ1δ1,

d
dt
δ2 = λ2δ2. (2.53)
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As a consequence, the area A changes according to:

dA
dt
=

d
dt

∣

∣

∣ det(δ1, δ2)
∣

∣

∣ = A
(

λ1 + λ2
)

. (2.54)

The area occupied by a number of particles is inversely proportional to the concen-
tration of particles c: c ∼ 1/A. Therefore, the time change of the concentration is:

dc
dt
= −c

(

λ1 + λ2
)

. (2.55)

Inserting the expressions for λi from Eq. (2.51) yields:

dc
dt
= −c

[

α1 + α2 − St
(

α2
1 + α

2
2
)

]

. (2.56)

This equation relates the change in concentration of particles in the case of small
Stokes numbers explicitly to the eigenvalues of the rate-of-deformation tensor [σ]d.

In an incompressible flow, α1 + α2 = 0, so that α1 = −α2; due to the fact that the
elements of [σ]d are real, the value of α1 is either purely real, or purely imaginary. Eq.
(2.56) shows that the concentration of heavy particles increases in regions where α1
is purely real (strain regions) and decreases in regions where α1 is purely imaginary
(vortex regions).

Concentration of particles in three dimensions

We now study the particle accumulation in three dimensions, i.e. d = 3. We consider
an infinitesimally small volume V which encompasses a large number of particles.
Suppose that V has the shape of a parallelepiped, spanned by the three basis vectors
δ1 = a1s1, δ2 = a2s2 and δ3 = a3s3; again, si is related to ri according to Eq. (2.16).
The size of the volume is V = |δ1 ·

(

δ2×δ3
)|. In the course of time, the separation of the

particles in V increases or decreases according to Eq. (2.52); in the three directions
we have:

d
dt
δ1 = λ1δ1,

d
dt
δ2 = λ2δ2,

d
dt
δ3 = λ3δ3. (2.57)

As a consequence, the volume of V , occupied by the particles, changes according to:

dV
dt
=

d
dt

∣

∣

∣ det(δ1, δ2, δ3)
∣

∣

∣ =
d
dt

∣

∣

∣δ1 ·
(

δ2 × δ3
)

∣

∣

∣ = V
(

λ1 + λ2 + λ3
)

. (2.58)

Because the volume occupied by a number of particles is inversely proportional to
the concentration of particles c, the time change of the concentration then becomes:

dc
dt
= −c

(

λ1 + λ2 + λ3
)

. (2.59)
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Inserting the expressions for λi from Eq. (2.51) yields:

dc
dt
= −c

[

α1 + α2 + α3 − St
(

α2
1 + α

2
2 + α

2
3
)

]

. (2.60)

In an incompressible flow, Eq. (2.60) reduces to:

dc
dt
= cSt

(

α2
1 + α

2
2 + α

2
3
)

. (2.61)

In a three-dimensional incompressible flow, either all eigenvalues of the rate-of-
deformation tensor are purely real with α1 + α2 = −α3, or only one eigenvalue
is purely real and the other two are complex conjugates so that α1 = αRe + iαIm,
α2 = αRe − iαIm and α3 = −2αRe [17]. Eq. (2.61) shows that small, heavy particles
always diverge in regions where the eigenvalues of the rate-of-deformation tensor are
complex and α2

Im > 3α2
Re; this is typically the case in regions of high vorticity. In all

other regions (typically, strain regions), small heavy particles are concentrated.
The result from Eq. (2.61) is in agreement with the result obtained by Maxey [59].

He found that the particle concentration in an incompressible flow, along the path
of a group of small heavy particles which all have approximately the same velocity
〈up〉 ' u − St Du

Dt , develops as:

dc
dt
= −c∇ · 〈up〉 ' cSt∇ · [(u · ∇)u]

= cSt
[

ei jei j − ri jri j
]

, (2.62)

where the tensors ei j and ri j are defined as:

ei j ≡
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

, ri j ≡
1
2

(

∂ui

∂x j
−
∂u j

∂xi

)

.

Again, we see that the concentration of small heavy particles increases in regions of
high strain (high ei jei j) and decreases in regions of high vorticity (high ri jri j).

It can be shown that Eq. (2.61) is exactly equivalent to Eq. (2.62). Nevertheless, it
is advantageous to use the formulation presented in Eq. (2.60) instead of Eq. (2.62)
for two reasons. Firstly, Eq. (2.60) can be easily extended to higher orders in St by
taking into account more terms in the Taylor series in Eq. (2.51). Secondly, Eq. (2.60)
is equally valid for both incompressible and compressible carrier flows, whereas Eq.
(2.62) is valid for incompressible carrier flows only.

2.4 Conclusions

In the present chapter, the equations of motion of small, heavy particles in a non-
uniform flow have been presented. Stokes drag and gravity were shown to be the
dominant forces.
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The particle equations of motion have been solved analytically for flow fields for
which the velocity is a linear function of the spatial coordinates. The cases of a linear
strain field and of a solid body rotation have been treated explicitly.

Close inspection of the particle equations of motion shows that the motion of heavy
particles is described by a dissipative system. This means that the volume in phase
space occupied by a group of heavy particles decreases continuously. It has been
shown that the contraction of the volume in phase space is non-uniform, i.e. there is
no possible flow in which heavy particles are forced towards a certain point from all
directions in phase space.

For small Stokes numbers, heavy particles have been shown to always concentrate
in strain regions, whereas they diverge in regions where the vorticity is sufficiently
high. An explicit criterion for particle accumulation has been derived in terms of
the eigenvalues of the local rate-of-deformation tensor ∂ui/∂x j, for two-dimensional
flows as well as for three-dimensional flows.
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In the present chapter, the motion of heavy particles in a vortex flow is investigated
theoretically and numerically. The configuration of a single vortex in a closed cir-
cular domain is considered. Potential flow is assumed and the point vortex follows
a circular path inside the domain. It is shown that small heavy particles may ac-
cumulate in elliptic regions of the flow, counter-rotating with respect to the vortex.
When the Stokes number of a particle exceeds a threshold value that depends on the
vortex configuration, however, all particles are expelled from the circular domain.
A stability criterion for particle accumulation is derived analytically and verified by
numerical results. The influence of gravity on the particle accumulation is discussed
as well. Finally, the results of the potential flow model are compared to the results
from a numerical solution of the full Navier-Stokes equations for laminar flow in two
dimensions.

3.1 Introduction

Gas-particle and gas-condensate separators are widely used in industry [28], [29].
Their purpose is to separate small dust particles or small liquid droplets from gas
flows. In general the separators consist of a cylindrical tube containing a region of
high vorticity or a solid-body type of rotational flow field. In some applications, such
as the gas-liquid separator described in section 1.2.3, the vorticity is concentrated in
a slender helical vortex filament, generated upstream by some vortex generator. The
goal of the present research is to determine the influence of such a coherent structure
of vorticity on the motion of heavy particles.

The configuration of a slender helical vortex filament in a cylindrical tube is sketched
in Fig. 3.1. The vortex filament is assumed to be so slender that the contribution due
to the three-dimensionality of the filament may be neglected [2]. In this limit, the
velocity field reduces to a superposition of a constant axial velocity U and a time-
dependent two-dimensional flow in the cross-sectional plane, convected with velocity
U, as sketched in Fig. 3.1. The two-dimensional flow is characterized by an eccentri-
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cally placed point vortex in a circular domain.

U

U

F 3.1: Helical vortex filament in a gas-liquid separator. In the cross section
indicated, the flow may be approximated by a point vortex placed in a closed circular
domain.

The motion of one point vortex in an inviscid flow in a closed circular domain has
been considered already by Lamb [44], §155. The solution makes use of an image
vortex placed outside the circular domain in order to satisfy the boundary condition
on the wall. Due to the velocity induced by the image vortex, the vortex describes a
steady circular motion. In a frame rotating with the vortex, the flow field is steady
and the motion of passive tracers follows from a time-independent stream function.

The dynamics of heavy particles in dilute suspensions have received much atten-
tion in the past two decades. Various investigations (e.g. [21] and [60]), have reported
the behavior of heavy particles in flows around fixed vortices. The general conclu-
sion is that heavy particles are expelled from regions of high vorticity and tend to
accumulate in regions of high strain; this conclusion is supported by our analysis in
section 2.3. If the centrifugal motion from the vortex centers is balanced by another
force such as gravity, a group of heavy particles may be attracted to a single trajec-
tory. This has been shown to happen in a Burgers vortex [56] and in a plane mixing
layer [26].

The motion of heavy particles in rotating two-dimensional flows has been inves-
tigated in the context of planet formation in the solar nebula (e.g. [15], [6]). The
solar nebula is a collection of gas particles situated on a large disk, whose rotation is
described by the laws of Kepler. If it is assumed that the turbulent flow in the solar
nebula is approximately two-dimensional, large coherent vortex structures are likely
to evolve. Bracco et al. [15] show that heavy particles tend to accumulate in large
anticyclonic vortices, i.e. vortices with sign opposite to the major Keplerian rotation.
Chavanis [16] analytically derived an estimate of the time it takes to capture a heavy
particle in an anticyclonic vortex, by assuming the flow to be a superposition of a
prescribed elliptic patch of uniform vorticity and a steadily rotating Keplerian disk;
both the particle inertia and the gravitational influence of the star located in the center
of the disk are taken into account. An overview of the motion of heavy particles in
two-dimensional flows is provided by Provenzale [79], who pays attention to flows
generated by a large number of point vortices on an infinite plane and to the case of
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a distribution of finite vorticity on a Keplerian disk.
In the present chapter we investigate the motion of heavy particles in a closed

circular domain containing one point vortex. The presence of the boundary results in
a rotation of the flow field [68]. The focus is on the accumulation of particles due to
their inertia in sufficiently dilute flows. In order to isolate the effect of the particle
inertia, the simulations are based on a one-way coupling. A stability criterion for
particle accumulation is derived and verified numerically.

This chapter is organized as follows. In section 3.2 we present the dynamical
equations governing the motion of a point vortex in a closed circular domain, and
we derive the stream function of the flow field induced by the vortex. In addition,
the equations of motion for heavy particles are introduced. The numerical results of
the motion of heavy particles in a circular domain containing one point vortex are
presented in section 3.3 for the case of zero gravity, and in section 3.4 for the case
of non-zero gravity. In order to quantify the influence of viscosity, the results for the
potential flow model are compared to the solution of the full Navier-Stokes equations
describing the viscous (laminar) flow in a circular domain containing a means to
generate circulation; the results are presented in section 3.5. Finally, a summary and
conclusions are given in section 3.6.

3.2 Physical-mathematical model

3.2.1 Potential flow field

Consider a closed circular domain with radius R, containing a potential flow gener-
ated by one point vortex. In the following, all variables are made dimensionless by
choosing R as the characteristic length and the strength of the vortex Γ1 as the char-
acteristic circulation. The position of the vortex is given by its radial position r1 and
angle θ1. An image vortex with strength −1 is placed on the position (r−1

1 ,θ1) in order
to satisfy the boundary condition of zero normal velocity at r = 1. Since the velocity
field is divergence-free (∇ · u = 0), in 2D the motion of passive tracers is governed
by a stream function which plays the role of a Hamiltonian.

The stream function Ψ is conveniently described in polar coordinates:

Ψ(r, θ) ≡ [ΨV (r, θ, r1, θ1) −ΨI(r, θ, r1, θ1)] , (3.1)

with:

ΨV (r, θ, r1, θ1) ≡ − 1
4π

ln
[

r2 + r2
1 − 2rr1 cos(θ − θ1)

]

, (3.2)

and:
ΨI(r, θ, r1, θ1) ≡ ΨV (r, θ, r−1

1 , θ1). (3.3)
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The functionΨV (r, θ, r1, θ1) represents the partial stream function associated with the
vortex, whereas ΨI(r, θ, r1, θ1) represents the partial stream function due to the image
vortex. The velocity field is obtained from the canonical equations:

ur =
1
r
∂Ψ

∂θ
, uθ = −

∂Ψ

∂r
. (3.4)

The motion of the point vortex itself is governed by Hamiltonian dynamics. The
Hamiltonian H is:

H =
1

4π
ln

[

1 − r2
1

]

. (3.5)

The velocity of the vortex is then obtained from the canonical equations:

ṙ1 =
1
r1

∂H
∂θ1
, r1θ̇1 = −

∂H
∂r1
, (3.6)

where the dots indicate differentiation with respect to time. As a result, the motion
of the vortex is:

ṙ1 = 0, θ̇1 =
1

2π
1

1 − r2
1

, (3.7)

which shows that the vortex moves on a circle with constant angular velocity; the
period of the vortex motion is denoted by T :

T = 2π/θ̇1 = 4π2(1 − r2
1
)

. (3.8)

We now choose a frame of reference that co-rotates with the vortex. Upon intro-
ducing φ ≡ θ − θ1, the stream function becomes:

Ψ̂(r, φ) ≡ Ψ(r, φ + θ1) +
1
2

r2θ̇1, (3.9)

with corresponding velocity components:

ur =
1
r
∂Ψ̂

∂φ
, uφ = −

∂Ψ̂

∂r
. (3.10)

Inserting Eq. (3.1) and Eq. (3.9) into Eq. (3.10) results in:

ur(r, φ; r1) = − r1 sinφ
2π

[

r2 + r2
1 − 2rr1 cosφ

]
+

r1 sinφ
2π

[

1 + r2r2
1 − 2rr1 cosφ

]
,

uφ(r, φ; r1) = −rθ̇1 +
r − r1 cosφ

2π
[

r2 + r2
1 − 2rr1 cosφ

]
−

rr2
1 − r1 cosφ

2π
[

1 + r2r2
1 − 2rr1 cosφ

]
. (3.11)

Contour lines of the stream function Ψ̂ are plotted in Fig. 3.2 for r1 = 0.5 (see also
[68], p. 135). Three stagnation points in the co-rotating frame can be distinguished:
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E is an elliptic stagnation point, and H1 and H2 denote two hyperbolic stagnation
points. The character of the stagnation point is determined by the Hessian of the
stream function evaluated at the stagnation point,H0:

H0 < 0 ⇔ saddle point (hyperbolic point),
H0 > 0 ⇔ extremum (elliptic point).

(3.12)

The HessianH is defined as

H ≡
(

∂2Ψ̂

∂ξ2

)(

∂2Ψ̂

∂η2

)

−
(

∂2Ψ̂

∂ξ∂η

)2
, (r, θ) , (r1, θ1), (3.13)

where ξ ≡ r cosφ and η ≡ r sinφ. With Eq. (3.9) and ∇2Ψ = 0, it follows that:

H ≡ −
(

∂2Ψ

∂x2

)2
−

(

∂2Ψ

∂x∂y

)2
+ θ̇21, (3.14)

where x = r cos θ and y = r sin θ. Thus, in a fixed frame, H < 0 everywhere, so that
critical points can only be saddle points [3]. In a rotating frame, however, elliptic
stagnation points do exist, provided θ̇1 is sufficiently large. It can be shown that
the rotation of the flow around an elliptic stagnation point is always opposite to the
rotation of the frame; this is generally called anticyclonic motion [15], [79].

3.2.2 Equations of motion of heavy particles

The motion of the particles is described by Eq. (2.5). In the present chapter, we define
the Stokes number and the Froude number using R as the characteristic length scale
and Γ1 as the characteristic circulation, so that:

St =
τpΓ1

R2 , Fr =

√

Γ2
1

R3|g| . (3.15)

Particles with St = 0 react instantaneously to changes in the flow and act as passive
tracers, whereas particles with St→ ∞ are not affected by the flow field.

We rewrite the equations of motion, Eq. (2.5), in a rotating frame of reference:

dξp

dt
= υp,

dυp

dt
=

1
St

(

υ − υp
)

+
1

Fr2

g(t)
|g| + 2θ̇1Jυp + θ̇

2
1ξp, (3.16)

where ξp and υp denote the position and the velocity of the particle in the rotating
frame, respectively; the matrix J is defined as:

J ≡
(

0 1
−1 0

)

. (3.17)
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E
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F 3.2: Contour lines of stream function in a one-vortex system, plotted in the
frame rotating with the vortex; r1 = 0.5. H1 and H2 are hyperbolic stagnation points,
and E is an elliptic stagnation point. For convenience, the position of the vortex,
(ξ, η) = (0.5, 0), is drawn as well.

The two additional terms on the right hand side of Eq. (3.16), which both depend on
the rotation rate θ̇1, denote the Coriolis force and the centrifugal force, respectively.

We consider the trajectories of two particles in close proximity. The differences in
position and velocity are denoted by δξp and δυp, respectively. When the magnitude
of the 4-dimensional separation vector R ≡ [δξp, δυp]T is very small, the separation
between the two trajectories can be expressed in the following form:

d
dt

R(t) = MR(t), (3.18)

with:

M =





































0 0 1 0
0 0 0 1

1
St
∂2Ψ̂
∂ξ∂η
+ θ̇21

1
St
∂2Ψ̂
∂η2 − 1

St 2θ̇1
− 1

St
∂2Ψ̂
∂ξ2

− 1
St
∂2Ψ̂
∂ξ∂η
+ θ̇21 −2θ̇1 − 1

St





































. (3.19)

When all eigenvalues of the matrix M have negative real parts, we have |R(t)| → 0 for
t → ∞. This means that the trajectories of the two particles converge for sufficiently
large times.
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3.3 Heavy particles in bounded one-vortex flow with zero
gravity

The equations of motion, Eq. (3.16), are solved numerically for each individual par-
ticle by using a fourth-order Runge-Kutta method. In the numerical integration we
employ a series of decreasing values of the time step, where each next value is half of
the previous value. When the difference between two subsequent solutions is below a
certain preset level, the last obtained solution is considered sufficiently accurate. At
the start of the simulation, the particles have the same velocity as the local gas flow.
When a particle reaches the circular boundary, it is absorbed by the boundary. In the
present section, we consider the case in which the gravity is neglected, i.e. Fr → ∞;
the case of non-zero gravity is discussed in section 3.4.
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F 3.3: Trajectories of two slipping particles in a one-vortex system plotted in
the frame rotating with the vortex, for a time 0 ≤ t < 1000 (i.e. approximately 34
revolutions of the vortex); r1 = 0.5, St = 0.5, Fr → ∞. The initial positions of the
two particles are: (ξ, η)

∣

∣

∣

t=0 = (0, 0) and (ξ, η)
∣

∣

∣

t=0 = (0.25,−0.25).

In Fig. 3.3, two different particle trajectories, in the frame co-rotating with the vor-
tex, are plotted for r1 = 0.5. Two regimes of particle motion can be distinguished in
Fig. 3.3: either a particle is quickly expelled from the circular domain and is absorbed
by the boundary, or a particle is attracted to a point within the circular domain. Since
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we are observing the flow in a frame co-rotating with the vortex, the attraction point
in a fixed frame corresponds to a circular trajectory, in phase with the vortex motion.
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F 3.4: Positions of heavy particles in one-vortex system, plotted in the frame
rotating with the vortex; r1 = 0.5, St = 0.5, Fr → ∞: a) t = 0, b) t = 5, c) t = 25, d)
t = 100. Streamlines of passive tracers are plotted as thin solid lines.

In Fig. 3.4, the positions of 7495 particles are plotted for four instants in (dimen-
sionless) time: t = 0, t = 5, t = 25, and t = 100, for Stokes number St = 0.5. At
the start of the simulation (t = 0), the particles are uniformly distributed on a mesh
of equilateral triangles with sides of length 0.022. For large times, many particles are
trapped in a region around the attraction point.
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The particle trapping efficiency Pt, defined as:

Pt ≡
(number of particles with r < 1 after time t)

(total number of initially uniformly distributed particles)
× 100%, (3.20)

is plotted in Fig. 3.5, for r1 = 0.5 and five different values of t which are expressed
in terms of the period of the vortex motion T , see Eq. (3.8). Note that the separation
efficiency equals 100% − Pt. The particle trapping efficiency gradually decreases
during the first two revolutions of the vortex. After that a steady state is reached in
which more than 70% of the particles are trapped if St . 0.5. If, however, St & 2.0,
no particles are trapped at all and all particles eventually reach te wall.
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t

F 3.5: Percentage of trapped particles in a one-vortex system Pt as a function of
St, after five values of dimensionless time: t = 0.25T , t = 0.5T , t = T , t = 2T and
t = 20T; r1 = 0.5, Fr→ ∞.

The value of Pt for t → ∞ is shown in Fig. 3.6, for three different configurations
of bounded one-vortex flow: r1 = 0.3, r1 = 0.5, and r1 = 0.7. Fig. 3.6 shows that
the particle trapping phenomenon becomes more important for larger values of the
vortex position r1 and for smaller values of the Stokes number. For sufficiently large
values of the Stokes number P∞ = 0, i.e. trapping does not occur.

For particle accumulation to occur, two conditions must be met:

(i) a fixed point must exist, and
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F 3.6: Percentage of trapped particles in a one-vortex system for t → ∞ as a
function of St, for three different vortex positions: r1 = 0.3, r1 = 0.5 and r1 = 0.7;
Fr→ ∞.

(ii) the fixed point must be stable.

In the remainder of this section, these two conditions are investigated.

3.3.1 Location of fixed points

For the case without effects of gravity, Eq. (3.16) becomes:

dξp

dt
= υp,

dυp

dt
=

1
St

(

υ − υp
)

+ 2θ̇1Jυp + θ̇
2
1ξp. (3.21)

The velocity field of the gas υ is time-independent in this co-rotating frame. In a
fixed point, say ξ∗, we have υp = 0, and the Stokes drag balances the centrifugal
acceleration force:

υ(ξ∗) + St θ̇21ξ
∗ = 0. (3.22)

Writing ξ∗ = r∗ cosφ∗ and η∗ = r∗ sinφ∗, we have for the velocity components in φ
and r direction, respectively:

uφ(r∗, φ∗; r1) = 0, (3.23)

ur(r∗, φ∗; r1) = −St θ̇21r∗. (3.24)
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For given r1 and St, these two equations can be solved for r∗ and φ∗.
To facilitate the actual computation of (r∗, φ∗) for a given r1, it is convenient to

solve Eq. (3.23) for cosφ∗ for a range of values of 0 < r∗ < 1, by using Eq. (3.11):

cosφ∗ =
−b ±

√
b2 − 4ac

2a
, (3.25)

where:

a = −8πθ̇1r2
1r∗3, (3.26)

b = 4πθ̇1
(

r1r∗4 + r3
1r∗2 + r1r∗2 + r3

1r∗4
)

+ r3
1 − r1 + r3

1r∗2 − r1r∗2, (3.27)

c = −2πθ̇1
(

r∗3 + r2
1r∗ + r2

1r∗5 + r4
1r∗3

)

+ r∗ − r4
1r∗. (3.28)

Thus, for each r∗ we find either zero, one or two solutions for cosφ∗. The Stokes
number corresponding to each combination of (r∗, φ∗) is then found from Eq. (3.24).
The position of fixed points is presented in Fig. 3.7 for r1 = 0.5, together with data
obtained from numerical simulations for St = 0.1, St = 0.3, St = 0.6, and St = 0.9.
Excellent agreement is obtained between results from the above analysis and data
from the trajectories.

For small Stokes numbers, the distance of the fixed point with respect to the stag-
nation point can be approximated in closed form. From Eq. (3.22), it follows that:

lim
St↓0
|ξ∗ − ξ0| = 0, (3.29)

where ξ0 is a stagnation point of the flow. This must be the elliptic stagnation point
situated on the negative ξ-axis (point E in Fig. 3.2), since the hyperbolic stagnation
points (i.e. saddle points of the stream function) are unstable which is shown in the
next section. Upon using the fact that ∂2Ψ̂/∂ξ∂η

∣

∣

∣

ξ0
= 0, the ξ component of Eq.

(3.22) becomes:
(

∂2Ψ̂

∂η2

∣

∣

∣

∣

∣

ξ0

)

(

η∗ − η0
)

+ St θ̇21ξ0 + O(St2) = 0, (3.30)

and it follows that:

∆ ≡ |ξ∗ − ξ0| = Stθ̇21 |ξ0|
(

∂2Ψ̂

∂η2

∣

∣

∣

∣

∣

ξ0

)−1
+ O(St2). (3.31)

The physical reason for this is that larger particles (larger Stokes number) will slip
more with respect to the carrier flow than smaller particles (smaller Stokes number).
In order to balance the larger centrifugal force with the drag force, the fixed point
needs to be situated further away from the elliptic point, where the carrier flow ve-
locity is larger.
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F 3.7: Position of fixed points in a one-vortex system plotted in the frame rotating
with the vortex, obtained from numerical simulations; r1 = 0.5, Fr→ ∞; �: St = 0.1,
N: St = 0.3, H: St = 0.6 , �: St = 0.9. The dashed line depicts the locations of fixed
points obtained analytically from Eq. (3.23) and Eq. (3.24). The thin solid lines are
streamlines.

We have compared the values of ∆ obtained from the approximation given in Eq.
(3.31) with the exact values based on solution of Eq. (3.23) and Eq. (3.24). The de-
viation between the two solutions is plotted in Fig. 3.8 as a function of St for three
different values of r1. Indeed, for small Stokes numbers the error is relatively small
for all three vortex positions considered, so the approximation presented in Eq. (3.31)
is accurate. Moreover, the error tends to zero as St ↓ 0, confirming the consistency
of the approximation.

3.3.2 Stability of fixed points

In this section the stability of the fixed point ξ∗ is assessed by means of a linear
stability analysis. When the particle is sufficiently close to the attraction point, the
equation of motion, Eq. (3.16), can be approximated by:

d
dt

R∗(t) = M∗R∗(t), (3.32)
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F 3.8: Difference between the distance ∆ obtained from the approximation given
in equation Eq. (3.31) and the exact value, as a function of the Stokes number.

where R∗ is a vector in R
4 denoting the separation between the particle and the fixed

point in phase space:
R∗ ≡ [

ξp − ξ∗,υp
]T
, (3.33)

and M∗ is the matrix M defined by Eq. (3.19), evaluated at ξ∗. In the present case of
a steadily rotating vortex, the matrix M∗ is independent of time. When the real parts
of all eigenvalues λ1, . . . , λ4 of M∗ are negative, then |R∗| → 0 for t → ∞, and the
fixed point ξ∗ is an attraction point. Hence, we define a stable fixed point as a fixed
point which satisfies:

max
k

Re(λk) < 0, for k = 1, . . . , 4. (3.34)

The eigenvalues λk are the roots of the characteristic polynomial for the eigenvalues
of M∗:

St2λ4 + 2Stλ3 +
(

2St2θ̇21 + 1
)

λ2 + 2Stθ̇21λ + St2θ̇41 +H∗ = 0, (3.35)

where H∗ = H(r∗, φ∗; r1,St) is the Hessian defined in Eq. (3.13), evaluated at the
fixed point ξ∗. In the derivation, it has been used that ∇2Ψ̂ = 2θ̇1. The solutions of
Eq. (3.35) are:

λ1,2,3,4 =
−1 ±

√

1 − 4θ̇21St2 ± 4iSt
√
H∗

2St
. (3.36)
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We start to analyze the eigenvalues in the limit of St ↓ 0, and expand Eq. (3.36):

λ1,2,3,4 =
−1 ± 1

2St
+ St

(H∗ − θ̇21
) ± i
√
H∗ + O(St2). (3.37)

In the previous section we found that |ξ∗ − ξ0| = O(St), henceH∗ = H0 +O(St), and:

λ1,2,3,4 =
−1 ± 1

2St
+ St

(H0 − θ̇21
) ± i

√

H0 + iO(St) + O(St2). (3.38)

We assume that the fixed point at hand belongs to a curve of stable fixed points
ξ∗(St; r1) with ξ∗(0; r1) = ξ0(r1), i.e., when St ↓ 0 the fixed point tends to a stagnation
point. If H0 < 0 then i

√

H0 ∈ R and the fixed point cannot be stable for St ↓ 0.
Therefore, we require H0 > 0 as a necessary condition, i.e., the stagnation point
must be elliptic. Furthermore, from Eq. (3.14) we observe that

(

H∗ − θ̇21
)

< 0, and
therefore the conditionH0 > 0 is also sufficient for the fixed point to be stable. It is
noted that the real parts of the eigenvalues, if all negative, describe the rate at which
a particle moves towards the fixed point, which is apparently linear in the Stokes
number. Therefore, the particle trapping time is inversely proportional to the Stokes
number.

We continue by analyzing the eigenvalues for arbitrary values of the Stokes num-
ber. Upon definition of the following two variables:

A ≡ 1 − 4θ̇21St2, B ≡ 4St
√

|H∗|, (3.39)

we observe that:

max
k

Re(λk) =



































−1+
√

1
2 A+ 1

2

√
A2+B2

2St , H∗ > 0,
− 1

2St , H∗ < 0 A + B < 0,
−1+
√

A+B
2St , H∗ < 0 A + B > 0.

(3.40)

From these observations we derive the following sufficient stability conditions:

H∗ < 0 and A + B < 1 ⇒ max
k

Re(λk) < 0, (3.41)

H∗ > 0 and A +
√

A2 + B2 < 2 ⇒ max
k

Re(λk) < 0. (3.42)

Finally, we determine Stcr(r1), the maximum value of St for which a stable fixed
point can be found. For given r1 we identify the set µ(r1) of points (r1, r∗) where
fixed points are stable, i.e. where maxk Re(λk(r1, r∗)) < 0. Then, we determine the
maximum value of the Stokes number over the set µ(r1); this is Stcr(r1). We note that
for each (r1, r∗) one finds two values for cosφ∗ by Eq. (3.25). Whenever both values
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lead to stable fixed points, we take into account the value that results in the largest
value of St.

The critical Stokes number can also be determined numerically by repeating the
simulation of particles for a wide range of Stokes numbers at a given r1: the smallest
value of the Stokes number for which no trapping takes place is Stcr(r1).

The numerically obtained data set for Stcr is compared to the exact formulation in
Fig. 3.9. For r1 > 0.6, the critical Stokes number becomes infinite according to the
exact formulation. In the numerical simulations, however, the critical Stokes number
remains finite, although it increases very quickly as r1 > 0.6. The reason for the
deviation of the numerical results from the exact ones is that, for a finite number
of particles in phase space (position and velocity), there may be no particles close
enough to the attraction point. Still, it is clear from the exact result for Stcr that
small heavy particles may always accumulate inside the circular domain, and that
this phenomenon becomes more important as r1 increases.

r

S
t

0.2 0.4 0.6 0.8
0

5
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15

20

Num. exp.
Exact

1

cr

No Particle
Accumulation

Particle
Accumulation

F 3.9: Critical Stokes number as a function of the vortex position r1; the solid
line with small triangles is the result of numerical experiments, the dashed line is
determined from Eq. (3.36).

The stability criterion derived in Eq. (3.36) is evidently not restricted to the flow in-
duced by a point vortex in a circular domain. It can be applied to any incompressible
flow, as long as it is steady in some steadily rotating frame of reference. Examples
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of this comprise the motion of vortices on a regular polygon on an infinite plane,
the viscous flow solution in a steadily rotating frame presented in section 3.5, or an
approximation of the flow field on a Keplerian disk as given by Chavanis [16]. Cha-
vanis prescribes an anticyclonic vortex region a priori; in our case, the elliptic island
is formed naturally just by the presence of a vortex inside a circular boundary.

3.4 Heavy particles in bounded one-vortex flow with non-
zero gravity

In the present section, we study the particle motion in a one-vortex flow when gravity
is not neglected, i.e. the Froude number is finite. We first investigate whether heavy
particles accumulate in that situation, and we determine the influence of the Froude
number on particle accumulation quantitatively.

Fig. 3.10a) shows two different particle trajectories in the frame co-rotating with
the vortex for r1 = 0.5. The Stokes number is 0.5 and the Froude number is 10. Just
like in Fig. 3.3, two regimes of particle motion can be distinguished: either a particle
is quickly expelled from the circular domain and is absorbed by the wall, or a particle
remains within the circular domain.

