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| NTRODUCTION

This chapter gives a brief introduction on the subject of condensing Adier dis-
cussing its relevance with respect to applications in both nature and indubty
scope and objectives of the present investigation are formulated, andttmeoof
the work is given.

1.1 Phenomenology of condensation

The phenomenon of condensation is best known from the extensivé s{@tems
which dwell in the earth’'s atmosphere, or from the liquid droplets that fonna o
cooled surface. Describing this phenomenon as simply "the processasf ehgng-
ing to a liquid” [109] does no justice to the complex physics that takes pladgegdur
this transformation process. This is especially the case for the condeniseditono-
spheric clouds, in which there is a diverse interaction between variotradahand
chemical processes [101].

The initiation of the condensation process is traditionally referred to as-nucle
ation, for which a distinction can be made between (i) homogeneous nucleaiin
(il) heterogeneous nucleation. In homogeneous nucleation, stable slo§teapor
molecules are formed due to random thermal fluctuations in the supersdivapte
phase, whereas in heterogeneous nucleation, the vapor moleculegiatacklves
to aerosol particles which act as condensation nuclei. Although thegzroteluster
formation takes place in any vapor, be it saturated or not, it is only in thersupe
saturated state that a minimum droplet size exists beyond which the probability of
growth is close to certainty. Supersaturation thus typifies the condensatioesp,
and usually, it is quantified by means of the saturation 1&tio

Pv
S= ,

ps(T)

wherepy is the vapor pressure, aqd(T) is the saturation vapor pressure, which is

strongly dependent on temperature. The minimum cluster size for dropletssta-b
ble is referred to as the critical size, whereas smaller, and larger clastaeferred to

(1.1)
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as being subcritical, and supercritical, respectively. From a thermaugnzerspec-
tive, the critical size can be related to an energy barrier which a clustdraross,
in order to continue its growth to a macroscopic droplet. The number of dsdplet
cross over this barrier per unit time, and per unit volume of vapor, isregfdo as
the nucleation rate.

The distinguishing feature between homogeneous and heterogenetestion is
that the former generates its own condensation nuclei from the vapse plvhereas
the latter requires foreign particles to activate the condensation prdcetise energy
barrier associated with the latter is typically much lower than that of the former,
this means that for equal nucleation rates, much higher levels of supatsaiun
the vapor phase are required for homogeneous nucleation than fooderieous
nucleation. This is reflected in the dominating presence of heterogenecdesition
in the natural world, witnessed e.g. in atmospheric clouds (see Figure Whexpas
homogeneous nucleation is usually found in engineering applicationsasunte.g.
high speed aerodynamics (see Figure 1.1.b).

(b)

Ficure 1.1: Examples of heterogeneous and homogeneous nucleation: (a) rain
clouds, initiated by heterogeneous nucleation, gathering above the $weiRaver;

(b) condensation of water vapor above the wings of an F-22 jet figihiéated by
homogeneous nucleation (U.S. Air Force photo).

Once stable droplets have been formed, the subsequent conderisgitmvii
stage takes place, in which the probability of spontaneous formation or disititen
of droplets is close to zero. The droplets that enter this stage grow in anieitic
fashion due to the steady influx of vapor molecules that is captured frogufieFsat-
urated vapor phase. This then results in a decrease of the vaparrpgssnd a cor-
responding decrease of the supersaturation. Additionally, the trangitionvapor
to liquid releases latent heat, which causes both the droplet and vapor&tunps
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Ficure 1.2: Schematic layout of the Twister Supersonic Gas Conditioner (image cour-
tesy of Twister B.V.).

to rise. This also results in an increase of the saturation pressure, \ahmirding
to Eqg. (1.1), means that the saturation level of the vapor is further degied\s a
consequence, the growth rate of droplets steadily decreases, whicls thea the
condensation process is self-regulated.

1.2 Motivation, objective and scope of research

The main motivation for this investigation is the Twister Supersonic Gas Conditione
which is a revolutionary apparatus to remove undesired components &toimahgas.
The novelty of this device is that it uses condensation to first convertritiesired
components to liquid droplets, after which a centrifugal separation steprisccaut
(see Figure 1.2). The physics that takes place in such devices is vapjeq as the
flow is both three-dimensional and compressible, and, under certaiitioosgeven
unsteady. Furthermore, it is expected that turbulence could also playifcsigt role
in the condensation and separation of droplets. With respect to the driptetoted
that there is a wide variation of scales, as droplets typically start at themetan
size range (1®m), and eventually grow to the micrometer-range €tf). Within
this range of sizes, the mathematical models describing the condensatieaqhe
motion of the droplets, as well as droplet-droplet interactions (e.g. cealesy; can
change considerably.

Evidently, one can only focus on a limited number of physical phenomena at a
time, which is the strategy that has been followed in previous investigationseon th
subject (see e.g. [48], [91], [79], and [66]). In the presentsitigation the focus is
on the initial stage of condensation, when droplets are so small that theylikeve
passive tracers. More specifically, the work aims to answer the followiegtépns:
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1.

how accurate are existing condensation models in predicting the evoldition o
the droplet size distribution (DSD) and the flow field variables in rapidly ex-
panding flows?

. can the balance equation which governs the evolution of the DSD (the so-

called master equation) be replaced by computationally mfticeest reduced
models to approximate condensatidfieets in rapidly expanding flow with
suficient accuracy?

. how does the addition of turbulence influence the condensation prioogsn-

eral, and in particular, the evolution of the DSD?

The focus is primarily on the initial stage of condensation, where nuclealys p
a central part. The majority of the systems investigated concerns rapiciyeixg
nozzle flows, for which homogeneous nucleation in an inviscid flow is studied
influence of turbulence is limited to an investigation of condensing flow in a s¥inth
turbulent flow field.

1.3

Thesis outline

The outline of this thesis is as follows:

In chapter 2, a two-phase mixture model is presented, in which the foous is
the thermodynamics and governing transport equations for Xfapod mix-
tures typically encountered in flows with single- or multi-component conden-
sation.

In chapter 3, an evaluation of three master equations is presented, déiich
scribe the evolution of the DSD in single-component condensing flow. Fur-
thermore, the sensitivity of the condensation model to physical uncertamties
investigated.

In chapter 4, reduced models based on the so-called method of moments for
single-component condensing flow are evaluated.

In chapter 5, a model for two-component (binary) condensing ndkzheis
evaluated, and the sensitivity to specific physical uncertainties quantified.

In chapter 6, an excursion is conducted into the field of turbulent cwide
ing flow, in which a model-system is studied that mimics the condensation in
atmospheric systems.

Finally, the main conclusions of this work are summarized in chapter 7, fol-
lowed by a review of remaining challenges and suggestions for futueanes




TWO-PHASE MIXTURE MODEL
FOR CONDENSING FLOW

In this chapter the thermodynamic model and transport equations &septed for

a two-phase liquidrapor mixture in transonic condensing flow. First a description is
given of the various constituent phases that make up the mixture, aftdr thikigov-
erning equations for single component condensing flow are deriveldse§uently,
the two-phase fluid model for multi-component condensing flow is gegken

2.1 Introduction

Following the common terminology used in the literature [15], [25], [47], @rsihg
flows such as the type discussed in this investigation, can be categorizextplsase
dispersed gas-liquid flows, with two-way coupling between the gaseotsrgzhase
and the dispersed droplet phase. The classical approach in degdhibifiows of
dispersed two-phase mixtures is to use a so-called two-fluid model, wheaeate
transport equations are derived for the continuous phase and tleesgidphase. In
condensing flow, the governing equations are usually written for the gatsiequid
mixture, rather than for each phase separately. The mixture transp@atiats are
augmented by equations which describe the evolution of the liquid phase, iaithe
terms of a detailedlroplet size distributioDSD) [130], [147], [149], [112], or in
terms of its averaged properties via the so-caitegthod of momen{MOM), [1],
[42], [45], [68]. In this chapter, the DSD will be employed, and disaus®f the
MOM will be postponed until chapter 4. The mixture transport equationsietisas
all thermodynamic relationships, are based on the assumption that eacheinahe
contains representative fractions of all phases, so that a continupnoaah may be
employed to describe the flow of the mixture. For transonic condensingentazs,
homogeneous nucleation yields total droplet number densities of abBat£q15],
corresponding with inter-droplet separation distance®@@0°m). This is much
smaller than the typical length scales of the flow, and therefore, the usenfiauum
mixture model is justified.

Contrary to rapidly expanding nozzle flows, the condensation proceasno-
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spheric clouds is characterized by inter-droplet separation distafia@g16->m),
which are comparable to the smallest scales (Kolmogorov scale) of the tutrBale
in which they are present, [101]. A continuum approach is thus les®ppate for
this type of problem, and instead, a combined Eulerian-Lagrangian trajentutel
is adopted, which is discussed in chapter 6.

2.2 Notation

In the remainder of this thesis, the Einstein summation convention applies to indices
andj only. Each variable related to either the carrier gas, vapor, or a singéedis
assigned the index’, " v/, or 'n’, respectively. Properties associated with the entire
gas phase (i.e., including all carrier gas and vapor components) ayeexsthe index

'g’, whereas properties associated with the liquid dispersion are assignéutitx

'I’. To avoid any confusion regarding the use of the sympokhe following notation
convention will be maintained throughout this thesis:

- "o’ refers to amass densityi.e., themass of a substance per unit volume

- 'p’ refers to anumber density, e.qg.,on is the number of droplets of size n per
unit volume

- 'p’ refers to aspecific number density o = p/p, wherep is the mass density
of the liquidgas mixture. Thugy, denotegshe number of droplets of size n per
unit of mixture-mass

2.3 Single component condensation

2.3.1 Description of constituent phases

In single component condensation, the mixture generally consists of asbspa)-
uid phase and a multi-component gas phase, in which a single condenapbtas/
present. All non-condensing constituents of the gas phase are lumpeasirgle
fluid which is referred to as the carrier gas, whereas the w@poris specifically re-
served for thecondensableomponent. For low pressures (i.e., typically a few bars,
[66]), the carrier gas does not influence the condensation mechaiisotlyd Its
role is predominantly limited to driving the rapid expansion of the flow so thamgtro
adiabatic cooling and, consequently, high levels of supersaturationecachiieved,
which are necessary for homogeneous nucleation to occur.

For rapidly expanding flows, the creation of droplets proceeds via thbamésnm
of homogeneous nucleation, and therefore, newly generated droplgtstantdt at
the sub-nanometer length scat®(10'°m)). Such droplets typically contain less
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than a few tens of molecules, and would, therefore, require a descrigtitime
molecular (or microscopic) level. The rapid growth of such droplets resulés
poly-disperse system where sizes{fL0~"m) are attained, which is a macroscopic
scale. For such large droplets, the droplet temperature is a well defiopdrty,

as it is based on an ensemble average of the kinetic fluctuation energyotzea
suficient number of molecules. For the microscopic droplets, however, thegrumb
of molecules in a droplet is so small that the concept of a droplet tempetzure
comes meaningless. This implies that a hybrid condensation model would actually
be required, encompassing a microscopic description for the small drepldta
macroscopic description for the larger ones. Such a model would becwarglex,

and therefore, condensation models are usually derived from the seapio point

of view, where it is assumed that the macroscopic model can be extrapdiated

to the microscopic length scales. In this thesis, the macroscopic modellingaappro
will be adopted, because it is the most detailed model that is computationally still
feasible for engineering applications.

The droplets resulting from single component condensation consist ioigke s
chemical component, and are usually characterized by size only. Thef sizieoplet
can be expressed in various ways, e.g., by using the number of molecwleish
it contains, its massy, or its equivalent spherical radiug. In general, however,
size may not be dficient to distinguish droplets from one another, as two droplets
occupying the same fluid element may be of equal size, but may $fdt é shape,
temperature, or velocity. For sub-micron droplets, the slip velocity is usualdjls
enough to render the drag force exerted by the carrier gas to be ngéigiall com-
pared to capillary forces associated with the surface tension. As aqu@rsse, such
droplets maintain a shape that is nearly spherical. Although the term "sakigsic
meaningless when a sub-nanometer droplet is considered, in view of thestagic
modelling approach, even the smallest of droplets are assumed to havergalph
shape. The exchange of energy and momentum between the dropleteagasth
phase may cause each droplet to have a distinct tempefdtaral velocityv, which
can be entirely dferent from the gas temperatufeand gas velocityl. Therefore,
it is no longer appropriate to use droplet size only for characterizatiadheoflis-
persed phase. Hence, instead of the mono-variate droplet size distrjmn@srather
needs to adopt a multi-variatEoplet property distributiorfunction (DPD) instead,
where the droplet size (e.q), the three velocity componentg and the temperature
T’ constitute the set of independent variables, together with the position veictor
physical space and tinte

To describe the spatio-temporal evolution of the DPD, it is convenient tadinde
the seven-dimensional phase spggewith the corresponding position vecigrde-
fined as:¢ = (n, T’,v,x)". The corresponding DPD is denoted by the scAl@; t).

It should be recognized that the droplet side an integerif € N*), whereas the tem-
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peratureT’ and velocityv vary continuouslyT’ € R*, v € R3. To emphasize the dis-

crete nature of the distribution in size space, the DPD is replaced by a semgtdis

distributionAn(T’, v, X, t), wheren = 2, 3, ... The interpretation given ta,(T’, v, X, t)

is conveniently expressed in an integral sense,fefAn(T',v, X, t)dvdT’ repre-
Qr Qy

sents the volumetric concentration of droplets of sizt positionx and timet, with

temperatures lying in the interv&r, and velocities in the interva},. Based on this

interpretation it is recognized that the number densitpfn-droplets is given by:

,E)n(x,t)zffAn(T’,v,x,t)dvdT’. (2.2)

R+ R3

The total droplet concentratids (X, t) then follows as:

Ni(.) = > fn. (22)
n=2

whereas the total liquid mass densiiyx, t) (i.e., for the whole liquid dispersion) is
given by:

oi1(X,1) = my Z NPn, (2.3)
n=2

with my the mass of a single vapor moleculy.andp, represent moments of the DPD
and provide only a global characterization of the dispersion. In engimgemodels,
knowledge of such moments is frequently deemefticant to estimate the impact
of condensation on the flow field with reasonable accuracy (see chgpt€his as-
sumption warrants verification, however, which can only be done by makdigect
comparison with a detailed solution for the DPD. Given the large set of imaispe
variables associated with the DPD, it is understandable that only a limited naiber
investigations have attempted to address this problem. Fortunately, it is pdssible
reduce the number of independent variables for the DPD, when the sbmited

to the type of condensing flow considered in the present investigatiomdén o de-
termine the conditions under which droplet temperature and velocity camioveel
from the list of independent variables, it is necessary to consider ttieaage of
mass, energy, and momentum between the droplets and the ambient phase.

2.3.2 Droplet mass balance

The mass balance for a single condensing droplet with control volgyisegiven by:

d
d_”t]“ - f pu(X W (X, )7 (X, )dA (2.4)

An
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wheredm,/dt is the mass growth rate of androplet,w represents the velocity of
the vapor relative to the moving control surfag and wherdi is the outward unit
normal vector orA,. The control surface coincides with the droplet surface and fol-
lows its movement as the droplet grows (or shrinks). The right-hand §idg.¢2.4)

is the nett condensation (or evaporation) flux, which depends on tipetisurface
temperature, the vapor temperature and the local supersaturation. Thelenagy

of the liquid inside the droplet is generally a function of its temperaitrand size

n. The latter dependency will be neglected for droplets consisting of a singieo-
nent, meaning that the bulk liquid densiiy(T”) will be used for single-component
droplets.

The droplets generated during homogeneous nucleation are usually matiérs
in size than the mean free path lengthof the gagvapor molecules. The Knudsen
number, which is defined as: .

_ "9
Kn= o (2.5)
is therefore very large, and thus the condensational growth of draplegs place in
the so-called free molecular (or kinetic) regime.
The mass balance Eq. (2.4) can be rewritten as:

d
d—”t‘" = (1 — by)my, (2.6)

where f,, is the rate at which vapor molecules (or monomers) impinge and stick on
the droplet surface, wherebg is the rate at which monomers are emitted from the
droplets due to evaporation. In the free molecular regifpandb, are expressed as
(seee.qg., [52)]):

fo= fo(T,pv) = 4%2—“1 VT, (2.7)
vn(T’
b = ba(T") = ¢, 2 *ngl ) v, 2.8)

with £ given by:

n+1 k
2 =a(nt?+ 1)%/71/2”;1, (2.9)

with kg the Boltzmann constand; the efective molecular surface area, goig, the
saturated vapor density over the curved surface of a droplet o sird temperature
T’, [52]. The impingement raté, thus depends on the gaapor temperature and
mass density, whereas the evaporation baidepends on the droplet properties only.
During droplet growth, the expression for the growth rate changeabgasonden-
sation process gradually shifts from the free molecular regme$ 1) towards the
continuum regimeKn <« 1). Throughout the years, several models have been de-
veloped, which attempt to describe the growth rate in both the kinetic and comntinu
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regimes, as well as in the transition regime between these two extremes. Most no
table are the models presented by Gyarmathy in [39], and by Young in, [[141g].
The interested reader is referred to these works for a detailed exposition

2.3.3 Droplet momentum balance

For a single condensing droplet moving within a gaseous carrier phaseadimen-
tum balance is given hy:

dm, dv,

TV' + mna =F - fpv(x, 1) (Vi (X, 1) + wi (X, ))w;(x, t)ij(x, t)dA (2.10)

An

whereF is the force exerted by the carrier fluid on the dropldg the velocity of the

droplet, i.e.,

dx’(t)
dt °

with x’(t) the droplet position, and wheré(x, t) is the velocity of the liquid phase

at the droplet surface. For sub-micron droplets moving at low slip velogcities

[Iv—ull/llull < 1, withu the gas velocity, the shape is nearly spherical and the internal

recirculation flow is negligibly small. As a consequence, the droplet momentum

balance can be expressed as:

v=v(t) = (2.11)

dd—nthvi+nh% = Fij—v fpv(x, tyw;(x, )i (x, t)dA—fpv(x, t)w; (X, w;(x, )R (x, )dA,
An An
(2.12)
and additionally, the forcg can be calculated using one of the many semi-empirical
expressions available for the drag experienced by rigid spheriditlparf22]. From
the mass balance in Eq. (2.4) it is recognized that the first term on the fedtdide
of Eq. (2.12) cancels the second term on the right-hand side, whichtle#us more
common form of the momentum balance:

m“% =Fi- f P06 WX W (x, D (x, A (2.13)
An

The last term on the right-hand side of Eq. (2.13) is the so-called Stefanfhich
is a thrust force generated by the vapor flow towards the droplet [1#A] small
slip velocities, vapor condensation proceeds in a near symmetrical faslidhat
the Stefan flux can be neglected compared to the remaining terms in Eq. @s13).
consequence, the droplet momentum balance reduces to that for a rigitepa

dv  _
M = Fi. (2.14)
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The equation of motion for rigid particles has been the subject of many ingestig
tions, and the most notable is the seminal work by Maxey and Riley in [72]y The
present the particle momentum balance as follows:

dv

Mn—c = Foi + Fpi + Fai + Fui + Fai, (2.15)

where:
Fpi = (M — My)gi (2.16)

is the buoyancy force, with the gravitational acceleration vector, amg the mass
of carrier fluid displaced by the droplet;

Dy

Fpi=mg— 2.17
pi =My o ().) (2.17)

is the pressure gradient force, wiily Dt the material derivative;

1 d , 1_, "
Fai = —Emgd—t[v.(t) ~ (X (.9 - 757X (t),t)] (2.18)
is the added mass term;
2

Fui = —67rrnpgvg[vi ) - u(X (). 1) - %‘VZUi X (1), t)] (2.19)

is the viscous drag force;

t

Fgi = —67rr§pgvgf
0

|

(vi ) -u (x’(t),t)—gvzui (X' (©), t))(n(t—r))_l/zvgd‘r (2.20)

o

-

is the Basset-history term. Calculation of these forces requires the gaygen
and kinematic viscosityg at the droplet positiox’(t), and the droplet radius,.
The occurrence of th&2u;- term in Egs. (2.18), (2.19), and (2.20) accounts for the
variation of the flow field on the length scale of the particle, usually denoteideas
Faxen correction [26]. Apparently, this correction will be of minor impot&awhen
the particle is much smaller than the typical length scales of the flow.

