
Droplet size distribution in condensing flow

R.S.R. Sidin



Droplet size distribution in condensing flow
R.S.R. Sidin

Cover: R. Sidin

Thesis University of Twente, Enschede - With summary in Dutch.
ISBN 978-90-365-2865-8

Copyright c© 2009 by R.S.R. Sidin, The Netherlands



DROPLET SIZE DISTRIBUTION IN CONDENSING FLOW

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 28 augustus 2009 om 13.00 uur

door

Ryan Steeve Rodney Sidin

geboren op 27 maart 1977
te Paramaribo



Dit proefschrift is goedgekeurd door de promotor:

prof. dr. ir. H.W.M. Hoeijmakers

en de assistent-promotor:

dr. ir. R. Hagmeijer



TABLE OF CONTENTS

1 Introduction 1
1.1 Phenomenology of condensation . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation, objective and scope of research . . . . . . . . . . . . . 3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Two-phase mixture model for condensing flow 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Single component condensation . . . . . . . . . . . . . . . . . . . 6

2.3.1 Description of constituent phases . . . . . . . . . . . . . . 6
2.3.2 Droplet mass balance . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Droplet momentum balance . . . . . . . . . . . . . . . . . 10
2.3.4 Droplet energy balance . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Mixture thermodynamics . . . . . . . . . . . . . . . . . . . 20
2.3.6 Mixture transport equations . . . . . . . . . . . . . . . . . 24

2.4 Multi-component condensation . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Description of constituent phases . . . . . . . . . . . . . . 31
2.4.2 Definition of mass densities and compositions . . . . . . . . 32
2.4.3 Mixture thermodynamics . . . . . . . . . . . . . . . . . . . 35
2.4.4 Mixture transport equations . . . . . . . . . . . . . . . . . 36

3 Evaluation of master equations in condensing flow 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Master equations for the droplet size distribution . . . . . . . . . . 39

3.2.1 The Kinetic Equation (KE) . . . . . . . . . . . . . . . . . . 39
3.2.2 The Fokker-Planck Equation (FPE) . . . . . . . . . . . . . 43
3.2.3 The General Dynamic Equation (GDE) . . . . . . . . . . . 45

3.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Description of test cases . . . . . . . . . . . . . . . . . . . 48



ii Table of Contents

3.3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Equilibrium distributions . . . . . . . . . . . . . . . . . . . 53
3.4.2 Test case 1: nucleation pulse experiment . . . . . . . . . . . 53
3.4.3 Test case 2: expanding nozzle flow . . . . . . . . . . . . . . 59
3.4.4 Sensitivity analysis for the Kinetic Equation . . . . . . . . . 69

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Reduced models for single component condensation 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Moments and moment equations . . . . . . . . . . . . . . . . . . . 75

4.2.1 Moment equations based on the kinetic equation . . . . . . 75
4.2.2 Moment equations based on the general dynamic equation . 78

4.3 Closure methods for the moment equations . . . . . . . . . . . . . 80
4.3.1 Fourier reconstruction . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Closure Requirements . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Hill’s Method of Moments . . . . . . . . . . . . . . . . . . 84
4.3.4 The quadrature method of moments (QMOM) . . . . . . . . 86
4.3.5 The direct quadrature method of moments (DQMOM) . . . 96

4.4 Numerical evaluation of closure methods . . . . . . . . . . . . . . . 98
4.4.1 Global procedure . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Evaluation of a flow model with binary condensation 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 The kinetic equation for the binary size distribution . . . . . . . . . 105
5.3 Mixture properties and fluid dynamics equations . . . . . . . . . . . 110
5.4 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Description of test cases . . . . . . . . . . . . . . . . . . . 113
5.4.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.1 Test case 1: verification of quasisteady-state and transient

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.2 Test case 2: nozzle flow with binary condensation . . . . . . 123

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Droplet condensation in synthetic turbulence 135
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Physical-mathematical model . . . . . . . . . . . . . . . . . . . . . 139



Table of Contents iii

6.2.1 Flow field composed of random Fourier modes and related
droplet trajectories . . . . . . . . . . . . . . . . . . . . . . 139

6.2.2 Two-way coupled droplet condensation model . . . . . . . 143
6.2.3 Simplified droplet condensation model . . . . . . . . . . . 146

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.1 Statistics of droplet dispersion . . . . . . . . . . . . . . . . 147
6.3.2 Results for simplified condensation model . . . . . . . . . . 148
6.3.3 Results for two-way coupled condensation model . . . . . . 157

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusions and perspective 167
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References 171

A Fluid properties 183
A.1 Properties of water (H2O) . . . . . . . . . . . . . . . . . . . . . . . 183
A.2 Properties of heavy water (D2O) . . . . . . . . . . . . . . . . . . . 184
A.3 Properties of nitrogen (N2) . . . . . . . . . . . . . . . . . . . . . . 185
A.4 Properties of methane (CH4) . . . . . . . . . . . . . . . . . . . . . 185
A.5 Properties of atmospheric air . . . . . . . . . . . . . . . . . . . . . 185
A.6 Properties of ethanol/hexanol mixture . . . . . . . . . . . . . . . . 186
A.7 Properties of ethanol/propanol mixture . . . . . . . . . . . . . . . 186

B Classical nucleation theory and droplet growth 189

Summary 191

Samenvatting 193

Acknowledgment 197

About the author 199





1 C
h
a
pt
e
r

Introduction

This chapter gives a brief introduction on the subject of condensing flow.After dis-
cussing its relevance with respect to applications in both nature and industry, the
scope and objectives of the present investigation are formulated, and an outline of
the work is given.

1.1 Phenomenology of condensation

The phenomenon of condensation is best known from the extensive cloud systems
which dwell in the earth’s atmosphere, or from the liquid droplets that form on a
cooled surface. Describing this phenomenon as simply ”the process of a gas chang-
ing to a liquid” [109] does no justice to the complex physics that takes place during
this transformation process. This is especially the case for the condensation in atmo-
spheric clouds, in which there is a diverse interaction between various thermal and
chemical processes [101].

The initiation of the condensation process is traditionally referred to as nucle-
ation, for which a distinction can be made between (i) homogeneous nucleation, and
(ii) heterogeneous nucleation. In homogeneous nucleation, stable clusters of vapor
molecules are formed due to random thermal fluctuations in the supersaturated vapor
phase, whereas in heterogeneous nucleation, the vapor molecules attachthemselves
to aerosol particles which act as condensation nuclei. Although the process of cluster
formation takes place in any vapor, be it saturated or not, it is only in the super-
saturated state that a minimum droplet size exists beyond which the probability of
growth is close to certainty. Supersaturation thus typifies the condensation process,
and usually, it is quantified by means of the saturation ratioS,

S =
pv

ps(T)
, (1.1)

wherepv is the vapor pressure, andps(T) is the saturation vapor pressure, which is
strongly dependent on temperature. The minimum cluster size for droplets to be sta-
ble is referred to as the critical size, whereas smaller, and larger clustersare referred to
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as being subcritical, and supercritical, respectively. From a thermodynamic perspec-
tive, the critical size can be related to an energy barrier which a cluster must cross,
in order to continue its growth to a macroscopic droplet. The number of droplets that
cross over this barrier per unit time, and per unit volume of vapor, is referred to as
the nucleation rate.

The distinguishing feature between homogeneous and heterogeneous nucleation is
that the former generates its own condensation nuclei from the vapor phase, whereas
the latter requires foreign particles to activate the condensation process.As the energy
barrier associated with the latter is typically much lower than that of the former,
this means that for equal nucleation rates, much higher levels of supersaturation in
the vapor phase are required for homogeneous nucleation than for heterogeneous
nucleation. This is reflected in the dominating presence of heterogeneous nucleation
in the natural world, witnessed e.g. in atmospheric clouds (see Figure 1.1.a), whereas
homogeneous nucleation is usually found in engineering applications, suchas in e.g.
high speed aerodynamics (see Figure 1.1.b).

(a) (b)

Figure 1.1: Examples of heterogeneous and homogeneous nucleation: (a) rain
clouds, initiated by heterogeneous nucleation, gathering above the Suriname River;
(b) condensation of water vapor above the wings of an F-22 jet fighter,initiated by
homogeneous nucleation (U.S. Air Force photo).

Once stable droplets have been formed, the subsequent condensational growth
stage takes place, in which the probability of spontaneous formation or disintegration
of droplets is close to zero. The droplets that enter this stage grow in a deterministic
fashion due to the steady influx of vapor molecules that is captured from thesupersat-
urated vapor phase. This then results in a decrease of the vapor pressurepv, and a cor-
responding decrease of the supersaturation. Additionally, the transition from vapor
to liquid releases latent heat, which causes both the droplet and vapor temperatures
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Figure 1.2: Schematic layout of the Twister Supersonic Gas Conditioner (image cour-
tesy of Twister B.V.).

to rise. This also results in an increase of the saturation pressure, which,according
to Eq. (1.1), means that the saturation level of the vapor is further decreased. As a
consequence, the growth rate of droplets steadily decreases, which means that the
condensation process is self-regulated.

1.2 Motivation, objective and scope of research

The main motivation for this investigation is the Twister Supersonic Gas Conditioner,
which is a revolutionary apparatus to remove undesired components from natural gas.
The novelty of this device is that it uses condensation to first convert the undesired
components to liquid droplets, after which a centrifugal separation step is carried out
(see Figure 1.2). The physics that takes place in such devices is very complex, as the
flow is both three-dimensional and compressible, and, under certain conditions, even
unsteady. Furthermore, it is expected that turbulence could also play a significant role
in the condensation and separation of droplets. With respect to the droplets, it is noted
that there is a wide variation of scales, as droplets typically start at the nanometer
size range (10−9m), and eventually grow to the micrometer-range (10−6m). Within
this range of sizes, the mathematical models describing the condensation process, the
motion of the droplets, as well as droplet-droplet interactions (e.g. coalescence), can
change considerably.

Evidently, one can only focus on a limited number of physical phenomena at a
time, which is the strategy that has been followed in previous investigations on the
subject (see e.g. [48], [91], [79], and [66]). In the present investigation the focus is
on the initial stage of condensation, when droplets are so small that they movelike
passive tracers. More specifically, the work aims to answer the following questions:
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1. how accurate are existing condensation models in predicting the evolution of
the droplet size distribution (DSD) and the flow field variables in rapidly ex-
panding flows?

2. can the balance equation which governs the evolution of the DSD (the so-
called master equation) be replaced by computationally more efficient reduced
models to approximate condensation effects in rapidly expanding flow with
sufficient accuracy?

3. how does the addition of turbulence influence the condensation process in gen-
eral, and in particular, the evolution of the DSD?

The focus is primarily on the initial stage of condensation, where nucleation plays
a central part. The majority of the systems investigated concerns rapidly expanding
nozzle flows, for which homogeneous nucleation in an inviscid flow is studied. The
influence of turbulence is limited to an investigation of condensing flow in a synthetic
turbulent flow field.

1.3 Thesis outline

The outline of this thesis is as follows:

- In chapter 2, a two-phase mixture model is presented, in which the focus ison
the thermodynamics and governing transport equations for vapor/liquid mix-
tures typically encountered in flows with single- or multi-component conden-
sation.

- In chapter 3, an evaluation of three master equations is presented, whichde-
scribe the evolution of the DSD in single-component condensing flow. Fur-
thermore, the sensitivity of the condensation model to physical uncertaintiesis
investigated.

- In chapter 4, reduced models based on the so-called method of moments for
single-component condensing flow are evaluated.

- In chapter 5, a model for two-component (binary) condensing nozzleflow is
evaluated, and the sensitivity to specific physical uncertainties quantified.

- In chapter 6, an excursion is conducted into the field of turbulent condens-
ing flow, in which a model-system is studied that mimics the condensation in
atmospheric systems.

- Finally, the main conclusions of this work are summarized in chapter 7, fol-
lowed by a review of remaining challenges and suggestions for future research.
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for condensing flow

In this chapter the thermodynamic model and transport equations are presented for
a two-phase liquid/vapor mixture in transonic condensing flow. First a description is
given of the various constituent phases that make up the mixture, after which the gov-
erning equations for single component condensing flow are derived. Subsequently,
the two-phase fluid model for multi-component condensing flow is presented.

2.1 Introduction

Following the common terminology used in the literature [15], [25], [47], condensing
flows such as the type discussed in this investigation, can be categorized astwo-phase
dispersed gas-liquid flows, with two-way coupling between the gaseous carrier phase
and the dispersed droplet phase. The classical approach in describing the flows of
dispersed two-phase mixtures is to use a so-called two-fluid model, where separate
transport equations are derived for the continuous phase and the dispersed phase. In
condensing flow, the governing equations are usually written for the entiregas/liquid
mixture, rather than for each phase separately. The mixture transport equations are
augmented by equations which describe the evolution of the liquid phase, either in
terms of a detaileddroplet size distribution(DSD) [130], [147], [149], [112], or in
terms of its averaged properties via the so-calledmethod of moments(MOM), [1],
[42], [45], [68]. In this chapter, the DSD will be employed, and discussion of the
MOM will be postponed until chapter 4. The mixture transport equations, aswell as
all thermodynamic relationships, are based on the assumption that each fluid element
contains representative fractions of all phases, so that a continuum approach may be
employed to describe the flow of the mixture. For transonic condensing nozzle flows,
homogeneous nucleation yields total droplet number densities of about 1018m−3 [15],
corresponding with inter-droplet separation distances ofO(10−6m). This is much
smaller than the typical length scales of the flow, and therefore, the use of acontinuum
mixture model is justified.

Contrary to rapidly expanding nozzle flows, the condensation process inatmo-
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spheric clouds is characterized by inter-droplet separation distances of O(10−3m),
which are comparable to the smallest scales (Kolmogorov scale) of the turbulent flow
in which they are present, [101]. A continuum approach is thus less appropriate for
this type of problem, and instead, a combined Eulerian-Lagrangian trajectory model
is adopted, which is discussed in chapter 6.

2.2 Notation

In the remainder of this thesis, the Einstein summation convention applies to indicesi
and j only. Each variable related to either the carrier gas, vapor, or a single droplet is
assigned the index ’c’, ’ v’, or ’n’, respectively. Properties associated with the entire
gas phase (i.e., including all carrier gas and vapor components) are assigned the index
’g’, whereas properties associated with the liquid dispersion are assigned the index
’ l’. To avoid any confusion regarding the use of the symbol ’ρ’, the following notation
convention will be maintained throughout this thesis:

- ’ρ’ refers to amass density, i.e., themass of a substance per unit volume;

- ’ ρ̂’ refers to anumber density, e.g.,ρ̂n is the number of droplets of size n per
unit volume;

- ’ ρ̌’ refers to aspecific number density, ρ̌ ≡ ρ̂/ρ, whereρ is the mass density
of the liquid/gas mixture. Thus, ˇρn denotesthe number of droplets of size n per
unit of mixture-mass.

2.3 Single component condensation

2.3.1 Description of constituent phases

In single component condensation, the mixture generally consists of a dispersed liq-
uid phase and a multi-component gas phase, in which a single condensable vapor is
present. All non-condensing constituents of the gas phase are lumped intoa single
fluid which is referred to as the carrier gas, whereas the termvapor is specifically re-
served for thecondensablecomponent. For low pressures (i.e., typically a few bars,
[66]), the carrier gas does not influence the condensation mechanism directly. Its
role is predominantly limited to driving the rapid expansion of the flow so that strong
adiabatic cooling and, consequently, high levels of supersaturation can be achieved,
which are necessary for homogeneous nucleation to occur.

For rapidly expanding flows, the creation of droplets proceeds via the mechanism
of homogeneous nucleation, and therefore, newly generated droplets may start off at
the sub-nanometer length scale (O(10−10m)). Such droplets typically contain less
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than a few tens of molecules, and would, therefore, require a descriptionat the
molecular (or microscopic) level. The rapid growth of such droplets resultsin a
poly-disperse system where sizes ofO(10−7m) are attained, which is a macroscopic
scale. For such large droplets, the droplet temperature is a well defined property,
as it is based on an ensemble average of the kinetic fluctuation energy takenover a
sufficient number of molecules. For the microscopic droplets, however, the number
of molecules in a droplet is so small that the concept of a droplet temperaturebe-
comes meaningless. This implies that a hybrid condensation model would actually
be required, encompassing a microscopic description for the small dropletsand a
macroscopic description for the larger ones. Such a model would be verycomplex,
and therefore, condensation models are usually derived from the macroscopic point
of view, where it is assumed that the macroscopic model can be extrapolateddown
to the microscopic length scales. In this thesis, the macroscopic modelling approach
will be adopted, because it is the most detailed model that is computationally still
feasible for engineering applications.

The droplets resulting from single component condensation consist of a single
chemical component, and are usually characterized by size only. The sizeof a droplet
can be expressed in various ways, e.g., by using the number of moleculesn which
it contains, its massmn, or its equivalent spherical radiusrn. In general, however,
size may not be sufficient to distinguish droplets from one another, as two droplets
occupying the same fluid element may be of equal size, but may still differ in shape,
temperature, or velocity. For sub-micron droplets, the slip velocity is usually small
enough to render the drag force exerted by the carrier gas to be negligibly small com-
pared to capillary forces associated with the surface tension. As a consequence, such
droplets maintain a shape that is nearly spherical. Although the term ”spherical” is
meaningless when a sub-nanometer droplet is considered, in view of the macroscopic
modelling approach, even the smallest of droplets are assumed to have a spherical
shape. The exchange of energy and momentum between the droplets and the gas
phase may cause each droplet to have a distinct temperatureT′ and velocityv, which
can be entirely different from the gas temperatureT and gas velocityu. Therefore,
it is no longer appropriate to use droplet size only for characterization ofthe dis-
persed phase. Hence, instead of the mono-variate droplet size distribution, one rather
needs to adopt a multi-variatedroplet property distributionfunction (DPD) instead,
where the droplet size (e.g.,n), the three velocity componentsv j , and the temperature
T′ constitute the set of independent variables, together with the position vectorx in
physical space and timet.

To describe the spatio-temporal evolution of the DPD, it is convenient to introduce
the seven-dimensional phase spaceΩξ, with the corresponding position vectorξ, de-
fined as:ξ ≡ (n,T′, v, x)T . The corresponding DPD is denoted by the scalarΛ(ξ, t).
It should be recognized that the droplet sizen is an integer (n ∈ N

+), whereas the tem-
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peratureT′ and velocityv vary continuously:T′ ∈ R
+, v ∈ R

3. To emphasize the dis-
crete nature of the distribution in size space, the DPD is replaced by a semi-discrete
distributionΛn(T′, v, x, t), wheren = 2,3, ... The interpretation given toΛn(T′, v, x, t)

is conveniently expressed in an integral sense, i.e.,
∫

ΩT

∫

Ωv

Λn(T′, v, x, t)dvdT′ repre-

sents the volumetric concentration of droplets of sizen at positionx and timet, with
temperatures lying in the intervalΩT , and velocities in the intervalΩv. Based on this
interpretation it is recognized that the number density ˆρn of n-droplets is given by:

ρ̂n(x, t) =
∫

R+

∫

R3

Λn(T′, v, x, t)dvdT′. (2.1)

The total droplet concentrationNl(x, t) then follows as:

Nl(x, t) =
∞
∑

n=2

ρ̂n, (2.2)

whereas the total liquid mass densityρl(x, t) (i.e., for the whole liquid dispersion) is
given by:

ρl(x, t) = m1

∞
∑

n=2

nρ̂n, (2.3)

with m1 the mass of a single vapor molecule.Nl andρl represent moments of the DPD
and provide only a global characterization of the dispersion. In engineering models,
knowledge of such moments is frequently deemed sufficient to estimate the impact
of condensation on the flow field with reasonable accuracy (see chapter4). This as-
sumption warrants verification, however, which can only be done by makinga direct
comparison with a detailed solution for the DPD. Given the large set of independent
variables associated with the DPD, it is understandable that only a limited numberof
investigations have attempted to address this problem. Fortunately, it is possibleto
reduce the number of independent variables for the DPD, when the scope is limited
to the type of condensing flow considered in the present investigation. In order to de-
termine the conditions under which droplet temperature and velocity can be removed
from the list of independent variables, it is necessary to consider the exchange of
mass, energy, and momentum between the droplets and the ambient phase.

2.3.2 Droplet mass balance

The mass balance for a single condensing droplet with control volumeVn is given by:

dmn

dt
= −

∫

An

ρv(x, t)w j(x, t)ñ j(x, t)dA (2.4)
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wheredmn/dt is the mass growth rate of ann-droplet,w represents the velocity of
the vapor relative to the moving control surfaceAn, and wherẽn is the outward unit
normal vector onAn. The control surface coincides with the droplet surface and fol-
lows its movement as the droplet grows (or shrinks). The right-hand side of Eq. (2.4)
is the nett condensation (or evaporation) flux, which depends on the droplet surface
temperature, the vapor temperature and the local supersaturation. The mass density
of the liquid inside the droplet is generally a function of its temperatureT′ and size
n. The latter dependency will be neglected for droplets consisting of a singlecompo-
nent, meaning that the bulk liquid densityρb(T′) will be used for single-component
droplets.

The droplets generated during homogeneous nucleation are usually much smaller
in size than the mean free path lengthλg of the gas/vapor molecules. The Knudsen
number, which is defined as:

Kn ≡
λg

2rn
, (2.5)

is therefore very large, and thus the condensational growth of dropletstakes place in
the so-called free molecular (or kinetic) regime.

The mass balance Eq. (2.4) can be rewritten as:

dmn

dt
= ( fn − bn)m1, (2.6)

where fn is the rate at which vapor molecules (or monomers) impinge and stick on
the droplet surface, whereasbn is the rate at which monomers are emitted from the
droplets due to evaporation. In the free molecular regime,fn andbn are expressed as
(see e.g., [52]):

fn = fn(T, ρv) = ζ
v
n
ρv

m1

√
T, (2.7)

bn = bn(T′) = ζv
n−1

ρs
v,n(T′)

m1

√
T′, (2.8)

with ζv
n given by:

ζv
n = a1(n1/3 + 1)2

√

n+ 1
n

√

kB

2πm1
, (2.9)

with kB the Boltzmann constant,a1 the effective molecular surface area, andρs
v,n the

saturated vapor density over the curved surface of a droplet of sizen and temperature
T′, [52]. The impingement ratefn thus depends on the gas/vapor temperature and
mass density, whereas the evaporation ratebn depends on the droplet properties only.

During droplet growth, the expression for the growth rate changes, asthe conden-
sation process gradually shifts from the free molecular regime (Kn≫ 1) towards the
continuum regime (Kn ≪ 1). Throughout the years, several models have been de-
veloped, which attempt to describe the growth rate in both the kinetic and continuum
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regimes, as well as in the transition regime between these two extremes. Most no-
table are the models presented by Gyarmathy in [39], and by Young in [147], [148].
The interested reader is referred to these works for a detailed exposition.

2.3.3 Droplet momentum balance

For a single condensing droplet moving within a gaseous carrier phase, the momen-
tum balance is given by:

dmn

dt
vi +mn

dvi

dt
= Fi −

∫

An

ρv(x, t)(v′i (x, t) + wi(x, t))w j(x, t)ñ j(x, t)dA (2.10)

whereF is the force exerted by the carrier fluid on the droplet,v is the velocity of the
droplet, i.e.,

v = v(t) =
dx′(t)

dt
, (2.11)

with x′(t) the droplet position, and wherev′(x, t) is the velocity of the liquid phase
at the droplet surface. For sub-micron droplets moving at low slip velocities, i.e.,
||v−u||/||u|| ≪ 1, withu the gas velocity, the shape is nearly spherical and the internal
recirculation flow is negligibly small. As a consequence, the droplet momentum
balance can be expressed as:

dmn

dt
vi+mn

dvi

dt
= Fi−vi

∫

An

ρv(x, t)w j(x, t)ñ j(x, t)dA−
∫

An

ρv(x, t)wi(x, t)w j(x, t)ñ j(x, t)dA,

(2.12)
and additionally, the forceF can be calculated using one of the many semi-empirical
expressions available for the drag experienced by rigid spherical particles [22]. From
the mass balance in Eq. (2.4) it is recognized that the first term on the left-hand side
of Eq. (2.12) cancels the second term on the right-hand side, which leadsto the more
common form of the momentum balance:

mn
dvi

dt
= Fi −

∫

An

ρv(x, t)wi(x, t)w j(x, t)ñ j(x, t)dA. (2.13)

The last term on the right-hand side of Eq. (2.13) is the so-called Stefan flux, which
is a thrust force generated by the vapor flow towards the droplet [111]. For small
slip velocities, vapor condensation proceeds in a near symmetrical fashion, so that
the Stefan flux can be neglected compared to the remaining terms in Eq. (2.13).As a
consequence, the droplet momentum balance reduces to that for a rigid particle:

mn
dvi

dt
= Fi . (2.14)
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The equation of motion for rigid particles has been the subject of many investiga-
tions, and the most notable is the seminal work by Maxey and Riley in [72]. They
present the particle momentum balance as follows:

mn
dvi

dt
= Fb,i + Fp,i + Fa,i + Fv,i + FB,i , (2.15)

where:
Fb,i = (mn −mg)gi (2.16)

is the buoyancy force, withg the gravitational acceleration vector, andmg the mass
of carrier fluid displaced by the droplet;

Fp,i = mg
Dui

Dt (x′(t),t)
(2.17)

is the pressure gradient force, withD/Dt the material derivative;

Fa,i = −
1
2

mg
d
dt

[

vi(t) − ui(x′(t), t) −
1
10
∇2ui(x′(t), t)

]

(2.18)

is the added mass term;

Fv,i = −6πrnρgνg

[

vi(t) − ui(x′(t), t) −
r2
n

6
∇2ui(x′(t), t)

]

(2.19)

is the viscous drag force;

FB,i = −6πr2
nρgνg

t
∫

0

d
dτ

(

vi(t)−ui(x′(t), t)−
r2
n

6
∇2ui(x′(t), t)

)

(π(t−τ))−1/2νgdτ (2.20)

is the Basset-history term. Calculation of these forces requires the gas density ρg

and kinematic viscosityνg at the droplet positionx′(t), and the droplet radiusrn.
The occurrence of the∇2ui- term in Eqs. (2.18), (2.19), and (2.20) accounts for the
variation of the flow field on the length scale of the particle, usually denoted asthe
Faxen correction [26]. Apparently, this correction will be of minor importance when
the particle is much smaller than the typical length scales of the flow.

The foregoing expressions are valid for a continuum field surroundingthe particle.
When the droplets are much smaller than the mean free path length of the gas phase,
i.e., Kn≫ 1, rarefaction effects need to be taken into account. This is accomplished
by multiplying the particle drag force with the so-called Cunningham correctionfac-
tor, which only depends onKn. Details on this correction and its limitations are
discussed extensively in amongst others [26], and are not repeated here.

To assess the importance of each of the force contributions, Eq. (2.15) iscast into
non-dimensional form, using a velocity scaleU0, length scaleL0, and time scale
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τ0 = L0/U0, associated with the carrier gas flow. After some manipulations, the
following dimensionless form of the droplet momentum equation is obtained:

dṽi

dt
=

(

1−
ρg

ρb

)gi

g
1

Fr2
+
ρg

ρb

Dũi

Dt̃
−
ρg

ρb

1
2

d
dt̃

(

ṽi − ũi −
r̃2
n

10
∇̃2ũi

)−

1
St

(

ṽi − ũi −
r̃2
n

6
∇̃2ũi

) − r̃n

Re1/2St

t̃
∫

0

d
dτ

(

ṽi − ũi −
r̃2
n

6
∇̃2ũi

)

(π(t̃ − τ))−1/2dτ (2.21)

whereg ≡ ||g||, and the dimensionless version of each variable is indicated by a tilde,
e.g., ˜rn = rn/L0. The preceding equation contains the Froude number

Fr =
U0√
gL0

,

the free stream Reynolds number

Re=
U0L0

νg
,

and the Stokes number
St=

τv

τ0
,

with the particle momentum relaxation timeτv given by:

τv =
2
9
ρb

ρg

r2
n

νg
. (2.22)

In the test cases that will be considered in this thesis, the flow is usually transonic
at temperatures between 200K and 300K, which means that for the typical Mach
numbers ofM ∼ 1, the reference velocity will beU0 ∼ 102m/s. For the nozzle
flows considered in this thesis, the typical length scales associated with the flow vary
within the rangeL0 ∼ 10−2−10−1m (see chapter 3), which means thatFr ∼ 102 ≫ 1.
Buoyancy forces are therefore not important, and thus the first term onthe right-hand
side of Eq. (2.21) can be neglected. The mass density of the liquid in the droplets is
much higher than that of the carrier gas:ρg/ρb ∼ 10−3 ≪ 1, which allows one to
neglect the second and third term in Eq. (2.21). As mentioned previously, droplets
observed in transonic condensing flows typically fall within the size range 10−10 <

rn < 10−7m, so that ˜rn ≤ 10−5 ≪ 1. As a consequence, the last term in Eq. (2.21)
can be neglected, as well as the Faxen correction in the third term. The resulting
dimensionless form of the droplet momentum balance in transonic condensingflow
is thus reduced to:

dṽi

dt̃
=

1
St

(ũi − ṽi), (2.23)
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and its corresponding fully dimensional form is given by:

dvi

dt
(t) =

1
τv(x′(t), t)

(ui(x′(t), t) − vi(t)). (2.24)

The influence of the Stokes number is best revealed when Eq. (2.23) is rewritten as:

ṽi = ũi − St
dṽi

dt̃
. (2.25)

For St→ 0, the droplet follows the carrier fluid, since ˜vi → ũi .
When St< 1, and droplet inertia is not negligible, an estimate can be made of the

droplet velocity using a so-called algebraic slip model. For this purpose, Eq. (2.25)
is first differentiated with respect to time, which, after some further manipulations,
yields:

dṽi

dt̃
=

St

1− dSt
dt

[dũi

dt̃
− St

d2ṽi

dt̃2

]

. (2.26)

Noting thatũi = ũi(x̃′(t̃), t̃) in Eq. (2.25), its time-derivative can be expanded as:

dũi

dt̃
(x̃′(t̃), t̃) = ṽ j

∂ũi

∂x̃ j
(x̃′(t̃), t̃) +

∂ũi

∂t̃
(x̃′(t̃), t̃). (2.27)

Substituting Eq. (2.25) for ˜v j in Eq. (2.27), one obtains:

dũi

dt̃
(x̃′(t̃), t̃) =

Dũi

Dt̃
(x̃′(t̃), t̃) − St

dṽ j

dt̃
∂ũi

∂x̃ j
(x̃′(t̃), t̃), (2.28)

where D/Dt̃ denotes the dimensionless material derivative. Substitution of Eqs.
(2.26) and (2.28) in Eq. (2.25) then yields:

ṽi = ũi −
St

1− dSt
dt

[Dũi

Dt̃
− St

dṽ j

dt̃
∂ũi

∂x̃ j
− St

d2ṽi

dt̃2

]

. (2.29)

Neglecting the terms which are quadratic in St then results in the following estimate
ṽn for the dimensionless droplet velocity:

ṽn,i = ũi −
St

1− dSt
dt

Dũi

Dt̃
, (2.30)

with its fully-dimensional analogue given by:

vn,i = ui −
τv

1− dτv

dt

Dui

Dt
. (2.31)
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Eq. (2.31) allows the droplet velocity to be calculated from the velocity field atthe
droplet position, and the droplet size. Using this algebraic model, the droplet velocity
can now be removed from the list of independent variables associated withthe droplet
property distribution function, and thusΛn(T′, v, x, t) can be replaced byΛ′n(T′, x, t),
where:

Λ′n(T′, x, t) =
∫

R3

Λn(T′, v, x, t)dv.

The Stokes number associated with the test cases considered in the remainder of
this thesis are typically smaller than 10−2. Therefore, droplet slip is neglected en-
tirely, so that:vn = u.

2.3.4 Droplet energy balance

In the free molecular flow regime, the droplet exchanges energy with the gas/vapor
phase due to impingement and reflection of gas- and vapor molecules, evaporation,
and the expansion work done by the growing droplet. The change in internal energy
(En) of a single isolated droplet of sizen is given by:

dEn

dt
= q̇c

v − q̇e
v + q̇c + pV̇n. (2.32)

The incoming heat flux associated with the impinging and reflecting vapor molecules
is denoted by ˙qc

v, whereas ˙qe
v represents the outgoing heat flux due to evaporation.

The heat flux caused by impingement and reflection of the carrier gas molecules is
represented by ˙qc, andpV̇n is the expansion work done by the growing droplet, per
unit time.

The droplet energy can be written as a sum of a bulk internal energy anda surface
energy [149]:

En =

∫

Vn

ρbebdV+
∫

An

ψdA, (2.33)

whereeb is the specific internal energy of the internal bulk liquid, and whereψ =

ψ(T′) is the specific surface energy. The latter is given by:

ψ = σ − T′
dσ
dT′

, (2.34)

with σ = σ(T′) denoting the surfacefree energy (or surface tension) [149]. The
specific bulk internal energyeb is equal to:

eb = hb −
pn

ρb
, (2.35)
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with hb = the specific enthalpy of the internal liquid phase, andpn the pressure within
the droplet. Assuming that the droplet is spherical, and that mechanical equilibrium
is maintained, the internal pressure relates to the external gas pressurep as:

pn = p+
2σ
rn
. (2.36)

Using the definition of the latent heat of vaporization for bulk incompressibleliquid:

Lb = Lb(T′) ≡ hs
v(T
′) − hb(T′), (2.37)

wherehs
v is the specific vapor enthalpy at saturation (S = 1), and by neglecting

gradients within the droplet, the preceding equations allow the droplet energy (Eq.
(2.33)) to be expressed as:

En = mnhs
v −mnLb − pVn −

2σ
rn

Vn + (σ − T′
dσ
dT′

)4πr2
n. (2.38)

Introducing a size dependent latent heat of vaporizationLn = Ln(T′):

Ln(T′) ≡ Lb +
2σ
rnρb

− 3
rnρb

(σ − T′
dσ
dT′

), (2.39)

this leads to:
En = mn(hs

v − Ln) − pVn. (2.40)

For droplets that can be treated as macroscopic entities (sayn > 103), calculations
based on Eq. (2.39) show that the difference betweenLb andLn is usually negligibly
small. Taking the example of water droplets, it is found that the relative difference
betweenLb andLn is typically of the order of a few percent, as shown in Figure 2.1.a.
For very small droplets (n < 100), the macroscopic model in Eq. (2.39) is no longer
valid, and therefore, an approach at the molecular level is necessary toformulateLn.
For such sizes,Ln is interpreted as the specific heat of formation associated with a
reaction in whichn initially separated vapor molecules end up as a singlen-sized
cluster.

Figure 2.1.b shows the variation ofLn with n, as obtained from molecular theory,
and from mass-spectroscopic measurements by Sukhodubet al. [117], along with the
predictions obtained with Eq. (2.39) for water droplets at a temperature ofT′ = 300K.
It is noted that for small droplets (n < 10), the differences between the predictions by
the macroscopic model (Eq. (2.39)) and those by molecular theory are very large, as
one might expect. The data given by Sukhodubet al. suggest that the latent heat of
condensation can be described by an empirical function of the form:

Ln(T′) = Lb(T′)β(n), (2.41)
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Figure 2.1: Size dependent latent heat of condensation for water droplets: (a) iso-
lines for the relative difference[Ln(T′) − Lb(T′)]/Lb(T′) for various droplet sizes
and temperatures, calculated by means of Eq. (2.39) and the propertiesof water in
appendix A; (b) latent heat data from mass-spectroscopic measurements and theo-
retical predictions by Sukhodub et al., compared to calculations obtained with the
macroscopic model (Eq. (2.39)) for T′ = 300K, [117].

where:

β(n) = 1− (1− c0) exp
(2− n

c1

)

, (2.42)

with c0 = L2/Lb, andc1 a parameter that controls the variation inLn.
Using Eq. (2.40), the energy balance Eq. (2.32) can now be rewritten. By differ-

entiating Eq. (2.40) with respect to time, and assuming that changes inEn due to
temporal variations in pressure can be neglected, one obtains:

dEn

dt
= ṁn

(

hs
v − Ln − n

∂Ln

∂n

)

+ Ṫ′mn

(dhs
v

dT′
− ∂Ln

∂T′

)

− pV̇n, (2.43)

whereṁn = dmn/dt. Subsequently, the droplet energy balance Eq. (2.32) can be
rewritten as:

ṁn

(

hs
v − Ln − n

∂Ln

∂n

)

+ Ṫ′mn

(dhs
v

dT′
− ∂Ln

∂T′

)

= q̇c
v − q̇e

v + q̇c. (2.44)

To compute the energy fluxes on the right-hand side of Eq. (2.44), it is assumed that
(i) all vapor and carrier gas molecules reflecting from the droplet surface equilibrate
to the droplet temperature, and that (ii) the velocities of the vapor and carrier gas
molecules satisfy a Maxwellian velocity distribution. The latter assumption is some-
what questionable, as the rapidly expanding flow causes the vapor and carrier gas to
be in a non-equilibrium state. The impact of this assumption on the condensation
process is not addressed here, since it is beyond the scope of the present thesis.
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Based on the preceding assumptions, the energy flux associated with theimpinging
andreflectingvapor molecules is given by:

q̇c
v =

fnm1

αn
(Cp,v −

Rv

2
)[T − (1− αn)T′], (2.45)

whereαn is the fraction of impinging vapor molecules that stick to the droplet, usu-
ally referred to as the sticking probability.Cp,i is the specific heat at constant pres-
sure for componenti, andRi is the corresponding specific gas constant. It is noted
that Eq. (2.45) is obtained by integrating the energy flux density associatedwith the
Maxwellian velocity distribution over the half-infinite velocity space, which explains
why the term within brackets isCp,v− 1

2Rv, instead ofCp,v−Rv = Cv,v, [66]. Similarly,
the energy flux associated with theevaporatingvapor molecules is given by:

q̇e
v = bnm1(Cp,v −

Rv

2
)T′. (2.46)

The energy flux associated with theimpingingandreflectingmolecules of carrier gas
componentk is expressed as:

q̇c,k = ζ
c,k
n

√
Tρc,k(Cp,k −

Rk

2
)[T − T′], (2.47)

whereρc,k is the mass density of carrier gas componentk, and where the factorζc,k
n is

given by:

ζc,k
n = a1(n1/3 +

rc,k

r1
)2

√

1+ m1
mc,k

n

n

√

kB

2πm1
. (2.48)

Here,mc,k, andrc,k, are the mass and effective radius of a single molecule of compo-
nentk of the carrier gas, respectively. Finally, the total energy flux removed by the
carrier gas is then given by:

q̇c =

Nc
∑

k=1

q̇c,k, (2.49)

whereNc is the number of carrier gas components.
With these expressions for the energy fluxes ˙qc

v, q̇e
v, and q̇c, viz. Eq. (2.45), Eq.

(2.46), and Eq. (2.49), the energy balance Eq. (2.44) can be used to obtain the follow-
ing expression for the time-derivative of the droplet temperature:

Ṫ′ = − 1
τT

(

T′ − Tn
)

. (2.50)
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In this expression, the thermal relaxation timeτT for the droplet is given by:

τT =

mn

[

dhs
v

dT′
− ∂Ln

∂T′

]


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2
)

ρv +
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2
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2
)

ρs
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T′

,

(2.51)
andTn is the so-called wet bulb temperature, which is implicitly given by:

Tn =

















1
αn
+

Nc
∑

k=1

ζ
c,k
n

ζv
n

ρc,k

ρv
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2
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2
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(2.52)
The termSn is defined by:

Sn ≡ S(Tn, ρv) =
ρv

ρs
v,n(Tn)

, (2.53)

and represents the effective saturation ratio at the curved surface of a droplet of size
n and temperatureTn. It is noted that Eq. (2.52) is only valid in the free molecular
regime; for a discussion on more generally applicable models, reference can be made
to, e.g., [58].

Figure 2.2.a and b give an impression of the relative difference between the wet
bulb temperature and the gas temperature for a D2O droplet residing in a mixture of
D2O-vapor and inert N2-gas. These plots have been obtained by iteratively solving
Eq. (2.52), withαn = 1, andLn = Lb, using the material properties given in appendix
A. It is clear from Figure 2.2.a that increased supersaturation leads to larger devia-
tions between the gas and droplet temperatures. This is also what is expected: higher
supersaturation leads to increased nett condensation, and thus also to a higher rate of
latent heat release, which in turn requires higher droplet temperatures toremove this
heat from the droplet.

It is noted that the difference betweenTn andT becomes size-invariant for suffi-
ciently large droplets, which can be observed from Eq. (2.52). In the limit of large
n:

αn → 1
ζv

n−1

ζv
n
→ 1

ζ
c,k
n

ζv
n
→

√

m1

mc,k
,



2.3. Single component condensation 19

and:
Ln→ Lb =⇒ ∂Ln/∂n→ 0.

Therefore, the right-hand side of Eq. (2.52) becomes independent ofsize for large
droplets, which leads to:

Tn→ Tw,

whereTw is the wet bulb temperature for condensation at aflat liquid surface.
In Figure 2.2.b, the influence of the carrier gas density on the the wet bulb tem-

peratureTn is shown for various droplet sizes. As one would expect, the wet bulb
temperature approaches the gas temperature whenρc/ρv ≫ 1. For the specific case
corresponding with Figure 2.2.b, this would require a rather high density ratio of
ρc/ρv ∼ 103.
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Figure 2.2: Relative difference between droplet- and gas temperature for condensing
D2O, with N2 as the carrier gas: (a) influence of vapor saturation S for various
droplet sizes n (T= 280K, ρc = 1.0kg/m3); (b) influence of density ratioρc/ρv for
various droplet sizes n (T= 280K, S = 10).