There is, however, one important difference with respect to the zero-gravity case:
the attraction trajectory is not a fixed point in the rotating frame, but instead it is a
point moving periodically with period T of the vortex motion. This becomes clear
from Fig. 3.10b) where the position of the particle is only plotted at the moments that
the vortex crosses the positive x-axis: the particle approaches one single point.

In Fig. 3.11, the positions of a group of initially uniformly distributed particles are
plotted at four instants in time; the Stokes number is 0.5, and the Froude number is
10. At time t = 0, the vortex is placed at position (x, y) = (0.5, 0) and the gravity
vector is directed in the negative y-direction. It is clear that the result in Fig. 3.11 is
very similar to Fig. 3.4, where the same case is treated but with Fr → ∞ instead of
Fr = 10: again a large number of particles accumulate in the region opposite of the
vortex.

In the following section, we first determine the position of the attraction point in
the course of time. Subsequently, the stability of the moving attraction point is proven
for small Stokes number and large Froude number.

3.4.1 Trajectory of moving attraction point

In the present section, we determine the trajectory of the moving attraction point.
For the sake of simplicity, we assume the gravity vector to be relatively small in
comparison to the other forces acting on a heavy particle. More precisely, we assume
that 0 < Fr−2 � 1.
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F 3.10: Trajectories of two slipping particles in one-vortex system with non-
zero gravity, plotted in the frame rotating with the vortex; r1 = 0.5; St = 0.5, Fr =
10. The initial positions of the two particles are: (ξ, η)

∣

∣

∣

t=0 = (0, 0) and (ξ, η)
∣

∣

∣

t=0 =

(0.25,−0.25). a) Positions of the two particles in the course of time. b) Position of the
two particles only plotted at the moments that the vortex passes the positive x-axis;
thus, these are Poincaré sections with period T .
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F 3.11: Positions of heavy particles in one-vortex system with non-zero gravity,
plotted in the frame rotating with the vortex; r1 = 0.5, St = 0.5, Fr = 10: a) t = 0, b)
t = 5, c) t = 25, d) t = 100. Streamlines are plotted as thin solid lines.

We start this analysis from the equations of motion, Eq. (3.16), and determine an
equilibrium trajectory in the corotating frame. Let the equilibrium trajectory be de-
noted by ξ∗(t). This can be written as ξ∗(t) = ξ∗∞ + h(t), where ξ∗∞ is the fixed point
in the corotating frame in the case of zero-gravity (Fr→ ∞), see Eq. (3.22). A Taylor
expansion up to first order of the carrier flow field around ξ∗∞ allows Eq. (3.16) to be
rewritten in terms of h(t):

dh
dt
= υp,

dυp

dt
=

1
St

(

h · ∇υ − υp
)

+
1

Fr2

g(t)
|g| + 2θ̇1Jυp + θ̇

2
1 h. (3.43)
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In a frame of reference rotating steadily with angular velocity θ̇1, the gravity vector
takes the following form:

1
Fr2

g(t)
|g| =

1
Fr2

(

− sin
(

θ̇1t
)

− cos
(

θ̇1t
)

)

. (3.44)

We try the following solution for h(t):

h(t) = p sin
(

θ̇1t
)

+ q cos
(

θ̇1t
)

. (3.45)

It is noted that the trajectory of h(t) is an ellipse. Inserting Eq. (3.44) and Eq. (3.45)
in Eq. (3.43), and separating the sine and the cosine parts results in:

St−1[B
]

p+ θ̇1
[

A
]

q = Fr−2
(

1
0

)

,

St−1[B
]

q − θ̇1
[

A
]

p = Fr−2
(

0
1

)

, (3.46)

where the matrices [A] and [B] are defined as:

[

A
] ≡

(

St−1 −2θ̇1
2θ̇1 St−1

)

,
[

B
] ≡

















∂2Ψ̂
∂ξ∂η
+ 2θ̇21

∂2Ψ̂
∂η2

−∂2Ψ̂
∂ξ2

− ∂2Ψ̂
∂ξ∂η
+ 2θ̇21

















. (3.47)

Eq. (3.46) can be rewritten, so that the following expressions for p and q are obtained:

(

[

K
]

+
[

K
]−1

)

p =
1
θ̇1Fr2

[

A
]−1

(

1
0

)

− St
Fr2

[

B
]−1

(

0
1

)

,

(

[

K
]

+
[

K
]−1

)

q =
1
θ̇1Fr2

[

A
]−1

(

0
1

)

+
St
Fr2

[

B
]−1

(

1
0

)

, (3.48)

where the matrix [K] ≡ Stθ̇1[B]−1[A] is introduced for the sake of brevity. The
solution for p and q is then:

p =
1
θ̇1Fr2

(

[

K
]

+
[

K
]−1

)−1[
A
]−1

(

1
0

)

− St
Fr2

(

[

K
]

+
[

K
]−1

)−1[
B
]−1

(

0
1

)

,

q =
1
θ̇1Fr2

(

[

K
]

+
[

K
]−1

)−1[
A
]−1

(

0
1

)

+
St
Fr2

(

[

K
]

+
[

K
]−1

)−1[
B
]−1

(

1
0

)

. (3.49)

Since both [A] and [B] have a determinant unequal to zero, [A]−1 and [B]−1 exist
and Eq. (3.49) yields a solution for p and q in closed form. Thus, a trapped particle
describes an elliptic trajectory around the point ξ∗∞, provided |h(t)| is sufficiently
small.
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Elaboration of Eq. (3.49) shows that the solution for p and q is, up to first order in
the Stokes number:

p =
St

Fr2(θ̇21 −H)

















∂2Ψ̂
∂ξ∂η

−∂2Ψ̂
∂ξ2
− θ̇1

















+O(St2), q =
St

Fr2(θ̇21 −H)

















∂2Ψ̂
∂η2 + θ̇1

− ∂2Ψ̂
∂ξ∂η

















+O(St2).

(3.50)
When St ↓ 0, ξ∗∞ is situated close to the ξ-axis, where ∂2Ψ̂/∂ξ∂η = 0. Therefore, in
the limit of sufficiently small Stokes numbers, we may approximate h(t) by:

h(t) ' St
Fr2(θ̇21 −H)























(

∂2Ψ̂
∂η2 + θ̇1

)

cos
(

θ̇1t
)

−
(

∂2Ψ̂
∂ξ2
+ θ̇1

)

sin
(

θ̇1t
)























. (3.51)

The corresponding velocity of the trapped particle is equal to:

υp(t) =
dh
dt
' Stθ̇1

Fr2(θ̇21 −H)























−
(

∂2Ψ̂
∂η2 + θ̇1

)

sin
(

θ̇1t
)

−
(

∂2Ψ̂
∂ξ2
+ θ̇1

)

cos
(

θ̇1t
)























. (3.52)

Apparently, a trapped particle describes a counterclockwise trajectory of elliptic shape
around the point ξ∗∞. The mean radius of the elliptic trajectory is proportional to the
Stokes number St and to the length of the gravity vector Fr−2. A sketch of this solu-
tion is given in Fig. 3.12.

If gravity is relatively important (i.e. Froude number is low) while the Stokes num-
ber is small, the approximation that |h(t)| is small is not valid anymore. Then, there
is a strong competition between the Stokes drag forcing the particle to closely follow
the carrier flow, and gravity causing high accelerations of the particle in different
directions. As a consequence, different, leaf-like, attraction trajectories can be ob-
served, which are sometimes present in addition to a ‘normal’ elliptically shaped
attraction trajectory. An example of these different attraction trajectories in one flow
is given in Fig. 3.13, where r1 = 0.5, St = 0.01 and Fr = 1

2

√
2. Particles on the ellip-

tically shaped trajectory in Fig. 3.13a) move along the trajectory for a time T before
returning to the same position. Particles on the more complex trajectory plotted in
Fig. 3.13b) return to the same position after a time 3T ; following the terminology of
dynamical system theory [72], this can be regarded as a period-3 trajectory.

In the same flow field, the positions of initially uniformly distributed particles are
plotted in Fig. 3.14 for four instants in time. The important role of gravity in this
case is reflected by the distribution of particles which is very different from the ones
shown in Fig. 3.4 and Fig. 3.11. As t → ∞, some particles are attracted to one of
four different moving attraction points, which are highlighted by the numbers 1, 2,
3 and 4 in Fig. 3.14d) for convenience. The particles in group 1 are attracted to the
almost elliptically shaped trajectory which is periodic with the vortex motion T , see
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F 3.12: Sketch of attraction trajectory of a heavy particle for a small Stokes
number in the frame of reference rotating with the vortex, for case of non-zero gravity
with 0 < Fr−2 � 1. Left: position and velocity of a trapped particle at four instants
in time, corresponding to Eq. (3.51) and Eq. (3.52). Right: the direction of the gravity
vector at the same four instants in time.

Fig. 3.13a). The particles in groups 2, 3 and 4 on the other hand follow the period-3
trajectory depicted in Fig. 3.13b).

Possibly, even different attraction trajectories may be observed when the Stokes
number and the Froude number are decreased further. This has not been done in the
present study, because of the large calculation times which are required to observe
particle accumulation for very small Stokes numbers; it is noted that the rate of par-
ticle accumulation reduces with smaller Stokes numbers: |ξ(t) − ξ∗| ∼ exp(−tSt), see
Eq. (3.38). In addition, due to the very small values of the Froude number, the results
would probably be of little practical interest.

3.4.2 Stability of moving attraction point

In the present section, we show by a stability analysis that heavy particles may ac-
cumulate in a moving attraction point in the case of non-zero gravity. The particle
equation of motion Eq. (3.16) can be written as follows:

d
dt
χi(t) = Fi(χ(t)) +Gi(t), (3.53)

where Gi(t) is a function taking account of the gravity, which is periodic with period
T , see Eq. (3.8). The difference in position and velocity over one period T of a single
particle trajectory is given by:

d
dt

(

χi(t + T ) − χi(t)
)

= Fi(χ(t + T )) − Fi(χ(t)) +Gi(t + T ) −Gi(t). (3.54)
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F 3.13: Attraction trajectories of particles in one-vortex system with non-zero
gravity, plotted in the frame rotating with the vortex; St = 0.01, Fr = 1

2

√
2, r1 =

0.5. a) Attraction trajectory of a particle released at position (x, y) = (−0.275, 0);
the particle moves along the trajectory for a time T before returning to the same
position. b) Attraction trajectory of a particle released at position (x, y) = (−0.3, 0);
the particle moves along the trajectory for a time 3T before returning to the same
position.
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F 3.14: Positions of initially uniformly distributed heavy particles in one-vortex
system with non-zero gravity, plotted in the frame rotating with the vortex; St = 0.01,
Fr = 1

2

√
2, r1 = 0.5: a) t = 10, b) t = 100, c) t = 1000, d) t = 10000. Streamlines

of passive tracers are plotted in the background. The numbers 1− 4 in d) denote four
groups of particles which accumulate in different moving attraction points.

Since Gi(t + nT ) = Gi(t),∀n ∈ N, Eq. (3.54) can be reduced to:

d
dt

(

χi(t + T ) − χi(t)
)

= Fi(χ(t + T )) − Fi(χ(t)). (3.55)

For convenience, we introduce the variable ri(t) = χi(t + T ) − χi(t):

d
dt

ri(t) = Fi(r(t) + χ(t)) − Fi(χ(t)). (3.56)
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We now assume |r| � 1 to be small, so that χ(t) is close to the moving fixed point
χ∗(t). Then, a Taylor expansion of Eq. (3.56) results in:

d
dt

ri(t) = r j(t)
∂Fi(χ∗(t))
∂χ j

+ O(|r|2). (3.57)

If the real parts of the eigenvalues of the matrix ∂Fi/∂χ j are all smaller than 0 for
all time, then |r| → 0 as t → ∞. Physically, this would mean that the equilibrium
trajectory is stable, i.e. it attracts heavy particles.

From section 3.3, we know that the four eigenvalues of ∂Fi/∂χ j are:

λ1,2,3,4 =
−1 ±

√

1 − 4θ̇21St2 ± 4iSt
√

H∗(t)
2St

, (3.58)

where H∗(t) denotes the value of the Hessian at the position of an attracted particle.
For small Stokes numbers, the values of λi can be approximated by:

λ1,2,3,4 =
−1 ± 1

2St
+ St

(H∗(t) − θ̇21
) ± i

√

H∗(t) + iO(St) + O(St2). (3.59)

We know from section 3.4.1 that a moving fixed point describes an elliptic trajec-
tory around ξ∗∞, provided Fr−2 is sufficiently small. Therefore H(ξ∗(t)) = H(ξ∗∞) +
O(Fr−2). Since 0 < H(ξ∗∞) < θ̇21, we now have proven for sufficiently small values of
St and Fr−2 that the equilibrium trajectory, periodic with T , exists and is stable.

3.4.3 Particle accumulation in (St, Fr)-space

In order to quantify the influence of gravity, we now determine the region in parame-
ter space for which particle accumulation takes place. This means that we investigate
the region in (St,Fr)-space for which the particle trapping efficiency, defined in Eq.
(3.20), is larger than zero as time tends to infinity: P∞ > 0.

Given an initially uniform distribution of particles with an initial velocity equal to
the local carrier flow velocity, the phenomenon of particle accumulation depends on
three parameters: the vortex position r1, the Stokes number St and the Froude number
Fr. For the sake of convenience, we take the vortex radius as r1 = 0.5. While keeping
the Stokes number fixed, we determine the minimum value of the Froude number for
which P > 0 by running a large number of numerical simulations for different values
of Fr.

The result for the critical Froude number is shown in Fig. 3.15. A clear distinction
can be made between the region in parameter space where P∞ > 0 and the region
where P∞ = 0. The separation between the regions is almost linear in St and in Fr2

as long as St . 0.3 and Fr2
. 10. The curve steepens as St becomes larger; from Fig.

3.9 it follows that, as Fr→ ∞, particle accumulation only takes place if St . 1.85.
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The almost linear part of the (St,Fr)-curve for St and Fr2 can be explained by the
fact that the attraction point in the frame rotating with the vortex describes an almost
elliptic trajectory around the point ξ∗∞. The mean radius of the elliptic trajectory is
proportional to St/Fr2, see Eq. (3.51). Thus when St/Fr2 increases, the mean radius
of the trajectory increases accordingly. If the radius of the trajectory is too large, the
particle may hit the wall, and the mechanism of particle accumulation breaks down.
Therefore, there exists an upper bound in the value of St/Fr2 for which accumulation
takes place.

The steepening of the curve as St approaches 1 can be explained as follows. As
the Stokes number increases, the point ξ∗∞ is situated further away from the elliptic
stagnation point; it is situated closer to the boundary of the circular domain (see
Fig. 3.7). Therefore, the approximately elliptic equilibrium trajectory is more likely
to intersect with the wall. As a consequence, particle accumulation is restricted to
either lower values of the Stokes number, or to higher values of the Froude number.
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2

F 3.15: The critical Fr2 as a function of St for r1 = 0.5.

3.5 Particle clustering in two-dimensional viscous vortex flows

In order to investigate the effect of viscosity in vortex flows, neglected so far, the mo-
tion of slipping droplets in a laminar viscous flow field containing a means to gener-
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ate circulation is studied numerically. In accordance with the point vortex model, the
means to generate circulation (a rotating rod with radius r̃0) is assumed to rotate not
only around its own axis, but also around the center of the circular domain. A sketch
of the problem is given in Fig. 3.16. The rotation rate of the rod around its own axis
is Γ0/(2πr̃2

0), thus mimicking a point vortex with circulation Γ0. The rotation rate of
the rod around the center of the circular domain is, dimensional:

Ω̃ =
Γ0

2π
1

R2 − r̃2
1

. (3.60)

In the rest of this section, we make all variables dimensionless using the vortex
strength Γ0 and the radius of the circular domain R. The dimensionless rotation rate
of the rod around its own axis is then 1/(2πr2

0), with r0 ≡ r̃0/R. The dimensionless
rotation rate around the center of the circular domain becomes:

Ω =
1

2π
1

1 − r2
1

, (3.61)

where r1 ≡ r̃1/R.

r

R

~
r~1

0

F 3.16: Sketch of the configuration of a moving, rotating rod with radius r̃0 in
a cylindrical domain with radius R. The radial position of the rod is constant and
denoted by r̃1.
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3.5.1 Physical model

The Navier-Stokes equations for incompressible viscous flow in a fixed frame of
reference, made dimensionless by Γ0, R and the fluid density ρ, are given by:

∇ · u = 0,
∂

∂t
u + u · ∇u = −∇p +

1
Re
∇2u. (3.62)

We rewrite Eq. (3.62) in a rotating frame, with rotation rate Ω around the center of
the domain:

∇ · υ = 0,
∂

∂t
υ + υ · ∇υ = −∇ p̂ +

1
Re
∇2υ, (3.63)

where υ ≡ u + ΩJξ is the relative velocity in the rotating frame, and p̂ denotes the
modified pressure: p̂ ≡ p+ 2ΩΨ̂+ 1

2Ω
2ξ · ξ. The boundary conditions in the rotating

frame are:

υ = Ω
[

η,−ξ]T
, for r =

√

ξ2 + η2 = 1,

υ =
1

2πr2
0

[−η, ξ − r1
]T
, for

√

(ξ − r1)2 + η2 = r0. (3.64)

The only parameter of the problem is the Reynolds number Re ≡ Γ0/ν, which to-
gether with the boundary conditions and the initial conditions uniquely defines the
solution of Eq. (3.63) for υ and p̂.

In this flow field, we investigate the motion of heavy particles. The motion of the
particles is assumed to be accurately described by Eq. (3.16), just like in the case of
potential flow. The particles are assumed not to influence the carrier flow field; thus,
a one-way coupling is employed.

3.5.2 Numerical solution method

Eq. (3.63), subject to the boundary conditions Eq. (3.64), is solved using the finite-
volume method in the commercial fluid dynamics software code CFX (version 10).
The physical domain is subdivided in grid cells whose node points are situated on
isolines of the functions γ1 and γ2, which are given by:

γ1 = arctan
(

η

ξ − 1/r1

)

− arctan
(

η

ξ − r1

)

, γ2 = ln
(

ξ − 1/r1
)2
+ η2

(

ξ − r1
)2
+ η2

, (3.65)

which are related to the velocity potential and the streamfunction of the potential
flow problem of a point vortex inside a circular domain. Since ∂γ1/∂ξ = ∂γ2/∂η and
∂γ1/∂η = −∂γ2/∂ξ, the isolines of γ1 and γ2 are always orthogonal. Therefore, each
combination of (ξ, η) corresponds to exactly one combination of (γ1, γ2).

In the γ1-direction, the grid points are distributed equidistantly, whereas the grid
points in γ2-direction are distributed as on a Chebyshev grid. The mesh generation is
shown schematically in Fig. 3.17.
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F 3.17: Schematic view of the generation of the grid. a) Distribution of grid
points in γ1- and γ2-direction. b) Projection of the (γ1, γ2)-grid onto the physical
domain. For the sake of clarity, the plots show 20 cells in the γ1-direction, and 10
cells in the γ2-direction only.

Iterations in time are carried out using an explicit second-order Runge-Kutta scheme,
starting from the initial condition that υ = 0,∀ξ. The iteration process is continued
until a converged steady flow solution is obtained, i.e. ∂υ/∂t = 0,∀ξ.

Subsequently, the particle trajectories are determined by integrating Eq. (3.16) us-
ing a 4-th order Runge Kutta scheme. At each time step the velocity of the carrier
flow at the position of the particle, which generally does not coincide with a grid
point, is obtained using a bilinear interpolation.

3.5.3 Results

The Navier-Stokes equations, Eq. (3.63), have been solved on a grid of 304 cells in
the γ1-direction and 81 cells in the γ2-direction. In order to check the accuracy of
the obtained solution, the solution has been obtained on other grids too, and exten-
sive convergence tests were carried out; for more details on these tests, the reader is
referred to [20].

In Fig. 3.18, we show the streamlines of the time-independent laminar flow field
satisfying the Navier Stokes equations Eq. (3.63) when Re = 200. The resulting flow
field is rather similar to the potential flow presented in Fig. 3.2: the flow around the
rotating rod is dominated by a counterclockwise motion, whereas the left half plane
is dominated by a large rotating motion in clockwise direction around an elliptic stag-
nation point. Nevertheless, there are some differences with respect to the potential
flow field as well: in the viscous flow only one hyperbolic stagnation point is found
(on the positive ξ-axis) instead of two on the wall, and regions of high vorticity are
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found in the boundary layer. Besides, it is noted that the viscous flow field is not
symmetric: the elliptic stagnation point is situated well below the negative ξ-axis.

The flow field in Fig. 3.18 is also reminiscent of the flow in a journal bearing
presented in Figure 7.4.2c) in §7.4 of Ottino’s book [73]. Ottino studied the same
configuration as the one considered here, but he calculated the flow field only for very
low Reynolds numbers so that the convective terms can be neglected (Stokes flow).
Comparison of Fig. 3.18 with Ottino’s work shows that the inclusion of the convective
terms results in a very similar, albeit slightly asymmetric, flow field: the flow field
is characterized by a cyclonic motion around the rotating rod and an anticyclonic
motion in a large part of the domain.

The flow field for a Reynolds number of 2000 is depicted in Fig. 3.19. Since a
higher Reynolds number corresponds to a smaller influence of viscosity, it is expected
that the differences with respect to the potential flow model have decreased: indeed
the boundary layer is thinner than in the case Re = 200 and the position of the elliptic
stagnation point is closer to the negative ξ-axis.

In Fig. 3.18 and Fig. 3.19, the positions of a group of 451 initially uniformly dis-
tributed heavy particles are plotted at four instants in time as well. The particles have
a Stokes number of St = 0.25; at the beginning of the simulation they have the same
velocity as the local carrier flow. The heavy particles accumulate in the region around
the elliptic stagnation point inside the physical domain as t → ∞. It is clear that these
results are very similar to the ones obtained in the case of a point vortex model, see
e.g. Fig. 3.4.

In viscous vortex flows, the fixed point ξ∗ is found to be close to an elliptic stag-
nation point of the flow field in the corotating frame. This is not much of a surprise
considering the results presented for the case of inviscid flow. In fact, the analysis
presented in section 3.3.1 is equally valid for viscous flows and for inviscid flows.
Therefore, also in the viscous flow, a fixed point for the accumulation of heavy parti-
cles can be found in the vicinity of the elliptic stagnation point, if the Stokes number
is sufficiently small. In the limit of St ↓ 0, the fixed point corresponds to the elliptic
stagnation point of the flow field.

Particle accumulation in (St,Fr)-space

We determine the region in parameter space (St,Fr) for which the particle accumu-
lation takes place in the viscous vortex flow. This is equivalent to determining the
parameter space for which P∞,visc, defined as:

P∞,visc ≡
(number of particles with r < 0.9 for t → ∞)

(total number of initially uniformly distributed particles)
× 100%, (3.66)

is larger than 0. It is noted that this definition is different from the one in Eq. (3.20),
since the maximum radial position is taken as 0.9 instead of 1. This modification has
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F 3.18: Dots: positions of heavy particles in steady viscous vortex flow; r1 = 0.5,
r0 = 0.1, St = 0.25, Fr → ∞ and Re = 200: a) t = 0, b) t = 10, c) t = 100 and d)
t = 1000. Streamlines of the carrier flow are plotted as thin solid lines.

been made in order to exclude particles which get trapped in the viscous boundary
layer close to the boundary of the domain; especially if the particle Stokes number is
small, the particles may become trapped in the boundary layer without ever reaching
the wall. The numerically obtained parameter space in which P∞,visc > 0 is depicted
in Fig. 3.20, for Re = 200 and Re = 2000.

For both values of the Reynolds number, the curve separating the two regimes is
almost a straight line, i.e. St/Fr2 is approximately a constant. Although this result for
a viscous is very similar to the result obtained in section 3.4.3 for potential flow, there
is one important difference: for small Froude numbers, the maximum Stokes number
for which accumulation takes place is lower than in the case of potential flow.
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F 3.19: Dots: positions of heavy particles in steady vortex flow; r1 = 0.5, r0 =

0.1, St = 0.25, Fr → ∞ and Re = 2000: a) t = 0, b) t = 10, c) t = 100 and d)
t = 1000. Streamlines of the carrier flow are plotted as thin solid lines.

This can be explained by the observation that a small Froude number (i.e. a large
length of the gravity vector) results in a long trajectory of the particles around the el-
liptic stagnation point. When the particle passes through the viscous boundary layer,
its velocity is reduced, and the Coriolis force decreases consequently. As a result,
the particle relaxes in the boundary layer instead of being attracted to an equilibrium
trajectory around the elliptic stagnation point. Therefore, when the Stokes number
is small, particle accumulation occurs at larger values of the Froude number in the
viscous flow than in the potential flow.
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3.6 Conclusions

In this chapter, the motion of heavy particles in a bounded point vortex flow has been
investigated both theoretically and numerically. The case of one vortex in a closed
circular domain has been studied, which corresponds to the flow induced by a slender
helical vortex filament in a pipe. The numerical simulations are based on a one-way
coupling. Only the Stokes drag and gravity are taken into account in the equation
of motion for the particles. The flow field is modelled by a potential flow field
containing a point vortex which is allowed to move freely, i.e. it follows a circular
trajectory at fixed radius at constant angular velocity.

The results for the zero-gravity case (Fr→ ∞) reveal that heavy particles may ac-
cumulate in regions where the centrifugal and the drag forces acting on the particles
balance each other, resulting in an equilibrium trajectory. A linear stability analysis
shows that particles are always attracted to a fixed point in an anticyclonic region, as
long as the Stokes number is below a critical value. This critical Stokes number is
higher when the radial position of the vortex increases. The fixed point is situated fur-
ther away from the center of the anticyclonic region as the Stokes number increases.
The rate at which a particle approaches an attraction point, is approximately linear in
the Stokes number.

It is shown that gravity causes the particles to accumulate towards a moving at-
traction point in the frame of reference moving with the vortex. For small Stokes
numbers and large Froude numbers, the moving attraction point describes an ellipti-
cally shaped attraction trajectory in the frame of reference rotating with the vortex.
The trajectory is periodic with the rotation of the frame of reference. The stability of
the moving attraction point has been proven by a linear stability analysis, for small
values of the Stokes number and large values of the Froude number. For smaller
values of the Froude number, particle accumulation is observed, too, provided the
ratio St/Fr2 remains below a critical level; then, some particles do not describe an
elliptically shaped equilibrium trajectory but rather a leaf-like trajectory.

The results obtained from the inviscid (potential) flow model are compared to the
results from a simulation for which the flow field satisfies the Navier-Stokes equa-
tions for two-dimensional incompressible viscous flow. Although the viscous flow
field is somewhat different from the potential flow field, heavy particles may accu-
mulate close to an elliptic stagnation point in the flow, just like in the case of potential
flow. The attraction mechanism of heavy particles in viscous flows is very similar to
the one observed in case of potential flow from both a qualitative and a quantitative
point of view.
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F 3.20: The critical value of Fr2 as a function of St in viscous flow for r1 = 0.5,
r0 = 0.1. a) Re = 200, b) Re = 2000.
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The motion of heavy particles in potential vortex flows on the unit disk is investigated
theoretically and numerically. Configurations with two point vortices are considered.
Each vortex follows a regular path on the disk. In order to isolate the effect of in-
ertia, in the equation of motion of the heavy particles only Stokes drag is taken into
account. Results from numerical simulations show that heavy particles may accu-
mulate inside the closed circular domain. The particle accumulation is shown to be
related to the presence of elliptic islands of regular passive tracer motion. The par-
ticle accumulation is enhanced for smaller values of the particle Stokes number, and
larger values of the angular momentum of the vortices. These results are explained
and supported by a stability analysis.

4.1 Introduction

In the present chapter, we study the motion of heavy particles in a potential flow con-
taining two point vortices. This situation can be seen as a model for the flow through a
slender tube, in which two compact vortex cores are present. A schematic view of the
configuration is presented in Fig. 4.1. In the limit of a very slender tube, the velocity
field reduces to a superposition of a constant axial velocity U and a time-dependent
two-dimensional flow in the cross-sectional plane, moving at velocity U, as sketched
in Fig. 4.1. The two-dimensional flow is characterized by two point vortices in a cir-
cular domain. The goal of the present research is to determine the influence of such
compact structures of vorticity on the motion of heavy particles.

The motion of two vortices on a disk was studied by Boffetta et al. [14]. They
showed that the self-induced motion of two free point vortices in a closed circular
domain is always regular and integrable. They presented a broad classification of
possible orbits of two identical vortices.

The case of two point vortices on a disk is special, since a flow may result that dis-
plays chaotic advection of passive tracers despite the regularity of the vortex motion.
In this sense, the case of two point vortices on a disk is comparable to the behavior
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U

U

F 4.1: Sketch of two vortex filaments in a slender tube, like they may occur in a
gas-liquid separator. In the cross section indicated, the flow may be approximated by
two point vortices in a closed circular domain.

of three vortices on an infinite plane [42],[68].
In the present chapter we investigate the motion of heavy particles in a closed cir-

cular domain containing two point vortices. It is assumed that the number of particles
is such that the flow may be considered as a dilute flow. Just like in Chapter 3, we
focus on the accumulation of particles due to their inertia in sufficiently dilute flows.
The simulations are based on a one-way coupling. In order to isolate the effect of the
particle inertia, gravity is neglected.

The present chapter is organized as follows. In section 4.2 we present the equations
governing the motion of point vortices in a closed circular domain, and the equation
of motion of passive tracers. In addition, the equations of motion for heavy particles
are introduced. The motion of heavy particles in a circular domain containing two
vortices is considered in section 4.3. Finally, a summary and conclusions are given
in section 4.4.

4.2 Physical-mathematical model

We consider a closed circular domain with radius R, containing a potential flow gen-
erated by N point vortices. In this chapter, all variables are made dimensionless by
choosing R as the characteristic length and the strength of the first vortex Γ1 as the
characteristic circulation. The position of the j-th vortex is given by its radial po-
sition r j and angle θ j while its strength is Γ j. For each vortex j, an image vortex
with strength −Γ j is placed at the position (r−1

j ,θ j) in order to satisfy the boundary
condition of zero normal velocity at r = 1. Since the velocity field is divergence-free
(∇ · u = 0), the motion of passive tracers is governed by a stream function which
plays the role of a Hamiltonian.

The stream function Ψ is conveniently described in polar coordinates:

Ψ(r, θ) ≡
N

∑

j=1

Γ j
[

ΨV (r, θ, r j, θ j) −ΨI(r, θ, r j, θ j)
]

, (4.1)
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with:
ΨV (r, θ, r j, θ j) ≡ −

1
4π

ln
[

r2 + r2
j − 2rr j cos(θ − θ j)

]

, (4.2)

and:
ΨI(r, θ, r j, θ j) ≡ ΨV (r, θ, r−1

j , θ j). (4.3)

The function ΨV(r, θ, r j, θ j) represents the partial stream function corresponding to
the j-th vortex, whereas ΨI(r, θ, r j, θ j) represents the partial stream function corre-
sponding to the image of the j-th vortex. The velocity field is obtained by the canon-
ical equations:

ur =
1
r
∂Ψ

∂θ
, uθ = −

∂Ψ

∂r
. (4.4)

The motion of the point vortices itself is governed by Hamiltonian dynamics. The
Hamiltonian H is chosen as:

H =

N−1
∑

i=1

N
∑

j=i+1

ΓiΓ j

[

ΨV (ri, θi, r j, θ j) −ΨI(ri, θi, r j, θ j) +
1

4π
ln r2

j

]

− 1
2

N
∑

i=1

Γ2
i

[

ΨI(ri, θi, ri, θi) −
1

4π
ln r2

i

]

. (4.5)

The velocities of the vortices are finally obtained from the canonical equations:

Γαṙα =
1
rα

∂H
∂θα
, Γαrαθ̇α = −

∂H
∂rα
, (4.6)

where the dots indicate differentiation with respect to time. In Eq. (4.6) the repeated
indices no not imply summation.