The foregoing expressions are valid for a continuum field surrourttimgarticle.
When the droplets are much smaller than the mean free path length of the gas pha
i.e.,Kn> 1, rarefaction fects need to be taken into account. This is accomplished
by multiplying the particle drag force with the so-called Cunningham corre&ion
tor, which only depends oKn. Details on this correction and its limitations are
discussed extensively in amongst others [26], and are not repesred h

To assess the importance of each of the force contributions, Eq. (2.d&sti;to
non-dimensional form, using a velocity scdll, length scalely, and time scale
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70 = Lo/Up, associated with the carrier gas flow. After some manipulations, the
following dimensionless form of the droplet momentum equation is obtained:

Pg.Gi 1 pgDli pgld - 520
R R b — —V )—
po’ 9 FR  pp DT pb2dt( N )
1. . Fas,. fn f di. . Faeo )\ - ~1/2
SO -G - 0¥ ui)——fE(vi—ui—gv ui)(ﬂ(t—‘r)) dr (2.21)

ReY2st .

whereg = ||gl, and the dimensionless version of each variable is indicated by a tilde,
e.g.,I'n = ry/Lo. The preceding equation contains the Froude number

the free stream Reynolds number

Uolo

Vg

Re=

and the Stokes number
Tv
St= —,
70
with the particle momentum relaxation timggiven by:
2 pp 2
= 2Pon

. (2.22)
9pg vy

In the test cases that will be considered in this thesis, the flow is usuallptrians
at temperatures between 20@&nd 30, which means that for the typical Mach
numbers ofM ~ 1, the reference velocity will b&lg ~ 10°m/s. For the nozzle
flows considered in this thesis, the typical length scales associated withwheaftp
within the range_g ~ 102 —10"'m (see chapter 3), which means tiat~ 107 > 1.
Buoyancy forces are therefore not important, and thus the first tetimeaimght-hand
side of EqQ. (2.21) can be neglected. The mass density of the liquid in thietirdgp
much higher than that of the carrier gas;/op ~ 103 < 1, which allows one to
neglect the second and third term in Eq. (2.21). As mentioned previousiylets
observed in transonic condensing flows typically fall within the size rafigé®i<
rn < 10’m, so thatry, < 10° <« 1. As a consequence, the last term in Eq. (2.21)
can be neglected, as well as the Faxen correction in the third term. THengsu
dimensionless form of the droplet momentum balance in transonic conddlwsing
is thus reduced to: & 1

d_fl = 50 - %), (2.23)
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and its corresponding fully dimensional form is given by:
dv

— t 2.24

0= V(X, UKD - v (2.24)

The influence of the Stokes number is best revealed when Eg. (2.29)ridea as:
~ av;

¥ =0 — St— T (2.25)

For St— 0, the droplet follows the carrier fluid, sineg> .

When St< 1, and droplet inertia is not negligible, an estimate can be made of the
droplet velocity using a so-called algebraic slip model. For this purpos€2E%)
is first differentiated with respect to time, which, after some further manipulations,
yields:

dy; B St di; d2\7i
ot dSt[ df Stﬁ]‘ (2.26)
1-— ==
dt
Noting thatui = T (X’ (f), ) in Eq. (2.25), its time-derivative can be expanded as:
FEOD =92 0.0+ FEO.D. 2.27)
Substituting Eq. (2.25) fov;"in Eq. (2.27), one obtains:
D w0 = 2.0 s 0.9, (2.29)

where D/Df denotes the dimensionless material derivative. Substitution of Egs.
(2.26) and (2.28) in Eq. (2.25) then yields:
St Da. dv; o d%¥;
— — — St—-|. 2.29

dSt dt 9%; df2 ( )

dt
Neglecting the terms which are quadratic in St then results in the following estimate
Vn, for the dimensionless droplet velocity:

Vi = U —

. - St DU
Vni = Ui — —1 ] d_St DF’ (2.30)
dt
with its fully-dimensional analogue given by:
_y__ v Du
Vhi = Ui - T (2.31)

dt
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Eg. (2.31) allows the droplet velocity to be calculated from the velocity fiekthet
droplet position, and the droplet size. Using this algebraic model, the drabbesity
can now be removed from the list of independent variables associatetheitnoplet
property distribution function, and thus,(T’, v, X, t) can be replaced b (T’, X, t),
where:

ANT X, 1) = f An(T’, v, X, t)dv.
R3

The Stokes number associated with the test cases considered in the reéro&inde
this thesis are typically smaller than 0 Therefore, droplet slip is neglected en-
tirely, so that:v, = u.

2.3.4 Droplet energy balance

In the free molecular flow regime, the droplet exchanges energy with gieagar
phase due to impingement and reflection of gas- and vapor moleculesyatiaip,
and the expansion work done by the growing droplet. The change inahemergy
(En) of a single isolated droplet of sizeis given by:

dEn

T & — &€ + G + PV (2.32)

The incoming heat flux associated with the impinging and reflecting vapor niesecu
is denoted bygS, whereasyS represents the outgoing heat flux due to evaporation.
The heat flux caused by impingement and reflection of the carrier gas uteses
represented by, and pV, is the expansion work done by the growing droplet, per
unit time.

The droplet energy can be written as a sum of a bulk internal energg andace
energy [149]:

En = fpbeodV+ fwdA (2.33)
Vi An

wheree, is the specific internal energy of the internal bulk liquid, and where
Y(T’) is the specific surface energy. The latter is given by:

do

=o-T
y=0-T =

(2.34)

with o = o(T’) denoting the surfac&ee energy (or surface tension) [149]. The
specific bulk internal energs, is equal to:

& =hy— 2, (2.35)

Pb
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with hy = the specific enthalpy of the internal liquid phase, apthe pressure within
the droplet. Assuming that the droplet is spherical, and that mechanidibeqm
is maintained, the internal pressure relates to the external gas pressiire
20

Ph=p+—

- (2.36)

Using the definition of the latent heat of vaporization for bulk incompressipléd:
Lp = Lp(T’) = h3(T’) — hp(T’), (2.37)

wherehg is the specific vapor enthalpy at saturati®h € 1), and by neglecting
gradients within the droplet, the preceding equations allow the dropletye(Eeqy
(2.33)) to be expressed as:

do

e Yanr2. (2.38)

20 ,
En:nhh\?—mnl—b_pvn—r—vn"'(o'_-r
n

Introducing a size dependent latent heat of vaporizdtipa Ln(T’):

20 3 do
Li(T)=Llp+ — - —(c-T' 2.
(1) = Lo+ ob fnpb(o- ar> (2:39)
this leads to:

For droplets that can be treated as macroscopic entitiesn(sag0?), calculations
based on Eqg. (2.39) show that théfdience betweehy, andLj is usually negligibly
small. Taking the example of water droplets, it is found that the relatifferdnce
betweerly, andLy is typically of the order of a few percent, as shown in Figure 2.1.a.
For very small dropletsn(< 100), the macroscopic model in Eqg. (2.39) is no longer
valid, and therefore, an approach at the molecular level is necesdarnyrolateL,.

For such sizesl., is interpreted as the specific heat of formation associated with a
reaction in whichn initially separated vapor molecules end up as a simgbized
cluster.

Figure 2.1.b shows the variation bf with n, as obtained from molecular theory,
and from mass-spectroscopic measurements by Sukhei@llj117], along with the
predictions obtained with Eq. (2.39) for water droplets at a temperatdre-ef300K.

It is noted that for small dropletsi« 10), the diferences between the predictions by
the macroscopic model (Eg. (2.39)) and those by molecular theory ardavge, as
one might expect. The data given by Sukhoetilal. suggest that the latent heat of
condensation can be described by an empirical function of the form:

La(T") = Lo(T)B(N), (2.41)
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Ficure 2.1: Size dependent latent heat of condensation for water droplets: (a) iso-
lines for the relative dference[Ln(T’") — Lp(T")]/Lp(T’) for various droplet sizes
and temperatures, calculated by means of Eq. (2.39) and the propeftieater in
appendix A; (b) latent heat data from mass-spectroscopic measnteraed theo-
retical predictions by Sukhodub et al., compared to calculations obtain#édtiae
macroscopic model (Eq. (2.39)) for E 300K, [117].

where: s h
BN) = 1 (1 -co) exp(c—l), (2.42)

with ¢cp = L»/Lp, andc; a parameter that controls the variatioriin

Using Eq. (2.40), the energy balance Eq. (2.32) can now be rewrittgrdifier-
entiating Eq. (2.40) with respect to time, and assuming that changgg due to
temporal variations in pressure can be neglected, one obtains:

dEn . (s fo] ., dny  aLy
at m”(hv b =N )+ T mn(dT’ aT’
wherem, = dm,/dt. Subsequently, the droplet energy balance Eqg. (2.32) can be

rewritten as:

)— OV, (2.43)

S

N R R

To compute the energy fluxes on the right-hand side of Eq. (2.44), itusreesbthat
(i) all vapor and carrier gas molecules reflecting from the droplet serdguilibrate
to the droplet temperature, and that (ii) the velocities of the vapor and cgease
molecules satisfy a Maxwellian velocity distribution. The latter assumption is some-
what questionable, as the rapidly expanding flow causes the vapoaaial gas to
be in a non-equilibrium state. The impact of this assumption on the condensation
process is not addressed here, since it is beyond the scope of seatieesis.

r'nn(hs L, —n
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Based on the preceding assumptions, the energy flux associated wittpthging
andreflectingvapor molecules is given by:

. fn ’
6 = ™ (Cpy ~ SOIT ~ (- an)T] (2.45)

an

whereay, is the fraction of impinging vapor molecules that stick to the droplet, usu-
ally referred to as the sticking probabilit€,; is the specific heat at constant pres-
sure for componernit andR; is the corresponding specific gas constant. It is noted
that Eq. (2.45) is obtained by integrating the energy flux density assoeidttethe
Maxwellian velocity distribution over the half-infinite velocity space, whichlexs
why the term within brackets Sy, — %R\,, instead ofCp,—Ry = Cy,, [66]. Similarly,

the energy flux associated with teeaporatingvapor molecules is given by:

. Ri,
& = bamy(Cpy — EV)T . (2.46)

The energy flux associated with thepingingandreflectingmolecules of carrier gas
componenk is expressed as:

ek = 5 VTpes(Cox —~ ST =T, (2.47)

wherepck is the mass density of carrier gas comporierind where the factqﬁ’k is
given by:

ﬂn
k

r K
S = (' - )7 = (2.48)
1 1

Here,mqk, andrcy, are the mass andfective radius of a single molecule of compo-
nentk of the carrier gas, respectively. Finally, the total energy flux remoyeithé®
carrier gas is then given by:

Nc
e =) Geko (2.49)
k=1

whereN; is the number of carrier gas components.

With these expressions for the energy fluggs¢g, anddc, viz. Eq. (2.45), Eq.
(2.46), and Eq. (2.49), the energy balance Eq. (2.44) can be usbthio the follow-
ing expression for the time-derivative of the droplet temperature:

T = —Ti(T' - Th). (2.50)

T
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In this expression, the thermal relaxation timefor the droplet is given by:

[dms 8Ln]

dT - 9T’

T =

T N
l1-«a R - k Rk
[{n n(Cp,v - EV)PV + kz:; fﬁ’ (Cp,k - E)Pc,k

R 9
VT + 4 1 (Cpy - %)P\S/,n VT

(2.51)
andT, is the so-called wet bulb temperature, which is implicitly given by:

1 @ e Cor= 3| [ 4 15 Ta | P(To) - an) nkn(T,)
gy B TIT 1 SElsy(Ty)
a’n k=1 gn pV Cp’v_
Tn = C {
l1-a ’ Kk — T
Y &S F gy [T
n o1 on Pv Cpy — > 252
The termSy, is defined by:
Sn=S(Thpv) =~ (2.53)

P3n(Tn)’

and represents thdfective saturation ratio at the curved surface of a droplet of size
n and temperaturé,. It is noted that Eqg. (2.52) is only valid in the free molecular
regime; for a discussion on more generally applicable models, referandseanade

to, e.g., [58].

Figure 2.2.a and b give an impression of the relativéedence between the wet
bulb temperature and the gas temperature fop@ Droplet residing in a mixture of
D,O-vapor and inert ptgas. These plots have been obtained by iteratively solving
Eqg. (2.52), withan = 1, andL, = Ly, using the material properties given in appendix
A. ltis clear from Figure 2.2.a that increased supersaturation leadsytr ldevia-
tions between the gas and droplet temperatures. This is also what is ekgegter
supersaturation leads to increased nett condensation, and thus alsgtteradte of
latent heat release, which in turn requires higher droplet temperaturemove this
heat from the droplet.

It is noted that the dierence betweem, andT becomes size-invariant for §i4
ciently large droplets, which can be observed from Eq. (2.52). In the lifidrge
n:

Vv

n-1
— — 1
n

c,k
n my
" Mek
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and:

Therefore, the right-hand side of Eq. (2.52) becomes independesitefor large
droplets, which leads to:
Th— Tw,

whereT,, is the wet bulb temperature for condensation ##iquid surface.

In Figure 2.2.b, the influence of the carrier gas density on the the wet butb te
peratureTy, is shown for various droplet sizes. As one would expect, the wet bulb
temperature approaches the gas temperature yien > 1. For the specific case
corresponding with Figure 2.2.b, this would require a rather high dendity o&

pelpy ~ 10%.

0.14

0.12

0.1

0.08
-
o006

_|
57 0.04
=

Ficure 2.2: Relative dfference between droplet- and gas temperature for condensing
D,0, with N, as the carrier gas: (@) influence of vapor saturation S for various
droplet sizes n (T= 280K, pc = 1.0kg/m?); (b) influence of density ratip./py for
various droplet sizes n (£ 28K, S = 10).

In case the thermal relaxation tinrg is much smaller than the typical time scales
associated with variations in the flow field, then Eq. (2.50) shows that thexpm-
tion T'(t) = Tp(t) is allowed. By setting”’ = Tn(ock. pv, T), the droplet temperature
is no longer an independent variable. This is similar to using the algebraic stipimo
to approximate the droplet velocity. As a consequemi¢ean also be removed from
the list of independent variables associated with the DPD, leaving only tpbedr
sizen as the characterizing variable. Therefore, the bi-variate RO, x, t) can
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be replaced with the number density(X, t), where:

ﬁde):ljﬁAg(rﬁx,DdTﬂ

R+

In the remainder of this thesis, the wet-bulb approximation is employed, upless s
ified otherwise.

2.3.5 Mixture thermodynamics
Non-isothermal condensation

For moderate pressures, the vapor and inert carrier gas can bd tisgierfect gases,
and therefore, the corresponding equations of state are given by:

pi = piRTi, (2.54)

and:
e =Cy,Ti, (2.55)

where the subscrigtwill be replaced byc for the carrier gas and by for the va-
por. In Eq. (2.54) and Eq. (2.55¢y;, pi, andp; denote the constant isochoric spe-
cific heat, partial mass density, and partial pressure of compdonesgpectively. In
non-isothermal condensation, the droplet temperature may genet@y fdom the
gagvapor temperature, but the gas phase is assumed to be well-mixed, $p=thht
for all gas constituents.

The amount of liquid within the mixture is given by the liquid mass fracitipn
which is defined as the ratio of the liquid mamssto that of the total mixture:

. m
m+m+me

g (2.56)
The liquid mass fraction can be calculated from the discrete size distribugtiby ~
means of the following expression:

N

m ~
g=— ) npn (2.57)
p 2

n=

where the smallest cluster is the dimer £ 2), and the largest is denoted by
Although there is actually no bound on the maximum droplet Size{ oo has been
used in Eq. (2.3)), here a finite value fdris adopted for the sake of convenience.
For the condensing nozzle flows considered in this thesis, the dropletenaabsity

pn ~ 0 forn > 108, which means that the maximum droplet size can be set to
N =108
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The total mass fraction of the condensable component in the mixture (i.e., in both
liquid and vapor form) is denoted g ax

m +my

_ ATV (2.58)
m +m, +m

Omax =
As droplet slip is excluded, andflision of vapor is neglected, the mixture composi-
tion is invariant along fluid trajectories, and therefore, the material damévaf gmax
is zero:

D
= (Gnar) = 0. (2.59)

As a consequencgmaxis a global constant in the flow domain, when it is uniformly
specified at the inflow boundaries. When the local liquid mass fragtiand mixture
densityp are known, the partial density of each gaseous constituent may be tadcula
by:

1-
1-g—
Pb
1-g9—
Pb

As p/pp ~ 1073, and because & g < gmax < 1, the preceding equations may be
approximated by:

pc = (1= Omaxps (2.62)
Pv = (Omax— 9)p. (2.63)

The mean density, of the liquid dispersion thus follows from:
o1 =go. (2.64)

Furthermore, the partial densitigegy of the individual carrier gas components can be
calculated fronp, via the expression:

Pck = WekPc» (2.65)
wherew, is the fixed mass fraction of compondntith respect to the carrier gas
k:1 . - . . . . . .
Neglecting the contribution of the liquid dispersion to the pressure, andnasgu

that the mixture is ideal, the pressure within the mixture is given by:

p=pRT, (2.66)
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where the specific gas constéht R(g) for the mixture is given by:

R = (1 - gmayRc + (Omax— QR (2.67)

The total internal energg per unit mass of the mixture is equal to the sum of the
contribution of each of the constituent phases:

N
€= (1 gna)ec(T) + (Gmax— Qo) + 3 1€, (2.68)
n=2

wherek, is the droplet internal energy given by Eq. (2.40). The latter can béttem
as:

- STy- — P _
En = nmy[hy(Tn) 2T Ln(Tn)] (2.69)

Using this expression and the caloric equation of state Eq. (2.55) for sepgs
constituents, Eqg. (2.68) can be replaced by:

N
n=2

P
iy bl @70

whereC, g is the isochoric specific heat for the dry mixture,

Cv0 = (1 - gmaxCu.c + ImaCuy- (2.71)

Due to the large value of the liquid density, the tepip, on the right-hand side of
Eq. (2.70) is usually negligibly small compared to the remaining terms. By using a
perfect gas model, the vapor enthalpy is reduced to a function of tempemaily,

so that:h3(Tn) = hy(Tn) = CpyvTa. By applying these approximations, the specific
mixture energy can be expressed as:

N .
e=Cyol —gCyT +m Z %n[cp,an — Ln(Tn)], (2.72)
n=2

and correspondingly, the mixture specific enthalpy follows from:

N
n=2
where:
Cp0 = (1 - ImaxCpc + ImaCpy- (2.74)

By using the wet-bulb approximation for the droplet temperature, the spetiic
nal energy of the mixture becomes dependent on the droplet size distipgtithe
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partial mass densities of the vapor and carrier gas componenasndock, respec-
tively), and the gas temperatufe Sincep, andpc are determined from the mixture
mass density and the number densitieg by means of Egs. (2.57), (2.62), (2.63),
and (2.65), the specific internal energy of the mixture is reduced to &éidanaf the
mixture density, the gas temperature and the droplet size distrib@iore(o, p, T),
with p = (b2, p3....pn)T. The caloric equation of state for the mixture is thus rather
complex, even though the perfect gas model has been adopted fostwmiggphase.

It is noted that frome = &(p, p, T), it also follows thatT = T(p, p,€). Due to Egs.
(2.57), (2.66), and (2.67), the pressure assumes the same depenueng(o, p, €).

Isothermal condensation

Isothermal condensation refers to equality of the droplet and gas tetmesd,, =

T, and should not be confused with the usual thermodynamic definition of time-
invariant temperature. Because the mixture is characterized by a singlerétonpe

Eq. (2.72) for the specific internal energy of the mixture can be simplified to:

N -
e=CyoT +gRT —my » PonLy(T), (2.75)
n=2 p
and correspondingly, the specific mixture enthalpy becomes:

N -
h=CpoT —my %nLn(T). (2.76)
n=2

For large dropletd,, — Lp, which implies that for a dispersion which predominantly
consists of such droplets, the preceding equations can be approxingated b

e=CyoT +g[R/T — Lp(T)], (2.77)

and:
h=CpoT — gly(T). (2.78)

As a consequence, the internal eneggyw only depends on the liquid mass fraction
g and the temperaturg, i.e.,e = €T, g). Conversely,T = T(e, g), and therefore, it
follows from Egs. (2.66) and (2.67) that:= p(o, €, ).