In case the thermal relaxation timeτT is much smaller than the typical time scales
associated with variations in the flow field, then Eq. (2.50) shows that the approxima-
tion T′(t) = Tn(t) is allowed. By settingT′ = Tn(ρc,k, ρv,T), the droplet temperature
is no longer an independent variable. This is similar to using the algebraic slip model
to approximate the droplet velocity. As a consequence,T′ can also be removed from
the list of independent variables associated with the DPD, leaving only the droplet
sizen as the characterizing variable. Therefore, the bi-variate DPDΛ′n(T′, x, t) can
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be replaced with the number density ˆρn(x, t), where:

ρ̂n(x, t) =
∫

R+

Λ′n(T′, x, t)dT′.

In the remainder of this thesis, the wet-bulb approximation is employed, unless spec-
ified otherwise.

2.3.5 Mixture thermodynamics

Non-isothermal condensation

For moderate pressures, the vapor and inert carrier gas can be treated as perfect gases,
and therefore, the corresponding equations of state are given by:

pi = ρiRiTi , (2.54)

and:
ei = Cv,iTi , (2.55)

where the subscripti will be replaced byc for the carrier gas and byv for the va-
por. In Eq. (2.54) and Eq. (2.55),Cv,i , ρi , andpi denote the constant isochoric spe-
cific heat, partial mass density, and partial pressure of componenti, respectively. In
non-isothermal condensation, the droplet temperature may generally differ from the
gas/vapor temperature, but the gas phase is assumed to be well-mixed, so thatTi = T
for all gas constituents.

The amount of liquid within the mixture is given by the liquid mass fractiong,
which is defined as the ratio of the liquid massml to that of the total mixture:

g ≡ ml

ml +mv +mc
. (2.56)

The liquid mass fraction can be calculated from the discrete size distribution ˆρn by
means of the following expression:

g =
m1

ρ

N
∑

n=2

nρ̂n, (2.57)

where the smallest cluster is the dimer (n = 2), and the largest is denoted byN.
Although there is actually no bound on the maximum droplet size (N → ∞ has been
used in Eq. (2.3)), here a finite value forN is adopted for the sake of convenience.
For the condensing nozzle flows considered in this thesis, the droplet number density
ρ̂n ≈ 0 for n > 108, which means that the maximum droplet size can be set to
N = 108.
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The total mass fraction of the condensable component in the mixture (i.e., in both
liquid and vapor form) is denoted bygmax:

gmax=
ml +mv

ml +mv +mc
. (2.58)

As droplet slip is excluded, and diffusion of vapor is neglected, the mixture composi-
tion is invariant along fluid trajectories, and therefore, the material derivative of gmax

is zero:
D
Dt

(gmax) = 0. (2.59)

As a consequence,gmax is a global constant in the flow domain, when it is uniformly
specified at the inflow boundaries. When the local liquid mass fractiong, and mixture
densityρ are known, the partial density of each gaseous constituent may be calculated
by:

ρc =
(1− gmax)ρ

1− g
ρ

ρb

(2.60)

ρv =
(gmax− g)ρ

1− g
ρ

ρb

. (2.61)

As ρ/ρb ∼ 10−3, and because 0≤ g ≤ gmax < 1, the preceding equations may be
approximated by:

ρc = (1− gmax)ρ, (2.62)

ρv = (gmax− g)ρ. (2.63)

The mean densityρl of the liquid dispersion thus follows from:

ρl = gρ. (2.64)

Furthermore, the partial densitiesρc,k of the individual carrier gas components can be
calculated fromρc via the expression:

ρc,k = wc,kρc, (2.65)

wherewc,k is the fixed mass fraction of componentk with respect to the carrier gas

(
Nc
∑

k=1

wc,k = 1).

Neglecting the contribution of the liquid dispersion to the pressure, and assuming
that the mixture is ideal, the pressure within the mixture is given by:

p = ρRT, (2.66)
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where the specific gas constantR= R(g) for the mixture is given by:

R= (1− gmax)Rc + (gmax− g)Rv. (2.67)

The total internal energye per unit mass of the mixture is equal to the sum of the
contribution of each of the constituent phases:

e= (1− gmax)ec(T) + (gmax− g)ev(T) +
N

∑

n=2

ρ̂n

ρ
En, (2.68)

whereEn is the droplet internal energy given by Eq. (2.40). The latter can be rewritten
as:

En = nm1
[

hs
v(Tn) − p

ρb(Tn)
− Ln(Tn)

]

(2.69)

Using this expression and the caloric equation of state Eq. (2.55) for the gaseous
constituents, Eq. (2.68) can be replaced by:

e= Cv,0T − gCv,vT +m1

N
∑

n=2

ρ̂n

ρ
n
[

hs
v(Tn) − p

ρb(Tn)
− Ln(Tn)

]

, (2.70)

whereCv,0 is the isochoric specific heat for the dry mixture,

Cv,0 ≡ (1− gmax)Cv,c + gmaxCv,v. (2.71)

Due to the large value of the liquid density, the termp/ρb on the right-hand side of
Eq. (2.70) is usually negligibly small compared to the remaining terms. By using a
perfect gas model, the vapor enthalpy is reduced to a function of temperature only,
so that:hs

v(Tn) ≈ hv(Tn) = Cp,vTn. By applying these approximations, the specific
mixture energy can be expressed as:

e= Cv,0T − gCv,vT +m1

N
∑

n=2

ρ̂n

ρ
n
[

Cp,vTn − Ln(Tn)
]

, (2.72)

and correspondingly, the mixture specific enthalpy follows from:

h = Cp,0T − gCp,vT +m1

N
∑

n=2

ρ̂n

ρ
n
[

Cp,vTn − Ln(Tn)
]

, (2.73)

where:
Cp,0 ≡ (1− gmax)Cp,c + gmaxCp,v. (2.74)

By using the wet-bulb approximation for the droplet temperature, the specificinter-
nal energy of the mixture becomes dependent on the droplet size distribution ρ̂n, the
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partial mass densities of the vapor and carrier gas components (ρv, andρc,k, respec-
tively), and the gas temperatureT. Sinceρv andρc,k are determined from the mixture
mass densityρ and the number densities ˆρn by means of Eqs. (2.57), (2.62), (2.63),
and (2.65), the specific internal energy of the mixture is reduced to a function of the
mixture density, the gas temperature and the droplet size distribution:e = e(ρ, ρ̂,T),
with ρ̂ = (ρ̂2, ρ̂3, .., ρ̂N)T . The caloric equation of state for the mixture is thus rather
complex, even though the perfect gas model has been adopted for the gaseous phase.
It is noted that frome = e(ρ, ρ̂,T), it also follows thatT = T(ρ, ρ̂,e). Due to Eqs.
(2.57), (2.66), and (2.67), the pressure assumes the same dependency: p = p(ρ, ρ̂,e).

Isothermal condensation

Isothermal condensation refers to equality of the droplet and gas temperatures:Tn =

T, and should not be confused with the usual thermodynamic definition of time-
invariant temperature. Because the mixture is characterized by a single temperature,
Eq. (2.72) for the specific internal energy of the mixture can be simplified to:

e= Cv,0T + gRvT −m1

N
∑

n=2

ρ̂n

ρ
nLn(T), (2.75)

and correspondingly, the specific mixture enthalpy becomes:

h = Cp,0T −m1

N
∑

n=2

ρ̂n

ρ
nLn(T). (2.76)

For large droplets,Ln→ Lb, which implies that for a dispersion which predominantly
consists of such droplets, the preceding equations can be approximated by:

e= Cv,0T + g
[

RvT − Lb(T)
]

, (2.77)

and:
h = Cp,0T − gLb(T). (2.78)

As a consequence, the internal energyenow only depends on the liquid mass fraction
g and the temperatureT, i.e.,e = e(T,g). Conversely,T = T(e,g), and therefore, it
follows from Eqs. (2.66) and (2.67) that:p = p(ρ,e,g).

In the numerical simulation of condensing flow, the caloric equations of state for
the mixture (Eq. (2.72), or its iso-thermal variant Eq. (2.77)) are used to determine the
temperature from the DSD and the internal energy and density of the mixture.For
the case of isothermal condensation, knowledge ofeandg is sufficient to (iteratively)
solve Eq. (2.77) forT. For the non-isothermal case, however, the size-dependency of
the wet-bulb temperature complicates matters, asTn itself depends onT. SinceTn is
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iteratively solved from Eq. (2.52), the calculation ofT from e, ρ, andρ̂n is a rather
expensive operation, which, if possible, should be avoided in numericalsimulations.
In this regard, it is instructive to examine the relative difference∆e:

∆e=
eiso− en−iso

en−iso
,

whereen−iso, andeiso are the internal energies obtained by means of Eqs. (2.72) and
(2.77), respectively. To simplify matters, the size-dependency of the latent heat of
condensation and the wet-bulb temperature are neglected, i.e.,Ln = Lb, and:Tn = Tw,
so that Eq. (2.72) for the specific internal energy can be simplified to:

e= Cv,0T − gCv,vT + g
[

Cp,vTw − Lb(Tw)
]

. (2.79)

Using Eq. (2.79), it suffices to know only the liquid mass fractiong, instead of the
complete DSD ˆρn, to compute the specific internal energye. The assumptionTn =

Tw can be justified by noting that the largest droplets show the largest differences
betweenTn andT (see Figures 2.2.a and b), so that by settingTn = Tw, the relative
difference∆e is overestimated. Figure 2.3.a shows how∆e varies withg andT, for a
case of condensing D2O in a mixture of D2O and inert N2-gas, withgmax= 0.018 and
ρc = 1.0kg/m3. It is noted that although the differences betweenTw andT are∼ 10−1

(see Figure 2.3.b), the relative difference∆e is∼ 10−3 − 10−2. Of course, these small
differences are a consequence of the relatively low vapor mass fractiongmax used.
For higher values ofgmax, the contribution of the liquid phase to the internal energy
can be potentially higher, which means that one is compelled to use Eq. (2.72) for
such cases.

2.3.6 Mixture transport equations

Conservation form

The conservation equations for mass, momentum and energy for the general case of
slipping droplets are extensively discussed by Young in [149], and therefore, only the
special case of non-slipping droplets will be discussed here. In differential form, the
continuity equations for the carrier gas, vapor, and droplet size distribution are given
by:

∂ρc

∂t
+

∂

∂x j
(ρcu j) = 0, (2.80)

∂ρv

∂t
+

∂

∂x j
(ρvu j) = −m1

N
∑

n=2

nS̃n, (2.81)

∂ρ̂n

∂t
+

∂

∂x j
(ρ̂nu j) = S̃n, ,n = 2,3, ..,N − 1, (2.82)
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Figure 2.3: (a) Relative difference between eiso (Eq. (2.77)) and en−sio (Eq. (2.72))
for a mixture of condensing D2O, with N2 as the carrier gas (gmax = 0.018, ρc =

1.0kg/m3); (b) corresponding relative difference between T and Tw.

with S̃n denoting a condensation source term, to be elaborated in chapter 3. It is noted
that the balance equation for the monomers is represented by that of the vapor, and
that the largest cluster of sizeN is omitted from Eq. (2.82), because of the boundary

conditionρ̂N = 0 in n-space. Withρl = m1

N
∑

n=2

nρ̂n, the conservation equation for the

liquid mass density is derived as:

∂ρl

∂t
+

∂

∂x j
(ρlu j) = m1

N
∑

n=2

nS̃n. (2.83)

Since the mixture density satisfies:ρ = ρc + ρv + ρl , the continuity equation for the
mixture becomes:

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (2.84)

as the source terms for the liquid dispersion and the vapor cancel each other.
It is noted that none of the preceding mass balance equations contain the effect of

vapor diffusion. The importance of vapor diffusion compared to advection is quanti-
fied by the Ṕeclet numberPé, defined by [14]:

Pé≡ U0L0

Dv,c
, (2.85)

whereDv,c is the diffusion coefficient of the vapor in the carrier gas, and whereU0

andL0 are typical velocity and length scales of the flow. For transonic condensing
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flows, U0 ∼ 102m/s, andL0 ∼ 10−2 − 10−1m for the nozzles considered here. For
200 ≤ T ≤ 300K, and p ∼ 104Pa, the diffusion coefficient is Dv,c ∼ 10−3m2s−1.
Thus: Pé ∼ 103 ≫ 1, and therefore, diffusion of vapor at the length scales of the
flow can be neglected. It is noted that for low Knudsen numbers (i.e., relatively large
droplets), the Ṕeclet number associated with the droplet size and its slip velocity is
much smaller than unity. Thus, on small scales, diffusion is essential for condensation
of droplets whenKn≪ 1, whereas on large scales, it is of negligible influence.

Neglecting viscous stresses, the momentum equation for the mixture is given by:

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j + pδi j ) = 0. (2.86)

For transonic nozzle flows without flow separation, viscous effects are confined to the
boundary layer at the channel wall, where the velocity gradients are the largest. For
such conditions, the flow is nearly inviscid away from the boundary layer,as has been
observed in experiments [100]. Since viscosity is also not essential for condensation
to occur, it is neglected entirely.

Neglecting viscous dissipation and heat conduction, the energy balance for the
mixture becomes:

∂

∂t
(ρet) +

∂

∂x j
(ρhtu j) = 0, (2.87)

whereet andht represent the total energy,

et = e+
1
2

u ju j , (2.88)

and total enthalpy,

ht = h+
1
2

u ju j , (2.89)

of the mixture, respectively. The omission of heat conduction from the model can be
justified in a similar way as was derived for the diffusion of vapor. The Ṕeclet number
is now defined as:

Pé≡ U0L0

aT

, (2.90)

whereaT is the thermal diffusion coefficient of the gas phase. Using the same numer-
ical values forU0 andL0 as before, and noting thatDvc andaT are of the same order
of magnitude, it is again found thatPé≫ 1, which makes it justified to neglect heat
diffusion.

Characteristic form

The characteristic forms of Eq. (2.84), (2.86), and (2.87), augmented by Eq. (2.82),
are relevant in case boundary conditions at inflow- or outflow boundaries are applied.
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Although the characteristic equations can be derived for a general three-dimensional
flow as demonstrated in [53], here it suffices to treat the one-dimensional case.

In order to derive the characteristic equations, it is more convenient to use the
following Lagrangian formulation of Eq. (2.82) for the specific number density ρ̌n ≡
ρ̂n/ρ:

Dρ̌n

Dt
= Šn , n = 2,3, ..N − 1, (2.91)

whereŠn = S̃n/ρ, and D/Dt denotes the material derivative. By using the mass
balance, the one-dimensional version of the momentum and energy balanceequations
can be written in the following non-conservative form:

Du
Dt
+

1
ρ

∂p
∂x
= 0, (2.92)

De
Dt
+

p
ρ

∂u
∂x
= 0. (2.93)

Introducingq = (ρ,u,e, ρ̌2, .., ρ̌n, .., ρ̌N−1)T as the state vector of primitive variables,
and noting thatp = p(e, ρ, ρ̌2, .., ρ̌N−1), the system of transport equations (encom-
passing Eq. (2.91)) can be written as:

∂q
∂t
+ Jq

∂q
∂x
= Š, (2.94)

where the Jacobi-matrixJq is given by:

Jq =




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




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1
ρ

∂p
∂ρ
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ρ

∂p
∂e

1
ρ

∂p
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ρ

∂p
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.. 1
ρ

∂p
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
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


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

, (2.95)

and the source vectorŠ by:

Š= (0,0,0, Š2, Š3, .., ŠN−1)T (2.96)

The eigenvaluesλk of Jq are obtained by solvingDet|Jq − λkI | = 0, whereI is the
identity matrix. Expanding this equation leads to the following polynomial expres-
sion:

(u− λk)
N−1

[

(u− λk)
2 −

{

∂p
∂ρ
+

p

ρ2

∂p
∂e

}

]

= 0. (2.97)
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It is noted that even though the dependence ofp on ρ̌n has been taken into account,
the characteristic polynomial does not contain any of the derivatives∂p

∂ρ̌n
. The term

within the curly brackets is recognized as the square of the frozen speedof soundaf :

(af )
2 =

(

∂p
∂ρ

)

e,g
+

p

ρ2

(

∂p
∂e

)

ρ,g
. (2.98)

Using Eq. (2.98), solution of Eq. (2.97) yields the following set of eigenvalues:

λ1 = u ; λ2 = u+ af ; λ3 = u− af ; λk = u, for k = 4,5, ..,N + 1.

Having determined the eigenvalues, the next step is to derive the corresponding
left eigenvectorsL k, which follow from:

LT
k (Jq − λkI ) = 0.

Solving forL k then yields the first three eigenvectors:

L1 = (− p

ρ2
,0,1,0, ..,0, ..,0)T ,

L2 = (
1
ρaf

∂p
∂ρ
,1,

1
ρaf

∂p
∂e
,

1
ρaf

∂p
∂ρ̌2

, ..,
1
ρaf

∂p
∂ρ̌n

, ..,
1
ρaf

∂p
∂ρ̌N−1

)T ,

L3 = (− 1
ρaf

∂p
∂ρ
,1,− 1

ρaf

∂p
∂e
,− 1
ρaf

∂p
∂ρ̌2

, ..,− 1
ρaf

∂p
∂ρ̌n

, ..,− 1
ρaf

∂p
∂ρ̌N−1

)T ,

whereas for the remaining eigenvectors (k ≥ 4), the components are given by:

Lkn = δkn,

with δkn denoting the Kronecker delta.
In order to obtain the characteristic form of the transport equations, Eq.(2.94) is

multiplied with the left eigenvectors. Subsequent manipulations using the relation-
ship:

dp=
∂p
∂ρ

dρ +
∂p
∂e

de+
∂p
∂ρ̌ j

dρ̌ j ,

in combination with with Eq. (2.98), finally yields the first three characteristic equa-
tions:

∂ρ

∂t
− 1

a2
f

∂p
∂t
+ u(

∂ρ

∂x
− 1

a2
f

∂p
∂x

) = − 1

a2
f

∂p
∂ρ̌ j

Š j (2.99)

∂u
∂t
+

1
ρaf

∂p
∂t
+ (u+ af )(

∂u
∂x
+

1
ρaf

∂p
∂x

) =
1
ρaf

∂p
∂ρ̌ j

Š j (2.100)

∂u
∂t
− 1
ρaf

∂p
∂t
+ (u− af )(

∂u
∂x
− 1
ρaf

∂p
∂x

) = − 1
ρaf

∂p
∂ρ̌ j

Š j , (2.101)
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whereas the remaining component equations are identical to Eq. (2.91). Itis noted
that in contrast to the conservative form of the FDE, viz. Eqs. (2.84), (2.86), and
(2.87), all of the characteristic equations do contain source term contributions arising
from condensation.

The characteristic equations are essential in specifying the appropriate boundary
conditions at in- or outflow boundaries. In one dimension, there are essentially three
characteristics, along which information travels through physical space with the ve-
locitiesu, andu±af . For subsonic inflow, two characteristics with speedu andu+af

correspond to information entering the flow domain from the boundary, whereas the
characteristic with speedu− af corresponds to information leaving the flow domain.
As a consequence, only the size distribution and two flow variables can be specified
at subsonic inflow boundaries. For supersonic inflow, all characteristics correspond
to information entering the flow domain. As a consequence, all flow variablescan be
specified at this boundary, along with the size distribution. For subsonic outflow, two
characteristics correspond to information leaving the flow domain, whereasone char-
acteristic corresponds to information entering the flow domain. As a consequence,
one of the flow variables (usually the pressure) needs to be specified atthe outlet.
In the case of supersonic outflow, all characteristics correspond to information leav-
ing the flow domain, meaning that none of the variables needs to be specified at this
boundary.

Speed of sound

Analysis of the eigenvalues of the Jacobi-matrixJq has revealed that the appropriate
speed of sound to be used in condensing flow is the frozen speed of soundaf , given by
Eq. (2.98). To actually calculateaf , it is necessary to evaluate the partial derivatives
of p with respect toρ ande. For the non-isothermal condensation model, the rele-
vant expressions needed to compute these derivatives are Eqs. (2.52), (2.57), (2.66),
(2.67), and (2.72). Noting thatg = g(ρ̌), andT = T(e, ρ, ρ̌), with: ρ̌ = (ρ̌2, ρ̌3, ..)T ,
the equation for the pressure can be written as:

p = p(e, ρ, ρ̌) = ρR(ρ̌)T(e, ρ, ρ̌). (2.102)

It is thus straightforward to write:

∂p
∂ρ
= R

[

T + ρ
∂T
∂ρ

]

, (2.103)

and:
∂p
∂e
= ρR

∂T
∂e
, (2.104)

so that the problem is now reduced to finding the partial derivatives ofT with respect
to ρ ande. The temperature is implicitly given by Eqs. (2.72) and (2.52). To deter-
mine∂T/∂ρ and∂T/∂e, it is first necessary to determine the dependency of the wet
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bulb temperatureTn on ρ ande. The dependency one is only due to the occurrence
of T = T(e, ρ, ρ̌) in Eq. (2.52). The dependency onρ is due toT = T(e, ρ, ρ̌), and due
to the saturation ratioSn, since from:

Sn = Sn(Tn, ρv) =
ρv

ρs
v,n(Tn)

=
ρ(gmax− g(ρ̌))

ρs
v,n(Tn)

it follows that Sn = Sn(Tn, ρ, ρ̌). It is noted that the density ratio’sρc,k/ρv can be
expressed as

ρc,k

ρv
= wc,k

1− gmax

gmax− g(ρ̌)
,

which makes them independent ofρ. In conclusion, the dependency ofTn can be
expressed as:Tn = Tn(ρ, ρ̌,T(e, ρ, ρ̌)). Using this dependency, differentiation of Eq.
(2.72) with respect toe, followed by some further manipulations, yields:

∂T
∂e
=















Cv,0 − gCv,v +m1

N
∑

n=2

ρ̌nn
(

Cp,v −
∂Ln

∂Tn

)(

∂Tn

∂T

)

ρ,ρ̌















−1

. (2.105)

Taking the derivative of Eq. (2.72) with respect toρ, with some subsequent manipu-
lations, yields:

∂T
∂ρ
= −

m1

N
∑

n=2

ρ̌nn
(

Cpv−
∂Ln

∂Tn

)(

∂Tn

∂ρ

)

T,ρ̌

Cv,0 − gCv,v +m1

N
∑

n=2

ρ̌nn
(

Cp,v −
∂Ln

∂Tn

)(

∂Tn

∂T

)

ρ,ρ̌

. (2.106)

What remains to be determined now are the partial derivatives:
(

∂Tn

∂ρ

)

T,ρ̌
,and

(

∂Tn

∂T

)

ρ,ρ̌
,

which can be obtained by first solving forTn(ρ, ρ̌,T) for givenρ, ρ̌ , andT, followed
by numerical differentiation with respect toρ andT, respectively.

When the isothermal condensation model is used, the previous expressions are
greatly simplified. Since:Tn→ T, it follows immediately that:

(

∂Tn

∂ρ

)

T,ρ̌
= 0 ,

(

∂Tn

∂T

)

ρ,ρ̌
=

dT
dT
= 1,

which subsequently leads to:

∂T
∂e
=















Cv,0 − gCv,v +m1

N
∑

n=2

ρ̌nn
(

Cp,v −
∂Ln

∂T

)















−1

, (2.107)
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and:
∂T
∂ρ
= 0. (2.108)

The frozen speed of sound thus becomes:

(af )
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(

Cp,v −
∂Ln

∂T

)
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If the dispersion is dominated by large droplets, thenLn can be replaced byLb, so
that one finally obtains:

(af )
2 = RT



























1+
R

Cv,0 + g
(

Rv −
dLb

dT
)


























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2.4 Multi-component condensation

2.4.1 Description of constituent phases

In multi-component condensation, the gas phase generally consists of a mixture of
different condensing vapors and several inert gases, and the dropletsthat make up
the dispersion consist of the various chemical species corresponding with the vapors.
Following the same line of discussion as in the case of single-component conden-
sation, the liquid dispersion can again be characterized by a multi-variate droplet
property distribution functionΛn(T′, v, x, t), wheren is the vector (n1,n2, ..,nNv)

T .
Here,n j represents the number of molecules of componentj contained in a droplet,
andNv denotes the total number of condensing components. Clearly,n j ∈ N, and the
smallest of droplets are either unary, or binary dimers. The multi-componentdroplet
number densities ˆρn can be calculated fromΛn(v,T, x, t) by means of the expression:

ρ̂n(x, t) =
∫

R+

∫

R3

Λn(T′, v, x, t)dvdT′. (2.111)

The use of macroscopic models in multi-component condensation suffers from
the same deficiencies as already discussed for single-component condensation, and
will not be repeated here. In principle, one could maintain the full dependency of
the multi-component DPD, which means that in total, there are 8NNv independent
variables that need to be dealt with in the general case of a transient, and three-
dimensional flow (N is the maximum value ofn j). By using an algebraic slip model
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and the wet-bulb approximation, the droplet velocity and temperature can be dropped
from the list of independent variables, so thatΛn(T′, v, x, t) can be replaced with the
multi-component droplet number densities ˆρn. As a consequence, the number of in-
dependent variables reduces to 4NNv, which still poses a computationally challenging
problem, even when considering the case of binary condensation (Nv = 2). The so-
lution of the multi-component DPD has therefore only been attempted for the binary
case in stagnant systems, such as in [74] and [142].

It is noted that even when using the full dependency in the formulation of theDPD,
there are still a number of important factors which are excluded. One of these is the
spatial distribution of the various components within the interior of the droplets and
at the droplet surface. The latter determines the value of the surface tension, which, in
turn, has a pronounced influence on the condensation rate. Usually, theliquid within
a droplet is assumed to be well-mixed, if the liquid components are mutually misci-
ble. For immiscible components, however, a layered droplet model may be adopted,
which means that the transport of condensing components through the liquidlayers
needs to be included in the model [85]. The multi-component condensation model
presented in this thesis assumes a uniform spatial distribution of the liquid compo-
nents, which implies that only condensation of well-mixed components is considered.
To avoid using an overcomplicated model with many associated physical uncertain-
ties, it is furthermore assumed that the droplets are uniform in temperature, with
T′ = T (i.e., isothermal multi-component condensation is assumed).

2.4.2 Definition of mass densities and compositions

Before embarking on the thermodynamics of the constituent phases, it is first neces-
sary to define a number of variables related to the composition of the mixture. The
indexation of variables is as follows: ’c, k’ refers to thekth-component of the carrier
gas, ’v, k’ refers to thekth-component of the vapor phase, ’n, k’ refers to thekth-
component in a droplet of compositionn = (n1,n2, ..,nNv)

T , and ’l, k’ refers to the
kth-component in the liquid phase (i.e., the liquid dispersion). The vapor components
share the same second indices with the individual droplets and the liquid phase, i.e.,
’v, k’, ’ n, k’, and ’l, k’ all refer to the same substance, but only in different phases.
Nv andNc denote the number of vapor and carrier gas components of the mixture,
respectively.

Droplet and monomer masses

Using these conventions, the monomer masses of vapor componentk, and carrier gas
componentk are denoted bymv,k andmc,k, respectively. The mass of vapor compo-
nentk in ann-droplet is denoted bymn,k, and satisfies:

mn,k = nkmv,k, (2.112)
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whereas the total massmn of ann-droplet is equal to:

mn =

Nv
∑

k=1

mn,k. (2.113)

Component mass densities

The mass densities of componentk in the vapor phase, componentk in the carrier gas,
and componentk of n-droplets are denoted byρv,k, ρc,k, andρn,k, respectively. The
latter can be calculated from the droplet number density ˆρn and the droplet component
massmn,k, via the expression:

ρn,k = ρ̂nmn,k. (2.114)

Knowing ρn,k, the mass densityρl,k of componentk in the liquid phase then follows
from:

ρl,k =
∑

n∈Ωn

ρn,k, (2.115)

whereΩn includes only droplets, i.e.,

Ωn =
{

n ∈ N
Nv | ||n|| > 1

}

.

Total mass densities

The total mass densities of the carrier gas, vapor phase,n-droplets, and liquid phase
are denoted byρc, ρv, ρn, andρl , respectively, and relate as follows to the component
mass densities:

ρc =

Nc
∑

k=1

ρc,k , ρv =

Nv
∑

k=1

ρv,k , ρn =

Nv
∑

k=1

ρn,k , ρl =

Nv
∑

k=1

ρl,k. (2.116)

The total mixture mass density is, evidently, given by:

ρ = ρc + ρv + ρl . (2.117)

Phasic mass fractions

The phasic mass fractions of componentk of the carrier gas, componentk of the vapor
phase, componentk of n-droplets, and componentk of the liquid phase are denoted
by wc,k, wv,k, wn,k, andwl,k, respectively, and can be calculated from the component
mass densities and total mass densities as follows:

wc,k =
ρc,k

ρc
, wv,k =

ρv,k

ρv
, wn,k =

ρn,k

ρn
, wl,k =

ρl,k

ρl
. (2.118)
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It is noted that all preceding mass fractions have been normalized with respect to their
corresponding phases, i.e.,

Nc
∑

k=1

wc,k = 1 ,

Nv
∑

k=1

wv,k = 1 ,

Nv
∑

k=1

wn,k = 1 ,

Nv
∑

k=1

wl,k = 1.

Mixture mass fractions

The mixture mass fractions of componentk of the carrier gas, componentk of the
vapor phase, componentk of n-droplets, and componentk of the liquid phase are
denoted bygc,k, gv,k, gn,k, andgl,k, respectively, and relate as follows to the total and
component mass densities:

gc,k =
ρc,k

ρ
, gv,k =

ρv,k

ρ
, gn,k =

ρn,k

ρ
, gl,k =

ρl,k

ρ
. (2.119)

The total mixture mass fraction of condensable componentk (i.e., in both liquid and
vapor phase), denoted bygmax

v,k , and with:

gmax
v,k = gv,k + gl,k, (2.120)

is invariant along fluid trajectories when droplet slip and vapor diffusion are ne-
glected.

Phasic molar fractions

Instead of using the mass fractions, the phasic compositions can also be described in
terms of the phasic molar fractions. The phasic molar fractions of componentk of
the vapor phase, componentk of n-droplets, and componentk of the liquid phase are
denoted byyk, xn,k, andxl,k, respectively, and can be calculated from the component
mass densities as follows:

yk =
ρv,k/mv,k

Nv
∑

m=1

ρv,m/mv,m

, xn,k =
ρn,k/mv,k

Nv
∑

m=1

ρn,m/mv,m

, xl,k =
ρl,k/mv,k

Nv
∑

m=1

ρl,m/mv,m

. (2.121)

Alternatively, the molar fraction of componentk in ann-droplet can be written more
concisely as:

xn,k =
nk

Nv
∑

m=1

nm

.
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2.4.3 Mixture thermodynamics

The mixture of carrier gases and vapors is considered to behave as a perfect gas,
which means that the thermal and caloric equations of state presented in Eqs.(2.54)
and (2.55) are also valid here for the various gaseous constituents. Based on the
assumed perfect gas behavior, and neglecting the pressure contribution of the droplet
dispersion, the pressure within the mixture is again equal to the sum of the partial
pressures of each gaseous constituent. Eq. (2.66) is therefore also valid here, with the
only difference being that the mixture gas constant is now given by:

R=
Nc
∑

k=1

gc,kRc,k +

Nv
∑

k=1

gv,kRv,k. (2.122)

The specific internal energye of the mixture consists of the weighted sum of the
internal energies associated with each constituent,

e=
Nc
∑

k=1

gv,kec,k(T) +
Nv
∑

k=1

gv,kev,k(T) +
∑

n∈ΩN

ρ̂n

ρ
En(T). (2.123)

The energyEn of a droplet can be written in a similar form as was used in the single
component case, viz. Eq. (2.69), which yields the following expression:

En = mn

[

hs
v,n(T) − p

ρn(T)
− Ln(T)

]

. (2.124)

By neglecting the termp/ρn in Eq. (2.124), the expression for the specific internal
energy of the mixture becomes:

e=
Nc
∑

k=1

gc,kec,k(T) +
Nv
∑

k=1

gv,kev,k(T) +
∑

n∈Ωn

ρ̌nmn

[

hs
v,n(T) − Ln(T)

]

, (2.125)

whereρ̌n = ρ̂n/ρ is the specific number density. Eq. (2.125) is the caloric equation
of state for the multi-component two-phase mixture, which implicitly gives the tem-
peratureT as function of the mixture specific internal energye, the multi-component
size distribution ˆρn, and the various vapor and carrier gas composition variables. The
equation of state is completed by specifying a suitable expression forLn(T), and by
setting:

hs
v,n(T) = hv,n(T) =

Nv
∑

k=1

wn,kCp,v,kT. (2.126)

Similarly to Eq. (2.125), the mixture enthalpy is expressed as:

h =
Nc
∑

k=1

gc,khc,k(T) +
Nv
∑

k=1

gv,khv,k(T) +
∑

n∈Ωn

ρ̌nmn

[

hs
v,n(T) − Ln(T)

]

. (2.127)
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Using Eq. (2.126) in combination with the caloric equation of state for ideal gases,
the mixture enthalpy can be concisely expressed as:

h = Cp,0T −
∑

n∈Ωn

ρ̌nmnLn(T), (2.128)

where:

Cp,0 =

Nc
∑

k=1

gc,kCp,c,k +

Nv
∑

k=1

gmax
v,k Cp,v,k (2.129)

is the specific heat of the mixture in the dry state.

2.4.4 Mixture transport equations

Adopting the same assumptions as have been made for the case of single compo-
nent condensation, it is straightforward to derive that the mass, momentum, and en-
ergy equations for the multi-component two-phase mixture (in conservation form) are
identical to Eqs. (2.84), (2.86), and (2.87), respectively. The transport equation for
the multi-component size distribution can be written in a similar form as Eq. (2.82),
with the condensation source term replaced withSn. This source term will be further
elaborated in chapter 5.

With respect to the characteristic form of the mixture transport equations, itcan be
derived that these are identical to Eqs. (2.99), (2.100), and (2.101) for the single com-
ponent case, when the single-component size distribution ˇρn is replaced with ˇρn. Eq.
(2.98) for the frozen speed of sound also remains valid, and only the expressions for
the partial derivatives∂p/∂ρ and∂p/∂e need to be modified. Eqs. (2.114), (2.115),
(2.119), (2.120), and (2.122) reveal thatR = R(ρ̌), with ρ̌ = (ρ̌(1,1), ρ̌(2,0), .., ρ̌(N,N))T ,
and therefore, Eqs. (2.103) and (2.104) also remain valid. The problemis thus again
reduced to finding the partial derivatives ofT with respect toρ and e. From Eq.
(2.125) it is observed thatT = T(e, ρ̌), so that immediately∂T/∂ρ = 0. To find
∂T/∂e, Eq. (2.125) is first differentiated with respect toe, and with subsequent ma-
nipulations it is derived that:

∂T
∂e
=



















Nc
∑

k=1

gc,kCv,c,k +

Nv
∑

k=1

gv,kCv,v,k +
∑

n∈Ωn

ρ̌nmn

[
Nv
∑

k=1

wn,kCp,v,k −
∂Ln

∂T

]



















−1

.

(2.130)
This completes the two-phase mixture model for multi-component condensing flow.
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equations in condensing flow

The kinetic equation (KE), and its first- and second-order approximations, the gen-
eral dynamic equation (GDE) and the Fokker-Planck equation (FPE), respectively,
are evaluated based on (a) their equilibrium distributions, (b) a nucleation pulse ex-
periment, and (c) an expanding nozzle flow. Large differences are observed between
the equilibrium distributions of the FPE and KE, whereas the GDE does not have
an equilibrium distribution at all. For the nucleation pulse experiment, good agree-
ment is found between the KE, FPE and GDE, due to quasisteady nucleation.For the
condensing nozzle flow, the difference between the GDE- and the KE-distributions is
large, although the relevant flow variables show fair agreement. A sensitivity study
of the KE-solution with respect to uncertainties in (a) the surface tension model, (b)
the sticking probability, and (c) the equilibrium distribution, revealed that boththe
sticking probability and the equilibrium distribution have a significant influenceon
the predicted condensation onset. Furthermore, it is found that the proposed Wölk
and Strey-corrected Courtney equilibrium distribution yields the best agreement with
reported measurements.

The work in this chapter has been published in revised form as: R.S.R. Sidin,
R. Hagmeijer, and U. Sachs, ”Evaluation of master equations for the droplet size
distribution in condensing flow”, Phys. Fluids21, 7 (2009).

3.1 Introduction

Flow induced condensation occurs in various industrial applications, ranging from
steam turbines to supersonic gas conditioners. In such devices, the rapid flow ex-
pansion leads to the spontaneous formation of a dispersion of small liquid droplets,
also referred to as clusters. The spatial and temporal evolution of the droplet size
distribution is governed by a balance equation for the droplet number density, and is
referred to as either the master equation [52], the general dynamic equation [101],
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or the population balance equation [138]. The formulation of the master equation is
based on the pioneering work by, amongst others, Becker and Döring [13], and the
Szilard model of condensation [52], in which the growth and evaporation of droplets
proceeds via the interaction with single molecules (monomers). As this processis
kinetically driven, the master equation is referred to as the kinetic equation (KE). In
condensation modelling, the KE is primarily used to derive expressions for the steady
state nucleation rate, i.e., the rate at which nuclei are formed at the onset ofcondensa-
tion [52], [127]. It will be shown that the KE can be exactly representedby a partial
differential equation of which the general dynamic equation (GDE) is a first-order
approximation, and the Fokker-Planck (FPE) equation is a second-order approxima-
tion. Each of these equations can be ranked based on a hierarchy of accuracy, with
the KE and GDE formally providing the most and least accurate descriptions of the
condensation process, respectively (see Figure 3.1).
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Figure 3.1: Hierarchy of master equations with respect to accuracy and computa-
tional demands.

Recently, Holten and van Dongen [46] have investigated the accuracy ofthe GDE
by numerical simulation of a nucleation pulse experiment with a one-way coupling
between the thermodynamic variables and the droplet size distribution. They ob-
served good overall agreement between the KE and GDE solutions, except for some
minor details in the shape of the distribution function.

In a separate investigation, White and Young [133] have also investigated the ac-
curacy of the GDE by numerical simulation of a superheated steam expansion, but
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with a two-way coupling between the thermodynamic variables and the droplet size
distribution. They observed that the agreement between the KE and GDE was poor
for fast expansion rates, due to failure of the quasi-steady condensation assumption
on which the GDE is based.

The objective of the present paper is to extend these investigations by employing
two test cases: (a) a nucleation pulse experiment using one-way coupling, and (b) a
rapidly expanding flow through a Laval nozzle using two-way coupling, for which ex-
perimental data is available. In the first test case the FPE is included as an additional
candidate, and the validity of the quasi-steady nucleation assumption is addressed.
The truncation errors associated with the FPE and GDE are calculated to explain the
discrepancies between the predicted size distributions. In the second testcase, KE
and GDE results are also compared with experimental data. The validity of the phys-
ical model behind the KE is evaluated, and uncertainties in some key variablesare
analyzed and quantified.

3.2 Master equations for the droplet size distribution

The master equation is essentially a mass conservation law for droplets consisting
of an integer number of vapor molecules. In the flows considered in this chap-
ter, the concentration of vapor molecules (monomers) is much higher than thatof
droplets, which justifies the assumption that droplets only interact with monomers:
each droplet may capture or expel a single monomer at a time. This is the so-called
Szilard approach in condensation [52], for which three physical-mathematical mod-
els will be discussed in the following sections.

3.2.1 The Kinetic Equation (KE)

The KE for a quiescent vapor (e.g., [52], [127]) is:

dρ̂n

dt
= Jn−1 − Jn , n = 2,3, .. (3.1)

whereρ̂n denotes the volumetric number density of droplets consisting ofn-molecules
(n-mers), and where the condensation fluxJn contains the combined effect of a con-
densation (forward) ratefn and an evaporation (backward) ratebn:

Jn = fnρ̂n − bn+1ρ̂n+1. (3.2)

Schematically, the KE can be represented as a series of chemical reactions, as de-
picted in Figure 3.2. For an advected vapor, with the average advection velocity of
the droplets equal to the velocityu of the carrier gas, the KE becomes

∂ρ̂n

∂t
+

∂

∂x j
(u j ρ̂n) = Jn−1 − Jn , n = 2,3, .. . (3.3)
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Jn-1

fn-1 ρn-1

bn ρn

fn ρn

bn+1  ρn+1

Jn

��� � � �����

^

^

^

^

Figure 3.2: Schematic representation of the Szilard model for single-component con-
densation.

Assuming Maxwellian velocity distributions for the monomers and droplets, the
forward ratefn may be written as [52]:

fn = αncnv2/3
1

√

n+ 1
n

(n1/3 + 1)2
√

kBT
2πm1

ρ̂1, (3.4)

whereαn denotes the sticking probability,cn is the shape factor,v1 andm1 denote
the effective volume and mass of a single molecule, respectively ,kB denotes the
Boltzmann constant, andT the gas/vapor temperature. It is noted that the asymptotic
size dependency offn ∼ n2/3 used in [46] and [133], is valid for sufficiently large
droplets only.

Although the sticking probabilityαn is usually set to unity, a number of recent
investigations employing advanced simulation techniques have shown thatαn varies
strongly withn for small droplets, and that in the limit of very large droplets,αn does
not necessarily approach unity [99]. Okada and Hara [82] report values ofα∞ of
about 0.6 to 1.0, whereasα2 reaches values of as low as 0.01 (see Figure 3.3). To
study the influence ofαn on the condensation process, the following model expres-
sion forαn is used in the present investigation:

αn = α∞ − (α∞ − α1) exp

(

1− n
n∞

)

, (3.5)

which roughly mimics the trends inαn observed in [82]. The values ofα1, α∞, and
n∞ will be varied to investigate their influence on the predictions.