During the motion of N point vortices on a disk, two quantities are conserved.
The first conserved quantity is the Hamiltonian H defined by Eq. (4.5). The second
conserved quantity is the angular momentum L2, defined as:

L2 ≡
N

∑

i=1

Γir2
i . (4.7)

Its conservation can be demonstrated as follows. The time derivative of L2 is:

dL2

dt
=

N
∑

i=1

∂L2

∂ri
ṙi =

N
∑

i=1

(2Γiri

Γiri

∂H
∂θi

)

= 2
N

∑

i=1

(

∂H
∂θi

)

. (4.8)

Since Eq. (4.5) does not depend on θi and θ j individually but only on (θi − θ j), this
results in the sum of the derivatives of H with respect to θi, i = 1, . . . ,N, to be equal
to zero identically. The time derivative of the angular momentum then becomes 0, so
that it is indeed a conserved quantity. Physically, the conservation of L2 follows from
the rotational symmetry of the disk [68].
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4.2.1 Motion of two point vortices on a disk

The Hamiltonian formulation (Eq. (4.5)) in the case of two vortices is:

H = Γ1Γ2

[

ΨV (r1, θ1, r2, θ2) −ΨI(r1, θ1, r2, θ2) +
1

4π
ln r2

2

]

+
1

4π

2
∑

i=1

Γ2
i ln

[

1 − r2
i

]

.

(4.9)
This is a four-degree-of-freedom Hamiltonian, since it depends on r1, θ1, r2 and θ2.
Using the conservation of angular momentum, Eq. (4.9) can be reduced to a system
of two degrees of freedom. For this purpose, the angle φ ≡ θ − θ1 is introduced, and
r1 is written in terms of r2 using the invariant L2:

r1 =

√

L2 − Γ2r2

Γ1
,

dr1

dr2
= −Γ2r2

Γ1r1
. (4.10)

Then, the Hamiltonian, Eq. (4.9), can be written as follows [14]:

H(r1, θ1, r2, θ2) = Ĥ(r2, φ2), (4.11)

with:

Ĥ(r2, φ2) =
1

4π
Γ1Γ2 ln

[

Γ1Γ2 + Γ2r2
2(L2 − Γ2r2

2) − 2
√

Γ1Γ
2
2r2

2(L2 − Γ2r2
2) cosφ2

]

− 1
4π
Γ1Γ2 ln

[

Γ1Γ2r2
2 + Γ2(L2 − Γ2r2

2) − 2
√

Γ1Γ
2
2r2

2(L2 − Γ2r2
2) cosφ2

]

+
1

4π
Γ2

1 ln
[

1 − L2

Γ1
+
Γ2r2

2

Γ1

]

+
1

4π
Γ2

2 ln
[

1 − r2
2
]

. (4.12)

The time development of r2 and φ2 can be obtained from the canonical equations:

Γ2ṙ2 =
1
r2

∂Ĥ
∂φ2
, Γ2r2φ̇2 = −

∂Ĥ
∂r2
. (4.13)

The radial position of the first vortex, r1, then follows directly from Eq. (4.10).
The contour lines of the Hamiltonian (Eq. (4.12)) in the case of two equally strong

vortices (Γ1 = Γ2 = 1) are plotted in Fig. 4.2, for L2 = 0.18, L2 = 0.37, L2 = 0.72 and
L2 = 0.82. In all figures, the contour lines correspond to trajectories of the second
vortex in the frame rotating with the first vortex, which is placed on the positive ξ-
axis (φ1 ≡ 0). The period of the trajectory, denoted by Tv, depends on the initial
position of the vortices and their strengths.
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F 4.2: Contour lines of Hamiltonian (Eq. (4.12)) describing the motion of vortex
2 in the frame rotating with vortex 1; ξ ≡ r cosφ, η ≡ r sinφ. Both vortices have
the same strength. E denotes a stable (elliptic) equilibrium configuration of the vor-
tices, H is an unstable (hyperbolic) equilibrium configuration, and S is the singular
configuration of two coinciding vortices: a) L2 = 0.18, b) L2 = 0.37, c) L2 = 0.72,
d) L2 = 0.82.
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4.2.2 Flow field induced by two point vortices on a disk

The motion of passive tracers in the case of two vortices on a disk is described by the
following stream function:

Ψ(r, θ) =
2

∑

j=1

Γ j
[

ΨV (r, θ, r j, θ j) −ΨI(r, θ, r j, θ j)
]

, (4.14)

which depends on both the passive tracer position (r, θ) and the vortex positions
(r1, θ1) and (r2, θ2). In the co-rotating frame the vortices have one degree of free-
dom less than in the fixed frame. Still, the remaining number of degrees of freedom
makes the stream function not-integrable [68]. Thus the advection of passive tracers
in a 2-vortex system on a disk is chaotic, except for a number of special cases [14].

Besides chaotically moving passive tracers, some patches of regularly moving pas-
sive tracers can be found. These patches are called islands of regular motion, which
can be either hyperbolic or elliptic. On the one hand, hyperbolic islands are situated
around the point vortex centers. They persist even when the vortex motion itself is
chaotic [4]. On the other hand, elliptic islands may arise in regions far away from
vortex cores. Since these islands do not contain a singular vortex core, the relative
velocity of passive tracers tends to zero in the center of the island; therefore they are
called elliptic islands [42].

4.2.3 Equations of motion of heavy particles

The motion of heavy particles is assumed to be described by Eq. (2.5). In order
to isolate the phenomenon of heavy particles influenced by the vortices, gravity is
neglected (i.e. Fr → ∞). The Stokes number St is defined as the particle relaxation
time τp divided by the characteristic time scale of the flow, R2/Γ1:

St =
τpΓ1

R2 . (4.15)

We rewrite the equations of motion in a rotating reference frame:

dξp

dt
= υp,

dυp

dt
=

1
St

(

υ − υp
)

+ 2ΩJυp + Ω
2ξp + Ω̇Jξp, (4.16)

where ξ and υ denote the position and the velocity in the rotating frame, respectively;
the tensor J is defined in Eq. (3.17). The additional terms on the right hand side,
which all depend on the rotation rate Ω and its time derivative Ω̇, denote the Coriolis
force, the centrifugal force, and an additional force due to the acceleration of the
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reference frame∗, respectively. The specific choice of Ω depends on the situation at
hand.

Just like in Chapter 3, we consider the trajectories of two nearby particles. The
differences in position and velocity are denoted by δξp and δυp, respectively. When
the magnitude of the 4-dimensional separation vector R ≡ [δξp, δυp]T is very small,
the separation between the two trajectories can be expressed in the following form:

d
dt

R(t) = MR(t), (4.17)

with:

M =



































0 0 1 0
0 0 0 1

1
St
∂υ
∂ξ
+ Ω2 1

St
∂υ
∂η
+ Ω̇ − 1

St 2Ω
1
St
∂ν
∂ξ
− Ω̇ 1

St
∂ν
∂η
+ Ω2 −2Ω − 1

St



































. (4.18)

When all eigenvalues of the matrix M have a real part smaller than zero, we have
|R(t)| → 0 for t → ∞. This means that the two particles converge for sufficiently
large times.

4.3 Heavy particles in bounded two-vortex flow

In this section we consider the motion of heavy particles in a system with two vor-
tices of equal strength. We conduct a numerical simulation in which each particle is
traced individually by using a fourth-order Runge-Kutta scheme. The equations of
motion are solved for a series of decreasing values of the time step, where each next
value is half of the previous value. When the differences between two subsequent
solutions are smaller than a certain preset level, the last obtained solution is consid-
ered sufficiently accurate. At the start of the simulation, the particles have the same
velocity as the local gas flow. When a particle reaches the circular boundary, it is
absorbed by the wall.

In order to visualize the results for heavy particles, four vortex configurations have
been investigated in particular. The first configuration, with L2 = 0.18, is the same
as was treated by Boffetta et al.; the vortex positions are initially:

(

r1, θ1
)

=
(

√
2

10
, 0

)

, at t = 0,

(

r2, θ2
)

=
(2
5
, π

)

at t = 0.

∗This force is sometimes referred to as ‘Euler force’.
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The case with L2 = 0.37 corresponds to the following initial vortex positions:

(

r1, θ1
)

=
( 1
10
, 0

)

, at t = 0,

(

r2, θ2
)

=
( 6
10
, 0

)

, at t = 0.

In the configuration with L2 = 0.72, the initial vortex positions are chosen to be:

(

r1, θ1
)

=
(

√
2

5
, 0

)

, at t = 0,

(

r2, θ2
)

=
(4
5
, 0

)

, at t = 0.

Finally, a configuration is treated with L2 = 0.82, where the initial vortex positions
are:

(

r1, θ1
)

=
( 1
10
, 0

)

, at t = 0,

(

r2, θ2
)

=
( 9
10
, 0

)

, at t = 0.

First, we consider the motion of passive tracers in the four configurations. Poincaré
sections of passive tracer positions with interval Tv are plotted in Fig. 4.3; passive
tracers are represented by small dots. The passive tracers can be classified into three
groups: hyperbolic islands, elliptic islands and chaotic regions. In all configurations
two hyperbolic islands can be recognized on the ξ-axis, around the point vortex cen-
ters; the chaotic regions can be recognized by the random distribution of passive
tracers. In addition, some elliptic islands occur. In Fig. 4.3a), the two most important
elliptic islands are situated around (ξ, η) ' (−0.1,±0.5). Three elliptic islands can
be identified in Fig. 4.3b), at (ξ, η) ' (0.2,±0.5) and at (ξ, η) ' (−0.6, 0.0). In Fig.
4.3c), only one elliptic island is visible, at (ξ, η) ' (−0.4, 0). Finally, in Fig. 4.3d),
an almost circular anticyclonic region of regular motion is found between the two
vortices. There is, however, not one particular point in this region where the relative
velocity of passive tracers tends to zero.

In Fig. 4.3, the positions of heavy particles are presented too. The 1791 initially
uniformly distributed particles, with St = 0.1, are plotted after t = nTv ' 100, n ∈ N.
Thus, the heavy particles are plotted at the moment that the two vortices have zero
relative angle, i.e. the vortices have the same relative positions as on t = 0. In the
configuration with L2 = 0.18, a large number of particles have accumulated in two
single points near the elliptic islands; all other particles have been expelled from the
domain. The case of L2 = 0.37 is similar, since many particles have either accumu-
lated close to the small elliptic islands or in the big elliptic island in the left half-plane.
In the case L2 = 0.72, some particles are trapped close to the elliptic island in the left
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F 4.3: Positions of heavy particles (diamonds) in two-vortex system after time
t = nTv ' 100, n ∈ N; St = 0.1: a) L2 = 0.18, b) L2 = 0.37, c) L2 = 0.72, d)
L2 = 0.82. For comparison, Poincaré sections of passive tracers (small dots) are
plotted, too.
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half-plane, a few others are still in the chaotic region. In longer simulations it is
observed that the dispersed particles eventually reach the wall, whereas the trapped
particles accumulate in the elliptic island. The trapped particles in all these examples
are attracted towards a regular trajectory which is in phase with the vortex motion.
In the 2-vortex system, the attraction point is not a fixed point like in the 1-vortex
system with zero gravity, see section 3.3; it is better to speak of a moving fixed point
instead.

In the case of L2 = 0.82, an elliptic island does not exist where the heavy particles
can be attracted to. The anticyclonic region of regular passive tracer motion, however,
does attract particles that are expelled from the regions around the vortices; as t → ∞
heavy particles can be found on a closed line (see Fig. 4.3d)).

4.3.1 Location of moving fixed point

For the particle accumulation to occur in the two-vortex system, a force-balanced
periodically moving fixed point has to exist. First of all, this requires the existence
of a regular motion of the heavy particles with respect to the vortices. This regular
motion is not straightforward to find, because of the unsteadiness of the flow field.
Still, in the limit of St ↓ 0, the motion of heavy particles corresponds to the motion of
passive tracers. So, the moving fixed point of heavy particles should go to a point of
regular motion of passive tracers as their Stokes number vanishes. Hence, the particle
accumulation takes place around the centers of elliptic islands.

The shape of the elliptic islands is in phase with the vortex motion. The same holds
for the trajectory of trapped heavy particles. Therefore, both a trapped particle and
the center of the elliptic island are on the same position after every vortex period.
Poincaré sections with time Tv can then visualize the influence of the Stokes number
on the position of the moving attraction point. The results are presented in Fig. 4.4,
for the cases of L2 = 0.18 and L2 = 0.72. In both cases, the center of the elliptic island
is plotted too. Clearly, the location of the moving attraction point is increasingly far
away from the center of the elliptic island for higher Stokes numbers.

Some particles with higher Stokes numbers even have a fixed point in a region out-
side of the elliptic islands, as can be observed for three particles in Fig. 4.4b). This
means that these heavy particles describe a regular motion, in period with the vortex
motion, although they are surrounded by chaotically moving passive tracers. This
seems rather contradictory but this phenomenon can be explained from the dissipa-
tive nature of the governing equations of motion, Eq. (4.16): whereas passive tracer
motion is governed by a Hamiltonian that conserves the phase space volume, the
phase space volume of heavy particles tends to 0 for t → ∞ (see also section 2.3, or
[73]).

In Fig. 4.5, the distance ∆′ is shown as a function of the Stokes number. Here, ∆′



4.3. H    -  73

ξ

η

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a)

ξ

η

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

b)

F 4.4: Poincaré sections with period Tv of particles trapped in the moving at-
traction points: a) L2 = 0.18; N: St = 0.03, �: St = 0.09, �: St = 0.15, b) L2 = 0.72;
�: St = 0.1, N: St = 0.3, H: St = 0.6 , �: St = 0.9.
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is defined as:
∆′ ≡

(

|ξp
∗(t) − ξ0(t)|

)

t=nTv
, n ∈ N, (4.19)

which is the distance between the moving attraction point and the center of the elliptic
island, on the moment that the two vortices have zero relative angle. The distance ∆′

grows approximately linearly in the Stokes number, as long as the Stokes number is
small enough. These results are very similar to the results of the one-vortex case,
presented in Fig. 3.8.

4.3.2 Stability of moving fixed point

The stability of the moving fixed point can be investigated by using the separation
vector from Eq. (4.17), where the time dependent matrix M is given by Eq. (4.18) and
evaluated at the moving fixed point. In Fig. 4.5 we found that ∆′ ∝ St, indicating that
the moving fixed point is located close to the center of an elliptic island for small
values of the Stokes number. Therefore, it is convenient to take the reference frame
co-rotating with the center of the elliptic island, whose angular velocity is denoted
by Ω0 and its angular acceleration by Ω̇0. The eigenvalues of M then follow from the
(time-dependent) characteristic polynomial:

St2λ4 + 2Stλ3 +
(

2St2Ω2
0 + 1

)

λ2 +
(

2StΩ2
0 + 4St2Ω0Ω̇0

)

λ + St2Ω4
0 + St2Ω̇2

0 +H∗ = 0,
(4.20)

In the limit of small relative acceleration compared to the inverse of the Stokes num-
ber, i.e.,

|Ω̇0

Ω0
| � 1

St
,∀t, (4.21)

the eigenvalues become:

λ1,2,3,4 ≈
−1 ±

√

1 − 4Ω2
0St2 ± 4St

√

−H∗(t) − 2StΩ0Ω̇0 − St2Ω̇2
0

2St
. (4.22)

The HessianH∗ is strictly positive in the elliptic island for all time. Linearizing Eq.
(4.22) with respect to St and using Eq. (4.21) then gives:

λ1,2,3,4 ≈
−1 ± 1

2St
+ St

(H∗ −Ω2
0
) ± i
√
H∗ + O(St2). (4.23)

In Fig. 4.5 it was shown that approximatelyH ∗ = H0 + O(St), such that:

λ1,2,3,4 ≈
−1 ± 1

2St
+ St

(H0 −Ω2
0
) ± i

√

H0 + iO(St) + O(St2). (4.24)

A completely similar reasoning as is conducted in section 3.3, based on the observa-
tion that

(

H0 −Ω2
0

)

< 0, leads to the conclusion that the condition H0 > 0 is both
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F 4.5: Distance between a trapped particle and the center of the elliptic island
∆′ as a function of the Stokes number, on the moment that the two vortices have zero
relative angle: a) L2 = 0.18, b) L2 = 0.72.
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necessary and sufficient for the fixed point to be stable for small Stokes numbers. It
is noted that the real parts of the eigenvalues are approximately linear in the Stokes
number, so that the particle trapping time is inversely proportional to the Stokes num-
ber, just like in the one-vortex case.

The region of attraction consists predominantly of heavy particles which are re-
leased in the regular elliptic islands. Also from other regions of the flow, a large
number of particles may eventually be forced towards the moving attraction point.
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F 4.6: Percentage P∞ of accumulated heavy particles as a function of the initial
condition (r1, r2) of the 2-vortex configuration; a) St = 0.1, b) St = 1.

In order to quantify the particle accumulation, numerical simulations were carried
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for a large variety of configurations with two identical vortices. For a range of 40×80
initial vortex positions (r1, r2), the positions of heavy particles are calculated at t =
500, for two different Stokes numbers: St = 0.1 and St = 1. After such a long time,
generally only the accumulated particles are present in the domain, whereas all other
particles have reached the wall. On the basis of these simulations, the parameter
P∞, defined in Eq. (3.20), is determined. The results are presented in Fig. 4.6, as
a function of the vortex configuration parameters r1 and r2, where a negative value
of r1 indicates an initial position of vortex 1 on the negative x-axis. Since r1 and r2
may be interchanged without any consequence for the flow, the figures are symmetric
around the lines r2 = ±r1, which are drawn for convenience.

Generally, the accumulation of heavy particles is enhanced with higher angular
momentum and lower Stokes numbers. The low percentage of particle accumula-
tion in the left half-plane of Fig. 4.6a) (especially around (r1, r2) = (−0.7, 0.4), or
(r1, r2) = (−0.4, 0.7)) can be explained by the fact that the motion of passive tracers
is highly chaotic; no elliptic islands exist in these configurations. This supports the
hypothesis that heavy particle accumulation in bounded 2-vortex flows takes place in
elliptic islands of regular passive tracer motion.

4.4 Conclusions

In this chapter, the motion of heavy particles in a bounded potential flow generated
by two point vortices in a circular domain is investigated both theoretically and nu-
merically. Due to the limited number of degrees of freedom, the two vortices display
a regular periodic motion inside the circular domain.

The numerical simulations are based on a one-way coupling. In order to isolate the
effect of inertia, in the equations of motion only the Stokes drag is taken into account.

The results reveal that heavy particles may accumulate at a moving attraction point
within the circular domain. This means that all forces on the particle (the Stokes drag
plus fictitious forces due to the formulation of the equations of motion in a rotating
frame of reference) are such that a particle is trapped on an equilibrium trajectory as
time tends to infinity.

The moving attraction point is situated near the center of an elliptic island, i.e.
a region of regular anticyclonic motion of passive tracers. The distance between the
moving attraction point and the center of the elliptic island increases for larger Stokes
numbers.

A linear stability analysis shows that the attraction trajectory is stable for particles
with small Stokes numbers, i.e. particles in the neighborhood are always attracted
to the center of an elliptic island of regular motion. The rate at which a particle
approaches the moving attraction point is approximately proportional to the Stokes
number.
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In order to quantify the effect of particle accumulation, the particle trapping efficiency
has been calculated for a wide range of initial vortex positions. From the results of
these simulations, two main conclusions can be drawn: (i) the accumulation of heavy
particles is closely related to the presence and the size of elliptic islands of regu-
lar passive tracer motion, and (ii) the percentage of accumulated heavy particles is
enhanced by increasing the angular momentum and lowering the Stokes numbers.
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The motion of small heavy particles near a helical vortex filament in incompressible
flow is investigated. Both the configurations of a helical vortex filament in free space
and a helical vortex filament concentrically positioned in a pipe are considered, and
the corresponding helically symmetric velocity fields are expressed in terms of stream
functions. Particle motion is assumed to be driven by Stokes drag, and the flow
fields are assumed to be independent from the motion of particles. Numerical results
show that heavy particles may be attracted to helical trajectories. The stability of
these attraction trajectories is demonstrated by linear stability analysis. In addition,
the correlation between the attraction trajectories and the streamline topologies is
investigated.

5.1 Introduction

Helical vortex filaments are observed in many natural and industrial applications [28].
They can be found in wakes downstream of propellors and wind turbines [97], in
combusting flows containing a precessing vortex core [2], and in industrial gas con-
ditioners used for the separation of heavy particles and droplets, see section 1.2.3.
In addition, a recent numerical study has shown that the advection of fluid parti-
cles in turbulence is largely influenced by the presence of small-scale helical vortices
[11]. Helical vortex structures are also interesting from a theoretical point of view,
because a helical vortex filament is the simplest three-dimensional vortex structure
having non-zero curvature and non-zero torsion [10], [49], [66], [85]. Although the
flow field induced by a helical vortex filament has been widely studied, the motion
of heavy particles in such flows has received little attention. In the present chapter,
we present particle trajectories and attraction trajectories generated by helical vortex
flow, both in free space and in a pipe.

The velocity field induced by a vortex filament in an incompressible, inviscid fluid
in free space is described by the Biot-Savart law. Hardin [30] evaluated the Biot-
Savart law for the case of an infinite helical vortex filament in terms of an infinite
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series of modified Bessel functions. The same series had already been found by Lamb
[43] when he calculated the magnetic field induced by a spool. The velocity field
derived by Hardin is invariant along helical curves and may therefore be formulated in
terms of a two-dimensional stream function in helical coordinates. Mezić et al. [62]
showed that the resulting flow field can have three different topologies, depending
on the values of the helix curvature, the helix pitch (the length of one revolution) and
the thickness of the vortex core.

The flow field induced by a helical vortex filament concentrically positioned in
a pipe is different from the free space configuration, since the radial velocity on
the pipe wall is required to be zero. To approximately accommodate this boundary
condition, Sarasúa et al. [88] employ a single image vortex of helical shape exterior to
the pipe, which leads to an exact formulation in the limit of infinite pitch of the helix.
Okulov [69] produces an exact formulation by rigorous solution of the governing
partial differential equation. As an alternative, we derive the stream function by
employing a vortex distribution on the pipe wall, which efficiently reproduces the
result of Okulov.

From experiments and numerical studies [2], it is known that a free helical vortex
filament in a pipe can have a stationary shape, although the helix may propagate in
itself. The self-induced velocity of a helical vortex filament can be calculated directly
from the Biot-Savart law (see e.g. §7.1 of Batchelor’s book [7]), leading to a singular
logarithmic term. In case of a finite-core vortex the self-induced velocity is finite,
and several models have been developed in order to overcome the singularity in the
velocity induced by a vortex filament, see [13] and [84] for reviews. In the present
work, the self-induced and wall-induced velocities are compensated by a uniform
axial velocity field, to obtain a stationary helix.

In the present chapter, we investigate the motion of small heavy particles in the
three-dimensional flow field around an infinite helical vortex filament, with the par-
ticle motion driven by Stokes drag. Gravity is neglected since it typically is a minor
effect in many industrial applications. Both the configuration of a helical vortex
filament in a pipe and in free space are studied. It is shown that heavy particles are
attracted to a helical trajectory. The attraction is shown to take place for a wide range
of Stokes numbers, and to be closely related to the streamline topology of the carrier
flow.

In section 5.2, we derive the stream functions for the free space configuration as
well as for the pipe configuration. In addition, the equations for particle motion are
presented and transformed to a helical frame of reference. Finally, the numerical inte-
gration method is outlined. In section 5.3, the streamline topologies encountered are
identified, and section 5.4 presents the results for the particle motion. Attraction tra-
jectories are identified, and their stability is demonstrated by linear stability analysis.
Finally, conclusions are formulated in section 5.5.
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5.2 Physical-mathematical model

5.2.1 Flow field

We consider an infinitely long helical vortex filament with strength Γ, winding radius
a, and pitch h = 2πl, located within a cylindrical pipe with radius R. A uniform flow
U∞ in axial direction is superimposed onto the flow field in order to fix the helix in
space. All variables are made dimensionless by Γ and a, such that the problem is
completely defined by the dimensionless parameters l/a, U∞a/Γ, and R/a. A sketch
of the helix configuration is given in Fig. 5.1. It is noted that the case of a helical
vortex filament in free space corresponds to the limit R/a→ ∞.

x

y

z

lπh=2
8

R

a
Γ

U
F 5.1: Configuration of a helical vortex filament concentrically positioned in a pipe.

We define a helical curve, or helix, with pitch 2πl/a, and dimensionless winding
radius r as:

h(α;
l
a
, r, α0) =

(

r cosα, r sinα, (α − α0)
l
a

)T

, (5.1)

where α is the coordinate along the helix, and α0 is the value of α for which the z
coordinate is zero. Without loss of generality we choose the helical vortex filament
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as h(α; l
a , 1, 0). The local tangent, normal, and binormal unit vectors (Frenet vectors)

on helical curves are defined as:

t ≡ dh
dα

∥

∥

∥

∥

∥

dh
dα

∥

∥

∥

∥

∥

−1
, n ≡ d2h

dα2

∥

∥

∥

∥

∥

∥

d2h
dα2

∥

∥

∥

∥

∥

∥

−1

, b ≡ t × n. (5.2)

In terms of the unit basis vectors in cylindrical coordinates, er, eθ and ez, and intro-
duction of:

β ≡
(

1 +
(ar

l

)2
)−1/2

, (5.3)

these expressions can be written as:

t = β
(

ez +
ar
l

eθ
)

, n = −er, b = β
(ar

l
ez − eθ

)

. (5.4)

To introduce the concept of helical symmetry, we use an orthogonal map ξ(x),
which defines helical coordinates ξ = (ξ, η, ζ)T :

ξ(x) = R
(az

l

)

x, R
(az

l

)

=
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l

)
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(
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0
0 0 1

























. (5.5)

The map ξ(x) is illustrated in Fig. 5.2. Helical curves in the x-frame reduce to straight
lines parallel to the ζ-axis in the ξ-frame. As a consequence, the helical vortex
filament, which is projected onto the (x, y)-plane as the unit circle, is projected onto
the (ξ, η)-plane as a single point. A function f (x) is called helical symmetric if it is
independent of ζ:

∂ f
∂ζ
= 0. (5.6)

Let the velocity field in the x-frame be denoted by u. In terms of cylindrical
coordinates related to the x-frame, (r, θ, z)T , the velocity components are ur, uθ, and
uz, respectively. Furthermore, let the velocity field in the ξ-frame be denoted by v. In
terms of cylindrical coordinates related to the ξ-frame, (r, φ, ζ)T , with φ = θ − za/l,
the velocity components are vr, vφ, and vζ , respectively. The following relations are
valid [30]:

vr = ur, vφ = uθ −
ar
l

uz, vζ = uz. (5.7)

For a helical vortex filament in free space, as well as for a helical vortex filament
enclosed by a concentric circular pipe, we have:

∂v
∂ζ
= 0, (5.8)

i.e., the velocity field v is helically symmetric [2], [46].
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F 5.2: Helical vortex filament in the x-frame and in the ξ-frame.

Because of helical symmetry, the flow field can be described by a stream function
Ψ(r, φ), and the velocities follow from the canonical equations:

vr =
1
r
∂Ψ

∂φ
, vφ = −

∂Ψ

∂r
. (5.9)

The stream function can be decomposed into three terms:

Ψ = Ψu + Ψw + Ψ∞, (5.10)

whereΨu accounts for the flow induced by a stationary helical vortex filament in free
space, Ψw accommodates a correction due to the presence of the pipe wall, and Ψ∞
accounts for the uniform axial flow.

The stream function Ψu can be obtained from the Biot-Savart law [30]:

Ψu =







































1
4π

(

r2 a2

l2

)

− ra2

πl2

∞
∑

m=1

I′m
(ma

l
r
)

K′m
(ma

l

)

cos mφ, r < 1,

1
4π

(

a2

l2
− ln r2

)

− ra2

πl2

∞
∑

m=1

I′m
(ma

l

)

K′m
(ma

l
r
)

cos mφ, r > 1.
(5.11)

Here, Im and Km, denote modified Bessel functions of the first and second kind,
respectively, and the prime represents differentiation with respect to the argument.

The stream function Ψw satisfies the boundary condition

1
r
∂Ψw

∂φ
= −1

r
∂Ψu

∂φ
for r = R/a. (5.12)
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Although an expression for Ψw was obtained by Okulov [69] by formally solving
a partial differential equation in r and φ subject to the condition (5.12), we present
a different approach based on the observation that Ψw corresponds to a continuous
vortex disribution Γ′w on the pipe wall. Because of helical symmetry, Γ′w is a periodic
function of φ, independent of ζ, which can be expressed as a Fourier series:

Γ′w(φ′) =
∞
∑

k=1

[

ak cos(kφ′) + bk sin(kφ′)
]

. (5.13)

The term a0 has been omitted, since it only generates a uniform axial flow inside the
circular pipe. The flow field induced follows from the Biot-Savart law, and can be
calculated using Hardin’s solution method (for r < 1):

Ψw =

2π
∫

0

r2Γ′w(φ′)
a2

4πl2
dφ′ − (5.14)

−
2π

∫

0

rΓ′w(φ′)
aR
πl2

∞
∑

m=1

I′m(mra/l)K′m(mR/l) cos(m(φ − φ′))dφ′. (5.15)

With
cos

(

m(φ − φ′)) = cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′),

and the standard integrals

2π
∫

0

cos(kφ′) cos(mφ′)dφ′ = δkmπ, k,m ≥ 1,

2π
∫

0

sin(kφ′) sin(mφ′)dφ′ = δkmπ, k,m ≥ 1,

the following expression is obtained:

Ψw =
a0r2

4
a2

l2

− raR
l2

∞
∑

m=1

amI′m(mra/l)K′m(mR/l) cos(mφ)

− raR
l2

∞
∑

m=1

bmI′m(mra/l)K′m(mR/l) sin(mφ). (5.16)
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Substitution of Eq. (5.16) and Eq. (5.11) into Eq. (5.12) yields:

am = − a
πR

I′m(ma/l)
I′m(mR/l)

, m ≥ 1,

bm = 0, ∀ m.

and the resulting expression for Ψw is:

Ψw =
ra2

πl2

∞
∑

m=1

I′m(mar/l)I′m(ma/l)
K′m(mR/l)
I′m(mR/l)

cos(mφ). (5.17)

The stream function Ψ∞ is computed by requiring that the helical vortex filament
be stationary. Due to its curvature, the helical vortex filament induces a velocity onto
itself in the binormal direction. It is well-known that the magnitude of this velocity is
infinite for an infinitely thin vortex filament [7], [49], [66], [84]. For a vortex with a
finite core radius ε, however, an approximation for the self-induced velocity U s,u has
been derived by Da Rios [85] for a helical vortex with pitch l:

Us,u =
1

4π(1 + a2/l2)
ln

(1 + l2/a2

ε/a

)

b, (5.18)

which is valid for small core radii, i.e. ε/a � (1 + (l/a)2). In addition to the self-
induced motion, the vortex filament moves under the influence of the wall vorticity:

Us,w = β

(

∂Ψw

∂r

)

b. (5.19)

Substitution of Eq. (5.17) into Eq. (5.19) yields

Us,w =
a
√

1 + a2/l2

πl

∞
∑

m=1

mIm(ma/l)I′m(ma/l)
K′m(mR/l)
I′m(mR/l)

b. (5.20)

Since the product Im(ma/l)I′m(ma/l) < 0, the wall-induced velocity is directed oppo-
site to the self-induced velocity of the helical vortex filament. To obtain a stationary
filament, the sum of the wall-induced velocity and the self-induced velocity must be
compensated for by a uniform axial velocity U∞, such that:

(U∞a
Γ

ez + Us,u + Us,w

)

· b = 0. (5.21)

Therefore,

U∞a
Γ

= −1
π

a
l

(

1 +
a2

l2

)















1
4
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(
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)

+
l
a

∞
∑
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mIm

(ma
l

) K′m
(

mR
l

)

I′m
(

mR
l

) I′m
(ma

l

)

















, (5.22)
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which defines a relation between the dimensionless parameters U∞a/Γ, l/a, R/a and
ε/a. It is noted that when U∞a/Γ > 0, wall-induced velocity dominates over self-
induced velocity, and when U∞a/Γ < 0, self-induced velocity dominates over wall-
induced velocity.