In the numerical simulation of condensing flow, the caloric equations of state f
the mixture (Eq. (2.72), or its iso-thermal variant Eq. (2.77)) are useettomiine the
temperature from the DSD and the internal energy and density of the mix&are.
the case of isothermal condensation, knowledgeaofdg is suficient to (iteratively)
solve Eq. (2.77) fofr. For the non-isothermal case, however, the size-dependency of
the wet-bulb temperature complicates matterd, disself depends ot . SinceT, is
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iteratively solved from Eq. (2.52), the calculationDffrom e, p, andgy, is a rather
expensive operation, which, if possible, should be avoided in numeiioalations.
In this regard, it is instructive to examine the relativefelienceAe:

Ae = €iso — Qﬁ—iso’

€h—iso
wheree,_iso, andes, are the internal energies obtained by means of Eqgs. (2.72) and
(2.77), respectively. To simplify matters, the size-dependency of thet laga of
condensation and the wet-bulb temperature are neglectedlie L, and:T, = Ty,
so that Eq. (2.72) for the specific internal energy can be simplified to:

e=CyoT = gCuyT + [ CpyTw - Lo(Tw)] - (2.79)

Using Eq. (2.79), it stiices to know only the liquid mass fractia@p instead of the
complete DSDpy, to compute the specific internal energyThe assumptioif, =

Tw can be justified by noting that the largest droplets show the largstatices
betweenT, andT (see Figures 2.2.a and b), so that by setling= Ty, the relative
differenceAe is overestimated. Figure 2.3.a shows htdewaries withg andT, for a
case of condensingd® in a mixture of BO and inert N-gas, withgmax = 0.018 and

pe = 1.0kg/m?. Itis noted that although theffierences betweeh, andT are~ 1071
(see Figure 2.3.b), the relativefidirenceAeis ~ 103 — 1072. Of course, these small
differences are a consequence of the relatively low vapor mass fragfiQrused.
For higher values ofjmax the contribution of the liquid phase to the internal energy
can be potentially higher, which means that one is compelled to use Eq. (@r72) f
such cases.

2.3.6 Mixture transport equations
Conservation form

The conservation equations for mass, momentum and energy for theabesmss of
slipping droplets are extensively discussed by Young in [149], anédfibrer, only the
special case of non-slipping droplets will be discussed here flerdntial form, the
continuity equations for the carrier gas, vapor, and droplet size distibare given

by:

dpc 9 N\ —
ot o =0 =5
ap 0 N
v -
)= — E S 2.81
ot i aXJ (pvuj) m n=2 e ( )
op 0 . =
8_tn * a_Xj(pnuj) = Sn, ,N= 2, 3’ ) N - 1’ (282)
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Fieure 2.3: (a) Relative dfference betweeng (Eq. (2.77)) and g sio (EQ. (2.72))
for a mixture of condensing D, with N, as the carrier gas (gax = 0.018 pc =
1.0kg/m°); (b) corresponding relative gierence between T and, T

with S, denoting a condensation source term, to be elaborated in chapter 3.t#ds no

that the balance equation for the monomers is represented by that of the aagp

that the largest cluster of si2¢is omitted from Eq. (2.82), because of the boundary
N

conditiongy = 0 in n-space. Withp; = my Z Non, the conservation equation for the
n=2
liquid mass density is derived as:

N
ap 0 -
—_—+ — )= E Sh. 2.83

Since the mixture density satisfigs:= pc + pv + pi, the continuity equation for the
mixture becomes:

ot

as the source terms for the liquid dispersion and the vapor cancel each oth

It is noted that none of the preceding mass balance equations contaifittteoé
vapor difusion. The importance of vaporftlision compared to advection is quanti-
fied by the Rclet numbePg, defined by [14]:

UoLo
Dv,c ’

dp 0
— 4+ —(puj) =0 2.84
U =0 (2.84)

Pé (2.85)

whereD, is the difusion codicient of the vapor in the carrier gas, and whekg
andLg are typical velocity and length scales of the flow. For transonic condgnsin
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flows, Ug ~ 10Pm/s, andLg ~ 1072 — 10~ 1m for the nozzles considered here. For
200 < T < 300K, andp ~ 10%Pa, the difusion codficient isDyc ~ 103nmPs™t.
Thus: Pé ~ 10° > 1, and therefore, fusion of vapor at the length scales of the
flow can be neglected. It is noted that for low Knudsen numbers (i.e. vellatarge
droplets), the Eclet number associated with the droplet size and its slip velocity is
much smaller than unity. Thus, on small scalefudion is essential for condensation
of droplets wherkKn < 1, whereas on large scales, it is of negligible influence.
Neglecting viscous stresses, the momentum equation for the mixture is given by

d 9
a(ﬂui) + a—Xj(PUin + pdij) = 0. (2.86)

For transonic nozzle flows without flow separation, viscdiesats are confined to the
boundary layer at the channel wall, where the velocity gradients arertigsta For
such conditions, the flow is nearly inviscid away from the boundary lagenas been
observed in experiments [100]. Since viscosity is also not essentiabfolensation
to occur, it is neglected entirely.

Neglecting viscous dissipation and heat conduction, the energy balantieef
mixture becomes:

%(pet) + aixj(phtuj) =0, (2.87)
whereg andh; represent the total energy,
e[:e+%ujuj, (2.88)
and total enthalpy,
hy =h+ %UjUj, (2.89)

of the mixture, respectively. The omission of heat conduction from the hoadebe
justified in a similar way as was derived for théfdsion of vapor. The &let number
is now defined as:

UoLo

Pé= , (2.90)

a

wherea, is the thermal dfusion codicient of the gas phase. Using the same numer-
ical values folUg andL as before, and noting thaX,. anda, are of the same order
of magnitude, it is again found th&&é > 1, which makes it justified to neglect heat
diffusion.

Characteristic form

The characteristic forms of Eq. (2.84), (2.86), and (2.87), augmentétih(2.82),
are relevant in case boundary conditions at inflow- or outflow boueslare applied.
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Although the characteristic equations can be derived for a generatdimmeensional
flow as demonstrated in [53], here itfBoes to treat the one-dimensional case.

In order to derive the characteristic equations, it is more convenientetdhes
following Lagrangian formulation of Eq. (2.82) for the specific numbersitgp,, =
Pnlp: .

Dpn

Dt
whereS,, = S,/p, andD/Dt denotes the material derivative. By using the mass
balance, the one-dimensional version of the momentum and energy batpratens
can be written in the following non-conservative form:

=S,, n=23.N-1, (2.92)

Du 14dp _
Ft + ;& = 0, (292)
De poau

Introducingq = (o, U, €, 02, .., Pn, ..,,bN_l)T as the state vector of primitive variables,
and noting thatp = p(e, p, P2, .., PNn-1), the system of transport equations (encom-
passing Eq. (2.91)) can be written as:

aq 99 _
| e 2.94
5 +anx S, (2.94)
where the Jacobi-matrid; is given by:

u p 0 0 0 0

1op  1op 10p 19p 1_op

p dp pade  pdpz pdpn T pdpN-1

o 2 u 0 0 0

= 0 0 0 U 0 o (2.95)

o
o
o
o
c

o

0O 0 O o . 0 . u
and the source vect&by:
$=(0,0,0,5,,8Ss,...58-1)" (2.96)

The eigenvaluedy of Jq are obtained by solvin@etJq — Akl| = 0, wherel is the
identity matrix. Expanding this equation leads to the following polynomial expres-

sion: 5 5
N-1 2 p. pop\|_
(U= 1) [(u—/lk) —{% +,70_e}] 0. (2.97)
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It is noted that even though the dependence oh g, has been taken into account,
the characteristic polynomial does not contain any of the derlvaﬁﬁesThe term
within the curly brackets is recognized as the square of the frozen speedndaf

wr-(2),-5(2),

Using Eq. (2.98), solution of Eq. (2.97) yields the following set of eigarest
A1=uU;Ar=u+as;Az=u—as;Ak=ufork=45,.,N+1.

Having determined the eigenvalues, the next step is to derive the camg#sgo
left eigenvectors , which follow from:

Ly(Jg—A&l)=0
Solving forL then yields the first three eigenvectors:

L1

(-2.0,1,0,.,0,..0)T,
p?

Lap, 1 1p 1p 1 o
par dp’ " par 9e’ pas dp2” " pas dpn” " par Opn-1
1 dp 1 dp 18p 1 dp ic’)pT

L3 = (___’ 1,___ - 5 ees T A~ sces ~
pas dp pas 9’ pas b2’ par dpn pas JpN-1

L, =

whereas for the remaining eigenvectdts>(4), the components are given by:
Lkn = Skn,

with 6k, denoting the Kronecker delta.

In order to obtain the characteristic form of the transport equationg2Ezt) is
multiplied with the left eigenvectors. Subsequent manipulations using the relation
ship:

dp= g—pdp+a—

0
P g5,

in combination with with Eq. (2.98), finally yields the first three characteristiaeq
tions:

g 1op_ dp 1p 10p .
o 1 9 _ _1opg 2.99
ot @@ ot ox & ox 2 ;) (2.99)
ou 1 dp ou 1 dp 1 0px
ou op ou _ 1 9pg 2.100
ot *oar ot T U ANt ok par ap; ) (2.100)
ou 1 ap ou 1 ap 1 ap«

————+U-af)(;c-—=) = —=Sj. (2.101)
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whereas the remaining component equations are identical to Eq. (2.94)ndted
that in contrast to the conservative form of the FDE, viz. Egs. (2.8436), and
(2.87), all of the characteristic equations do contain source term catidnbiarising
from condensation.

The characteristic equations are essential in specifying the appropoateldry
conditions at in- or outflow boundaries. In one dimension, there aratsbethree
characteristics, along which information travels through physical spébehe ve-
locitiesu, andu+as. For subsonic inflow, two characteristics with speeahdu + as
correspond to information entering the flow domain from the boundaryregisehe
characteristic with spead- a; corresponds to information leaving the flow domain.
As a consequence, only the size distribution and two flow variables cgrelodisd
at subsonic inflow boundaries. For supersonic inflow, all charatiterisorrespond
to information entering the flow domain. As a consequence, all flow varigalebe
specified at this boundary, along with the size distribution. For subsotfiowutwo
characteristics correspond to information leaving the flow domain, wheresashar-
acteristic corresponds to information entering the flow domain. As a coesegu
one of the flow variables (usually the pressure) needs to be specifiad atitlet.
In the case of supersonic outflow, all characteristics corresponddomation leav-
ing the flow domain, meaning that none of the variables needs to be spetitiesl a
boundary.

Speed of sound

Analysis of the eigenvalues of the Jacobi-mafiphas revealed that the appropriate
speed of sound to be used in condensing flow is the frozen speeduafaqgiven by

Eq. (2.98). To actually calculats, it is necessary to evaluate the partial derivatives
of p with respect tgp ande. For the non-isothermal condensation model, the rele-
vant expressions needed to compute these derivatives are Eqgs. (2.52), (2.66),
(2.67), and (2.72). Noting that = g(p), andT = T(e p, p), with: p = (92, p3,..)T,

the equation for the pressure can be written as:

p = p(e p.p) = pRP)T (e p,p). (2.102)
It is thus straightforward to write:
op =R|T +p£ , (2.103)
ap op
and: 5 o
p
— = pR— 2.104
oe  Poe’ (2.104)

so that the problem is now reduced to finding the partial derivativ@svaith respect
to p ande. The temperature is implicitly given by Eqgs. (2.72) and (2.52). To deter-
mine dT/dp anddT/de, it is first necessary to determine the dependency of the wet




30 GaAPTER 2. TWO-PHASE MIXTURE MODEL FOR CONDENSING FLOW

bulb temperaturd,, onp ande. The dependency omis only due to the occurrence
of T =T(e p,p)in Eq. (2.52). The dependency ptis due toT = T(e, p, p), and due
to the saturation rati&,, since from:

Pv _ P(Omax— 9(P))
P\in(Tn) PS,n(Tn)

it follows thatSy = Sp(Th, p, p). It is noted that the density ratiof k/pv can be
expressed as

Sh= Sn(Tn,Pv) =

Pek _ Wek 1- L —Omax

Pv gmax g(p)
which makes them independent @f In conclusion, the dependency ©f can be
expressed ast, = Tn(o, p, T(e p, p)). Using this dependency, fiérentiation of Eq.

(2.72) with respect te, followed by some further manipulations, yields:

-1
oT oL\ (0T,

Cuo — (c )(—) . 2.105
e { v,0 ngv"'lePnn pv — T N\aT o ( )

Taking the derivative of Eq. (2.72) with respectdowith some subsequent manipu-
lations, yields:

AL\ T
a7 mlzpn”(cpv pis )(a_pn)T P
AR . (2.106)

dp aLn\/OT
Cuo-9Cy+m Pnn(cpv n)(_n) y
Z TN T Jp

What remains to be determined now are the partial derivatives:

(%) , and (%) ,

dp /1.p aT Jpp

which can be obtained by first solving fog(o, p, T) for givenp, p , andT, followed
by numerical diferentiation with respect toeandT, respectively.

When the isothermal condensation model is used, the previous expeess®n
greatly simplified. SinceT, — T, it follows immediately that:

% _ 0 (aTn) dT _1
I |1 p " \AT Jpp TdT 7
which subsequently leads to:

-1
oT oL
e {CVO gCyy + M nzzpnn(cpv aTn )} ) (2.107)
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and:
aT

e
The frozen speed of sound thus becomes:

0. (2.108)

(af)> = RT|1+ E . (2.109)
. dln
Cuo—-9Cy+m nZ:;pnn(Cp,v - O_T)

If the dispersion is dominated by large droplets, tihgrcan be replaced bly,, so
that one finally obtains:

R

(af)> = RT|1+ (2.110)

dlp, |
Cuo+ R/~ 57)

2.4 Multi-component condensation

2.4.1 Description of constituent phases

In multi-component condensation, the gas phase generally consists of aaroktu
different condensing vapors and several inert gases, and the dithjleteake up
the dispersion consist of the various chemical species corresponiinthe/vapors.
Following the same line of discussion as in the case of single-componergrcond
sation, the liquid dispersion can again be characterized by a multi-varigiéetiro
property distribution functiom\,(T’, v, X, t), wheren is the vector i1, no, .., nNV)T.
Here,n; represents the number of molecules of componentained in a droplet,
andN, denotes the total number of condensing components. ClearyN, and the
smallest of droplets are either unary, or binary dimers. The multi-compainepiet
number densities,"can be calculated from, (v, T, X, t) by means of the expression:

ﬁn(x,t):ffAn(T’,v,x,t)dvdT’. (2.112)

R* R3

The use of macroscopic models in multi-component condensatifersudrom
the same deficiencies as already discussed for single-componentsatide, and
will not be repeated here. In principle, one could maintain the full deperydef
the multi-component DPD, which means that in total, there & 8ndependent
variables that need to be dealt with in the general case of a transient, reed th
dimensional flow K is the maximum value afi;). By using an algebraic slip model
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and the wet-bulb approximation, the droplet velocity and temperature caoesdt
from the list of independent variables, so tha(T’, v, X, t) can be replaced with the
multi-component droplet number densiti@s As a consequence, the number of in-
dependent variables reduces ™, which still poses a computationally challenging
problem, even when considering the case of binary condens&ijoa @). The so-
lution of the multi-component DPD has therefore only been attempted for theybina
case in stagnant systems, such as in [74] and [142].

Itis noted that even when using the full dependency in the formulation @&,
there are still a number of important factors which are excluded. One ¢ ikehe
spatial distribution of the various components within the interior of the droptets a
at the droplet surface. The latter determines the value of the surfatatgnkich, in
turn, has a pronounced influence on the condensation rate. Usualiguitewithin
a droplet is assumed to be well-mixed, if the liquid components are mutually misci-
ble. For immiscible components, however, a layered droplet model may Ip¢eailo
which means that the transport of condensing components through theltgarg
needs to be included in the model [85]. The multi-component condensatioal mod
presented in this thesis assumes a uniform spatial distribution of the liquid eompo
nents, which implies that only condensation of well-mixed components is coadide
To avoid using an overcomplicated model with many associated physicatainee
ties, it is furthermore assumed that the droplets are uniform in temperatiire, w
T =T (i.e., isothermal multi-component condensation is assumed).

2.4.2 Definition of mass densities and compositions

Before embarking on the thermodynamics of the constituent phases, it iscfiess-

sary to define a number of variables related to the composition of the mixtuse. Th
indexation of variables is as followsc, k' refers to thekth—component of the carrier
gas, v, k' refers to thek™-component of the vapor phasa, k' refers to thek!"-
component in a droplet of compositian= (ny, ny, .., nNV)T, and 1,k refers to the
kih-component in the liquid phase (i.e., the liquid dispersion). The vapor coemt®n
share the same second indices with the individual droplets and the liquid,pleas
'v,K, 'n, K, and ',k all refer to the same substance, but only iffelient phases.

Ny and N; denote the number of vapor and carrier gas components of the mixture,
respectively.

Droplet and monomer masses

Using these conventions, the monomer masses of vapor comyqert carrier gas
componenk are denoted byn,x andm, respectively. The mass of vapor compo-
nentk in ann-droplet is denoted by, k, and satisfies:

Mak = NkMyk, (2.112)
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whereas the total mass, of ann-droplet is equal to:
m, = Z Mh k- (2.113)

Component mass densities

The mass densities of componéiin the vapor phase, compondsin the carrier gas,
and componenk of n-droplets are denoted by, k, pck, andpnk, respectively. The
latter can be calculated from the droplet number depgignd the droplet component
massm, x, via the expression:

Pnk = PnMnk. (2.114)

Knowing pnk, the mass density x of componenk in the liquid phase then follows
from:

Pk = Z Pnks (2.115)

neQn

whereQ, includes only droplets, i.e.,

Qq = {ne NV [|In|| > 1}.

Total mass densities

The total mass densities of the carrier gas, vapor pmadegplets, and liquid phase
are denoted by, pv, pn, @andp, respectively, and relate as follows to the component
mass densities:

Nc Nv N\/ NV
Pc= ch,k s Pv= va,k s Pn= an,k . PI= Zka. (2.116)
k=1 k=1 k=1 k=1

The total mixture mass density is, evidently, given by:
P =pctpytpr (2.117)

Phasic mass fractions

The phasic mass fractions of componlkenf the carrier gas, componekof the vapor
phase, componeftof n-droplets, and componehtof the liquid phase are denoted
by Wek, Wyk, Wnk, @andw, x, respectively, and can be calculated from the component
mass densities and total mass densities as follows:

Pck _ Pk Pn.k Pl k

Wek=—", Wyk=—", Wpk=—", Wk=—. (2.118)
c Pv Pn Ll
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Itis noted that all preceding mass fractions have been normalized withatespheir
corresponding phases, i.e.,

N Ny Ny Ny
Zch=1, Zva=1, ZWnk—l, ZWIk:]-
k=1 k=1 k=1 k=1

Mixture mass fractions

The mixture mass fractions of componédnof the carrier gas, componektof the
vapor phase, componehktof n-droplets, and componeitof the liquid phase are
denoted bygck, Ovk, Onk, andg k, respectively, and relate as follows to the total and
component mass densities:

Pck Pvk Pnk Plk
Ok = == | Ouk = =%, Onk= —= , gk = —. (2.119)
p p p p

The total mixture mass fraction of condensable compokéin., in both liquid and
vapor phase), denoted bff*, and with:

Ouk = Gk + Oiks (2.120)

is invariant along fluid trajectories when droplet slip and vapdfudion are ne-
glected.