The shape factorcn is set tocn = (36π)1/3, which corresponds to spherical droplets.
Although small droplets may be far from spherical (see Figure 3.4, [145]), a more
accurate expression cannot be derived due to the lack of suitable data.
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Figure 3.3: Sticking probability for water droplets predicted by Okada and Hara
[82].

Figure 3.4: Shape of a water droplet with size n= 15, as obtained from molecular
dynamics simulations by Yasuokaet al., [145]. The hydrogen and oxygen atoms are
represented by the small spheres and large spheres, respectively; the rods indicate
hydrogen bonds.
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The backward ratebn is obtained from the requirement that the fluxesJn are zero at
equilibrium and from the usual assumption that the backward rates are independent
of the size distribution:

bn = fn−1
ρ

eq
n−1

ρ
eq
n
, (3.6)

where the superscript ’eq’ refers to equilibrium conditions.
The general form of the equilibrium distribution is given by [52]:

ρ
eq
n = ρ

s
1 exp

[

− ∆Gn

kBTn

]

, (3.7)

where∆Gn denotes the Gibbs free energy of a droplet of sizen, andρs
1 is the monomer

number density at saturation. The droplet temperatureTn is assumed to be equal to
the gas/vapor temperatureT, corresponding to an isothermal condensation model.
The Gibbs free energy∆Gn depends on the saturation ratioS (see Eq. (1.1)), and the
dimensionless surface energy

θ ≡ A1σ

kBTn
, (3.8)

whereA1 is the molecular surface area, andσ the surface tension.
Adopting the nomenclature used by Wilemski [134], the following models for∆Gn

will be considered in this investigation:

1. ∆Gn for the Courtney distribution:

−∆GC
n

kBTn
= n ln S − θn2/3 , n > 1, (3.9)

2. ∆Gn for the Self Consistent Classical distribution (SCC):

−∆GSCC
n

kBTn
= n ln S − θ(n2/3 − 1), (3.10)

3. ∆Gn for the Kelvin distribution (derived for a droplet in stable equilibrium):

−∆GK
n

kBTn
= n ln S − 2

3
θ

n
∑

j=2

j−1/3. (3.11)

In addition, a fourth equilibrium distribution will be employed which combines the
Courtney equilibrium distribution with the empirical correction factor for the nucle-
ation rate reported by Ẅolk and Strey in [139]:

Jexp

JCNT
= exp

[

A+
B
T

]

. (3.12)
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In this expressionJexp is the nucleation rate obtained from experiment,JCNT is ob-
tained from Classical Nucleation Theory (see appendix B), andA and B are fluid
dependent constants. The nucleation rateJ is generally expressed as:

J = K exp

(

−∆Gn∗

kBT

)

, (3.13)

wheren∗ denotes the critical droplet size andK the kinetic prefactor (see appendix
B). Multiplication of JCNT by the empirical correction factor may be interpreted as a
correction to∆GC

n∗ :

∆Gn∗ = ∆GC
n∗ −

(

A+
B
T

)

kBTn. (3.14)

Application of the correction to all droplet sizes finally leads to:

4. ∆Gn for the Wölk and Strey corrected Courtney distribution (CWS):

−∆GCWS
n

kBTn
= n ln S − θn2/3 + A+

B
T

, n > 1. (3.15)

3.2.2 The Fokker-Planck Equation (FPE)

By replacing the discrete distributionρn(x, t) with a continuous distribution ˆρ(n, x, t),
where ρ̂(n, x, t) = ρn for n ∈ N

+, and applying a Taylor series expansion to the
right-hand side of Eq. (3.3), the following generalized Fokker-Planck equation [95]
is derived:

∂ρ̂

∂t
+

∂

∂x j
(u j ρ̂) =

∞
∑

k=1

Tk(n), (3.16)

where:

Tk(n) ≡ 1
k!

∂k

∂nk

[

( fn(−1)k + bn)ρ̂(n)
]

. (3.17)

It is noted that Eq. (3.16) is an exact representation of Eq. (3.3). By truncating Eq.
(3.16) up to the second-order term (k = 2), the Fokker-Planck equation (FPE) is
obtained:

∂ρ̂

∂t
+

∂

∂x j
(u j ρ̂) = − ∂

∂n
(ṅρ̂) +

∂2

∂n2
(Dρ̂). (3.18)

A similar equation was derived by Tunitskii [52]. The drift velocity ˙n = ṅ(n, x, t) is
given by:

ṅ = fn − bn, (3.19)

which resembles the average growth rate of the droplets. The diffusion coefficient
D = D(n, x, t) is

D =
1
2

( fn + bn), (3.20)
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which reflects the statistical nature of the droplet formation process. It is noted that
by using the FPE, a third order truncation error is introduced with respectto the KE.
As a consequence of the fixed step size used in the Taylor expansion, i.e.,∆n = 1, the
truncation error is also fixed, which means that good agreement between Eqs. (3.3)
and (3.18) is not guaranteed.

The equilibrium distribution ˆρeq(n) of the FPE satisfies:

ṅρ̂eq− d
dn

(Dρ̂eq) = 0, (3.21)

subject to the boundary condition:

ρ̂eq(n0) = ρ̂eq
0 , (3.22)

with n0 ≥ 2 corresponding to the smallest droplet accounted for in the FPE. Rear-
rangement of Eq. (3.21), i.e.,

dρ̂eq

dn
+

[

1
D(n)

dD(n)
dn

− ṅ(n)
D(n)

]

ρ̂eq = 0, (3.23)

leads to the Fokker-Planck equilibrium distribution

ρ̂eq(n) = ρ̂eq
0

D(n0)
D(n)

exp























n
∫

n0

ṅ(ξ)
D(ξ)

dξ


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

















. (3.24)

It is noted that for large droplets

ṅ(n)
D(n)

→ 2
S − 1
S + 1

, (3.25)

which, in a supersaturated state (S > 1), leads to a non-physical equilibrium for large
droplets.

The relative importance of the diffusion term compared to the drift term can be
quantified by means of a droplet Péclet numberPé(n), defined as:

Pé(n) ≡ ṅ(n)n
D(n)

, (3.26)

which gives an order-of-magnitude comparison between the first and second order
term. As shown in Eq. (3.25), the ratio between ˙n(n) andD(n) reduces to a constant
in the limit of very large droplets, and therefore:Pé(n) ∼ n for n ≫ 1. Thus, it is
concluded that the diffusion term can be neglected in the large-droplet limit.



3.2. Master equations for the droplet size distribution 45

3.2.3 The General Dynamic Equation (GDE)

Computational models for condensing flow, e.g., [45], [42], [131], [68], are fre-
quently based on the so-called general dynamic equation (GDE), which is afirst-order
approximation of the KE:

∂ρ̂

∂t
+

∂

∂x j
(u j ρ̂) +

∂

∂n
(ṅρ̂) = 0. (3.27)

The use of the GDE instead of the more elaborate KE, or generalized FPE is justi-
fied when the higher order terms in Eq. (3.16) are much smaller than the first order
term. Indeed, by using a quasi-steady state solution for the droplet size distribution,
Muitjens [79] has shown that the drift term in the FPE becomes dominant overthe
diffusion term for supercritical droplet sizes, i.e., forn > n∗. Muitjens suggests that
for n ≥ n0, n0 = 2n∗, the diffusion flux may be neglected. A similar suggestion was
made by Hill [45], who introduced a droplet source term atr0 = 1.3r∗ based on the
observation that at that droplet size the probability of growth is almost unity.As a
result, the GDE is only applicable forn > n0, and a higher-order approximation of
the KE would be required to cover the time dependent range 2≤ n < n0. It is one
of the objectives of the present investigation to determine whether or not theabove
stated assumptions hold in condensation problems with rapid expansions.

In computational models employing the GDE, the usual practice is to neglect all
droplets smaller thann0:

ρ̂(n) = 0, 2 ≤ n < n0. (3.28)

Whenn0 is constant, which occurs in quasi-steady nucleation, the flux atn = n0 can
conveniently be specified in the form:

ṅρ̂|n=n0 = J, (3.29)

whereJ is the nucleation rate which is assumed to be independent ofn for 2 ≤ n ≤ n0.
Whenn0 varies with time, however, the boundary condition in Eq. (3.29) needs to be
replaced by [68]:

∆ṅρ̂|n=n0 = J, ∆ṅ ≡ ṅ− Dn0

Dt
, (3.30)

with D/Dt representing the substantial derivative. Boundary condition Eq. (3.30) can
only be applied as long as∆ṅ > 0, since when∆ṅ < 0 droplets are leaving the
computational domain and a boundary condition is not required. This situationre-
sembles instantaneous evaporation, and is actually similar to the denucleation mech-
anism which was mentioned by Hagmeijeret al. in [42] and [107], wheren0 = n∗. It
is noted that in case of rapid expansions the quasi steady nucleation assumption, i.e.,
the assumption thatJ is independent ofn for 2 ≤ n ≤ n0, may loose validity and may
lead to deviations between the solutions of the GDE and the KE.
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By defining the radius distribution function as

f (r(n, r1), x, t) =
3n

r(n, r1)
ρ̂(n, x, t), (3.31)

with r = r1n1/3, andr1 = r1(x, t) denoting the effective monomer radius, the follow-
ing general dynamic equation for the droplet radius distribution function is derived
from Eq. (3.27):

∂ f
∂t
+

∂

∂x j
(u j f ) +

∂

∂r
(ṙKE f ) = 0. (3.32)

The growth rate ˙rKE is given by:

ṙKE = ṅ
∂r
∂n
+

Dr1

Dt
r
r1
. (3.33)

The first term on the right-hand side of Eq. (3.33) represents the change in droplet
radius due to mass accumulation, whereas the second term resembles the effect of
compression or expansion of the liquid phase. The subscriptKE in ṙKE indicates
that the growth of droplets is governed by the kinetics of monomer impingement.
It can be shown that for sufficiently large droplets and incompressible liquids (i.e.,
Dr1/Dt = 0), the growth rate ˙rKE reduces to the well known Hertz-Knudsen droplet
growth law.

It is noted that the boundary condition Eq. (3.30) is traditionally implemented into
Eq. (3.27) by adding a source term which includes a Dirac delta function. The equa-
tion thus obtained is similar in form to Eq. (3.27), and is given by:

∂ρ̂

∂t
+

∂

∂x j
(u j ρ̂) +

∂

∂n
(ṅρ̂) = Jδ(n− n0). (3.34)

To show that the formulation of the condensation problem given by Eq. (3.34) is
equivalent to Eq. (3.27), with Eq. (3.30) specified as boundary condition, a general
solution for both problems is independently derived by means of the method ofchar-
acteristics. Here, a characteristic, denoted byx̄(t), n̄(t), represents a trajectory in
(x,n)-space, which follows from the solution of the coupled initial value problem:

dx̄
dt
= u(x̄(t), t) , x̄(t1) = x1 (3.35)

dn̄
dt
= ṅ(x̄(t), n̄(t), t) , n̄(t1) = n1, (3.36)

where (x1,n1) denotes a point through which the characteristic passes at an arbitrary
reference timet1. Starting with Eq. (3.34), the nucleation source term on the right-
hand side is first replaced by the expression:

Jδ(n− n0) = J(t)
δ(t − t0)

|ṅ− dn0
dt |(t)

, (3.37)
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wheren̄(t0) = n0. By introducing the derivatived/dt, where:

d(.)
dt
≡ ∂(.)

∂t
+ u j

∂(.)
∂x j
+ ṅ

∂(.)
∂n

, (3.38)

and replacing ˆρn with the specific number density ˇρn = ρ̂n/ρ, Eq. (3.34) may be
rewritten along a characteristic as:

dρ̌
dt
+ ρ̌

∂ṅ
∂n
=

J(t)
ρ(t)

δ(t − t0)

|ṅ− dn0
dt |(t)

. (3.39)

Multiplication of Eq. (3.39) with an integrating factora(t), where:

a(t) = exp


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t
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0

∂ṅ
∂n

(n̄(t′), t′)dt′














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

, (3.40)

followed by integration in time, yields the following solution:

[ρ̌(n̄(t′), t′)a(t′)]t
t0(1−β) =

t
∫

t0(1−β)

a(t′)
J(t′)
ρ(t′)

δ(t′ − t0)

|ṅ− dn0
dt |(t′)

dt′, (3.41)

whereβ is an arbitrary positive number smaller than unity, such that ¯n(t0(1−β)) < n0.
As ρ̌(n) = 0 for n < n0, and because the Dirac delta-function filters the integrand in
Eq. (3.41) att = t0, the final solution for Eq. (3.34) is given by:

ρ̌(n̄(t), t) =
a(t0)
a(t)

J(t0)

ρ(t0)|ṅ− dn0
dt |(t0)

. (3.42)

The nucleation fluxJ is only specified when ˙n− dn0
dt > 0, and therefore, the absolute

signs on the right-hand side of Eq. (3.42) can be dropped:

ρ̌(n̄(t), t) =
a(t0)
a(t)

J(t0)

ρ(t0)(ṅ− dn0
dt )(t0)

. (3.43)

The next step is to obtain the solution of Eq. (3.27), with the boundary condition
given by Eq. (3.30). By applying similar mathematical manipulations as performed
above, the following solution of Eq. (3.27) (along a characteristic) is derived:

[ρ̌(n̄(t′), t′)a(t′)]t
t0 = 0. (3.44)

Eq. (3.44) is similar to Eq. (3.41), except for the nucleation source term and the lower
integration boundary. Since: ¯n(t0) = n0, and:dn0/dt = Dn0/Dt due ton0 = n0(x, t),
the boundary condition given in Eq. (3.30) allows ˇρ(n̄(t0), t0) to be expressed as:

ρ̌(n̄(t0), t0) =
J(t0)

ρ(t0)(ṅ− dn0
dt )(t0)

. (3.45)
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Substitution of Eq. (3.29) into Eq. (3.44) then yields:

ρ̌(n̄(t), t) =
a(t0)
a(t)

J(t0)

ρ(t0)(ṅ− dn0
dt )(t0)

. (3.46)

This is exactly equal to the solution of Eq. (3.34) in Eq. (3.43), thus completingthe
proof for equivalence of both formulations.

It is finally noted that the GDE, in contrast to the KE and the FPE, does not allow
for an equilibrium distribution: subcritical droplets will always evaporate,whereas
supercritical droplets will always grow.

3.3 Evaluation method

3.3.1 Description of test cases

In the first test case, a nucleation pulse experiment with water vapor is simulated,
similar to the one used by Holten and van Dongen [46]. The KE (Eq. (3.3)),the FPE
(Eq. (3.18)), and the GDE (Eq. (3.32)) are solved for the temperature and saturation
histories given in Figure 3.5, withui = 0, i = 1,2,3. The simulation is one-way
coupled, i.e., the effects of latent heat release and vapor depletion are not accounted
for. The predicted size distributions obtained with the various master equations are
compared, and the condensation fluxes and truncation errors are analyzed to explain
observed differences.
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Figure 3.5: Temperature and saturation ratio evolution in the nucleation pulse ex-
periment.

In the second test case, the condensing flow through a Laval nozzle is simulated,
corresponding with experiments conducted by Tanimuraet al. [119]. By using isen-



3.3. Evaluation method 49

tropic relations, the nozzle area variation in Figure 3.13.a has been reconstructed from
the dry-flow pressure profiles given in [119] to account for boundary-layer effects.
The nozzle diverges very slowly downstream of the throat, which justifiesthe use of
a quasi-one-dimensional simulation. The experiment utilizes a mixture of nitrogen
(N2) and methane (CH4) as the carrier gas, and heavy water (D2O) as the condensing
component. The mole fraction of methane in the mixture is approximately 4%, and
that of D2O approximately 2.5%, which corresponds with a total D2O mass fraction
of gmax = 0.0018. The total pressure and temperature of the mixture at the nozzle
inlet are p0 = 30.1kPa and T0 = 298K, respectively. The material properties of
N2, CH4 and D2O are taken from [44], and given in appendix A. The latent heat of
condensation is set equal to the bulk-valueLb = Lb(T) for D2O. A two-way cou-
pling is utilized, accounting for the effects of vapor depletion and latent heat release.
The simulation is based on solving the FDE for the mixture (Eq. (2.84), (2.86),and
(2.87)) simultaneously with either the KE (Eq. (3.3)), or the GDE (Eq. (3.32)). FPE
results have not been obtained for this test case since the FPE equilibrium distribution
corresponds to excessively high liquid mass fractions which triggers the formation of
unsteady shocks.

The influence of the sticking probabilityαn is evaluated by considering Eq. (3.5)
with the following variants: (i)αn = 1 ∀n ; (ii) αn = 0.8 ∀n ; (iii) α1 = 10−2, α∞ = 1,
n∞ = 10 ; (iv) α1 = 10−1, α∞ = 1, n∞ = 10 ; (v) α1 = 10−2, α∞ = 1, n∞ = 5.
The influence of the employed equilibrium size distribution on the backward rate is
evaluated by comparing results obtained with Eq. (3.9), (3.10), (3.11), and (3.15).
The influence of the choice ofn0 is investigated by taking

n0 = ǫn
∗, 1 < ǫ ≤ 2, (3.47)

similar to the approach used by Holtenet al. in [46]. Finally, the influence of the
surface tension model is assessed by employing an additional expressionfor σ(T)
from [28].

Unless specified otherwise, the backward ratebn in the KE and FPE is based on
the Courtney equilibrium distribution. By default, the forward rate is calculated by
using variant (i) for the sticking probability (αn = 1). For the KE, the lower boundary
is set to a default value ofn0 = 2. With respect to the GDE, the default nucleation
rate is computed from the CNT-model, and the growth rate from the Hertz-Knudsen
droplet growth law, with the lower boundary set atr0 = r(2n∗) (see appendix B).

3.3.2 Numerical methods

The maximum droplet radii observed in the simulations are approximately 0.1µm,
which corresponds with a droplet size ofn ≈ 108. To reduce the computational effort
in solving the KE, droplets are grouped into bins in similar fashion as was donein
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[46] and [133] (see Figure 3.6). For droplets smaller than a certain size,a single
droplet is associated with each bin, whereas for larger droplets the number of droplet
sizes assigned per bin progressively increases. In this way it is possible to cover the
entire range of droplet sizes by a set of 400 to 2000 bins, with the smallest droplet
size equal ton = 2, and the largest ton = 5 · 108.

The KE for the droplet bins is given by:

∂ρ̄k

∂t
+

∂

∂x j
(ρ̄ku j) =

1
wk

(

J̄k−1 − J̄k

)

, (3.48)

whereρ̄k is the average number density for thekth bin, wk is the number of droplet
sizes associated with bink, and whereJ̄k is the condensation flux between binsk and
k+1. The fluxJ̄k is calculated by means of Eq. (3.2):̄Jk = Jnr (k), with nr (k) denoting
the largest droplet in thekth bin. This calculation requires the number densities at
the neighboring droplet sizes ofnr (k) andnl(k + 1), with the latter representing the
smallest droplet belonging to bink+1. By applying zero-th or first-order interpolation
to the bin-averaged number densities ¯ρk andρ̄k+1, an estimate of the number densities
at the neighboring droplets can be obtained.

nr (k)

������� � ��������������

nl (k+1)

Jk-1 Jk

Figure 3.6: Grouping of droplets into bins for the numerical solution of the KE.

When solving the FPE or the GDE, the drift and diffusion terms inn-space need to
be discretized. Hereto, the droplet size space is again divided into bins, whereafter a
second-order finite volume discretization is carried out. The resulting semi-discrete
form of the FPE is given by:

∂ρ̃k

∂t
+

∂

∂x j
(ρ̃ku j) = −

1
∆nk

[

ṅρ̃
]nk+1/2
nk−1/2

+
1
∆nk

[

∂

∂n
(Dρ̃)

]nk+1/2

nk−1/2

(3.49)

whereρ̃k represents the average value of ˆρ over bink, whose edges are located at
nk±1/2. The drift flux on the right-hand side of Eq. (3.49) is calculated by means of
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either the second-order MSOU-scheme [118] or the fifth-order WENO-scheme [106],
and the diffusive flux is calculated by using a central discretization. The semi-discrete
form of the GDE is similar to Eq. (3.49), except for the diffusion term.

The spatial discretization of the master equations and FDE is done by means ofa
finite volume method, which formally provides second-order accuracy. Introducing
the vector of state variablesq, whereq = (ρ, ρu, ρet, ρ̄2, .., ρ̄N−1)T for the FDE and
KE, the quasi-one-dimensional balance equation

∂q
∂t
+

1
A
∂

∂x
(F(q)A) = S(q), (3.50)

with A = A(x) the nozzle flow area, is discretized as:

dq̃i

dt
+

1
Ai∆xi

[F(q̃)A]xi+1/2
xi−1/2
= S(q̃i), (3.51)

whereq̃i represents the cell averaged value ofq, F the flux in physical space,S the
relevant source terms,i the index of the computational cell, and∆xi = xi+1/2 − xi−1/2

the corresponding cell width. For the system of FDE and FPE, or GDE, thedis-
cretized form is similar to Eq. (3.51), withq replaced byq = (ρ, ρu, ρet, ρ̃1, .., ρ̃N)T .
The fluxes in physical space are calculated by means of Anderson’sκ-scheme, which
employs van Leer flux splitting [62] and the van Albada flux limiter [2].

For the first test case, the discretized master equations are integrated in time by
means of a second-order predictor-corrector method, using typical time steps of 10−9s.
For the second test case, the system in Eq. (3.51) is marched in time by means of the
same time-integration method, until a steady state is reached. Rewriting the semi-
discrete form in Eq. (3.51) as:

dq̃i

dt
= Ri + Si , (3.52)

where:Ri = R(q̃i , q̃i±1, q̃i±2) denotes the advection residual vector, the time integra-
tion for the FDE/FPE and FDE/GDE-systems proceeds as follows:

1. predictor step:
q̃p

i = q̃m
i + (Rm

i + Sm
i )∆tm; (3.53)

2. corrector step:

q̃m+1
i = q̃m

i +
1
2

(Rm
i + Sm

i + Rp
i + Sp

i )∆tm, (3.54)

with m denoting the time level and∆tm the corresponding integration time step. For
the KE, time integration proceeds in a slightly different manner, and is based on a
semi-implicit adaptation of the predictor-corrector method. Denoting the state vector
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for the mean number densities bȳρ = (ρ̄2, .., ρ̄N−1)T , the semi-discrete form of the
KE is given by:

dρ̄i

dt
= Rr,i + Sr,i + Ad,i ρ̄i , (3.55)

whereRr is the advection residual vector, and where the matrixAd is given by:
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(3.56)
corresponding with a zero-th order interpolation to obtain the number densities at
the edges of neighboring droplet bins. The vectorSr on the right-hand side of Eq.
(3.55) contains the contributions from the monomers (n = 1) and the largest droplets
(n = N), and is given by:

Sr = (
fnr (1)

w1
ρ̄1,0, ..,0,

bnl (N)

wN
ρ̄N)T . (3.57)

The monomer number density is determined from the partial vapor densityρv by:
ρ̄1 = ρv/m1, whereas the number density for the largest droplet is set to zero: ¯ρN = 0.
By applying a first-order discretization to the time derivative in Eq. (3.55), and by
evaluating the first and second term on the right-hand side of Eq. (3.55) at time tm,
whereas the last term is evaluated at the new timetm+1, the following numerical
approximation to Eq. (3.55) is obtained:

ρ̄m+1
i = ρ̄m

i + (Rm
r,i + Sm

r,i + Am
d,i ρ̄

m+1
i )∆tm. (3.58)

This is a linear equation for the unknown number density vectorρ̄m+1
i , for which

solution yields:
ρ̄m+1

i = Cm
i [ρ̄m

i + (Rm
r,i + Sm

r,i)∆tm], (3.59)

where the matrixCm
i is given by:

Cm
i = [I − Am

d,i∆tm]−1, (3.60)

with I denoting the identity matrix. By applying Eq. (3.59) to successive predictor
and corrector steps, a second-order semi-implicit time integration method for the KE
is obtained.

The convergence of the numerical solution corresponding to each test case is ver-
ified by solving the discretized equations on successively refined grids.For spatial
discretization, a number of 400 grid points was found to be sufficient, whereas for the
discretization in droplet size space a maximum of 2000 droplet bins has beenused.
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3.4 Results and discussion

3.4.1 Equilibrium distributions

Figures 3.7.a and b show the Courtney and FPE equilibrium distributions for water
vapor at (a)T = 253.2K, S = 0.5, and (b)T = 253.2K, S = 5.0, respectively.
The sticking probability has been set to unity, and the backward rate is based on
the Courtney equilibrium distribution. For the FPE, the lower boundaryn0 has been
taken equal to 2, 5, and 10 respectively.

For the subsaturated vapor (Figure 3.7.a), the equilibrium distributions monoton-
ically decrease with increasing droplet size, whereas for the supersaturated vapor
(Figure 3.7.b), there is a minimum present atr = r∗. The monotonic increase in
number densities of supercritical droplets (r > r∗) cannot exist for arbitrarily large
droplets, and therefore these distributions are referred to as a constrained equilibrium
distributions [52], [127]. Figures 3.7 shows that there are large differences between
the Courtney and FPE equilibrium distributions which are due to the truncation error
R2(n), with:

Rk(n) ≡
∞
∑

j=k+1

T j(n). (3.61)

Comparison of Figures 3.7.a and b suggests that the influence of the truncation er-
ror on the equilibrium distributions appears to be more pronounced for lower values
of the saturation. In Figure 3.8 the normalized truncation errorRk(n)/R1(n) obtained
from the Courtney equilibrium distribution has been plotted fork = 1,2, ..,10, reveal-
ing that for small droplets (e.g.,n = 5), the truncation error first shows a maximum,
after which it gradually reduces to zero ask is further increased. For larger droplets
(e.g.,n = 50), the truncation error decreases almost monotonically with increasing
truncation order.

3.4.2 Test case 1: nucleation pulse experiment

The size distributions predicted by the KE, FPE and GDE are shown in Figure3.9,
for: t = 0.025ms (halfway the nucleation pulse),t = 0.05ms (end of the pulse),
t = 0.17ms, andt = 0.29ms. For the KE the lower boundary is set atn0 = 5, and
for the FPEn0 = 15, with ρn0 and ρ̂(n0) obtained from the Courtney equilibrium
distribution. For the GDE, the lower boundary is set atn0 = 2n∗, and the initial
distribution is zero everywhere. Overall, the size distributions corresponding with
the KE and GDE agree with those reported in [46]. There are some minor differences
associated with the GDE-solution, which stem from the use of a slightly modified
growth law and the application of the GDE to subcritical droplets in [46].

Comparing the FPE-solution with the KE-solution (see Figures 3.9 and 3.12), it
is observed that the FPE is able to predict the shape of the distribution function very
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Figure 3.7: Equilibrium droplet size distributions for the KE (Courtney) and FPE,
for water vapor at: (a) T= 253.2K, S = 0.5 ; (b) T = 253.2K, S = 5.0.
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accurately, even for very small droplets . There is, however, a noticeable difference
in the magnitude of about 8% aft of the moving front. In this region, the difference
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between the GDE-solution and the KE-solution is less than 1%, which is remarkable
considering the fact that the former is merely a first-order approximation ofthe latter.
In the region which immediately surrounds the moving front though, the FPE clearly
performs better than the GDE, as the latter cannot capture the gradual transition of
the size distribution to zero near the end of the front. In figures Figure 3.9.cand d the
rear of the size distribution corresponding with the GDE abruptly stops, whereas the
KE- and FPE-solutions gradually reduce to zero. This difference is a consequence of
the denucleation boundary condition applied atr0 = r(2n∗), which removes all of the
droplets of sizer < r0 in the GDE-solution. Overall, the solutions obtained with the
various master equations show favorable agreement for this test case.

To explain this observation, the condensation fluxesJn and termsTk(n) of the Tay-
lor series expansion in the generalized FPE (Eq. (3.16)) are examined. Using the KE-
solution, the condensation fluxesJn (Eq. (3.2)) have been calculated and plotted in
Figure 3.10, for the same four instants in time as in Figure 3.9. During the nucleation
pulse (0≤ t ≤ 0.05ms), Jn is independent ofn in the region aft of the front, meaning
that the condition of steady state nucleation is satisfied:dρ̂n/dt = 0. Furthermore,
Jn = JCNT in this region, which explains why the magnitude of the GDE-solution is
very close to that of the KE-solution.

As the condition of steady state nucleation is satisfied, it now remains to be deter-
mined how important the second- and higher-order Taylor termsTk(n) are compared
to the drift termT1(n). Figure 3.11.a and b depict the ratioTk(n)/T1(n)) for the times
t = 0.025msand t = 0.17ms, respectively, fork = 2,3,4. For t = 0.025ms it is
observed that the first- and second-order terms are of comparable magnitude, even
for supercritical droplets, which seems to contradict the good agreementbetween the
results of the GDE and the KE in this region. Furthermore, for very small droplets the
third- and fourth-order terms are not small compared to the first- and second-order
terms.

When the distribution evolves in time, the contribution of each Taylor term in the
expansion of the condensation source term can be weighed against the difference in
condensation fluxesJn−1 − Jn, in order to determine the significance of each term.
During the pulse, however, droplets of sizen ≤ 104 are locally in a quasisteady state
(dρ̂n/dt = 0), which means thatJn−1− Jn = 0. As all Taylor terms also tend to zero in
this region, comparison ofTk(n) with T1(n) is not a convenient method to reveal the
importance of the higher-order terms. In this regard, it is more relevant to consider
the fluxesGk(n) corresponding with each Taylor termTk(n), where:

Gk(n) ≡ − 1
k!

∂k−1

∂ζk−1
[( fζ(−1)k + bζ)ρ̂(ζ)]|ζ=n. (3.62)

From Eq. (3.17) and Eq. (3.62) it follows that∂G
k(n)
∂n = −Tk(n). By settingk = 1 in

Eq. (3.62), the drift flux is obtained:G1(n) = ṅρ̂(n), and fork = 2 the diffusive flux:
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Figure 3.9: Droplet size distributions obtained with the KE, FPE, and GDE for the
nucleation pulse experiment at four different times: (a) t= 0.025ms ; (b) t= 0.05ms
; (c) t = 0.17ms ; (d) t= 0.29ms.

G2(n) = − ∂
∂n(Dρ̂)(n). Equating the right-hand side of Eq. (3.3) and Eq. (3.16), the

following relationship is obtained:

∞
∑

k=1

Tk(n) = Ĵ(n− 1)− Ĵ(n), (3.63)

where the continuous function̂J(n) is equal to the discrete condensation fluxJn for



3.4. Results and discussion 57

cluster size: n (-)

cluster radius: r (m)

J n/
J1 5

(-
)

101 102 103 104 105 106 107

10-9 10-8

0

0.2

0.4

0.6

0.8

1

1.2

1.4
t = 0.025ms
t = 0.05ms
t = 0.17ms
t = 0.29ms

n = n*
2

n = n*
1

Figure 3.10: Evolution of condensation fluxes Jn calculated by means of Eq. (3.2),
based on the solution of the KE, using the Courtney equilibrium distribution Eq.(3.9)
and withαn = 1. The critical droplet sizes before and after the pulse are denoted by
n∗1 and n∗2, respectively.

n ∈ N
+. Integration of Eq. (3.63) fromn to∞ then yields:


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
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

∞
∑

k=1

Gk(ζ)


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

∞

n

= −
n

∫

n−1

Ĵ(ζ)dζ. (3.64)

As ρ̂ = 0 for n → ∞, and becausêJ(n) = J is independent ofn in the quasisteady
state, Eq. (3.64) may be simplified to:

∞
∑

k=1

Gk(n)
J
= 1. (3.65)

Hence, for a quasisteady state solution, the importance of each Taylor termin the
generalized FPE can be evaluated in an indirect manner by comparing the scaled
fluxesGk(n)/J with each other. These fluxes are shown in Figures 3.11.c and d, for
the timest = 0.025msandt = 0.17ms, respectively.

In Figure 3.11.c it is clearly observed that the drift fluxG1(n) is the dominant term
for supercritical droplets (n > 1.5n∗), whereas below the critical size, the second-
order term becomes equally important. Figure 3.11.c actually confirms the validityof
Muitjens’ and Hill’s suggestion to neglect the second-order term forn > 2n∗. This is
underscored in Figure 3.11.e, which shows thatG1(2n∗) ≈ 0.96J, andG1(n)+G2(n) ≈
J for n > n∗. For very small subcritical droplets (n < 0.5n∗), the contributions of
the third- and fourth-order fluxes become significant, which relates to the inaccurate
results of the FPE in this region. In retrospect, it is found that all necessary conditions
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Figure 3.11: Second- (T2(n)), third- (T3(n)) and fourth-order (T4(n)) terms in the
Taylor series expansion on the right-hand side of Eq. (3.16) at (a) t= 0.025ms and (b)
t = 0.17ms. The corresponding fluxes Gk(n) are plotted in (c) and (d), respectively.
The scaled first- and second-order terms and their sum are depicted in (e) and (f), for
t = 0.025ms and t= 0.17ms, respectively.
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for simplification of the KE to the GDE are satisfied during the nucleation pulse,
which explains the good agreement between the predicted size distributions.For the
period after the pulse (t > 0.05ms), the condensation fluxes vary with droplet size
(Figure 3.10), so that the steady-state condition is no longer satisfied. Thetransient
behavior of the size distribution only regards the large droplets (n > n∗), for which
both Tk(n) (Figure 3.11.b) andGk(n) (Figure 3.11.d and f) show that the first-order
term is dominant. Therefore, the GDE still is a valid approximation to the KE, even
for slightly subcritical droplets (n > 0.5n∗).

With respect to the FPE, it is observed in Figure 3.11 that incorporation of the
second-order term should yield accurate results, even for droplets assmall asn = 11
in the period after the pulse. This is confirmed by Figure 3.12, where the FPE-
solution is plotted for varying lower boundariesn0. The best agreement is obtained
with n0 = 15; for the smaller values ofn0 = 5 andn0 = 10, the small droplets tend to
be near the equilibrium distributions corresponding with each master equation(Fig-
ure 3.12.c and d), which, as already seen in the previous discussion on the equilibrium
distribution, leads to rather large differences between the KE- and FPE-solutions.
This behavior characterizes the small droplets, and results in an overestimation of the
liquid mass fraction at the onset of condensation when the FPE is employed. This is
also the primary reason why it was not possible to obtain solution convergence for
the FPE in the second test case.

3.4.3 Test case 2: expanding nozzle flow

Using the reconstructed nozzle profile in Figure 3.13.a, the FDE have beensolved
simultaneously with either the KE or the GDE. Figure 3.13.b shows the typical be-
havior of variables that characterize the flow field and the thermodynamic behavior
of the system. Nucleation starts atx ≈ 0.02m, where the saturation reaches a max-
imum. This greatly enhances the formation of stable droplets, and causes the D2O
liquid mass fractiong to increase steadily. The latent heat release due to condensation
results in a temperature rise, while simultaneously the flow is decelerated. The flow
remains supersonic in the entire divergent section of the nozzle, and downstream of
the nucleation point the vapor remains in a slightly supersaturated state.

To evaluate the influence of the higher-order derivatives in the master equation
on the thermodynamic variables, the mixture temperatureT and D2O liquid mass
fractiong have been plotted for solutions obtained with the FDE/KE- and FDE/GDE-
systems in Figures 3.14.a and b, along with the laser absorbtion measurement (LAM)
data from [119]. The nucleation rate in the GDE has been obtained by usingeither
the CNT-model, the CNT-model with the empirical Wölk and Strey-correction, and
finally, the ICCT-model (see appendix B and Eq. (3.12)). The predictedtemperature
and liquid mass fraction profiles obtained with the KE and GDE-CNT models are
very close to each other, but they differ significantly from the measured data. It is
observed that both models predict the onset of condensation too late and that the pre-
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Figure 3.12: Solution of the FPE for various lower boundary positions: n0 = 5, 10
and15, at two times: (a) t= 0.025ms ; (b) t= 0.17ms. The solid line is the solution
of the KE using the Courtney equilibrium distribution withαn = 1. Figures (c) and
(d) are close-ups of respectively (a) and (b), depicting the equilibrium distributions
for the KE (Courtney) and the FPE (n0 = 5).

dicted temperature is too high in the region downstream of the nucleation zone.The
GDE employing the CNT-model with the Ẅolk and Strey-correction does a better job
of capturing the onset-point, but the temperature downstream of the nucleation zone
is again overestimated. Finally, the GDE with the ICCT-model is seen to predict the
onset of condensation much too early, but it does yield a final temperaturewhich is
closer to the measurement data.

The droplet size distributions obtained by solving the FDE/KE-, or the FDE/GDE-
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Figure 3.13: (a) Nozzle cross-sectional area and dry-flow pressure profile used in the
second test case; (b) solution for the Mach number M, temperature T, D2O liquid
mass fraction g and saturation S along the nozzle axis. The throat of the nozzle is
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Figure 3.14:Comparison of temperatures T and D2O liquid mass fractions g for the
expanding nozzle flow obtained from various simulations and from experiment.

system with variousn0 are shown in Figures 3.15.a-c, with close-ups of the nu-
cleation zone in ther − x plane in Figures 3.16.a-c. Figures 3.17.a-d show the
same droplet size distributions at four positions along the nozzle axis. Fromthe
KE-solution in Figures 3.15.a, 3.16.a and 3.17, it is observed that the distribution
becomes bi-modal in the nucleation zone, with an exponentially decreasing tailin
the region of small droplets (r < 0.5nm, see Figure 3.17.b). Of special interest is
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(a)

(b)

(c)

Figure 3.15: Solution for the droplet radius distribution function along the nozzle
axis: (a) KE (n≥ 5) ; (b) GDE with n0 = 2n∗ ; (c) GDE with n0 = 1.1n∗ (the plot has
been truncated to match the scale of the size distribution in (b)).
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(a)

(b)

(c)

Figure 3.16: Close-up of the droplet radius distribution function within the nucle-
ation zone: (a) KE ; (b) GDE with n0 = 2n∗ ; (c) GDE with n0 = 1.1n∗
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Figure 3.17: Comparison of droplet radius distributions at four different positions
along the nozzle: (a) x= 0.01m ; (b) x= 0.02m ; (c) x= 0.04m ; (d) x= 0.06m. The
KE has been solved by using the Courtney equilibrium distribution withαn = 1. The
GDE has been solved on various domains, with the minimum droplet size n0 varied
between the values1.1n∗, 1.5n∗, and2n∗. The nucleation rate is calculated by means
of the CNT-expression.

the region in the vicinity of the critical droplet sizer∗, located within the nucleation
zone. As shown in Figure 3.16.a, the solution shows strong gradients within this
zone, and in the immediate vicinity of the critical line, in the region wherer∗ rises,
the distribution attains very small values, which implies that there is almost a void
of droplets in this area. This behavior was also reported in earlier work [107], in
which the GDE was solved withn0 = 2, and with the nucleation source term active
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at n = n∗. The GDE-solutions given in Figures 3.16.b and c show a void of droplets
below r = 1.26r∗ andr = 1.03r∗, respectively, in accordance with the denucleation
condition at the lower boundariesn0 = 2n∗ andn0 = 1.1n∗, respectively. For the KE,
this region is further characterized by nett evaporation, as the curve corresponding
with the positionx = 0.03m in Figure 3.18.a (see the insert) shows slightly negative
fluxes for the small droplets.

When comparing the various GDE-solutions with the KE-solution in Figures 3.15,
(3.16) and (3.17), it is observed that at the onset of condensation (Figure 3.17.a), the
distributions have a similar shape, but different magnitude. At the point where max-
imum supersaturation is achieved (x ≈ 0.02m, Figure 3.17.b), the GDE-solutions
continue to display an exponentially decreasing trend, whereas the KE-distribution
shows both a local minimum and a maximum. Further downstream of the nucleation
zone (Figure 3.17.c and d), the extrema in the KE-solution become more pronounced
and there is a clear separation between the size distribution for the small droplets and
that for the large droplets. In this region, each GDE-solution has a maximum, which
is much larger in magnitude compared to that of the KE-solution. The discontinu-
ity on the left side of the GDE-distributions (see Figure 3.17.d) is a consequence of
denucleation and is most pronounced for the solution withn0 = 2n∗. Furthermore,
each of the GDE-distributions is shifted towards the smaller droplets comparedto the
solution of the KE. It is this shift which compensates for the difference in magni-
tude, so that the liquid mass fractions corresponding with the GDE-solutions and the
KE-solution (see Figure 3.14.b) differ only slightly.

Having observed the rather large differences between the size distributions ob-
tained with the KE and GDE, it is concluded that the conditions which allow for
simplification of the KE to the GDE are not satisfied. The first condition to be ex-
amined concerns the quasisteady state behavior of the size distribution. To relate the
behavior of the size distribution in the nozzle flow to the observations from thenucle-
ation pulse experiment, it is convenient to rewrite the KE in Eq. (3.3) in the following
Lagrangian form

Dρ̌n

Dt
= J̌n−1 − J̌n , n = 2,3, .. , (3.66)

where:ρ̌n ≡ ρ̂n/ρ, and: J̌n ≡ Jn/ρ. Based on Eq. (3.66), the steady state nucleation is
obtained whenJ̌n is independent ofn, for droplets in the vicinity ofn∗. Considering
Figure 3.18.a, it is clear that the steady state condition is not satisfied within the nu-
cleation zone. This is also reflected in Figure 3.18.b, which shows thatJCNT differs
by an order of magnitude from the condensation fluxJn∗ calculated atn = n∗. Having
determined that the steady state condition is not satisfied, the next step is to evalu-
ate the importance of the second and higher-order termsTk(n) in the Taylor series
expansion of Eq. (3.16) relative to the first-order termT1(n). Figures 3.19.a-d show
the changes in the scaled Taylor termsTk(n) for k = 2,3,4, along with the location
of the critical droplet size. The curves in Figures 3.19.a, b and c are associated with
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points within the nucleation zone, and here it is observed that the second-order term
remains important in the vicinity of the critical droplet size, whereas the third- and
fourth-order terms are only important for very small subcritical droplets.Clearly, the
generation of new droplets atn0 = 2n∗, as suggested by Muitjens and Hill, is not valid
in this particular case, as the second-order term is of the same order of magnitude as
the drift term. The curves in Figure 3.19.d correspond to a position far downstream
of the nucleation zone, where it is observed that the higher-order terms are relatively
insignificant, even for subcritical droplets as small asn = 0.01n∗. Apparently, the
evolution of the droplet size distribution in this region may be described by droplet
growth alone, which makes the GDE a valid approximation downstream of the nu-
cleation zone.
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Figure 3.18: (a) Condensation fluxes calculated by means of Eq. (3.2), based on the
solution of the KE, employing the Courtney equilibrium distribution (αn = 1); the
insert shows a close-up for the small droplets. (b) Comparison betweenthe critical
condensation flux Jn∗ and the CNT-nucleation rate JCNT.