Finally, the corresponding stream function Ψ∞ is:

Ψ∞ =
r2

2

(a
l

)(U∞a
Γ

)

, (5.23)

and the composite stream function Ψ becomes:

Ψ =







































r2a2

4πl2
+

r2a
2l

(U∞a
Γ

)

− ra2

πl2

∞
∑

m=1

I′m(mra/l)Z′m(ma/l) cos mφ, r < 1,

a2

4πl2
− 1

4π
ln r2 +

r2a
2l

(U∞a
Γ

)

− ra2

πl2

∞
∑

m=1

I′m(ma/l)Z′m(mra/l) cos mφ, r > 1,

with Zm defined as:

Zm(mx/l) ≡ Km(mx/l) − K′m(mR/l)
I′m(mR/l)

Im(mx/l). (5.24)

It is noted that, in the limit of R/a → ∞, the function Zm reduces to Km, so that the
free space formulation Eq. (5.11) is retrieved.

The velocity components (ur, uθ, uz)T can be retrieved from Eq. (5.24) by using the
expressions for the vorticity ω = ∇ × u. Since ω · n = 0 and ω · b = 0 everywhere in
the flow, it can be shown that:

uz + r
a
l
uθ = u0, (5.25)

where u0 is a constant. By means of Eq. (5.7) and Eq. (5.25), we can express the three
components of u in terms of vr, vφ and u0:

ur = vr, uθ = β2
(

vφ + r
a
l

u0
)

, uz = β
2
(

u0 − r
a
l

vφ
)

. (5.26)

The value of u0 can be determined by noting that ω · t = 0 everywhere except on the
vortex filament:

ω · t = 2β5u0a
l
− β

[ 1
r2

∂2Ψ

∂φ2 +
1
r
∂

∂r

(

rβ2 ∂Ψ

∂r

)

]

= 0, ∀ (r, φ) , (1, 0), (5.27)

which leads to:
u0 =

a
2πl
+

U∞a
Γ
. (5.28)
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As a result, the velocity components (ur, uθ, uz)T become:

ur =
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∞
∑
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∞
∑
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(5.29)

uθ =
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(5.30)

uz =
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Γ
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a
2πl
− a2

πl2

∞
∑
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(ma
l

r
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)

cos mφ, r < 1,

U∞a
Γ
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πl2

∞
∑
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mI′m
(ma

l

)

Zm

(ma
l

r
)

cos mφ, 1 < r <
R
a
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(5.31)

Eq. (5.29)-Eq. (5.31) are identical to the results obtained by Alekseenko et al. [2].

5.2.2 Particle motion

In many applications, such as gas-liquid separators, the particle-laden flow is dilute,
and one-way coupling is an adequate approximation. The particles are assumed to be
small, spherical, and to have a much higher mass density than the carrier fluid. In the
present chapter, gravity is neglected in order to isolate the effect of particle inertia,
i.e. Fr → ∞, so that the dimensionless equations of motion for the particles, Eq.
(2.5), reduce to:

dxp

dt
= up,

dup

dt
=

1
St

(

u − up
)

, (5.32)

where xp and up denote the position and the velocity of the particle, respectively. The
Stokes number St is the ratio between the particle relaxation time τp and a typical
timescale of the flow. In the present chapter, we define the Stokes number as:

St ≡
τpΓ

a2 . (5.33)

Transormation of Eq. (5.32) to the ξ-frame gives

dξp

dt
= vp,

dvp

dt
=

1
St

(

v − vp
) −Ωp × (Ωp × ξp) − 2Ωp × vp − Ω̇p × ξp, (5.34)

whereΩp is defined as the rotation rate due to the translation of the particle along the
z-axis:

Ωp =
(

0, 0,Ωp
)T
, Ωp =

a
l

vζ,p. (5.35)
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The three additional terms on the right-hand side of Eq. (5.34) represent acceleration
terms due to the coordinate transformation: the centrifugal acceleration, the Coriolis
acceleration, and the time-change of the rotation rate.

5.2.3 Numerical approach

The equations of motion for heavy particles, Eqs. (5.32), are solved numerically by
using a 4-th order Runge-Kutta scheme. A particle trajectory is calculated for a series
of decreasing values of the time step, where each next value is half of the previous
value. When the differences between two subsequent trajectories are below a certain
preset level, the last obtained solution is considered sufficiently accurate. For each
particle, both its initial position and its initial velocity are required. The initial velociy
of a particle is taken equal to the local velocity of the carrier flow at the initial position
of the particle. The pipe wall is modelled as an absorbing wall; particles that reach
the wall stay there.

The velocity components of the carrier flow, which need to be calculated during
each time step in the Runge-Kutta scheme, are obtained from Eq. (5.29)-Eq. (5.31).
In the calculation procedure, the modified Bessel functions are evaluated using a
routine from Press et al. [78]. This routine is based on a system of four equations for
the unknown functions In(ẑ), I′n(ẑ), Kn(ẑ), and K′n(ẑ), for fixed n and ẑ. The algorithm
is not universally applicable: for |ẑ| � 1, for |ẑ| > 106 and for n > 100, different
algorithms have to be used.

Firstly, the argument ẑ in the modified Bessel functions becomes very small when
r ↓ 0, causing a problem in evaluating the term 1

r Im(mra/l) which appears in Eq.
(5.30). In order to avoid this, the following asymptotic expansion is used [1], [100]:

In(ẑ) '
( 1

2 ẑ
)n

n!
, for z� 1. (5.36)

In this way, the tangential velocity component on the z-axis becomes

lim
r↓0

uθ =
1

2π
Z′1(

a
l

) cosφ. (5.37)

For large orders (n � 1), the modified Bessel functions of the first kind and their
derivatives approach zero. On the other hand, the modified Bessel functions of the
second kind and their derivatives approach infinity. Their products, however, remain
finite. These products have been calculated using an asymptotic expansion, derived
from theory of differential equations with a large parameter [70].

Finally, for large arguments (|ẑ| → ∞), an asymptotic expansion has been imple-
mented, based on theory for differential equations with an irregular singularity [70].

As was stated by Hardin [30], the series in Eq. (5.29) to Eq. (5.31) converge for all
φ and r , 1. For r = 1, the series do not converge, and for r ' 1 the convergence
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is very slow. Therefore, the series cannot be used if a particle is within a cylindrical
shell with inner radius r− = 1− δ and outer radius r+ = 1+ δ, with δ a small number,
here taken equal to 0.005. Inside this shell, a linear interpolation is applied:

f (r, φ) =
(

r+ − r
)

f (r−, φ) +
(

r − r−
)

f (r+, φ)
r+ − r−

, (5.38)

for any function f (r, φ).

5.3 Flow field topologies

We present a classification of the flow field topologies as determined by the dimen-
sionless groups R/a, l/a and U∞a/Γ. The limiting case of R/a → ∞ has been de-
scribed by Mezić et al. [62]. The flow field topologies are distinguished by the
presence, character and location of stagnation points ξ0, i.e., points of zero velocity
in the ξ-frame:

vr(ξ0) =
1
r
∂Ψ

∂φ
= 0, vφ(ξ0) = −∂Ψ

∂r
= 0. (5.39)

The character of a stagnation point is fully determined by the local value of the Hes-
sianH , defined as:

H ≡
(

∂2Ψ

∂ξ2

)(

∂2Ψ

∂η2

)

−
(

∂2Ψ

∂ξ∂η

)2
=

=
1
r2

[

(

∂2Ψ

∂r2

)(

∂2Ψ

∂φ2

)

+ r
(

∂Ψ

∂r

)(

∂2Ψ

∂r2

)

+
∂

∂r

(1
r

(

∂Ψ

∂φ

)2)

−
(

∂2Ψ

∂r∂φ

)2]

. (5.40)

LetH0 ≡ H(ξ0), then we have the following classification:

H0

{

> 0 → elliptic point, extreme value of Ψ
< 0 → hyperbolic point, saddle point of Ψ

(5.41)

Due to symmetry, stagnation points only exist on the line η = 0 and on the circle
r ≡

√

ξ2 + η2 = R/a. On these curves vr ≡ 0, and the existence of stagnation points
is completely determined by the condition vφ = 0. Since ∂vr/∂φ = 0 for r = R/a,
critical points on the pipe wall are hyperbolic points. On the ξ-axis, on the other
hand, critical points can be either elliptic, hyperbolic or shear points.

The presence of stagnation points is examined here for a wide range of values for
the dimensionless parameters: −5 ≤ U∞a/Γ ≤ 5 (step size of 0.05), 0 < l/a ≤ 5 (step
size of 0.05), and R/a= 1.05, 1.1, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and∞, respectively.
As a result, seven different topologies have been found, summarized in Table 5.1, and
examples of each topology are shown in Fig. 5.3.

When R/a → ∞, there is no wall-induced velocity, so that U∞a/Γ is negative.
In this case, only topologies I, II and III have been found, see Fig. 5.4. In the same
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F 5.3: Examples of different topologies in a helical vortex flow. a) Topology
I; R/a = 2.0; l/a = 1.0; U∞a/Γ = −0.5. b) Topology II; R/a = 2.0; l/a =
1.0; U∞a/Γ = −1.0. c) Topology III; R/a = 2.0; l/a = 0.25; U∞a/Γ = −0.25.
d) Topology IV; R/a = 2.0; l/a = 1.0; U∞a/Γ = 0.5.
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F 5.3 (): Examples of different topologies in a helical vortex flow.
e) Topology V; R/a = 2.0; l/a = 1.0; U∞a/Γ = 0.1. f) Topology VI;
R/a = 2.0; l/a = 0.5; U∞a/Γ = −0.03. g) Topology VII;
R/a = 2.0; l/a = 0.01; U∞a/Γ = 0.0005.
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Topology # at Type and location # at
ξ-axis of points at the ξ-axis pipe wall

I 0 - 0
II 2 0 < ξE < ξH < 1 0
III 2 −R/a < ξH < ξE < 0 0
IV 2 −R/a < ξE < 0 ; 1 < ξH < R/a 0
V 1 0 < ξE < R/a 2
VI 3 −R/a < ξE,1 < ξH < ξE,2 < 0 2
VII 4 −R/a < ξS ,1 < ξH < ξE < 0 ; 1 < ξS ,2 < R/a 0

T 5.1: Classification of topologies in bounded space; ξE is the location of an
elliptic point, ξH is the location of a hyperbolic point and ξS is the location of a
shear point.

figure, we also show iso-lines of the dimensionless vortex core thickness, ε/a, which
is uniquely determined by the values of U∞a/Γ, l/a and R/a. The result agrees with
the work of Mezic et al. [62], who used different dimensionless parameters:

a/l, and γ ≡ −a

πl
√

1 + a2/l2

(U∞a
Γ

)

.

Topology I is the dominant topology as the pitch l/a increases, whereas topology
II occurs for small pitches and moderate vortex core thicknesses. When l/a > 1,
topology II still exists, but then it is restricted to extremely small values of the vortex
core ε/a. Finally, the occurence of topology III is limited by the (l/a)-axis and the
line −U∞l/Γ = constant [62].

In the wall-bounded case, topologies IV, V, VI and VII exist in addition to topolo-
gies I, II and III. Topologies IV and V both contain one elliptic stagnation point on the
negative ξ-axis, and they occur for a wide range of values for l/a, U∞a/Γ, and R/a.
Topology VI exists in a very narrow band in parameter space only and is therefore
not visible in Fig. 5.5. It includes two counterrotating elliptic islands on the negative
ξ-axis. Finally, topology VII occurs for very small pitches only (l/a < 0.1), and is
characterized by an almost circular line where the velocity is zero; such a stagnation
line corresponds to a shear flow.

The topologies II to VII are characterized by the presence of one or two elliptic
stagnation points. In topology II the elliptic stagnation point is always located on the
positive ξ-axis, and the flow field around it is corotating with the vortex. In contrast,
in topologies III to VII the elliptic stagnation points are all located on the negative
ξ-axis, and the flow field around them is counterrotating with the vortex.

In the limiting case of l/a→ ∞, topology I occurs in the unbounded case. The re-
sulting flow field is similar to the one induced by a rectilinear vortex filament. For the
wall-bounded case, topology V occurs when the helix pitch approaches infinity. This
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F 5.4: Flow field topologies as a function of l/a and U∞a/Γ in unbounded space
(R/a→ ∞). Corresponding isolines of the dimensionless core radius ε/a are shown,
too; dashed: ε/a = 10−1, dash-dotted: ε/a = 10−2, dotted: ε/a = 10−3.

result is in agreement with the two-dimensional approximation of the helical vortex
flow by a point vortex on a disk, as studied in Chapter 3. In the two-dimensional case,
the self-induced velocity is defined to be zero, so that U∞a/Γ is related explicitly to
l/a and R/a:

(U∞a
Γ

)

2D
=

1
2π

(

R2/a2 − 1
)

( l
a

)

. (5.42)

The influence of the torsion of the helical vortex filament on the flow field in
topology V can be assessed by comparison with the point vortex model presented in
Chapter 3. We determine the position of the elliptic stagnation point in the left half-
plane and the position of the two hyperbolic stagnation points on the pipe wall, and
compare these positions to the 2D-approximation of the flow field. The calculation is
repeated for a wide range of values of the helix pitch l/a, for the case the pipe radius
is taken constant at R/a = 2.0. The axial velocity U∞a/Γ is then obtained from Eq.
(5.42). We define two errors as:

Error H = ‖ξH,2D − ξH,3D‖,
Error E = ‖ξE,2D − ξE,3D‖,

The results are presented in Fig. 5.6, showing that the differences between the full
3D problem and its 2D approximation vanish as l/a → ∞. The difference is only
appreciable for l/a ≤ 10.
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F 5.5: Flow field topologies as a function of l/a and U∞a/Γ in bounded space
(R/a = 2.0). Corresponding isolines of the dimensionless core radius ε/a are shown,
too; dashed: ε/a = 10−1, dash-dotted: ε/a = 10−2, dotted: ε/a = 10−3.

5.4 Attraction trajectories

In this section we consider the motion of heavy particles in the flow fields presented
in the previous section. In Fig. 5.7, the positions in the (ξ, η)-frame of 805 particles
are plotted in the course of time, for a typical example of topology V; the particles
are uniformly distributed at the start of the simulation. Some particles are quickly
expelled from the circular domain. Most other particles, however, are approaching
an attraction point. The attraction point in the (ξ, η)-frame corresponds to a helical
attraction trajectory in the x-frame. This is illustrated by Fig. 5.8 where the particle
positions in physical space are plotted. Clearly, most particles approach a helical
trajectory which is more or less in antiphase with the vortex filament.

In Fig. 5.9, we show the positions of initially uniformly distributed heavy particles
after 100 dimensionless time units for topologies I-IV. Accumulation of particles in
the center of the domain is observed in all topologies except for topology I.

In the remainder of this section we analyze this accumulation of particles. First,
it is noted that a heavy particle can only be trapped in an attraction point if two
conditions are met:

- a fixed point must exist, and

- the fixed point must be stable.
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F 5.6: Position of stagnation points in helical vortex flow field, compared to the
2D approximation, as a function of the helix pitch l/a; R/a = 2.

These two conditions are investigated separately.

5.4.1 Fixed points

Let (ξ∗, η∗) denote a fixed point in the (ξ, η)-frame. Therefore, for a particle located
at the fixed point the following relations hold:

ξp = ξ
∗, ηp = η

∗, vξ,p = 0, vη,p = 0, vζ,p = v∗ζ , (5.43)

where (ξp, ηp, ζp) denotes the position of the particle in the ξ-frame, and (vξ,p, vη,p, vζ,p)
denotes its velocity. Substitution of the relations Eq. (5.43) into the equation of mo-
tion, viz. Eq. (5.34), gives:

dξp

dt
= 0,

dηp

dt
= 0,

dζp

dt
= vζ(ξ∗, η∗),
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F 5.7: Dots: positions of 805 heavy particles around helical vortex filament at
four instants in time, in the curvilinear frame; l/a = 1.0,U∞a/Γ = 0.1,R/a = 2.0
(Topology V); St = 2.0: a) t = 0, b) t = 5, c) t = 25, d) t = 100. Streamlines of
passive tracers are plotted as thin solid lines.

dvξ,p
dt
=

1
St

(

vξ(ξ∗, η∗)
)

+ Ω∗2ξ∗ = 0,

dvη,p
dt
=

1
St

(

vη(ξ∗, η∗)
)

+ Ω∗2η∗ = 0,

dvζ,p
dt
= 0, (5.44)

where Ω∗ ≡ (a/l)vζ(ξ∗, η∗). This reveals that the attraction trajectory corresponds to
a point in velocity space, and to a straight line parallel to the ζ-axis in position space.

Inspection of Eq. (5.44) shows that the centrifugal force and the Stokes drag on a
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F 5.8: Dots: positions in physical space of 805 heavy particles around helical
vortex filament at four instants in time (top view); l/a = 1.0,U∞a/Γ = 0.1,R/a = 2.0
(Topology V); St = 2.0: a) t = 0, b) t = 5, c) t = 25, d) t = 100. The solid line
denotes the position of the helical vortex filament.

heavy particle are exactly balanced in a fixed point. Since the centrifugal force is
always directed outward (with respect to the origin), we see that the velocity of the
carrier flow in the fixed point must be directed in the radial direction. Hence, vφ = 0
and vr < 0. Since it can be derived from Eq. (5.24) that vr = −(1/r)∂Ψ/∂φ < 0 if and
only if η > 0, fixed points can only occur in the upper half of the (ξ, η)-plane.

After rewriting the fourth and the fifth relation of Eq. (5.44) as:

vξ(ξ∗, η∗) = −StΩ∗2ξ∗,

vη(ξ∗, η∗) = −StΩ∗2η∗, (5.45)

we can conclude that the fixed point for St ↓ 0 is located near a stagnation point in
the carrier flow. A fixed point for St → ∞, on the other hand, satisfies |ξ∗| ↓ 0. In
Fig. 5.10, the location of the fixed points is plotted for a range of different Stokes
numbers, for topologies II and III in the unbounded case. Clearly, the fixed point for
St ↓ 0 is the elliptic stagnation point itself, whereas the fixed point for St→ ∞ is the
origin.
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F 5.9: Dots: positions of 805 initially uniformly distributed particles with St =
0.5 after dimensionless time t = 100. a) Topology I: l/a = 1.0; U∞a/Γ = −0.5; R/a =
2.0. b) Topology II: l/a = 1.0; U∞a/Γ = −1.0; R/a = 2.0. c) Topology III: l/a =
0.25; U∞a/Γ = −0.25; R/a = 2.0. d) Topology IV: l/a = 1.0; U∞a/Γ = 0.5; R/a =
2.0.
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topology III: l/a = 0.25; U∞a/Γ = −0.5; R/a→ ∞.

5.4.2 Stability of fixed points

In the present section we investigate the stability of the fixed-point trajectories in or-
der to determine whether they are attraction trajectories. The physical reason for par-
ticle attraction is the Coriolis force, which in the ξ-frame is directed perpendicularly
to the particle trajectory. In the case when ξE < 0, the flow around the elliptic stag-
nation point is counterrotating with respect to the vortex, and Ω = (a/l)vζ(ξE , 0) > 0.
As a result, the Coriolis force is directed to the center of the elliptic island. On the
other hand, when ξE > 0, the flow around the elliptic stagnation point is corotating
with the vortex. The velocity component vζ , however, is negative for ξE > 0, so that
Ω < 0. Hence, also in this case the Coriolis force is directed to the center of an
elliptic island. Therefore there is no qualitative distinction in particle attraction for
ξE > 0 (such as in topology II), compared to situations for which ξE < 0 (such as in
topology III-VIII).

We carry out a linear stability analysis in order to investigate the stability of the
attraction points. The five equations for ξp, ηp, vξ,p, vη,p and vζ,p in Eq. (5.34) are of
the form:

dχ
dt
= f (χ), (5.46)

with χ ≡ [

ξp, ηp, vξ,p, vη,p, vζ,p
]T . Linearization of these equations around a fixed
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point χ∗ leads to:

dχi

dt
= fi(χ∗) +

(

χ j − χ∗j
) ∂ fi
∂χ j

∣

∣

∣

∣

∣

χ∗
+ O(|χ − χ∗|2). (5.47)

In the fixed point, f (χ∗) = 0, which reduces Eq. (5.47) to:

dχi

dt
=

d(χi − χ∗i )
dt

=
(

χ j − χ∗j
) ∂ fi
∂χ j

∣

∣

∣

∣

∣

χ∗
+ O(|χ − χ∗|2). (5.48)

If the real parts of all of the eigenvalues of the matrix ∂ fi/∂χ j are smaller than zero,
any sufficiently small perturbation in χ with respect to χ∗ will be damped, so that
|χ − χ∗| → 0 as t → ∞. Based on Eq. (5.34), the matrix Mi j ≡ ∂ fi/∂χ j is:

M =























































0 0 St−1 ∂vξ
∂ξ
+ Ωp

2 + ηp
∂Ω̇p
∂ξ

St−1 ∂vη
∂ξ
− Ω̇p − ξp

∂Ω̇p
∂ξ

St−1 ∂vζ
∂ξ

0 0 St−1 ∂vξ
∂η
+ Ω̇p + ηp

∂Ω̇p
∂η

St−1 ∂vη
∂η
+ Ωp

2 + ξp
∂Ω̇p
∂η

St−1 ∂vζ
∂η

1 0 −St−1 −2Ωp 0
0 1 2Ωp −St−1 0

0 0 ηp
∂Ω̇p
∂vζ,p
+ 2

(

Ωpξp + vη,p
) ∂Ωp
∂vζ,p

−ξp
∂Ω̇p
∂vζ,p
+ 2

(

Ωpηp − vξ,p
) ∂Ωp
∂vζ,p

−St−1























































T

.

(5.49)
Expressing Ωp and Ω̇p in terms of the independent variables, and evaluating the ma-
trix at χ∗ leads to:

M =



















































0 0 Ω∗2 + St−1Ψξη + (η∗/St)(a/l) ∂vζ
∂ξ
−St−1Ψξξ − (ξ∗/St)(a/l) ∂vζ

∂ξ
St−1 ∂vζ

∂ξ

0 0 St−1Ψηη + (η∗/St)(a/l) ∂vζ
∂η
Ω∗2 − St−1Ψξη − (ξ∗/St)(a/l) ∂vζ

∂η
St−1 ∂vζ

∂η

1 0 −St−1 −2(a/l)v∗
ζ

0
0 1 2(a/l)v∗

ζ
−St−1 0

0 0 −(η∗/St)(a/l) + 2ξ∗(a2/l2)v∗
ζ

(ξ∗/St)(a/l) + 2η∗(a2/l2)v∗
ζ

−St−1



















































T

,

(5.50)
where v∗

ζ
≡ vζ(ξ∗, η∗).

Limit of infinite pitch

In the limit of l/a → ∞, Ω∗ ≡ (a/l)v∗
ζ

remains finite, and the matrix given by Eq.
(5.50) reduces to:

M
∣

∣

∣

∣

∣

l/a�1
=











































0 0 1 0 0
0 0 0 1 0

St−1Ψξη + Ω
∗2 St−1Ψηη −St−1 2Ω∗ 0

−St−1Ψξξ −St−1Ψξη + Ω
∗2 −2Ω∗ −St−1 0

0 0 0 0 −St−1











































. (5.51)
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The characteristic polynomial for the eigenvalues λ is:

λ5 + 4λ4 + (3 + 2St2Ω∗2)λ3 + (1 + 4St2Ω∗2)λ2+

+(St4Ω∗4 + 2St2Ω∗2 + St2H∗)λ + St4Ω∗4 + St2H∗ = 0, (5.52)

where H∗ is the Hessian defined in Eq. (5.40), evaluated in the fixed point. The
solution for λ is:

λ1,2 =
−1
2St
+

1
2St

√

1 − 4St2Ω∗2 ± i4St
√
H∗,

λ3,4 =
−1
2St
− 1

2St

√

1 − 4St2Ω∗2 ± i4St
√
H∗,

λ5 =
−1
St
.

For small Stokes numbers, the fixed point is located close to the elliptic stagnation
point in the ξ-frame, where the Hessian satisfies 0 < H ∗ < Ω∗2. The eigenvalues can
then be approximated by:

λ1,2 ' −St
(

Ω∗2 −H∗) ± i
√
H∗ + O(St2),

λ3,4 ' − 1
St
+ St

(

Ω∗2 −H∗) ± i
√
H∗ + O(St2),

λ5 = − 1
St
.

It is observed that the real parts of all eigenvalues are negative, provided the Stokes
number is sufficiently small. Hence, the fixed point is stable and it is an attraction
point. The real parts of the largest eigenvalues, λ1 and λ2, give an indication of the
attraction rate. Since they are linear in St, particle trapping occurs on a larger time
scale when the Stokes number is smaller.

The above analysis is especially relevant for the wall-bounded case (R/a < ∞),
because topology V, containing one elliptic stagnation point in the ξ-frame, arises
naturally. In the unbounded case (R/a→ ∞), however, the flow field for infinite pitch
corresponds to topology I. In this topology, there are no elliptic stagnation points in
the ξ-frame, and therefore a stable attraction trajectory of heavy particles does not
exist.

Limit of zero pitch

For very small pitches (l/a ↓ 0), we can approximate the velocity component vζ = uz

by Eq. (5.31). We note that elliptic points can not exist for r > 1 when l/a ↓ 0. The
product Im(mra/l)Z′m(ma/l) reduces to:

Im(mra/l)Z′m(ma/l) ' exp[mra/l]
√

2πmra/l

[

π exp[−mra/l]
√

2πma/l
− π

2 exp[mra/l − 2mR/l]
√

2πma/l

]

,

(5.53)
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in which expansions for large arguments have been used [1]. When l/a ↓ 0, the right
hand side of Eq. (5.53) vanishes, leading to

vζ =
U∞a
Γ
+ O(l/a)k, with k ≥ 1. (5.54)

In addition, we know that in the limit l/a ↓ 0, the velocity components in the ξ- and
η-directions tend to zero inside the helix. Thus, the only possible fixed point in the
rotating frame is the origin, where Ψξξ = Ψηη = Ω and Ψξη = 0. Hence, the Hessian
H → Ω2. The matrix for the separation vector reduces again to the one in Eq. (5.51).
The real parts of the eigenvalues of this matrix are −St−1 (with multiplicity 3) and 0
(with multiplicity 2), respectively, indicating that the fixed point is not an attraction
point. This result is perfectly in agreement with the physical intuition that particles do
not accumulate in a uniform axial jet induced by a helical vortex filament with l/a�
1, which is similar to the magnetic field induced by a spool. In conclusion, when
l/a ↓ 0, particle accumulation does not occur; nevertheless, heavy particles located
inside the helix, do not leave this region. In this sense, a helical vortex filament can
transport heavy particles.

Finite pitch

For finite values of l/a, our numerical results show that the helical attraction tra-
jectory of heavy particles exists in all of the topologies II-VII. Particles are attracted
when the Stokes number is below a critical value, which in turn depends on the values
of l/a, R/a and U∞a/Γ.

The attraction rate can be quantified by the first Lyapunov exponent Λ1, defined
as:

Λ1 ≡ lim
t→∞

1
t

ln
||ξ1(t) − ξ2(t)||
||ξ1(0) − ξ2(0)|| , (5.55)

where ξ1(t) and ξ2(t) denote the positions of two particles, respectively, which are
approaching the attraction point. When the Lyapunov exponent has a negative value,
the particle trajectories converge. The convergence rate is proportional to the absolute
value of the Lyapunov exponent, which depends on the dimensionless parameters.

In order to determine the dependency on the pitch, the Lyapunov exponent is cal-
culated for a wide range of values of l/a. The result is plotted in Fig. 5.11, for two
different values of U∞a/Γ with R/a = 2.0 and St = 1.0. Apparently, the Lyapunov
exponent is approximately linear in (l/a)−1. Furthermore, the Lyapunov exponent is
proportional to the value of U∞a/Γ.

This result can be explained by the observation that, when the spatial variation in
vζ is moderate, the angular velocity of the particle in the ξ-frame,Ω, is approximately
proportional to a/l and to U∞a/Γ. Therefore, if either a/l or U∞a/Γ increases, the
Coriolis force increases, and particle accumulation is enhanced.
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F 5.11: The Lyapunov exponentΛ1 as a function of the pitch l/a, for two different
values of U∞a/Γ; R/a = 2.0 and St = 1.0.

An interpretation in terms of the vortex core thickness ε/a can be given as well.
From Fig. 5.5, it is clear that a lower value of ε/a corresponds to a lower value of
U∞a/Γ at equal l/a, or to a higher value of l/a at equal U∞a/Γ. Fig. 5.11 then shows
that a lower value of ε/a results in a lower particle accumulation rate.

To address the dependency of the Lyapunov exponent on the particle Stokes num-
ber, we calculate Λ1 for for a range of Stokes numbers varying between 0.1 and 1.1,
with l/a = 5.0, U∞a/Γ = 0.2 and R/a = 2.0 (Topology V). The result is given in
Fig. 5.12. It is observed that the Lyapunov exponent is approximately linear in the
Stokes number in this case. This is in accordance with Eq. (5.52), valid for l/a � 1,
which reveals that the real part of the largest eigenvalues is approximately linear in
the Stokes number, as long as the Stokes number is small. In the limit of St ↓ 0 (pas-
sive tracer limit) there can be no accumulation due to continuity, so Λ1 approaches
zero. Hence, the attraction rate is proportional to the Stokes number.

It should be noted that in the limit St→ ∞, the particle becomes insensitive to the
carrier flow. Then the Lyapunov exponent should go to zero. The Stokes numbers in
Fig. 5.12, however, are not large enough to visualize this.
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F 5.12: The Lyapunov exponent Λ1 as a function of the Stokes number St; l/a =
5.0, U∞a/Γ = 0.2 and R/a = 2.0.

5.4.3 Particle trapping efficiency

The amount of particle accumulation, as function of time, can be quantified by the
particle trapping efficiency P, defined as:

P ≡ number of particles with r < R/a for t → ∞
total number of initially uniformly distributed particles

. (5.56)

The particle trapping efficiency at t = 1000 is plotted in Fig. 5.13 as a function of the
Stokes number, for typical examples of topology II, III, IV and V.

Topology I is left out of Fig. 5.13, because in this topology there is no particle ac-
cumulation at all. In topology II, P has a maximum around St = O(1). For topologies
III, IV an V, P is close to one when the Stokes number is small, and close to zero
when the Stokes number is large. This reflects the decreasing influence of the carrier
flow on particles for increasing Stokes number.