Phasic molar fractions

Instead of using the mass fractions, the phasic compositions can alscchibeld
terms of the phasic molar fractions. The phasic molar fractions of compérant
the vapor phase, componédnof n-droplets, and componekof the liquid phase are
denoted byyk, Xnk, andx x, respectively, and can be calculated from the component
mass densities as follows:

K/ Mk /My 1Lk/ Mk
o= Mo P T 1)
Z Pv,m/Mym Z Pnm/Mym Z P1.m/Mym
m=1 m=1 m=1

Alternatively, the molar fraction of componekin ann-droplet can be written more
concisely as:
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2.4.3 Mixture thermodynamics

The mixture of carrier gases and vapors is considered to behave ateet gms,
which means that the thermal and caloric equations of state presented {2.B45.
and (2.55) are also valid here for the various gaseous constituent&d Basthe
assumed perfect gas behavior, and neglecting the pressure contritifiti@ droplet
dispersion, the pressure within the mixture is again equal to the sum of ttial par
pressures of each gaseous constituent. Eq. (2.66) is thereforabdsbeare, with the
only difference being that the mixture gas constant is now given by:

N¢ Ny
R= kZ‘{ JekRek + kZ‘I GvkRuk. (2.122)

The specific internal energyof the mixture consists of the weighted sum of the
internal energies associated with each constituent,

NC Nv ~
e= > Gue(T)+ 3 Gueui(T) + 3, “2E(T) (2.123)
k=1 k=1

neQy

The energyE,, of a droplet can be written in a similar form as was used in the single
component case, viz. Eq. (2.69), which yields the following expression:

p
Pn(T)

By neglecting the ternp/pn, in EqQ. (2.124), the expression for the specific internal
energy of the mixture becomes:

E, = mn[h\in(T) - - Ln(T)]. (2.124)

N Ny
e= kz_; Gox€ek(T) + kZi Gueu(T) + Y ,Bnmn[han(T) - Ln(T)], (2.125)

neQ,

wherep, = pn/p is the specific number density. Eqg. (2.125) is the caloric equation
of state for the multi-component two-phase mixture, which implicitly gives the tem-
peraturel as function of the mixture specific internal enegyyhe multi-component
size distributiorpp, and the various vapor and carrier gas composition variables. The
equation of state is completed by specifying a suitable expressidgy, @), and by
setting:

Ny
M5n(T) = hun(T) = D WnkCpukT. (2.126)
k=1

Similarly to Eq. (2.125), the mixture enthalpy is expressed as:

Nc Ny
h= kZl 9exkhex(T) + kZl Ovkhi(T) + D ;)nmn[han(T) ~L(M|  (2.227)

neQ,
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Using Eq. (2.126) in combination with the caloric equation of state for ideasgjas
the mixture enthalpy can be concisely expressed as:

h=CpoT - > AamuLa(T), (2.128)
neQ,
where:
Nc Ny
Cpo= ), GekCpek + ), dTFCpuk (2.129)
k=1 k=1

is the specific heat of the mixture in the dry state.
2.4.4 Mixture transport equations

Adopting the same assumptions as have been made for the case of single compo
nent condensation, it is straightforward to derive that the mass, momentdnena

ergy equations for the multi-component two-phase mixture (in conservation) fire
identical to Egs. (2.84), (2.86), and (2.87), respectively. The tahgguation for

the multi-component size distribution can be written in a similar form as Eq. (2.82),
with the condensation source term replaced \8ith This source term will be further
elaborated in chapter 5.

With respect to the characteristic form of the mixture transport equaticres) ive
derived that these are identical to Egs. (2.99), (2.100), and (2.a0t)d single com-
ponent case, when the single-component size distribptiomréplaced wittp,. EQ.
(2.98) for the frozen speed of sound also remains valid, and only thhessipns for
the partial derivativedp/dp anddp/de need to be modified. Egs. (2.114), (2.115),
(2.119), (2.120), and (2.122) reveal tiRat R(p), with p = (5(1.1), £(2.0)> - PNN)) T
and therefore, Egs. (2.103) and (2.104) also remain valid. The prabléras again
reduced to finding the partial derivatives ®fwith respect tgp ande. From Eq.
(2.125) it is observed thak = T(e, p), so that immediatelyT/dp = 0. To find
dT/oe, Eq. (2.125) is first dferentiated with respect & and with subsequent ma-
nipulations it is derived that:

o (N Ny A oL
— O - _n
e k§:1 9ekCuck + kE:l OvkCuvk + } PnMy L;zl WnkCp.vk oT ]

neQ,

-1

(2.130)
This completes the two-phase mixture model for multi-component condensimg flo




EVALUATION OF MASTER
EQUATIONS IN CONDENSING FLOW

The kinetic equation (KE), and its first- and second-order approximatitre gen-
eral dynamic equation (GDE) and the Fokker-Planck equation (FP&Epectively,
are evaluated based on (a) their equilibrium distributions, (b) a nucleatidagex-
periment, and (c) an expanding nozzle flow. Larggedinces are observed between
the equilibrium distributions of the FPE and KE, whereas the GDE does nat ha
an equilibrium distribution at all. For the nucleation pulse experiment, goaegeqg
ment is found between the KE, FPE and GDE, due to quasisteady nucldaiiahe
condensing nozzle flow, thgfdrence between the GDE- and the KE-distributions is
large, although the relevant flow variables show fair agreement. A sdahsiudy

of the KE-solution with respect to uncertainties in (a) the surface tensioreinx)
the sticking probability, and (c) the equilibrium distribution, revealed that kbth
sticking probability and the equilibrium distribution have a significant influeoce
the predicted condensation onset. Furthermore, it is found that the peap@/olk
and Strey-corrected Courtney equilibrium distribution yields the besteagest with
reported measurements.

The work in this chapter has been published in revised form as: R.S.R. Sidin,
R. Hagmeijer, and U. Sachs, "Evaluation of master equations for thelelrgize
distribution in condensing flow”, Phys. Fluid4, 7 (2009).

3.1 Introduction

Flow induced condensation occurs in various industrial applicationgjmarirom
steam turbines to supersonic gas conditioners. In such devices, ttelomp ex-
pansion leads to the spontaneous formation of a dispersion of small liquitetiro
also referred to as clusters. The spatial and temporal evolution of tipdetigize
distribution is governed by a balance equation for the droplet numbeitygeardd is
referred to as either the master equation [52], the general dynamic eq{EQib)],
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or the population balance equation [138]. The formulation of the mastetiequs
based on the pioneering work by, amongst others, Becker @nichdd[13], and the
Szilard model of condensation [52], in which the growth and evaporafidnoplets
proceeds via the interaction with single molecules (monomers). As this prigcess
kinetically driven, the master equation is referred to as the kinetic equatieh (K
condensation modelling, the KE is primarily used to derive expressionsdatéiady
state nucleation rate, i.e., the rate at which nuclei are formed at the orseidensa-
tion [52], [127]. It will be shown that the KE can be exactly represeigd partial
differential equation of which the general dynamic equation (GDE) is a figgtror
approximation, and the Fokker-Planck (FPE) equation is a second-apgeoxima-
tion. Each of these equations can be ranked based on a hierarchyuod@g with
the KE and GDE formally providing the most and least accurate descriptfdhs o
condensation process, respectively (see Figure 3.1).

Generalized Master Equation
(interaction between all clusters)

only monomer
exchange

Kinetic Equation < Generalized Fokker-Planck
(KE, discrete) Equation (GFPE, continuous)

second order

truncation
N

Fokker-Planck Equation
(FPE, continuous)

S9SeaJldap Adeundoe

S9SeaJoul 1J0JJe |EUO!1€1I’1C|UJOZ)

first order
truncation

N
Classical General Dynamic
Equation (GDE, continuous)

Ficure 3.1: Hierarchy of master equations with respect to accuracy and computa-
tional demands.

Recently, Holten and van Dongen [46] have investigated the accurdbg GDE
by numerical simulation of a nucleation pulse experiment with a one-way cauplin
between the thermodynamic variables and the droplet size distribution. They o
served good overall agreement between the KE and GDE solutiongtégceome
minor details in the shape of the distribution function.

In a separate investigation, White and Young [133] have also investigateatth
curacy of the GDE by numerical simulation of a superheated steam expabsio
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with a two-way coupling between the thermodynamic variables and the drigeget s
distribution. They observed that the agreement between the KE and GBRoga
for fast expansion rates, due to failure of the quasi-steady contitemsasumption
on which the GDE is based.

The objective of the present paper is to extend these investigations byyengplo
two test cases: (a) a nucleation pulse experiment using one-way cqugitigb) a
rapidly expanding flow through a Laval nozzle using two-way coupliogwhich ex-
perimental data is available. In the first test case the FPE is included aditiored
candidate, and the validity of the quasi-steady nucleation assumption issseldre
The truncation errors associated with the FPE and GDE are calculatedainetkie
discrepancies between the predicted size distributions. In the secomadsestKE
and GDE results are also compared with experimental data. The validity ofiyise p
ical model behind the KE is evaluated, and uncertainties in some key vareieles
analyzed and quantified.

3.2 Master equations for the droplet size distribution

The master equation is essentially a mass conservation law for dropletstioonsis
of an integer number of vapor molecules. In the flows considered in thig-cha
ter, the concentration of vapor molecules (monomers) is much higher thaofthat
droplets, which justifies the assumption that droplets only interact with monomers
each droplet may capture or expel a single monomer at a time. This is thdexb-ca
Szilard approach in condensation [52], for which three physical-matheahenod-

els will be discussed in the following sections.

3.2.1 The Kinetic Equation (KE)
The KE for a quiescent vapor (e.g., [52], [127]) is:

4
0 J1i-dn . N=23,.. (3.1)
dt
whereon denotes the volumetric number density of droplets consistingoblecules
(n-mers), and where the condensation fiipcontains the combinedtfect of a con-

densation (forward) raté, and an evaporation (backward) réte
In = fn,5n - bn+1,5n+1- (3-2)

Schematically, the KE can be represented as a series of chemical reaatiaies:
picted in Figure 3.2. For an advected vapor, with the average advectiocityeof
the droplets equal to the velocityof the carrier gas, the KE becomes

9

0 o
o + a_Xj(ujpn) = Jn—l - Jn , N= 2, 3,.. . (33)
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‘Jn—l 'Jn
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:|: fr1Pn1 &" g‘
by fn ‘ Bre1 Area | n+1

Fieure 3.2: Schematic representation of the Szilard model for single-component con
densation.

Assuming Maxwellian velocity distributions for the monomers and droplets, the
forward ratef, may be written as [52]:

n+1 keT .
fo = ancav}® [ == (03 + 12 \ 2o (3.4)

wherea,, denotes the sticking probabilitg, is the shape factor; andm; denote
the dfective volume and mass of a single molecule, respectivély denotes the
Boltzmann constant, arl the gagvapor temperature. It is noted that the asymptotic
size dependency of, ~ n?3 used in [46] and [133], is valid for sficiently large
droplets only.

Although the sticking probabilityr, is usually set to unity, a number of recent
investigations employing advanced simulation techniques have showm,thaties
strongly withn for small droplets, and that in the limit of very large dropletsdoes
not necessarily approach unity [99]. Okada and Hara [82] repaueg ofw., of
about 06 to 10, whereasy, reaches values of as low a0 (see Figure 3.3). To
study the influence a&, on the condensation process, the following model expres-
sion foray, is used in the present investigation:

an = oo — (Ao — @1) exp(?), (3.5)

(o)

which roughly mimics the trends im, observed in [82]. The values of, o, and
N Will be varied to investigate their influence on the predictions.

The shape factar, is set toc, = (367)Y/23, which corresponds to spherical droplets.
Although small droplets may be far from spherical (see Figure 3.4, J145inore
accurate expression cannot be derived due to the lack of suitable data.
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sticking probability: o, (-)

clustersize: n (-)

Ficure 3.3: Sticking probability for water droplets predicted by Okada and Hara
[82].

Ficure 3.4: Shape of a water droplet with size=-n 15, as obtained from molecular
dynamics simulations by Yasuo&gal, [145]. The hydrogen and oxygen atoms are
represented by the small spheres and large spheres, respectivelygdb indicate
hydrogen bonds.
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The backward rath, is obtained from the requirement that the fludgsire zero at
equilibrium and from the usual assumption that the backward rates angeimdent
of the size distribution: eq
pn—l

bn = fn—l— s
o

(3.6)

where the superscripgd refers to equilibrium conditions.
The general form of the equilibrium distribution is given by [52]:

pn = p3 eXp

AGp
- kBTn] , (3.7)

whereAG denotes the Gibbs free energy of a droplet of sjizzndp? is the monomer
number density at saturation. The droplet temperafyris assumed to be equal to
the gagvapor temperaturd, corresponding to an isothermal condensation model.
The Gibbs free energ&G,, depends on the saturation ra8qsee Eq. (1.1)), and the

dimensionless surface energy
Ao
0= —— 3.8
kBTn’ ( )
whereA; is the molecular surface area, andhe surface tension.
Adopting the nomenclature used by Wilemski [134], the following modela€a

will be considered in this investigation:

1. AG,, for the Courtney distribution:
c

— 2/3
kBTn =ninS-6n"°, n>1, (3.9)

2. AG,, for the Self Consistent Classical distribution (SCC):
AGSCC
- kBTn

=ninS -6(n?® - 1), (3.10)
3. AGy for the Kelvin distribution (derived for a droplet in stable equilibrium):

AGK 2 1
-1/3
“ieT, ninS 39 g j (3.11)

In addition, a fourth equilibrium distribution will be employed which combines the
Courtney equilibrium distribution with the empirical correction factor for theleu
ation rate reported by Wk and Strey in [139]:

Jexp

B
— exp| A+ —]. 3.12
JonT p[ T ( )
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In this expressioeyp is the nucleation rate obtained from experimelkfy T is ob-
tained from Classical Nucleation Theory (see appendix B), Arhd B are fluid
dependent constants. The nucleation daiegenerally expressed as:

AGy- )

o (3.13)

J=K exp(—

wheren* denotes the critical droplet size aKdthe kinetic prefactor (see appendix
B). Multiplication of JonT by the empirical correction factor may be interpreted as a
correction toAGS.:

B
AGp = AGE — (A+ ?) KsTo. (3.14)
Application of the correction to all droplet sizes finally leads to:
4. AGy for the Wolk and Strey corrected Courtney distribution (CWS):

AGEWS
kBTn

B
=n|n5—9n2/3+A+T , n>1 (3.15)

3.2.2 The Fokker-Planck Equation (FPE)

By replacing the discrete distributipn(x, t) with a continuous distributiop(f, X, t),
wherep(n,x,t) = pn for n € N*, and applying a Taylor series expansion to the
right-hand side of Eq. (3.3), the following generalized Fokker-Plamglagon [95]

is derived:

T PR S T
T * 7 WiP) = ;T (n), (3.16)
where: Lo
T(n) = B [(fa(=1)F + b)p(n)] (3.17)

It is noted that Eq. (3.16) is an exact representation of Eq. (3.3). Byating Eq.
(3.16) up to the second-order tertk £ 2), the Fokker-Planck equation (FPE) is

obtained: )
% 0, . b . PR
i a—Xj(UJP) = —%(np) + W(D,O). (3.18)

A similar equation was derived by Tunitskii [52]. The drift velocity="h(n, X, t) is
given by:

h = fn - bn, (319)
which resembles the average growth rate of the droplets. Tgesidin codficient
D = D(n,x,t)is

1
D= E(f” + bn), (3.20)
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which reflects the statistical nature of the droplet formation process. tttédrthat
by using the FPE, a third order truncation error is introduced with respeoe KE.
As a consequence of the fixed step size used in the Taylor expansiofiniel, the
truncation error is also fixed, which means that good agreement betvege(BE3)
and (3.18) is not guaranteed.

The equilibrium distributio®(n) of the FPE satisfies:

d
A0 (DAEY) —
no dn(Dp 9 =0, (3.21)
subject to the boundary condition:

o) = P, (322)

with np > 2 corresponding to the smallest droplet accounted for in the FPE. Rear-
rangement of Eq. (3.21), i.e.,

dped [ 1 dD(n)  n(n)

dn " |D(n) dn D(n)}ﬁeqzo’ (3.23)

leads to the Fokker-Planck equilibrium distribution
Do) __ | (* &)
5e%(n) = pea=0) o fn—d . 3.24

No
It is noted that for large droplets

n(n) S-1
7 .9 i
D(n) S+1

(3.25)

which, in a supersaturated stag* 1), leads to a non-physical equilibrium for large
droplets.

The relative importance of the filision term compared to the drift term can be
quantified by means of a dropleé&let numbePé(n), defined as:

., _ h(nn
P&(n) = D) (3.26)
which gives an order-of-magnitude comparison between the first amwhdeorder
term. As shown in Eq. (3.25), the ratio betwa®n) andD(n) reduces to a constant
in the limit of very large droplets, and thereforBé(n) ~ nforn > 1. Thus, itis
concluded that the ffusion term can be neglected in the large-droplet limit.
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3.2.3 The General Dynamic Equation (GDE)

Computational models for condensing flow, e.g., [45], [42], [131],],[é8e fre-
guently based on the so-called general dynamic equation (GDE), whifinssarder
approximation of the KE:

2—’: + aixj(ujﬁ) + %(hﬁ) =0. (3.27)
The use of the GDE instead of the more elaborate KE, or generalized FP&iis ju
fied when the higher order terms in Eq. (3.16) are much smaller than therlest o
term. Indeed, by using a quasi-steady state solution for the droplet siabutisn,
Muitjens [79] has shown that the drift term in the FPE becomes dominanttioser
diffusion term for supercritical droplet sizes, i.e., for n*. Muitjens suggests that
for n > ng, ng = 2n*, the difusion flux may be neglected. A similar suggestion was
made by Hill [45], who introduced a droplet source term@t 1.3r* based on the
observation that at that droplet size the probability of growth is almost uAgya
result, the GDE is only applicable for > ng, and a higher-order approximation of
the KE would be required to cover the time dependent ranger2< ng. It is one
of the objectives of the present investigation to determine whether or nabtine
stated assumptions hold in condensation problems with rapid expansions.

In computational models employing the GDE, the usual practice is to neglect all
droplets smaller thang:
p(n)=0, 2<n<n. (3.28)

Whenng is constant, which occurs in quasi-steady nucleation, the flax=ahy can
conveniently be specified in the form:

hﬁln:no = \J, (329)

whereJ is the nucleation rate which is assumed to be independerfoo < n < no.
Whenng varies with time, however, the boundary condition in EqQ. (3.29) needs to be

replaced by [68]:

. . . Dn
AMPlnen, = J. Ah=h-— Fto’ (3.30)

with D/Dt representing the substantial derivative. Boundary condition Eq.X8280
only be applied as long asn > 0, since whemn < 0 droplets are leaving the
computational domain and a boundary condition is not required. This situaion
sembles instantaneous evaporation, and is actually similar to the denucleation mec
anism which was mentioned by Hagmeigral. in [42] and [107], wherag = n*. It

is noted that in case of rapid expansions the quasi steady nucleationpdissy i.e.,

the assumption thakis independent af for 2 < n < ng, may loose validity and may
lead to deviations between the solutions of the GDE and the KE.
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By defining the radius distribution function as

f(r(n,ry),x,t) =

0 t 3.31
TETATALERE (3:31)
with r = ryn'/3, andry = ry(x, t) denoting the fective monomer radius, the follow-
ing general dynamic equation for the droplet radius distribution functioriizved
from Eq. (3.27):

of o 0
— 4+ —(Uujf)+ =(rkef) = 0. .32
m +axj(UJ )+ar(rKE )=0 (3.32)
The growth rate kg is given by:
. .or Dryr
K = na—n + Fta (333)

The first term on the right-hand side of Eq. (3.33) represents the ehandyoplet
radius due to mass accumulation, whereas the second term resembléec¢hefe
compression or expansion of the liquid phase. The subskKiipin kg indicates
that the growth of droplets is governed by the kinetics of monomer impingement.
It can be shown that for sluciently large droplets and incompressible liquids (i.e.,
Dr1/Dt = 0), the growth rateéxg reduces to the well known Hertz-Knudsen droplet
growth law.