It is noted that in previous work [46], [133], the boundaryn0 has been placed
at droplets larger than dimers (n > 2), with the number density at the boundary
specified by the equilibrium distribution: ˆρn0 = ρ̂

eq
n0. As shown in Figures 3.20.a-d,

this assumption appears to be valid, as long as the lower boundary is taken sufficiently
small. Obviously,n0 should be taken smaller thann∗, as the equilibrium distribution
shows an exponentially increasing (and thus non-physical) trend forn > n∗.

From Figure 3.18.a, it is seen thatJn , 0 for the small droplets, whereas in the case
of the equilibrium distribution, the condensation fluxes are exactly zero. Using Eq.
(3.2) and Eq. (3.6), the ratio between successive number densities may beexpressed
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Figure 3.19: Second- (T2(n)), third- (T3(n)) and fourth-order (T4(n)) terms in the
Taylor series expansion on the right-hand side of Eq. (3.16). All terms have been
scaled with the first-order term T1(n). The dashed vertical line indicates the critical
droplet size n∗; the graphs correspond with the following positions along the nozzle:
(a) x= 0.015m ; (b) x= 0.02m ; (c) x= 0.03m ; (d) x= 0.06m.
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Figure 3.20: Close-up of droplet radius distributions obtained by means of the KE,
along with the Courtney equilibrium distribution at four different positions along the
nozzle: (a) x= 0.01m ; (b) x= 0.02m ; (c) x= 0.04m ; (d) x= 0.06m.
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Figure 3.21: Comparison of temperature and D2O liquid mass fraction profiles for
the surface tension expressions taken from [44] and [28]. The KE has been solved
using the Courtney equilibrium distribution for the backward rate (αn = 1).

as:
ρ̂n+1

ρ̂n
=
ρ̂

eq
n+1

ρ̂
eq
n

[

1− Jn

fnρ̂n

]

. (3.67)

Due to the high concentration of small droplets, it appears thatJn
fnρ̂n
≪ 1 along the

entire nozzle, which is consistent with the observation that the size distributionis
almost equal to the equilibrium size distribution for these small droplets.

3.4.4 Sensitivity analysis for the Kinetic Equation

Uncertainty in the surface tension

As the equilibrium distributions depend exponentially on the surface tensionσ, it is
useful to analyze the sensitivity to uncertainties in the surface tension model.The
slightly different D2O surface tension models reported in [44] and [28] lead to the
temperature and liquid mass fraction profiles shown in Figure 3.21.a and b, when
employed in the KE. It appears that the temperature is slightly sensitive to the surface
tension model, whereas the liquid mass fraction is nearly unaffected.

Uncertainty in the sticking probability

To investigate the sensitivity with respect to the sticking probability, the temperature
and liquid mass fraction profiles obtained with the various model expressionsfor αn

in the KE are shown in Figure 3.22.a and b. It is observed that all other models lead
to some degree of condensation-onset delay, when compared toαn = 1 (curve (i)).
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Downstream of the nucleation zone, however, all predicted temperaturesand liquid
mass fractions coincide, with the temperature being overestimated by all models.

Uncertainty in the equilibrium size distribution

The four equilibrium distributions (viz. Eq. (3.9), (3.10), (3.11), and (3.15)) which
are used to model the backward rates, withαn = 1 for all n and employing the
KE/FDE model, lead to the temperature and liquid mass fraction profiles shown in
Figures 3.22.a and b. The variation of the equilibrium model clearly has a pro-
nounced influence on both variables, although the Kelvin- and SCC equilibrium dis-
tributions differ only slightly.

The Wölk and Strey-corrected Courtney distribution, which was obtained from
nucleation pulse experiments, yields the best prediction of condensation onset in the
nozzle flow when compared to the experiment. In contrast, the SCC and Kelvin
models predict the onset much too early.

At the onset of condensation the distribution is close to equilibrium, and the liquid
mass fraction is predominantly determined by the relatively high number densities
associated with the small droplets. The accurate modelling of the equilibrium distri-
bution for droplets as small as dimers is an active field of research, whereadvanced
simulation methods are used to determine a.o. the Gibbs free energy for very small
droplets [77].

Regardless of the observed differences in the nucleation zone, all models overesti-
mate the temperature level in the region downstream of the nucleation zone.

3.5 Conclusions

The kinetic equation (KE), and its first- and second-order approximations, the general
dynamic equation (GDE) and the Fokker-Planck equation (FPE), respectively, have
been evaluated based on (a) their equilibrium distributions, (b) a nucleationpulse ex-
periment, and (c) an expanding nozzle flow. The backward rates are derived from the
forward rates using four different equilibrium distributions. Three of these distribu-
tions were taken from the literature, the fourth is proposed in the present paper and
consists of a Ẅolk and Strey correction of the Courtney distribution.

The equilibrium distribution of the FPE reveals large differences when compared
to the KE equilibrium distribution, whereas the GDE does not have an equilibrium
distribution at all. Both observations are directly related to the lack of higher-order
terms in the FPE and the GDE.

For the nucleation pulse experiment, good agreement is observed betweenall three
models in the region of large droplets. Furthermore, the FPE also appears tobe
accurate for smaller droplets. These observations are a direct consequence of the fact
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Figure 3.22: Comparison of temperature and D2O liquid mass fraction profiles for
various sticking probabilitiesαn: (i) αn = 1 ; (ii) αn = 0.8 (iii) α1 = 10−2, α∞ = 1,
n∞ = 10 ; (iv) α1 = 10−1, α∞ = 1, n∞ = 10 ; (v) α1 = 10−2, α∞ = 1, n∞ = 5.
The size distribution is obtained by solving the KE using the Courtney equilibrium
distribution.
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Figure 3.23: Comparison of temperature and D2O liquid mass fraction profiles for
various equilibrium size distributions: Courtney, SCC, Kelvin and Courtneywith the
Wölk and Strey-correction. The sticking probability is set to unity:αn = 1.
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that a quasisteady state is achieved during the nucleation pulse.
For the expanding nozzle flow, it appeared impossible to obtain a converged solu-

tion with the FPE model due to the unrealistic equilibrium distribution of the FPE.
The GDE and KE solutions that were obtained from two-way coupled simulations,
have been compared to data from a physical experiment. The size distributions ob-
tained with the two models are very different, whereas the predicted temperatures and
liquid mass fractions show good agreement when the KE is solved using the Court-
ney equilibrium distribution in the backward rates, and the GDE is solved usingthe
classical nucleation theory. Both models produce solutions that differ considerably
from the experimental data.

A sensitivity study of the KE-solution with respect to uncertainties in (a) the sur-
face tension model, (b) the sticking probability, and (c) the equilibrium distribution
(to model backward rates), revealed that both the sticking probability and the equi-
librium distribution have a significant influence on the predicted condensation onset.
The proposed Ẅolk and Strey-corrected Courtney distribution yields the best agree-
ment with the experimental data. All four equilibrium models lead to an overesti-
mated temperature downstream of the condensation onset point, which may bedue
to non-isothermal condensation.
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component condensation

In this chapter an evaluation is made of reduced models which generate approximate
solutions for condensing flows. The models utilize the method of moments (MOM),
for which two variants are considered: the MOM derived from the kinetic equation
(KE), and its large droplet-approximation derived from the general dynamic equa-
tion (GDE). Two well-known closure methods for the MOM, i.e., closure based on
mean droplet size-approximations, and quadrature approximations, are qualitatively
evaluated, based on key requirements that have been identified from steady-state and
transient characteristics of the KE. It is found that neither of the closure methods
performs satisfactorily, and that the quadrature approximations severelysuffer from
a lack of robustness. Finally, a numerical simulation of a condensing nozzle flow is
utilized to quantify the influence of the closure error in the MOM. For the particu-
lar test case considered, the agreement between results predicted with the MOM and
detailed calculations with the KE appears to be reasonable, both for the flow field
variables as well as the droplet size distributions.

4.1 Introduction

In condensing flows, such as observed in steam turbines or supersonic gas condition-
ers, the rapid expansion of the vapor generates a dispersion of small droplets via the
process of homogeneous nucleation. Previously, the evolution of the droplet size dis-
tribution (DSD) was described by the so-called master equation, which is essentially
a mass-conservation law in phase space, i.e., the space spanned by the physical po-
sition vectorx and the droplet size [52], [101], [127]. Since the latent heat release
by the condensing droplets affects the dynamics of the compressible flow, there is a
strong two-way coupling present between the gaseous and liquid phases. The con-
sequence of this strong coupling is that the fluid dynamics equations (FDE) for the
flow field need to be solved simultaneously with the master equation for the liquid
dispersion. This approach has been adopted in a number of past investigations on con-
densing steam, e.g., [112], [147], [130], [131], and also in chapter 3. It is, however,
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not favored for large-scale engineering applications, as the computational resources
to obtain high resolution in both physical space and droplet size space arefar too
expensive to be practically viable. The usual practice is to employ a reduced model,
viz. the so-called method of moments (MOM), in which moments of the droplet size
distribution are used instead, as this yields a much smaller set of equations thatneeds
to be solved. Since its first application to condensing nozzle flow by Hill in [45], the
MOM has frequently been applied in numerical simulations involving either two- or
three-dimensional geometries [96], [91], [53], unsteady condensingflows [1], [67],
[68],[43], and/or viscous turbulent flows [108], [5].

The moment data obtained with the MOM includes, amongst others, the total
droplet number density and the scaled liquid mass fraction of the two-phase mix-
ture. The latter is of specific importance, since it allows the thermodynamic state
variables, such as temperature and pressure, to be calculated from the mixture den-
sity and internal energy via appropriate equations of state (see chapter 2). In the
original MOM [45], the variation in the liquid mass fraction is given by a source
term which is an integral containing the product of the size-dependent droplet growth
rate and the droplet size distribution. Since the latter is not available in the MOM,
one is faced with the problem of extracting the average droplet growth ratefrom the
moment data by some approximate means. This closure problem associated with the
MOM dates back to the work of Stieltjes, who was one of the first to investigate
this problem in a systematic fashion [105]. Besides condensing flow, the MOM has
been widely applied in other branches of physics, notably within the field of aerosol
dynamics [137], [16], [88], [102], [8], [9].

Over the years, various methods have been devised to approximately solvethe
closure problem, ranging from relatively simple approaches, to more complicated
schemes. An example of a relatively simple approach is to evaluate all integrals
involving the DSD based on an average droplet size, which is obtained from the ratio
of two or more moments, as is done in Hill’s MOM [45]. Clearly, this is not an
unambiguous approach, as the average droplet size can be obtained using various
combinations of moments. Moreover, such methods do not allow for control of the
closure error, and as a result, success is limited to a number of special cases.

A more elaborate approach is to assume a generic shape for the size distribution
(e.g., using log-normal distributions, or polynomial expansions), which contains pa-
rameters that can be calculated from the moment data [102], [68], [50], [49]. This
technique is, however, not attractive for multi-modal or strongly skewed distribu-
tions, as a rather large set of moments is usually required to accurately reconstruct
the droplet size distribution. Moreover, White [129] and McGrawet al. [76] have
revealed that there are several classes of size distributions which share the same sets
of moments, even though their shapes are entirely different. Reconstruction of the
size distribution from a finite set of moments thus constitutes an ill-posed problem,if
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the range of possible DSD’s is left unconstrained.
The latest advances in the MOM regard the so-called quadrature methods,in which

numerical quadrature is used to approximate the integral representing the conden-
sation source term. Several variants have been developed, such as thequadrature
method of moments (QMOM, [75]), the direct quadrature method of moments (DQ-
MOM, [70]), and the fixed interval quadrature method of moments (FIQMOM, [3],
[36]). Quadrature methods are very attractive because they have shown to yield
highly accurate approximations, and furthermore, the accuracy can formally be tuned
as desired, with the penalty that for increased accuracy a larger set ofmoments needs
to be employed.

The MOM efficiently generates a flow field which approximately encompasses
the effects of condensation. By solving the master equation in a subsequent post-
processing step, the droplet size distribution is then determined along selected fluid
trajectories. As demonstrated by Hagmeijeret al. in [42], such a strategy allows
one to obtain details of the size distribution with very moderate computational effort.
As shown by Sidin and Hagmeijer in [107], however, the closure error in the MOM
can severely corrupt the solution for the size distribution, if simple closures, such as
Hill’s MOM, are used.

In this investigation Hill’s MOM, the QMOM and DQMOM are evaluated for ap-
plication in condensing flow models. The moment equations considered in this inves-
tigation are either derived from the general dynamic equation (GDE, [45]), or from
the kinetic equation (KE) for the discrete droplet size distribution (Eq. (3.3)in chapter
3). Firstly, the closure approximations in the MOM are qualitatively evaluated,using
key requirements identified from steady-state and transient characteristics of the KE.
Attention is also focused on the robustness of the methods, as this is recognized to
be a fundamental requirement for a successful application of the MOM. Finally, the
influence of the closure error in the MOM is quantified by comparing the predicted
flow field solution and reconstructed droplet size distributions with the benchmark
solutions obtained by simultaneously solving the FDE and the KE.

4.2 Moments and moment equations

4.2.1 Moment equations based on the kinetic equation

The kinetic equation (KE) for the discrete droplet size distribution ˆρn(x, t) is given
by:

L(ρ̂n) = Jn−1 − Jn , n = 2,3, .. (4.1)

whereL denotes the advection operator,

L(.) =
∂(.)
∂t
+

∂

∂x j
(u j(.)), (4.2)
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and whereJn = fnρ̂n − bn+1ρ̂n+1 is the condensation flux. The forward ratefn and
backward ratebn depend on the droplet size, the vapor supersaturationS, and the
vapor and droplet temperaturesT andTn, respectively (see chapter 3). Although not
strictly necessary for the derivation of the moment equations from the KE, here an
isothermal condensation model will be assumed, i.e.,Tn = T.

Thekth-momentνk of the discrete droplet size distribution is now defined as:

νk(x, t) ≡
N

∑

n=2

ρ̂n(x, t)nk. (4.3)

The zero-th moment (k = 0) represents the total number of droplets per unit volume
of the two-phase mixture (Nl), whereas the first moment (k = 1) corresponds with the
mean density of the liquid phase (ρl).

Application of the advection operatorL to Eq. (4.3),

L(νk) =
N

∑

n=2

nkL(ρ̂n) =
N

∑

n=2

nk
{

fn−1ρ̂n−1 − ( fn + bn)ρ̂n + bn+1ρ̂n+1

}

, (4.4)

followed by the manipulations:

N
∑

n=2

nk fn−1ρ̂n−1 =

N
∑

n=2

fnρ̂n(n+ 1)k + f1ρ̂12k − fNρ̂N(N + 1)k,

and:
N

∑

n=2

nkbn+1ρ̂n+1 =

N
∑

n=2

bnρ̂n(n− 1)k − b2ρ2 + bN+1ρ̂N+1Nk,

with ρ̂N, ρ̂N+1→ 0 for N ≫ 1, finally yields:

L(νk) =
N

∑

n=2

Υk(n)ρ̂n + f1ρ̂12k − b2ρ̂2, (4.5)

with:

Υk(n) = Υk(n, x, t) ≡ fn(x, t)[(n+ 1)k − nk] + bn(x, t)[(n− 1)k − nk]. (4.6)

As fn andbn are not polynomial functions (see chapter 3), the summation term involv-
ingΥk(n) andρ̂n in Eq. (4.5) can only be calculated exactly when the size distribution
is known. Hence, the calculation of this sum from available moment sets consti-
tutes a closure problem in the MOM. This, however, is not the only closure problem
that needs to be solved, as the last term on the right-hand side of Eq. (4.5)contains
the dimer number density ( ˆρ2), which cannot be readily extracted from the moment
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data. The second term on the right-hand side of Eq. (4.5) also contains themonomer
concentration ˆρ1, but this is determined from the (partial) vapor mass densityρv as:
ρ̂1 = ρv/m1, with m1 denoting the mass of a single monomer. Alternatively, Eq. (4.5)
can be rewritten by using the fluxJ1 = f1ρ̂1 − b2ρ̂2 to replace the dimer number
densityρ̂2. This yields the following expression:

L(νk) =
N

∑

n=2

Υk(n)ρ̂n + f1ρ̂1(2k − 1)+ J1, (4.7)

which is fully equivalent to Eq. (4.5).
If the lower boundary is taken atn = n0 + 1 instead ofn = 2, i.e., if all droplets

with n ≤ n0 are neglected, then the moments ¯νk are obtained from:

ν̄k(x, t) ≡
N

∑

n=n0+1

ρ̂n(x, t)nk. (4.8)

Application of the advection operatorL yields the corresponding moment equation:

L(ν̄k) =
N

∑

n=n0+1

Υk(n)ρ̂n + fn0ρ̂n0(n0 + 1)k − bn0+1ρ̂n0+1nk
0. (4.9)

In case the size distribution is dominated by large droplets, thenn0 ≫ 1, allowing
the functionΥk(n) to be approximated by applying a first-order Taylor series expan-
sion to Eq. (4.6), so that: (n+ 1)k − nk ≈ knk−1, and: (n− 1)k − nk ≈ −knk−1. The first
term on the right-hand side of Eq. (4.9) is then approximated as:

N
∑

n=n0+1

Υk(n)ρ̂n ≈ k
N

∑

n=n0+1

ṅnk−1ρ̂n, (4.10)

whereṅ(n) = fn − bn is the droplet growth rate inn-space, previously introduced in
chapter 3. By applying the additional approximation:

fn0ρ̂n0(n0 + 1)k − bn0+1ρ̂n0+1nk
0 ≈

(

fn0ρ̂n0 − bn0+1ρ̂n0+1
)

nk
0 = Jn0n

k
0

to the last terms on the right-hand side of Eq. (4.9), the following approximationto
Eq. (4.9) is obtained:

L(ν̄k) ≈ k
N

∑

n=n0+1

ṅnk−1ρ̂n + Jn0(n0)k, n0 ≫ 1, (4.11)

where the condensation fluxJn0 at the lower boundary is an unknown for which
closure is needed.



78 Chapter 4. Reduced models for single component condensation

4.2.2 Moment equations based on the general dynamic equation

If the dispersion predominantly consists of large droplets, then the KE can be ap-
proximated by the GDE, as previously shown in chapter 3. By incorporatingthe
condensation flux at the lower boundaryn0 = εn∗, ε > 1, into the GDE, the latter can
be written as:

L(ρ̂) = − ∂
∂n

(ṅρ̂) + Ĵ(n0), n ∈ [n−0 ,∞〉, (4.12)

whereρ̂ = ρ̂(n, x, t) is the continuous size distribution,Ĵ(n0) is the condensation flux
at the lower boundary, andn−0 < n0, with n0 − n−0 ≪ 1. The relevant boundary
conditions are given by:

ρ̂(n−0 ) = 0 , lim
n→∞

ρ̂(n) = 0. (4.13)

Assuming quasisteady-state condensation for supersaturated vapor, and instantaneous
evaporation of droplets withn < n0 (so-called denucleation), the condensation flux is
given by:

Ĵ(n0) = δ(n− n0)
[

JH
(

ṅ− Dn0

Dt

)

+ ρ̂

(

ṅ− Dn0

Dt

)

H
(

−ṅ+
Dn0

Dt

)]

, (4.14)

with δ denoting the Dirac delta-function,H the Heaviside step function,

H(ξ) = 1 if ξ > 0, elseH(ξ) = 0,

andJ the steady state nucleation rate (see appendix B). Defining the moment ˆνk by:

ν̂(x, t)k ≡
∞

∫

n−0

ρ̂(n, x, t)nkdn, (4.15)

the corresponding moment equation becomes:

L(ν̂k) = ŜG,k + ŜN,k + ŜD,k, (4.16)

where:

ŜG,k =

∞
∫

n−0

ρ̂(n)ṅ(n)nkdn= k

∞
∫

n−0

ρ̂(n)ṅ(n)nk−1dn, (4.17)

ŜN,k = J(n0)kH
(

ṅ(n0) − Dn0

Dt

)

, (4.18)

ŜD,k = ρ̂(n0)nk
0

(

ṅ(n0) − Dn0

Dt

)

H
(

−ṅ(n0) +
Dn0

Dt

)

. (4.19)

The source terms on the right-hand side of Eq. (4.16) are related to droplet growth
(ŜG,k), nucleation (̂SN,k), and denucleation (ŜD,k), respectively.
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It is noted that for dispersions containing sufficiently large droplets, the value as-
signed ton0 can be much larger than unity, so that the integral on the right-hand side
of Eq. (4.17) differs only slightly from the discrete sum in Eq. (4.11). If additionally,
the special case of quasisteady nucleation is considered, then:

Jn0 = Ĵ(n0) = J,

and:
ṅ(n0) > 0, Dn0/Dt = 0,

which means that under such conditions, the difference between Eq. (4.11) and (4.16)
vanishes.

In Hill’s MOM, the moment equations are formulated in terms of the momentsµk

of the droplet radius distribution functionf (r, x, t),

µk(x, t) =

∞
∫

r−0

f (r, x, t)rkdr, (4.20)

with r−0 denoting the droplet radius corresponding withn−0 . Application of the mo-
ment transformation Eq. (4.20) to the GDE for the droplet radius distribution function
(see chapter 3) yields the following moment equation:

L(µk) = SG,k + SL,k + SN,k + SD,k, (4.21)

where:

SG,k = k

∞
∫

r−0

f (r)rk−1ṙmdr, (4.22)

SN,k = rk
0JH

(

ṙ(r0) − Dr0

Dt

)

, (4.23)

SD,k = rk
0 f (r0)

(

ṙ(r0) − Dr0

Dt

)

H
(

−ṙ(r0) +
Dr0

Dt

)

, (4.24)

SL,k = − k
3ρb

Dρb

Dt
µk. (4.25)

Similar to the source terms given in Eqs. (4.17) - (4.19), the source terms on the
right-hand side of Eq. (4.21) are related to droplet growth (SG,k), nucleation (SN,k),
and denucleation (SD,k). The additional termSL,k on the right-hand side of Eq. (4.21)
accounts for the change in droplet radius due to liquid expansion. The droplet growth
rateṙ contains contributions from mass accumulation (˙rm) and liquid expansion (˙re),
and is given by the expression:

ṙ = ṙm+ ṙe (4.26)



80 Chapter 4. Reduced models for single component condensation

where:

ṙm =
r

3n
ṅ , ṙe = −

r
3ρb

Dρb

Dt
, (4.27)

andρb denotes the temperature dependent bulk liquid density (a material property).
It is noted that Eq. (4.21) can also be derived from Eq. (4.16), by applying the trans-
formationn→ r, where:

r = r(n, ρb) =















nm1
4
3πρb















1/3

. (4.28)

Similar to the moment equation derived from the KE, there are two terms which
require closure in Eq. (4.21), viz.SG,k andSD,k. In many investigations employing
the MOM, the closure problem has exclusively been associated with the integral in
Eq. (4.22), whereas the denucleation termSD,k has been neglected [45], [1], [91], [5].
In the present investigation the same approach will be adopted, i.e.,SD,k = 0.

The crucial information extracted from the MOM is the liquid mass fractiong,
which is used in the equations of state for the two-phase mixture (see chapter2). In
Hill’s MOM the first four moments (k = 0,1,2,3) of the radius distribution function
are used to form a closed system of equations, together with the fluid dynamics equa-
tions (FDE) for the two-phase mixture. The third moment is of special significance,
since it relates to the liquid mass fraction via the expression:

g =
4π
3
ρb

ρ
µ3, (4.29)

whereρ is the mixture density. When the moments of the discrete droplet size dis-
tribution are used instead, a closed system is already obtained by employing the first
two moments (k = 0,1), as nowg follows from the first moment,

g = m1ν1/ρ. (4.30)

4.3 Closure methods for the moment equations

4.3.1 Fourier reconstruction

In principle, it is possible to reconstruct the droplet size distribution from moment
data when a complete set of moments (i.e., fork = 0 to∞) is available. Formally,
reconstruction proceeds via the characteristic functionΨ(ω), which is the Fourier
transform of the size distribution [83]:

Ψ(ω) = F{ f (r)}ω =
∞

∫

−∞

f (r) exp(iωr)dr, (4.31)
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with f (r) ≡ 0 for r < r0. Replacing the integrand by its Taylor series expansion
aroundr = 0, i.e.,

exp(iωr) =
∞
∑

k=0

(iω)k

k!
rk,

the characteristic function becomes:

Ψ(ω) =
∞
∑

k=0

(iω)k

k!
µk. (4.32)

Application of the inverse Fourier transform then yields:

f (r) = F−1{Ψ(ω)}r =
1
2π

∞
∫

−∞

Ψ(ω) exp(−iωr)dω =
1
2π

∞
∑

k=0

µk

k!

∞
∫

−∞

(iω)k exp(−iωr)dω.

(4.33)
By using a finite set of moments in Eq. (4.33), it is possible to determine the size
distribution approximately. However, the problem is that a rather large number of
moments (k > 100) is required to obtain reasonable accuracy, especially when the
size distribution is characterized by strong gradients. As the required computational
effort is of the same order as a direct solution of the master equation, one usually
employs computationally less demanding closure methods in the MOM. Two variants
of such methods are evaluated in this chapter.

4.3.2 Closure Requirements

Ideally, the MOM should provide the same moments as one would obtain from the
KE. The moment associated with the liquid mass fraction is of particular importance,
as it controls the coupling between the condensation process and the flow dynamics.

To facilitate this discussion, the Lagrangian form of the KE is employed,

Dρ̌n

Dt
= J̌n−1 − J̌n , n = 2,3, ..,N − 1, (4.34)

with ρ̌n = ρ̂n/ρ, andJ̌n = Jn/ρ. The boundary conditions for Eq. (4.34) are taken as
ρ̌1 = m1ρv/ρ andρ̌N = 0.

Eq. (4.34) can be compactly written as:

Dρ̌
Dt
= A(ρ̌ − ρ̌st), (4.35)
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where the matrixA is given by:

A =











































−( f2 + b2) b3

f2 −( f3 + b3) b4 0
..

0 fN−3 −( fN−2 + bN−2) bN−1

fN−2 −( fN−1 + bN−1)











































,

(4.36)
ρ̌ = (ρ̌2, ρ̌3, .., ρ̌N−1)T , andρ̌st = A−1b is the steady state solution of the KE, with
b = ( f1ρ̌1,0, ..,0,bNρ̌N)T .

For subsaturated vapor (S < 1), ρ̌eq
N is practically zero ifN is chosen to be suffi-

ciently large, meaning that the steady state KE-solution coincides with the equilib-
rium distribution, i.e.,̌ρst→ ρ̌eq.

For supersaturated vapor ˇρ
eq
N > 0, and thušρst

, ρ̌eq. As shown in chapter 3, the
KE can effectively be replaced by the GDE for large droplets, which means that:

∂

∂n
(ρ̂ṅ) = 0 =⇒ ρ̂ ∼ 1

ṅ

for n≫ 1. As can be verified from Eqs. (3.4), (3.6) , and (3.19), ˙n ∼ n2/3 for n≫ 1,
meaning that for such droplet sizes ˆρn ∼ n−2/3. If the size domain is not finite,
however, i.e.,Ωn = [2,∞〉, then none of the momentsνk are finite, since in the large
droplet limit

∑

n∈Ωn

ρ̂nnk ≈
∫

Ωn

ρ̂(n)nkdn∼
∫

Ωn

n−2/3nkdn=
[ nk+ 1

3

k+ 1
3

]∞

2
→ ∞.

This is clearly an unphysical situation which originates from the fact that for S > 1
the DSD can only be in an actual steady state on a finite sized domain. IfΩn is not
finite, then there is a steady flux of droplets moving towards arbitrarily large droplets,
which means that there is actually a quasisteady state solution for the DSD.

In conclusion:

(i) the KE has a finite and non-zero steady state-solutionρ̌st for S < 1, which
coincides with the equilibrium distribution;

(ii) for S > 1, there exists a finite, non-zero quasisteady state solution, which
yields finite moments on a finite domain.

The transient solution of the KE can be characterized by means of the eigenvalues
λA

m(t) and right eigenvectorsr A
m(t) of matrix A. As the dimension of the quasilinear

system in Eq. (4.35) can be very large (e.g.,N > 107 for condensing nozzle flows),
calculation of the eigenproperties ofA is not possible with present computational
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capabilities, and one would only be able to compute the eigenvalues of the system
matrix corresponding with the sectional approximation of the KE (see Eq. (3.56) in
chapter 3). Despite this difficulty, the sign of the eigenvalues can still be determined
by using a similarity transformation to construct the symmetric tri-diagonal matrix
Q:

Q = D−1AD = (4.37)












































−( f2 + b2)
√

f2b3
√

f2b3 −( f3 + b3)
√

f3b4 0
..

0
√

fN−3bN−2 −( fN−2 + bN−2)
√

fN−2bN−1
√

fN−2bN−1 −( fN−1 + bN−1)













































,

whereD is a diagonal matrix with diagonal entries:

d1 = 1 , dm = dm−1

√

fm
bm+1

. (4.38)

The eigenvalues ofQ andA are equal, but their eigenvectors are generally different.
Calculation of the determinants of the principal sub-matrices of−Q reveals that these
are all positive, e.g.,

| −Q1| = f2 + b2 > 0 ; | −Q2| =
∣

∣

∣

∣

∣

∣

f2 + b2 −
√

f2b3

−
√

f2b3 f3 + b3

∣

∣

∣

∣

∣

∣

= f2 f3 + f3b2 + b2b3 > 0 ;

| −Qm| = ( fm+1 + bm+1)| −Qm−1| − fmbm+1| −Qm−2| > 0 , m≥ 3.

From this it follows that−Q is a positive definite matrix, which means that all eigen-
values are strictly positive [80]:λ−Q

m > 0, and consequently:λA
m = λ

Q
m = −λ−Q

m < 0.
Thus it is established that KE drives the DSD towards the steady state solutionthat
corresponds witȟρst.

In view of this, it is desired that the reduced models satisfy the following require-
ments:

1. the reduced models should allow for a steady state solution for the moments;

2. the steady state solution should be stable, i.e., any departure from the steady
state should result in a relaxation back towards it.

In addition, closure accuracy needs to be addressed. Let the closureerror∆k be
defined as the difference between thekth-moment obtained from the KE and that
obtained from the MOM. Then:

3. the reduced model should allow for control of the closure error, i.e.,∆k =

∆k(M), whereM is the size of the reduced model, viz. the number of moment
equations;
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4. the reduced model should be consistent with the KE, i.e., the closure error
should reduce to zero when the size of the reduced system is equal to thatof
the KE:∆k(M)→ 0 for M → N, with N denoting the maximum droplet size.

In addition to the previous requirements, it is also desired that the reduced model
be sufficiently robust for application in numerical codes. Although it is difficult to
quantify this mathematically, the term robustness refers to the extent in which the
reduced models can be solved, without the occurrence of physically impossible solu-
tions, that would necessarily terminate a computation. Such a situation might occur
during the solution of the moment equations when, for instance, a negative value for
one of the moments is calculated. The usual remedy to this problem is to apply an
adhoc correction method, which allows the computation to be continued. Robustness
is a very important property, which is essential for the successful application of the
reduced models in numerical codes.

Finally, it is also desired that the closure error is acceptably small for a reduced
model of moderate size. This qualitative requirement can be assessed by comparing
the MOM-solutions with those obtained with the KE. This can only be done for rel-
atively simple geometries because accurate solutions of the KE are computationally
very expensive.

4.3.3 Hill’s Method of Moments

Description of the method

In Hill’s MOM [45], the moment equations given by Eq. (4.21) are solved for k =
0,1,2,3, with the integral in Eq. (4.22) approximated by:

∞
∫

r−0

f (r)ṙmrk−1dr ≈ ṙm(r̄H)

∞
∫

r−0

f (r)rk−1dr = ṙm(r̄H)µk−1, (4.39)

where the Hill radiusrH is defined by:

rH ≡

√

2µ2

µ0
(4.40)

This closure relies on using the Hertz-Knudsen growth law, for which ˙rm tends to
a size independent value for sufficiently large droplets. If the size distribution is
dominated by such droplets, the approximation in Eq. (4.39) will obviously yieldan
accurate estimate of the droplet growth contributionSG,k in the MOM.

If the momentsνk of the discrete droplet size distribution are used, a similar type
of closure as in Hill’s MOM can be devised. Based on the zero-th and firstmoments,
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the following moment equations need to be solved in conjunction with the FDE:

L(ν0) = J1 (4.41)

L(ν1) =
N

∑

n=2

ṅ(n)ρ̂n + f1ρ̂1 + J1 (4.42)

Using the average droplet size〈n〉 ≡ ν1/ν0, the sum overn may be estimated by:

N
∑

n=2

ṅ(n)ρ̂n ≈ ṅ(〈n〉)ν0. (4.43)

It is noted that the use of mean droplet sizes does not provide closure for the prob-
lem associated with the unknown value of ˆρ2 in Eq. (4.5), nor for the denucleation
term in Eq. (4.24). In Hill’s MOM denucleation is neglected entirely, and only nucle-
ation atr = r0 is taken into account by setting the local condensation flux equal to
the steady state nucleation rate. For the moments of the discrete droplet size distri-
bution, a similar approach is to replace the condensation fluxJ1 with the steady state
nucleation rateJ. The corresponding approximation to the moment equation is then
given by:

L(νk) = Υk(〈n〉)νk−1 + f1ρ̂1(2k − 1)+ J. (4.44)

For the moments ¯νk, defined by Eq. (4.8), a similar approximation is given by:

L(ν̄k) = Υk(〈n〉)ν̄k−1 + J(n0)k. (4.45)

The nucleation fluxJn0 in Eq. (4.11) can similarly be approximated by the steady
state nucleation rate.

Properties of the method

Assuming a frozen state of the vapor temperature and saturation, an evaluation of
Hill’s MOM for the momentsµk, with respect to the requirements that have been set
forth previously, yields the following observations:

1. for S < 1: J = 0 and ˙r(r̄H) < 0, so that in the steady stateµk = 0 for k > 0,
whereas the zeroth-momentµ0 remains equal to its value at the initial condition;

2. for S > 1: J > 0, and ˙r(r̄H) ≤ 0 for r̄H ≤ r∗, whereas ˙r(r̄H) > 0 for r̄H >

r∗. Thus subcritical droplets will evaporate completely, whereas supercritical
droplets continue growing, so that a steady state is not achieved;

3. the closure error cannot be made arbitrarily small, therefore, the methodis
inconsistent with the KE.
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The first two observations regarding the steady state solution for Hill’s MOMare ac-
tually consistent with that of the GDE. As the latter does not allow for the existence of
a non-zero steady state solution (see chapter 3), its corresponding moment equations
should not be expected to do so.

Evaluation of the system of moment equations given by Eqs. (4.41) and (4.42), and
augmented with Eq. (4.43), reveals the same deficiencies as observed above. Despite
these shortcomings, Hill’s MOM is frequently used in engineering applications, par-
ticularly because it is a very robust method. Usually, the only computational problem
is associated with numerical overflow in the calculation of the Hill radius, whenµ0 is
very small. This is especially the case at the onset of condensation, wherethe number
densities of droplets are very low. However, this problem can be easily remedied by
delaying the calculation of the growth-termSG,k until the nucleation termSN,k yields
sufficiently large values forµ0.

4.3.4 The quadrature method of moments (QMOM)

Description of the method

Although the QMOM has been documented in several articles, e.g., in [75] and
[69], it has always been presented in mere algorithmic form, with relevant details of
the underlying mathematics regarding the quadrature approximation being excluded.
Unfortunately, this has led to a number of misconceptions on the QMOM, and fur-
thermore, fundamental problems associated with the application of the QMOM have
rarely been addressed [140]. Therefore, some of the relevant mathematical details on
the QMOM will be discussed in this section.

The QMOM employs a numerical quadrature rule to estimate the moment source
terms which contain integrals of the size distribution function over droplet sizespace.
For a genericcontinuousdistribution functionω(ξ), the approximation is:

∫

Ωξ

ω(ξ)β(ξ)dξ =
M
∑

m=1

wmβ(ξm) + εM, (4.46)

wherewm and ξm denote themth weight and abscissa, respectively, andεM is the
quadrature error. Here, the distribution function fulfills the role of a quadrature
weight function (also known as ameasure) over the domainΩξ [89].

The quadrature rule also holds for a discrete sum,

∑

ξ∈Ωξ
ωξβ(ξ) =

M
∑

m=1

wmβ(ξm) + εM , (4.47)

whereωξ represents a discrete measure. Eq. (4.47) follows from Eq. (4.46) because
the discrete sum overΩξ can be written as an integral of a function consisting of a
sum of Dirac-delta functions.
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TheM weights and abscissas are determined from the requirement that the quadra-
ture error be zero whenβ(ξ) is replaced by any arbitrary polynomial with maximal
order of 2M − 1 [115]. Based on this requirement it can be derived that the abscissas
ξm are the roots of theMth orthogonal polynomialPM(ξ), whereas the weights follow
from the following system of equations:

M
∑

m=1

wmPk(ξm) =

{

θ0 : if k = 0
0 : otherwise

, (4.48)

whereθk is thekth-moment of the distribution function, defined as

θk ≡
∫

Ωξ

ω(ξ)ξkdξ , or θk ≡
∑

ξ∈Ωξ
ωξξ

k (4.49)

for a continuous measureω(ξ), and a discrete measureωξ, respectively. In principle,
the weights and abscissas can be found by solving the following non-linearsystem of
equations:

M
∑

m=1

wmξ
k
m = θk , k = 0,1, ..,2M − 1 , (4.50)

were it not that this is numerically a rather cumbersome task for largeM. The weights
and abscissas are therefore calculated by means of an alternative methodwhich is
numerically more convenient.

To describe this method, it is convenient to introduce the inner product of two
functionsη(ξ) andζ(ξ) with respect to the measureω(ξ), or ωξ, on the domainΩξ,
with:

〈η(ξ), ζ(ξ)〉 ≡
∫

Ωξ

η(ξ)ζ(ξ)ω(ξ)dξ, (4.51)

for a continuous measureω(ξ), and

〈η(ξ), ζ(ξ)〉 ≡
∑

ξ∈Ωξ
η(ξ)ζ(ξ)ωξ (4.52)

for a discrete measureωξ. The coefficients of thekth orthogonal polynomialPk(ξ)
are obtained from the orthogonality requirement:

〈Pm(ξ),Pk(ξ)〉 = 0 for m= 0,1, .., k− 1. (4.53)

Using this property, the orthogonal polynomials can be recursively expressed as:

Pk+1(ξ) = (ξ − ak)Pk(ξ) − ckPk−1(ξ), (4.54)
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with P−1(ξ) ≡ 0, P0(ξ) ≡ 1, and where the coefficientsak andck are given by [89]:

ak =
〈ξPk(ξ),Pk(ξ)〉
〈Pk(ξ),Pk(ξ)〉

, k = 0,1, .. (4.55)

ck =
〈Pk(ξ),Pk(ξ)〉
〈Pk−1(ξ),Pk−1(ξ)〉 , k = 1,2, .. (4.56)

Sinceω(ξ), ωξ ≥ 0 onΩξ, and not identically zero, it follows from these expres-
sions and the inner-product definition in Eq. (4.51), and (4.52), that both ak andck are
strictly positive real numbers. As the abscissasξk are the roots of theMth orthogonal
polynomial, it can also be shown thatξk ∈ Ωξ, for all rootsk [115].

From the preceding expressions and the definition of the moments (Eq. (4.49))
it follows that it suffices to know the moments of the size distribution in order to
calculate the coefficientsak andck. In actual implementation, these coefficients are
conveniently calculated from the moment data by means of theproduct difference
algorithm (PD), which was originally devised by Gordon [38].

Using the recursive expression in Eq. (4.54), the set of orthogonal polynomials
P(ξ) = (P0(ξ),P1(ξ), ..,PM−1(ξ))T can be compactly represented as:

ξP(ξ) = TP(ξ) + PM(ξ)eM−1, (4.57)

where theM × M-matrixT is given by:

T =











































a0 1
c1 a1 1 0

..

0 cM−2 aM−2 1
cM−1 aM−1











































, (4.58)

and whereeM−1 is theM-dimensional unit vector:eM−1 ≡ (0,0, ..,0,1)T . If ξ is now
replaced byξk, which is both thekth abscissa as well as thekth root of PM(ξ), then
Eq. (4.57) reduces to:

ξkP(ξk) = TP(ξk), (4.59)

which resembles an eigenvalue problem withξk fulfilling the role of eigenvalue of
matrix T. To actually compute the eigenvalues, it is numerically more convenient
to replaceT with a symmetric tri-diagonal matrixTs [89], since there are several
established methods available to compute the eigenvalues of a tri-diagonal matrixin
a robust manner [89]. The matrixTs is obtained by the similarity transformation:

Ts = DTD−1, (4.60)

whereD is a diagonal matrix, with diagonal entries

d1 = 1 , dm = dm−1
√

cm−1. (4.61)
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As a result of Eq. (4.60), matrixTs is obtained as:

Ts =











































a0
√

c1√
c1 a1

√
c2 0

..