Finally, we investigate the correlation between the particle trapping efficiency and
the size of the area around an elliptic stagnation point in the (ξ, η)-plane, circum-
scribed by a separatrix of the stream function. The (normalized) elliptic area size is
defined as:

AE ≡
1

π(R/a)2

R/a
∫

0

2π
∫

0

H(Ψsep −Ψ(r, φ))rdφdr (5.57)
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F 5.13: Particle trapping efficiency P as a function of St for topology II (R/a =
2.0; l/a = 1.0; U∞a/Γ = −1.0), topology III (R/a = 2.0; l/a = 0.25; U∞a/Γ =
−0.25), topology IV (R/a = 2.0; l/a = 1.0; U∞a/Γ = 0.50) and topology V (R/a =
2.0; l/a = 1.0; U∞a/Γ = 0.10).

where H(. . .) is the Heaviside function and Ψsep denotes the value of Ψ at the sepa-
ratrix, which is equal to the value of Ψ in the hyperbolic point on the separatrix. The
correlation between AE and P can be expressed by Error P, defined as:

Error P ≡ |P − AE | × 100%. (5.58)

The value of Error P is plotted as a function of the helix pitch and the axial flow
velocity in Fig. 5.14, for particles with St = 1.0, in bounded space with R/a = 2.0.
Clearly, the correlation between AE and P is very good over a wide range of flow
parameters. This indicates that the particle accumulation is closely related to the
flow field topology in a helical vortex flow.

5.5 Conclusions

In the present chapter, the motion of heavy particles near a helical vortex filament is
investigated both numerically and analytically. The numerical simulations are based
on a one-way coupling between the potential flow field and the particle equations of
motion. Only Stokes drag is taken into account in order to isolate the effect of inertia
of heavy particles on their distribution.
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F 5.14: Difference between particle trapping efficiency P and the elliptic area
size AE as a function of l/a and U∞a/Γ; St = 1.0 and R/a = 2.0.

The numerical results reveal that heavy particles may be attracted to a heliclly
shaped attraction trajectory. In a ξ-frame, this trajectory corresponds to an attraction
point. The physical reason for the particle trapping is that the Coriolis force drives
inertial particles to the center of an elliptic region of the stream function, where the
particles are trapped by a balance between the Stokes drag and the centrifugal force.

The stability of the attraction points is proven analytically for helices with large
pitch l/a � 1 in bounded space. Further analysis shows that heavy particles are
captured inside the helical vortex structure when the helix pitch is small, i.e. l/a �
1. For intermediate values of the helix pitch, the particle trapping phenomenon is
enhanced by the curvature and the torsion of the helical vortex, as is illustrated by the
numerically determined Lyapunov exponent.

The particle accumulation is closely related to the area of an elliptic region in the
stream function. These elliptic regions occur in six out of seven possible flow field
topologies of a flow induced by a helical vortex inside a circular pipe.
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The second part of this thesis is dedicated to the motion of heavy particles in turbulent
boundary layers. The flow over a flat plate is treated in Chapter 7, and the swirling
flow in a cylindrical pipe is considered in Chapter 8. In both configurations, the
turbulent flow field is modelled using a stochastic differential equation.

By means of an introduction to the subject, we present some general properties of
Stochastic Differential Equations (SDEs) in the present chapter. First, we describe
how probability density functions of stochastic processes can be determined. Then,
we introduce the SDE as a mathematical description of a Markov processes. Finally,
after having presented the generalized form of a multivariate SDE, we show a few
relevant and instructive examples of SDE applications.

6.1 Markov processes

A Stochastic Differential Equation is the result of a description for a Markov process.
A Markov process is a stochastic process which is only defined on discrete moments
in time; each next step depends on the previous step only. Consider the Markov
process q(t); the change of the process over a time interval h is called the increment
∆hq(t) and obeys by definition the following equality [77]:

∆hq(t) ≡ q(t + h) − q(t). (6.1)

It is important to note that h is positive and that the increment is defined forward in
time. A process can be considered as a sum of its increments, e.g. at time tN we have:

q(tN) = q(t0) + ∆t1−t0q(t0) + ∆t2−t1q(t1) + . . . + ∆tN−tN−1 q(tN−1). (6.2)

Just like any stochastic variable, the Markov process q(t) is defined by (i) a set of
possible values, and (ii) a probability distribution over this set [39]. Therefore, a
stochastic process is intrinsically related to probability density functions (PDFs).
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6.2 Probability density functions

Let the probability that a stochastic process q(t) has a value Q1 at time t1 be denoted
by f (Q1; t1). Similarly, the probability of the process having a value Q2 at time t2 and
a value Q1 at time t1 is f (Q2, t2; Q1, t1). The conditional probability density function
f1(Q2; t2

∣

∣

∣Q1, t1) is defined as the probability that the process q(t) has a value Q2 at
time t2, given the condition that its value at t1 is Q1. It is equal to:

f1(Q2; t2
∣

∣

∣Q1, t1) = f (Q2, t2; Q1, t1)/ f (Q1; t1). (6.3)

By definition, if q(t) is a Markov process then the conditional PDFs are:

fN−1(QN ; tN
∣

∣

∣QN−1, tN−1,QN−2, tN−2, . . . ,Q1, t1) = f1(QN ; tN
∣

∣

∣QN−1, tN−1). (6.4)

This means that the value of q(tN) does only depend on q(tN−1).
The probability of any process, Markovian or not, satisfies the following equation:

f1(Q3; t3
∣

∣

∣Q1, t1) =

∞
∫

−∞

f2(Q3; t3
∣

∣

∣Q2, t2,Q1, t1) f1(Q2; t2
∣

∣

∣Q1, t1)dQ2. (6.5)

For a Markov process, f2 can be replaced by f1 using Eq. (6.4):

f1(Q3; t3
∣

∣

∣Q1; t1) =

∞
∫

−∞

f1(Q3; t3
∣

∣

∣Q2, t2) f1(Q2; t2
∣

∣

∣Q1, t1)dQ2. (6.6)

This equation is called the Chapman-Kolmogorov equation [77].
Multiplying Eq. (6.6) by the PDF of the initial conditions f (Q1; t1) and integrating

over all Q1 results in an expression for f (Q3; t3), i.e. the probability that the stochastic
process has value Q3 at time t3:

f (Q3; t3) =

∞
∫

−∞

f1(Q3; t3
∣

∣

∣Q2, t2) f (Q2; t2)dQ2. (6.7)

Without loss of generality, we may replace t3 by t, t2 by t − h (with h > 0), Q3 by Q,
and Q2 by Q − ∆hQ in order to obtain:

f (Q; t) =

∞
∫

−∞

f1(Q; t
∣

∣

∣Q − ∆hQ, t − h) f (Q − ∆hQ; t − h)d∆hQ. (6.8)

By employing a Taylor expansion around Q, one obtains:

f (Q; t) =

∞
∫

−∞

∞
∑

n=0

(−∆hQ)n

n!
∂n

∂Qn
(

f1(Q + ∆hQ; t
∣

∣

∣Q, t − h) f (Q; t − h)
)

d∆hQ, (6.9)
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which is equal to:

f (Q; t) = f (Q; t− h)+

∞
∫

−∞

∞
∑

n=1

(−∆hQ)n

n!
∂n

∂Qn
(

f1(Q+∆hQ; t
∣

∣

∣Q, t− h) f (Q; t− h)
)

d∆hQ.

(6.10)
Dividing by h and taking the limit h ↓ 0 results in an equation for the time develop-
ment of f (Q; t), known as the Kramers-Moyal expansion [77]:

∂ f (Q; t)
∂t

=

∞
∑

n=1

(−1)n

n!
∂n

∂Qn

(

Bn(Q, t) f (Q; t)
)

, (6.11)

where Bn denote the infinitesimal parameters of the stochastic process, defined as:

Bn(Q, t) ≡ lim
h↓0

1
h

∞
∫

−∞

(

∆hQ
)n f1(Q + ∆hQ; t

∣

∣

∣Q, t − h)d∆hQ = lim
h↓0

1
h
〈[∆hq(t)]n

∣

∣

∣q(t) = Q〉.

(6.12)
It is observed that Bn stands for the n-th moment of the increment ∆hQ, divided by h,
in the limit that h ↓ 0.

6.3 Diffusion processes

There are qualitatively different kinds of Markov processes, which are distinguished
from each other by different Bn, thus by the behavior of their increments ∆hq(t) in
the limit that h tends to zero. A defining property of a diffusion process is that both
the drift coefficient,

a(Q, t) ≡ B1(Q, t), (6.13)

and the diffusion coefficient,

b2(Q, t) ≡ B2(Q, t), (6.14)

exist, and that the remaining infinitesimal parameters are zero:

Bn(Q, t) = 0, for n ≥ 3. (6.15)

If we insert the values of Bn for a diffusion process into Eq. (6.11), we obtain the
so-called Fokker-Planck equation:

∂ f (Q; t)
∂t

= − ∂
∂Q

(

a(Q, t) f (Q; t)
)

+
1
2
∂2

∂Q2

(

b2(Q, t) f (Q; t)
)

. (6.16)

Clearly, the PDF f (Q; t) changes due to advection by the drift term a(Q, t) and due to
diffusion by the term b2(Q, t).
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As an example, we now consider the Wiener process, denoted by W(t). This is the
most fundamental diffusion process from which all others can be derived [77]. W(t)
is defined for t ≥ 0 by the initial condition W(0) = 0 and by the specification of the
drift and diffusion coefficients,

a(Q, t) = 0, b2(Q, t) = 1.

We insert this into Eq. (6.16) in order to obtain the development in time of the PDF
of the Wiener process fW(Q; t):

∂ fW(Q; t)
∂t

=
1
2
∂2

∂Q2

(

fW(Q; t)
)

. (6.17)

Apparently, the PDF of the Wiener process satisfies the heat equation. From the
initial distribution fW(Q; 0) = δ(Q), with δ(. . .) the Dirac delta function, it follows
that fW(Q; t) is a normal distribution, with a mean of zero and a variance equal to t.

6.4 Formulation of stochastic differential equations

Since diffusion processes are not differentiable with respect to time, they can not
be described by ordinary differential equations. Instead, diffusion processes are de-
scribed by stochastic differential equations [39], [77]. It is common to formulate a
stochastic differential equation by using the infinitesimal increment of the process
q(t), defined as:

dq(t) ≡ q(t + dt) − q(t), (6.18)

where dt is a positive time interval. For the Wiener process, the infinitesimal incre-
ment is:

dW(t) ≡ W(t + dt) −W(t), (6.19)

Note that the probability of dW is normally distributed with mean zero and variance
dt.

Any diffusion process with parameters a[q(t), t] and b[q(t), t] can be described by
the following stochastic differential equation:

dq(t) = a[q(t), t]dt + b[q(t), t]dW(t). (6.20)

The stochastic differential equation Eq. (6.20) shows that the infinitesimal increment
of a diffusion process is Gaussian: i.e. the increment dq(t) has a normally distributed
probability with mean a[q(t), t]dt and variance {b[q(t), t]}2dt [77].
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6.5 Multi-variate stochastic differential equations

The theory presented for scalar-valued diffusion processes can be extended to vector-
valued processes as well. The multi-variate stochastic diffusion process q(t) satisfies
the following equation:

dqi = ai(q, t)dt + bi j(q, t)dW j, (6.21)

where ai and bi j are defined by:

ai(Q, t) = lim
h↓0

1
h
〈[∆hqi(t)]|q(t) = Q〉, (6.22)

Bi j(Q, t) = bikb jk = lim
h↓0

1
h
〈[∆hqi(t)∆hq j(t)]|q(t) = Q〉. (6.23)

The vector W denotes a vector-valued Wiener process; the increment dW is a joint
normal with zero mean and variance 〈dWidW j〉 = δi jdt.

The Fokker-Planck equation for the multivariate case is [39], [77]:

∂ f (Q; t)
∂t

= − ∂
∂Qi

(

ai(Q, t) f (Q; t)
)

+
1
2
∂2

∂Qi∂Q j

(

Bi j(Q, t) f (Q; t)
)

. (6.24)

6.6 Diffusion processes in turbulent flow

The stochastic differential equation, Eq. (6.21), can be used to calculate the position
and the velocity of passive tracers in a turbulent flow. Of course, the success of the
stochastic method depends on the definition of the random variables q(t), and on the
drift and diffusion coefficients. In the present section, we present a method to calcu-
late these drift and diffusion coefficients in such a way that the PDF corresponding
to the SDE, whose development is given by the Fokker-Planck equation, Eq. (6.24),
corresponds to the Eulerian PDF of the flow field. The Eulerian PDF of the flow field
denotes the probability of finding a passive tracer with a certain velocity on a certain
position, and should be known a priori. The link between the SDE and the Eulerian
PDF is generally referred to as the ‘well-mixedness condition’ [96].

In the previous section, it was shown that the development of the PDF of a stochas-
tic process is described by the Fokker-Planck equation Eq. (6.24), which can be deter-
mined directly when the drift and diffusion coefficients, ai and bi j, in Eq. (6.21) are
known. In the present section, we study the inverse problem: when the development
of the PDF is given, what should be the values of the drift and diffusion coefficients
in the SDE?

The remainder of this section is devoted to the choice of the random variables qi
and the drift and diffusion coefficients ai and bi j in view of relevant applications.
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6.6.1 One-dimensional dispersion in homogeneous turbulence

We study the horizontal dispersion of passive tracers in a stationary homogeneous
turbulent flow of an incompressible fluid. The position of a passive tracer is denoted
by x, and its velocity by u.

Let the Eulerian PDF of the velocity field be denoted by pE(u; x, t), i.e. the proba-
bility of finding a passive tracer with velocity u, given the position x and the time t.
If the turbulence is assumed to be Gaussian, pE(u; x, t) is given by:

pE(u; x, t) = pE(u) =
1

√
2πσ2

exp
[

− u2

2σ2

]

. (6.25)

This implies that the mean velocity of passive tracers is 0, and the mean r.m.s. veloc-
ity fluctuations are equal to σ.

The probability of finding a passive tracer at a position x with velocity u, given
the time t, f (u, x; t), can be obtained by multiplying pE with the number density of
passive tracers n(x; t):

f (u, x; t) = n(x; t)pE(u; x, t) (6.26)

It is noted that the number density of passive tracers is proportional to the mass den-
sity of the fluid: n(x; t) ∝ ρ(x, t). In the present research, we focus on incompressible
flows only, so that n(x; t) is a constant: n(x; t) = n0.

When the position x and the velocity u are chosen as random variables, the multi-
variate SDE Eq. (6.21) with q1 = x and q2 = u is formulated as follows:

dx = a1(u, x, t)dt + b11(u, x, t)dW1 + b12(u, x, t)dW2,

du = a2(u, x, t)dt + b21(u, x, t)dW1 + b22(u, x, t)dW2, (6.27)

Due to the kinematic condition dx = udt, it follows that a1 = u and b11 = b12 = 0.
Since Eq. (6.23) implies that Bi j = bikb jk is symmetric, bikb jk = bk jbki and nec-
essarily b21 = 0 as well. It is common [32],[96] to set b22 =

√

2σ2/τ, where τ
denotes some time scale. The coefficient a2 can be determined by employing the
Fokker-Planck equation Eq. (6.24) for the Stochastic Differential Equation, which in
this case reduces to:

∂ f (u, x; t)
∂t

= − ∂
∂x

(

u f (u, x; t)
) − ∂
∂u

(

a2 f (u, x; t)
)

+
σ2

τ

∂2

∂u2

(

f (u, x; t)
)

. (6.28)

In order to satisfy the well-mixedness condition, f (u, x; t) = n0 pE(u; x, t), so that we
obtain:

∂pE(u; x, t)
∂t

= − ∂
∂x

(

upE(u; x, t)
) − ∂
∂u

(

a2 pE(u; x, t)
)

+
σ2

τ

∂2

∂u2

(

pE(u; x, t)
)

. (6.29)



6.6. D     115

Inserting Eq. (6.25) into Eq. (6.29) yields:

0 =
a2 pEu
σ2 − pE

∂a2

∂u
+

pE

τ

( u2

σ2 − 1
)

. (6.30)

The solution for the drift coefficient a2 is then:

a2 = −
u
τ
, (6.31)

so that Eqs. (6.27) become:

dx = udt,

du = −u
τ

dt +

√

2σ2

τ
dW, (6.32)

The process u(t) is called the Ornstein-Uhlenbeck process. It is a stationary, Gaussian
and Markovian process. In fact, all other processes which have these three properties
can be derived from the Ornstein-Uhlenbeck process, as Doob’s theorem states [39].

6.6.2 Three-dimensional dispersion in homogeneous turbulence

We now consider a stationary homogeneous turbulent flow field in which the veloc-
ities in x,y and z-direction are given by u, v and w, respectively. The mean (time-
averaged) velocities are assumed to be zero everywhere, so that we have:

〈u〉 = 〈v〉 = 〈w〉 = 0, ∀ x, y, z. (6.33)

The variance of the velocity fluctuations is:

〈u2〉 = 〈v2〉 = 〈w2〉 = σ2, ∀ x, y, z. (6.34)

If the turbulence is assumed to be Gaussian, the Eulerian PDF of the flow field is
given by:

pE(u; x, t) = pE(u) =
1

(2πσ2)3/2 exp
[

−u · u
2σ2

]

. (6.35)

Now, we look for a Langrangian stochastic model describing the position x and
the velocity u, which corresponds exactly to Eq. (6.33), Eq. (6.34) and Eq. (6.35).
For this purpose, we introduce the following six random variables:

{q1, q2, q3, q4, q5, q6}T = {x, y, z, u, v,w}T .

In general form, the evolution of q is given by the stochastic differential equations Eq.
(6.21). The probability of q having value Q at time t is described by f (Q; t), whose
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evolution is given by Eq. (6.24). For 1 ≤ i ≤ 3, the drift and diffusion coefficients are
determined entirely by the kinematic condition dx = udt:

ai = qi+3 and bi j = 0, ∀ 1 ≤ i ≤ 3, ∀ j. (6.36)

The other coefficients can be determined by requiring that f (u, x; t) = n0 pE(u; x, t):

∂pE

∂t
= − ∂
∂qi

(

ai pE
)

+
1
2
∂2

∂qi∂q j

(

Bi j pE
)

. (6.37)

Inserting Eq. (6.35), and assuming that the velocity fluctuations in the three directions
are independent of each other, i.e. bi j(q, t) = δi jb, yields:

∂pE

∂t
= 0 =

6
∑

i=4

( pEaiqi

σ2 − pE
∂ai

∂qi
+

b2

2

(q2
i − σ2

σ4

)

pE

)

. (6.38)

Dividing by pE gives the following equation for ai and b:

6
∑

i=4

(

∂ai

∂qi
− aiqi

σ2

)

=

6
∑

i=4

(b2

2

(q2
i − σ2

σ4

)

)

. (6.39)

A solution to this equation is:

ai = −
b2qi

2σ2 , (6.40)

so that the SDE for the dispersion of passive tracers becomes:

dxi = uidt,

dui = −
uib2

2σ2 dt + bdWi = −
ui

τ
dt +

√

2σ2

τ
dWi, (6.41)

where b2/2σ2 has been replaced by the time scale τ. Comparison of Eq. (6.32) and
Eq. (6.41) shows that the stochastic differential equation for u corresponds to the
Ornstein-Uhlenbeck process in three dimensions.

6.6.3 One-dimensional dispersion in non-homogeneous turbulence

In many practical applications, turbulence is non-homogeneous, i.e. the mean fluc-
tuations σ2 and the time scale τ may depend on the position. In this section, we
determine the drift and diffusion coefficients which should be chosen such that the
well-mixedness condition is not violated in a spatially inhomogeneous flow.

We consider the dispersion of passive tracers with position x and velocity u. The
(Eulerian) position-dependent r.m.s. velocity is denoted by σ(x), so that 〈u2〉(x) =
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σ2(x). We assume that the turbulence is stationary and Gaussian, so that the Eulerian
PDF has the following form:

pE(u; x, t) = pE(u; x) =
1

√

2πσ2(x)
exp

[

− u2

2σ2(x)

]

. (6.42)

Just like in the case of one-dimensional homogeneous turbulence, the SDE is given
by Eq. (6.21) where the random variables are: q1 = x and q2 = u; the evolution of
these variables is given by Eq. (6.27). The condition dx = udt implies that a1 = u
and b11 = b12 = b21 = 0 in Eq. (6.21). By setting b22(x) =

√

2σ2(x)/τ(x), an exact
expression for a2(u, x) can be derived from the Fokker-Planck equation Eq. (6.24).
The result is [96]:

a2 = −
u
τ
+

1
2

(

1 +
u2

σ2

)

∂σ2

∂x
. (6.43)

Thus, the total stochastic differential equation for the motion of passive tracers is:

dx = udt,

du = −u
τ

dt +
1
2
∂σ2

∂x

[

1 +
u2

σ2(x)

]

dt +

√

2σ2(x)
τ(x)

dW. (6.44)

As an alternative, the Stochastic Differential Equation Eq. (6.21) may be formu-
lated in terms of the random variables q1 = x and q2 = ξ ≡ u/σ. Then, the Eulerian
PDF pE(ξ; x, t) is independent of the position in Gaussian non-homogeneous turbu-
lence; the value of σ may depend on x, but the distribution of ξ remains unaltered:

pE(ξ; x, t) = pE(ξ) =
1
√

2π
exp

[

−ξ
2

2

]

. (6.45)

The SDE Eq. (6.21) becomes:

dx = a1dt + b11dW1 + b12dW2,

dξ = a2dt + b21dW1 + b22dW2. (6.46)

Upon using the fact that dx = udt = σξdt, we see that a1 = σξ and b11 = b12 = b21 =

0 in Eq. (6.21). The diffusion coefficient b22 can be formulated in an analogous way
as before:

b22 =

√

2
τ
. (6.47)

Inserting the values for the drift and diffusion coefficients into Eq. (6.24) gives the
time development of the probability density function f (ξ, x; t) of the SDE Eq. (6.46):

∂ f
∂t
= − ∂
∂x

(

σξ f
) − ∂
∂ξ

(

a2 f
)

+
1
τ

∂2 f
∂ξ2

(6.48)
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Upon using the well-mixedness condition, i.e. f (ξ, x; t) = n0 pE(ξ; x, t), the drift
coefficient a2 is obtained from Eq. (6.45) and Eq. (6.48):

a2 = −
ξ

τ
+

dσ
dx
. (6.49)

Clearly, a2 only consists of a relaxation term plus a term which compensates the
spurious drift from regions of high turbulent fluctuations to regions of low turbulent
fluctuations.

Putting all terms together, the equations of motion of a passive tracer in non-
homogeneous Gaussian turbulence become:

dx = σξdt,

dξ = −ξ
τ

dt +
dσ
dx

dt +

√

2
τ

dW. (6.50)

Apparently, the formulation in x and ξ yields only linear terms in the SDE; this is a
considerable simplification with respect to the formulation in terms of x and u given
in Eq. (6.44), where a u2-term appears.

6.6.4 Dispersion in radially non-homogeneous turbulence

Finally, we study the dispersion of passive tracers in a turbulent flow in a pipe, where
the average turbulent fluctuations vary with the radial coordinate r only. The turbu-
lence is assumed to be Gaussian and stationary. For the sake of simplicity, we only
consider fluctuations in the radial direction.

The Stochastic Differential Equation Eq. (6.21) may be formulated in terms of the
random variables q1 = r and q2 = ξ ≡ ur/σ, where ur denotes the velocity in radial
direction. The Eulerian PDF pE is again assumed to be independent of the position
in the pipe:

pE(ξ; r, t) = pE(ξ) =
1
√

2π
exp

[

−ξ
2

2

]

. (6.51)

The SDE Eq. (6.21) becomes:

dr = a1dt + b11dW1 + b12dW2,

dξ = a2dt + b21dW1 + b22dW2. (6.52)

Upon using the fact that dr = urdt = σξdt, we see that a1 = σξ and b11 = b12 =

b21 = 0 in Eq. (6.21). The diffusion coefficient b22 is again taken as:

b22 =

√

2
τ
. (6.53)



6.7. C 119

Inserting the values for the drift and diffusion coefficients into Eq. (6.24), formulated
in cylindrical coordinates, gives the time development of the probability density func-
tion f (ξ, r; t) of the SDE Eq. (6.52):

∂ f
∂t
= −1

r
∂

∂r
(

σrξ f
) − ∂
∂ξ

(

a2 f
)

+
1
τ

∂2 f
∂ξ2

(6.54)

Upon using the well-mixedness condition, i.e. f (ξ, r; t) = n0 pE(ξ; r, t), the drift
coefficient a2 is obtained from Eq. (6.51) and Eq. (6.54):

a2 = −
ξ

τ
+

dσ
dr
+
σ

r
. (6.55)

Hence, the equations of motion of a passive tracer in non-homogeneous Gaussian
turbulence in an axisymmetric flow become:

dr = σξdt,

dξ = −ξ
τ

dt +
dσ
dr

dt +
σ

r
dt +

√

2
τ

dW. (6.56)

Obviously, in the limit that r → ∞, Eq. (6.56) reduces to Eq. (6.50).

6.7 Conclusions

In this chapter, an introduction is given to the concept of stochastic differential equa-
tions, aimed at modelling dispersion of passive tracers in turbulent flows. The coef-
ficients in the stochastic differential equations can to be tuned in order to model the
physical situation at hand. In the present thesis, the coefficients are determined on
the basis of two criteria: (i) the passive tracers must satisfy the well-mixedness con-
dition, and (ii) the r.m.s. velocity fluctuations of a large group of passive tracers must
correspond to the local r.m.s. velocity fluctuations of the flow field.

Examples show that the dispersion in stationary homogeneous Gaussian turbu-
lence may be modelled by an Ornstein-Uhlenbeck process. In non-homogeneous
turbulence (where the r.m.s. velocity fluctuations depend on the position), a drift
term must be added to the Ornstein-Uhlenbeck process in order to prevent passive
tracers to accumulate in regions of low turbulence intensity. It has been shown that
the simplest drift term is obtained when the position of the passive tracer and the
parameter ξ ≡ u/σ are used as the stochastic variables, rather than the position and
the velocity of the passive tracer.
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The motion of small heavy particles in the turbulent boundary layer over a flat plate
is investigated numerically. Lagrangian tracking is used for the calculation of the
particle trajectories. The Stokes drag force is taken into account in the equation of
motion of the particles. The turbulent carrier flow field along the particle trajectory
is modelled by a stochastic method. In order to isolate the effect of turbophoresis,
only velocity fluctuations in the wall-normal direction are taken into account. We
present numerical results for the non-uniform concentration of heavy particles in this
two-dimensional flow. In addition we calculate the deposition velocity of particles
on the wall, and we show probability density functions for the wall-hitting velocity.
Finally, the influence of inter-particle collisions and coalescence is discussed.

7.1 Introduction

The motion of heavy particles in fully developed turbulent pipe flows is particularly
interesting for two important phenomena, observed in experiments: preferential con-
centration of particles close to the wall and the deposition of particles on the wall.
Both phenomena depend non-trivially on the particle Stokes number, i.e. the dimen-
sionless particle relaxation time.

The term ‘preferential concentration’ was introduced by Squires & Eaton [91] in
order to describe the elevated concentration of particles close to the wall in fully de-
veloped turbulent channel flow. Both experiments [23] and Direct Numerical Simu-
lations [54],[91] have revealed that particles tend to concentrate in low-speed streaks.
As a parameter study shows [76], the maximum concentration is found for particles
which have a Stokes number of St ' 25, where the Stokes number St is defined as the
particle relaxation time τp made dimensionless by the wall friction velocity uτ and
the kinematic viscosity of the carrier flow ν: St ≡ τpu2

τ/ν.

The phenomenon of particle deposition can be characterized by the dimensionless
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deposition velocity K+dep, defined as [103]:

K+dep =
jwall

ρpc̄uτ
(7.1)

where jwall is equal to the mean flux of mass depositing on the wall per unit of area
per unit of time, ρp is the density of particles and c̄ denotes the mean concentration
of particles in the flow. Experimental results show that the value of K+dep is strongly
dependent on the particle Stokes number St. For instance, small particles (St . 0.2)
deposit only due to Brownian diffusion in the near-wall region so that the deposition
velocity is rather low. Large particles on the other hand (St & 22.9) may coast through
the viscous sublayer close to the wall, and deposit due to their intertia. For particles
of moderate size (0.2 . St . 22.9), a transition region exists in which both diffusion
and intertia are important. McCoy & Hanratty [61] made the following fit through
available experimental data, reflecting the three regimes (see also Fig. 7.1):

K+dep ' 10−5, for St < 0.2; diffusional deposition regime,

K+dep ' 3.25 × 10−4St2, for 0.2 < St < 22.9; diffusion-impaction regime,

K+dep ' 0.17, for St > 22.9; inertia-moderated regime. (7.2)

Apparently, the deposition velocity increases dramatically with the particle Stokes
number in the ‘diffusion-impaction regime’; the deposition velocity for St = 22.9 is
approximately 4 orders of magnitude higher than for St = 0.2. Because the particle
relaxation time is quadratic in the (dimensionless) particle radius a+p (see Eq. (2.3)),
K+dep ∝ a+p

4 for 0.2 < St < 22.9. This shows that particle deposition is strongly
dependent on the size of the particles.

In recent years, much progress has been made in understanding particle dispersion
and deposition by studying the bahavior of heavy particles in a Direct Numerical Sim-
ulation (DNS) of turbulent flow. Despite the many advantages of a DNS approach,
it has the limitation that it is impractical to use in studying large Reynolds number
flows. Moreover, asymptotic behavior of quantities at large times is difficult to assess
for a wide range of parameters due to long computing times. Finally, a Direct Numer-
ical Simulation can be very time-consuming when the geometry of the boundaries is
not an elementary shape such as a flat plate or a horizontal channel, even when the
Reynolds number of the flow is relatively low. Since the present research is aimed at
studying particle deposition not only in a flow over a flat plate but also in a swirling
flow in a pipe (see Chapter 8), we choose to employ a stochastic method based on a
modified Langevin equation in order to model the fluid turbulence.

The application of stochastic models for the dispersion of fluid elements has a
long tradition. Already in 1921, G.I. Taylor [94] made an estimate of the diffusion of
contaminants originating from a point source in a stationary homogeneous isotropic
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F 7.1: Triangles: experimental results for the deposition velocity as a function
of the Stokes number for particles in a boundary layer on a flat plate, obtained by Liu
& Agarwal [51]. Solid line: a fit through experimental data by McCoy & Hanratty
[61] given in Eq. (7.2).

turbulent flow. Subsequently, stochastic methods have been widely used for the mod-
elling of contaminant dispersion in the atmospheric boundary layer, which is an ex-
ample of inhomogeneous turbulence [22], [101]. In these studies, contaminants and
particles are assumed to be sufficiently small to be modelled as passive tracers, and
their trajectories are calculated from a generalized Langevin equation. It was shown
that the traced particles tend to accumulate in regions of low turbulence intensity.
This is of course non-physical since passive tracers in an incompressible flow should
be distributed uniformly over the domain at sufficiently large times. Therefore, much
effort has been put in finding a modified Langevin Equation which would not vi-
olate the so-called well-mixedness condition. After first attempts by Wilson et al.
[101] and Van Dop et al. [19], the question was finally addressed by Thomson, who
proposed a rigorous condition for well-mixedness [96]: in order to guarantee well-
mixedness in inhomogeneous turbulent flows, an additional drift term needs to be
added to the Langevin equation, which has been shown in Chapter 6 as well. A study
by MacInnes & Bracco [53] illustrates that most generic stochastic models (Discon-
tinuous Random Walk models, Continuous Random Walk models and generalized
Langevin-based models) indeed fail to satisfy the well-mixedness even in relatively
simple flows such as a plane mixing layer and an axial turbulent jet.
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Lagrangian stochastic methods have not only been used in order to describe the
motion of passive tracers, but they have been applied to model the dispersion of
heavy particles as well. Kallio & Reeks [38] employed a discrete eddy model in
order to obtain statistics for the deposition of heavy particles on the wall in a fully-
developed turbulent flow in a channel. They modelled the wall-normal velocity of
the fluid at the position of the particle as a random fluctuation; after a randomly sam-
pled eddy-turnover time, a new fluctuation was obtained from a non-homogeneous
Gaussian distribution. The mean velocity profile in streamwise direction and the
r.m.s. wall-normal velocity fluctuations were taken from experimental results in a
turbulent channel flow. Although their model does not provide correct results in the
limit of infinitesimally small particles since the well-mixedness condition was not
satisfied, Kallio & Reeks did obtain results for the deposition velocity which are in
good agreement with available experimental data. In addition, their model gave a
physical explication for the observed phenomenon of turbophoresis, i.e. the accumu-
lation of heavy particles near the wall.