It is noted that the boundary condition Eq. (3.30) is traditionally implemented into
Eqg. (3.27) by adding a source term which includes a Dirac delta functioa.egua-
tion thus obtained is similar in form to Eq. (3.27), and is given by:

o 0

0
—(uip) + —(p) = Is(n — o). 34
i+ P+ 5 9) = 30t o) (3:34)

To show that the formulation of the condensation problem given by Egt)3s3
equivalent to Eq. (3.27), with Eq. (3.30) specified as boundary congiiageneral
solution for both problems is independently derived by means of the methahof
acteristics. Here, a characteristic, denotedxkty, n(t), represents a trajectory in
(x, n)-space, which follows from the solution of the coupled initial value problem:

dx

4 = UK. . X(t) = X1 (3.35)
% AR, A).Y L At = (3.36)

where 3, n1) denotes a point through which the characteristic passes at an arbitrary
reference timd;. Starting with Eq. (3.34), the nucleation source term on the right-
hand side is first replaced by the expression:

o(t - to)

Jo(n—ng) = J(t , 3.37
(0=ro) = 0T (3.37)
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wheren(tp) = no. By introducing the derivatived/dt, where:

di) _a() a()  .o()
e +uja—xj o (3.38)

and replacingoy, with the specific number densip, = pn/p, EQ.(3.34) may be
rewritten along a characteristic as:

dp .on ) o(t-to)

Multiplication of Eqg. (3.39) with an integrating facta(t), where:
t
an ~(+ ’ /
alt) = explf%(n(t ),t)dt}, (3.40)
0
followed by integration in time, yields the following solution:

J(t) St —to)
p(t) |h— &e|(t)

t
A = [ a) . (3.41)
to(1-5)
whereg is an arbitrary positive number smaller than unity, sucht@a{1-2)) < no.
As p(n) = 0 for n < ng, and because the Dirac delta-function filters the integrand in

Eqg. (3.41) at = tg, the final solution for Eq. (3.34) is given by:

./ a(to) J(to)
1),t) = .
P a(t) p(to)ln — Ie|(to)

(3.42)

The nucleation flux is only specified when - %—T > 0, and therefore, the absolute

signs on the right-hand side of Eq. (3.42) can be dropped:
. a(t J(t
. n = 20—

at) p(to)(n - G2)(to)

The next step is to obtain the solution of Eq. (3.27), with the boundary conditio

given by Eq. (3.30). By applying similar mathematical manipulations as pertbrme
above, the following solution of Eq. (3.27) (along a characteristic) isvddri

[p(N(t'), t)at)]y, = O. (3.44)

Eq. (3.44) is similar to Eq. (3.41), except for the nucleation source teditheiower
integration boundary. Sincexftg) = ng, and:dny/dt = Dng/Dt due tong = np(X, t),
the boundary condition given in Eq. (3.30) allop@®(tp), to) to be expressed as:
J(to)
p(to)( - GR)(to)

(3.43)

p(N(to), to) = (3.45)
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Substitution of Eq. (3.29) into Eq. (3.44) then yields:
a(to) J(to)
a(t) p(to)(n - ) (to)
This is exactly equal to the solution of Eq. (3.34) in Eq. (3.43), thus complétiag
proof for equivalence of both formulations.

It is finally noted that the GDE, in contrast to the KE and the FPE, does net allo

for an equilibrium distribution: subcritical droplets will always evaporatbereas
supercritical droplets will always grow.

p(n(t), 1) = (3.46)

3.3 Evaluation method

3.3.1 Description of test cases

In the first test case, a nucleation pulse experiment with water vapor is séula
similar to the one used by Holten and van Dongen [46]. The KE (Eq. (3I®)FPE

(Eg. (3.18)), and the GDE (Eqg. (3.32)) are solved for the temperatutesaturation
histories given in Figure 3.5, with; = 0,1 = 1,2,3. The simulation is one-way
coupled, i.e., theféects of latent heat release and vapor depletion are not accounted
for. The predicted size distributions obtained with the various master eqsiaien
compared, and the condensation fluxes and truncation errors areechédyexplain
observed dierences.

e e e
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Ficure 3.5: Temperature and saturation ratio evolution in the nucleation pulse ex-
periment.

In the second test case, the condensing flow through a Laval nozaeukted,
corresponding with experiments conducted by Taninetra. [119]. By using isen-
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tropic relations, the nozzle area variation in Figure 3.13.a has been temtad from
the dry-flow pressure profiles given in [119] to account for bouypdayer dfects.
The nozzle diverges very slowly downstream of the throat, which justtiesise of
a quasi-one-dimensional simulation. The experiment utilizes a mixture of nitroge
(N2) and methane (CkJ as the carrier gas, and heavy watesQ@) as the condensing
component. The mole fraction of methane in the mixture is approximately 4%, and
that of DO approximately 5%, which corresponds with a totabD mass fraction
of gmax = 0.0018. The total pressure and temperature of the mixture at the nozzle
inlet arepg = 30.1kPaand Ty = 298K, respectively. The material properties of
N>, CHs and D,O are taken from [44], and given in appendix A. The latent heat of
condensation is set equal to the bulk-valye= Lp(T) for D,O. A two-way cou-
pling is utilized, accounting for thefiects of vapor depletion and latent heat release.
The simulation is based on solving the FDE for the mixture (Eqg. (2.84), (2286,
(2.87)) simultaneously with either the KE (Eg. (3.3)), or the GDE (Eq. (3.32PE
results have not been obtained for this test case since the FPE equililsivityudion
corresponds to excessively high liquid mass fractions which triggersthetion of
unsteady shocks.

The influence of the sticking probability, is evaluated by considering Eg. (3.5)
with the following variants: (i, = 1¥n; (i) an = 0.8Vn; (i) a1 = 1072, @ = 1,
N = 10; (V) a1 = 101, @ = 1, N = 10; (V) a1 = 102, @0 = 1, N = 5.
The influence of the employed equilibrium size distribution on the backwaedsa
evaluated by comparing results obtained with Eq. (3.9), (3.10), (3.11)(&a5).
The influence of the choice of is investigated by taking

N=en, l<e<?2, (3.47)

similar to the approach used by Holtehal. in [46]. Finally, the influence of the
surface tension model is assessed by employing an additional expréssiofi)
from [28].

Unless specified otherwise, the backward igtén the KE and FPE is based on
the Courtney equilibrium distribution. By default, the forward rate is calcdlate
using variant (i) for the sticking probabilityf, = 1). For the KE, the lower boundary
is set to a default value afy = 2. With respect to the GDE, the default nucleation
rate is computed from the CNT-model, and the growth rate from the Hertzid&mu
droplet growth law, with the lower boundary setrgt= r(2n*) (see appendix B).

3.3.2 Numerical methods

The maximum droplet radii observed in the simulations are approximatiyn)
which corresponds with a droplet sizerok 108. To reduce the computationafert
in solving the KE, droplets are grouped into bins in similar fashion as was idone
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[46] and [133] (see Figure 3.6). For droplets smaller than a certain aizagle
droplet is associated with each bin, whereas for larger droplets the nofidi@plet
sizes assigned per bin progressively increases. In this way it is po&sitover the
entire range of droplet sizes by a set of 400 to 2000 bins, with the smaltgdet
size equal ton = 2, and the largest to= 5 - 10°.

The KE for the droplet bins is given by:

a;k (Pk )= (Jk 1- ), (3.48)
wherepy is the average number density for tki® bin, wy is the number of droplet
sizes associated with big and where)i is the condensation flux between bkand

k+ 1. The fluxJy is calculated by means of Eq. (3.2 = Jn, k), With n; (k) denoting

the largest droplet in th" bin. This calculation requires the number densities at
the neighboring droplet sizes of(k) andn(k + 1), with the latter representing the
smallest droplet belonging to bka-1. By applying zerah or first-order interpolation

to the bin-averaged number densitig@ndpy, 1, an estimate of the number densities
at the neighboring droplets can be obtained.

bin k - 1 bin k bin k + 1

n® (k)

Ficure 3.6: Grouping of droplets into bins for the numerical solution of the KE.

When solving the FPE or the GDE, the drift anéfdsion terms im-space need to
be discretized. Hereto, the droplet size space is again divided into Hieseafter a
second-order finite volume discretization is carried out. The resulting sisoriete
form of the FPE is given by:

apk nk+1/2 1 o . Nk+1/2
—|—=(D 3.49
(9t (pk J) [ P]nk 1/2 Ank an( ,0) s ( )
-1/2
wherepy represents the average valuepodver bink, whose edges are located at
Nks172. The drift flux on the right-hand side of Eq. (3.49) is calculated by meé&ns o
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either the second-order MSOU-scheme [118] or the fifth-order WERSI@2me [106],
and the dffusive flux is calculated by using a central discretization. The semi-discrete
form of the GDE is similar to Eq. (3.49), except for théfdsion term.

The spatial discretization of the master equations and FDE is done by means of
finite volume method, which formally provides second-order accuradyodacing
the vector of state variableg whereq = (o, pu, p&, p2, ...pn-1)" for the FDE and
KE, the quasi-one-dimensional balance equation

aq 10

L+ 27 (F@A) = S(@) (3:50)

with A = A(X) the nozzle flow area, is discretized as:

agi , 1
dt  AAX

whered; represents the cell averaged valuegpf the flux in physical space the
relevant source termsthe index of the computational cell, anc; = X+1/2 — Xi—1/2
the corresponding cell width. For the system of FDE and FPE, or GDEdithe
cretized form is similar to Eq. (3.51), wiilp replaced byq = (o, pu, p&, p1, ... pn) " -
The fluxes in physical space are calculated by means of Anderssolseme, which
employs van Leer flux splitting [62] and the van Albada flux limiter [2].

For the first test case, the discretized master equations are integrated irytime b
means of a second-order predictor-corrector method, using typicaltémpesf 10°s.
For the second test case, the system in Eq. (3.51) is marched in time by m#aas o
same time-integration method, until a steady state is reached. Rewriting the semi-
discrete form in Eq. (3.51) as:

[F@AIXY2 = S(G), (3.51)

— _R+S, (3.52)

where:R; = R(G;, Gi+1, Gi+2) denotes the advection residual vector, the time integra-
tion for the FDEFPE and FDESDE-systems proceeds as follows:

1. predictor step:
a" = g™+ (R + SMAt™, (3.53)

2. corrector step:

~ - 1
g™t =gn+ E(R{“ +9"+ R + SP)AL™, (3.54)
with m denoting the time level andt™ the corresponding integration time step. For
the KE, time integration proceeds in a slightlyffdrent manner, and is based on a
semi-implicit adaptation of the predictor-corrector method. Denoting the steterve
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for the mean number densities py= (o>, .., pn-1)", the semi-discrete form of the
KE is given by: _
%

gt = Rui+ S +Adipis (3.55)
whereR; is the advection residual vector, and where the ma&tgixs given by:
for 2+ b
e 9 o . 0 0 0
o f (\egibn ® bne
nr(2) _ | |
W m e - 0 0 0
Aq = : : : . : : : ,
0 0 0 frn-3)  Fen-2) by (v-2) By (-1
v WN-3 WN-2 Wijb
0 0 0 0 for(N-2) _ Forv-1) 4By (n-1)
- WN-2

"4.56)
corresponding with a zertt order interpolation to obtain the number densities at
the edges of neighboring droplet bins. The ve&opon the right-hand side of Eq.
(3.55) contains the contributions from the monomers (1) and the largest droplets
(n=N), and is given by:

fniy >

bn(N)_
= 0,.,0, —~50)". 3.57
S (Wlpl,,,,WNpN) (3.57)

The monomer number density is determined from the partial vapor denstiy:

p1 = py/My, whereas the number density for the largest droplet is set to zgre:0.
By applying a first-order discretization to the time derivative in Eq. (3.584 lay
evaluating the first and second term on the right-hand side of Eq. (X 5B)at™,

whereas the last term is evaluated at the new tiftié, the following numerical
approximation to Eq. (3.55) is obtained:

Pt =p+ (RN + ST+ Ao HA™. (3.58)

This is a linear equation for the unknown number density vep_fb“ll, for which
solution yields:
Pt = Clp™ + (R + STHAL™, (3.59)

where the matrixC" is given by:
CM=[1 - Af At (3.60)

with | denoting the identity matrix. By applying Eq. (3.59) to successive predictor
and corrector steps, a second-order semi-implicit time integration methocef&igEh
is obtained.

The convergence of the numerical solution corresponding to eachatesicver-
ified by solving the discretized equations on successively refined dgrioisspatial
discretization, a number of 400 grid points was found to bB@ent, whereas for the
discretization in droplet size space a maximum of 2000 droplet bins hasisedn
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3.4 Results and discussion

3.4.1 Equilibrium distributions

Figures 3.7.a and b show the Courtney and FPE equilibrium distributionsafter w
vapor at ()T = 2532K, S = 05, and (b)T = 2532K, S = 5.0, respectively.
The sticking probability has been set to unity, and the backward rate isl lnese
the Courtney equilibrium distribution. For the FPE, the lower boundaiyas been
taken equal to 2, 5, and 10 respectively.

For the subsaturated vapor (Figure 3.7.a), the equilibrium distributions torono
ically decrease with increasing droplet size, whereas for the supexsatwapor
(Figure 3.7.b), there is a minimum presentrat r*. The monotonic increase in
number densities of supercritical dropletsx r*) cannot exist for arbitrarily large
droplets, and therefore these distributions are referred to as a ¢oedteguilibrium
distributions [52], [127]. Figures 3.7 shows that there are larfferginces between
the Courtney and FPE equilibrium distributions which are due to the truncation e

R2(n), with:
Rm= > Ti(n). (3.61)

j=k+1

Comparison of Figures 3.7.a and b suggests that the influence of thetinanea

ror on the equilibrium distributions appears to be more pronounced for eavees

of the saturation. In Figure 3.8 the normalized truncation e®¢m)/R%(n) obtained
from the Courtney equilibrium distribution has been plotted<fer1, 2, .., 10, reveal-

ing that for small droplets (e.gn, = 5), the truncation error first shows a maximum,
after which it gradually reduces to zerolas further increased. For larger droplets
(e.g.,n = 50), the truncation error decreases almost monotonically with increasing
truncation order.

3.4.2 Testcase 1: nucleation pulse experiment

The size distributions predicted by the KE, FPE and GDE are shown in RBglire

for: t = 0.025ms (halfway the nucleation pulse), = 0.05ms (end of the pulse),

t = 0.17ms andt = 0.29ms For the KE the lower boundary is setrat = 5, and

for the FPEng = 15, with pp, and p(np) obtained from the Courtney equilibrium

distribution. For the GDE, the lower boundary is senhgt= 2n*, and the initial

distribution is zero everywhere. Overall, the size distributions corraipgrwith

the KE and GDE agree with those reported in [46]. There are some miffieratices

associated with the GDE-solution, which stem from the use of a slightly modified

growth law and the application of the GDE to subcritical droplets in [46].
Comparing the FPE-solution with the KE-solution (see Figures 3.9 and 3.12), it

is observed that the FPE is able to predict the shape of the distribution funetip
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Fieure 3.7: Equilibrium droplet size distributions for the KE (Courtney) and FPE,
for water vapor at: (a) T= 2532K,S=0.5; (b) T = 2532K, S =5.0.
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Ficure 3.8: Truncation errors associated with the Courtney distribution for water
vapor at T= 2532K and S= 0.5.

accurately, even for very small droplets . There is, however, a nblieelfference
in the magnitude of about 8% aft of the moving front. In this region, tifiedince
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between the GDE-solution and the KE-solution is less than 1%, which is rebtarka
considering the fact that the former is merely a first-order approximatitivedatter.

In the region which immediately surrounds the moving front though, the FRigyle
performs better than the GDE, as the latter cannot capture the gradsitidraof
the size distribution to zero near the end of the front. In figures Figure&n@.d the
rear of the size distribution corresponding with the GDE abruptly stopsieskd¢he
KE- and FPE-solutions gradually reduce to zero. Thifedence is a consequence of
the denucleation boundary condition appliedyat r(2n*), which removes all of the
droplets of size < rg in the GDE-solution. Overall, the solutions obtained with the
various master equations show favorable agreement for this test case.

To explain this observation, the condensation flukeand termsT¥(n) of the Tay-
lor series expansion in the generalized FPE (Eg. (3.16)) are examisad) tHe KE-
solution, the condensation fluxds (Eg. (3.2)) have been calculated and plotted in
Figure 3.10, for the same four instants in time as in Figure 3.9. During the iioclea
pulse (0< t < 0.05m9, J, is independent of in the region aft of the front, meaning
that the condition of steady state nucleation is satisfaéglydt = 0. Furthermore,

Jn = Jent in this region, which explains why the magnitude of the GDE-solution is
very close to that of the KE-solution.

As the condition of steady state nucleation is satisfied, it now remains to be deter
mined how important the second- and higher-order Taylor tars) are compared
to the drift termT*(n). Figure 3.11.a and b depict the rafitn)/ T1(n)) for the times
t = 0.025msandt = 0.17ms respectively, fok = 2,3,4. Fort = 0.025msit is
observed that the first- and second-order terms are of comparablétudzgreven
for supercritical droplets, which seems to contradict the good agredreemeéen the
results of the GDE and the KE in this region. Furthermore, for very smatlleiethe
third- and fourth-order terms are not small compared to the first- anchdemaler
terms.

When the distribution evolves in time, the contribution of each Taylor term in the
expansion of the condensation source term can be weighed againgfénente in
condensation fluxed,_; — Jn, in order to determine the significance of each term.
During the pulse, however, droplets of sizec 10* are locally in a quasisteady state
(don/dt = 0), which means that,_1 — J, = 0. As all Taylor terms also tend to zero in
this region, comparison afk(n) with T1(n) is not a convenient method to reveal the
importance of the higher-order terms. In this regard, it is more relevardrtsider
the fluxesGX(n) corresponding with each Taylor terfif(n), where:

GKn) = - = il

ki 91 [( fi(_l)k +b)p(O)]lz=n. (3.62)

From Eq. (3.17) and Eq. (3.62) it follows th@‘f;rf—”) = —TX(n). By settingk = 1 in
Eq. (3.62), the drift flux is obtained'(n) = fp(n), and fork = 2 the difusive flux:
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Ficure 3.9: Droplet size distributions obtained with the KE, FPE, and GDE for the
nucleation pulse experiment at fourfdrent times: (a) &£ 0.025ms ; (b) t= 0.05ms
;(€)t=0.17ms; (d) t= 0.29ms.

G3(n) = —%(Dﬁ)(n}. Equating the right-hand side of Eq. (3.3) and Eq. (3.16), the
following relationship is obtained:

i TXn) = J(n - 1) - J(n), (3.63)
k=1

where the continuous functiof(n) is equal to the discrete condensation fllpdor
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Ficure 3.10: Evolution of condensation fluxeg dalculated by means of Eq. (3.2),

based on the solution of the KE, using the Courtney equilibrium distributio3E2).

and withay, = 1. The critical droplet sizes before and after the pulse are denoted by

n; and 1, respectively.

n e N*. Integration of Eq. (3.63) from to c then yields:

3 G| =- | I (3.64)
kZ:]:' n n:[

As p = 0 forn — o, and becausé(n) = J is independent ofi in the quasisteady
state, Eq. (3.64) may be simplified to:

i ij”) -1 (3.65)
k=1

Hence, for a quasisteady state solution, the importance of each Tayloirntdhm
generalized FPE can be evaluated in an indirect manner by comparingatllee sc
fluxesGK(n)/J with each other. These fluxes are shown in Figures 3.11.c and d, for
the timest = 0.025msandt = 0.17ms respectively.

In Figure 3.11.c it is clearly observed that the drift fl@k(n) is the dominant term
for supercritical dropletsn( > 1.5n*), whereas below the critical size, the second-
order term becomes equally important. Figure 3.11.c actually confirms the validity
Muitjens’ and Hill's suggestion to neglect the second-order ternmfer2n*. This is
underscored in Figure 3.11.e, which shows @&&2n*) ~ 0.96J, andG(n)+G?(n) ~
J for n > n*. For very small subcritical droplets (< 0.5n*), the contributions of
the third- and fourth-order fluxes become significant, which relates to #oeimate
results of the FPE in this region. In retrospect, it is found that all nepgssaditions
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for simplification of the KE to the GDE are satisfied during the nucleation pulse,
which explains the good agreement between the predicted size distribimrihe
period after the pulset (> 0.05mg, the condensation fluxes vary with droplet size
(Figure 3.10), so that the steady-state condition is no longer satisfiedtrartstent
behavior of the size distribution only regards the large droptets (*), for which
both TK(n) (Figure 3.11.b) an@X(n) (Figure 3.11.d and f) show that the first-order
term is dominant. Therefore, the GDE still is a valid approximation to the KE, even
for slightly subcritical dropletsn(> 0.5n%).