0
√

cM−2 aM−2
√

cM−1√
cM−1 aM−1











































. (4.62)

Once the abscissas are known, the weights can be calculated by solving thelinear
system in Eq. (4.48). Alternatively, they can be obtained from the eigenvectors ofTs.
If rTs

k denotes thekth eigenvector ofTs, which is scaled such that:

||rTs
k || = θ0, (4.63)

then:

wk = (rTs
k,1)2 (4.64)

whererTs
k,1 is the first component ofrTs

k . A proof of this can be found in [115].
Implementation of the QMOM for the specific case of the momentsµk of the radius

distribution function (see Eq. (4.21)) is illustrated in Figure 4.1. For the momentsνk

corresponding with the KE, the implementation proceeds in similar fashion.

condensing 
flow solver

moments at old time level:

µk , k = 0,1,..,2M-1

ak , ck , k = 0,1,..,M-1

Ts , size M×M

assemble matrix Ts

Product Difference-algorithm

find eigenproperties

wk , ξk , k = 1,2,..,M

SG,k , k = 0,1,..,2M-1

calculate moment source terms

Figure 4.1: QMOM-implementation in a condensing flow solver.
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Properties of the method

Realizability of the moment data
It is well known that inversion of the moment data to compute the weights and abscis-
sas is an ill-conditioned problem, and usually its application is not recommended in
the literature [89]. The main problem concerns the calculation of the coefficientsak

andck from the moment data. Forck specifically, it appears that small perturbations in
the moment set can result in negative values for this coefficient, which conflicts with
Eq. (4.56), from whichck > 0. Negativeck results in non-physical solutions for the
abscissasξk, i.e.,ξk < Ωξ. This problem is directly linked to the so-called realizabil-
ity of the moment set, which dates back to the work by Stieltjes [105]. The original
moment problem conceived by Stieltjes consists of a number of queries with which a
given moment set can be probed to determine specific information about the underly-
ing distribution function. The query concerning the realizability of the moment set is:

For a given finite sequence of momentsθk (k = 0,1, ..,2M − 1), does there exist a
positive measureω(ξ) on the domainΩξ = [ξ0,∞〉, of which the moments coincide
with the given moment set?

The mathematical answer to this query is given by the following theorem, originally
derived by Stieltjes∗, and for which the proof is given in [105]:

THEOREM:

I. A necessary condition for the existence of a measureω(ξ) on the domainΩξ =
[ξ0,∞〉, corresponding with the moment setθk (k = 0,1, ..,2M − 1) is that the
determinants of the Hankel matricesHk

1, Hk
2, defined by:

Hk
1,mn ≡ θ̃m+n , Hk

2,mn ≡ θ̃m+n+1, k = 1,2, ..,M , (4.65)

and with:

θ̃k = θ̃k(θ0, θ1, .., θ2M−1) ≡
∞

∫

ξ0

ω(ξ)(ξ − ξ0)kdξ, (4.66)

be non-negative for all k∈ [1,M], i.e., |Hk
1| ≥ 0 and |Hk

2| ≥ 0 ∀k ∈ [1,M].

II. In order for a measureω(ξ) to exist whose spectrum is not reducible to a finite
set of points, it is necessary and sufficient that |Hk

1| > 0 and |Hk
2| > 0 ∀k ∈

[1,M].

∗Extensions of Stieltjes’ moment problem to the domainsR and [0,1] are given by the Hamburger
and Haussdorf moment problems, respectively [105]
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The modified moments̃θk can be calculated from the moment setθk, and evidently,
θ̃k = θk whenξ0 = 0. Although a continuous measure has been used in the previ-
ous theorem, it can be readily demonstrated that its validity also holds for discrete
measures, but with the modified moments now given by:

θ̃k = θ̃k(θ0, θ1, .., θ2M−1) =
∑

ξ=ξ0+1

ωξ(ξ − ξ0)k. (4.67)

If the conditions set forth in the above theorem are not satisfied, thenξk < Ωξ,
which often means that one or more negative abscissas are calculated. This jeopar-
dizes the calculation process, and is usually remedied in an adhoc fashion.One of
the few investigations in which this, and other problems associated with the QMOM
were addressed, was conducted by Wright in [140]. He discovered that the seem-
ingly small errors introduced by so-called flux-limited interpolation methods which
are used to calculate the state variables at cell-vertices in computational fluid dynam-
ics (CFD) codes (see, e.g., [59] for an extensive exposition on interpolation schemes),
result in non-realizable states of the moment sets. This can be illustrated by means
of the following one-dimensional advection problem for the momentsθk:

∂θk

∂t
+ u

∂θk

∂x
= 0, (4.68)

with u representing a constant advection velocity. Adopting a finite-volume spa-
tial discretization and forward Euler time integration, the numerical solution forEq.
(4.68) is given by:

θ̄n+1
k,i = θ̄

n
k,i − Γ

n
i [θ̄n

k,i+1/2 − θ̄
n
k,i−1/2], (4.69)

whereθ̄n
k,i is the numerical approximation ofθk at positionxi and timetn, and where

Γn
i is the so-called CFL-number (from Courant, Friedrichs and Lewy, [23]), given by:

Γn
i =

u(tn+1 − tn)
xi+1/2 − xi−1/2

. (4.70)

Eq. (4.69) reveals that the solution for the moment set at the new time leveltn+1 is a
linear combination of the moment setsθ̄n

k,i , θ̄
n
k,i+1/2, andθ̄n

k,i−1/2 at the old time level

tn. If each of these moment sets are realizable, andθ̄n+1
k,i > 0, then the moment set

at the new time level will also be realizable. This can be deduced by noting that
each realizable moment setθ̄n

k,i corresponds to an underlying distribution function,
i.e., there exists a distributionωn

i (ξ) on a domainΩξ for which

∫

Ωξ

ωn
i (ξ)ξkdξ = θ̄n

k,i , ∀k.
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A new distributionωn+1
i (ξ) can be introduced, which is given by:

ωn+1
i (ξ) = ωn

i (ξ) − Γn
i [ωn

i+1/2(ξ) − ωn
i−1/2(ξ)]. (4.71)

If ωn+1
i (ξ) > 0∀ξ ∈ Ωξ, then eachkth moment ofωn+1

i (ξ) exactly coincides with̄θn+1
k,i ,

which means that the updated moments on the left-hand side of Eq. (4.69) indeed
constitute a realizable set. If̄θn

k,i > 0 for all timestn, it is concluded that the updated
moment sets will remain realizable during the entire simulation process.

If at least one of the moment sets on the right-hand side of Eq. (4.69) is notreal-
izable, then the possibility exists that the updated solutionθ̄n+1

k,i is also not realizable,
thus causing complications in further computations with this moment set. In numer-
ical codes, each moment̄θn

k,i±1/2 associated with the cell-vertexxi±1/2 is usually ob-
tained by interpolation from the solutions̄θn

k,i stored at the neighboring cell-centers,
i.e.,

θ̄n
k,i±1/2 = F(θ̄n

k,i , θ̄
n
k,i±1, ..),

with F resembling the interpolation operator. SinceF operates separately on each
moment, the ratioψk = θ̄n

k,i+1/2/θ̄
n
k,i+ j between the vertex-solutions and the center-

solutions does not need to be the same for allk, specifically if the interpolation
method is non-linear. As a consequence, it is generally not possible to express the
moment set at the vertex as a linear combination of the moment sets at neighboring
cells, with uniform weighting factorsψk for all k. Therefore, there is no guarantee
that the interpolated vertex-moments constitute realizable sets, which initiates cor-
ruption of the moment data, with the eventual consequence of premature termination
of the computation process.

To circumvent this particular problem, one can simply restrict the numerics to first-
order upwind interpolation, which guarantees the realizability of the vertex-moments,
but has the penalty that the advection scheme becomes very diffusive. Wright has
proposed a number of alternative solution strategies in [140], which includes a.o.
the application of so-called augmented advection schemes that are based onuniform
weighting of the moments at the cell-centers. Specifically, this means that a reference
momentθi,re f is first chosen for which the interpolation is carried out in the usual way.
Next, the weighting factorsψi, j are calculated, which represent the ratio between the
updated reference momentθ̄n+1

i,re f and the neighboring cell-center solutionsθ̄n
i+ j,re f at

the old time level, i.e.,

ψi, j =
θ̄n+1

i,re f

θ̄n
i+ j,re f

. (4.72)

The remaining moments at the new time level are then obtained by linear weighting
of neighboring solution data, according to:

θ̄n+1
i,k =

∑

j

ψi, j θ̄
n
i+ j,k. (4.73)
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Given the typically strong variations in the moments such as observed in condensing
flow [131], [107], the preceding augmented advection scheme will not handle the ad-
vection of the moments properly.

Accuracy of the method
Besides the realizability problem, it is also true that the weights and abscissas depend
very sensitively on the moment data. This means that, even though the predicted mo-
ment sets may retain the realizability property, it still may be the case that, due to the
ill-conditioned nature of the inversion operation, small errors in the moments may
lead to unacceptably large errors in the weights and abscissas [89]. Furthermore, the
loss of accuracy becomes more pronounced as the quadrature orderM is increased,
and in practice, an almost complete loss of accuracy is experienced beyond M = 12
[89]. This observation apparently conflicts with the outcome of various previous in-
vestigations in which QMOM was found to be a very accurate means for closure of
the moment problem, e.g., in [36], [69]. However, it is noted that in those inves-
tigations, either advection was not included, simple integrand functions wereused
in the moment source terms, or that validation was carried out by using measure-
ment data from experiments as the benchmark for comparison. Moreover,a rigorous
mathematical analysis on the accuracy of the QMOM is still lacking.

The accuracy-properties of quadrature methods in numerical integrationare well
documented in the literature (see, e.g., [115]), but this usually regards cases for which
the measureω(ξ) is explicitly given. For such type of problems it can be demonstrated
that the quadrature errorεM in Eq. (4.46) decreases with increasingM, if the Taylor
series expansion of the integrand functionβ(ξ) converges. If now the QMOM is
considered in the situation when a moment source term of the form:

Sk =

∫

Ωξ

β(ξ)ξkω(ξ)dξ , k = 0,1, ..,2M − 1

is to be calculated for a set of 2M − 1 moment equations, then obviously, the quadra-
ture error would be zero if the functionβ(ξ)ξk represents a polynomial of maximum
order 2M−1. If, hypothetically,β(ξ) is given by a polynomial of orderQ, then a zero-
valued quadrature error for thekth moment source term requires thatk+Q ≤ 2M −1.
This can only be achieved for the moments withk = 0,1, ..,2M − 1 − Q, whereas
generally, the error is not zero fork = 2M − Q, ..,2M − 1. The latter set of moments
is thus corrupted by the quadrature error introduced in their corresponding source
terms. Since the complete set of moments (k = 0,1, ..,2M−1) is used to compute the
weights and abscissas, the low order moments will, eventually, also be affected by
the quadrature error in the higher-order moments. Currently, the extent towhich this
affects the total accuracy of the QMOM can only be revealed by means of rigorous
comparison with moment data from detailed solutions of the KE.
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Consistency with the KE
As the QMOM does not provide closure for the dimer concentration ˆρ2 in Eq. (4.5),
the QMOM is not consistent with the KE. To achieve consistency, the QMOM needs
to be augmented by some other type of closure method that allows ˆρ2 to be esti-
mated. Besides this inconsistency, the QMOM cannot be applied to the moments ofa
zero-distribution, whereas such distributions can be described without any difficulty
by the master equations (KE and GDE). The computation of weights and abscissas
cannot be performed for zero-distributions, because the coefficientsak andck in Eqs.
(4.55) and (4.56) cannot be determined. This is a serious deficiency in theQMOM,
which has only been solved by adhoc methods, such as, e.g., by assigningrandom
small values to the initial weights and abscissas, as suggested in [70]. It is noted that
due to this problem, the onset of condensation cannot be handled properly when the
QMOM corresponding with the GDE is used, as the distribution function is initially
zero everywhere. In contrast, the QMOM based on the KE has the advantage that
an equilibrium distribution can be specified at condensation-onset, which allows the
proper initialization of the QMOM. For this reason, the QMOM will only be applied
to the moment equations derived from the KE.

Steady state and transient characteristics
With respect to the moment equations corresponding with the KE (see Eq. (4.4)), the
steady state and transient behavior can best be illustrated by consideringthe relatively
simple case ofM = 1 (i.e., one abscissa), with the vapor temperature and mass
density fixed at constant values. This yields the following set of moment equations:

Dν̌0

Dt
= f1ρ̌1 − b2ρ̌2 (4.74)

Dν̌1

Dt
= 2 f1ρ̌1 − b2ρ̌2 + wṅ(ξ), (4.75)

whereD/Dt is the material derivative, ˇνk = νk/ρ, and the weight and abscissa are
given byw = ν̌0, andξ = ν̌1/ν̌0, respectively. Here, the indices of the weight and
abscissa have been dropped for the sake of convenience.

It is observed that these moment equations are nonlinear, in contrast to theKE (see
Eq. (4.35)). Eqs. (4.74) and (4.75) can be replaced with the equivalent expressions:

Dw
Dt

= f1ρ̌1 − b2ρ̌2 (4.76)

Dξ
Dt

= 2
f1
w
ρ̌1 −

f2
w
+ ṅ(ξ). (4.77)

When the vapor is subsaturated (S < 1), with the initial droplet size distribution equal
to the equilibrium size distribution (see Eq. (3.7)), then the weightweq and abscissa
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ξeq can be calculated from the initial moments, using the QMOM-algorithm depicted
in Figure 4.1. The equilibrium distribution remains invariant when it is marched in
time using the KE. If instead, the weight and abscissa are marched in time using Eqs.
(4.76) and (4.77) respectively, then by virtue of equilibrium:

f1ρ̌1 − b2ρ̌
eq
2 = 0,

which leads to:

Dw
Dt

= 0 (4.78)

Dξ
Dt

=
f1
w
ρ̌1 + ṅ(ξ). (4.79)

Thusw(t) = weq, but ξ(t) changes in time, as the right-hand side of Eq. (4.79) is not
necessarily zero.

The right-hand sideF(ξ) of Eq. (4.79),

F(ξ) ≡ f1
w
ρ̌1 + ṅ(ξ),

contains the growth rate ˙n(n), evaluated at the abscissan = ξ. For S < 1, it follows
from Eq. (3.19) that ˙n(ξ) < 0, and that ˙n(ξ) has a global maximum at, say,ξ = ξmax.
Therefore,F′(ξ) > 0 for ξ < ξmax, F′(ξ) < 0 for ξ > ξmax, andF′′(ξ) < 0 for all ξ.
This means that at most two equilibrium points exist. Letξe be an equilibrium point,
i.e.,F(ξe) = 0. If ∆ξ denotes the deviation from equilibrium, i.e.,

∆ξ ≡ ξ − ξe,

then:
D∆ξ
Dt
= F′(ξe)∆ξ +

1
2

F′′(ξe)∆ξ
2 + O(∆ξ3).

Hence, when two equilibrium points exist, one of them is unstable. Also, whenone
equilibrium point exist, it is unstable.

WhenS > 1, thenṅ′(ξ) > 0, with ṅ(n∗) = 0. ThereforeF′(ξ) > 0 for all ξ, which
means that there exists one equilibrium point which is unstable.

Thus in conclusion, the QMOM does not guarantee the existence of an equilibrium
solution for the abscissa whenM = 1.

Revised QMOM

For S < 1, a steady state solution for the moments is not guaranteed, even when the
initial condition corresponds with the moment data for an equilibrium size distribu-
tion. In order to remove this deficiency, it is proposed to modify the moment equa-
tions in the following way. Firstly, it is recognized that for an equilibrium, or steady
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state distribution, the right-hand side of Eq. (4.1) is identically zero:J0
n−1 − J0

n =

0 ∀n ∈ Ωn, where the superscript ’0’ refers to either equilibrium or steady state con-
ditions. This means that the termsJ0

n−1 − J0
n can be added to the right-hand side of

Eq. (4.1):
L(ρ̂n) = Jn−1 − Jn − (J0

n−1 − J0
n), (4.80)

whereJ0
n = fnρ̂0

n − bn+1ρ̂
0
n+1. The corresponding moment equation thus becomes:

L(νk) =
N

∑

n=2

Υk(n)ρ̂n −
N

∑

n=2

Υk(n)ρ̂0
n − b2(ρ̂2 − ρ̂0

2), (4.81)

or equivalently,

L(νk) =
N

∑

n=2

Υk(n)ρ̂n + J1 −
( N
∑

n=2

Υk(n)ρ̂0
n + J0

1

)

, (4.82)

whereJ0
1 = 0 for equilibrium conditions, andJ0

1 = J for steady state conditions.
Applying the quadrature approximation to Eq. (4.82) thus leads to:

L(νk) =
M
∑

m=1

wmΥk(ξm) + J1 −
( M
∑

m=1

w0
mΥk(ξ

0
m) + J0

1

)

, (4.83)

which will be referred to as therevised QMOM. It is noted that the revised form of
the moment equation given by Eq. (4.82) can also be used for other closure methods
besides the QMOM.

It is noted that although the sum of the last terms within brackets on the right-hand
side of Eq. (4.82) is zero, the corresponding term in Eq. (4.83) is not. Itis easily
verified from Eq. (4.83) though, that the moments and abscissas will remain invariant
when the initial conditions correspond with an equilibrium distribution, which is in
agreement with the transient behavior of the KE. However, it is noted that, ingeneral,
the transient solution for the weights and abscissas corresponding with therevised
QMOM behaves similarly to those of the QMOM.

4.3.5 The direct quadrature method of moments (DQMOM)

The DQMOM utilizes the same quadrature rule as the QMOM to approximate the
moment source terms. However, instead of solving the moment equations, a trans-
formation is applied to convert these into balance equations for the weightswk and
abscissasξk. The latter set of equations is derived by substituting the quadrature ex-
pression in Eq. (4.50) forνk in Eq. (4.5), followed by expanding its left-hand side.
To obtain a conservative transport equation for both the weights and abscissas it is
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convenient to replace the abscissas by the so-called weighted abscissasξ̄k, defined
by:

ξ̄k ≡ wkξk (4.84)

Elaboration of the moment equation then yields:

(1− k)
M
∑

m=1

ξk
mL(wm) + k

M
∑

m=1

ξk−1
m L(ξ̄m) = Sk, (4.85)

whereSk is the right-hand side of either Eq. (4.5), or Eq. (4.82). By taking a set of
2M moment equations, a unique solution forL(wm) andL(ξ̄m) can be obtained. It is
noted that to obtain a closed set of equations, it is not necessary to take thefirst 2M
moment equations, i.e., fromk = 0 to k = 2M − 1. To maintain consistency with the
QMOM, however, the moment set is restricted to the first 2M moments. As a result,
the system of balance equations for the weights and weighted abscissas is compactly
given by:

A(L(w),L(ξ̄))T = S, (4.86)

where: w = (w1,w2, ..,wM)T , ξ̄ = (ξ̄1, ξ̄2, .., ξ̄M)T , S = (S0,S1, ..,S2M−1)T , and the
2M × 2M-matrixA is given by:

A =











































1 .. 1 0 .. 0
0 .. 0 1 .. 1
−ξ2

1 .. −ξ2
M 2ξ1 .. 2ξM

: .. : : .. :
2(1− M)ξ2M−1

1 .. 2(1− M)ξ2M−1
M (2M − 1)ξ2(M−1)

1 .. (2M − 1)ξ2(M−1)
M











































.

(4.87)
Having chosenM, the system of equations given by Eq. (4.86) can be solved for
L(w),L(ξ̄), and subsequently, the weights and abscissas can be determined by solv-
ing these balance equations.

Properties of the method

The DQMOM inherits the same properties of the QMOM, as discussed previously.
The only difference between these two methods is that realizability of the moment
set is no longer a problem in the DQMOM, as the weights and abscissas are di-
rectly determined, without using the moments. All other problems associated with
accuracy, steady state and transient behavior, as well as the failure to deal with zero-
distributions, are identical to that of the QMOM.
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4.4 Numerical evaluation of closure methods

4.4.1 Global procedure

In contrast to what is claimed in much quoted references (see, e.g., [75],[70]), it
was not possible to apply the QMOM nor the DQMOM successfully in the present
investigation, due to the various problems that have been discussed in the preceding
sections. For the two test cases that were presented in chapter 3 (as wellas several
others), the DQMOM consistently generated non-physical abscissas which prema-
turely terminated the simulations. As a consequence, an evaluation of the accuracy
of the DQMOM for condensing flows cannot be given here, and thus, only Hill’s
MOM for µk, or the MOM forν̄k will be considered.

To quantify the accuracy of these moment methods, the condensing nozzle flow
considered in chapter 3 (test case 2), will be employed. For the sake of clarity, the
solutions predicted with the various methods are indexed as follows:

- index ’KE’ refers to variables predicted by simultaneously solving the FDE
with the KE;

- index ’HillMOM ’ refers to variables predicted by simultaneously solving the
FDE with Eq. (4.21) for the momentsµ0, µ1, µ2, andµ3, using the approxi-
mation given in Eq. (4.39), and by settingSD,k = 0 (i.e., denucleation is ne-
glected);

- index ’MOMKE’ refers to variables predicted by simultaneously solving the
FDE with Eq. (4.45) for the moments ¯ν0 and ν̄. The lower boundary is set to
eithern0 = 3 orn0 = 5.

The relative difference∆q′ between solution variableq′ obtained with the FDE/MOM
andqKE predicted with the FDE/KE, is defined as follows:

∆q′ ≡ 100%× q′ − qKE

qKE
, (4.88)

where the prime can be replaced by either ’HillMOM ’ or ’ MOMKE’.

4.4.2 Results and discussion

The flow field variables predicted with the MOM are shown in Figures 4.2.a-d,along
with the benchmark solution obtained by solving the KE and FDE simultaneously.
For the KE, the sticking probability is set to unity (αn = 1), and the backward rates
are calculated by using the Courtney equilibrium distribution (see chapter 3). The
relative differences shown in Figures 4.3.a-d correspond with the solutions shown in
Figures 4.2.a-d. Both sets of figures clearly show that the largest differences between
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the MOM-predictions and the benchmark solution occur within the nucleation zone,
located betweenx ≈ 0.016m andx ≈ 0.042m. The large differences ing occur for
x < 0.016m, i.e., upstream of the nucleation zone, but this region can be neglected
because condensation effects are of minor importance in this region. Downstream
of the nucleation zone (x > 0.042m) the relative difference in each variable is con-
sistently much smaller, with∆T < 0.2% and∆g < 0.5% at the nozzle exit. These
observations are a consequence of the two-way coupling between the FDE and the
KE on one hand, and the FDE and moment equations on the other hand. The two-way
coupling occurs due to the effects of latent heat release and vapor depletion, and their
influence can be described as follows. At the onset of condensation, the liquid mass
fraction rises steeply, which simultaneously increases the temperature and lowers the
vapor density. As a consequence, the saturation ratioS decreases rapidly, which in
turn slows down the rate of liquid production, as can be observed in Figures 4.2.c
and d. The approximations associated with the MOM will likely result in either too
low or too high rates of liquid production, compared with the benchmark solution.
Initially, this will lead to relatively large differences between both sets of solutions,
but as the vapor saturation adjusts itself to the variation in the liquid mass fraction,
the closure errors in the MOM will, to a certain extent, be compensated for, which
explains why the liquid mass fraction profiles almost coincide near the nozzle exit.

The differences between the FDE/MOM- and FDE/KE-solutions are a consequence
of the closure errors in the MOM, and the large-droplet approximation in Hill’s
MOM. Despite these approximations, the MOM gives reasonably accurate predic-
tions, especially when noting that the differences between results obtained with var-
ious master equations (see, e.g., the temperature- and liquid mass fraction profiles
in Figure 3.23) can be significantly larger. Given that the number of equations to be
solved for the MOM is about a factor of 100 smaller than the number of equations to
be solved for the KE, the MOM constitutes a very good trade-off between accuracy
and computational expense.

Of course, the apparent drawback associated with the MOM is that the droplet size
distribution remains unknown. However, the size distribution can be approximately
reconstructed by solving the KE in a postprocessing step, using the flow field data
generated by the MOM. This has been demonstrated in [42], where the GDEwas used
instead of the KE. Application of this reconstruction is demonstrated by computing
the droplet number densities at various nozzle positions, as shown in Figures 4.4.a-d
where the corresponding droplet radius distribution functions are plotted. Here, the
index ’HillMOM ’ refers to the radius distribution which has been reconstructed by
solving the KE, using the velocity, temperature and saturation profiles computed with
Hill’s MOM. Similarly, ’ MOMKE’ refers to the radius distribution reconstructed by
means of the KE, using the flow field data predicted with the MOMKE. The agree-
ment of the various size distributions is fairly good, considering that the saturation
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Figure 4.2: Flow field and thermodynamic variables for test case 2, predicted with
Hill’s MOM for µk (denoted as ’HillMOM, GDE’ in the figure, see also Eqs. (4.21)
and (4.39)), or Hill’s MOM forν̄k (denoted as ’MOMKE’ in the figure, see also Eq.
(4.11)), along with the benchmark solution from a FDE/KE-simulation. n0 denotes
the lower boundary for the momentsν̄k.

ratio shows differences of up to 60% in the nucleation zone.

4.5 Conclusions

Reduced models based on the moments of the droplet size distribution, have been
evaluated for application to condensing flow. In addition to Hill’s method of moments
derived from the general dynamic equation (GDE), a novel set of moment equations,
derived from the kinetic equation (KE) has been presented.
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Figure 4.3: Relative differences between flow field and thermodynamic variables for
test case 2, corresponding with the data in Figures 4.4.a-d. ’HillMOM’ is associated
with the MOM forµk, wheras ’MOMKE’ is associated with the MOM for̄νk, with
n0 = 5.

Each variant of the method of moments (MOM) has two associated closure prob-
lems: (i) one representing a sum, or an integral over droplet size space,and (ii) an-
other one which requires the local solution of the droplet size distribution (DSD) at a
single droplet size. Two quadrature based methods (QMOM and DQMOM) are eval-
uated for closure of the first problem, whereas the second one remains unresolved.
Analysis reveals that both QMOM and DQMOM fail to reproduce the steady state
and equilibrium behavior of the KE, with both additionally suffering from a lack of
robustness.

The accuracy of the MOM is finally quantified by using a condensing nozzleflow
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Figure 4.4: Droplet radius distribution function f(r) at four different positions along
the nozzle: (a) x= 0.016m (start of nucleation zone), (b) x= 0.022m, (c) x =
0.042m (end of nucleation zone), and (d) x= 0.070m (nozzle exit). ’KE’ denotes the
DSD from a KE/FDE-solution, ’HillMOM’ refers to the DSD that is reconstructed
by postprocessing flow field data predicted with Hill’s MOM, and ’MOMKE’ refers
to the DSD that is reconstructed by postprocessing flow field data predictedwith the
MOM for ν̄k, with n0 = 5.

experiment for which benchmark KE-solutions have been computed. Comparison of
predicted flow field variables reveals that the MOM is capable of encompassing con-
densation effects with reasonable accuracy. Moreover, the DSD reconstructed from
flow field data predicted with the MOM compare favorably with solutions computed
directly from the KE and FDE.
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rEvaluation of a flow model

with binary condensation

In this chapter, an evaluation is made of a condensing flow model, which utilizes
a kinetic equation to predict the evolution of a two-component (binary) dispersion,
generated by homogeneous nucleation. The evaluation is based on a simulation of
a nozzle flow experiment, for which measurement data are reported in theliterature.
The application of a full two-way coupling between the thermodynamic variables
and the binary droplet size distribution has not been done before. Comparison of
predicted and measured temperatures and partial pressures at the onset of conden-
sation shows a fair agreement between theory and experiment. The full resolution
of the binary droplet size distribution is exploited to verify whether or not a quasis-
teady treatment of the nucleation process is warranted. Finally, the sensitivity of the
condensation model with respect to the binary equilibrium distribution is examined.

5.1 Introduction

Multi-component condensation is an area of research which is of fundamental inter-
est to applications in nature and industry, e.g., in the formation of cloud condensation
nuclei [101], or the conditioning of natural gas [91], [92]. Throughout the years,
various condensation models have been developed, which focus on specific appli-
cations. The modelling approach in this investigation is tailored to condensation in
rapid expansions, where the kinetically driven process of homogeneous nucleation is
responsible for the conception of condensation nuclei.

The success of the kinetic model pioneered by a.o. Becker and Döring [13] for
unary (single component) condensation, logically prompted the extension towards
multi-component systems. Having reviewed the uncertainties associated with the
unary kinetic equation (KE) in chapter 3, it can be stated that these also carry over
to the multi-component case. The composition of multi-component droplets leads
to additional uncertainties in physical modelling, therefore, most investigations have
been limited to binary (two-component) condensation.

The theoretical treatment of binary condensation is primarily focused on steady-
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state nucleation, where the aim is to predict the steady-state nucleation rate in two-
dimensional component space. The first treatise on binary (or heteromolecular) nu-
cleation was conceived by Flood [32], who predicted an exponential dependence of
the binary nucleation rate (J) on the critical Gibbs free energy of droplet formation
(∆G∗), i.e., J ∼ exp(−∆G∗/kBT), with T the temperature andkB the Boltzmann con-
stant. This is similar to the generic expression for the nucleation rate for the unary
case. The first exposition on the actual kinetics of binary condensation was given
by Reiss in [97]. In this seminal work, the binary kinetic equation (BKE) forthe
two-component droplet size distribution is presented, and subsequently,its steady-
state form is utilized to derive expressions for both the magnitude and orientation of
the steady-state nucleation rate vector. The theory developed by Reiss suffers mainly
from inconsistencies associated with the equilibrium binary droplet size distribution,
which is used to calculate the evaporation (or backward) rate of droplets.These in-
consistencies have been examined in various previous investigations, anda number
of attempts have been made to derive more sound expressions, notably in [56], and
[135].

Besides the inconsistencies associated with the equilibrium distribution, there are
also a number of inaccuracies related to the derivation of the expressionsfor the
steady-state nucleation rate in [97]. The cardinal assumption in this theory isthat the
maximum nucleation flux follows the path corresponding with the smallest energy
barrier through the saddle-point of the binary Gibbs free energy-plane. An exten-
sive analysis by Stauffer in [114] has revealed that this steepest descent approach is
generally not valid, although for a number of systems, it does appear to bea good
approximation. Both Reiss and Stauffer utilize the continuum approximation of the
BKE in their derivation of the steady-state nucleation rate. The inherent assumption
made is that droplets are so large that a single monomer difference between suc-
cessive droplet sizes can be regarded as an infinitesimal variation, which allows the
discrete BKE to be replaced by a continuous Fokker-Planck type of partial differential
equation in binary size space [30].

The latest trend in binary nucleation theory is to use numerical techniques to solve
the steady-state form of the BKE directly, without resorting to continuum approxi-
mations, such as demonstrated in [74], and [126]. This allows for a more compre-
hensive comparison with experiments, as the steady-state droplet size distribution is
resolved in full detail. With the advent of new measurement techniques that utilize
condensing nozzle flows [144], [44], it is very likely that the rapid variations in va-
por supersaturation and temperature do not allow for application of quasisteady-state
nucleation theory. Under such conditions, it is necessary to incorporatethe effects of
vapor depletion and latent heat release on the flow variables, which necessitates the
simultaneous solution of the fluid dynamics equations (FDE) and the BKE.

In this chapter a fully two-way coupled model is presented for inviscid compress-
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ible flow with binary condensation. The accuracy of the model is evaluated by com-
paring the predicted temperatures and pressures at condensation onset with measure-
ment data taken from literature [144]. By using a sectional method, the BKE isfully
resolved beyond the nanometer size scale, in order to quantify the latent heat release
and vapor depletion effect with sufficient accuracy. The numerical method is first
tested utilizing one-way coupled test cases reported in literature, whereafter the re-
sults obtained with a two-way coupled simulation of a nozzle flow experiment arean-
alyzed. Subsequently, the fully resolved solution of the BKE is analyzed to determine
the validity of the quasisteady-state approximation. Finally, a sensitivity analysis is
carried out to quantify the influence of the binary equilibrium size distributionon the
flow field variables.

5.2 The kinetic equation for the binary size distribution

Similar to the unary KE, the BKE is a mass conservation law for droplets in binary
size space. Assuming the Szilard model for condensation, i.e., droplets may only
capture or expel a single monomer of either type at any instant, the BKE for an
advected dispersion can be written as:

∂ρ̂n

∂t
+

∂

∂x j
(ρ̂nu j) = Jn−e1,1 − Jn,1 + Jn−e2,2 − Jn,2, (5.1)

wheren = (n1,n2)T is the coordinate in binary space,e1 = (1,0)T , e2 = (0,1)T , ρ̂n

is the volumetric concentration of droplets consisting ofn1 monomers of component
1, andn2 monomers of component 2, and whereJn,k denotes the nett rate at which
clusters of sizen grow to sizen + ek. Schematically, the BKE can be represented as
a series of chemical reactions, such as depicted in Figure 5.1. It is noted that creation
of the binary dimern = (1,1)T from two monomers (1,0)T and (0,1)T constitutes a
single reaction, which means that (i) the monomer fluxesJ(1,0),2 andJ(0,1),1 are equal,
and (ii) that only one of these should be used to compute the residuals for ˆρ(1,1).

The condensation fluxJn,k comprises the nett effect of condensation and evapora-
tion, via corresponding forward ratesfn,k and backward ratesbn,k, respectively:

Jn,k = fn,kρ̂n − bn+ek,kρ̂n+ek. (5.2)

Forward and backward rates

Assuming Maxwellian velocity distributions for the monomers and the droplets, the
forward ratefn,k for thekth-component is given by [127]:

fn,k = αncn
ρv,k

mv,k

√

6kBT

√

1
mn
+

1
mv,k

( 3
4π

)1/6(

v1/3
n + v1/3

v,k

)2
, (5.3)
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Figure 5.1: Schematic representation of the Szilard model for binary condensation.

whereαn, cn, mn, andvn are the sticking probability, shape factor, mass, and volume
of a cluster of sizen, respectively. The mass and volume associated with a monomer
of componentk are denoted bymv,k andvv,k, respectively. The same uncertainties
regarding the sticking probability and the shape factor for the unary case(see chapter
3) are present in the binary case, and therefore, these will be exemptedfrom further
discussion in this chapter. The sticking probability will be set to constant value of
αn = 1, and a spherical droplet shape will be assumed (cn = 1), as is common
practice in the nucleation literature.

The backward ratebn,k for componentk is calculated from the corresponding for-
ward rate and the equilibrium droplet size distribution ˆρ

eq
n , by virtue of the principle

of detailed balance, [127]:

bn,k = fn−ek,k
ρ̂

eq
n−ek

ρ̂
eq
n

. (5.4)
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Binary equilibrium size distributions

The binary equilibrium distribution ˆρ
eq
n has been the subject of many discussions in

the nucleation literature, e.g., in [135], [56], and [31]. The generic expression for ˆρeq
n

is given as [127]:

ρ̂
eq
n = ρ̂0 exp

(

−∆Gn

kBT

)

, (5.5)

where∆Gn is the Gibbs free energy associated with a droplet of sizen, andρ̂0 is a
pre-factor which determines the magnitude of the equilibrium number densities.

Most models for∆Gn reported in the literature, utilize the following expression
[135], [127], [71]:

∆Gn = −kBT
(

n1 ln
av,1

an,1
+ n2 ln

av,2

an,2

)

+ Anσn, (5.6)

whereav,k is the vapor activity of componentk in the vapor phase,an,k is the liquid
activity of vapor componentk in ann-droplet, and whereAn andσn denote the sur-
face area and surface tension of ann-droplet, respectively. The activities of the vapor
and liquid phases are defined as:

av,k ≡
pv,k

ps,p
v,k

,and : an,k ≡
ps

v,k

ps,p
v,k

, (5.7)

respectively, wherepv,k is the partial vapor pressure of componentk, ps,p
v,k = ps,p

v,k(T)
is the pure-component saturation pressure of vapor componentk over a flat liquid
surface, and whereps

v,k = ps
v,k(n,T) is the partial saturation pressure for vapor com-

ponentk over the surface of ann-droplet. The liquid activity is usually expressed
as

an,k = γn,kxn,k (5.8)

whereγn,k = γn,k(T) is the so-called activity coefficient, andxn,k denotes the molar
fraction of vapor componentk in the droplet,

xn,k =
nk

n1 + n2
. (5.9)

In analogy with unary condensation, a component saturation ratioSv,k can also be
introduced,

Sv,k = Sv,k(n,T, pv,k) ≡
pv,k

ps
v,k(n,T)

=
av,k

an,k
, (5.10)

so that∆Gn can be expressed in more familiar form as:

∆Gn = −kBT
(

n1 ln Sv,1 + n2 ln Sv,2
)

+ Anσn. (5.11)
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For the pre-factor ˆρ0 in Eq. (5.5), the variation in available models is more diverse.
Since the pre-factor can also be a function of the droplet size, it may exert a profound
influence on the evolution of the droplet size distribution via the backward rate ex-
pression, viz. Eq. (5.4). In view of its anticipated significance, the following variants
for ρ̂0 are considered in the present investigation:

1. ρ̂0 for the classical equilibrium distribution by Reiss, [97]:

ρ̂R
0 = ρ̂(1,0) + ρ̂(0,1), (5.12)

2. ρ̂0 for the equilibrium distribution with limited self-consistency, by Wilemski
and Wyslouzil , [134]:

ρ̂WW1
0 =

( ρ
s,p
v,1

mv,1

)xn,1( ρ
s,p
v,2

mv,2

)xn,2

, (5.13)

3. ρ̂0 for the equilibrium distribution with full consistency, by Wilemski and Wys-
louzil, [134]:

ρ̂WW2
0 = ρ̂WW1

0 exp
(

xn,1θv,1 + xn,2θv,2
)

, (5.14)

whereρs,p
v,k is the mass density of pure vapor componentk at saturation, and where

the dimensionless surface energyθv,k is given by:

θv,k =
Av,kσv,k

kBT
, (5.15)

with Av,k the effective surface area of a monomer of componentk, andσv,k the surface
tension of a flat liquid interface of pure componentk.

It is noted that each of the three equilibrium distribution models is based on the cap-
illarity approach, which treats a droplet as a macroscopic entity. As noted byWilem-
ski and Wyslouzil [135], the use of such models constitutes a pragmatic approach,
which is necessarily maintained until a sound molecular theory becomes available.

In calculating∆Gn, the effect of both droplet curvature and composition should
ideally be taken into account when specifying the liquid phase activities and sur-
face tension for ann-droplet. It is important to note that the droplet composition
is generally not uniformly distributed within the droplet. The consensus within the
nucleation community is that a droplet can be modelled as consisting of a bulk in-
ternal phase and a surface phase, for which the respective compositions xb,k andxs,k

can be introduced [127]. Due to the phenomenon of surface enrichment,the surface
composition is usually different from the bulk composition, especially for non-ideal
systems such as aqueous alcohols [71]. Moreover, the bulk compositionxb,k can also
differ significantly from the total compositionxn,k (see Eq. (5.9)), which means that
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when calculating the liquid phase activities and surface tension based on empirical
expressions, one should use the bulk composition and not the total composition. For-
tunately, the surface tension of the binary systems studied in this investigation do
not vary appreciably with molar composition, and consequently only a small error is
made whenxn,k (Eq. (5.9)) is used instead of the bulk compositionxb,k. In principle,
it is possible to incorporate surface enrichment effects into the model, but this will
not be attempted here because available models which take surface enrichment into
account are not void of unphysical behavior, as illustrated in [57] and[127]. Further-
more, incorporation of surface enrichment is not desired from a computational point
of view, as determination of the surface composition usually proceeds in an iterative
fashion (see, e.g., [127]), which can significantly increase computational expenses.

The equilibrium size distributions given by Eq. (5.5), Eq. (5.11), with the pre-factor
ρ̂0 given by either Eq. (5.12), (5.13), or (5.14), should satisfy the following consis-
tency conditions:

1. the law of mass action needs to be satisfied, i.e., substitution of ˆρ
eq
n in Eq. (5.4)

should yield a backward rate that is independent of the monomer concentra-
tions.

2. the binary equilibrium distribution should reduce to the appropriate unaryequi-
librium distribution when only one component is present (i.e., eithern1 = 0, or
n2 = 0).

3. the monomer concentrations of each component should be retrieved from the
equilibrium distributions upon substitution of the unary sizen = ek.

If all three conditions are satisfied, the equilibrium size distribution is said to befully
self-consistent, otherwise it is said to have limited self-consistency. The following
observations can be made regarding the preceding equilibrium size distributions:

- the Reiss distribution does not satisfy any of the three conditions;

- both distributions by Wilemski and Wyslouzil satisfy the first and last condi-
tion, whereas the second condition is only satisfied by ˆρ

eq,WW2
n .

Given that ˆρeq,R
n does not satisfy the law of mass action, this equilibrium distribu-

tion will not be considered any further in the present investigation. Even though the
WW1-equilibrium distribution has limited self-consistency, it will be employed here
along with the WW2-equilibrium distribution, in order to quantify the influence of
the equilibrium size distribution on the flow field solution.
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5.3 Mixture properties and fluid dynamics equations

Mixture properties

The binary mixtures employed in this investigation can be approximated as ideal
systems, both in the gaseous and liquid states. Therefore, the thermal and caloric
equations of state as derived in chapter 2 are valid for the test cases considered here.