As an alternative, Iliopoulos et al. employed a modified Langevin equation for the
modelling of the deposition and dispersion of heavy particles in a turbulent channel
flow [36]. The modified Langevin equation was modelled such that it satisfied the
well-mixedness condition. In order to adjust the constants in the modified Langevin
equation, Iliopoulos et al. used data from a DNS solution of a turbulent channel flow.
They focussed on the dispersion of heavy particles from a point source rather than on
the deposition velocity of particles on the wall. They obtained a good agreement be-
tween the results from their stochastic model and the results from the DNS, showing
the potential of modelling a non-homogeneous turbulent flow by means of a modified
Langevin equation. In a recent paper, Mito & Hanratty [64] used the same method to
calculate the deposition velocity of particles in an annular flow.

In the present chapter, we investigate the motion of heavy particles in a fully de-
veloped turbulent boundary layer over a flat plate. The turbulence of the carrier flow
along the trajectory of a heavy particle is modelled by a stochastic differential equa-
tion, which guarantees well-mixedness for infinitesimally small particles. We investi-
gate both the preferential concentration of heavy particles and the particle deposition
on the wall. In addition, we study the effect of fully elastic particle collisions and of
fully inelastic particle collisions both on the deposition of particles and on the con-
centration profiles. The interactions are expected to change the dispersion of particles
significantly, especially when the particle concentration near the wall is elevated due
to turbophoresis.

The present chapter is organized as follows. In section 7.2, we introduce the equa-
tions of motion for the heavy particles. In addition, we present the stochastic equa-
tions describing the turbulent gas velocity along the trajectory of a heavy particle. In
section 7.3, the numerical solution method is elucidated. The first part of section 7.4
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is devoted to the results for the dispersion and the deposition of individual particles.
In the second part of section 7.4, we present the results for simulations where par-
ticle interactions are taken into account. The inter-particle collisions are modelled
either as fully elastic collisions, or as fully inelastic collisions (i.e. coalescence). The
conclusions are formulated in section 7.5.

7.2 Physical-mathematical model

In the present section, we introduce the equations of motion for the particles and the
stochastic equation describing the carrier flow velocity at the position of the particle.
In addition, we present two methods for modelling particle interactions: both fully
elastic and fully inelastic collisions are considered.

7.2.1 Equations of motion of heavy particles

The equations of motion of a particle in a turbulent boundary layer are assumed to be
accurately described by Eq. (2.4). Thus, we assume that the flow around the particle
is a Stokes flow, which is a reasonable approximation for small heavy particles in
turbulent boundary layers; the inclusion of modifications to the equation of motion in
order to extend its validity to larger particle Reynolds numbers, such as the Saffman
lift force or a modified drag term, does not necessarily give a better result compared
to experiments, as Wang et al. show [99]. In order to isolate the effect of inertia, we
neglect the effect of gravity, i.e. we take Fr→ ∞. Under these assumptions, Eq. (2.4)
reduces to:

dx+p
dt+
= u+p ,

du+p
dt+
=

1
St

(

u+(x+p , t
+) − u+p

)

, (7.3)

where x+p and u+p denote the position and the velocity of the particle, respectively, and
u+ is the carrier flow velocity at the position of the particle. This equation has been
made dimensionless by the kinematic viscosity of the carrier flow ν and the friction
velocity uτ. The dimensionless variables are commonly provided with a superscript
+. The Stokes number is here defined as: St ≡ τpu2

τ/ν, where τp is the particle
relaxation time, given by Eq. (2.3).

The velocity of the carrier flow at the location of the particle, u+, is assumed to be
given by:

u+ = 〈u+x 〉ex + σ
+ξey, (7.4)

where x+ is the coordinate in streamwise direction, y+ is the wall-normal coordinate,
and ξ ≡ u+y /σ

+(y+) denotes the fluid velocity in wall-normal direction divided by
σ+, the root-mean-square of the velocity fluctuations in wall-normal direction. The
random variable ξ is determined from the following stochastic differential equation:

dξ = − ξ
τ+

dt+ +
(dσ+

dy+

)

dt+ +

√

2
τ+

dW, (7.5)
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where W denotes the Wiener process. The term (dσ+/dy+) is introduced in order to
satisfy the well-mixedness condition, see section 6.6.3.

In order to solve Eq. (7.5), the values for 〈u+x 〉(y+), σ+(y+) and τ+(y+) have to be
known. In the present research, we take these quantities in accordance with experi-
mental results reported in the literature; these results are presented in the following
section.

It is noted that the coupled equations described in Eqs. (7.3)-(7.5) can be seen as a
system of stochastic diffential equations as given by Eq. (6.21). In this case, the five-
dimensional stochastic variable reads q = (x+p ,u+p , ξ)T , and the drift and diffusion
coefficients are:

a =
(

u+p ,St−1(〈u+x 〉ex + σ
+ξey − u+p

)

,− ξ
τ+
+

(dσ+

dy+

)

)T

,

b55 =

√

2
τ+

; bi j = 0, ∀ (i, j) , (5, 5).

The corresponding Fokker-Planck equation, which is given in Eq. (6.24), describes
the development in time of the probability f (x+p ,u+p , ξ; t), i.e. the probability of
finding a particle at position x+p having a velocity u+p while the local fluid velocity is
〈u+x 〉ex + σ

+ξey. In principle, solving the Fokker-Planck equation for the probability
f (x+p ,u+p , ξ; t) is equivalent to solving Eqs. (7.3)-(7.5) for an infinite number of heavy
particles. Direct solution of the Fokker-Planck equation is generally referred to as the
PDF-approach [63],[83]; in the present research, however, we solve Eqs. (7.3)-(7.5)
by Langrangian tracking of a large number of individual particles.

Average quantities in turbulent boundary layer on flat plate

The mean velocity profile in the streamwise direction is based on the law-of-the-wall
relations. The turbulent r.m.s. velocity and time scale profiles are obtained from
experimental data. This approach is basically the same as was used by Kallio &
Reeks [38] for the calculation of particle deposition in a turbulent boundary layer in
a fully developed channel flow.

The mean velocity parallel to the wall, 〈u+x 〉, can be expressed in terms of the
distance to the wall y+ as follows [38],[77]:

〈u+x 〉 = y+, for y+ ≤ 5,

〈u+x 〉 = 2.5 ln y+ + 5.5, for y+ ≥ 30. (7.6)

In the buffer region, 5 < y+ < 30, the velocity is obtained from a cubic spline
interpolation, yielding [38]:

〈u+x 〉 = a0 + a1y+ + a2y+2
+ a3y+3

, (7.7)
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where a0 = −1.076, a1 = 1.445, a2 = −0.04885 and a3 = 0.0005813. The mean
velocity component in streamwise direction is plotted in figure Fig. 7.2.
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F 7.2: The mean velocity profile 〈u+x 〉 as a function of the distance from the wall y+.

The mean velocity in the wall-normal direction is equal to zero in case of fully
developed turbulence, as considered here. Hence, we have: 〈u+y 〉 = 0. The r.m.s.
velocity fluctuations in wall-normal direction are [38]:

σ+ =

√

〈u+y 2〉 = k1y+2

1 + k2y+k3
, (7.8)

where k1 = 0.005, k2 = 0.002923 and k3 = 2.128.
Finally, a relation for the Lagrangian decorrelation time τ is required. In homoge-

neous turbulence, the Lagrangian decorrelation time is defined as:

τ ≡
∞

∫

0

RLdt, (7.9)

where RL is the Lagrangian correlation coefficient: RL = 〈u(0)u(t)〉/〈u(t)u(t)〉. In
inhomogeneous turbulence, however, the Lagrangian decorrelation is not rigourously
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defined, as Iliopoulos & Hanratty point out in [37]; for inhomogeneous turbulence
the integral in Eq. (7.9) may not converge.

Therefore, the Lagrangian time scale in inhomogeneous turbulence needs to be
modelled. Since we consider a fully developed turbulent flow over a flat plate, it is
logical to suppose that the Lagrangian time scale is a function of the wall-normal
distance alone: τ = τ+(y+)ν/u2

τ. The functional relationship between τ+ and y+ has
been subject to many studies in recent years, e.g. [37] and [55]. Despite the numerous
investigations, an unambiguous result seems to be unavailable. For want of anything
better, we employ the Lagrangian decorrelation time in accordance with [38], which
is based on experimental results:

τ+ = 10, for y+ < 5,

τ+ = C0 +C1y+ +C2y+2
, for y+ ≥ 5, (7.10)

where C0 = 7.122, C1 = 0.5731 and C2 = −0.001290. Thus, the Lagrangian
decorrelation time is assumed to be a constant in the immediate vicinity of the wall
(y+ < 5), after which it gradually increases further away from the wall. Both the
r.m.s. fluctuations σ+ and the Lagrangian decorrelation time τ+ are plotted in Fig.
7.3.

7.2.2 Particle interactions

If two particles touch, their trajectories are altered. In the present research we employ
two different particle interactions: either the particles collide fully elastically, or they
collide fully inelastically (i.e. coalescence).

Modelling of fully elastic collisions

In fully elastic collisions between two particles, both momentum and kinetic energy
are conserved. Momentum is exchanged between the two particles along the line of
collision, whereas the momentum of each particle in the two directions perpendicular
to the line of collision remains unaltered.

Let the velocities of two particles before a collision be denoted by u+1 and u+2 ,
respectively. The separation between the particle centers is R (see Fig. 7.4); when the
particles hit each other, of course |R| = ap,1 + ap,2. The velocities after the collision,
u+1
′ and u+2

′, can be calculated from:

u+1
′
=
{m1 − m2}(R · u+1 )R + 2m2(R · u+2 )R

{m1 + m2}|R|2
+

(R × u+1 ) × R
|R|2 ,

u+2
′
=
{m2 − m1}(R · u+2 )R + 2m1(R · u+1 )R

{m1 + m2}|R|2
+

(R × u+2 ) × R
|R|2 , (7.11)

where m1 and m2 stand for the masses of the two particles.
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〈u+y 2〉 and the La-
grangian decorrelation time τ+, as a function of the distance from the wall y+.

If the particles are identical, then Eq. (7.11) reduces to:

u+1
′
=

(R · u+2 )R
|R|2 +

(R × u+1 ) × R
|R|2 ,

u+2
′
=

(R · u+1 )R
|R|2 +

(R × u+2 ) × R
|R|2 . (7.12)

Modelling of fully inelastic collisions

If two particles collide in a fully inelastic way, they travel on attached to each other.
This concept is used in the present research in order to model the coalescence process
between droplets.

During a fully inelastic collision momentum is conserved, but kinetic energy is
partly dissipated. The deficit of kinetic energy is transformed into internal energy of
the colliding particles or droplets.

The velocity of the new particle, which is made up out of particle 1 and 2, can be
calculated directly from the conservation of momentum:

u+12
′
=

m1u+1 + m2u+2
m1 + m2

. (7.13)
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F 7.4: A sketch of two identical particles with radius ap, separated by a distance
R, on the moment of a collision.

We suppose that the newly formed particle assumes a spherical shape immediately;
the radius of the new sphere a′p,12 is:

a′p,12 =
(

a3
p,1 + a3

p,2
)

1
3 . (7.14)

Since the particle relaxation time τp scales by the square of the particle radius (see
Eq. (2.3)), the Stokes number of the new particle St′12 can be calculated directly from
the former Stokes numbers St1 and St2 as follows:

St′12 =
(

St
3
2
1 + St

3
2
2
)

2
3 . (7.15)

7.3 Numerical methods

In the numerical simulations, a large number of particles are released in the boundary
layer. At the beginning of the simulation, all particles are uniformly distributed in the
domain of length L+ and height h+. The initial streamwise velocity of a particle is
equal to the local mean carrier flow velocity, whereas the initial wall-normal velocity
is randomly sampled from a normal distribution with variance σ+(y+p(0)).

The positions of the particles in the course of time are determined by integrating the
equations of motion of heavy particles, Eq. (7.3), combined with the stochastic equa-
tion for the turbulent flow field seen by the particle, Eq. (7.5). The time integration
is done by a fourth-order Runge-Kutta scheme with numerical time step ∆t+ = 0.05.
Other values for the time step were tested, such as ∆t+ = 0.01, ∆t+ = 0.002 and
∆t+ = 0.001, but these choices did not significantly alter the results.

When a particle hits the wall (i.e. y+p < a+p), it is absorbed by the wall and thus
eliminated from the simulation. Also when a particle leaves the domain at x+ =
L+, it is eliminated. For each eliminated particle, a new particle is injected into the
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boundary layer at a randomly chosen injection position on the line x+ = 0. The wall-
normal coordinates of the 20 injection positions are chosen such that, on average, the
particles enter the turbulent boundary layer in a uniform concentration.

On the other hand, when a particle leaves the domain on the upper side of the tur-
bulent boundary layer (y+p > h+), an identical particle is reinjected into the boundary
layer on the same position but with an opposite wall-normal velocity; this corre-
sponds to imposing a Von Neumann boundary condition for the concentration on the
upper edge of the boundary layer.

These boundary conditions ensure that a constant number of particles is maintained
in the entire domain. By doing so, the numerical solution for the distribution of
particles approaches a statistically stationary solution as the time of integration goes
to infinity.

7.3.1 Measuring particle concentration profiles

Statistically stationary concentration profiles of particles c(x+, y+) in a turbulent bound-
ary layer are determined as follows. First, the particle equations of motion are inte-
grated for a time of t+1 = 5, 000. After such a long time, the effects of the initial
distribution of particles are largely dissipated so that a statistically stationary solution
is obtained. Subsequently, we continue the integration for another 5, 000 units of time
in order to collect statistical information.

A concentration profile is obtained by dividing the domain in identical boxes and
by counting the number of particles in each box. In the present simulations we use
Nx = 25 boxes in the streamwise direction and Ny = 200 boxes in the wall-normal
direction. Let the center of box i, j be located at (x+i , y

+
j ). The concentration in the

box i, j at one particular instant in time t+, ĉ(x+i , y
+
j ; t+), can then be calculated from:

ĉ(x+i , y
+
j ; t+) = NxNy

n(x+i , y
+
j ; t+)

Np
, (7.16)

where n(x+i , y
+
j ; t+) denotes the number of particles located in the box i, j at instant t+,

and Np stands for the total number of particles in the entire domain. It is noted that
if one measured the particle concentration at only one instant in time on an infinitely
fine mesh, Eq. (7.16) would yield a concentration of zero everywhere, except on the
positions of the particles where the concentration would be infinity.

In order to obtain a statistically stationary solution for the concentration c(x+, y+),
we calculate ĉ(x+i , y

+
j ; t+) at different instants in time and take the average of the

results:

c(x+i , y
+
j ) =

1
T+/δt+

T/δt
∑

k=1

ĉ(x+i , y
+
j ; t+1 + kδt+). (7.17)

In the present research we take T+ = 5, 000 and δt+ = 2, i.e. after every 2 units of
time the concentration ĉ(x+i , y

+
j ; t+) is determined, for all times 5, 000 < t+ ≤ 10, 000.
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Now, we define the mean concentration as a function of the streamwise coordinate
as:

c̄(x+i ) ≡ 1
Ny

Ny
∑

j=1

c(x+i , y
+
j ) (7.18)

Due to the deposition of particles onto the wall, the flow is continuously being de-
pleted from particles as it goes downstream. As a consequence, the value of c̄(x+)
decreases with x+ for all finite values of the particle Stokes number. Nevertheless, it
is expected that c(x+, y+)/c̄(x+) will go to a converged concentration profile for large
enough values of x+ [38], [36]:

lim
x+→∞

c(x+, y+)
c̄(x+)

= f (y+). (7.19)

Thus, by measuring both c(x+, y+) and c̄(x+), one can determine the quantity c/c̄, for
a given value of the particle Stokes number.

In the present research, we determine c/c̄ on the basis of the last 5 of the 25 seg-
ments in the streamwise direction, i.e. we consider the time-averaged concentration
in the range 0.8L+ < x+ ≤ L+.

7.3.2 Measuring the deposition velocity of heavy particles

The dimensionless deposition velocity K+dep is defined as the ratio of flux density of
particles at a surface to the mean concentration of particles in the boundary layer, see
Eq. (7.1). The flux density of particles jwall can be approximated by the number of
particles which have left the domain in the infinitesimal segment dx+:

jwall = ρph+Ū+
dc̄

dx+
, (7.20)

where Ū+ is the mean streamwise velocity over the boundary layer, given by:

Ū+ =
1

h+

h+
∫

0

〈u+x 〉(y+)dy+ (7.21)

Since the boundary layer height h+ and the mean velocity Ū+ are constants, combi-
nation of Eq. (7.1) and Eq. (7.20) shows that the deposition velocity is equal to:

K+dep =
h+Ū+

(

x+2 − x+1
) ln

c̄(x+1 )
c̄(x+2 )

. (7.22)

Over a large time interval (typically 5, 000 < t+ ≤ 10, 000), a converged solution
for the depostion velocity is obtained, provided x+2 and x+1 are sufficiently large; the



7.4. R 133

effects of the initial conditions and of the conditions at x+ = 0 are then negligible. In
the present simulations, we determine the deposition velocity in each of 25 identical
segments along the length of the turbulent boundary layer of L+ = 20, 000. Good
convergence for the deposition velocity is found in all simulations presented in this
chapter.

7.3.3 Detection of interparticle collisions

During each time step, inter-particle collisions are detected. In principle, this could
be done by comparing the position of each particle with respect to all other particles;
if two particles overlap, a collision is registered. The computational cost of this
procedure is of order N2

p, where Np is the total number of particles in the simulation.
In order to reduce the computational effort of collision detection, we divide the

physical domain into a large number of identical boxes. A requirement to the box
size is that a particle is not able not pass through an entire box within one single time
step. In the simulations presented in the present chapter and in Chapter 8, we use 200
boxes in the streamwise direction, and 100 boxes in the wall-normal direction.

First, we label every particle by a particle number during each numerical time step.
Then, the amount of particles inside each of the 200 × 100 boxes is determined from
the particle positions. Subsequently, the particle numbers are rearranged in an array
of length Np on the basis of the number of the box where they are in: the numbers
of the particles in the first box are the first entries in the array, the numbers of the
particles in the second box are the following entries in the array, etc. Because each
box is associated to a limited number of entries in the array, the numbers of all the
particles in a certain box can efficiently be found. Finally, we compare the position
of each particle to the positions of all the other particles in the same box and of all
the particles in neighboring boxes; when a collision is detected, either a fully elastic
collision or a fully inlastic collision is executed.

The computational cost of this procedure is of order Np, and it is thus very beneficial
if the total number of particles in the domain is large.

7.4 Results

7.4.1 Verification tests

In this section, we show that passive tracers through the turbulent boundary layer
under consideration spread uniformly over the domain. In addition, the collision
detection algorithm is tested for the case of heavy particles in a stochastic model for
homogeneous turbulence.
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Motion of passive tracers in a turbulent boundary layer

We investigate the motion of passive tracers in a turbulent boundary layer. Passive
tracers correspond to heavy particles with an infinitesimally small Stokes number.
Thus, the position of a passive tracer x+pt in the course of time is described by the
following equation of motion:

dx+pt

dt+
= u+(x+pt(t

+), t+), (7.23)

where the carrier flow velocity u+ can be determined by Eq. (7.4) and Eq. (7.5).
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F 7.5: L2-norm of the deviation from uniform concentration, c(x+i , y
+
j ) − 1, of

passive tracers (St = 0), for different values of the time of integration T +.

A simulation is carried out in which 40, 000 passive tracers are traced in time. The
concentration is then calculated from Eq. (7.17), for different values of the time of
integration T+. On the basis of this result, we calculate the L2-norm of the deviations
from a uniform concentration, c = 1, over all Nx × Ny boxes; the result is shown in
Fig. 7.5, as a function of T+. As expected, as T+ → ∞, the deviation tends to zero,
meaning that passive tracers are uniformly distributed over the domain. This shows
that the well-mixedness condition is indeed satisfied.

Testing collision detection in homogeneous flow

In order to test the collision detection algorithm, we carry out a numerical experiment
in two-dimensional stationary Gaussian turbulence. The stochastic model describing
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the motion of passive tracers is the two-dimensional Ornstein Uhlenbeck process (see
Chapter 6).

A group of Np particels is released in a domain of size 200×200.; periodic bound-
ary conditions are imposed. The particle equations of motion are given by Eq. (7.4)
and Eq. (7.5), where we take 〈u+x 〉 = 〈u+y 〉 = 0, 〈u+x 2〉1/2 = 〈u+y 2〉1/2 = σ+ =

√
20, and

τ+ = 10. Due to the homogeneity of the carrier flow, the collisions occur statistically
uniformly over the domain.

It is known [93] that the collision rate Ṅc (i.e. the number of collisions per unit
of time per unit of volume) is approximately quadratic in the mean particle number
density n0:

Ṅc ' Γ
n2

0

2
= Γ

N2
p

2Ω2 , (7.24)

where Ω is the volume of the domain (or surface, in this two-dimensional case). The
parameter Γ is called the collision kernel.

We carry out numerical simulations for different values of Np, and determine the
number of collisions per unit of time per unit of volume. This information was used
to calculate the collision kernel Γ by Eq. (7.24); the result is shown in Fig. 7.6a), for
a particle diameter dp = 1 and St = 10. As expected, Γ goes to a constant value as
the number of particles increases.

In Fig. 7.6b) we show the results for a simulation in which the particle diameter
dp was varied; the particle Stokes number St was kept constant. The collision ker-
nel apparently grows linearly with the particle diameter, which corresponds to the
theoretical expectation [93]. This shows that the collision detection algorithm is con-
sistent with the theoretical result in [93].

7.4.2 Heavy particles in a turbulent boundary layer; no particle interactions

First, we investigate the motion of heavy particles without taking into account colli-
sions and coalescence. A group of 40, 000 particles is released in a boundary layer of
length L+ = 20, 000 and height h+ = 200. In order to facilitate comparison to results
from Liu and Agarwal who carried out experiments with olive oil droplets in air [51],
the mass density ratio is taken as ρp/ρ = 770.

First, we show the concentration of the particles after time t+ = 10, 000 in Fig.
7.7a), for the case St = 5. There is a relatively high concentration of particles close
to the wall. On the one hand, these particles have enough inertia to arrive in the
viscous sublayer, where the velocity fluctuations are low. On the other hand, most
these particles do not have enough inertia to directly reach the wall by ‘free flight’
through the boundary layer. As a result, they do not deposit onto the wall, nor are
they reentrained into the flow. Eventually, an equilibrium concentration exists, in
which the concentration close to the wall is larger than the concentration in the rest
of the boundary layer.
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F 7.6: Numerical solution for collision kernel Γ in two-dimensional stationary
Gaussian turbulence containing Np heavy particles of diameter dp; St = 10, τ+ = 10,
σ+ =

√
20.

The concentration distribution changes considerably when the Stokes number is
increased. This can be seen in Fig. 7.7b), where the result for St = 50 is presented.
Particles with higher Stokes numbers are less susceptible to small-scale fluctuations
of the carrier flow. Therefore, particles with Stokes number St = 50 can pass through
the viscous sublayer and reach the wall directly. Due to the deposition of particles
on the wall, the concentration of particles gradually decreases downstream. As a
consequence, the highest value of the particle concentration is found near the inlet.

The quantity c/c̄, with c̄ the mean concentration as defined by Eq. (7.18), is pre-
sented in Fig. 7.8, for five different Stokes numbers. Apparently, the concentration of
particles with St = 1 is almost uniform; there is only a slightly elevated concentration
near the wall. The phenomenon of particle accumulation near the wall is much more
pronounced in the case of St = 5 and St = 10: the concentration of particles in the
viscous sublayer is more than 40 times higher than the mean concentration. For high
Stokes numbers such as St = 100, no significant increase in the particle concentration
near the wall is visible.

The results are qualitatively very much in agreement with well-known experimen-
tal and numerical results obtained in recent years (e.g. [76], [91]) showing that par-
ticles of St = O(10) may accumulate in the near-wall region in turbulent boundary
layers. Evidently, the relatively simple model applied in the present research is able
to predict the concentration profiles and the Stokes numbers for which they occur
quite correctly.

Fig. 7.9 shows the PDF of wall-normal impact velocities of particles onto the wall.
As becomes clear from this figure, larger particles (St = 100) hit the wall with, on
average, a larger wall-normal velocity than smaller particles (St = 10). This once
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F 7.7: Concentration c(x+, y+) after time t+ = 10, 000, with particle interactions
neglected. a) St = 5, b) St = 50.
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F 7.8: Concentration profile c(x+, y+)/c̄(x+) as a function of the wall-normal co-
ordinate, for five different Stokes numbers. Particle interactions have been neglected.

again supports the hypothesis that large particles may cross the viscous wall-layer
directly without being decelerated by the flow, whereas smaller particles reach the
wall only through interactions with the small-scale flow structures near the wall.

By repeating the numerical simulations for a wide range of Stokes numbers, the
deposition velocity of particles on the wall as a function of St has been calculated.
The result is presented in Fig. 7.10, which also shows the experimental results from
Liu & Agarwal [51], the fit through experimental data by McCoy & Hanratty [61]
and the recent numerical results by Mito & Hanratty [64].

First of all, we see that our result is very similar to the result presented by Mito &
Hanratty [64]. It is noted that Mito & Hanratty [64] employed a stochastic method
(with Gaussian distribution) in three dimensions, which was tuned using data from a
DNS of a turbulent channel flow. Evidently, our one-dimensional method produces
very similar results. Both methods are able to capture the general shape of the de-
position velocity curve: the deposition velocity increases very fast with St as long as
St < 30, whereas it becomes almost independent of the Stokes number as St > 30.

Compared to the experimental results, though, the deposition velocity for smaller
particles (St . 10) is underestimated. This can be explained by three main reasons.
Firstly, the particle equation of motion employed in the present study involves only
Stokes drag, but the Saffman lift force [86] may play a non-negligible role in wall-
bounded flows as well. The influence of the Saffman lift force on the motion of
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F 7.9: Probability density function of the (dimensionless) wall-normal velocity
of particles on the moment that they hit the wall, for four different Stokes numbers.
Particle interactions have been neglected.

particles can be described as follows: if a particle is close to a wall and its streamwise
velocity is higher than the local carrier flow velocity, then the Saffman lift force gives
a particle an acceleration towards the wall. If, on the other hand, the particle lags the
local carrier fluid velocity, it is forced away from the wall. Since inertia causes heavy
particles to enter the near-wall region with a higher streamwise velocity than passive
tracers, the lift force is expected to enhance the deposition of particles on the wall.
The studies by Kallio & Reeks [38] and by Wang et al. [99] show that the inclusion
of this term indeed has a quantitative influence on the deposition velocity curve,
especially for small Stokes numbers; the qualitative picture, however, is not altered
much.

Secondly, the intermittency of the turbulence is underestimated in the Gaussian
stochastic models employed [77]. Intermittency is associated to sudden sweeps of
fluid towards the wall, and it is probable that some particles deposit onto the wall
due to this effect. Possibly, a more realistic result for the deposition velocity for
St . 10 could be obtained by employing a non-Gaussian stochastic differential equa-
tion, which models the intermittent fluctuations of the carrier flow more realistically.
Although non-Gaussian stochastic differential equations have been employed in other
studies [36], [96], it has the drawback that a good modelling of the non-Gaussianity
requires much more statistical information on the flow than just the r.m.s. of the
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F 7.10: Deposition velocity as a function of the Stokes number for particles in a
boundary layer on a flat plate, with particle interactions neglected. The results from
the SDE model are compared to experimental data from Liu & Agarwal [51], and to
the fit through experimental data by McCoy & Hanratty [61] given in Eq. (7.2). In
addition, the numerical result from Mito & Hanratty [64] is presented.

velocity fluctuations. Although this information can be found for the flow over a
flat plate either from ample experimental results or from DNS simulations, it is very
difficult to obtain it for the more complex flows in industrial gas-liquid separators we
would like to study in Chapter 8.

The third reason for the deviations in Fig. 7.10 is related to the neglection of par-
ticle interactions. It is possible that particles with small Stokes numbers accumulate
in the near-wall region, where they may collide or coalesce. Due to these interac-
tions, some particles may reach the wall eventually. In order to investigate the effect
of particle interactions on the dispersion and deposition of particle qualitatively and
quantitatively, we carry out simulations in which collisions of particles are taken into
account. The results from these simulations are presented in the following sections.

7.4.3 The effect of fully elastic collisions

Now, we investigate the effect of fully elastic collisions on the motion of heavy par-
ticles in a turbulent boundary layer. In order to compare results for different Stokes
numbers, the mean volumetric concentration of particles in the domain, Φ, is kept
constant. This is done by extending the computational domain to three dimensions.
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F 7.11: Concentration c(x+, y+) after time t+ = 10, 000. Particle interactions are
modelled as fully elastic collisions; the mean volumetric concentration is Φ = 10−5.
a) St = 5, b) St = 50.
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The size of the domain in spanwise direction, z+max, can be adjusted in order to control
the mean volumetric concentration of particles in the domain while keeping the total
number of particles in the domain fixed. The particles are initially uniformly dis-
tributed in the spanwise direction. The velocity of the carrier flow field is assumed
to be zero in the spanwise direction.

The result for the time-averaged particle concentration in the boundary layer is pre-
sented in Fig. 7.11a), for the case of fully elastically colliding particles with Stokes
number St = 5. The plot is rather similar to Fig. 7.7a), but the region of elevated con-
centration of particles close to the wall is not as narrow as in Fig. 7.7a). The reason
for this is that particles which are forced towards the wall by turbulent fluctuations,
collide with other particles which are already close to the wall. As a consequence,
these particles are prevented from entering the viscous sublayer, and the concentra-
tion in the viscous sublayer is not much larger than in the rest of the flow.

In Fig. 7.11b), which shows the time-averaged concentration of particles with St =
50, the elevated concentration near the wall is not visible anymore. Apparently, these
larger particles do not accumulate near the wall if they ‘feel’ each others presence.
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F 7.12: Concentration profiles c(x, y)/c̄(x) as a function of the wall-normal co-
ordinate y+, for five different Stokes numbers. Particle interactions are modelled as
fully elastic collisions; the mean volumetric concentration of particles is Φ = 10−5.

This result is supported by Fig. 7.12, in which the concentration c/c̄ is plotted as a
function of the wall-normal coordinate, for five different Stokes numbers. It shows
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that the concentration of particles with St = 10 near the wall has decreased dramati-
cally; in Fig. 7.8, the concentration near the wall was more than 40 times higher. This
significant reduction of particle concentration near the wall can be attributed to the
fact that particles are not able to enter the viscous sublayer when this relatively thin
layer is already filled with other particles.

The result for the deposition velocity is presented in Fig. 7.13. Apparently, the
deposition velocity is not altered much when fully elastic collisions are taken into
account. Only relatively small particles with St ' 5 benefit from the collisions: they
may reach the wall due to the particle interactions, whereas they have too little inertia
to cross the boundary layer on their own.
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F 7.13: Deposition velocity as a function of the Stokes number for particles
in a boundary layer on a flat plate, with fully elastic collisions taken into account;
the mean particle concentration is Φ = 10−5. The deposition velocity curves are
compared to the result presented in Fig. 7.10, where no particle interactions have
been taken into account, and to the experimental data from Liu & Agarwal [51].