With respect to the FPE, it is observed in Figure 3.11 that incorporationeof th
second-order term should yield accurate results, even for dropletealkasn = 11
in the period after the pulse. This is confirmed by Figure 3.12, where the FPE
solution is plotted for varying lower boundariag. The best agreement is obtained
with ng = 15; for the smaller values @) = 5 andng = 10, the small droplets tend to
be near the equilibrium distributions corresponding with each master eqy&igpn
ure 3.12.c and d), which, as already seen in the previous discussioa equtibrium
distribution, leads to rather largefifirences between the KE- and FPE-solutions.
This behavior characterizes the small droplets, and results in an overtstioiethe
liquid mass fraction at the onset of condensation when the FPE is employisds T
also the primary reason why it was not possible to obtain solution converden
the FPE in the second test case.

3.4.3 Test case 2: expanding nozzle flow

Using the reconstructed nozzle profile in Figure 3.13.a, the FDE have dobesd
simultaneously with either the KE or the GDE. Figure 3.13.b shows the typical be-
havior of variables that characterize the flow field and the thermodynarhavime
of the system. Nucleation startsyat: 0.02m, where the saturation reaches a max-
imum. This greatly enhances the formation of stable droplets, and causes@he D
liquid mass fractiomy to increase steadily. The latent heat release due to condensation
results in a temperature rise, while simultaneously the flow is decelerated.owhe fl
remains supersonic in the entire divergent section of the nozzle, anustteam of
the nucleation point the vapor remains in a slightly supersaturated state.

To evaluate the influence of the higher-order derivatives in the mastetieq
on the thermodynamic variables, the mixture temperafusnd DO liquid mass
fractiong have been plotted for solutions obtained with the AKE and FDEGDE-
systems in Figures 3.14.a and b, along with the laser absorbtion measureAidnt (
data from [119]. The nucleation rate in the GDE has been obtained by eisiregy
the CNT-model, the CNT-model with the empiricaldi and Strey-correction, and
finally, the ICCT-model (see appendix B and Eq. (3.12)). The predietegerature
and liquid mass fraction profiles obtained with the KE and GDE-CNT models are
very close to each other, but theyffdr significantly from the measured data. It is
observed that both models predict the onset of condensation too latesaigketipre-
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Ficure 3.12: Solution of the FPE for various lower boundary positiong: =05, 10
and15, at two times: (a) & 0.025ms ; (b) t= 0.17ms. The solid line is the solution
of the KE using the Courtney equilibrium distribution with = 1. Figures (c) and
(d) are close-ups of respectively (a) and (b), depicting the equilibriigtmilbutions
for the KE (Courtney) and the FPE{r- 5).

dicted temperature is too high in the region downstream of the nucleation Zbae.
GDE employing the CNT-model with the 9k and Strey-correction does a better job
of capturing the onset-point, but the temperature downstream of the tiaoleane

is again overestimated. Finally, the GDE with the ICCT-model is seen to predict th
onset of condensation much too early, but it does yield a final tempenahicé is
closer to the measurement data.

The droplet size distributions obtained by solving the AR, or the FDEGDE-
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Ficure 3.14: Comparison of temperatures T and® liquid mass fractions g for the
expanding nozzle flow obtained from various simulations and from exp@rime

system with variousy are shown in Figures 3.15.a-c, with close-ups of the nu-
cleation zone in the — x plane in Figures 3.16.a-c. Figures 3.17.a-d show the
same droplet size distributions at four positions along the nozzle axis. fem
KE-solution in Figures 3.15.a, 3.16.a and 3.17, it is observed that the digiribu
becomes bi-modal in the nucleation zone, with an exponentially decreasing tail
the region of small droplets (< 0.5nm, see Figure 3.17.b). Of special interest is
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Ficure 3.17: Comparison of droplet radius distributions at fourff@rent positions
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KE has been solved by using the Courtney equilibrium distributionajth 1. The
GDE has been solved on various domains, with the minimum droplet sizriad
between the values1n®, 1.5n*, and2n*. The nucleation rate is calculated by means
of the CNT-expression.

the region in the vicinity of the critical droplet siz&, located within the nucleation
zone. As shown in Figure 3.16.a, the solution shows strong gradients wiikin th
zone, and in the immediate vicinity of the critical line, in the region whémses,

the distribution attains very small values, which implies that there is almost a void
of droplets in this area. This behavior was also reported in earlier w@¥][in
which the GDE was solved withy = 2, and with the nucleation source term active
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atn = n*. The GDE-solutions given in Figures 3.16.b and ¢ show a void of droplets
belowr = 1.26r* andr = 1.03r*, respectively, in accordance with the denucleation
condition at the lower boundarieg = 2n* andng = 1.1n*, respectively. For the KE,
this region is further characterized by nett evaporation, as the curvesponding
with the positionx = 0.03m in Figure 3.18.a (see the insert) shows slightly negative
fluxes for the small droplets.

When comparing the various GDE-solutions with the KE-solution in Figures, 3.15
(3.16) and (3.17), it is observed that at the onset of condensatiomréR3dL7.a), the
distributions have a similar shape, buffdrent magnitude. At the point where max-
imum supersaturation is achieved & 0.02m, Figure 3.17.b), the GDE-solutions
continue to display an exponentially decreasing trend, whereas the iKibation
shows both a local minimum and a maximum. Further downstream of the nucleation
zone (Figure 3.17.c and d), the extrema in the KE-solution become moreyorceth
and there is a clear separation between the size distribution for the smaditdrapd
that for the large droplets. In this region, each GDE-solution has a maximhiohw
is much larger in magnitude compared to that of the KE-solution. The discontinu-
ity on the left side of the GDE-distributions (see Figure 3.17.d) is a consequzf
denucleation and is most pronounced for the solution witls= 2n*. Furthermore,
each of the GDE-distributions is shifted towards the smaller droplets comjusiteel
solution of the KE. It is this shift which compensates for th&etence in magni-
tude, so that the liquid mass fractions corresponding with the GDE-solutishtha
KE-solution (see Figure 3.14.b)ftér only slightly.

Having observed the rather largeffdrences between the size distributions ob-
tained with the KE and GDE, it is concluded that the conditions which allow for
simplification of the KE to the GDE are not satisfied. The first condition to be ex-
amined concerns the quasisteady state behavior of the size distributicglaf®othe
behavior of the size distribution in the nozzle flow to the observations fromubie-
ation pulse experiment, it is convenient to rewrite the KE in Eq. (3.3) in the fallgw
Lagrangian form

Dbn 5 -3 . n=23 (3.66)

Dt n-1 n » 5 Dy ee s .
where:pn = pn/p, and: J, = Jn/p. Based on Eq. (3.66), the steady state nucleation is
obtained wherJ, is independent of, for droplets in the vicinity of*. Considering
Figure 3.18.a, it is clear that the steady state condition is not satisfied withimthe n
cleation zone. This is also reflected in Figure 3.18.b, which showslghat differs
by an order of magnitude from the condensation flgxcalculated ah = n*. Having
determined that the steady state condition is not satisfied, the next step isuo eva
ate the importance of the second and higher-order tarf(rs) in the Taylor series
expansion of Eq. (3.16) relative to the first-order teFtgn). Figures 3.19.a-d show
the changes in the scaled Taylor terfi§n) for k = 2,3, 4, along with the location
of the critical droplet size. The curves in Figures 3.19.a, b and ¢ aoeiagsd with
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points within the nucleation zone, and here it is observed that the secdadterm
remains important in the vicinity of the critical droplet size, whereas the thitd- a
fourth-order terms are only important for very small subcritical droplétsarly, the
generation of new dropletsaj = 2n*, as suggested by Muitjens and Hill, is not valid
in this particular case, as the second-order term is of the same order oitutkgas
the drift term. The curves in Figure 3.19.d correspond to a position fansipeam
of the nucleation zone, where it is observed that the higher-order teemslatively
insignificant, even for subcritical droplets as smallnas 0.01n*. Apparently, the
evolution of the droplet size distribution in this region may be described hyletro
growth alone, which makes the GDE a valid approximation downstream of the nu
cleation zone.
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Ficure 3.18: (a) Condensation fluxes calculated by means of Eq. (3.2), based on the
solution of the KE, employing the Courtney equilibrium distributiop & 1); the
insert shows a close-up for the small droplets. (b) Comparison bettheecritical
condensation flux,d and the CNT-nucleation rate-§ 1.

It is noted that in previous work [46], [133], the boundany has been placed
at droplets larger than dimera (> 2), with the number density at the boundary
specified by the equilibrium distributioni,,” = ﬁﬁ;‘. As shown in Figures 3.20.a-d,
this assumption appears to be valid, as long as the lower boundary is tékeiestly
small. Obviouslyng should be taken smaller than, as the equilibrium distribution
shows an exponentially increasing (and thus non-physical) trendan*.

From Figure 3.18.4a, itis seen thit+ O for the small droplets, whereas in the case
of the equilibrium distribution, the condensation fluxes are exactly zermmgUsq.
(3.2) and Eq. (3.6), the ratio between successive number densities reapressed
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Ficure 3.19: Second- (F(n)), third- (T3(n)) and fourth-order (T(n)) terms in the
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droplet size k; the graphs correspond with the following positions along the nozzle:
(@) x=0.015m; (b) x=0.02m ; (c) x= 0.03m ; (d) x= 0.06m.




68 CHAPTER 3. EVALUATION OF MASTER EQUATIONS IN CONDENSING FLOW

— 1E+27 ——————————
107 F E | ]
E ——e —— Courtney E ] ——e —- Courtney
— e— KE ] — FoN — e« KE E
£
10% L e
o F
1S
N—r
10®F
1024
107 ‘ ‘ T ‘ ‘ ‘ ‘ T 10% — ‘ T ‘ ‘ ‘ ‘ L
25 _f
10% ——e—- Courtney - 10 E ——e-—— Courtney ]
—e— KE 1024 L —e— KE ]
23 E E
10 107E E
—  F 1
Eno® Ewe E
10%E -
1019 E E
10°F d
107} AN g ]
\b 10%° L 4
N F E
10% ! L 10%L !
3E-10 4E-10 3E-10 4E-10
r(m) r(m)
(©) (d)

Ficure 3.20: Close-up of droplet radius distributions obtained by means of the KE,
along with the Courtney equilibrium distribution at fourffdirent positions along the
nozzle: (a) x= 0.01m ; (b) x=0.02m ; (c) x= 0.04m ; (d) x= 0.06m.
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Ficure 3.21: Comparison of temperature anc,O liquid mass fraction profiles for
the surface tension expressions taken from [44] and [28]. The KE kas Bolved
using the Courtney equilibrium distribution for the backward ratg € 1).

as: .
O 0 J
AT [1— " ] (3.67)
Pn Pn fnon

Due to the high concentration of small droplets, it appearsﬁigxnat« 1 along the
entire nozzle, which is consistent with the observation that the size distrikigtion
almost equal to the equilibrium size distribution for these small droplets.

3.4.4 Sensitivity analysis for the Kinetic Equation
Uncertainty in the surface tension

As the equilibrium distributions depend exponentially on the surface tensidrns
useful to analyze the sensitivity to uncertainties in the surface tension moédel.
slightly different DO surface tension models reported in [44] and [28] lead to the
temperature and liquid mass fraction profiles shown in Figure 3.21.a anddn wh
employed in the KE. It appears that the temperature is slightly sensitive torfheesu
tension model, whereas the liquid mass fraction is nearlyfecizd.

Uncertainty in the sticking probability

To investigate the sensitivity with respect to the sticking probability, the temperatu
and liquid mass fraction profiles obtained with the various model expressiong
in the KE are shown in Figure 3.22.a and b. It is observed that all otherimiedel
to some degree of condensation-onset delay, when compargd=ol (curve (i)).
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Downstream of the nucleation zone, however, all predicted temperatndekquid
mass fractions coincide, with the temperature being overestimated by all models.

Uncertainty in the equilibrium size distribution

The four equilibrium distributions (viz. Eq.(3.9), (3.10), (3.11), and.£3) which

are used to model the backward rates, with= 1 for all n and employing the
KE/FDE model, lead to the temperature and liquid mass fraction profiles shown in
Figures 3.22.a and b. The variation of the equilibrium model clearly has-a pro
nounced influence on both variables, although the Kelvin- and SCC edusitilatis-
tributions dtter only slightly.

The WOlk and Strey-corrected Courtney distribution, which was obtained from
nucleation pulse experiments, yields the best prediction of condensasgehiorihe
nozzle flow when compared to the experiment. In contrast, the SCC and Kelvin
models predict the onset much too early.

At the onset of condensation the distribution is close to equilibrium, and the liquid
mass fraction is predominantly determined by the relatively high number densities
associated with the small droplets. The accurate modelling of the equilibriura distr
bution for droplets as small as dimers is an active field of research, eldeesced
simulation methods are used to determine a.o. the Gibbs free energy fomvalty s
droplets [77].

Regardless of the observedtdrences in the nucleation zone, all models overesti-
mate the temperature level in the region downstream of the nucleation zone.

3.5 Conclusions

The kinetic equation (KE), and its first- and second-order approximatioageneral
dynamic equation (GDE) and the Fokker-Planck equation (FPE), resggchave
been evaluated based on (a) their equilibrium distributions, (b) a nuclgatisa ex-
periment, and (c) an expanding nozzle flow. The backward rates avedl&om the
forward rates using four fferent equilibrium distributions. Three of these distribu-
tions were taken from the literature, the fourth is proposed in the preapet and
consists of a Wk and Strey correction of the Courtney distribution.

The equilibrium distribution of the FPE reveals larg&eliences when compared
to the KE equilibrium distribution, whereas the GDE does not have an equitibriu
distribution at all. Both observations are directly related to the lack of higtober
terms in the FPE and the GDE.

For the nucleation pulse experiment, good agreement is observed betitbeae
models in the region of large droplets. Furthermore, the FPE also appehes to
accurate for smaller droplets. These observations are a direct caemseqf the fact
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various equilibrium size distributions: Courtney, SCC, Kelvin and Courimtly the
Wolk and Strey-correction. The sticking probability is set to unity= 1.
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that a quasisteady state is achieved during the nucleation pulse.

For the expanding nozzle flow, it appeared impossible to obtain a conveode-
tion with the FPE model due to the unrealistic equilibrium distribution of the FPE.
The GDE and KE solutions that were obtained from two-way coupled simuation
have been compared to data from a physical experiment. The size distrgate
tained with the two models are venyfidirent, whereas the predicted temperatures and
liquid mass fractions show good agreement when the KE is solved using tive Co
ney equilibrium distribution in the backward rates, and the GDE is solved tiseng
classical nucleation theory. Both models produce solutions tli&r dionsiderably
from the experimental data.

A sensitivity study of the KE-solution with respect to uncertainties in (a) tie su
face tension model, (b) the sticking probability, and (c) the equilibrium digtabu
(to model backward rates), revealed that both the sticking probability anedti-
librium distribution have a significant influence on the predicted condemsatiset.
The proposed Wk and Strey-corrected Courtney distribution yields the best agree-
ment with the experimental data. All four equilibrium models lead to an overesti-
mated temperature downstream of the condensation onset point, which rdag be
to non-isothermal condensation.




REDUCED MODELS FOR SINGLE
COMPONENT CONDENSATION

In this chapter an evaluation is made of reduced models which generptexamate
solutions for condensing flows. The models utilize the method of momenkgd)(MO
for which two variants are considered: the MOM derived from the kinetic tguia
(KE), and its large droplet-approximation derived from the general dyicaequa-
tion (GDE). Two well-known closure methods for the MOM, i.e., closurease
mean droplet size-approximations, and quadrature approximatiogesy@alitatively
evaluated, based on key requirements that have been identified fraty-steade and
transient characteristics of the KE. It is found that neither of the closus¢hods
performs satisfactorily, and that the quadrature approximations seveggir from

a lack of robustness. Finally, a numerical simulation of a condensingladiow is
utilized to quantify the influence of the closure error in the MOM. For the particu
lar test case considered, the agreement between results predicted eMtaM and
detailed calculations with the KE appears to be reasonable, both for the fltov fie
variables as well as the droplet size distributions.

4.1 Introduction

In condensing flows, such as observed in steam turbines or sufegssrcondition-
ers, the rapid expansion of the vapor generates a dispersion of sobtdrvia the
process of homogeneous nucleation. Previously, the evolution of theetisize dis-
tribution (DSD) was described by the so-called master equation, whichaatesly
a mass-conservation law in phase space, i.e., the space spanned bysibel gio-
sition vectorx and the droplet size [52], [101], [127]. Since the latent heat release
by the condensing droplets$tacts the dynamics of the compressible flow, there is a
strong two-way coupling present between the gaseous and liquid phEseson-
sequence of this strong coupling is that the fluid dynamics equations (FDE)d
flow field need to be solved simultaneously with the master equation for the liquid
dispersion. This approach has been adopted in a number of past iatiestsgn con-
densing steam, e.g., [112], [147], [130], [131], and also in chaptdri8, however,
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not favored for large-scale engineering applications, as the computht&sources

to obtain high resolution in both physical space and droplet size spadaram
expensive to be practically viable. The usual practice is to employ a rédnodel,

viz. the so-called method of moments (MOM), in which moments of the droplet size
distribution are used instead, as this yields a much smaller set of equationsehat

to be solved. Since its first application to condensing nozzle flow by Hill i, f4&
MOM has frequently been applied in numerical simulations involving either two- o
three-dimensional geometries [96], [91], [53], unsteady conderfking [1], [67],
[68],[43], andor viscous turbulent flows [108], [5].

The moment data obtained with the MOM includes, amongst others, the total
droplet number density and the scaled liquid mass fraction of the two-phase mix
ture. The latter is of specific importance, since it allows the thermodynamic state
variables, such as temperature and pressure, to be calculated from tbheerdien-
sity and internal energy via appropriate equations of state (see chaptém the
original MOM [45], the variation in the liquid mass fraction is given by a seurc
term which is an integral containing the product of the size-dependepledigrowth
rate and the droplet size distribution. Since the latter is not available in the MOM,
one is faced with the problem of extracting the average droplet growtlircetethe
moment data by some approximate means. This closure problem associateawith th
MOM dates back to the work of Stieltjes, who was one of the first to investigate
this problem in a systematic fashion [105]. Besides condensing flow, thgl &>
been widely applied in other branches of physics, notably within the fielémisal
dynamics [137], [16], [88], [102], [8], [9].

Over the years, various methods have been devised to approximatelytiselve
closure problem, ranging from relatively simple approaches, to more caatgadic
schemes. An example of a relatively simple approach is to evaluate all integrals
involving the DSD based on an average droplet size, which is obtainextifre ratio
of two or more moments, as is done in Hil's MOM [45]. Clearly, this is not an
unambiguous approach, as the average droplet size can be obtaingd/arsous
combinations of moments. Moreover, such methods do not allow for corfttbeo
closure error, and as a result, success is limited to a number of speesl cas

A more elaborate approach is to assume a generic shape for the size tilistribu
(e.g., using log-normal distributions, or polynomial expansions), whictaios pa-
rameters that can be calculated from the moment data [102], [68], &@]}, [This
technique is, however, not attractive for multi-modal or strongly skewsttitoli-
tions, as a rather large set of moments is usually required to accuratehstend
the droplet size distribution. Moreover, White [129] and McGretnal. [76] have
revealed that there are several classes of size distributions whightblessame sets
of moments, even though their shapes are entirefgmdint. Reconstruction of the
size distribution from a finite set of moments thus constitutes an ill-posed proiflem,
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the range of possible DSD’s is left unconstrained.

The latest advances in the MOM regard the so-called quadrature metnadisch
numerical quadrature is used to approximate the integral representingritlenc
sation source term. Several variants have been developed, such qsatrature
method of moments (QMOM, [75]), the direct quadrature method of moments (DQ
MOM, [70]), and the fixed interval quadrature method of moments (FIQMCHY)
[36]). Quadrature methods are very attractive because they havwen gboyield
highly accurate approximations, and furthermore, the accuracy caaligroe tuned
as desired, with the penalty that for increased accuracy a largerseinoénts needs
to be employed.

The MOM dficiently generates a flow field which approximately encompasses
the dfects of condensation. By solving the master equation in a subsequent post-
processing step, the droplet size distribution is then determined along deledade
trajectories. As demonstrated by Hagmegggral. in [42], such a strategy allows
one to obtain details of the size distribution with very moderate computatiioat.e
As shown by Sidin and Hagmeijer in [107], however, the closure errorarM®M
can severely corrupt the solution for the size distribution, if simple clossteh as
Hil's MOM, are used.