The thermodynamic model needs to be augmented with suitable expressions forthe
saturation vapor densitiesρs

v,k, and the surface tensionσn. Both the liquid mixture in
the droplets and the vapor mixture in the gas phase are assumed to be ideal, which
means that the liquid phase activity coefficients are unity:γn,k = 1. Neglecting
droplet curvature, the partial saturation pressureps

v,k(n,T) of vapor componentk over
the surface of ann-droplet is given by [103]:

ps
v,k(n,T) = xn,kps,p

v,k(T). (5.16)

Using the thermal equation of state, the saturation density then follows as:

ρs
v,k(xn,k) =

ps
v,k

Rv,kT
. (5.17)

For the surface tension of the liquid mixture, a linear weighing of the pure-component
surface tensions in terms of the molar fractions will be employed, i.e.,

σn = xn,1σv,1 + (1− xn,1)σv,2 (5.18)

with xn,k given by Eq. (5.9).
The latent heat of condensation (Ln, see, e.g., Eq. (2.130)) for a binary droplet, is

calculated in similar fashion, i.e.,

Ln = wn,1Lb,1 + (1− wn,2)Lb,2, (5.19)

whereLb,k is the bulk latent heat of pure vapor componentk, andwn,k is the mass
fraction of componentk in the droplet (see Eq. (2.118)).

Fluid dynamics equations

The conservation form of the FDE for binary condensation has been presented in
chapter 2. Due to the relatively large number of degrees of freedom associated with
the BKE, it is computationally convenient to employ a so-called space marching solu-
tion method here, instead of the standard finite-volume discretization used in chapter
3. Furthermore, a quasi-one dimensional approximation is employed for the noz-
zle flow, since the area variation depicted in Figure 5.2 implicates a slender nozzle
geometry.
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The unknown variables at each point along the nozzle include the temperature and
vapor densities, as well as the binary number densities ˆρn. Instead of ˆρn, the specific
number density ˇρn ≡ ρ̂n/ρ will be employed. By combining the continuity equation
for the mixture (Eq. (2.84)) with the BKE (Eq. (5.1)), the steady-state Lagrangian
form of the BKE is obtained:

dρ̌n

dx
=

Šn

u
, (5.20)

where x is the co-ordinate along the nozzle axis,u the axial velocity, and where
Šn = Sn/ρ, with Sn the right-hand side of Eq. (5.1).

Due to the assumed steady-state character of the nozzle flow, the mass flow rate
φm of the mixture is constant, which means that at each positionx:

ρuA= φm, (5.21)

whereA = A(x) is the cross-sectional area of the nozzle at positionx. By assuming
choked flow, and that the onset of condensation takes place downstream of the throat,
the mass flow rate can be obtained from isentropic flow theory, thus:

φm = ρ0
√

γm,0Rm,0T0

[

1+
1
2

(γm,0 − 1)

]

1+γm,0
2(1−γm,0)

At, (5.22)

whereAt is the flow area at the nozzle throat,T0 andρ0 are the total temperature and
density of the dry mixture, respectively, and where:

γm,0 =
Cp,0

Cv,0
, Rm,0 = Cp,0 −Cv,0,

are the Poisson constant, and specific gas constant of the dry mixture, respectively.
Differentiation of Eq. (5.21) with respect toxyields the following quasi-one-dimensional
and steady-state differential form of the continuity equation for the mixture:

1
u

du
dx
+

1
ρ

dρ
dx
+

1
A

dA
dx
= 0. (5.23)

In the absence of viscous dissipation and heat conduction, the total enthalpy ht of
the mixture remains invariant along streamlines. Using Eqs. (2.128) and (5.19), the
total mixture enthalpy is expressed as:

ht = Cp,0T − [

gl,1Lb,1(T) + gl,2Lb,2(T)
]

+
1
2

u2, (5.24)

where the liquid mass fractiongl,k of vapor componentk is given by Eq. (2.119). It is
noted thatgl,k is completely determined by the number densitiesρ̌ = (ρ̌(2,0), ρ̌(0,2), .., ρ̌(N,N))T .
Differentiation of Eq. (5.24) with respect tox thus yields:

[

Cp,0 −
(

gl,1
dLb,1

dT
+ gl,2

Lb,2

dT

)]

dT
dx
− dgl,1

dx
Lb,1 −

dgl,2

dx
Lb,2 + u

du
dx
= 0. (5.25)
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Due to the inviscid modelling approach, the momentum equation for the mixture
is reduced to:

u
du
dx
+

1
ρ

dp
dx
= 0 (5.26)

for a quasi-one-dimensional system.
Eqs. (5.20), (5.23), (5.25), and (5.26) constitute the governing systemof equations

which describe the condensing flow in a quasi-one-dimensional geometry,in terms
of the state variablesρ, ρ̌, T, u, andp. To complete the system, the thermal equation
of state:

p = ρRT

is also included, with the specific mixture gas constantR = R(gl,1,gl,2) given by Eq.
(2.122). Differentiation with respect tox yields:

1
p

dp
dx
=

1
ρ

dρ
dx
+

1
R

dR
dx
+

1
T

dT
dx
, (5.27)

where:
dR
dx
=

∂R
∂gl,1

dgl,1

dx
+

∂R
∂gl,2

dgl,2

dx
. (5.28)

By combining Eqs. (5.23), (5.25), (5.26), and (5.27), the following expression for
the spatial derivative of the temperature can be derived:

dT
dx
=

dgl,1

dx
Lb,1 +

dgl,2

dx
Lb,2 −

u2

1− u2

RT

[

1
R

dR
dx
− 1

A
dA
dx

]

Cp,0 −
[

gl,1
dLb,1

dT
+ gl,2

Lb,2

dT

]

+
u2/T

1− u2

RT

. (5.29)

The governing system of equations can now be reduced to Eq. (5.20) for ρ̌, and Eq.
(5.29) forT. Knowing ρ̌, the liquid mass fractionsgl,1 andgl,2 can be calculated by
means of Eq. (2.119). As the total enthalpyht is invariant, the fluid velocity can be
calculated from the temperature and the liquid mass fractions, via Eq. (5.24).Finally,
the fluid velocity and flow areaA(x) can be used to compute the mixture density via
Eq. (5.21).

It is noted that the calculation strategy of using Eq. (5.20) and Eq. (5.29) ina space
marching method can only be applied when the flow remains supersonic in the diver-
gent part of the nozzle. This restricts the applicability of the condensing flow model
to gradually expanding (i.e., shock-free) nozzle flows.
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5.4 Evaluation procedure

5.4.1 Description of test cases

Two test cases will be considered in this investigation: the first one is a simulated
nucleation experiment, and the second one a condensing nozzle flow.

Test case 1: nucleation simulation

The first test case is utilized for verification of the numerical algorithm whichsolves
the BKE. A one-way coupled simulation is carried out, i.e.,u = 0 and the mixture
state variablesρ, T, andρv,k are frozen. The initial condition for the binary size dis-
tribution is a zero-distribution, i.e., ˆρn = 0 for ||n|| > 1. The binary system considered
is a mixture of ethanol and hexanol vapor, which are assigned the component indices
1 and 2, respectively. The relevant material properties are given in appendix A. Ver-
ification of the numerical code is carried out by comparing the predicted transient
and quasisteady-state binary size distributions with the results published in [142] and
[143]. For each of the simulations related to the first test case, the temperature is
maintained at a constant value ofT = 260K, whereas three different pairs of va-
por activities are considered: (i)av,1 = 0.5 andav,2 = 14.0 (case 1.1),av,1 = 1.5
andav,2 = 9.0 (case 1.2), (iii)av,1 = 2.5 andav,2 = 6.0 (case 1.3). By default, the
backward rates in test cases 1.1-1.3 are computed by using the WW2-equilibrium
distribution.

Test case 2: condensing nozzle flow

In the second test case, a condensing nozzle flow is simulated for which measurement
data is reported in [144]. The mixture contains ethanol- and propanol vapor as the
condensable components, with nitrogen as the carrier gas. The nozzle area variation,
depicted in Figure 5.2, is reconstructed from the dry-flow pressure profiles given in
[144] by means of the isentropic relationships for quasi-one-dimensionalcompress-
ible flow. This approach is adopted, because the measured pressure profiles account
for the presence of boundary-layers in the experiments. The total conditions at the
nozzle inlet are maintained atT0 = 286.15K, and p0 = 59.1kPa, and the mixture
compositions are given in table 5.1. The relevant fluid properties for the various
components are given in appendix A.

In the simulation for each test case, a full two-way coupling is employed, mean-
ing that Eq. (5.20) fořρ, and Eq. (5.29) forT are simultaneously solved throughout
the nozzle. Unless specified otherwise, the backward rate is computed by using the
WW2-equilibrium distribution.
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case no.: yv,1 (-) yv,2 (-) gv,1 (×10−3) gv,2 (×10−3)

2.1 (100 % ethanol) 1.00 0.00 4.379 0.0
2.2 (75 % ethanol) 0.75 0.25 2.592 1.127
2.3 (50 % ethanol) 0.50 0.50 1.524 1.992
2.4 (25 % ethanol) 0.25 0.75 7.366 2.886
2.5 (0 % ethanol) 0.00 1.00 0.0 2.931

Table 5.1: Molar composition of the vapor phase and mixture mass fractions for the
ethanol-propanol mixtures studied in the second test case. Note that unary conden-
sation takes place in test cases 2.1 and 2.5.
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Figure 5.2: Reconstructed nozzle profile A(x) and dimensionless pressure profile for
a dry flow of N2 from [144], used for test cases 2.1 - 2.5.

5.4.2 Numerical methods

For the stagnant systems in the first test case, Heun’s predictor-corrector method is
used to march the BKE in time. The maximum droplet size is set toN1 × N2 =

100× 100, whereas the lower boundary is taken at the unary droplets consisting of
either vapor component. Furthermore, the smallest clusters are the unary dimers
(n = (2,0)T , or (0,2)T), and the binary dimer (n = (1,1)T), as depicted in Figure 5.3.
The boundary conditions for the BKE are prescribed via the vapor monomer concen-
trationsρ̂ek = ρv,k/mv,k at the lower boundary, whereas the number densities for the
largest droplets are extrapolated from the interior of the computational domain. The
method described here is actually similar to the one used by Wyslouzil and Wilemski
in [142] and [143].
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Figure 5.3: Close-up of the binary computational domain at the lower boundary
(indicated by the dashed line); the arrows represent the fluxes betweenthe various
clusters, and the boundary fluxes J(1,0),1, J(0,1),1, and J(0,1),2 are indicated.

To solve Eqs. (5.20) and (5.29) for the second test case, a space marching algo-
rithm is used, which also employs Heun’s predictor-corrector method to perform the
numerical integration. The calculation starts at a position which is located slightly
downstream of the throat, and proceeds until the nozzle exit is reached.In contrast
with the first test case, it is necessary here to extend the binary computational domain
to include droplets with radii of over∼ 10−8m, in order to adequately capture the
effects of vapor depletion and latent heat release. Therefore, the BKE is solved on
the domain 0≤ n1 ≤ 106, 0 ≤ n2 ≤ 106, with ||n|| > 1, which allows the binary DSD
to be captured in almost full extent. To reduce the computational effort, a sectional
approximation is used, which is very similar to the one previously presented in chap-
ter 3 for the single component KE. As illustrated in Figure 5.4, a set of neighboring
droplets is grouped into a bin, and each bin exchanges fluxes with its neighbors. The
(k, l)-th bin is defined as:

Ωk,l =
{

(n1,n2)T ∈ N
2 | nL

(k,l) ≤ n1 ≤ nR
(k,l),n

B
(k,l) ≤ n2 ≤ nT

(k,l)

}

, (5.30)

wherenL
(k,l), nR

(k,l), nB
(k,l), andnT

(k,l) denote the limiting values ofn1 andn2 at the left
(L), right (R), bottom (B), and top (T) boundaries ofΩk,l , respectively. The left, right,
bottom and top boundaries are defined by:

∂ΩL
k,l =

{

(n1,n2)T ∈ Ωk,l | n1 = nL
(k,l)

}

, (5.31)
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∂ΩR
k,l =

{

(n1,n2)T ∈ Ωk,l | n1 = nR
(k,l)

}

, (5.32)

∂ΩB
k,l =

{

(n1,n2)T ∈ Ωk,l | n2 = nB
(k,l)

}

, (5.33)

∂ΩT
k,l =

{

(n1,n2)T ∈ Ωk,l | n2 = nT
(k,l)

}

, (5.34)

respectively.
For each bin the following sectional approximation of the BKE can be written:

Dρ̄(k,l)

Dt
=

1
w(k,l),2

(

J̄(k−1,l),1 − J̄(k,l),1

)

+
1

w(k,l),1

(

J̄(k,l−1),2 − J̄(k,l),2

)

. (5.35)

where,ρ̄(k,l) denotes the bin-averaged number density for bin (k, l),

ρ̄(k,l) =
1

w(k,l),1w(k,l),2

∑

n∈Ωk,l

ρ̌n, (5.36)

with:
w(k,l),1 = nR

(k,l) − nL
(k,l) + 1 , w(k,l),2 = nT

(k,l) − nB
(k,l) + 1, (5.37)

and with:
J̄(k,l),1 =

∑

n∈∂ΩR
k,l

Jn,1 , (5.38)

and similarly:
J̄2(k,l) =

∑

n∈∂ΩT
k,l

Jn,2. (5.39)

To compute the fluxesJn,1 andJn,2 on the boundaries ofΩk,l , the local number density
is interpolated from the bin-averaged number densities of neighboring bins.

The reconstruction of the number densities at the bin-edges has to be carried out
at every time step and for every bin within the computational domain. For bins that
comprise a large number of different droplet sizes (i.e., whenw1(k,l) ≫ 1 and/or
w2(k,l) ≫ 1), the summation in Eqs. (5.38) and (5.39) constitutes a computationally
expensive task. To reduce the amount of work, the large sum can be approximated

by a smaller sum as follows. Suppose the sum
N

∑

n=0

f (n) has to be calculated for some

given function f (n). When f (n) is approximated by a polynomialPM(n) (whereM
denotes the degree of the polynomial), then the sum is decomposed into sums over

powers ofn, e.g.,
N

∑

n=0

nk, which can be evaluated using Bernoulli numbersBl :

N
∑

n=0

nk =
1

k+ 1

k
∑

l=0

Bl

(

k+ 1
l

)

nk−l+1. (5.40)
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Figure 5.4: Schematic representation of the sectional approximation of the BKE in
binary space.

The Bernoulli numbers are given by [93]:

B0 = 1 , B2l+1 = 0 , B2l = 2(−1)l+1 (2l)!

π2l(22l − 1
)

∞
∑

j=0

(2 j + 1)−2l , l ≥ 1. (5.41)

Using Eq. (5.40), the original sum comprising ofN + 1 terms is replaced by a sum
comprising of1

2(M + 1)(M + 2) terms. Hence, ifM2 is sufficiently small compared
to N this implies a significant reduction of work. The Bernoulli numbers can be
pre-computed and conveniently stored in computer memory for later use during the
simulation.

Once the bin-averaged number densities have been updated, the liquid massfrac-
tions are calculated:

gl,m = mv,m

∑

n∈Ωn

ρ̌nnm.

Using the sectional approach, this can be written as

gl,m = mv,m

∑

k

∑

l

∑

n∈Ωk,l

ρ̌nnm,
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and upon assuming that ˇρn is sufficiently smooth and small for larger droplets, the
second summation can be approximated by:

∑

n∈Ωk,l

ρ̌nnm ≈ ρ̄(k,l)

∑

n∈Ωk,l

nm

The remaining sum can be evaluated form= 1 andm= 2 as:

∑

n∈Ωk,l

n1 =
1
2

w(k,l),2

{

nR
(k,l)

(

nR
(k,l) + 1

)

− nL
(k,l)

(

nL
(k,l) − 1

)}

,

∑

n∈Ωk,l

n2 =
1
2

w(k,l),1

{

nT
(k,l)

(

nT
(k,l) + 1

)

− nB
(k,l)

(

nB
(k,l) − 1

)}

.

In each of the simulations carried out in the first test case, convergenceof the nu-
merical integration is verified by performing the solution using successivelysmaller
integration time steps∆t. Typically, a value of∆t = 10−10s was found to yield
sufficiently converged results. For the simulations in the second test case, a spatial
resolution of∆x = 10−8m on a total nozzle length of 0.08m was found to yield suf-
ficiently converged solutions for both the binary DSD and the flow variables. With
respect to the sectional approximation of the BKE, it was found that a number of
N1 × N2 = 400× 400 bins yielded sufficiently converged values for the liquid mass
fractions. By using a parallel implementation of the current numerical method,the
solution for the binary DSD and flow variables is obtained in typical run times of12
hours.

5.5 Results and discussion

5.5.1 Test case 1: verification of quasisteady-state and transient solu-
tions

Quasisteady-state solution of the BKE

Before turning to the actual verification of the solutions generated by the numerical
method, it is instructive to examine certain salient features of the quasisteady-state
solution for the binary DSD. The results obtained for test cases 1.1, 1.2, and 1.3,
obtained by using the WW2-equilibrium distribution for calculation of the backward
rates, are depicted in Figures 5.5.a, c and e, respectively, whereas thecorresponding
equilibrium distributions ˆρeq,WW2

n are depicted in Figures 5.5.b, d, and f, respectively.
The equilibrium distributions show the typical saddle-shaped form, with the position
of the saddle point approximately coinciding with the critical compositionn∗. The
departure from equilibrium is shown in Figures 5.6.a, b, c, where the ratio ˆρn/ρ̂

eq,WW2
n
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is plotted. Clearly, the quasisteady-state number densities associated with the small
clusters are very close to the equilibrium distribution, whereas the larger ones deviate
away from it.

For actual verification of the predicted solution, the flux-vectors (Jn,1, Jn,2)T have
been computed and plotted in Figures 5.7.a, b, and c, along with the iso-lines for the
Gibbs free energy∆Gn. As can be verified by comparison with figures 2.a, b, and c in
[142], the agreement between both sets of predictions appears to be very good, albeit
that a comparison between actual numerical data instead of graphs would constitute
a more credible verification method.

The data shown in Figures 5.7.a, b, and c also reveals the influence of the va-
por activities on the quasisteady state condensation fluxes. For each of the reported
activity pairs, the highest magnitude of condensation fluxes passes through the crit-
ical compositionn∗, as expected. The major distinguishing feature between Figures
5.7.a, b, and c is that the orientation of the condensation flux vectors progressively
deviates from the path of minimum energy, as the ratio between the ethanol- andhex-
anol vapor activities is increased. This behavior was extensively analyzed by Stauffer
[114], who correctly noted that in addition to the thermodynamic notion that sys-
tems tend to follow the path of steepest descent, it is also important to consider the
kinetic effects of monomer impingement. Simply stated, this means that the concen-
tration and mobility of monomers plays a major factor in the path traversed during
the nucleation process. This is clearly illustrated when Figure 5.7.a is compared with
Figure 5.7.c, where the ratio between the ethanol and hexanol monomers is equal
to ρv,1/ρv,2 = 3.7, andρv,1/ρv,2 = 42.5, respectively. The relatively higher ethanol
monomer concentration in Figure 5.7.c results in a flux of droplets that is almost par-
allel to the ethanol-axis, which implies that the majority of large droplets will consist
almost entirely of ethanol.

Transient solution of the BKE

The transient solution of the binary DSD for the ethanol-hexanol system of test case
1.2 is depicted in Figures 5.8.a, b, c, and d, where snapshots are taken atthe times
t = 2.40 · 10−8s, (b) t = 1.29 · 10−7s, (c) t = 6.93 · 10−7s, and (d)t = 2.00 · 10−5s,
respectively. These are the same times for which solution data are reportedin [143].
Starting from a zero-distribution att = 0.0s, the stream of droplets passes through
the saddle region surroundingn = n∗, until a quasisteady state is achieved in Figure
5.8.d.

In the quasisteady statedρ̂n/dt = 0, which consequently leads to

∑

n∈Ωζ

dρ̂n

dt
= 0, (5.42)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Quasisteady-state solutions and corresponding WW2-equilibrium distri-
butions for test cases 1.1 (a, b), 1.2 (c, d), and 1.3 (e, f).
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Figure 5.6: Departure from equilibrium, quantified by the ratioρ̂n/ρ̂
eq,WW2
n , for test

cases 1.1 (a), 1.2 (b), and 1.3 (c).

whereΩζ is the region stretching from the lower boundary (see Figure 5.3) up to and
including a curve∂Ωζ which connects then2-axis with then1-axis. Since

dρ̂n

dt
= Jn1−e1,1 − Jn,1 + Jn−e2,2 − Jn,2,

it follows from Eq. (5.42) that:
∑

n∈Ωζ
Jn1−e1,1 − Jn,1 + Jn−e2,2 − Jn,2 = 0. (5.43)
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Figure 5.7: Condensation fluxes(Jn,1, Jn,2)T corresponding with the quasisteady-
state solution of the BKE for the ethanol-hexanol systems corresponding with the test
cases 1.1 (a), 1.2 (b), and 1.3 (c). The solid circle denotes the saddle point location
(n = n∗), and the iso-lines correspond with the binary Gibbs free energy∆Gn (dashed
iso-lines indicate∆Gn-valleys). These figures correspond with figures 2.a-c of [142].

Due to mutual cancellation of fluxes for neighboring cells, the sum in Eq. (5.43)
reduces to a sum of fluxes over the boundaries ofΩζ ,

∑

n∈Ωζ
Jn1−e1,1 − Jn,1 + Jn−e2,2 − Jn,2 = J(1,0),2 + J(0,1),1 + J(0,1),2 − Jtot(∂Ωζ), (5.44)
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where:
Jtot(∂Ωζ) =

∑

n∈∂Ωζ
Jn,1 + Jn,2. (5.45)

Combining Eq. (5.43) with Eq. (5.44) thus yields

Jtot(∂Ωζ) = J(1,0),2 + J(0,1),1 + J(0,1),2,

which means thatJtot is independent of the curve∂Ωζ in the quasisteady state.
To verify that the binary DSD shown in Figure 5.8.d indeed corresponds with the

quasisteady-state solution, the total fluxJtot is calculated along the line

n1 + n2 = ζ, (5.46)

where the parameterζ allows the line to be moved in binary space. Using the numer-
ical solution data obtained for test case 1.2,Jtot(ζ) has been calculated and plotted
in Figure 5.9, for the same times corresponding with Figure 5.8. Here, it is clearly
observed that the nucleation rateJtot evolves in time until it becomes independent of
ζ for t = 2 · 10−5s, which consequently shows that the quasisteady state has indeed
been achieved.

For verification of the transient solution, Figures 5.10.a, b, c, and d showthe
temporal evolution of the sumJ = Jn,1 + Jn,2 of condensation fluxes in binary space.
As can be verified by comparison with figures 2.a, b and c in [143], the agreement
between both numerical predictions is very good. Thus in conclusion, the results
obtained for test cases 1.2, 1.2 and 1.3 have demonstrated that the current numerical
code is able to accurately predict both the quasisteady-state and transientsolution of
the BKE.

5.5.2 Test case 2: nozzle flow with binary condensation

Validation of flow model with binary condensation

The solution for the flow field- and thermodynamic variables for test cases 2.1 to 2.5,
are depicted in Figures 5.11.a-f. These solutions have been obtained by solving Eq.
(5.29) simultaneously with Eq. (5.20), with the backward rates calculated from the
WW2-equilibrium distribution. Qualitatively, the depicted trends are similar to the
ones observed for single-component condensation (see chapter 3).In each case, the
influence of condensation becomes noticeable at a certain onset point, where the con-
densational release of latent heat causes a slight rise in temperature, and a very slight
reduction in the Mach number, as shown in Figures 5.11.a and b, respectively. Fur-
thermore, the presence of nucleation zones is observed in the regions where the vapor
activities attain extremal values in Figures 5.11.c and d. Downstream of the nucle-
ation zone the vapor activities are significantly smaller, which leads to a reduced rate
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(a) (b)

(c) (d)

Figure 5.8: Temporal evolution of the binary DSD for an ethanol-hexanol mixture
at T = 260.0K, with respective activities of av,1 = 1.5 and av,2 = 9 [143]: (a)
t = 2.40 · 10−8s ; (b) t = 1.29 · 10−7s ; (c) t = 6.93 · 10−7s ; (d) t = 2.00 · 10−5s

(steady state solution). The contours correspond with10 log
ρ̂n

ρ̂(1,0) + ρ̂(0,1)
; the solid

circle indicates the position of the saddle-point(n = n∗).

of liquid production, as can be observed from the component liquid mass fractions
depicted in Figures 5.11.e and f.

The solution for the binary DSD at the nozzle exit is shown in Figures 5.12.a,b,
and c for the test cases 2.2, 2.3 and 2.4, respectively. The influence ofthe initial
vapor composition is qualitatively similar to what has been observed for the ethanol-
hexanol systems studied in test cases 1.1-1.3. As the inlet vapor compositionbecomes
richer in ethanol, the flux of droplets draws increasingly more parallel to theethanol
axis, so that large droplets consist of ethanol almost exclusively.
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Figure 5.9: Temporal evolution of the total flux Jtot(ζ) measured along the line n1 +

n2 = ζ, for test case 1.2.

To validate the condensation model, the temperatures and partial vapor pressures
at condensation-onset are compared with the measurement data reportedin [144].
Here, the onset-point of condensation is defined as the position along the nozzle axis
where the temperature of the condensing flow deviates 0.5K from that of a dry flow
under choked conditions. The predicted and measured data are listed in table 5.2,
with corresponding plots given in Figures 5.13.a, b and c. The agreementbetween
both data sets is fairly good, given that the flow model is inviscid and only quasi-one-
dimensional, and that the condensation model is based on macroscopic theory. The
latter is especially remarkable, since at condensation onset, the liquid dispersion con-
sists predominantly of droplets that typically contain only a few tens of molecules,
so that one would expect the macroscopic theory to be invalid. The predictions ob-
tained with the current model seem to suggest, however, that the WW2-equilibrium
distribution, which was derived from pragmatic arguments in [135], may still give
a reliable description of the average cluster dynamics at the microscopic level. It
is noted, however, that comparison of condensation onset data is not sufficient to
validate the current model, as one would rather use a complete pressure, tempera-
ture and/or vapor saturation profile measured over the entire nozzle length to make
a more thorough analysis. Contrary to unary condensation, reliable data for binary
condensation in nozzles is hardly available; to the author’s knowledge, thedata given
by Tanimuraet al. in [120] are the only reported measurements on binary condens-
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Figure 5.10:Temporal evolution of the sum J= Jn,1+Jn,2 of binary fluxes for test case
1.2 (ethanol-hexanol mixture at T= 260.0K, with respective activities of av,1 = 1.5
and av,2 = 9), such as reported in figures 2.a - d of [143]: (a) t= 2.40 · 10−8s ; (b)
t = 1.29 · 10−7s ; (c) t = 6.93 · 10−7s ; (d) t = 2.00 · 10−5s (steady state solution).
The iso-lines correspond with10 log J, with J expressed in m−3s−1. The solid circle
indicates the position of the saddle-point(n = n∗), and the arrows represent the
condensation flux vectors(Jn,1, Jn,2)T at a vertical line passing throughn∗.

ing nozzle flow. Because they have used a strongly non-ideal mixture of ethanol
and heavy water (D2O) as the condensing vapors in [120], the current model is not
suited for application to their experiments. It is anticipated that surface enrichment
effects need to be incorporated in the current condensation model, in order touse the
measurements reported in [120] for validation purposes.
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Figure 5.11: Solution of flow field and thermodynamic variables for test cases 2.1
to 2.5 (ethanol percentages are molar fractions, see table 5.1 for details): (a) tem-
perature (with insert for the nucleation zone), (b) Mach number, (c) ethanol and (d)
propanol vapor activities, (e) ethanol and (f) propanol liquid mass fractions.
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(a) (b)

(c)

Figure 5.12: Binary DSD at the nozzle exit (x= 0.08m), for test cases (a) 2.2, (b)

2.3, and (c) 2.4. The contours correspond with10 log
ρ̂n

ρ̂(1,0) + ρ̂(0,1)
.
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case no.: pexp
v,1 (Pa) pnum

v,1 (Pa) pexp
v,2 (Pa) pnum

v,2 (Pa) Texp (K) Tnum (K)

2.1 52.6 49.2 ... ... 210.2 210.9
2.2 30.9 30.1 10.3 9.5 209.5 212.8
2.3 18.5 17.5 18.5 17.2 210.7 212.8
2.4 9.3 8.4 27.8 25.4 212.9 213.2
2.5 ... ... 27.6 22.9 211.4 207.6

Table 5.2: Comparison of experimental (index ’exp’, from [144]) and simulation
data (index ’num’) for vapor pressures pv,k and temperature T at condensation onset.
The simulation employs the WW2-equilibrium distribution to compute the backward
rates in the BKE; the uncertainty in the measured onset temperature is±1K, and the
relative uncertainty in the measured pressure is5%.
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Figure 5.13: Comparison of condensation-onset data for test case 2 (the figures
correspond with the data of table 5.2): onset vapor pressures for ethanol (a) and
propanol (b); (c) onset temperatures .

Analysis of the spatial variation of the binary DSD

In this section it is examined whether or not condensing nozzle flows are suitable
for extracting data on quasisteady-state nucleation. For nozzle flows with unary con-
densation, it has been demonstrated in chapter 3 that rapid expansion canresult in
significant deviations from results predicted with quasisteady-state nucleation the-
ory. In this section, the changes in the binary DSD along a Lagrangian trajectory are
analyzed. Along such a path, the Lagrangian variation in ˇρn can be compared to the
transient behavior of ˆρn observed in the stagnant systems of test cases 1.1 - 1.3.

Using the simulation of test case 2.3 (50% ethanol), the contours of the dimension-
less number density ˇρn/

(

ρ̌(1,0) + ρ̌(0,1)
)

have been plotted in Figures 5.14.a, b, c and d
for the positionsx = 0.019m, x = 0.029m, x = 0.036m, andx = 0.060m, respectively.
To actually verify whether or not the solution is locally in a quasisteady state, the to-
tal flux Jtot(ζ) is again calculated, similar to what was done in the transient analysis
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for test case 1.2. The difference here, however, is that a different line is chosen along
which Jtot is measured. Due to the sectional approach of solving the BKE, it is more
convenient to measureJtot along the linesn1 = ζ, andn2 = ζ, from the point at which
they intersect the coordinate axes, up to their mutual intersection point (seeFigure
5.15). The results forJtot(ζ), calculated at the five positionsx = 0.019m, x = 0.025m,
x = 0.029m, x = 0.036m, andx = 0.060m, are shown in Figure 5.16.a, with a sep-
arate plot forx = 0.060m in Figure 5.16.b. The first four positions lie within the
nucleation zone, as can be seen from the vapor activities shown in Figures 5.11.c
and d. Considering the curves forJtot for these positions, it is clear that the binary
DSD does not achieve quasisteady-state behavior within the nucleation zone. Near
the end of this region (x = 0.036m), it is even observed that the total flux is negative
for small droplets, whereas large droplets (ζ > 11) show a positive total flux. For the
positionx = 0.060m located far downstream of the nucleation zone, the total flux is
much smaller compared to its value in the nucleation zone. Figure 5.16.b shows that
Jtot is negative for small clusters, whereasJtot > 0 for large clusters (ζ > 100). This
relatively small positive flux is also noticeable as the low rate of liquid production in
Figures 5.11.e and f.

These results clearly illustrate that quasisteady-state nucleation is not always achieved
during supersonic expansions. The conclusion drawn from this is that caution should
be exercised when analyzing the measurement data obtained from condensing nozzle
flow experiments based on quasisteady-state nucleation theory.

Influence of equilibrium distribution

In this section, the influence of the binary equilibrium distribution on the flow field
variables is investigated. The simulations are carried out for test cases 2.2, 2.3 and
2.4, with either the WW1- or WW2-equilibrium distribution used for calculating the
backward rates in the BKE. The results are shown in Figures 5.17.a - f, where the
temperature and component liquid mass fractions have been plotted for eachof the
cases mentioned. Clearly, both the temperature and liquid mass fractions based on
ρ̂

eq,WW1
n are very much different from the ones corresponding with ˆρ

eq,WW2
n . The use

of ρ̂eq,WW1
n consistently delays the onset of condensation until halfway the divergent

section of the nozzle, where the liquid mass fractions start to rise. This difference be-
tween the results predicted with ˆρ

eq,WW1
n andρ̂eq,WW2

n is actually comparable to what
has been observed in the unary case, when the results predicted with the Courtney
equilibrium distribution, are compared to those of the SCC-equilibrium distribution
(see chapter 3). In essence, the fully consistent character of the WW2-equilibrium
distribution causes ˆρ

eq,WW2
n > ρ̂

eq,WW2
n for small clusters. As the number densities

associated with the small clusters are very near the equilibrium value, and because
the liquid dispersion is dominated by these small droplets at condensation-onset, it is
concluded that using ˆρ

eq,WW1
n to calculate the backward rate should indeed delay the
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(a) (b)

(c) (d)

Figure 5.14: Spatial evolution of the binary DSD corresponding with test case 2.3
(50%ethanol): (a) x= 0.019m, (b) x= 0.029m, (c) x= 0.036m, and (d) x= 0.060m.

The contours correspond with10 log
ρ̌n

ρ̌(1,0) + ρ̌(0,1)
.

onset of condensation.

Given the reasonable agreement found between the onset temperaturesand vapor
pressures from experiment and simulation with the WW2-equilibrium distribution
(see table 5.2), it is thus concluded that the WW1-equilibrium distribution yieldsa
rather poor description of the average cluster dynamics at the microscopicscale. This
is apparently in contrast with the case of unary condensation, for which the Courtney-
equilibrium distribution was found to perform much better than the fully consistent
SCC-equilibrium distribution.
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n2

n1

n2 = ζ

n1 = ζ

Figure 5.15: Measurement line (dashed) for the total flux Jtot(ζ) in test case 2. The
dotted line denotes the lower size boundary.
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Figure 5.16: Total flux Jtot(ζ) plotted at various positions along the nozzle axis (a),
with a separate plot for Jtot at x= 0.060m (b).
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5.6 Conclusions

The kinetic equation for the binary droplet size distribution (DSD) has beensolved
numerically for a simulated nucleation experiment and condensing flow in a nozzle.

The first test case has been used to verify that the numerical method is ableto
accurately solve the binary kinetic equation (BKE), whereas the second one is used
for validation of the condensing flow model by means of comparison with actual
measurement data from [144].

The verification has proven successful for each simulated nucleation experiment.
Furthermore, the influence of the vapor composition on the resulting binary DSD has
been examined, which is found to be in agreement with the analysis by Stauffer [114].

The validation of the condensation model has been carried out for five test cases,
with different inlet compositions of the vapor phase. The predicted temperatures and
pressures at condensation-onset are found to be in good agreementwith measurement
data, when the fully self-consistent WW2-equilibrium distribution is used to calculate
the backward rates in the BKE.

By analyzing the total condensation flux in binary space, it has been found that
the binary DSD does not approach a Lagrangian quasisteady-state solution during
the rapid expansions considered here. The conclusion drawn from thisis that caution
should be exercised when analyzing the measurement data obtained from condensing
nozzle flow experiments based on quasisteady-state nucleation theory.

Finally, the sensitivity of the flow field solution to the equilibrium distribution has
been quantified. The results obtained by calculating the backward rates in the BKE
using either the partially self-consistent WW1-equilibrium distribution, or the fully
self-consistent WW2-equilibrium distribution, show profound differences in terms
of predicted temperatures and component liquid mass fractions. Furthermore, the
condensation-onset data predicted by using the WW1-equilibrium distribution are
shown to be much different from the reported measurements.
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Figure 5.17: Comparison of temperature and liquid mass fraction profiles for simu-
lations in which the backward rates in the BKE are computed by using eitherρ̂

eq,WW1
n

or ρ̂eq,WW2
n for test cases 2.2 (a, b), 2.3 (c, d), and 2.4 (e, f).
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synthetic turbulence

The condensation of micro-droplets in a synthetic turbulent flow, reminiscent of at-
mospheric clouds, is investigated numerically and analytically. Droplets have been
followed through a synthetic turbulent flow field composed of200 random Fourier
modes, with wave numbers ranging from the integral scales (O(102m)) to the Kol-
mogorov scales (O(10−3m)). As the influence of all turbulence scales is investigated,
direct numerical simulation is not practicable, making kinematic simulation theonly
viable alternative. Two fully Lagrangian droplet growth models are proposed: a
one-way coupled model in which only adiabatic cooling of a rising air parcel is con-
sidered, and a two-way coupled model which also accounts for the effects of local
vapor depletion and latent heat release. The simulations with the simplified model
show that the droplet size distribution becomes broader in the course of time and
resembles a Gaussian distribution. This result is supported by a theoretical analysis
which relates the droplet surface area distribution to the dispersion of droplets in the
turbulent flow. Although the droplet growth is stabilized by vapor depletion and latent
heat release in the two-way coupled model, the calculated droplet size distributions
are still very broad.

The work in this chapter has been submitted in revised form as: R.S.R. Sidin,
R.H.A. IJzermans, and M.W. Reeks, ”A Lagrangian approach to droplet condensation
in atmospheric clouds” to Physics of Fluids (2009).

6.1 Introduction

Despite being a familiar phenomenon, the development of rain showers is notyet
completely understood and therefore subject to many studies (see, e.g., [104] and
references therein). In general terms, three stages can be distinguished in the process
of rain drop formation. First, droplets are generated by heterogeneousnucleation of
water vapor on sub-micron sized aerosols which act as cloud condensation nuclei
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(CCNs). Although it has been speculated that very large condensation nuclei may
exist in a cloud [19], [20], it is generally believed that CCNs have a size of the order of
rn = 10−7m [90], [101], so that droplets start off at sub-micron sizes. If the conditions
allow, the droplets grow to a diameter of millimeters in a subsequent stage, in which
droplet inertia plays a dominant role. Finally, the droplets are large enoughto fall,
under the influence of gravity, through the cloud and reach the ground.

The growth process of droplets from sub-micron scale to millimeter scale is due
to condensation (i.e., impingement of vapor molecules onto a droplet) and due to
coalescence of droplets. While the condensation process depends mainlyon local
thermodynamic quantities such as temperature and supersaturation, the coalescence
process is related to the inertia of droplets. In order to determine for which droplet
sizes coalescence is important, it is instructive to look at the Stokes number St,a
measure for the droplet inertia compared to the momentum of the smallest scales of
turbulence [24]. Here, it is conveniently expressed as:

St=
2
9

(

ρb

ρ

)( rn

ηk

)2
, (6.1)

whereρb denotes the bulk density of the water in the droplet,rn is the radius of thenth-
droplet in a cloud,ρ is the density of the surrounding mixture of vapor and air andηk

is the Kolmogorov length scale. In systems like atmospheric clouds, typical values of
the Kolmogorov length, velocity and time scales are respectively:ηk = 10−3m, vk =

0.025m/s, andτk = 0.04s [101]. Hence, for droplets of size 10µmand a ratio between
the bulk density of the water droplet and the density of the surrounding moistair of
ρb/ρ = 103, the Stokes number is approximately 0.02. The settling velocityvs of
these droplets in still air under the action of gravity (with accelerationg = 9.81m/s2)
and drag forces is:vs = Stτkg = 0.008m/s, which is considerably smaller than the
Kolmogorov velocity scale. Therefore, droplets with radius smaller than∼ 10µmcan
be expected to closely follow the turbulent flow in an atmospheric cloud, whereas
inertia effects become important only for larger droplets. In conclusion, it is clear
that condensation must be the dominant mechanism for the initial growth of droplets
of radii between 10−7m and 10−5m, whereas coalescence becomes important for the
growth of droplets with radii larger than 10−5m.

To predict the variation in droplet size in the coalescence stage of growth,a reli-
able and accurate description of the droplet size distribution at the onset of this stage
is necessary. In particular, the broadness of the size distribution may have a profound
influence on the coalescence rate of droplets, and thus on the time scales involved
in the initiation of rain. Indeed, Becet al. [12] have found that the collision rates
in a turbulent flow between polydisperse droplets can be considerably higher than
between monodisperse droplets. For the current investigation, this is the mainmo-
tivation to study the evolution of the droplet size distribution during the process of
condensation in a model-system that simulates atmospheric clouds.
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One of the first theoretical studies on droplet condensation in clouds waspublished
by Twomey in 1959 [123], [104]. His theory is based upon the assumption that a
group of droplets may rise through a cloud in a parcel of air and remain together for
a long time. As the Knudsen numbers associated with droplets in atmospheric clouds
are relatively large (Kn > 1), the growth of droplets takes place in the diffusion
controlled regime [39], so that the approximation drn/dt = G̃s/rn is valid. Here,G̃ is
a constant ands is the local supersaturation [104], defined as:

s≡ S − 1, (6.2)

with S denoting the saturation ratio (see Eq. (1.1)). As the growth rate is inversely
proportional torn, small droplets grow faster than large droplets, and therefore, the
droplet size distribution is expected to become narrower as the mean dropletradius
increases. This prediction is, however, not in agreement with experimental evidence,
which suggests that the droplet size distributions in atmospheric clouds are broad,
even when the droplets are of micrometer sizes (see, e.g., [11], [19]).

It is noted that some numerical and analytical studies on condensation in clouds
have been published in recent years, also. Vaillancourtet al. [124], [125] carried out
a direct numerical simulation (DNS) of condensation in a turbulent flow, thereby in-
cluding a remarkable number of physical phenomena relevant for atmospheric clouds.
Celaniet al. ([17], [18]) recognized that, in addition to a turbulent velocity field, the
supersaturation and temperature fields are unsteady and spatially inhomogeneous.
Using a two-dimensional DNS, they solved an energy balance for the temperature
field and a liquid-vapor mass balance for the supersaturation field simultaneously
with the Navier-Stokes equations. By employing this Eulerian-Lagrangian model
they were able to show that the droplet size in a cumulus cloud may be very much
varied, with the largest droplets situated in regions where the supersaturation is the
highest.