Finally, we show the PDF of wall-normal impact velocities of particles onto the
wall in Fig. 7.14. Comparison of Fig. 7.14 with Fig. 7.9 shows that the PDF of im-
pact velocities of particles with St = 10 is broader when collisions are taken into
account. It suggests that the particles do not only reach the wall due to a gradual
motion through the viscous sublayer, but also by collisions with other particles close
to the wall. Fully elastic collisions imply a redistribution of the velocities of the
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involved particles; even two horizontally moving particles may have considerable
vertical velocities after having collided with each other.
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F 7.14: Probability density function of the (dimensionless) wall-normal velocity
of particles on the moment that they hit the wall, for four different Stokes numbers.
Particle interactions are modelled as fully elastic collisions; the mean volumetric
concentration of particles is Φ = 10−5.

In conclusion, in this section we have shown that the incorporation of fully elastic
collisions appears to decrease the elevated particle concentration close to the wall for
St = O(10), i.e. to decrease the effect of turbophoresis (i.e. the gradual motion of
particles towards the wall). Moreover, we find that the impaction of particles onto
the wall results both from the redistribution of particle velocities after a collision and
from free-flight of particles close to the wall. Nevertheless, the resulting particle
deposition velocity is not altered very much with respect to the situation that particle
interactions are neglected.

7.4.4 The effect of coalescence

Now, we study the effect of coalescence on the dispersion and deposition of particles
in a turbulent boundary layer. In order to do this, 40, 000 particles are traced in the
turbulent boundary layer for a large time. During the simulation, the particles collide
and merge to become larger particles. When such a ‘composed’ particle (consisting
of ñ original particles, say) leaves the domain either by hitting the wall or by passing



7.4. R 145

0.75

0.75

0.75

0.75

2
1

2.51.5

x

y

0 5000 10000 15000 200000

50

100

150

200

c(x ,y )
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5

+

+

+ +

a)

0.75

0.75

1

1

1.25

1.5
1.5

1.5

1.75

1.75

2

22.25

2.25

x

y

0 5000 10000 15000 200000

50

100

150

200

c(x ,y )
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5

+

+

+ +

b)

F 7.15: Concentration c(x+, y+) after time t+ = 10, 000. Particle interactions
are modelled as fully inelastic collisions (coalescence); the mean volumetric concen-
tration is Φ = 10−5. a) St = 5, b) St = 50.



146 C 7. H        

the line x+ = L+, ñ new particles of the original size are injected into the boundary
layer at x+ = 0, so that the total mass loading of particles in the entire domain remains
unaltered.

The time-averaged concentration of 40, 000 particles is plotted in Fig. 7.15a), after
time t+ = 10, 000. The initial Stokes number of the particles is St = 5, and mean the
volumetric concentration is Φ = 10−5. Although the result is similar to Fig. 7.7a),
the particle concentration decreases more quickly in the downstream direction. This
result, which is an indication of a higher deposition velocity, can be explained as fol-
lows. In the first part of the channel, the particles accumulate in the viscous sublayer,
just like in the case where no particle interactions were taken into account, or the
case where the particle interactions were modelled as fully elastic collisions. In the
case of coalescence modelled, however, the particles do not only accumulate in the
near-wall region, they coalesce to larger particles. When the coalesced particles are
sufficiently large, they may even cross the viscous sublayer, either due to fluctuations
in the carrier flow field or due to collisions with other particles.
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F 7.16: Concentration profiles c(x, y)/c̄(x) as a function of the wall-normal co-
ordinate y+, for five different Stokes numbers. Particle interactions are modelled as
fully inelastic collisions (coalescence); the mean volumetric concentration of parti-
cles is Φ = 10−5.

The concentration profiles of a group of particles with an initial particle Stokes
number of St = 50 is plotted in Fig. 7.15b). The result is very similar to Fig. 7.7b),
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indicating that coalescence does not have much effect on the distribution of large
particles.

In Fig. 7.16, the time-averaged value of c/c̄ is plotted as a function of the wall-
normal coordinate, for five different Stokes numbers. It is noted that the Stokes
number here corresponds to the Stokes number of newly injected particles; of course,
the Stokes number of a particle may increase due to coalescence. The results for
St = 10 and St = 100 are rather similar to the results presented in Fig. 7.8. For
particles with small Stokes numbers such as St = 1, however, we see a considerable
increase in the particle concentration near the wall. Also, the near-wall concentration
of particles with St = 5 is higher than the concentration of particles with St = 10.
Evidently, these initially small particles first grow on to larger particles and then
accumulate near the wall.
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F 7.17: Deposition velocity as a function of the Stokes number for particles in
a boundary layer on a flat plate, with fully inelastic collisions taken into account.
Two different values of the mean particle concentration have been used: Φ = 10−5

and Φ = 10−4. The deposition velocity curves are compared to the result presented
in Fig. 7.10, where no particle interactions have been taken into account, and to the
experimental data from Liu & Agarwal [51].

The deposition velocity has been calculated for a wide range of Stokes numbers,
for two values of the mean particle concentration: Φ = 10−5 and Φ = 10−4. The
result is plotted in Fig. 7.17. Apparently, the deposition of particles with initially
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small Stokes numbers is enhanced considerably by taking into account coalescence
effects. Remarkably enough, this effect takes place already for relatively small values
of the mean particle concentration. The deposition velocity of particles with a higher
initial Stokes number is hardly altered.

-u

P
D

F
(-

u
)

-1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

St = 10
St = 30
St = 50
St = 100

y,
p

y,p
+

+

F 7.18: Probability density function of the (dimensionless) wall-normal veloc-
ity of particles on the moment that they hit the wall, for four different Stokes num-
bers. Particle interactions are modelled as fully inelastic collisions (coalescence);
the mean volumetric concentration of particles is Φ = 10−5.

Finally, we show the PDF of the wall impact velocities in Fig. 7.18. For the rel-
atively large Stokes numbers considered, between St = 10 and St = 100, the result
is very similar to Fig. 7.9. This supports the hypothesis that coalescence does not
significantly change the motion of large particles, but it is mainly important for small
particles.

7.5 Conclusions

The motion of heavy particles in a turbulent boundary layer flow over a flat plate
has been investigated by a Lagrangian numerical simulation. The carrier flow ve-
locity along the trajectory of the particle is modelled by a stochastic method. The
stochastic model is selected to satisfy the well-mixedness condition in the limit of
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infinitesimally small particles.
The results in the flow over the flat plate indicate that the droplet concentration

has a maximum value close to the wall if the particle Stokes number St is O(10).
The particle deposition velocity, defined as the particle flux towards the wall divided
by the mean concentration of particles, is shown to increase rapidly with the particle
Stokes number for 10 < St < 30. For St ≥ 30, the particle deposition velocity
is almost independent of the Stokes number. A comparison with experimental data
from literature shows that the SDE model underestimates the particle deposition for
small Stokes numbers St < 10. Nevertheless, the general features of the deposition
velocity curve as a function of the Stokes number are well captured: the deposition
velocity increases rapidly as St < 30 and then becomes almost independent of the
Stokes number.

The influence of fully elastic and fully inelastic collisions has been investigated,
too. An efficient collision detection algorithm has been developed and implemented
in the Lagrangian particle tracking code. Numerical results show that fully elastic
collisions do not enhance the particle deposition rate significantly, but rather change
the mechanism of particle deposition: particles move to the wall due to collisions
rather than due to free-flight diffusion. Fully inelastic collisions on the other hand
result in an increase of the mean particle Stokes number. This enhances the particle
deposition for small Stokes numbers. These results suggest that droplets (i.e. coa-
lescing particles) with a small Stokes number have a higher probability of depositing
on the wall than rigid particles of the same density and of the same size.
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The motion of small heavy particles in the turbulent boundary layer in a swirling flow
in a pipe is investigated numerically. The trajectories of the particles are calculated
using Lagrangian tracking. The Stokes drag force is the only force acting on the
particles. The turbulent carrier flow field at the position of the particle consists of
an axial velocity, an azimuthal velocity and random fluctuations in the wall-normal
direction. We present numerical results for the concentration of heavy particles in
this three-dimensional flow and we calculate the deposition velocity of particles on
the wall, and we show probability density functions for the wall-hitting velocity. In
addition, fully elastic collisions and fully inelastic collisions between the particles
have been implemented. We study the effect of these particle interactions on the
concentration profiles and on the deposition velocity.

8.1 Introduction

We study the configuration of a gas-liquid separator presented in section 1.2.3 in
which a region of high vorticity is generated in the center of the pipe. Contaminant
particles and droplets are expelled towards the wall due to the swirl in the center of the
pipe. Close to the wall, the dispersion of particles is expected to be affected by two
phenomena: the non-zero flow velocity in tangential direction in the boundary layer
and turbulent fluctuations in the flow, which are present in high Reynolds number
flows. In Chapter 3, Chapter 4 and Chapter 5, it has been shown that vortex filaments
can cause a largely non-uniform concentration of particles. The results of Chapter 7
on the other hand demonstrate that the motion of particles in the turbulent flow over a
flat plate is governed by particle-turbulence interactions, which cause the deposition
velocity of particles to be a strongly dependent on the particle Stokes number. In a
turbulent swirling flow in a pipe, both the mean swirl and the turbulent fluctuations
are expected to affect the deposition of heavy particles onto the wall. In the present
research, the goal is to determine the dispersion and deposition of heavy particles and
droplets in the turbulent boundary layer of a swirling flow in a pipe.
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Turbulent swirling flows through a straight pipe are highly complex. From an ex-
perimental study, Kitoh [41] obtained a good qualitative and quantitative description
of fully developed turbulent swirling flows in a straight circular pipe for Reynolds
numbers ranging from 40, 000 to 80, 000. His results suggest that three different re-
gions can be distinguished inside a pipe with radius R: a core region (0 < r/R < 0.5),
an annular region (0.5 ≤ r/R ≤ 0.9) and a boundary layer close to the pipe wall
(0.9 < r/R < 1.0). The core region is characterized by a strong swirl, which causes
the velocity field to be similar to a Rankine type of vortex. In the annular region,
the turbulent flow is affected by streamline curvature and skewness of the mean
velocity vector. This is illustrated by the fact that the direction of the flow∗, the
direction of the shear stress† and the direction of the velocity gradient‡ do not coin-
cide [41]. The boundary layer region, on the other hand, is hardly affected by the
swirl in the sense that the flow direction, the shear direction and the velocity gra-
dient direction do coincide. Close to the wall, the profile of the total mean velocity,
defined as the length of the combined mean velocities in axial and in tangential direc-
tion 〈Utot〉 ≡

√

〈ux〉2 + 〈uθ〉2, follows the well-known law-of-the-wall for turbulent
boundary layers, i.e. 〈Utot〉 ∼ (1/κ) ln η+ + B when the wall-normal coordinate η+ is
between 30 and 1000. Although Kitoh states that the values κ and B are modified as
the swirl number increases, for η+ . 200 the classical values κ = 0.41 and B = 5.5
apply. A plot of the total velocity in the near-wall region is given in Fig. 14 in Kitoh’s
paper [41], for a large number of experiments with three different swirl intensities.

Due to the complexity of the problem, numerical simulations of swirling flows
have been a challenge to turbulence modellers in past few decades. Due to the pres-
ence of secondary strains, a classical k – ε model is expected to perform poorly [92].
Modifications to this model, investigated by e.g. [74] and [92], do not result in a
significantly improved predictions of swirl decay. Therefore, in order to circum-
vent the computational difficulties associated to swirling pipe flows at high Reynolds
number, we concentrate on the wall region only. In this region, the mean velocity
profiles in axial and azimuthal direction are a function of the wall-normal distance
alone.

To the best of our knowledge, the motion of heavy particles through a turbulent
boundary layer in a swirling flow in a pipe has not yet been investigated. We study
the influence of the friction Reynolds number Reτ, which can be seen as a measure
of the turbulence intensity, and the swirl angle θS , which can be seen as a measure of
the swirl. In addition, the effect of particle interactions are investigated.

In section 8.2, we present the equations of motion for the particles, and the ve-
locity of the carrier flow at the position of the particle. In section 8.3 the numerical

∗The direction of the flow is characterized by the swirl angle θS = arctan(〈uθ〉/〈ux〉).
†The direction of the shear stress is characterized by the angle θss = arctan(〈uθur〉/〈uxur〉).
‡The direction of the velocity gradient is characterized by the angle θg = arctan

(

r ∂
∂r

( 〈uθ〉
r

) /

∂〈uθ〉
∂r

)

.
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methods are explained. Section 8.4 summarizes the results for heavy particles in the
turbulent boundary layer of a swirling flow in a pipe. First, the results are presented
for the case that particle interactions are neglected. Subsequently, the results for fully
elastically and of fully inelastically colliding particles are presented. Conclusions are
formulated in section 8.5.

8.2 Physical-mathematical model

8.2.1 Equations of motion of heavy particles

A Lagrangian approach is used for the calculation of the particle trajectories. The
particles are assumed to be small, and to good approximation spherical. The mass
loading of particles is assumed to be small enough so that the influence of the par-
ticles on the flow may be neglected, i.e. one-way coupling is used. Since gravity is
typically a minor effect in high-speed gas-liquid separators, it is neglected, as well as
added mass effects and Basset history forces. Although the Saffman lift force may
have some effect on the motion of heavy particles in turbulent boundary layers [38],
we neglect it here in order to concentrate on the effect of the particle inertia. The
equations of motion of a particle, in dimensionless form, are then:

dx+p
dt+
= u+p ,

du+p
dt+
=

1
St

(

u+(x+p , t
+) − u+p

)

, (8.1)

where x+p and u+p denote the position and the velocity of the particle, respectively, and
u+ is the carrier flow velocity at the position of the particle. This equation has been
made dimensionless by the kinematic viscosity of the carrier flow ν and the friction
velocity uτ, just like in Chapter 7.

The velocity of the carrier flow at the position of the particle, u+, is assumed to be
given by:

u+ = 〈u+x 〉ex + 〈u+θ 〉eθ + σ+ξer, (8.2)

where x is the coordinate in streamwise direction, r is the radial coordinate, and θ is
the tangential coordinate. The parameter ξ ≡ u+r /σ

+(r+) denotes the fluid velocity
in wall-normal direction divided by the root-mean-square of the velocity fluctuations
in wall-normal direction. The random variable ξ is determined from the following
stochastic differential equation:

dξ = − ξ
τ+

dt+ +
(dσ+

dr+
+
σ+

r+

)

dt+ +

√

2
τ+

dW, (8.3)

where W denotes the Wiener process. The term (dσ+/dr+ + σ+/r+) is introduced in
order to satisfy the well-mixedness condition, see section 6.6.4.
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In terms of the wall-normal distance η+ ≡ (R+ − r+), Eq. (8.3) becomes:

dξ = − ξ
τ+

dt −
(dσ+

dη+
− σ+

R+ − η+
)

dt +

√

2
τ+

dW. (8.4)

The flow over a flat plate corresponds to the case where R → ∞, so that the term
(σ+/(R+ − η+)) is zero. Thus, in this limit Eq. (7.5) is retrieved.

In order to solve Eq. (8.1), Eq. (8.2) and Eq. (8.3), the values for 〈u+x 〉(η+), 〈u+
θ
〉(η+),

σ+(η+) and τ+(η+) have to be known. In the present research, we take the mean ve-
locity profile in accordance with experimental results reported by Kitoh [41], which
are presented in the next section.

8.2.2 Averaged quantities in turbulent swirling flow in a pipe

A fully developed turbulent swirling flow in a straight pipe was investigated exper-
imentally by Kitoh [41]. In his experiments, the Reynolds number, based on the
average bulk velocity Um and the pipe diameter d = 2R, is varied from 40, 000 to
80, 000.

Kitoh defines the swirl intensity Ω, i.e. the non-dimensional angular momentum
flux, as:

Ω ≡
2
∫ R

0 〈ux〉〈uθ〉r2dr

R3Um
2 . (8.5)

If the swirl number is sufficiently high, i.e. Ω & 0.1, three different regions can be
distinguished in the velocity field in the pipe: a core region which is dominated by
a vortex flow, an annular region and a wall region. Although the flow in the annular
region is strongly skewed (i.e. the flow angle θS , the velocity gradient angle θg and
the shear stress angle θss do not coincide), the flow in the wall region (η+ < 1000)
is only slightly affected by the swirl. In particular, the velocity magnitude at the

wall, defined as 〈U+tot〉 ≡
√

〈u+x 〉2 + 〈u+θ 〉2, follows the log-law of the wall quite well,
especially for η+ < 200. This result is almost independent of the swirl intensity Ω
[41].

Thus, in the present research, where the motion of droplets in the near-wall re-
gion is investigated, it is justified to employ the law-of-the-wall. Only two addi-
tional parameters need to be introduced compared to the turbulent flow in a bound-
ary layer over a flat plate, namely (i) R+, the pipe radius compared to the boundary
layer thickness, which is by definition equal to the friction Reynolds number Reτ
[77], and (ii) the angle between the mean velocity vector and the axial direction
θS ≡ arctan(〈u+

θ
〉/〈u+x 〉). It is noted that in the boundary layer near the pipe wall, θS

is virtually independent of the distance to the wall η+.
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The total mean velocity 〈U+tot〉(η+) is assumed to follow the law-of-the-wall:

〈U+tot〉(η+) = η+, for η+ ≤ 5,

〈U+tot〉(η+) = a0 + a1η
+ + a2η

+2
+ a3η

+3
, for 5 < η+ < 30,

〈U+tot〉(η+) = 2.5 ln η+ + 5.5, for η+ ≥ 30, (8.6)

where the values of the constants a0, a1, a2 and a3 are given in Eq. (7.7). As a
consequence, 〈u+x 〉(η+) and 〈u+

θ
〉(η+) are:

〈u+x 〉(η+) = 〈U+tot(η
+)〉 cos θS , 〈u+θ 〉(η+) = 〈U+tot(η

+)〉 sin θS . (8.7)

The mean velocity fluctuations in wall-normal direction and the Lagrangian decor-
relation time are taken in accordance with the flow over a flat plate, discussed in

Chapter 7. Thus, we have for σ+ =
√

〈u+r 2〉:

σ+ =

√

〈u+r 2〉 = k1η
+2

1 + k2η+
k3
, (8.8)

where the constants k1, k2 and k3 are given in Eq. (7.8). Similarly, on the basis of Eq.
(7.10) we have for τ+(η+):

τ+ = 10, for η+ < 5,

τ+ = C0 +C1η
+ +C2η

+2
, for η+ ≥ 5, (8.9)

where the values of C0, C1 and C2 are given in Eq. (7.10).

8.3 Numerical methods

In the numerical simulations, a large number of particles are released in the boundary
layer. At the beginning of the simulation, all particles are uniformly distributed in
the domain. The physical domain is spanned by the following cylindrical coordinates
(x+, r+, θ): x+ ∈ [0, L+], r+ ∈ [(R+−h+),R+], and θ ∈ [0, θmax]; a sketch of the domain
is given in Fig. 8.1. The initial velocity of a particle in streamwise and in tangential
direction is equal to the local mean carrier flow velocity, whereas the initial velocity
in radial direction is randomly sampled from a normal distribution with variance
σ+(η+p(0)).

The positions of the particles in the course of time are determined by integrating
the equations of motion of heavy particles, Eq. (8.1), combined with the stochastic
differential equation for the turbulent flow field seen by the particle, Eq. (8.3). The
time integration is done by a fourth-order Runge-Kutta scheme with numerical time
step ∆t+ = 0.05.
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F 8.1: Cross-sectional view of the physical domain considered, for the turbulent
boundary layer of a swirling flow in a pipe.

When the wall-normal coordinate of the particle η+p is smaller than the particle
radius a+p , the particle hits the wall. When this happens, the particle is absorbed by
the wall and eliminated from the simulation. Also when a particle leaves the domain
at x+ = L+, it is eliminated. Each eliminated particle is replaced by a new particle
injected into the boundary layer at a randomly chosen position on the line x+ = 0. The
coordinates of the injection positions are chosen such that, on average, the particles
enter the turbulent boundary layer in a uniform concentration.

On the other hand, when a particle leaves the domain on the upper side of the
turbulent boundary layer (η+ > h+ = 200), an identical particle is reinjected into the
boundary layer on the same position but with an opposite wall-normal velocity.

Periodic boundary conditions are imposed in the θ-direction. Thus, when a particle
has a coordinate θp = arctan(z+p/y

+
p) > θmax, an identical particle is injected at θ = θp−

θmax, at the same axial and radial position, with the same axial, radial and tangential
velocity. Vice versa, if a particle has a coordinate θp < 0, an identical particle is
injected at θ = θp + θmax, again at the same axial and radial position, with the same
axial, radial and tangential velocity.

These boundary conditions ensure that a constant number of particles is maintained
in the entire domain. By doing so, the numerical solution for the distribution of
particles approaches a statistically stationary solution as the time of integration tends
to infinity.

8.3.1 Modelling of interparticle collisions

During each time step, inter-particle collisions are detected. The detection algorithm
is basically the same as was used in Chapter 7. For the collision detection, 200 boxes
are used in the x+-direction, and 100 boxes in the r+-direction; the domain is not
subdivided into boxes in the θ-direction. When a particle collision is detected, either
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a fully elastic collision is calculated using Eq. (7.12) or a fully inelastic collision is
determined from Eq. (7.13).

The effects of coalescence and of collisions are studied for a wide range of Stokes
numbers. In order to facilitate a meaningful comparison between the results for
different Stokes numbers, it is necessary that the mean volumetric concentration of
particles in the domain, Φ, remains constant.

If Φ is constant, the number density n̄ (i.e. the mean number of particles per unit
of volume) scales with the Stokes number as:

n̄ ∼ St−3/2, (8.10)

where it has been used that the Stokes number is quadratic in the particle radius
a+p and the total volume occupied by a certain number of particles scales as a+p

3.
Therefore, we adapt the value of θmax for each value of the Stokes number as follows:

θmax ∼ St3/2, (8.11)

so that the total number of particles in the domain Np given by:

Np = n̄
(

θmax

2π

)

L+
(

πR+2 − π(R+ − h+)2), (8.12)

is independent of the Stokes number. This is pracitcal, because too small a value of
Np yields unaccurate results, and too large a value of Np is computationally expen-
sive.

In the present research, we choose Np to be approximately 40, 000 for all Stokes
numbers tested, except one: for St = 1000 we are restricted to a lower value of Np

because of the maximum size of the physical domain. The length and the height of
the domain are chosen to be h+ = 200 and L+ = 20, 000, respectively. We use a
particle-to-fluid density ratio ρp/ρ = 770 in order to allow a good comparison to
the results presented in Chapter 7. The mean volumetric concentration of particles is
Φ = 10−5. Using these parameters, the desired value for θmax can be calculated for a
given Stokes number; the results are presented in Table 8.1.

8.4 Results

First, results are presented for the case that particle interactions are neglected. Sub-
sequently, results are given for the case where the particle interactions are modelled
as fully elastic collisions, or as fully inelastic collisions.

8.4.1 Heavy particles in turbulent swirling flow in a pipe

In this section, we present the numerical results for the motion of heavy particles in
the swirling flow in a pipe. The motion of the particles is modelled by the SDE model
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St Np θmax (radials)
0.5 38, 677 0.1693 × 10−3

1 39, 839 0.4790 × 10−3

5 40, 107 0.5355 × 10−2

10 40, 005 0.1515 × 10−1

20 40, 306 0.4282 × 10−1

30 40, 151 0.7867 × 10−1

50 40, 021 0.1693
100 39, 811 0.4790

1000 4, 058 1.5147

T 8.1: Domain size in tangential direction θmax for nine different values of the
Stokes number St. For the sake of completeness, the total number of particles in the
domain Np is presented as well.

as described by equations Eq. (8.1) and Eq. (8.3). Particle interactions are ignored for
the moment.

The concentration of particles with St = 5 after t+ = 10, 000 is presented as a
function of the coordinates (x+, η+) in Fig. 8.2a). The friction Reynolds number in
these simulations has been taken as Reτ = 4000 and the swirl angle as θS = π/6.
As can be seen, the particle concentration is generally higher in the lower half of the
domain. This can be explained by the fact that the heavy particles are expelled from
the regions far away from the wall due to the swirl. It is noted that the centrifugal
acceleration acting on the heavy particles is approximately equal to 〈u+

θ
〉2/r+, which

attains its maximum value in the domain considered at η+ = h+. On the other hand,
the particles with St = 5 do not have enough inertia to cross the viscous sublayer
directly. As a consequence of these two effects, the particle concentration is slightly
elevated in the region η+ . 100, but the particle concentration near the wall is not
particularly high. The particle concentration in the near-wall region is comparable to
the case that no swirl is present, see Fig. 7.7a).

The concentration of heavy particles with St = 50, again as a function of (x+, η+),
is shown in Fig. 8.2b). Apparently, the effect of the swirl on the trajectories of these
heavy particles is very important. It is clear that the particle concentration quickly
decreases in the downstream direction. Because virtually all particles with St = 50
quickly deposit onto the wall, no particles can be found in the region x+ & 7000. This
result can be fully explained by the high inertia of these particles; the particles are
forced towards the wall due to the tangential component of the carrier flow velocity,
and deposit onto the wall before they are decelerated by the lower velocities in the
carrier flow close to the wall. On the basis of this result, we can draw the conclusion is
that the effect of swirl is qualitatively more pronounced in the concentration profiles
of particles with large Stokes numbers than with small Stokes numbers.
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F 8.2: Concentration c(x+, η+) after time t+ = 10, 000 in a swirling flow in a
pipe, with particle interactions neglected; Reτ = 4000, θS = π/6. a) St = 5, b)
St = 50.
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F 8.3: Concentration profile c(x+, η+)/c̄(x+) of particles as a function of the
wall-normal coordinate in a swirling flow in a pipe, for three different values of the
swirl angle θS ; Reτ = 4000. Particle interactions are not taken into account. a)
St = 1, b) St = 10.

In order to quantify the effect of swirl, we compare the concentration profiles for
c/c̄ for three different values of the swirl angle θS , in Fig. 8.3. Here, the value of
c/c̄ has been calculated using Eq. (7.19) in the region 0.8L+ < x+ < L+. Evidently,
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the particle concentration is elevated close to the wall, especially in the case where
St = 10. Both for particles with St = 1 and for particles with St = 10, we see
that the particle accumulation becomes more important with an increasing value of
θS . The reason for this is that both the tangential velocity component of the carrier
flow and turbulent fluctuations force the particles to go to the wall. When they arrive
close to the wall, however, they are stopped by the low velocities of the carrier flow.
As a consequence, they relax in the viscous sublayer. Since the centrifugal force
on the particles increases with increasing values of θS , it is logical that the particle
accumulation increases with a higher swirl angle.
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F 8.4: Deposition velocity as a function of the Stokes number for particles in a
boundary layer in a swirling flow in a pipe, for three different values of θS ; Reτ =
4000. Particle interactions are not taken into account.

We now consider the deposition velocity in the turbulent boundary layer as a func-
tion of the Stokes number. The deposition velocity of particle Stokes numbers is
plotted in Fig. 8.4, for three values of θS , for Reτ = 4000. For the sake of conve-
nience, the result for the flow over a flat plate is plotted, too.

First of all, it is clear that the deposition velocity is higher in the swirling flow
than in the flow over a flat plate, for all Stokes numbers. The general shape of the
deposition velocity curve, however, has not altered very much in a swirling flow
compared to the flow over a flat plate: the deposition increases rapidly if St < 30, but
then increases only gradually as the Stokes number becomes larger.

It is noted that the value of the deposition velocity increases significantly with
increasing values of the swirl angle θS , especially for St > 30. This supports the



162 C 8. H        

hypothesis that the swirl has a large effect on the motion of large heavy particles, but
does not alter the motion of small heavy particles significantly.
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F 8.5: Deposition velocity as a function of the Stokes number for particles in a
boundary layer in a swirling flow in a pipe, for three different values of θS ; Reτ =
2000. Particle interactions are not taken into account.

In order to study the influence of Reτ, the deposition velocity for Reτ = 2000 is
presented in Fig. 8.5, for the same Stokes numbers as in Fig. 8.4. Comparison of Fig.
8.5 with Fig. 8.4 shows that the deposition velocity is considerably larger when Reτ =
2000. This can be explained from the fact that a lower value of Reτ corresponds to
a smaller radius of the pipe in wall units R+, i.e. a smaller radius of curvature of
the pipe. As a consequence, the heavy particles reach the wall more quickly and the
deposition velocity is enhanced.

The PDF of the wall-hitting velocity of the particles is presented in Fig. 8.6 for
Reτ = 4000, and in Fig. 8.7 for Reτ = 2000. It is clear that the particles with large
Stokes numbers have, on average, a larger impact velocity than particles with small
Stokes numbers. This is in agreement with the results presented above, which in-
dicates that the particles with large Stokes numbers cross the turbulent boundary
layer more easily than particles with small Stokes numbers. Besides, we see that
the wall-hitting velocity is higher when swirl angle θS is larger, and when the fric-
tion Reynolds number Reτ is lower. Thus, there is a positive correlation between
the deposition velocity of particles and the mean wall-hitting velocity: if the number
of particles reaching the wall increases, so does their (average) radial velocity at the
moment they hit the wall.
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F 8.6: Probability density function of the (dimensionless) wall-normal velocity
of particles on the moment that they hit the wall, for four different values of the Stokes
number; Reτ = 4000. a) θS = π/12, b) θS = π/6.

In summary, we have presented results for the concentration and the deposition
velocity of heavy particles in a swirling flow in a pipe. We have shown that particles
with a Stokes number of O(10) accumulate in the near-wall region, leading to an
elevated concentration by two orders of magnitude. Small particles with St ' 1 do



164 C 8. H        

u

P
D

F
(u

)

-1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

St = 10
St = 30
St = 50
St = 100

r,
p

r, p
+

+

a)

u

P
D

F
(u

)

-1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

St = 10
St = 30
St = 50
St = 100

r,
p

r, p
+

+

b)

F 8.7: Probability density function of the (dimensionless) wall-normal velocity
of particles on the moment that they hit the wall, for four different values of the Stokes
number; Reτ = 2000. a) θS = π/12, b) θS = π/6.

hardly ever reach the wall, whereas large particles with St > 30 move quickly towards
the wall. This result is supported by the curve for the deposition velocity: it increases
sharply between St = 1 and St = 30, and it increases much more moderately when
St > 30. A parameter study shows that the deposition velocity of particles on the wall
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is highest for a large value of the swirl angle θS , and for a low value of the friction
Reynolds number Reτ.

This result suggests that the particle separation in a swirling pipe flow, such as
presented in section 1.2.3, is probably most effective if the flow velocity in tangential
direction is relatively high, if the friction Reynolds number is relatively low, and if
the particles are relatively large compared to the viscous length scale.

8.4.2 The effect of fully elastic collisions

In order to determine the effect of fully elastic collisions, we study a swirling pipe
flow with Reτ = 4000 and θS = π/6 in some detail. The mean volumetric parti-
cle concentration in the domain is Φ = 10−5, which corresponds to a relative mass
loading of 0.77% in this situation where ρp/ρ = 770.

The particle concentration as a function of (x+, η+) after a time t+ = 10, 000 is
given in Fig. 8.8a), for a particle Stokes number of St = 5. In comparison with the
case in which particle interactions are neglected, see Fig. 8.2a), the colliding particles
are distributed more uniformly over the domain. This is in agreement with the results
presented in Fig. 7.11: due to collisions, some particles are prevented from entering
the viscous sublayer.