In this investigation Hill's MOM, the QMOM and DQMOM are evaluated for ap-
plication in condensing flow models. The moment equations considered in thss inv
tigation are either derived from the general dynamic equation (GDE),[dbfrom
the kinetic equation (KE) for the discrete droplet size distribution (Eq. (8.&)apter
3). Firstly, the closure approximations in the MOM are qualitatively evaluatgidg
key requirements identified from steady-state and transient characseoistie KE.
Attention is also focused on the robustness of the methods, as this is resm¢miz
be a fundamental requirement for a successful application of the M@l the
influence of the closure error in the MOM is quantified by comparing theiqhext
flow field solution and reconstructed droplet size distributions with the breadh
solutions obtained by simultaneously solving the FDE and the KE.

4.2 Moments and moment equations

4.2.1 Moment equations based on the kinetic equation

The kinetic equation (KE) for the discrete droplet size distribupigfx,t) is given
by:

LPn) =In-1-In, N=23,.. (4.1)
whereL denotes the advection operator,
o(. 0
0=, 92 0, (4.2)

ot 0x;
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and wherel, = fon — bni1one1 is the condensation flux. The forward rdteand
backward ratéy, depend on the droplet size, the vapor supersatur&jcand the
vapor and droplet temperaturésand Ty, respectively (see chapter 3). Although not
strictly necessary for the derivation of the moment equations from the &i&, 4n
isothermal condensation model will be assumed, T.e=5 T.

Thek"-momentv of the discrete droplet size distribution is now defined as:

N

(X, t) = Z Bn(x, nk. (4.3)

n=2

The zero-th momenk(= 0) represents the total number of droplets per unit volume
of the two-phase mixturd\}), whereas the first momerk € 1) corresponds with the
mean density of the liquid phasg).

Application of the advection operatdito Eq. (4.3),

N N
£00 = ). 0LG0) = Y fospos = (o + B+ buspna)s  (44)
n=2 n=2
followed by the manipulations:
N N
D Mhapna = 3 fodn(n+ Df+ 11512~ fupn(N + 1)
n=2 n=2
and:

N N
D Mbnsapnes = ) bupn(n = 1) — b + bapnsaNK,
n=2 n=2

with pn, pne1 — 0 for N > 1, finally yields:

N
L) = D Tlpn + f1p12 - bapo, (4.5)
n=2
with:
Ti(n) = Ti(n, %, 1) = fa(x, D[N+ 1)K = N4 + ba(x, [(n = 1)¢ = n]. (4.6)

As f, andb, are not polynomial functions (see chapter 3), the summation term involv-
ing Yx(n) andgn, in Eq. (4.5) can only be calculated exactly when the size distribution

is known. Hence, the calculation of this sum from available moment sets consti-
tutes a closure problem in the MOM. This, however, is not the only closurdglgm

that needs to be solved, as the last term on the right-hand side of Eqc¢4tajns

the dimer number density4}, which cannot be readily extracted from the moment
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data. The second term on the right-hand side of Eq. (4.5) also contaimstimmer
concentrationp1, but this is determined from the (partial) vapor mass densitys:

01 = py/My, with my denoting the mass of a single monomer. Alternatively, Eq. (4.5)
can be rewritten by using the fluk = f101 — bpyp2 to replace the dimer number
densityp>. This yields the following expression:

N
L0 = ) TeMpn + fpe(2 — 1) + Iy, (4.7)
n=2

which is fully equivalent to Eq. (4.5).
If the lower boundary is taken a&t= ng + 1 instead o = 2, i.e., if all droplets
with n < ng are neglected, then the momentsare obtained from:

N

W= > pbonk. (4.8)

n=np+1
Application of the advection operatd} yields the corresponding moment equation:

N
L0 = D TlWpn + frobro(o + 1 = brgyprgsanty (4.9)

n=np+1

In case the size distribution is dominated by large droplets, nhes 1, allowing
the functionk(n) to be approximated by applying a first-order Taylor series expan-
sion to Eq. (4.6), so thatn@ 1)K — nk ~ krk1, and: f— 1)K — nK ~ —kn"1, The first
term on the right-hand side of Eq. (4.9) is then approximated as:

N N
D, T~k > hn iy, (4.10)
n=np+1 n=np+1

wheren(n) = f, — by is the droplet growth rate in-space, previously introduced in
chapter 3. By applying the additional approximation:
froPno (No + l)k - bno+1/3no+ln|(() ~ (frgPro — bno+1/3no+l)ni(<) = Jnon(l-()

to the last terms on the right-hand side of Eq. (4.9), the following approximé&tion
Eq. (4.9) is obtained:

N
L)~k D A+ Ing(no)*, no > 1, (4.11)

n=np+1

where the condensation fluk, at the lower boundary is an unknown for which
closure is needed.
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4.2.2 Moment equations based on the general dynamic equation

If the dispersion predominantly consists of large droplets, then the KE eaphb
proximated by the GDE, as previously shown in chapter 3. By incorpordhtieg
condensation flux at the lower boundagy= ¢n*, £ > 1, into the GDE, the latter can
be written as:

Lp) = —%(hﬁ) +J(ng), ne[ng,o0), (4.12)

whereg = p(n, x, t) is the continuous size distributiod(no) is the condensation flux
at the lower boundary, anlda < ng, with ng — n < 1. The relevant boundary
conditions are given by:

p(ng) =0, lim p(n) = 0. (4.13)

Assuming quasisteady-state condensation for supersaturated vapimst@ntaneous
evaporation of droplets with < ng (so-called denucleation), the condensation flux is
given by:
N . Dngy ./. Dng . Dng
= 5(n— H(h- =2 - —H(-h+ = 4.14
J(no) = o(n n")[‘] (n Dt )+p(n Dt ) ( " D )] (4.14)

with ¢ denoting the Dirac delta-functioki the Heaviside step function,
H(¢) = 1if£> 0, elseH(£) = 0,

andJ the steady state nucleation rate (see appendix B). Defining the megiant

[ee)

P(X, ) = f p(n, x, )ndn, (4.15)
M

the corresponding moment equation becomes:

L) = Sek + Snk + Soks (4.16)
where:
Sk = f p(n)n(n)nkdn = k f A(n)n(n)n<Ldn, (4.17)
M n
~ kil Dng
Swi = Ino)*H(n(no) - =2}, (4.18)
8ok = p(n )nk(h(n ) - %)H(—h(n )+ %) (4.19)
Dk = pNo)Ny o Dt o Dt /) .

The source terms on the right-hand side of Eq. (4.16) are related to dgopleth
(Sck), nucleation $nx), and denucleatiorSp ), respectively.
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It is noted that for dispersions containingisciently large droplets, the value as-
signed tong can be much larger than unity, so that the integral on the right-hand side
of Eq. (4.17) difers only slightly from the discrete sum in Eq. (4.11). If additionally,
the special case of quasisteady nucleation is considered, then:

and:
h(no) > 0, Dno/Dt = 0,

which means that under such conditions, th&etdénce between Eq. (4.11) and (4.16)
vanishes.

In Hill's MOM, the moment equations are formulated in terms of the moments
of the droplet radius distribution functioffr, x, t),

(X, t) = f f(r,x, t)rkdr, (4.20)
o

with rg denoting the droplet radius corresponding wigh Application of the mo-
ment transformation Eq. (4.20) to the GDE for the droplet radius distributioction
(see chapter 3) yields the following moment equation:

L(uk) = Sck + SLk + Snk + Spks (4.21)
where:
Sek = k f f(r)r<tindr, (4.22)
o
S = riIH(i(ro) - =2) (4.23)
Dr Dr
_ ok .y Droy (. Dro
Spx = rof(ro)(r(ro) = )H( f(r0) + o, ) (4.24)
_ __k Dpp
Stk = 3 gk (4.25)

Similar to the source terms given in Eqgs. (4.17) - (4.19), the source termseon th
right-hand side of Eq. (4.21) are related to droplet grov8g ), nucleation $n ),
and denucleatior§p k). The additional terns, x on the right-hand side of Eq. (4.21)
accounts for the change in droplet radius due to liquid expansion. Dipéetigrowth
rater contains contributions from mass accumulating) @nd liquid expansionrg),
and is given by the expression:

F=fm+fe (4.26)
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where: ; ‘D
. . . b
= — = 4.27
fm=3" > fe= "3, Dt (4.27)
andpy denotes the temperature dependent bulk liquid density (a material property)
It is noted that Eq. (4.21) can also be derived from Eq. (4.16), blyagpthe trans-

formationn — r, where:

1/3
ﬂ] . (4.28)

r=r(n.pp) = (4
37Pb

Similar to the moment equation derived from the KE, there are two terms which
require closure in Eq. (4.21), viSgk andSpk. In many investigations employing
the MOM, the closure problem has exclusively been associated with theahieg
Eq. (4.22), whereas the denucleation t&p) has been neglected [45], [1], [91], [5].

In the present investigation the same approach will be adoptedp.e + 0.

The crucial information extracted from the MOM is the liquid mass fractipn
which is used in the equations of state for the two-phase mixture (see cBapber
Hill's MOM the first four momentsK = 0, 1, 2, 3) of the radius distribution function
are used to form a closed system of equations, together with the fluid dysaquia-
tions (FDE) for the two-phase mixture. The third moment is of special signifea
since it relates to the liquid mass fraction via the expression:

A
g= 3@;13, (4.29)
P

wherep is the mixture density. When the moments of the discrete droplet size dis-
tribution are used instead, a closed system is already obtained by emplaoyifigth
two momentsK = 0, 1), as nowg follows from the first moment,

g = myv1/p. (4.30)

4.3 Closure methods for the moment equations

4.3.1 Fourier reconstruction

In principle, it is possible to reconstruct the droplet size distribution fronmiesdt
data when a complete set of moments (i.e.,kfet O to o) is available. Formally,
reconstruction proceeds via the characteristic funcgw), which is the Fourier
transform of the size distribution [83]:

Y(w) = §{f(N}e, = f f(r) exp(wr)dr, (4.31)
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with f(r) = 0 forr < rg. Replacing the integrand by its Taylor series expansion
aroundr =0, i.e.,

expfwr) = i (i%l)krk,
k=0

the characteristic function becomes:

v = 0, (432

k=0

Application of the inverse Fourier transform then yields:

f(r) =  HY(w)k = o f‘I’(w) expiwr)dw = o Z f‘(lw)k expiwr)dow.

(4.33)
By using a finite set of moments in Eq. (4.33), it is possible to determine the size
distribution approximately. However, the problem is that a rather large nuofbe
moments K > 100) is required to obtain reasonable accuracy, especially when the
size distribution is characterized by strong gradients. As the requiredutatigmal
effort is of the same order as a direct solution of the master equation, onkyusua
employs computationally less demanding closure methods in the MOM. Two variants
of such methods are evaluated in this chapter.

4.3.2 Closure Requirements

Ideally, the MOM should provide the same moments as one would obtain from the
KE. The moment associated with the liquid mass fraction is of particular importance
as it controls the coupling between the condensation process and the/flamids.

To facilitate this discussion, the Lagrangian form of the KE is employed,

D5 . .
D‘?F = Jn—l - Jn N n= 2, 3, .oy N - 1, (434)

with gn = pn/p, andJdn = Jn/p. The boundary conditions for Eq. (4.34) are taken as
p1=mpy/p andpn = 0
Eq. (4.34) can be compactly written as:

= Ap-p%), (4.35)
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where the matrixA is given by:

—(f2 + by) bs
f2 —(f3 + b3) b4 0]
A= .. ,
0 fnoz —(fno2 + bno2) bn-1
fn-2 —(fn-1 + bn-1)
(4.36)

p = (02,03, ..pn-1)", andpst = A~1b is the steady state solution of the KE, with
b = (f51,0,..,0,byon) "

For subsaturated vapo$ (< 1), ﬁeNq is practically zero ifN is chosen to be $ii-
ciently large, meaning that the steady state KE-solution coincides with the equilib-
rium distribution, i.e.pSt — pd.

For supersaturated vappf;"™> 0, and thu$®" # p®9. As shown in chapter 3, the
KE can dfectively be replaced by the GDE for large droplets, which means that:

d . 1
—(PnN)=0=p~ =
(,m(pn) =p~

for n > 1. As can be verified from Egs. (3.4), (3.6) , and (3.10), n?/3 forn > 1,
meaning that for such droplet sizes * n=?/3. If the size domain is not finite,
however, i.e.Qn = [2, o), then none of the momentg are finite, since in the large
droplet limit

1
nk+ 3

Zﬁnnszﬁ(n)nkdn~fn‘mnkdn:[ 1] — 00,
k+ 312

neQ, On On

This is clearly an unphysical situation which originates from the fact tha$fe 1

the DSD can only be in an actual steady state on a finite sized domdm.i$fnot

finite, then there is a steady flux of droplets moving towards arbitrarily lamgeets,

which means that there is actually a quasisteady state solution for the DSD.
In conclusion:

(i) the KE has a finite and non-zero steady state-solyidrior S < 1, which
coincides with the equilibrium distribution;

(i) for S > 1, there exists a finite, non-zero quasisteady state solution, which
yields finite moments on a finite domain.

The transient solution of the KE can be characterized by means of thevaiges
AA\(t) and right eigenvectons\(t) of matrix A. As the dimension of the quasilinear
system in Eq. (4.35) can be very large (eNy.> 10’ for condensing nozzle flows),
calculation of the eigenproperties &f is not possible with present computational
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capabilities, and one would only be able to compute the eigenvalues of thensyste
matrix corresponding with the sectional approximation of the KE (see E®)(815

chapter 3). Despite thisfiiiculty, the sign of the eigenvalues can still be determined
by using a similarity transformation to construct the symmetric tri-diagonal matrix

Q:

—(fa+bp)  4/fabs
4/ f2b3 —(fg + b3) 1/ f3b4 0

0 vVin-sbn-2 —(fn-2+bn-2)  +/fn2bn-a
Vincebnor —(fnog + bnog)

whereD is a diagonal matrix with diagonal entries:

di=1, dm=0mi+/ bfml. (4.38)
I+

The eigenvalues d andA are equal, but their eigenvectors are generalffedint.
Calculation of the determinants of the principal sub-matrices@feveals that these
are all positive, e.g.,

Q=D'AD = (4.37)

= fofg + fabo + boby > 0 ;

fo+b, —+/f2b
_ ol - _o? - | f2tb2 4/ fabs
|-Ql=fa+b,>0; |-QF I_ Hbs 2+ bs

| = QM = (fms1 + bmea)l = Q™ = fnbmeal — Q™2 >0, m> 3.

From this it follows that-Q is a positive definite matrix, which means that all eigen-
values are strictly positive [80}i,2 > 0, and consequentiyt? = A3 = -2 < 0.
Thus it is established that KE drives the DSD towards the steady state sdhsion
corresponds witpSt.

In view of this, it is desired that the reduced models satisfy the followingirequ
ments:

1. the reduced models should allow for a steady state solution for the moments;

2. the steady state solution should be stable, i.e., any departure from tte stea
state should result in a relaxation back towards it.

In addition, closure accuracy needs to be addressed. Let the clrsardy be
defined as the fierence between thid"-moment obtained from the KE and that
obtained from the MOM. Then:

3. the reduced model should allow for control of the closure error, Ag.=
Ax(M), whereM is the size of the reduced model, viz. the number of moment
equations;
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4. the reduced model should be consistent with the KE, i.e., the closunre erro
should reduce to zero when the size of the reduced system is equal i that
the KE:Ax(M) — 0 for M — N, with N denoting the maximum droplet size.

In addition to the previous requirements, it is also desired that the reducgel mo
be suficiently robust for application in numerical codes. Although it ifidult to
quantify this mathematically, the term robustness refers to the extent in which the
reduced models can be solved, without the occurrence of physically siyesolu-
tions, that would necessarily terminate a computation. Such a situation mighit occu
during the solution of the moment equations when, for instance, a negative for
one of the moments is calculated. The usual remedy to this problem is to apply an
adhoc correction method, which allows the computation to be continued. tRekss
is a very important property, which is essential for the successful apiplicof the
reduced models in numerical codes.

Finally, it is also desired that the closure error is acceptably small for zceed
model of moderate size. This qualitative requirement can be assessethpgring
the MOM-solutions with those obtained with the KE. This can only be done for re
atively simple geometries because accurate solutions of the KE are compaltation
very expensive.

4.3.3 Hill's Method of Moments
Description of the method

In Hil's MOM [45], the moment equations given by Eqg. (4.21) are solvedkfc=
0, 1,2, 3, with the integral in Eq. (4.22) approximated by:

f f(r)imr<tdr ~ im(th) f f(r)rtdr = (a1, (4.39)
o o

where the Hill radiusy is defined by:

MH = 4 /@ (4.40)
Ho

This closure relies on using the Hertz-Knudsen growth law, for whigtends to
a size independent value forflaiently large droplets. If the size distribution is
dominated by such droplets, the approximation in Eqg. (4.39) will obviously weld
accurate estimate of the droplet growth contributay in the MOM.

If the momentsy of the discrete droplet size distribution are used, a similar type
of closure as in Hill's MOM can be devised. Based on the zero-th andvimgtents,
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the following moment equations need to be solved in conjunction with the FDE:

L) = A (4.42)
N

Lo1) = ) n)pn+ fipr+ 3 (4.42)
n=2

Using the average droplet size) = v1/vo, the sum oven may be estimated by:

N

2, 0 = AM)vo. (4.43)

n=2

It is noted that the use of mean droplet sizes does not provide closutefprob-
lem associated with the unknown valuewfifi Eq. (4.5), nor for the denucleation
termin Eq. (4.24). In Hill's MOM denucleation is neglected entirely, and onigle-
ation atr = rq is taken into account by setting the local condensation flux equal to
the steady state nucleation rate. For the moments of the discrete droplet 8ize dis
bution, a similar approach is to replace the condensationJfluxith the steady state
nucleation rate). The corresponding approximation to the moment equation is then
given by:

L) = TelMier + fapa (2 - 1)+ J (4.44)

For the momentsy, defined by Eq. (4.8), a similar approximation is given by:
L) = Tk + I(no)*. (4.45)

The nucleation fluxJy, in Eq. (4.11) can similarly be approximated by the steady
state nucleation rate.

Properties of the method

Assuming a frozen state of the vapor temperature and saturation, antieralofa
Hill's MOM for the momentsuk, with respect to the requirements that have been set
forth previously, yields the following observations:

1. forS < 1: J = 0 andr{(ry) < 0O, so that in the steady stgig = O fork > O,
whereas the zefbmomeniug remains equal to its value at the initial condition;

2. forS > 1: J > 0, andr{ry) < O forry < r*, whereag(ry) > 0 forry >

r*. Thus subcritical droplets will evaporate completely, whereas supeatritic
droplets continue growing, so that a steady state is not achieved;

3. the closure error cannot be made arbitrarily small, therefore, the méethod
inconsistent with the KE.
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The first two observations regarding the steady state solution for Hill's M@dvac-
tually consistent with that of the GDE. As the latter does not allow for the existeh
a non-zero steady state solution (see chapter 3), its corresponding tremmations
should not be expected to do so.

Evaluation of the system of moment equations given by Egs. (4.41) arit) (4rd
augmented with Eq. (4.43), reveals the same deficiencies as observed Bbgpite
these shortcomings, Hill's MOM is frequently used in engineering applicatmmars
ticularly because it is a very robust method. Usually, the only computatiooblgm
is associated with numerical overflow in the calculation of the Hill radius, vies
very small. This is especially the case at the onset of condensation, thkerember
densities of droplets are very low. However, this problem can be easilgdied by
delaying the calculation of the growth-tei®g x until the nucleation terr®y k yields
suficiently large values fof.

4.3.4 The quadrature method of moments (QMOM)
Description of the method

Although the QMOM has been documented in several articles, e.g., in [¥b] an
[69], it has always been presented in mere algorithmic form, with releetatlsl of
the underlying mathematics regarding the quadrature approximation beingeoc
Unfortunately, this has led to a number of misconceptions on the QMOM, and fu
thermore, fundamental problems associated with the application of the QM@ ha
rarely been addressed [140]. Therefore, some of the relevant matiical details on
the QMOM will be discussed in this section.