All of these numerical simulations are understandably restricted by computational
limitations, since real atmospheric clouds are associated with excessively large Reynolds
numbers and large separations of length scales. For example, performinga DNS of
the turbulent flow in a cloud with an integral length scaleL0 = 100mandηk = 10−3m
would require at least (L0/ηk)3 = 1015 grid cells, with billions of droplets that need to
be traced. Evidently, such requirements are beyond the capabilities of modern com-
puters. In order to circumvent this problem, Vaillancourtet al. [125] focussed on the
smallest scales of turbulence and chose a calculation domain of (0.1m)3. Celaniet al.
[18], on the other hand, did include the largest scales in the their DNS of turbulence,
but they were not able to resolve the smallest scales, despite the two-dimensionality
of their model. Nonetheless it is important to note that the droplet size distribution
on millimeter scales is affected by both the large and small scales of the turbulence.

As Celaniet al. [17] point out, large scale motions can transport individual droplets
over large variations in altitude, which results in different droplet sizes for different
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droplet trajectories. Small scale turbulent fluctuations can mix droplets of different
sizes. Both phenomena together result in a broad droplet size distributionlocally,
which is essential for the coalescence mechanism to be enhanced.

The condensation of droplets in atmospheric clouds is a very complex process.
Condensing droplets release latent heat, thereby increasing the temperature of the
surrounding mixture of dry air and water vapor. Simultaneously, the droplets are
transported by a turbulent flow field over several hundreds of meters,which itself is
affected by the condensation processes taking place on micro scales. A further com-
plication involves the expansion of an air parcel as it rises, thereby inducing non-zero
gradients in the density, pressure and temperature fields of the mixture. Furthermore,
many other phenomena take place in a cloud, such as additional temperature differ-
ences due to solar radiation (the higher parts of a cloud receive more lightfrom the
sun than the lower parts) and due to various chemical processes [90], [124], [11].
Given this rich interaction between various processes, the development of a complete
physical model, which takes into account all chemical, and thermo-hydraulicphe-
nomena occurring in actual atmospheric clouds, is an extremely challenging task. It
is noted, however, that a complete model is less appropriate if one desires toisolate
the influence of a specific phenomenon, which, in this specific investigation,is the
role of turbulence in the cloud condensation process. In this regard, thepresent in-
vestigation assumes that the velocity field of the air/vapor mixture in an atmospheric
cloud corresponds to a statistically stationary homogeneous isotropic turbulent flow
in three dimensions, independent of the presence of the condensing droplets. This
is the main assumption here, which conveniently allows the turbulent flow field to
be simulated by means of a kinematic simulation (KS) employing random Fourier
modes [55]. This approach has the major advantage that the flow model encom-
passes all turbulent length scales, from the integral scales to the Kolmogorov scales.
Of course, the presence of condensing droplets in actual clouds is bound to influ-
ence the fluid dynamics within the system, e.g., by increasing the ascent rate ofcloud
parcels due to increased buoyancy stemming from latent heat release. Incorporation
of such effects in the current model is, however, not easily achieved, nor is it desired
to do so in view of the specific research questions addressed here.

In the present chapter, a fully Lagrangian numerical approach is proposed to in-
vestigate the condensation of droplets in model-systems, representing atmospheric
clouds. Using the KS-flow field, the trajectories of a limited number of individual
droplets, contained inside a small sampling space, are calculatedbackward in timein
order to determine their past trajectories. Subsequently, the size of each droplet along
its trajectory is then calculatedforward in time. This approach efficiently produces a
detailed local size distribution without the necessity of integrating the trajectories of
billions of droplets individually, which would have been the case if the usualstrat-
egy of following droplets which are uniformly distributed over the entire domainhad
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been adopted.
The predictions obtained with the proposed Lagrangian condensation model re-

veal that the droplet size distribution becomes broader in the course of time due to
turbulent dispersion of droplets, both on large scales and on small scales. Moreover,
it is shown that it is essential to take this entire range of scales into account: ex-
cluding the largest scales, for instance, does not result in a very broad spectrum of
droplet sizes, since all droplets in the simulation experience approximately thesame
supersaturation (a result found by [124], [125] and [40]). Not taking into account the
smallest scales does not show turbulent mixing of droplets of different sizes on the
smallest scales ([18]), an effect which is vital for the enhanced coalescence mecha-
nism. Finally, it is demonstrated that although the effects of vapor depletion and the
release of latent heat slow down the droplet growth, they do not qualitatively alter the
broadening of the droplet size distribution at the smallest scales.

This chapter is organized as follows. In the following section, the physicaland
mathematical models describing the turbulent velocity field and the condensation
process are discussed. Two approaches are proposed for modellingthe condensation
process: a two-way coupled model in which the droplet growth exerts a feed-back
on the temperature and supersaturation fields, and a simplified model in which this
feed-back is neglected. Section 6.3 is devoted to the results of the statistics ofdroplet
dispersion in the turbulent flow field. Subsequently, results are presented for the evo-
lution of droplet size distributions, using either the simplified condensation model,
or the two-way coupled model. Finally, the conclusions are formulated in the last
section.

6.2 Physical-mathematical model

6.2.1 Flow field composed of random Fourier modes and relateddroplet
trajectories

The flow of the air/vapor mixture is prescribed by a synthetic velocity fieldu(x, t)
composed ofM random Fourier modes [55]:

u(x, t) =
M
∑

m=1

[Am cos(km · x + ωmt) + Bm sin(km · x + ωmt)] , (6.3)

whereAm andBm are orthogonal tokm, so that an incompressible flow field is ob-
tained, which varies smoothly in both space and time. Such synthetic turbulent flow
fields are frequently used to study the dispersion of particles in turbulence, e.g., [81],
[113].

The wave numberskm, amplitude coefficientsAm, Bm and frequenciesωm are all
random numbers, generated in similar fashion as described in [81]. The first step is
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to adopt an energy spectrum, which characterizes the energy distributionamongst the
various scales of turbulence. In this investigation, the wave vectorskm are chosen
from a model energy spectrum given by [87]:

E(k) = αk−5/3 fL(kL0) fη(kηk) , k1 ≤ k ≤ kM (6.4)

E(k) = 0 , otherwise,

wherek ≡ ||k||, andL0 denotes the integral length scale. The functionfL(kL0) is
a correction to the standard−5/3-spectrum that incorporates the contribution of the
largest scales of motion, and is given by:

fL(kL0) =















kL0
√

(kL0)2 +CL















5/3+p0

, (6.5)

with: CL = 6.78, and: p0 = 2. Similarly, the functionfη(kηk) incorporates the
contribution of the eddies in the dissipative range, and is given by:

fη(kηk) = exp
(

−β
{

[

(kηk)
4 +C4

η

]1/4 −Cη

})

, (6.6)

with Cη = 0.40 andβ = 5.2. The factorα contained in the energy spectrum is related
to the energy dissipation rateǫ by α ∝ ǫ2/3, and is obtained from the condition:

∞
∫

0

E(k)dk=
3
2

U2
0, (6.7)

whereU0 is a specified reference velocity, taken asU0 = 1m/s. Figure 6.1 shows the
resulting energy spectrum which is used to generate the velocity field in the present
investigation.

The normskm ≡ ‖km‖ are distributed in logarithmic fashion between the wave
numbers associated with the maximum length scaleLmaxand the Kolmogorov length
scaleηk:

k1 =
2π

Lmax
, kM =

2π
ηk

; km = k1

(kM

k1

)
m−1
M−1 for 1 < m< M. (6.8)

The maximum length scaleLmax must be larger thanL0, and its value is set equal
to 5L0 in this study. The wave numberskm are determined by setting:km = kmem,
whereem is a unit vector whose direction is chosen randomly. This is achieved by
specifying:

em,1 =
√

1− h2 cosθ , em,2 =
√

1− h2 cosθ , em,3 = h (6.9)
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Figure 6.1: Turbulent energy spectrum used in the kinematically simulated flow field.
The integral length scale is L0 = 102m and the Kolmogorov length scale isηk =

10−3m

for the components ofem, where the variablesh andθ are randomly sampled from
the respective domainsΩh = [−1,1], andΩθ = [0,2π], based on uniform probability
distributions. The probability densities forh andθ are thus given byPDF(h) = 1/2,
andPDF(θ) = 1/2π, respectively.

To show that Eq. (6.9) indeed results in a uniform distribution forem on the unit
sphere, the following analysis is carried out. First, it is recognized that Eq. (6.9)
maps each regionΩh,θ ∈ Ωh × Ωθ uniquely to a regionΩe on the surface of the unit
sphere. The probability densityPDF(em) associated withem satisfies the following
relationship onΩe:

∫

Ωe

PDF(em)dem,1dem,2dem,3 =

∫

Ωh,θ

PDF(h)PDF(θ)dhdθ , ∀Ωe. (6.10)

From vector-calculus it follows that also:
∫

Ωe

PDF(em)dem,1dem,2dem,3 =

∫

Ωh,θ

PDF(em(h, θ))||∂em

∂θ
× ∂em

∂h
||dhdθ , ∀Ωe. (6.11)

Using Eq. (6.9), it is derived that

||∂em

∂θ
× ∂em

∂h
|| = 1, (6.12)
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which means that:

PDF(em) = PDF(h)PDF(θ) = 1/4π, (6.13)

because Eq. (6.10) and (6.11) must be satisfied for arbitraryΩe. Thus it is established
that the mapping in Eq. (6.9) indeed results in a uniform distribution ofem on the unit
sphere.

In order to ensure that the velocity field satisfies the energy spectrum, the norms of
the amplitude coefficientsAm andBm are determined from:

‖Am‖2 = ‖Bm‖2 = 2

km+1/2
∫

km−1/2

E(k)dk, (6.14)

where: km±1/2 = (km + km±1)/2. The direction ofAm is specified by setting:Am =

‖Am‖am; the unit vectoram is given by:

am =
tm× km

‖tm× km‖
, (6.15)

wheretm is a randomly directed unit vector. Determination of the amplitude coeffi-
cientsBm proceeds in a similar way as outlined forAm.

The velocity field is completed by specifying the angular frequenciesωm, which
are chosen to be proportional to the eddy-turnover time associated with them-th
Fourier mode [35]:

ωm = λ

√

k3
mE(km), (6.16)

whereλ is the so-called unsteadiness parameter which is generally taken to be 0≤
λ ≤ 1. In this investigation its value is set toλ = 1.

Droplets are assumed to be advected by the turbulent flow as passive tracers. This
is a valid approximation in the present research, since the focus is primarily on
droplets with sizes 10−7m < rn < 10−5m, for which the Stokes number based on
the Kolmogorov scales is 0.2× 10−5 < St < 0.02, and the ratio between the settling
velocity and the Kolmogorov velocity is 0.3 × 10−4 < vs/vk < 0.3. Also, Brownian
motion is neglected, since Brownian diffusion is much smaller than the turbulent dif-
fusion for the flow fields that are simulated in this investigation. Thus, the position
xn(t) of a droplet in the course of timet is given by:

dxn

dt
= u(xn(t), t), (6.17)

with u(xn(t), t) specified by Eq. (6.3).
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6.2.2 Two-way coupled droplet condensation model

The average number density of droplets in atmospheric clouds is much lower than
the number densities observed in condensing nozzle flows. In condensing nozzle
flows the inter-droplet separation distances are typicallyO(10−6m), whereas in atmo-
spheric clouds, the average inter-droplet separation distance isO(10−3m), which is
comparable to the typical Kolmogorov length scales of atmospheric turbulence. It is
therefore not possible to use a continuum modelling approach to describe the evolu-
tion of the droplet size distribution in systems where the details on such small scales
are of interest. As a consequence, a discrete particle approach is adopted, in which
the condensation of droplets is tracked in Lagrangian fashion along its trajectory. In
contrast to the usual practice in discrete particle models, the present methodis fully
Lagrangian, because the fluid velocity does not need to be solved on a fixed Eule-
rian grid, since it can be computed by means of Eq. (6.3) at any point in time, at the
position of each individual droplet.

To derive the Lagrangian condensation model, a single droplet of massmn is con-
sidered, which moves in a turbulent velocity fieldu(x, t). The droplet is contained
within an air/vapor parcel of volumeVc, which is assumed to be much larger than the
droplet’s volume, but small enough so that all molecules in the parcel remain together
for a long time, i.e., the diffusive mass and energy transport at the outer surface of the
parcel is neglected. First, an expression is introduced for the supersaturation in the
parcel based on a mass balance, and subsequently, the equation for thetemperature
variation following from an energy balance is derived. Furthermore, thetemperature
and vapor mass density are assumed to remain uniform over the entire parcel.

The volume of the parcelVc can be considered as the volume of air and vapor
available per droplet. It is therefore related to the droplet number densityNl as:

Vc = N−1
l . (6.18)

If the mass of air inside the parcel is denoted byma, the mass of vapor bymv, and the
mass of the droplet bymn, a mass balance yields:

dmv

dt
= −dmn

dt
, (6.19)

as only vapor can be transformed into liquid and vice versa. Upon neglecting the
droplet’s volume compared toVc, the partial vapor densityρv in the air/vapor mixture
can be determined by:

ρv =
mv

Vc
, (6.20)

and its time derivative along the droplet’s trajectory is:

dρv

dt
=

1
Vc

dmv

dt
− mv

V2
c

dVc

dt
= − 1

Vc

dmn

dt
− mv

V2
c

dVc

dt
. (6.21)
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The rate-of-change ofVc is not necessarily zero because the volumeVc may ex-
pand (shrink) when it is transported to higher (lower) altitudes. Since in atmospheric
cloudsma ≫ mv + mn [101], the evolution ofVc in time can in principle be deter-
mined fromVc = ma/ρa, whereρa denotes the partial density of air. It can be shown
that the variation ofρa is so weak in atmospheric clouds that the influence of the
second term on the right-hand side of Eq. (6.21) is negligible compared to theother
thermodynamical effects. Therefore,

dVc

dt
= 0, (6.22)

and, as a consequence of Eq. (6.18),Nl can be considered constant as well.
The law describing the condensational growth of a droplet varies considerably with

the droplet’s size. For very small droplets (i.e., for large Knudsen number) the growth
is described by the Hertz-Knudsen law which includes the so-called Kelvin effect
[90], whereas the growth rate of large droplets (i.e., for small Knudsen number) is
governed by diffusion. For the sake of simplicity, the diffusional growth law is em-
ployed for all droplet sizes in the present study. Although it overestimatesthe droplet
growth rate for the smallest droplets of sizern . 10−7m, it is accurate for the majority
of the droplets in the present simulations, whose radius is generally much larger than
the capillary length scale.

The diffusional growth law for a spherical droplet is [39]:

dmn

dt
= 4πr2

nρb
drn

dt
= ṁd = 4πrnDv,a

(

ρv − ρs
v
)

, (6.23)

whereDv,a is the binary diffusion coefficient of water vapor in air,ρb is the bulk
density of water (ρb = 103kg/m3) andρs

v denotes the saturation vapor density, which
depends on the temperature:ρs

v = ρ
s
v(T) (see appendix A).

By writing the supersaturations of the moist air surrounding the droplet in the
form:

s=
ρv

ρs
v
− 1, (6.24)

Eq. (6.23) can be cast as:
ṁn = 4πrnDv,asρs

v. (6.25)

The rate-of-change of the supersaturation can be obtained by differentiating Eq.
(6.24) with respect to time, and making use of Eq. (6.21), Eq. (6.22) and Eq. (6.25) in
order to obtain:

ds
dt
= − s

τs
− (s+ 1)

dT
dt

1
ρs

v

dρs
v

dT
, (6.26)

where the vapor depletion time scaleτs is given by:

τs =
Vc

4πrnDv,a
=

1
4πrnDv,aNl

. (6.27)
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An equation for the temperature of the moist air surrounding the droplet canbe
obtained by considering the conservation of energy in the volumeVc. For a system
of this size, the variation of the enthalpy within the volumeVc is negligible, and
therefore the conservation of energy is given by:

d
dt

(

maha +mvhv +mnhn
)

= −(ma +mv +mn
)

u · ezg, (6.28)

whereha, hv andhn denote the specific enthalpy of the air, the vapor and the droplet,
respectively. Eq. (6.28) expresses the balance between the change inthe energy of the
parcel of moist air and the work done by gravity, as viscous dissipation and thermal
heat conduction are neglected. Since the supersaturation is close to zero[101], the
liquid enthalpyhn may be approximated by:

hn = hv − Lb, (6.29)

whereLb = Lb(T) is the bulk latent heat of vaporization. By employing a caloric
equation of state for a perfect gas:ha = Cp,aT and: hv = Cp,vT (with Cp,i denoting
the isobaric specific heat of substancei), in combination with Eq. (6.19) and Eq.
(6.29), Eq. (6.28) may be cast into the following form:

dT
dt
=

ṁdLb − (ma +mv +mn)u · ezg
maCp,a + (mv +mn)Cp,v −mndLb/dT

. (6.30)

Since in atmospheric clouds it holds thatmaCp,a ≫ (mv + mn)Cp,v andmaCp,a ≫
mndLb/dT, Eq. (6.30) may be further simplified to:

dT
dt
=

ṁdLbNl

ρaCp,a
− Γu · ez, (6.31)

where the factorΓ is the so-called adiabatic lapse rate [101], given by:

Γ =
g

Cp,a
. (6.32)

The two-way coupled system is now closed, and it can be solved along the tra-
jectory of a droplet in the course of time. Specifically, Eq. (6.26) and Eq. (6.31) for
the supersaturation and temperature of the moist air surrounding the droplet, respec-
tively, and Eq. (6.25) for the rate-of-change of the droplet mass, need to be solved,
using some initial conditions fors(t = 0), T(t = 0) andmn(t = 0). This system
of ODE’s is augmented by Eq. (6.27) for the saturation relaxation timeτs, as well
as the expressions for the quantitiesDv,a(p,T), Lb(T) andρs

v(T) andCp,i , which are
all given in Appendix A. Finally, the parametersρa and Nl can be chosen freely
depending on the problem at hand.
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The model just presented is referred to as the ‘Two-way coupled condensation
model’. It should be noted that Eq. (6.26) is actually very similar to the expression
used by Twomey to calculate the variation in the supersaturation in [123]. Although
the effect of latent heat release has been excluded in that particular investigation, re-
cent work by Celaniet al. [17] does take it into account by means of an appropriate
sink term in the balance equation for the supersaturation. The main difference be-
tween the current ‘Two-way coupled condensation model’ and the one in [17] is that
the latter uses an Eulerian formulation to describe the evolution ins, whereas here, a
fully Lagrangian approach is employed.

6.2.3 Simplified droplet condensation model

As can be noted from Eq. (6.26) and Eq. (6.31), the supersaturation changes due to
three effects: adiabatic cooling, vapor depletion (i.e., the finiteness ofVc) and the
release of latent heat by the condensing droplet. The latent heat release and the vapor
depletion term tend to slow down the growth of droplets and thus have a stabilizing
effect on the development of the droplet size distribution inrn-space. Adiabatic cool-
ing, however, is the only mechanism capable of increasing the supersaturation when
a droplet is growing. It can therefore be seen as the only stimulating effect on the
condensation process. Indeed, adiabatic cooling is widely believed to be the main
source of supersaturation, and therefore of the condensational growth of droplets in
a cloud [104], [17].

In order to isolate the effect of adiabatic cooling, a simplified condensation model
is proposed, in which the effects of vapor depletion and latent heat release are ne-
glected. This approach has two advantages: firstly, it allows one to determine the
influence of adiabatic cooling on the development of the droplet size distribution,
without the results being obscured by secondary effects. Secondly, in a subsequent
stage, the results obtained with the simplified condensation model can be compared
with the results from the two-way coupled condensation model. Any differences be-
tween the results can unambiguously be related to the feed-back of the droplet growth
on the temperature and supersaturation fields.

The simplified condensation model follows readily from the two-way coupled con-
densation model presented in section 6.2.2. If latent heat release is neglected, Eq.
(6.31) reduces to:

dT
dt
= −Γu · ez. (6.33)

Similarly, if the effect of vapor depletion is neglected, all terms involving the finite-
ness of the volumeVc are zero and Eq. (6.26) becomes:

ds
dt
= −(s+ 1)

dT
dt

1
ρs

v

dρs
v

dT
= (s+ 1)Γu · ez

1
ρs

v

dρs
v

dT
. (6.34)

Finally, the droplet growth law is still given by Eq. (6.23).
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This model, which is similar to the model employed by [17], is referred to as
the ‘Simplified condensation model’, and accounts for condensation in a prescribed
temperature field resulting from adiabatic expansion cooling.

6.3 Results

6.3.1 Statistics of droplet dispersion

It is instructive to discuss some statistics of the one-droplet and two-droplet disper-
sion in the turbulent flow described by Eq. (6.3). Here and in the following,the inte-
gral length scale of the flow is set equal toL0 = 102m, and the Kolmogorov length
scale toηk = 10−3m.

In this flow field, the trajectories of droplets in the course of time are determined
by integrating Eq. (6.17) numerically, using a fourth-order Runge-Kutta scheme. The
numerical time step in all simulations presented here is fixed at∆t = 0.1/ωN, so
that the motion of a droplet through the smallest turbulent eddies is resolved with
sufficient accuracy. Convergence tests have been carried out with smaller values of
∆t, and the results for the dispersion or the condensation of droplets were not signifi-
cantly different.

First, the one-droplet dispersion is investigated by calculating the trajectories of
500 droplets in five different realizations of the flow field. Each droplet is released at
a random pointxn(0) and traced for a time 0≤ t ≤ 104s, during which the distance
to the point of injection‖xn(t) − xn(0)‖ is calculated. The square root of the squared
distance averaged over all droplets〈‖xn(t) − xn(0)‖2〉1/2 is plotted in Figure 6.2.a as
a function of time. The result shows that the droplets in an atmospheric cloud can
be transported over distances of the order of 100m within a time span of 100s. In
addition, it is clear that〈‖xn(t) − xn(0)‖2〉1/2 ∝ t for small values oft, and〈‖xn(t) −
xn(0)‖2〉1/2 ∝ t1/2 for large values oft, which is perfectly in agreement with Taylor’s
famous prediction of one-particle dispersion in a turbulent flow [121].

The statistics of the two-droplet dispersion are determined by releasing 500pairs
of droplets at an initial separationd0 in five different realizations of the flow. The
initial distance is chosen as the Kolmogorov length scale,d0 = ηk, and the direc-
tion of the inter-particle separation vector is selected randomly in three dimensions.
The trajectory of each droplet in a droplet pair is calculated from Eq. (6.17), and at
each time step the distance between the dropletsd(t) is measured. Averaging over all
droplet pairs then results in〈d2(t)〉1/2, which is plotted in Figure 6.2.b as a function
of time. The separation distance is apparently proportional tot for small values oft,
and proportional tot1/2 for very large values oft. In the intermediate time range, the
separation distance in a turbulent flow should be proportional tot3/2 when the separa-
tion distance is of the order of the size of the eddies in the turbulent inertial range, as
the classical theory by Richardson predicts [94]. Due to the limited statistics, itis not



148 Chapter 6. Droplet condensation in synthetic turbulence

time (s)

<
||x

-x
0|

|2 >
1/

2
(m

)

10-2 10-1 100 101 102 103 104

10-1

100

101

102

103

slope= 1/2

slo
pe

=
1

(a)

time (s)

<
d2 >

1/
2
(m

)

10-2 10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

101

102

103

slope= 1/2

slo
pe

= 1

slo
pe

=
3/

2

sl
op

e
=

3

(b)

Figure 6.2: (a) Lagrangian one-particle statistics, based on500 droplets in5 dif-
ferent realizations of the flow field composed of200 random Fourier modes; (b) La-
grangian two-particle statistics, based on500droplet pairs in5 different realizations
of the flow field composed of200 random Fourier modes. The initial inter-particle
separation distance is equal to the Kolmogorov length scale: d0 = ηK = 10−3m.

immediately clear whether or not the current kinematic simulation produces exactly
that behavior, but in spite of this, a range is observed in which〈d2(t)〉1/2 ∝ tp, with p
somewhere between 3/2 < p < 3, in general agreement with Thomson & Devenish
[122] who foundp ≃ 2.3. It is well known that KS are not able to fully reproduce
all details of a real turbulent flow field, such as the sweeping effect of large eddies
on smaller ones. Regardless of the in itself interesting question whether a kinematic
simulation is able to produce Richardson’s law (see, e.g., [4], however, [81]), it is
clear from Figure 6.2.b that two droplets which are initially separated by a smalldis-
tance may end up in completely different regions of the flow field after a sufficiently
long time. Vice versa, since the equation of motion Eq. (6.17) is reversible, it also
holds that two droplets which are nucleated at two distantly separated positions, may
end up very close to one another at some instant of time. This concept turnsout to
be essential for the explanation of the results obtained with the current condensation
models.

6.3.2 Results for simplified condensation model

In the present section the results obtained for the simplified condensation model are
discussed. The size and position of a droplet at a final timete are obtained in three
steps. First, the final positionxn,e = (xe, ye, ze)T is specified by choosing an altitude
ze, whereas the horizontal coordinate (xe, ye) is chosen randomly in a square with
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sides of lengthL.
Second, the trajectory of the droplet is calculated backward in time (i.e., fromt = te

to t = 0) from the final position. In this step, the position of the droplet follows from:

dxn

dτ
= −u(xn(τ), τ) ; xn(τ = 0) = xn(t = te) = xn,e, (6.35)

with τ = te− t running from 0 tote, andu(xn(τ), τ) prescribed by Eq. (6.3).
Third and finally, the droplet growth is determined forward in time along its trajec-

tory. Eq. (6.23) for the droplet massmn(t) is solved forward in time, starting from the
initial conditionmn(0). All droplets are supposed to have the same sizer0 = 10−7m
initially, so thatmn(0) = (4π/3)ρnr3

0.
Using this procedure, a total ofNl,tot = 16,000 droplets is traced through the flow

field in each simulation. This procedure efficiently produces droplet size statistics
within the sampling areax ∈ [0, L], y ∈ [0, L] and z = ze at time t = te, whilst it
avoids the necessity to follow a huge number of particles uniformly distributed over
the entire domain, like in traditional Eulerian-Lagrangian methods.

It is noted that for the simplified model, the local temperature and supersaturation
values are obtained from a prescribed profile (see Figure 6.3), for which the data is
obtained from the adiabatic cooling of a parcel of rising air. The profilesT(z) and
s(z) are given by:

T(z) = T(z= 0)− Γz, and s(z) =
ρv

ρs
v(T(z))

− 1, (6.36)

where the vapor densityρv is constant because its variations are much smaller than
the variations inρs

v. The vapor density is therefore set equal to its value at the earth’s
surface:ρv = ρv(z= 0). For all the simulations presented in this paper, the conditions
at the earth’s surface (z = 0) are taken as:T(z = 0) = 20◦C = 293K, with a relative
humidity of 50% (s= −0.5).

Given Eq. (6.23), it is obvious that a droplet may shrink to a mass of zero,if it
experiences negative supersaturation for a sufficiently long time. Physically, this
means that it is completely evaporated. If such happens, the droplet is eliminated
from the calculation and makes no contribution to the size distribution function.

Figure 6.4 shows the droplet size distribution forze = 1350m and a sampling area
L2 = (500m)2, for seven different values ofte. The distribution function is a Dirac
delta function atte = 0, and becomes broader for largerte. Already afterte = 20s,
some droplets have reached a size of tens of microns, which is at first glance remark-
able, because the supersaturation atze = 1350m is very close to zero (see Figure 6.3).
The explanation of the spectral broadening lies in turbulent dispersion [17]: droplets
with different histories are located in the sampling space situated at altitudeze at time
te. Droplets which have been at higher altitudes have experienced higher supersatu-
rations and thus have grown more than droplets which have been at lower altitudes.
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Figure 6.3: Temperature and supersaturation profiles as a function of altitude z. At
the earth’s surface z= 0, T = 293K and s= −0.5.

Comparing these results with those of Twomey [123], [104], it is evident that it is of
fundamental importance to include turbulent dispersion in the model.

In Figure 6.5, a comparison is made of the droplet size distributions after time
te = 100s, at five different altitudesze. Sampling spaces at high altitudesze are
predominantly populated by droplets which (on average) have experienced higher
supersaturations than droplets at low altitudes (see Figure 6.3). Therefore, the mean
size of droplets at highze is larger than at lowze, and this trend is clearly visible
in Figure 6.5. The variance off (rn), however, does not seem to be affected much
by the altitude, as the droplet size distributions are relatively broad for all altitudes
considered.

The fraction of evaporated droplets is determined by simply counting the number
of evaporated dropletsNl,evap in the simulations presented in Figure 6.5 and com-
paring them to the total number of dropletsNl,tot initially released in the flow. The
ratio Nl,evap/Nl,tot is plotted in Figure 6.6. It is clear that more droplets evaporate at
lower values ofze, which is a consequence of the fact that the supersaturation is less
at lower altitudes, and therefore, the fraction of droplets experiencing negative su-
persaturation is higher. The high initial evaporation rate is due to the fact that some
of the droplet trajectories have a starting pointzd(0) in a region wheres < 0: these
droplets evaporate almost immediately.

It is important to note that droplet nucleation aftert = 0 is not taken into account in
the current model. In reality, however, a new droplet may grow along the trajectory
of a previously evaporated droplet. The regeneration of droplets has been neglected
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Figure 6.4: Droplet radius distribution function f(rn) for seven different moments in
time tc. The final altitude of droplets is ze = 1350m, and the sampling area L2 =

(500m)2. The results have been obtained with the simplified condensation model.

for the sake of simplicity, but this phenomenon is likely to be present in atmospheric
clouds and could eventually result in a multi-modal droplet size distribution function.

At this point it is useful to examine the relationship between the results and the
relevant parameters which determine the temperature and supersaturation profiles. It
follows from Eq. (6.23) that the surface of the dropletAn(t) ≡ 4πr2

n(t) changes as:

Ȧn = Gs, with: An(0) = 4πr2
0, (6.37)

whereG = 8πDv,aρ
s
v/ρn. Most droplets in the current simulations experience temper-

ature variations that are so small thatG remains approximately constant. In addition,
in the simplified condensation model, the equation for the supersaturation, Eq.(6.26),
can be integrated to obtain:

s(t) = s(zd(t)) = A(zd(t) − zre f ), (6.38)

for a constant value of the parameterA = Γd(lnρs
v)/dT, which is a reasonable approx-

imation in the present case where the temperature variations are relatively weak. In
fact, Eq. (6.38) stems from a local linearization of the adiabatic supersaturation pro-
file shown in Figure 6.3. The valuezre f denotes the reference altitude for which the
supersaturation is zero. Eq. (6.37) can be integrated along the trajectoryof a droplet
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Figure 6.5: Droplet radius distribution function f(rn) for five different final altitudes
of droplets ze. The sampling time te = 100s, and the sampling area L2 = (500m)2.
The results have been obtained with the simplified condensation model.

using Eq. (6.38), and the result is:

An(t) = 4πr2
0 +GAζ(t), (6.39)

with:

ζ(t) ≡
t

∫

0

(

zd(t′) − zre f
)

dt′. (6.40)

Thus, An(t) andζ(t) are proportional, and their statistics, determined by averaging
over a large number of droplets, are similar:

PDF(ζ) = PDF
(An − 4πr2

0

GA

)

. (6.41)

In other words, one could, in principle, estimate the droplet size distribution at a given
altitudeze by using only the statistics for the dispersion.

The PDF ofζ at te = 100s is shown in Figure 6.7 for droplets which have a final
position in a sampling area of sizeL2 = (500m)2 at altitudeze = 1350m. The same
graph also includes the PDF of the mean supersaturationsm(te) along the trajectory
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Figure 6.6: Number of evaporated droplets relative to the total number of droplets
in the simulation as a function of time, for five different final altitudes ze after time
te = 100s. The results have been obtained with the simplified condensation model
with L2 = (500m)2.

of a droplet, which is defined as:

sm(t) ≡ 1
t

t
∫

0

s(t′)dt. (6.42)

It is noted that all droplet trajectories have been included in generating these PDF’s,
i.e., including those for which droplets evaporate completely. In order to allowdirect
comparison, the PDFs are shown as a function of the scaled standardizedvariables:

x′ζ ≡
ζ − 〈ζ〉
√

var(ζ)
, x′sm

≡ sm− 〈sm〉√
var(sm)

, (6.43)

where var(·) stands for the variance obtained from averaging over all droplets. A
perfect agreement is observed, as is expected from the linearity of Eq.(6.38). In ad-
dition, it is noteworthy that the PDFs are symmetric, which follows from the isotropy
of the flow field, and furthermore, they are almost perfectly Gaussian.

Next, the correlation between the parameterζ and An is investigated. Figures
6.8.a and b show the PDF of the normalized quantitiesx′

ζ
andx′An

(with x′An
obtained
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Figure 6.7: Standardized PDFs ofζ (see Eq. (6.40)) in the simulation (evaporated
or not), and the mean supersaturation sm along their trajectories. For the sake of
comparison, a Gaussian distribution with zero mean and unity variance is plotted as
well. The sampling time te = 100s, the final altitude of droplets ze = 1350m, and
the sampling area L2 = (500m)2. The results have been obtained with the simplified
condensation model.

analogously tox′
ζ
) only for droplets that havenot evaporated, for sampling altitudes

ze = 1350m andze = 1380m, respectively. Both figures show a perfect agreement
betweenPDF(x′

ζ
) andPDF(x′An

), which confirms the previous analysis presented in
Eq. (6.41). From comparing Figure 6.8.a with Figure 6.8.b, it is clear that the PDF of
x′An

is more symmetric for higherze. This can be explained as follows. Any asym-
metry in the graphs is purely due to the evaporation of droplets because the PDF of
ζ measured for all droplets (evaporated and non-evaporated) should be symmetric
due to the isotropy of the turbulent flow. Ifze increases, the number of evaporated
droplets decreases (see Figure 6.6) and therefore, the standardizedPDF of An be-
comes more symmetric. Figure 6.8.a and Figure 6.8.b also show the PDF of the stan-
dardized droplet radiusx′rn

, which is remarkably close to Gaussian. This is probably
a coincidence since there is no evidence that the PDF ofrn is directly governed by a
Gaussian process.

The evolution of the mean and variance of the PDF ofAn in the course of time can
be estimated on the basis of the mean and the variance of the PDF ofζ. Since:

zd(t) = ze−
te

∫

t

w(t′)dt′, (6.44)
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Figure 6.8: Standardized PDFs ofζ (see Eq. (6.40)), the droplet radius rn, and the
droplet surface area An for non-evaporateddroplets. For comparison, a Gaussian
distribution with zero mean and unity variance is plotted as well. The results have
been obtained with the simplified condensation model for sampling time te = 100s,
and the sampling area L2 = (500m)2. (a) The final altitude of droplets ze = 1350m.
(b) The final altitude of droplets ze = 1380m.

wherew is the vertical velocity component of the flow field, and due to symmetry, it
is clear that〈ζ〉 = (ze− zre f )t. The variance〈ζ2〉 − 〈ζ〉2 then follows from:

〈ζ2〉 − 〈ζ〉2 = 2〈w2〉
t

∫

0

t′
∫

0

ξ(t′, t′′; te)dt′′dt′, (6.45)

where:

ξ(t′, t′′; te) =

te
∫

t′

te
∫

t′′

R(|α − β|)dαdβ. (6.46)

Here,R(|x|) is the Lagrangian correlation coefficient for which:R(0) = 1, and:

∞
∫

0

R(x)dx= τw, (6.47)

whereτw denotes the integral time scale. Due to statistical stationarity of the flow
field, the term〈w2〉 is a constant. Differentiation of Eq. (6.45) with respect to time



156 Chapter 6. Droplet condensation in synthetic turbulence

then yields:

d
dt

(〈ζ2〉 − 〈ζ〉2) = 2〈w2〉
t

∫

0

ξ(t, t′′; te)dt′′. (6.48)

Since:R(x) > 0, it follows that: ξ(t, t′′; te) > 0, and therefore:ddt(〈ζ2〉 − 〈ζ〉2) > 0,
which implies that the variance ofζ(t) increases with time. The mean and the variance
of the droplet surface distributionPDF(An) at altitudeze can be estimated in the
course of time as:

〈An〉 = 4πr2
0 +GA〈ζ〉(t) = 4πr2

0 +GA(ze− zre f )t,

d
dt

(var
(

An
)

) = 2G2A2〈w2〉
t

∫

0

ξ(t, t′′; te)dt′′, (6.49)

with d/dt(var
(

ζ
)

) given by Eq. (6.48). This shows that the average droplet size in-
creases in size whenze > zre f , and that the PDF ofAn becomes broader in the course
of time. It is noted that this analysis is only valid when droplet evaporation canbe
neglected.

Finally, the sensitivity of the droplet size distribution with respect to the sample
area sizeL is investigated. For this purpose the droplet distributions in sampling
areas of five different sizesL2 are calculated in one realization of the flow field, and
the results are shown in Figure 6.9. It appears that the droplet size distribution is
broad in all sampling areas, also within sampling areas of the size ofL2 = (1cm)2. It
is thus demonstrated that the condensation process leads to a broad size distribution
within volumes comparable to the smallest scales of turbulence.

Like Celaniet al. [17] explain, both large scales and small scales are responsible
for the spectral broadening at small scales: large scales are necessary to create suffi-
ciently large differences in supersaturation among droplets, whereas the small-scale
fluctuations can mix droplets of different sizes. This process can be illustrated in the
current model by calculating the droplet size distribution in a small sampling area of
sizeL2 = (1cm)2 in a flow field in which only the large-scale wavemodes 1≤ n ≤ 10
are accounted for in Eq. (6.3), and in a simulation in which only the small-scale wave-
modes 191≤ n ≤ 200 are considered. In Figure 6.10.a both results are shown, along
with the predictions in which all 200 wave modes have been taken into account.Ap-
parently, neither the model in which the small scales have been neglected, nor the
simulation in which the large scales have been neglected are able to predict a broad
size distribution in a small sampling space. Furthermore, Figure 6.10.b shows that
the distribution is nearly uniform in case only the large scales of motion are included,
whereas the distribution tends to be Gaussian-like when only the smallest scales are
considered. Since both size distributions are very narrow, it is clear thata realistic
model for droplet condensation in clouds should include both the large scales and the
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Figure 6.9: Droplet radius distribution function f(rn) as a function of the droplet
radius rn, for six different sampling areas L2 in one realization of the flow field. The
sampling time te = 100s, and the final altitude of droplets ze = 1350m. The results
have been obtained with the simplified condensation model.

small scales of turbulence, as both of them are essential in the process ofspectral
broadening.

6.3.3 Results for two-way coupled condensation model

All results in the preceding section have been obtained with the simplified condensa-
tion model, which does not take into account the feed-back of the droplet condensa-
tion on the carrier flow. In this section, the extent to which these phenomena affect the
growth of droplets, is quantified. For the two-way coupled condensation model, the
initial conditions for the droplet radius, the temperature, and the supersaturation are
the same as for the simplified condensation model, and the same holds for the numer-
ical methods used. In the two-way coupled model, two additional parameters have to
be chosen that are not needed for the simplified model: the partial air density, which
has only minor variations in clouds, is assigned a constant value ofρa = 1.2kg m−3 in
all simulations, whereas the droplet number densityNl , which may differ from cloud
to cloud, is varied.

First, the evolution of the droplet size distribution is shown in Figures 6.11.a and
b for an altitude ofze = 1350m, and in Figures 6.11.c and d for an altitude of
ze = 1380m. The sampling area is taken asL2 = (500m)2, whereas the droplet num-
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Figure 6.10:Droplet radius distribution function f(rn) for three different flow fields:
one with only the largest scales taken into account (1 ≤ n ≤ 10, correspondingly:
1,26 · 10−2 ≤ k ≤ 2,74 · 10−2m−1), one with only the smallest scales taken into
account (191≤ n ≤ 200, correspondingly:3,47 · 103 ≤ k ≤ 6,28 · 103m−1), and one
with all scales taken into account (1 ≤ n ≤ 200). (a) shows all three results in one
figure, where the droplet size distribution function obtained with the full spectrum
(1 ≤ n ≤ 200) should be read from the left scale, the other two from the right scale;
(b) shows close-ups of the droplet size distribution function for the large and small
scales. The sampling time te = 100s, the final altitude of droplets ze = 1350m and
the sampling area L2 = (0.01m)2. The results have been obtained with the simplified
condensation model.

ber density is chosen asNl = (5ηk)−3. The data obtained with the simplified coupled
model (using the same parameter settings) are also shown (indicated by the lines with
filled symbols, also see Figure 6.4) for comparison. From these figures it isclearly
observed that vapor depletion and latent heat slow down the droplet growth con-
siderably, so that the mean droplet size predicted with the two-way coupled model
is consistently smaller than that predicted with the simplified coupled model. The
differences between the two models are especially manifest forte > 10s, as the vari-
ance of the droplet size distribution for the two-way coupled model is significantly
smaller. The initial growth of droplets from sizes of 0.1µm to 5µm does not seem to
be significantly affected by vapor depletion and latent heat.

The results plotted in Figure 6.11.c and d for the higher altitudeze = 1380m show
the same trends as those corresponding withze = 1350m. For both altitudes, the
droplet size distributions tend to a steady state, as the results corresponding with
te = 80s and te = 100s are almost identical. As can be expected from the analysis
presented in the previous section, the mean droplet radius is higher forze = 1380m
than forze = 1350m. The size distribution predicted with the two-way coupled model
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Figure 6.11: Droplet radius distribution function f(rn) for seven different instants
of time te: (a) and (b) correspond with ze = 1350m, (c) and (d) correspond with
ze = 1380m. In (a) and (c), the size distributions for te ≥ 5s are plotted on the right
vertical scale. The lines with open symbols have been obtained with the two-way cou-
pled condensation model, with L2 = (500m)2 and Nl = (5ηk)−3 = 0.8× 107m−3. The
data for the one-way coupled simulation obtained with the same parameter settings
(filled symbols, also see Figure 6.4) are shown for comparison.

is still broad for both altitudes, so it can be concluded that the phenomena oflatent
heat release and vapor depletion do not qualitatively affect the spectral broadening.
They mainly seem to affect the average size and variance of the droplet size distribu-
tion, but not the shape of the distribution function itself.