Fully elastic collisions have less effect on the distribution of larger particles, as
is visible in Fig. 8.8b), where the particle concentration is plotted as a function of
(x+, η+) after a time t+ = 10, 000 for a particle Stokes number of St = 50. These
particles go to the wall rapidly due to their inertia, and this behavior is not much
altered due to the incorporation of particle collisions. This can be understood by
noting that fully elastic collisions redistribute the velocities of individual particles,
but do not alter the total kinetic energy of the particles. Thus, the effect of a fully
elastic collision is relatively weak if all the particles move in approximately the same
direction.

The above results are confirmed by the concentration profiles c/c̄, which are plot-
ted in Fig. 8.9 for St = 1, St = 5 and St = 10. Indeed, comparison with Fig. 8.3b)
shows that the value of c/c̄ near the wall for St = 10 has decreased from approxi-
mately 100 to approximately 50. This illustrates that some particles are bounced back
into the flow by other particles before entering in the near-wall region.

In Fig. 8.10, the deposition velocity is presented for a range of Stokes numbers, for
the case that fully elastic collisions are accounted for. For the sake of comparison, the
result for the case that particle interactions are neglected (already presented in Fig.
8.4) is plotted as well. Apparently, the deposition has hardly altered with respect to
the no-collisions case.

Finally, the PDF of the wall-hitting velocity is plotted in Fig. 8.11. Comparison
with Fig. 8.6b) shows that the particle hitting velocity has not changed much due to
the incorporation of collisions. This supports the hypothesis formulated in section
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F 8.8: Concentration c(x+, η+) after time t+ = 10, 000 in a swirling flow in a
pipe; Reτ = 4000,θS = π/6. a) St = 5, b) St = 50. Fully elastic collisions are taken
into account; Φ = 10−5.
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F 8.9: Concentration profile c(x+, η+)/c̄(x+) of particles as a function of the
wall-normal coordinate in a swirling flow in a pipe, for three different values of
the Stokes number; Reτ = 4000, θS = π/6. Fully elastic collisions are taken into
account; Φ = 10−5.
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F 8.10: Deposition velocity as a function of the Stokes number for particles in
a boundary layer in a swirling flow in a pipe; Reτ = 4000. Fully elastic collisions
are taken into account; Φ = 10−5. For the sake of comparison, the result for the case
that particle interactions are neglected is shown as well.
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F 8.11: Probability density function of the (dimensionless) wall-normal veloc-
ity of particles on the moment that they hit the wall, for three different values of
the Stokes number; Reτ = 4000, θS = π/6. Fully elastic collisions are taken into
account; Φ = 10−5.

8.4.1, that the average wall-hitting velocity is in general positively correlated to the
deposition velocity.

8.4.3 The effect of coalescence

We now consider the influence of fully inelastic collisions on the concentration and
on the deposition of heavy particles in the turbulent boundary layer of a swirling flow
in a pipe characterized by Reτ = 4000 and θS = π/6. Just like in the simulations of
the fully elastic collisions, we take a mean volumetric particle concentration in the
domain Φ = 10−5 and a particle-to-fluid density ratio ρp/ρ = 770.

Fig. 8.12a) shows the concentration of particles as a function of (x+, η+) after a
time t+ = 10, 000, for particles which have a Stokes number of St = 5 when they
are injected. It is noted here that the concentration is defined as the volume occupied
by the particles divided by the volume occupied by the carrier flow; hence, in this
situation where particles may have different sizes due to coalescence, the normalized
concentration does not correspond to the normalized particle number density.

The result in Fig. 8.12a) is a bit different from the results in Fig. 8.2a) and Fig. 8.8a)
in that it shows a gradually decreasing concentration of particles in the streamwise
direction. This can be explained by the fact that the initially small particles may
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F 8.12: Concentration c(x+, η+) after time t+ = 10, 000 in a swirling flow in a
pipe; Reτ = 4000, θS = π/6. a) St = 5, b) St = 50. Fully inelastic collisions are
taken into account; Φ = 10−5. Note that the Stokes number corresponds to the Stokes
number of newly injected particles.
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grow due to collisions. As they grow, they become larger and they have a higher
probability of accumulating in the near-wall region. Since the particles require some
time to grow due to collisions, the elevated concentration is more pronounced for
large values of x+.

In Fig. 8.12b), the concentration of particles is plotted as a function of (x+, η+)
after a time t+ = 10, 000, for particles which have a Stokes number of St = 50 when
they are injected. This result is very similar to previous plots in Fig. 8.2b) and in Fig.
8.8b): these particles quickly deposit onto the wall. It seems that inelastic collisions
do not change this phenomenon, i.e. the particles with St = 50 continue their routes
towards the wall.
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F 8.13: Concentration profile c(x+, η+)/c̄(x+) of particles as a function of the
wall-normal coordinate in a swirling flow in a pipe, for three different values of the
Stokes number; Reτ = 4000, θS = π/6. Fully inelastic collisions are taken into
account (coalescence); Φ = 10−5. Note that the Stokes number corresponds to the
Stokes number of newly injected particles.

In Fig. 8.13, the concentration profile c/c̄ is plotted for the case that fully inelastic
collisions are implemented. Apparently, small particles with St = 1 accumulate close
to the wall due to the collisions. The concentration of larger particles, e.g. with
St = 10 is hardly altered. These results are in agreement with Fig. 7.16.

Due to the coalescence of particles, the mean particle diameter may increase in
the streamwise direction. As a result, the deposition velocity may vary with the
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F 8.14: Deposition velocity as a function of the axial coordinate x+ in a turbulent
boundary layer of a swirling flow in a pipe, for different values of the Stokes number;
Reτ = 4000, θS = π/6. Fully inelastic collisions are taken into account; Φ = 10−5.
Note that the Stokes number corresponds to the Stokes number of newly injected
particles.

streamwise coordinate x+. We determine the deposition velocity as a function of
x+ by calcultating the deposition velocity in each of the 25 segments in the stream-
wise direction. The result is plotted in Fig. 8.14, for seven different Stokes numbers
of newly injected particles. Apparently, for large Stokes numbers such as St = 50
and St = 1000 the deposition velocity curve has a maximum at x+ ' 4000. Since
the particle concentration is relatively high in the region where x+ < 4000, it can
be concluded that some of these large particles are forced towards the wall due to
interactions with other particles. For most other Stokes numbers, however, the depo-
sition velocity is almost a constant over the length of the boundary layer. This result
indicates that there is not much difference between the average size of particles in
different segments. Only if we reduced the size of the segments in streamwise di-
rection in which the deposition velocity is calculted, then perhaps some differences
in the deposition velocity could be observed in the first few segments for low and
moderate Stokes numbers.

On the basis of Fig. 8.14, we determine the deposition velocity for x+ → L+, tak-
ing into account fully inelastic collisions; the result is given in Fig. 8.15. Comparison
to the deposition velocity in the case that particle interactions are neglected shows an
important difference: the deposition velocity of particles with St < 10 has increased
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F 8.15: Deposition velocity as a function of the Stokes number for particles in a
boundary layer in a swirling flow in a pipe; Reτ = 4000, θS = π/6. Fully inelastic
collisions are taken into account;Φ = 10−5. Note that the Stokes number corresponds
to the Stokes number of newly injected particles.

by several orders of magnitude. Because the deposition velocity is found to be ap-
proximately constant along the length of the pipe, the elevated deposition velocity
must be mainly due to collisions in the region far away from the wall. In this region,
particles grow on to larger particles which subsequently deposit onto the wall.

Finally, we show the result for the PDF of the wall-hitting velocity in Fig. 8.16.
As can be seen, the PDFs are broader than in Fig. 8.6b). Because the impact speed
on the wall increases with the size of a particle, the result in Fig. 8.16 indicates that
particles with different sizes may reach the wall in the same simulation.

8.5 Conclusions

The motion of heavy particles in a turbulent boundary layer flow of a swirling flow
in a pipe has been investigated by a Lagrangian numerical simulation. The carrier
flow velocity along the trajectory of the particle is modelled by a stochastic method.
The stochastic model is selected to satisfy the well-mixedness condition in the limit
of infinitesimally small particles.

The results for non-interacting particles indicate that the particle concentration has
a maximum value close to the wall if the particle Stokes number St is O(10). The
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F 8.16: Probability density function of the (dimensionless) wall-normal velocity
of particles on the moment that they hit the wall, for three different values of the
Stokes number; Reτ = 4000, θS = π/6. Fully inelastic collisions are taken into
account; Φ = 10−5. Note that the Stokes number corresponds to the Stokes number
of newly injected particles.

deposition velocity, defined as the particle flux towards the wall divided by the mean
concentration of particles, is shown to increase rapidly with the particle Stokes num-
ber as long as St < 30; if on the other hand St ≥ 30, the particle deposition velocity
only increases slowly with the Stokes number. A parameter study shows that the de-
position velocity is enhanced by higher values of the swirl angle θS and lower values
of the friction Reynolds number Reτ.

The influence of fully elastic and fully inelastic collisions has been investigated,
too. Fully elastic collisions do not enhance the particle deposition rate significantly.
The particle concentration in the near-wall region decreases when fully elastic col-
lisions are taken into account. Fully inelastic collisions on the other hand result in
an increase of the mean particle Stokes number. This enhances the particle deposi-
tion by several orders of magnitude if the particles are initially very small, even for a
relatively low volumetric particle concentration such as 10−5. These results suggest
that droplets (i.e. coalescing particles) with a small Stokes number have a higher
probability of depositing on the wall than rigid particles of the same density and of
the same size.
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In this chapter, the conclusions of the present research are formulated. These conclu-
sions provide an answer to the research questions posed in section 1.3. In addition,
suggestions for further research are presented in section 9.2.

9.1 Summarizing conclusions

Chapter 2 provides a presentation of the equation of motion of heavy particles in a gas
flow, in the case of a sufficiently dilute mixture. Stokes drag and gravity are shown
to be the dominant forces. At small Stokes numbers, heavy particles (ρp/ρ � 1) have
been shown to always concentrate in strain regions, whereas they are expelled from
regions of high vorticity. An explicit criterion for particle accumulation is derived
in terms of the eigenvalues of the local rate-of-deformation tensor ∂ui/∂x j, in two-
dimensional flows as well as in three-dimensional flows.

In Chapter 3, we have shown that heavy particles may accumulate in a flow field
generated by a single vortex in a closed circular domain, with or without gravity
present. The point vortex is allowed to move freely, i.e. it follows a circular trajec-
tory at fixed radius at a constant angular velocity that follows from the configuration.
If gravity is not accounted for, the accumulation takes place in regions where the cen-
trifugal and the drag forces acting on the particles balance each other, thus causing an
equilibrium trajectory of the particles. A linear stability analysis shows that particles
are always attracted to a fixed point in the frame of reference moving with the vortex,
as long as the Stokes number is below a critical value. This critical Stokes number
is higher as the radial position of the vortex increases. If gravity is accounted for,
heavy particles accumulate onto a moving attraction point in the frame of reference
moving with the vortex. For small Stokes numbers and large Froude numbers, the
moving attraction point describes an elliptically shaped attraction trajectory in the
frame of reference rotating with the vortex. The results obtained from the inviscid
(potential) flow model are compared to the results from a numerical simulation in
which the flow field satisfies the two-dimensional Navier-Stokes equations for vis-
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cous flow. Although the viscous flow field is slightly different from the potential
flow field, heavy particles may accumulate close to an elliptic stagnation point in the
flow as well, just like in the case of potential flow.

In Chapter 4, the motion of heavy particles in a 2-vortex system on a disk has been
investigated. The results reveal that heavy particles may accumulate on a moving
attraction point within the circular domain. This means that all forces on the par-
ticle (the Stokes drag plus fictitious forces due to the formulation of the equations
of motion in a rotating frame of reference) are such that a particle is trapped on an
equilibrium trajectory as time tends to infinity. In order to quantify the effect of par-
ticle accumulation, the percentage of trapped particles has been calculated for a wide
range of initial vortex positions. From the results of these simulations, two main con-
clusions can be drawn: (i) the accumulation of heavy particles is closely related to the
presence of elliptic islands of regular passive tracer motion, and (ii) the percentage of
accumulated heavy particles is enhanced by more eccentric positions of the vortices
and by lower values of the Stokes number.

In Chapter 5, the motion of heavy particles in the three-dimensional flow induced
by a helical vortex filament has been considered. The flow field has been expressed
in terms of a stream function in helical coordinates. It is shown that heavy particles
may accumulate on a helically shaped equilibrium trajectory. The physical reason
for the particle accumulation is that the Coriolis force drives inertial particles to the
center of an elliptic region of the stream function, where the particles are trapped by
a balance between the Stokes drag and the centrifugal force. The level of particle
accumulation is closely related to the area of an elliptic region in the stream function.
These elliptic regions occur in six out of seven observed flow field topologies in a
flow induced by a helical vortex inside a circular pipe. Numerically determined Lya-
punov exponents indicate that the accumulation rate is approximately proportional to
the particle Stokes number, provided that the Stokes number is sufficiently small.

Recapitulating the results from Chapter 3, Chapter 4 and Chapter 5, we can con-
clude that if the particle distribution is sufficiently dilute, small heavy particles may
be trapped in one single point or on a single line. From the results presented in the
present thesis, it may be deduced that particles accumulate in those regions of the
flow field that are characterized by the following properties:

• passive tracers remain together for very long times;

• the eigenvalues of the local rate-of-deformation matrix, αi, satisfy the follow-
ing inequality:

∑

i

(

αi + Stα2
i

)

> 0 for all times, indicating that the particle
velocity field is compressed continuously.

These properties explain the accumulation of heavy particles in a Burgers vortex [56],
the flow in rotating two-dimensional flows such as may be found in protoplanetary
systems [15], as well as the flows presented in the present thesis.
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After having provided a general introduction to stochastic modelling of diffusion
processes employing a stochastic differential equation (SDE) in Chapter 6, in Chapter
7 results are shown for the motion of heavy particles in the turbulent boundary layer
over a flat plate. The turbulence is modelled by a modified Langevin equation. The
results indicate that if the particle Stokes number St is O(10) the droplet concentra-
tion has a maximum value close to the wall. The particle deposition velocity, defined
as the particle flux towards the wall divided by the mean concentration of particles, is
shown to increase rapidly with the Stokes number for 10 < St < 30. For St ≥ 30, the
particle deposition velocity is almost independent of the Stokes number. A compari-
son with experimental data from literature shows that the SDE model underestimates
the particle deposition for small Stokes numbers St < 10. Nevertheless, the general
features of the deposition velocity curve as a function of the Stokes number are well
captured: the deposition velocity increases rapidly as St < 30 and then becomes al-
most independent of the Stokes number for St ≥ 30. Numerical results show that
fully elastic collisions do not enhance the particle deposition rate significantly, but
rather change the mechanism of particle deposition: particles move to the wall due
to collisions rather than due to free-flight diffusion. Fully inelastic collisions on the
other hand result in an increase of the mean particle Stokes number, which enhances
the particle deposition for small Stokes numbers by several orders of magnitude.

The motion of heavy particles in the turbulent boundary layer of a swirling flow in
a pipe has been investigated in Chapter 8. It has been demonstrated that the particle
concentration close to the wall attains a maximum value if the particle Stokes num-
ber St is O(10). The deposition velocity increases rapidly with the particle Stokes
number as long as St < 30; if St ≥ 30, the particle deposition velocity only increases
slowly with the Stokes number. A parameter study shows that the deposition velocity
is enhanced by higher values of the swirl angle θS and by lower values of the friction
Reynolds number Reτ. The influence of fully elastic and fully inelastic collisions has
been investigated, too. Fully elastic collisions do not enhance the particle deposition
rate significantly. The particle concentration in the near-wall region decreases when
fully elastic collisions are taken into account. Fully inelastic collisions on the other
hand result in an increase of the particle deposition for small Stokes numbers by sev-
eral orders of magnitude, even for a relatively low volumetric particle concentration
such as 10−5. These results suggest that droplets (i.e. coalescing particles) with a
small Stokes number have a higher probability of depositing on the wall than rigid
particles of the same density and of the same size.



178 C 9. C  

9.2 Possible further research

9.2.1 Particles near regions of concentrated vorticity

The accumulation of heavy particles in attraction points is not restricted to the flow
fields studied in the present thesis. The flow induced by a steadily rotating vor-
tex soliton [31] is another example in which particle accumulation can probably be
observed. The (chaotic) motion of passive tracers around a the vortex soliton, cal-
culated recently by Kimura & Koikari [40], is very reminiscent of the passive tracer
plots presented in Chapter 4 for the 2-vortex system in a bounded domain; thus, a
group of passive tracers is shown to ‘remain together’ in a so-called KAM-torus for
a long time∗. In addition, the flow induced by a vortex solition is potential, since all
the vorticity is contained in the singular vortex soliton, and thus

∑

i

(

αi + Stα2
i

)

> 0.
Thus, heavy particle accumulation may be observed in the flow generated by a vortex
soliton, and, possibly, near vortex filaments of even more complex shape.

The fact that particles may accumulate in specific points near vortex filaments may
have an important impact on the distribution of particles in turbulent flows. Recently,
Biferale et al. [11] have shown that helically shaped vortex filaments can be found on
the smallest scales of a turbulent flow. On the basis of the results obtained in Chapter
5 of the present thesis, in turbulent flows heavy particles are expected to distribute
non-uniformly in the vicinity of these vortex filaments. More research is required in
order to investigate this further.

9.2.2 Stochastic modelling of particle-laden flows

In part II of the present thesis, particle motion in the turbulent flow field in boundary
layers has been investigated. The flow field was modelled by a stochastic differential
equation. In this method, the flow field is modelled along the trajectory of one single
particle at a time. As a result, at a certain instant in time two particles may be on
almost the same position, but with totally different velocities. This is in contrast with
the analysis presented in Chapter 2, which shows that the velocity of small heavy
particles is closely related to the local properties of the flow field. For the stochastic
modelling of mutually interacting heavy particles, these velocity correlations should
be taken into account. Thus, it is recommended to develop a stochastic model of
turbulent boundary layer flows that accounts for a correlation in the velocities of
two particles which are in each other’s proximity. Possibly, the separation vector
introduced in Chapter 2 can be used for this modelling.

In order to validate existing stochastic models describing the dispersion, deposi-
tion and mutual interactions of heavy particles, it would be interesting to study the

∗KAM tori, which are named after Kolmogorov, Arnol’d and Moser, denote a group of stable solu-
tions of a non-linear dynamical system; see e.g. the textbook by Ott [72].
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deposition and the coalescence processes in a Direct Numerical Simulation of a tur-
bulent channel flow. On the basis of the results reported in Chapter 7 and Chapter
8, it is expected that the deposition velocity of small droplets in a gas flow is vastly
enhanced by coalescence.

In the present thesis, in the particle equations of motion only Stokes drag and grav-
ity have been taken into account. Although this approach has the advantage of giving
results which are relatively easy to interpret, it is not always an accurate description
of the real physical situation. In particular, when the Stokes number becomes of or-
der 1000 in the turbulent boundary layer of a high-speed flow, the assumption that
the particle Reynolds number is O(1) or smaller, is not valid anymore; therefore, a
correction term to the Stokes drag coefficient should be included. In addition, the
Saffman lift force [86] is then expected to affect the motion of particles in flows close
to the wall, where the velocity gradients of the carrier flow are very high. The study
of particle deposition in a turbulent boundary layer by Kallio & Reeks [38] has shown
that the deposition velocity may be altered considerably in case the Saffman lift force
is included.

Finally, in the gas-liquid separators produced by Twister B.V., the flow field is
not only characterized by slipping droplets; condensation of vapor onto droplets is a
major effect, as well as the possible evaporation of droplets in regions of relatively
high temperature. The combined effect of condensation/evaporation and turbulence
on the size distribution of droplets and on their dispersion could be studied by incor-
porating a stochastic model for the turbulent fluctuations into a recently developed
method which determines the droplet size distribution in a condensing flow [29]. The
effect of temperature variations in the turbulent boundary layer could be invesitgated
by incorporating a model for the evaporation and growth of droplets in the stochastic
method used in Chapter 7 and Chapter 8. As a starting point, a temperature field in
the turbulent boundary layer could be prescribed a priori, just like has been done for
the velocity field. Models for the evaporation and growth of droplets could be taken
from literature, e.g. [52].
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SUMMARY

This thesis is devoted to the dynamics of dispersed small heavy particles (ρp/ρ � 1)
in swirling flows. Stokes drag and gravity are the dominant forces in the equation of
motion of heavy particles in a gas flow, in the case of a sufficiently dilute mixture.
At sufficiently small Stokes numbers, i.e. the dimensionless particle relaxation time,
heavy particles are concentrated in strain regions, whereas they are expelled from
regions of high vorticity. An explicit criterion for particle accumulation has been
derived in terms of the eigenvalues of the local rate-of-deformation tensor ∂ui/∂x j,
in two-dimensional flows as well as in three-dimensional flows.

The motion of heavy particles in a flow field generated by a single vortex in a
closed circular domain has been considered. This point vortex is allowed to move
freely, i.e. it follows a circular trajectory at fixed radius at constant angular velocity.
If gravity is neglected, heavy particles accumulate in one point inside the closed cir-
cular domain in the frame of reference moving with the vortex, provided the Stokes
number is below a critical value. This critical Stokes number is higher as the ra-
dial position of the vortex increases, i.e. the vortex is located closer to the wall. If
gravity is accounted for, heavy particles accumulate in a moving attraction point in
the frame of reference moving with the vortex. For small Stokes numbers and large
Froude numbers, the moving attraction point describes an elliptically shaped attrac-
tion trajectory in the frame of reference rotating with the vortex. The results obtained
from the inviscid (potential) flow model are in qualitative and quantitative agreement
with the results from a simulation in which the flow field satisfies the Navier-Stokes
equations for two-dimensional viscous flow.

Also in a 2-vortex system in a closed circular domain, heavy particles accumulate
on a moving attraction point within the circular domain in this configuration. This
accumulation of heavy particles is closely related to the presence of elliptic islands of
regular passive tracer motion. The percentage of accumulated heavy particles, which
is related to the size of the elliptic islands, is enhanced by more eccentric positions
of the vortices and by lower values of the Stokes number.

The dynamics of heavy particles in the three-dimensional flow induced by a helical
vortex filament have been studied, too. The flow field has been expressed in terms of
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a stream function in helical coordinates. It has been shown that heavy particles may
accumulate on a helically shaped equilibrium trajectory. The particle accumulation
is closely related to the area of an elliptic region in the stream function. These ellip-
tic regions occur in six out of seven found flow field topologies in the flow induced
by a helical vortex inside a circular pipe. Numerically determined Lyapunov expo-
nents indicate that the accumulation rate is approximately proportional to the Stokes
number, provided that the Stokes number is sufficiently small.

Subsequently, the motion of heavy particles in the turbulent boundary layer over a
flat plate has been investigated. The turbulent velocity fluctuations along the trajec-
tory of heavy particles are modelled by a modified Langevin equation, which is cho-
sen such that the well-mixedness condition is satisfied in the limit of infinitesimally
small heavy particles. The results indicate that the concentration of particles close
to the wall has a maximum value if the Stokes number St is O(10). The particle de-
position velocity, defined as the particle flux towards the wall divided by the mean
concentration of particles, is shown to increase rapidly with the Stokes number for
10 . St . 30. For St & 30, the particle deposition velocity is only weakly dependent
on the Stokes number. In general, these results are in agreement with experimental
data found in the literature, although the deposition velocity of particles is somewhat
underestimated for small Stokes numbers, i.e. St . 10. It has been shown that fully
elastic collisions do not enhance the particle deposition rate significantly, but rather
change the mechanism of particle deposition: particles move to the wall due to col-
lisions rather than due to free-flight diffusion. Fully inelastic collisions on the other
hand result in an increase of the deposition velocity of particles, at least for initially
small Stokes numbers, by several orders of magnitude.

Finally, the dynamics of heavy particles in the turbulent boundary layer of a swirling
flow in a pipe have been studied. In this flow, the particle concentration close to the
wall is increased if the Stokes number St is O(10); the maximum value of the con-
centration is higher than in the case of the flow over a flat plate. The deposition
velocity increases rapidly with the Stokes number if St . 30; if St & 30, the parti-
cle deposition velocity increases only slowly with the Stokes number. A parameter
study shows that the deposition velocity is enhanced by higher values of the swirl
angle θS and the friction Reynolds number Reτ. The influence of fully elastic and
fully inelastic collisions has been investigated, too. Fully elastic collisions do not
enhance the particle deposition rate significantly. The particle concentration in the
near-wall region decreases when fully elastic collisions are taken into account. Fully
inelastic collisions on the other hand enhance the deposition velocity of particles for
small Stokes numbers by several orders of magnitude, even if the volumetric particle
concentration is as low as 10−5. These results suggest that coalescing droplets with
initially a small Stokes number have a higher probability of depositing on the wall
than rigid particles of the same density and of the same size.



SAMENVATTING

Dit proefschrift is gewijd aan de beweging van gedispergeerde zware deeltjes (ρp/ρ �
1) in roterende stromingen. De Stokes weerstandskracht en de zwaartekracht zijn
de dominante krachten in de bewegingsvergelijkingen voor zware deeltjes in een
gasstroming, mits de deeltjesconcentratie voldoende laag is. Bij voldoende kleine
Stokes getallen, dat wil zeggen de dimensieloze relaxatietijd van een deeltje, worden
zware deeltjes weggeslingerd uit stromingsgebieden met hoge vorticiteit, en con-
centreren zij zich in stromingsgebieden waar de schuifspanningen hoog zijn. Een
expliciet criterium is afgeleid voor de concentratie van zware deeltjes in termen van
de locale deformatiesnelheidstensor ∂ui/∂x j, zowel in twee-dimensionale als drie-
dimensionale stromingen.

De beweging van zware deeltjes in een stromingsveld gegenereerd door één wervel
in een gesloten cirkelvorming domein is bestudeerd. De puntwervel is vrij, en volgt
derhalve een cirkelvormige baan met een constante straal en met constante hoek-
snelheid. Als de invloed van de zwaartekracht wordt verwaarloosd, dan verzamelen
zware deeltjes zich in één punt binnen het cirkelvormige domein in het assenstelsel
dat meeroteert met de wervel, indien het Stokesgetal beneden een zekere kritische
waarde ligt. Dit kritische Stokesgetal is hoger naarmate de radiale positie van de
wervel groter is, dus wanneer de wervel dichter bij de wand ligt. Als de zwaartekracht
niet wordt verwaarloosd, dan klonteren zware deeltjes samen in een bewegend attrac-
tiepunt in het assenstelsel dat meeroteert met de wervel. Voor kleine Stokesgetallen
en grote Froudegetallen beschrijft het bewegende attractiepunt een elliptische baan
in het assenstelsel dat meeroteert met de wervel. De resultaten van het niet-visceuze
(potentiaal) stromingsmodel zijn in kwalitatieve en kwantitatieve overeenstemming
met de resultaten van een simulatie waarin het stromingsveld voldoet aan de Navier-
Stokesvergelijkingen voor een twee-dimensionale visceuze stroming.

Ook in een 2-wervelsysteem in een gesloten cirkelvorming domein hopen zware
deeltjes zich op in een bewegend attractiepunt binnen het cirkelvormige domain.
Deze opeenhoping van zware deeltjes is sterk gerelateerd aan de aanwezigheid en
de grootte van elliptische eilanden waar gasdeeltjes een regelmatige beweging laten
zien. Het percentage van de deeltjes dat samenkomt wordt hoger naarmate de posities
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van wervels excentrischer worder, en naarmate het Stokesgetal lager wordt.

De dynamica van zware deeltjes in een drie-dimensionale stroming geı̈nduceerd
door een helische (spiraalvormige) werveldraad is eveneens bestudeerd. Het stro-
mingsveld voor dit geval is uitgedrukt in termen van een stroomfunctie in helische
coördinaten. Het blijkt dat er een spiraalvormige evenwichtsbaan is waarop zware
deeltjes zich kunnen concentreren. De opeenhoping van deeltjes hangt sterk samen
met het oppervlak van een elliptisch gebied in de stroomfunctie. Deze elliptische
gebieden zijn zichtbaar in zes van de zeven gevonden verschillende topologieën van
het stromingsveld dat geı̈nduceerd wordt door een helische werveldraad binnen een
cylindervormige pijp. Numeriek bepaalde Lyapunov-exponenten laten zien dat de
snelheid bij benadering waarmee deeltjes zich concentreren evenredig is aan het
Stokesgetal, mits het Stokesgetal voldoende klein is.

Vervolgens is de beweging van zware deeltjes in de turbulente grenslaag over
een vlakke plaat onderzocht. De turbulente snelheidsfluctuaties langs de baan van
zware deeltjes zijn gemodelleerd door middel van een gemodificeerde Langevin-
vergelijking, die zodanig is gekozen dat er voldaan wordt aan de zogenaamde ‘goede-
mengingsvoorwaarde’ in de limiet van oneindig kleine zware deeltjes. De resul-
taten laten zien dat de concentratie van deeltjes dichtbij de wand een maximale
waarde heeft als het Stokesgetal St = O(10). De depositiesnelheid van deeltjes,
die gedefinieerd is als de deeltjesstroom naar de wand toe gedeeld door de gemid-
delde concentratie van deeltjes in de stroming, blijkt sterk toe te nemen met het
Stokesgetal wanneer 10 . St . 30. Als St & 30, dan is de depositiesnelheid van
deeltjes vrijwel onafhankelijk van het Stokesgetal. In algemene zin komen deze re-
sultaten overeen met experimentele data in de literatuur, hoewel de depositiesnelheid
van deeltjes enigszins te laag wordt voorspeld voor kleine Stokesgetallen (St . 10).
Volledig elastische botsingen blijken de depositiesnelheid van deeltjes op de wand
niet significant te veranderen, hoewel er wel een effect zichtbaar is op de snelheid
waarmee deeltjes de wand raken: deeltjes komen dikwijls op de wand terecht ten
gevolge van een botsing in plaats van ten gevolge van turbulente diffusie. Volledig
inelastische botsingen daarentegen resulteren in een verhoging van de depositiesnel-
heid van deeltjes voor initieel kleine Stokesgetallen met enkele ordes van grootte.

Ten slotte is de dynamica van zware deeltjes in de turbulente grenslaag van een
roterende stroming in een pijp bestudeerd. In deze stroming neemt de deeltjescon-
centratie dichtbij de wand toe indien het Stokesgetal St isO(10); de maximale waarde
van de concentratie is hoger dan in het geval van een stroming over een vlakke plaat.
De depositiesnelheid stijgt snel met het Stokesgetal indien St . 30; indien St & 30
neemt de depositiesnelheid van deeltjes slechts langzaam toe met het Stokesgetal.
Een parameterstudie laat zien dat de depositiesnelheid hoger is bij hogere waarden
van de rotatiehoek θS en het Reynoldsgetal gebaseerd op de wrijving met de wand
Reτ. De invloed van volledig elastische en van volledig inelastische botsingen is ook
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onderzocht. Volledig elastische botsingen verhogen de depositiesnelheid van deeltjes
niet significant. Wel daalt de deeltjesconcentratie in gebieden dichtbij de wand wan-
neer de botsingen volledig elastisch zijn. Volledig inelastische botsingen verhogen
daarentegen de depositiesnelheid van deeltjes voor kleine Stokes getallen met enkele
enkele ordes van grootte, zelfs als de volumetrische deeltjesconcentratie laag is, bij-
voorbeeld 10−5. Deze resultaten suggereren dat coalescerende druppels met kleine
Stokesgetallen een grotere waarschijnlijkheid hebben om op de wand te komen dan
onvervormbare deeltjes met dezelfde afmeting als de initiële afmeting van de drup-
pels en met dezelfde dichtheid.
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