These results can be explained in more detail as follows. If the supersaturation is
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positive, but small (0< s≪ 1), Eq. (6.26) can be rewritten using Eq. (6.31),

ds
dt
≃ Γu · ez

1
ρs

v

dρs
v

dT
− s

( 1
τs
+

1
τL

)

, (6.50)

where the time scaleτL associated with the latent heat release is equal to:

τL =
ρaCp,a

4πrnNlDv,aLb

(dρs
v

dT

)−1
. (6.51)

Thus, vapor depletion and latent heat release have very similar effects on the super-
saturation. Comparison between Eq. (6.27) and Eq. (6.51) shows thatτs andτL are
related by the expression:

τs

τL
=

Lb

ρaCp,a

dρs
v

dT
, (6.52)

which ratio is plotted in Figure 6.12.a as a function of the temperature surrounding
the droplet. Apparently, the effect of latent heat is dominant ifT & 280K, whereas
the effect of vapor depletion is more important ifT . 280K.
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Figure 6.12: (a) Ratio between the vapor depletion time scale and the latent heat
time scaleτL, as a function of the temperature T. The partial air density is taken
asρv = 1.2kgm−3 and the pressure is105Pa. (b) Vapor depletion time scaleτs as a
function of the droplet radius, for four different values of the droplet number density
Nl . The temperature is taken as T= 280K and the pressure as105Pa.

The actual value ofτs depends only weakly on the pressure and the temperature
throughDv,a. Using Eq. (6.27),τs has been calculated for several number densities
Nl and droplet radiirn; the result is plotted in Figure 6.12.b.
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The time scaleτs is inversely proportional torn, and hence the effect of vapor
depletion (and thus also the effects of latent heat release at a given temperature, see
Figure 6.12.a ) becomes more important as the droplet grows. For instance,at a
number densityNl = (5ηk)−3 and a droplet radius smaller than 5µm, τs is much larger
than the time scale in which the condensation process takes place (L0/U0 ∼ 100s).
Therefore, the condensation process of droplets withrn . 5µm is hardly affected by
vapor depletion and latent heat release, which is confirmed by Figures 6.11.a-d.

Figure 6.12.b also illustrates the importance of the droplet number density: the
higher the number density, the less volume of air/water mixture is available per
droplet and the less the droplets are able to grow. This is confirmed by Figure 6.13,
where the droplet distribution function atze = 1350mafterte = 100shas been plotted.
Indeed, the droplet growth is most impeded for the highest number density consid-
ered (Nl = η

−3
k ), whereas the graph forNl = (10ηk)−3 is only slightly different from

the droplet size distribution atte = 100s shown in Figure 6.4.

Finally, the sensitivity of the resulting droplet size distributions to the size of the
sampling areaL is examined. The droplet size distributions obtained for the two-way
coupled model withNl = (2ηk)−3 are plotted in Figure 6.14 for six different values of
L for one realization of the flow field. A broad droplet size distribution is observed
for L ≥ 10m, whereas the variance is much smaller forL ≤ 1m. This is different from
the results obtained with the simplified model (see Figure 6.9), for which the variance
was observed to be almost equal for all sampling sizes. This difference in behavior
between the two-way coupled and the simplified model can be explained when one
compares the typical time scale for dispersive motion of droplets to set in (denoted
by τd) to the condensation time scaleτs. For droplets which are released in a small
sampling space and traced backward in time, dispersive motion sets in much later
compared to droplets which are released in larger sampling spaces, meaningthat for
the latterτd is smaller. As all droplets end up at the same altitudeze at timet = te,
the dispersive motion takes place during 0< t < te − τd, whereas the influence of
vapor depletion effectively sets in fort > τs. If te − τd < τs, the variation in droplet
size stems from the dispersive motion through different supersaturation fields. If
te − τd > τs, however, the effect of vapor depletion causes a locally equilibrated size
of each droplet regardless of the droplet’s origin, which results in a narrower droplet
size distribution. This explains why the droplet size distribution is much broader
for the larger sampling spaces. Despite this difference in broadening of the droplet
size distribution, it may still be concluded that limited spectral broadening doestake
place, even when the effects of latent heat release and vapor depletion are taken into
account (see Figure 6.9).

From the results presented in this section it becomes clear that the droplet size
distribution within a fixed sampling area becomes statistically stationary after a suf-
ficiently long time. An estimation of the average droplet size (〈rn〉eq) in this equilib-
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Figure 6.13: Droplet radius distribution function f(rn) at an altitude ze = 1350m
after a time te100s, for four different droplet number densities. The results have been
obtained with the two-way coupled condensation model, with L2 = (500m)2.

rium situation can be made by the following heuristic approach. First, Eq. (6.50) is
reformulated in an Eulerian frame of reference as:

∂s
∂t
+ u · ∇s= Γu · ez

1
ρs

v

dρs
v

dT
− s

( 1
τs
+

1
τL

)

. (6.53)

To facilitate further analysis, it is assumed that‖∇s‖ ≪ Γd(lnρs
v)/dT, so that this

term can be excluded from Eq. (6.53). By averaging over all droplets inthe sampling
area, bearing in mind that bothτs andτL depend on the droplet size (see Eqs. (6.27)
and (6.51)), and assuming that the variation ins andT over the area is much smaller
than the corresponding average values, the following expression is obtained:

∂s
∂t
= Γu · ez

1
ρs

v

dρs
v

dT
− s

(〈 1
τs

〉

+

〈 1
τL

〉)

. (6.54)

If the turbulent velocity fluctuations are accurately described by a Gaussian random
noise, then Eq. (6.53) can be written in the form of a stochastic differential equation
(SDE) [51]:

ds≃ −s
(〈 1
τs

〉

+

〈 1
τL

〉)

dt +
Γ

ρs
v

dρs
v

dT

√

2DzdW, (6.55)
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Figure 6.14: Droplet radius distribution function f(rn) at an altitude ze = 1350m
after a time te = 100s, for six different sizes of the sampling area L2. The results have
been obtained with the two-way coupled condensation model, with Nl = (2ηk)−3 =

1.25× 108m3.

where dW denotes an increment of a Wiener process, andDz ≡ lim
t→∞

t−11
2
〈|z(t)−z(0)|2〉

is the diffusion coefficient of droplets in the vertical direction. Since the flow is sta-
tistically isotropic,Dz =

1
3Dturb, whereDturb is the three-dimensional diffusion coef-

ficient which can be determined from Figure 6.2.a. Eq. (6.55) describes an Ornstein-
Uhlenbeck process [51], for which the steady-state solution of the PDF isa Gaussian
distribution with a means= 0 and a variance equal to:

var(s) = s2 =
( Γ

ρs
v

dρs
v

dT

)2
Dz

(〈 1
τs

〉

+

〈 1
τL

〉)−1
. (6.56)

It is noted from Eq. (6.27) and Eq. (6.51) thatτL andτs are both inversely proportional

to the droplet radius, so that
〈 1
τs

〉

+

〈 1
τL

〉

= β〈rn〉eq, where〈rn〉eq is the droplet radius

averaged over all droplets situated in the small volume aroundx, and where the factor
β is given by:

β = 4πDv,aNl

(

1+
d(ρs

v)/dT

ρaCpa

)

. (6.57)
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Therefore, Eq. (6.56) can be rewritten as:
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Thus, an explicit expression has been obtained for the average droplet radius in an
air parcel located at positionx, which is valid at statistical equilibrium. Eq. (6.58)
depends only on the droplet number densityNl , the turbulent diffusion coefficientDz,
the mean-square supersaturation fluctuationss2 and the temperature (throughDv,a, Γ,
(ρs

v)
−1d(ρs

v)/dT andτs/τL). In the flow field employed in the present study, the tur-
bulent diffusion coefficientDturb ≃ 46m2/s, as can be deduced from the one-particle
statistics in Figure 6.2.a. Therefore,Dz is estimated to beDz ≃ 15m2/s. Furthermore,
the r.m.s. supersaturation fluctuations are approximately 1%. Using these values,
〈rn〉eq have been calculated as a function of temperature for four different values of
Nl , and the results are plotted in Figure 6.15.

It is observed that the order of magnitude of〈rn〉eq corresponds reasonably well
to the order of magnitude observed in Figure 6.11.b and Figure 6.11.d, as indicated
by the symbols in Figure 6.15. Since the value of〈rn〉eq decreases moderately with
temperature, it is clear that the eventual droplet radius in Figure 6.11.b (see the curve
for te = 100s) is somewhat larger than in Figure 6.11.a. More generally, the present
analysis suggests that the largest droplets are found in the coolest regions of a cloud.

6.4 Conclusions

In this chapter the condensation of microdroplets in model systems representing at-
mospheric clouds has been investigated numerically. Droplets have been followed
through a synthetic turbulent flow field composed of 200 random Fourier modes,
with wave numbers ranging from the integral scale (O(102m)) to the Kolmogorov
scale (O(10−3m)). Two fully Lagrangian droplet growth models have been devel-
oped: a two-way coupled model which includes adiabatic cooling, vapor depletion
and latent heat, and a simplified model in which the latter two are neglected.

The simulations with the simplified model demonstrate that the droplet size distri-
bution becomes broader in the course of time. At higher altitudes, the mean radius
of droplets is larger than at lower altitudes and the number of evaporating droplets
decreases. It has been shown analytically that the PDF of the droplet surfaceAn is
related to the turbulent dispersion of droplets, and becomes broader in thecourse of
time. At altitudes where the supersaturation is close to zero, the PDF ofAn is posi-
tively skewed due to the effect of droplet evaporation, whereas the PDF of the droplet
radius is very similar to a Gaussian distribution.
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Figure 6.15:Long-time value of the average size of droplets in an air parcel〈rn〉eq as
a function of temperature calculated from Eq. (6.58), for four different values of the
droplet number density Nl . The turbulent diffusion coefficient is Dz = 15m2/s and the
r.m.s. of the supersaturation(s2)1/2 = 1%. The open circle corresponds with〈rn〉eq

extracted from the data in Figure 6.11.b (ze = 1350m, Nl = (5ηk)−3, and te = 100s),
and the filled circle similarly corresponds with the data in Figure 6.11.d (ze = 1380m,
Nl = (5ηk)−3, and te = 100s).

By testing different ranges of wave modes, it is illustrated that the spectral broad-
ening on centimeter scales is caused by both large scales of turbulence andsmall
scales: large scales transport droplets through regions of different supersaturations,
whereas small scales mix droplets of different sizes.

Whilst the simplified condensation model neglects vapor depletion and latent heat
release, their effects are slightly overestimated in the two-way coupled condensation
model, as mechanisms like diffusion, which allow the parcel to exchange water va-
por and thermal energy with its surroundings, have been neglected. Nonetheless the
results for the droplet size distributions obtained with the two-way coupled model
are qualitatively similar to the results from the simplified model: broad droplet size
distributions are found for droplets with radiusrn ≃ 10µm. Quantitatively, the droplet
sizes obtained are smaller than predicted with the simplified model, and the droplet
size distribution in the two-way coupled case reaches a more narrow equilibrium
shape after a sufficiently long time. The results have been explained by determining
typical time scales for the vapor depletionτs and for the latent heat releaseτL. It is
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shown thatτL is smaller thanτs for high temperaturesT & 280K, so that latent heat
release is dominant over vapor depletion in this regime. Vice versa, vapor depletion
is more important than latent heat forT . 280K. Sinceτs andτL are inversely pro-
portional to the droplet radiusrn, both effects become more important as the droplet
radius grows. This is the reason why an equilibrium is reached when the droplets
have become sufficiently large. The average droplet size in the equilibrium situation
is of the order of 10µm for a realistic value of the droplet number densityNl such as
(2ηk)−3 [125].

To conclude, the present results demonstrate that the condensation process in a
synthetic turbulent flow field leads to a broad droplet size distribution, evenwithin
volumes comparable to the smallest scales of the turbulent flow. Although the physics
in the model have been significantly simplified, this result does offer a possible ex-
planation for the broadening of the droplet size distribution in actual atmospheric
clouds.

Although the approach in this study is tailored to droplet condensation in atmo-
spheric clouds, it could be of importance in other turbulent flows with condensation
as well, especially in case the condensation takes place non-homogeneously and in
case the time scales of the condensation process are comparable to the time scales of
turbulent mixing.
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Conclusions and perspective

This chapter summarizes the main conclusions derived from the investigations in this
work. The main challenges related to condensation modelling are briefly reviewed,
and suggestions are given for future research.

7.1 Conclusions

The thermodynamic model and transport equations for a two-phase liquid/vapor mix-
ture in transonic condensing flow have been presented in chapter 2. Themodels are
specifically tailored to mixtures where the droplet number densities are sufficiently
large to employ a continuum modelling approach. Both non-isothermal and isother-
mal unary condensation models have been discussed, in which the complexities as-
sociated with the former have been exposed. Furthermore, the thermodynamics and
governing transport equations for systems displaying multi-component condensation
have been derived for the case of isothermal condensation.

In chapter 3 the kinetic equation (KE), and its first- and second-order approxima-
tions, the general dynamic equation (GDE) and the Fokker-Planck equation (FPE),
respectively, have been evaluated, based on (a) a numerical simulation of a nucleation
pulse experiment, and (b) an expanding nozzle flow. The former is an illustrative case
of quasi-steady nucleation, for which good agreement is found betweenthe size dis-
tributions predicted using the various models. In the second test case, the differences
between the obtained results are more pronounced, both in terms of the thermody-
namic variables and in the predicted droplet size distributions. This was shown to be
a consequence of the deviation of the droplet size distribution from its quasi-steady
state solution. The solutions of the KE and GDE have been validated by comparing
the predicted solutions to measurement data obtained from literature. For the KE
specifically, a sensitivity analysis has been carried out in order to explore the extent
to which key physical uncertainties affect the predicted solutions. The strongest influ-
ence pertains to the equilibrium size distribution, with the semi-empirical Wölk and
Strey-corrected Courtney distribution giving the best agreement with reported mea-



168 Chapter 7. Conclusions and perspective

surements. Given this result, the incorporation of empirical data in the condensation
models constitutes a potential improvement compared to existing purely theoretical
models. For each of the methods used to simulate the nozzle flow, it has been consis-
tently found that the liquid production rate and the corresponding temperature rise are
overestimated. Apparently, this is a consequence of using an isothermal condensation
model, for which the droplet temperature during condensation is underestimated.

In chapter 4 the method of moments (MOM) has been evaluated, in which two vari-
ants of the moment equations (ME) are considered: the ME derived from the kinetic
equation (KE), and those derived from the general dynamic equation (GDE). Two clo-
sure methods for the MOM, viz. closure based on mean droplet size-approximations,
and closure based on quadrature approximations (QMOM and DQMOM), have been
qualitatively evaluated, based on key requirements that have been identified from
steady state and transient characteristics of the KE. From this it is concluded that nei-
ther of the closure methods performs satisfactorily, and that the quadrature approxi-
mations suffer severely from a lack of robustness. From a simulation of a condensing
nozzle flow, the influence of the closure error in the MOM is quantified. Forthe
particular test case considered, the agreement between results predicted with Hill’s
MOM and detailed calculations with the KE appears to be reasonable, both forthe
flow field variables as well as the droplet size distributions. These results suggest
that the MOM offers an acceptable trade-off between accuracy and computational
expense, which is especially relevant for engineering applications.

In chapter 5 a condensing flow model has been presented, which utilizes aki-
netic equation to predict the evolution of a two-component (binary) dispersion, gen-
erated by homogeneous nucleation. The model has been implemented in a numerical
method which has been verified by means of two test cases reported in the litera-
ture. Subsequently, the model has been validated using measurement data from a
nozzle flow experiment. Comparison of predicted and measured condensation-onset
data has shown a good agreement between theory and experiment. Furthermore, it
has been verified that the binary droplet size distribution does not approach its quasi-
steady state solution as is usually assumed in condensation experiments. Similarlyto
the case of unary condensation, it is found that the equilibrium size distribution has a
profound influence on the predicted results.

Finally, in Chapter 6 an excursion is made into the field of turbulent condensing
flow, for a model-system reminiscent of atmospheric clouds. Droplets havebeen
followed through a synthetic turbulent flow field composed of random Fourier modes,
with wave numbers ranging from the integral scales to the Kolmogorov scales. Two
fully Lagrangian droplet growth models have been proposed: (a) a one-way coupled
model in which only adiabatic cooling of a rising air parcel is considered, and (b) a
two-way coupled model which also accounts for the effects of local vapor depletion
and latent heat release. The simulations with both models have shown that the droplet
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size distribution becomes broader in the course of time, even though dropletgrowth
is stabilized by vapor depletion and latent heat release in the two-way coupled model.

7.2 Perspective

Although condensation modelling started early in the twentieth century, there still
remains a number of challenges that needs to be addressed, both in theoretical mod-
elling, as well as in numerical simulation. The following list, which attempts to give
an overview of specific issues which remain unanswered, is by no means complete:

1. With respect to theoretical modelling there is first and foremost the uncertainty
associated with the physics of small droplets (clusters), which are presently
still treated by means of macroscopic theory. With the increase in compu-
tational power, a number of detailed molecular dynamics simulations (MDS)
have been carried out for the condensation of water vapor (e.g. in [145]), but
these results have not (yet) been used to derive more complete models for the
condensation kinetics and thermodynamics at the microscopic level. Of par-
ticular importance is the Gibbs free energy∆Gn of droplet formation, which
has shown to exert a profound influence on both unary and binary condensa-
tion processes. In this respect, it would be very instructive to use∆Gn-data
predicted with detailed molecular theory, to improve the condensation model
that has been employed in the present investigation.

2. In theoretical modelling, there is the issue of properly accounting for non-
isothermal effects during homogeneous nucleation. The usual practice in con-
densation modelling is that a distinction is made between nucleation and droplet
growth (e.g. in the GDE or Hill’s MOM), with non-isothermal effects being in-
cluded in the growth-stage only (see e.g. [110]). As the evaporation rateof
droplets is strongly dependent on droplet temperature, and because thistem-
perature can be significantly different from the gas/vapor-phase temperature, it
is expected that incorporation of non-isothermal effects will significantly alter
the predicted nucleation rates. This effect has been considered in a number of
previous investigations, but these have either resorted to simplified treatmentof
the droplet energy balance [141], or they did not include validation with mea-
surement data [7], [10]. The proper way to account for non-isothermal effects
is to employ a bi-variate distribution function, which includes both droplet size
and temperature as the independent variables (see chapter 2). Such anapproach
has already been reported in [10], and it is expected that its incorporation into
numerical methods, such as the ones that have been used to simulate the test
cases of chapter 3, can proceed without significant difficulties.
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3. With respect to multi-component condensation, the uncertainty associatedwith
the compositional structure of small droplets represents a major challenge in
condensation modelling. This is especially important for applications involv-
ing fluids with limited miscibility. A number of models have been devised
to take the effects of surface enrichment into account, but these are not en-
tirely void of unphysical behavior [127]. Recently, the emphasis has shifted
towards the use of molecular dynamics simulations to gain more insight into
the problem, notably in [21] and [64]. The latter is of special relevance because
it attempts to generate a phase-diagram for the composition of aqueous nan-
odroplets based on MDS-data. By using this data in the condensation model
as presented in chapter 5, it should be possible to obtain reliable predictions
of binary condensation for systems in which surface enrichment effects are
important.

4. Computationally, the challenge lies in devising reduced models that satisfy
the key requirements which have been identified in chapter 4. By way of ex-
ample, it has been demonstrated that moment methods can yield reasonably
accurate predictions for condensing nozzle flows. However, the important is-
sue is whether or not this will still hold for unsteady and three-dimensional
flows, such as typically encountered in industrial applications. In this regard it
is necessary to devise both robust, consistent and accurate closure methods for
application to condensing flow.

5. Finally, there remains the problem of condensation in turbulent flows, which
has been addressed in chapter 6. For the specific case of condensation in at-
mospheric clouds, a number of improvements can be incorporated in the La-
grangian model of chapter 6. Specifically, the activation (or deactivation) of
condensation nuclei can be added, and also the turbulent diffusion of air and
vapor at the boundaries of the air/droplet parcels can be simulated. There is,
however, a limit to the realism of the physical behavior simulated by the present
model, as it utilizes a synthetic turbulent flow field. Nevertheless, such a syn-
thetic field could also be used to perform a preliminary investigation of con-
densation in systems more akin to rapidly expanding flows. This would be
an important step in gaining more insight into the role of turbulence in such
condensing flows, and could possibly result in improvements of the Reynolds
Averaged Navier-Stokes methods that are currently employed for flows with
condensation [108].
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Fluid properties

Note:

- All variables are expressed in S.I. units

- Under ambient conditions:T = 298.15K andp = 1.013· 105Nm−2.

- Universal gas constant:Ru = 8.314Jmol−1K−1

A.1 Properties of water (H2O)

1. Molar mass [86]:

Mmol = 18.015· 10−3kgmol−1

2. Vapor specific heat at constant pressure (ambient conditions, [90]):

Cp = 1859.0Jkg−1K−1

3. Critical temperature and pressure [86]:

Tc = 647.14K, pc = 22.064· 106Nm−2

4. Surface tension (inNm−1, [90]):

σ = σ(1) for T ≤ 249.39K, else:σ = σ(2), where:

σ(1) = (0.1131283· 10−9 − 0.3709125· 10−12T)T4 − 0.56464· 10−5

σ(2) = 76.1 · 10−3 + 0.155· 10−3(273.15− T).

5. Liquid mass density (inkgm−3, see [91] and references therein):

ρb = ρ
(1)
b for T < 273.15K, else:ρb = ρ

(2)
b , where:

ρ
(1)
b = AL,0 + AL,1T + AL,2T2

ρ
(2)
b =

BL,0 + BL,1T + BL,2T2 + BL,3T3 + BL,4T4 + BL,5T5

BL,6 + BL,7T
,
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with:

AL,0 = 170.55 ; AL,1 = 5.9860 ;AL,2 = −0.06458 ;BL,0 = −2007.66 ; BL,1 =

−13.0134 ;BL,2 = 0.184709 ;BL,3 = −0.51251· 10−3 ; BL,4 = 0.6869· 10−6 ;
BL,5 = −0.3933· 10−9 ; BL,6 = −3.96032 ;BL,7 = 0.1816.

6. Saturation pressure (inNm−2, see [91] and references therein):

ps = exp
(

Ap,1 + Ap,2T + Ap,3T2 + Ap,4 ln(T) +
Ap,5

T

)

,

with:

Ap,1 = 21.125 ;Ap,2 = −2.7246· 10−2 ; Ap,3 = 1.6853· 10−5 ; Ap,4 = 2.4576 ;
Ap,5 = −6094.4642.

7. Latent heat of condensation (inJkg−1, for 200K ≤ T ≤ 300K, [90]):

Lb = L0 + L1T, (A.1)

with L0 = 3105913.39J/kgandL1 = −2212.97J/(kgK)

8. Binary diffusion coefficient of water vapor in air (inm2s−1, see [58] and refer-
ences therein):

Dv,a =
2.49

p

( T
295

)1.75

. (A.2)

A.2 Properties of heavy water (D2O)

All properties are taken from [110] and references therein.

1. Molar mass :

Mmol = 20.027· 10−3kgmol−1

2. Vapor specific heat at constant pressure:

Cp = 1710.19Jkg−1K−1

3. Critical temperature and pressure:

Tc = 643.89K, pc = 21.66 · 106Nm−2

4. Surface tension (inNm−1):

σ = 99.6635+ 0.009133T′ − 0.000275T′2, with: T′ = 1.022T
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5. Liquid mass density (inkgm−3):

ρb = 0.09 tanh(x) + 0.847τ0.33+ 0.338, with:

x =
T − 231

51.5
, and:τ = 1− T

Tc

6. Saturation pressure (inNm−2):

ps = pc exp
[Tc

T

(

a1τ + a2τ
1.9 + a3τ

2 + a4τ
5.5 + a5τ

10
)

]

, with:

a1 = −7.815813 ;a2 = 17.6012 ; a3 = −18.1747 ; a4 = −3.92488 ;a5 =

4.19174

7. Latent heat of condensation (inJkg−1):

Lb =
Ru

Mmol
T

[

ln

(

ps

pc

)

+ φ

]

, with:

φ = a1 + 1.9a2τ
0.9 + 2a3τ + 5.5a4τ

4.5 + 10a5τ
9

A.3 Properties of nitrogen (N2)

1. Molar mass [44]:

Mmol = 28.013· 10−3kgmol−1

2. Specific heat at constant pressure [44]:

Cp = 1039.66Jkg−1K−1

A.4 Properties of methane (CH4)

1. Molar mass [86]:

Mmol = 16.043· 10−3kgmol−1

2. Specific heat at constant pressure (ambient conditions):

Cp = 2224.65Jkg−1K−1

A.5 Properties of atmospheric air

1. Molar mass [90]:

Mmol = 28.96 · 10−3kgmol−1

2. Specific heat at constant pressure (ambient conditions, [90]):



186 Appendix A. Fluid properties

Cp,a = 1004.0Jkg−1K−1

3. Specific heat at constant volume (ambient conditions, [90]):

Cv,a = 716.96Jkg−1K−1

A.6 Properties of ethanol/hexanol mixture

Properties used for test cases 1.1, 1.2 and 1.3 (T = 260.0K, see chapter 5 and [142]);
index 1 refers to ethanol, index 2 to hexanol.

1. Molar masses:

Mmol,1 = 46.07kgmol−1 ; Mmol,2 = 102.17kgmol−1

2. Pure component liquid mass densities:

ρb,1 = 817.5kgm−3 ; ρb,2 = 845.4kgm−3

3. Pure component saturation pressures:

ps,p
1 = 598.36Nm−2 ; ps,p

2 = 2.643Nm−2

4. Pure component surface tensions:

σ1 = 25.02 · 10−3Nm−1 ; σ2 = 28.90 · 10−3Nm−1

5. Mixture saturation pressures (inNm−2, x1 is the molar fraction of ethanol in
the liquid phase):

ps
1(x1) = x1ps,p

1 ; ps
2(x1) = (1− x1)ps,p

2

6. Mixture surface tension (inNm−1):

σ =

(

25.02+ 7.31088(1− x1) − 3.43199(1− x1)2
)

· 10−3

A.7 Properties of ethanol/propanol mixture

Properties used for test case 2 (see chapter 5); index 1 refers to ethanol, index 2 to
propanol. All ethanol properties are taken from [128], and all propanol properties
from [37].

1. Molar masses:

Mmol,1 = 46.07kgmol−1 ; Mmol,2 = 60.10kgmol−1

2. Specific heats at constant pressure:
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Cp,v,1 = 1.5688· 103Jkg−1K−1; Cp,v,2 = 1.4243· 103Jkg−1K−1

3. Pure component liquid mass densities (inkgm−3):

ρb,1 = 103
(

0.80625− 84.5 · 10−5(T − 273.15)+ 29.0 · 10−8(T − 273.15)2
)

;

ρb,2 = 1.01077·103−3.99649·10−5T −6.64923·10−3T2+2.16751·10−5T3−
2.46167· 10−8T4.

4. Pure component saturation pressures (inNm−2):

ps,p
1 = 133.322· 1016.87−(5819/T)+(414300/T2) , for T < 219.1K, else:

ps,p
1 = 133.322· 109.760−(2371/T) ;

ps,p
2 = 133.322· exp

(

150.248− (11286.5/T) − 19.19 lnT
)

5. Pure component surface tensions (inNm−1):

σ1 = 10−3 ·
(

23.97− 0.085(T − 273.15)
)

;

σ2 = 25.28 · 10−3 − 8.394· 10−5(T − 273.15)

6. Pure component latent heats of condensation (inJkg−1):

Lb,1 = 4.184· 103
(

226.0− 0.213(T − 273.15)− 0.00138(T − 273.15)2
)

;

Lb,2 = (8559.61− 9.29T)
Ru

Mmol,2

7. Mixture saturation pressures (inNm−2, x1 is the molar fraction of ethanol in
the liquid):

ps
1(x1) = x1ps,p

1 ; ps
2(x1) = (1− x1)ps,p

2

8. Mixture surface tension (inNm−1):

σ = x1σ1 + (1− x1)σ2

9. Mixture latent heat (inJkg−1, w1 is the mass fraction of ethanol in the liquid
phase):

L = w1Lb,1 + (1− w1)Lb,2
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and droplet growth

In the Classical Nucleation Theory (CNT), the nucleation rate is calculated by means
of the following expression:

J = K exp(
−∆Gn∗

kBT
), (B.1)

where,K denotes the kinetic prefactor, and∆Gn∗ the critical Gibbs energy of droplet
formation.

In the classical approach, the kinetic prefactor is given by:

K =
ρ2

v

ρb

√

2σ

πm3
1

, (B.2)

and the critical Gibbs energy by:

∆Gn∗ = ∆GC,n∗ =
4
3
π(r∗)2σ. (B.3)

The critical radiusr∗ is obtained from the relationship:

r∗ =
2σ

ρbRvT ln S
, (B.4)

The nucleation rate thus obtained is denoted byJCNT. By subtracting the monomer
formation enthalpy∆G1 from ∆Gn∗ , the latter is corrected for the apparent inconsis-
tency associated with monomer formation. The critical Gibbs energy thus becomes:

∆Gn∗ = ∆GICCT,n∗ =
4
3
πσ[(r∗)2 − r2

1]. (B.5)

The nucleation rate obtained by means of Eq. (B.1), (B.2) and (B.5) is denoted by
JICCT. It is noted that the CNT-model is consistent with using the Courtney equilib-
rium distribution to calculate the backward rate, whereas the ICCT-model is consis-
tent with use of the SCC equilibrium distribution [127].
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The fluid propertiesσ andρb, as well as the saturation pressureps are all temper-
ature dependent. Therefore, the nucleation rate effectively depends solely on the par-
tial vapor pressure and the temperature:J = J(pv,T), or equivalently:J = J(S,T).

In the CGDE, the droplet growth rate is determined by means of the Hertz-Knudsen
growth law, which expresses the mass growth rate as:

ṁHK =
4πr2α
√

2πRvT
(pv − ps,r ). (B.6)

The saturated vapor pressureps,r over a curved surface with radiusr is given by the
Kelvin equation:

ps,r = ps exp(
2σ

rρbRvT
). (B.7)

The Hertz-Knudsen growth law is a valid model when the Knudsen numberKn is
larger than 2:Kn = l/2r > 2, with l denoting the mean free path length of the vapor
molecules. Closer inspection of the preceding equations again reveals thatin addition
to the droplet radius itself, only the temperature and saturation ratio are needed to
determineṁ. For sufficiently large droplets, it can be shown that ˙mHK = ṅm1, where
ṅ is given by Eq. (3.19).



SUMMARY

In this thesis, the problem of predicting the droplet size distribution in condensing
flow is investigated numerically. The work is focused on two types of condensation
problems: one where condensation occurs during the rapid transonic expansion of a
compressible fluid, and a second one where condensation takes place in asynthetic
turbulent flow field, reminiscent of atmospheric clouds.

A description is given of the thermodynamic model and governing transportequa-
tions for a two-phase liquid/vapor mixture in transonic condensing flow. The physical
model is presented for the cases of non-isothermal and isothermal condensation, and
for single- and multi-component condensation.

For single-component condensing flow, three master equations for the prediction
of the droplet size distribution are evaluated: the kinetic equation (KE), andits first
and second-order approximations, i.e. the general dynamic equation (GDE) and the
Fokker-Planck equation (FPE), respectively. The evaluation is basedon (a) the equi-
librium distributions, (b) a nucleation pulse experiment, and (c) an expanding nozzle
flow. Large differences are observed between the equilibrium distributions of the FPE
and KE, whereas no equilibrium distribution exists for the GDE. For the nucleation
pulse experiment, good agreement is found between the results of the KE, FPE and
GDE, whereas for the condensing nozzle flow, the difference between the GDE- and
the KE-distributions is significant. This is primarily due to the fact that quasi-steady
nucleation takes place during the nucleation pulse experiment, whereas this isnot
the case for the nozzle flow. A sensitivity study of the KE-solution with respect to
uncertainties in (a) the surface tension model, (b) the sticking probability, and (c) the
equilibrium distribution, revealed that both the sticking probability and the equilib-
rium distribution have a significant influence on the predicted condensation-onset.

The research on single-component condensing flow is continued with an evalua-
tion of the method of moments (MOM), which efficiently generates an approximate
solution for the flow field and moments of the droplet size distribution. Two vari-
ants of the moment equations (ME) are considered: the ME derived from the kinetic
equation (KE), and those derived from the general dynamic equation (GDE). Two
well-known closure methods for the MOM are qualitatively evaluated: closure based
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on mean droplet size-approximations, and closure based on quadratureapproxima-
tion. The evaluation is based on key requirements that have been identified from
steady state and transient solutions of the KE. It is found that none of the closure
methods perform satisfactorily, and that the quadrature approximations severely suf-
fer from a lack of robustness. To quantify the accuracy of the MOM, a condensing
nozzle flow is simulated. Using a benchmark solution obtained by simultaneously
solving the fluid dynamics equations with the KE as a reference for comparison, it is
demonstrated that the MOM can predict condensing flow with acceptable accuracy.

With respect to multi-component condensation, an evaluation is made of a con-
densing flow model, which utilizes a kinetic equation to predict the evolution of a
two-component (binary) dispersion. The evaluation is based on a simulationof a
nozzle flow experiment, for which measurement data are reported in the literature. A
full two-way coupling between the thermodynamic variables and the binary droplet
size distribution is employed, which is novel for such condensation problems. Com-
parison of predicted and measured temperatures and partial pressuresat the onset of
condensation shows a fair agreement of the theoretical predictions and experimen-
tal data. The full resolution of the binary droplet size distribution is exploitedto
verify whether a quasi-steady treatment of the nucleation process in condensing noz-
zle flow is warranted. For the test case considered, it is concluded that quasi-steady
state theory is not valid, which suggests that caution should be exercised inanalyz-
ing the condensation in such flows by means of quasi-steady state theory. Finally,
the strong sensitivity of the condensation model to the binary equilibrium distribu-
tion is revealed by comparing the nozzle flow field generated by using two different
equilibrium size distributions in the computation of the backward rates in the kinetic
equation.

Finally, the condensation of micro-droplets in a synthetic turbulent flow, reminis-
cent of atmospheric clouds, is investigated numerically and analytically. Droplets
are followed through a synthetic turbulent flow field composed of random Fourier
modes, with wave numbers ranging from the integral length scales (O(102m)) to the
Kolmogorov scales (O(10−3m)) that are typical for atmospheric clouds. Two fully La-
grangian droplet growth models are utilized: (a) a one-way coupled modelin which
only adiabatic cooling of a rising air parcel is considered, and (b) a two-way coupled
model which also accounts for the effects of local vapor depletion and latent heat
release. The simulations with the simplified model show that the droplet size distri-
bution becomes broader in the course of time and resembles a Gaussian distribution.
This result is supported by a theoretical analysis which relates the dropletsurface
area distribution to the dispersion of droplets in the turbulent flow. With respect to
the two-way coupled model, it is shown that the predicted droplet size distributions
are still very broad, despite the fact that the growth of droplets is stabilizedby vapor
depletion and latent heat release.
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Dit proefschrift betreft het bepalen van de druppelgrootte verdelingsfunctie in con-
denserende stromingen. In het onderzoek worden twee specifieke typen van con-
denserende stromingen onderzocht, namelijk condensatie in een transsone expanderende
gasstroom en condensatie in een synthetisch turbulent stromingsveld, welke de con-
densatie in atmosferische wolken nabootst.

Voor transsone condenserende stromingen wordt eerst het thermodynamisch model
en de relevante transportvergelijkingen voor een twee-fasen fluı̈dum beschreven. Dit
twee-fasen model wordt zowel voor isotherme als niet-isotherme condensatie gepre-
senteerd, alsook voor condensatie inéén-component en multi-component systemen.

Voor stromingen met condensatie vanéén component wordt een evaluatie uit-
gevoerd van drie balansvergelijkingen waarmee de druppelgrootte verdelingsfunctie
voorspeld kan worden, namelijk de zogenaamde ”kinetic equation” (KE), de Fokker-
Planck vergelijking (Fokker-Planck equation, FPE) en de ”general dynamic equation”
(GDE). De FPE en GDE zijn respectievelijk de tweede en eerste-orde benadering van
de KE. De evaluatie wordt uitgevoerd aan de hand van (a) de evenwichtsdistributie,
(b) een nucleatie-puls experiment en (c) een transsone condenserende kanaalstro-
ming. Met betrekking tot de evenwichtsdistributie worden grote verschillen waargenomen
tussen de resultaten van de KE en de FPE, terwijl er voor de GDE geen evenwichts-
distributie bestaat. De simulatie van het nucleatie-puls experiment toont een goede
onderlinge overeenkomst tussen de resultaten verkregen met de KE, deFPE en de
GDE, terwijl bij de kanaalstroming de verschillen relatief groot zijn. Dit is voor-
namelijk te verklaren uit het feit dat bij het nucleatie-puls experiment de druppel-
grootte verdelingsfunctie een quasi-stationaire oplossing bereikt, terwijl dit bij de
kanaalstroming niet het geval is. Vervolgens is een gevoeligheidsanalyse uitgevoerd
om de invloed van (a) de oppervlaktespanning, (b) de waarschijnlijkheidvoor op-
name van monomeren door druppels (zogenaamde ”sticking probability”) en(c) de
evenwichtsverdeling, op de oplossing van de KE te quantificeren. Uit de resultaten
blijkt dat vooral de oppervlaktespanning en de evenwichtsverdeling deKE-oplossing
sterk bëınvloeden.

Voor stromingen met condensatie vanéén component is verder de momentenmen-
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thode (”method of moments”, MOM) geëvalueerd, waarmee op efficiënte wijze een
benaderende oplossing van het stromingsveld en de momenten van de druppelgrootte
verdelingsfunctie kan worden voorspeld. Twee varianten van de momentvergelijkin-
gen worden beschouwd: de eerste is afgeleid aan de hand van de KE ende tweede aan
de hand van de GDE. Hiervoor zijn twee sluitingsmodellen gebruikt:één gebaseerd
op gemiddelde druppelgroottes en een tweede gebaseerd op numerieke quadratuur.
Deze sluitingsmodellen zijn getoetst aan de eisen die zijn afgeleid uit het station-
aire en instationaire gedrag van de KE-oplossing. Uit deze evaluatie is gebleken dat
geen van de beschouwde sluitingsmodellen aan deze eisen voldoen, waarbij tevens
duidelijk is geworden dat de quadratuur-sluiting onvoldoende robuust is. Aan de
hand van de simulatie van condensatie in een kanaalstroming is een kwantitatieve
analyse gemaakt van de nauwkeurigheid van de MOM. Uit een vergelijkingvan de
MOM-oplossing met een referentie-oplossing verkregen middels de KE, blijkt dat de
MOM-resultaten redelijk nauwkeurig zijn .

Met betrekking tot stromingen met multi-componenten condensatie is een evalu-
atie uitgevoerd van een stromingsmodel dat in staat is om binaire (twee-componenten)
condensatie te voorspellen. Dit model wordt getoetst aan de hand van een con-
denserende kanaalstroming waarvoor data in de literatuur beschikbaar is. De koppel-
ing tussen de thermodynamische grootheden en de binaire druppelgrootte verdelings-
functie is twee-zijdig, welke nieuw is voor dergelijke stromingen. Uit een vergelijk-
ing tussen de voorspelde en gemeten temperaturen en drukken bij het startpunt van
condensatie in de kanaalstroming volgt dat het resultaat van het theoretisch model het
experiment redelijk dicht benaderd. Aan de hand van de berekende oplossing voor
de binaire druppelgrootte verdelingsfunctie is nagetrokken in hoeverredeze de quasi-
stationaire oplossing benadert. Uit deze analyse is gebleken dat de quasi-stationaire
oplossing niet bereikt wordt in de beschouwde kanaalstroming, wat aangeeft dat de
toepasbaarheid van quasi-stationaire nucleatie theorie op dergelijke stromingen niet
als vanzelfsprekend mag worden beschouwd. Een analyse van de gevoeligheid van
de druppelgrootte verdelingsfunctie voor de keuze van de evenwichtsverdeling heeft
verder aangetoond dat deze invloed sterk is.

Als laatste is een onderzoek uitgevoerd naar condensatie in een synthetisch turbu-
lent stromingsveld, welke de condensatie in atmosferische wolken nabootst.Het syn-
thetisch turbulent veld wordt verkregen door deze uit Fourier snelheidscomponenten
met willekeurige amplitude, faseverschil en oriëntatie samen te stellen. Het gebruikte
condensatiemodel is volledig Lagrangiaans van karakter, waarbij twee varianten zijn
gebruikt: één waarbij de condensatie van druppels geen terugkoppeling heeft naar
de thermodynamische toestandsvariabelen (het zogenaamdeéén-wegsmodel) en een
tweede waarbij deze terugkoppeling wel in rekening wordt gebracht (zogenaamde
twee-wegsmodel). Uit de resultaten verkregen met hetéén-wegsmodel blijkt dat
de variantie van de druppelgrootte verdelingsfunctie toeneemt in de tijd en dat de
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verdelingsfunctie een Gaussische vorm aanneemt. Dit is in overeenstemmingmet
een theoretische analyse waarin de toename van de variantie wordt gerelateerd aan
turbulente dispersie. Voor wat betreft het twee-wegsmodel blijkt kwalitatief dat ook
hier de variantie van de druppelgrootte verdelingsfunctie toeneemt, alhoewel de mate
waarin dit gebuert veel minder is vanwege de terugkoppeling van de condensatie naar
de temperatuur en verzadiging van de damp.
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