The QMOM employs a numerical quadrature rule to estimate the moment source
terms which contain integrals of the size distribution function over dropletgiaee.
For a genericontinuoudistribution functionw(¢), the approximation is:

M
[ wt@pers = Y wopter) + e (4.46)
m=1

Q¢

wherew,, and¢&n, denote them™ weight and abscissa, respectively, angl is the
quadrature error. Here, the distribution function fulfills the role of a gaiade
weight function (also known asraeasurgover the domairg2, [89].

The quadrature rule also holds for a discrete sum,

M
" wehE) = > Walbém) + em, (4.47)
.fE.Qf m=1

wherew; represents a discrete measure. Eq. (4.47) follows from Eq. (4.46ubec

the discrete sum oveR, can be written as an integral of a function consisting of a

sum of Dirac-delta functions.
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TheM weights and abscissas are determined from the requirement that tha-quadr
ture error be zero whes(¢) is replaced by any arbitrary polynomial with maximal
order of 2V — 1 [115]. Based on this requirement it can be derived that the abscissas
ém are the roots of the1™ orthogonal polynomialPy (£), whereas the weights follow
from the following system of equations:

M .
_f 6o : ifk=0
n;l WinPi(&m) = { 0 : otherwise’ (4.48)

whereg is thek™-moment of the distribution function, defined as

Ok = fw(f)fkdg , Or O = Z a)gfk (4.49)

Qf fEQg

for a continuous measutg(¢), and a discrete measuig, respectively. In principle,
the weights and abscissas can be found by solving the following non-Bgstm of
equations:

M
Zwmg,';zek, k=0,1,.,2M - 1, (4.50)
m=1

were it not that this is numerically a rather cumbersome task for ldrg€he weights
and abscissas are therefore calculated by means of an alternative mditichds
numerically more convenient.

To describe this method, it is convenient to introduce the inner product@f tw
functionsn(¢) and(¢) with respect to the measuig¢), or wg, on the domairt),
with:

(). 4@) = f n(€){(§)w(£)de, (4.51)

Q¢

for a continuous measutg¢), and

&), L) = D e (Ewe (4.52)

£eQy

for a discrete measuwe;. The codficients of thek!" orthogonal polynomiaPy(£)
are obtained from the orthogonality requirement:

(Pm(é),Px(é)y=0form=0,1,...k- 1. (4.53)
Using this property, the orthogonal polynomials can be recursivelyesspd as:

Pii1(é) = (€ — ak) Pi(€) — ckPi-1(¢), (4.54)
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with P_1(¢) = 0, Po(¢) = 1, and where the cdigcientsax andcy are given by [89]:

(Px(é), Pu(é))

o = (Pk(£), P(é)
(Pk-1(£), Pe-1(é))
Sincew(¢), wg > 0 onQ;, and not identically zero, it follows from these expres-

sions and the inner-product definition in Eq. (4.51), and (4.52), ththtdp@ndcy are

strictly positive real numbers. As the abscisgaare the roots of th&1™" orthogonal

polynomial, it can also be shown théate Q;, for all rootsk [115].

From the preceding expressions and the definition of the moments (EQ)(4.49
it follows that it sufices to know the moments of the size distribution in order to
calculate the cd@cientsax andcg. In actual implementation, these dbeients are
conveniently calculated from the moment data by means optbduct djfference
algorithm (PD), which was originally devised by Gordon [38].

Using the recursive expression in Eq. (4.54), the set of orthogarighpmials
P() = (Po(é), P1(é), .., Pm-1(£))T can be compactly represented as:

EP(§) = TP(E) + Pm(§)em-1, (4.57)
where theM x M-matrix T is given by:

=0,1,. (4.55)

=1,2,. (4.56)

a 1
ct a1 1 0
T= . , (4.58)
0 Cv-2 av-—2 1

CM-1 am-1

and wheresy_; is theM-dimensional unit vectorey_1 = (0,0, ..,0, 1)". If £ is now
replaced by, which is both thek abscissa as well as & root of Py (&), then
Eq. (4.57) reduces to:

&P(&k) = TP(&), (4.59)

which resembles an eigenvalue problem witHulfilling the role of eigenvalue of
matrix T. To actually compute the eigenvalues, it is numerically more convenient
to replaceT with a symmetric tri-diagonal matriX s [89], since there are several
established methods available to compute the eigenvalues of a tri-diagonal imatrix
a robust manner [89]. The matrix is obtained by the similarity transformation:

Ts=DTD™?, (4.60)
whereD is a diagonal matrix, with diagonal entries

d]_ = 1 N dm = dm_]_ \/Cm_l. (461)




4.3. G.0SURE METHODS FOR THE MOMENT EQUATIONS 89

As a result of Eq. (4.60), matriXs is obtained as:

ag +C1
Ve ar e 0
Ts= y . (4.62)
0 Vem—2 am-2  +Cm-1

VCM-1  am-1

Once the abscissas are known, the weights can be calculated by solviimgéne
system in Eq. (4.48). Alternatively, they can be obtained from the eigémmgofT .
If re denotes th&h eigenvector off s, which is scaled such that:

lIr 2¥11 = 6o, (4.63)

then:
wi = (1g3)? (4.64)

Whererh is the first component crf:S. A proof of this can be found in [115].
Imple}nentation of the QMOM for the specific case of the momeitd the radius
distribution function (see Eg. (4.21)) is illustrated in Figure 4.1. For the momgnts

corresponding with the KE, the implementation proceeds in similar fashion.

: moments at old time level:
e, k=01,..2M-1

Product Difference-algorithm

| a.. ¢, k=01,.M-1 |

condensing

1
1
|
1
1
1
|
1
1
1
|
! .
: assemble matrix T
, flow solver

1

1

1

|

1

1

1

|

1

1

1

|

1

1

, Size MxM |

find eigenproperties

| W, & k=12,..M |

calculate moment source terms

Soxo k=0,1,..2M-1 |

Ficure 4.1: QMOM-implementation in a condensing flow solver.
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Properties of the method

Realizability of the moment data

Itis well known that inversion of the moment data to compute the weights awtsabs
sas is an ill-conditioned problem, and usually its application is not recommended in
the literature [89]. The main problem concerns the calculation of théicieatsay
andcy from the moment data. Fox specifically, it appears that small perturbations in
the moment set can result in negative values for thistaent, which conflicts with

Eg. (4.56), from whickey > 0. Negativecy results in non-physical solutions for the
abscissasg, i.e.,& ¢ Q. This problem is directly linked to the so-called realizabil-
ity of the moment set, which dates back to the work by Stieltjes [105]. The ofigina
moment problem conceived by Stieltjes consists of a number of queries wiith @h
given moment set can be probed to determine specific information aboutdedy:

ing distribution function. The query concerning the realizability of the mometriss

For a given finite sequence of momefitgk = 0, 1, ..,2M — 1), does there exist a
positive measure(¢) on the domairs = [&p, o0), of which the moments coincide
with the given moment set?

The mathematical answer to this query is given by the following theorem, dlifigina
derived by Stieltjes and for which the proof is given in [105]:

THEOREM

I. A necessary condition for the existence of a measi¢gon the domairf2; =
[€o, o0), corresponding with the moment get(k = 0,1, ..,2M - 1) is that the
determinants of the Hankel matrice, H, defined by

HY o = O H5 0 = Omenes, kK=1,2,.. M, (4.65)
and with:
Bic = 600, 01, - Oorg1) = f (@€ - Eo)Fde, (4.66)

o
be non-negative for all k [1, M], i.e.,|H¥| > 0 and|HY| > 0 ¥k € [1, M].
II. In order for a measurey(¢£) to exist whose spectrum is not reducible to a finite

set of points, it is necessary andffient thatlH‘{l > 0 and |H'§| > 0Vk e
[1, M].

*Extensions of Stieltjes’ moment problem to the domdnand [Q 1] are given by the Hamburger
and Haussdorf moment problems, respectively [105]
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The modified momenté, can be calculated from the moment ggtand evidently,

6 = 6 whengy = 0. Although a continuous measure has been used in the previ-
ous theorem, it can be readily demonstrated that its validity also holds foettiscr
measures, but with the modified moments now given by:

Ok = k(60,61 .., om-1) = Z we(€ - o). (4.67)
&=éo+l

If the conditions set forth in the above theorem are not satisfied, 4hen 2,
which often means that one or more negative abscissas are calculategeoiar-
dizes the calculation process, and is usually remedied in an adhoc fashnenof
the few investigations in which this, and other problems associated with the QMOM
were addressed, was conducted by Wright in [140]. He discovestdith seem-
ingly small errors introduced by so-called flux-limited interpolation methods hwhic
are used to calculate the state variables at cell-vertices in computational/fihsichd
ics (CFD) codes (see, e.g., [59] for an extensive exposition on inttio schemes),
result in non-realizable states of the moment sets. This can be illustrated g mea
of the following one-dimensional advection problem for the moménts

00k 06

E + UW = 0, (468)

with u representing a constant advection velocity. Adopting a finite-volume spa-
tial discretization and forward Euler time integration, the numerical solutio&épr
(4.68) is given by:

Qn{rl = 9Ir<]i - F‘n[eﬂiu/z - le<]i—l/2]’ (4.69)

whereH” is the numerical approximation éf at positionx; and timet", and where
ITis the so -called CFL-number (from Courant, Friedrichs and Lewy)[28}en by:

u(tn+1 _ tn)

m=———"’_
Xi+1/2 — Xi—1/2

(4.70)

Eq. (4.69) reveals that the solution for the moment set at the new timetfébvés a
linear combination of the moment s@{g 0k|+1/2, andeﬂI 12 at the old time level
t". If each of these moment sets are realizable, @r’iﬂ > 0, then the moment set
at the new time level will also be realizable. This can be deduced by noting that
each realizable moment s@} corresponds to an underlying distribution function,

i.e., there exists a dlstrlbutlan”(g) on a domairf), for which

f W(€)¢dg = oy, Yk

Q¢
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A new distributiona)i””(g) can be introduced, which is given by:

W18 = &](©) = T 0f,1/2(6) = of12E)]- @.71)

If ™€) > 0 V& € Q, then eactk™ moment ofw!™1(¢) exactly coincides W|tlﬂrk‘T1,
which means that the updated moments on the left-hand side of Eq. (4. 69 indee
constitute a realizable set.df, > 0 for all timest", it is concluded that the updated
moment sets will remain reallzable during the entire simulation process.

If at least one of the moment sets on the right-hand side of Eq. (4.69) iealet
izable, then the possibility exists that the updated soltﬂlikphls also not realizable,
thus causing complications in further computations with this moment set. In numer-
ical codes, each momed}; ,, , associated with the cell-vertex.1/> is usually ob-
tained by interpolation from the SO|utIOH§ stored at the neighboring cell-centers,
ie.,

912&1/2 = F(Qﬂ,i’ 9|r<],i¢1’ s

with F resembling the interpolation operator. Sirfe@perates separately on each
moment, the ratiayx = 6] |+1/2/0k|+ between the vertex-solutions and the center-
solutions does not need to be the same forkalspecifically if the interpolation
method is non-linear. As a consequence, it is generally not possible tessxihe
moment set at the vertex as a linear combination of the moment sets at neighborin
cells, with uniform weighting factorgy for all k. Therefore, there is no guarantee
that the interpolated vertex-moments constitute realizable sets, which initiates cor
ruption of the moment data, with the eventual consequence of prematuredagamin
of the computation process.

To circumvent this particular problem, one can simply restrict the numericsto fir
order upwind interpolation, which guarantees the realizability of the venements,
but has the penalty that the advection scheme becomes \@ugigke. Wright has
proposed a number of alternative solution strategies in [140], which ieslacb.
the application of so-called augmented advection schemes that are bassitbom
weighting of the moments at the cell-centers. Specifically, this means thatenede
momenw; (¢ IS first chosen for which the interpolation is carried out in the usual way.
Next, the weighting factorg; j are calculated, which represent the ratio between the
updated reference mome‘}’ﬂ;*ef and the neighboring cell-center solutlo@;’;gJ ref at

the old time level, i.e.,
0n+1

f
lpi,j _ glre

(4.72)

i+jref

The remaining moments at the new time level are then obtained by linear weighting
of neighboring solution data, according to:

eln;l - ZW! 19I+j ke (4-73)
]
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Given the typically strong variations in the moments such as observed inrtgingde
flow [131], [107], the preceding augmented advection scheme will nudleahe ad-
vection of the moments properly.

Accuracy of the method
Besides the realizability problem, it is also true that the weights and abscegsasd
very sensitively on the moment data. This means that, even though the piledate
ment sets may retain the realizability property, it still may be the case that, due to the
ill-conditioned nature of the inversion operation, small errors in the moments may
lead to unacceptably large errors in the weights and abscissas [88]effuore, the
loss of accuracy becomes more pronounced as the quadraturevbidéncreased,
and in practice, an almost complete loss of accuracy is experienceddokyenl?2
[89]. This observation apparently conflicts with the outcome of variougiqus in-
vestigations in which QMOM was found to be a very accurate means forrelasu
the moment problem, e.g., in [36], [69]. However, it is noted that in thosesinve
tigations, either advection was not included, simple integrand functions wser
in the moment source terms, or that validation was carried out by using reeasur
ment data from experiments as the benchmark for comparison. Moreaigorous
mathematical analysis on the accuracy of the QMOM is still lacking.

The accuracy-properties of quadrature methods in numerical integeatowell
documented in the literature (see, e.g., [115]), but this usually regasds f@ which
the measure(¢) is explicitly given. For such type of problems it can be demonstrated
that the quadrature errefy in Eq. (4.46) decreases with increasiig if the Taylor
series expansion of the integrand functjg@) converges. If now the QMOM is
considered in the situation when a moment source term of the form:

Sy = fﬂ(g)gkw(g)dg ., k=0,1,.,2M -1
Q¢

is to be calculated for a set ofV2— 1 moment equations, then obviously, the quadra-
ture error would be zero if the functigg(£)£X represents a polynomial of maximum
order M -1. If, hypotheticallys(¢) is given by a polynomial of orde®, then a zero-
valued quadrature error for th& moment source term requires ttkat Q < 2M — 1.
This can only be achieved for the moments wktlx 0,1,..,2M — 1 — Q, whereas
generally, the error is not zero far= 2M — Q, .., 2M — 1. The latter set of moments
is thus corrupted by the quadrature error introduced in their corresppisource
terms. Since the complete set of momekts (O, 1, .., 2M —1) is used to compute the
weights and abscissas, the low order moments will, eventually, alsffdweal by
the quadrature error in the higher-order moments. Currently, the extesi¢h this
affects the total accuracy of the QMOM can only be revealed by means obugor
comparison with moment data from detailed solutions of the KE.
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Consistency with the KE

As the QMOM does not provide closure for the dimer concentratoim £q. (4.5),

the QMOM is not consistent with the KE. To achieve consistency, the QMOdse
to be augmented by some other type of closure method that alews be esti-
mated. Besides this inconsistency, the QMOM cannot be applied to the momants of
zero-distribution, whereas such distributions can be described withgudigiculty

by the master equations (KE and GDE). The computation of weights and sdiscis
cannot be performed for zero-distributions, because thficiemtsa, andcy in Egs.
(4.55) and (4.56) cannot be determined. This is a serious deficiency @N@M,
which has only been solved by adhoc methods, such as, e.g., by assignétom
small values to the initial weights and abscissas, as suggested in [70]ote that
due to this problem, the onset of condensation cannot be handled lgrapen the
QMOM corresponding with the GDE is used, as the distribution function is initially
zero everywhere. In contrast, the QMOM based on the KE has the tageathat

an equilibrium distribution can be specified at condensation-onset, widetsahe
proper initialization of the QMOM. For this reason, the QMOM will only be applied
to the moment equations derived from the KE.

Steady state and transient characteristics

With respect to the moment equations corresponding with the KE (see E)), tdet
steady state and transient behavior can best be illustrated by consitiernetatively
simple case oM = 1 (i.e., one abscissa), with the vapor temperature and mass
density fixed at constant values. This yields the following set of momeratemns:

Dvo

or - f101 — bop2 (4.74)
Dv . . .
St = 2hP1- Doz + W(E), (4.75)

whereD/Dt is the material derivativeyx = vk/p, and the weight and abscissa are
given byw = vp, and¢ = v1/vo, respectively. Here, the indices of the weight and
abscissa have been dropped for the sake of convenience.

Itis observed that these moment equations are nonlinear, in contrasKE (see
Eqg. (4.35)). Egs. (4.74) and (4.75) can be replaced with the equivetpressions:

Dw

ﬁ = f]_pl — prZ (476)
Dé& B fi. fo .
o = 20— ). 4.77)

When the vapor is subsaturate&l € 1), with the initial droplet size distribution equal
to the equilibrium size distribution (see Eq. (3.7)), then the weidfitand abscissa
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&89 can be calculated from the initial moments, using the QMOM-algorithm depicted
in Figure 4.1. The equilibrium distribution remains invariant when it is marched in
time using the KE. If instead, the weight and abscissa are marched in time wgng E
(4.76) and (4.77) respectively, then by virtue of equilibrium:

f1p1 — bopy " = 0,
which leads to:
Dw
o = 0 (4.78)
D¢ fi. .
Dt - whtt (). (4.79)

Thusw(t) = w9, but&(t) changes in time, as the right-hand side of Eq. (4.79) is not
necessarily zero.
The right-hand sid€& (¢) of Eq. (4.79),

f .
F(§) = op1+(e).

contains the growth rate(n), evaluated at the abscissa= £. ForS < 1, it follows
from Eq. (3.19) thah(¢) < 0, and than(¢) has a global maximum at, sa&y/= &max
ThereforeF’(¢) > 0 for & < &max F'(£) < 0 for & > &max andF”(£) < O for all &.
This means that at most two equilibrium points exist. §gbe an equilibrium point,
i.e.,F(&) = 0. If A¢ denotes the deviation from equilibrium, i.e.,

A =& - &,

then: DA 1
Dt = FEIAE + SF(E)AE" + O(ALY).
Hence, when two equilibrium points exist, one of them is unstable. Also, when
equilibrium point exist, it is unstable.
WhensS > 1, thenn’(¢) > 0, with A(n*) = 0. Therefore=’(£) > 0 for all £, which
means that there exists one equilibrium point which is unstable.
Thus in conclusion, the QMOM does not guarantee the existence of ditbegm

solution for the abscissa whévh = 1.

Revised QMOM

ForS < 1, a steady state solution for the moments is not guaranteed, even when the
initial condition corresponds with the moment data for an equilibrium size distribu
tion. In order to remove this deficiency, it is proposed to modify the momerda-equ
tions in the following way. Firstly, it is recognized that for an equilibrium, oedie
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state distribution, the right-hand side of Eq. (4.1) is identically zelp; — J0 =
0Vn € Qn, where the superscript ‘0’ refers to either equilibrium or steady state co
ditions. This means that the terrﬂﬁ_1 — J9 can be added to the right-hand side of
Eq. (4.1):

LGn) = In1-In -, - ), (4.80)

whereJ? = f03 - bn1p2, ;. The corresponding moment equation thus becomes:

N N
L) = D Tmpn = D Tph - ba(pa - 59). (4.81)
n=2 n=2

or equivalently,
N N
L0 = )" Tlmpn + 31 - () Tlmad + ), (4.82)
n=2 n=2

wherng = 0 for equilibrium conditions, andg = J for steady state conditions.
Applying the quadrature approximation to Eq. (4.82) thus leads to:

M M
L0 = Y Waliem) + 91 = (D whimieed) + %), (4.83)
m=1 m=1

which will be referred to as theevised QMOM It is noted that the revised form of
the moment equation given by Eq. (4.82) can also be used for otherelosihods
besides the QMOM.

It is noted that although the sum of the last terms within brackets on the righkit-ha
side of Eq. (4.82) is zero, the corresponding term in Eq. (4.83) is nat dasily
verified from Eq. (4.83) though, that the moments and abscissas will renvairent
when the initial conditions correspond with an equilibrium distribution, which is in
agreement with the transient behavior of the KE. However, it is noted thgeriaral,
the transient solution for the weights and abscissas corresponding withvised
QMOM behaves similarly to those of the QMOM.

4.3.5 The direct quadrature method of moments (DQMOM)

The DQMOM utilizes the same quadrature rule as the QMOM to approximate the
moment source terms. However, instead of solving the moment equationasa tra
formation is applied to convert these into balance equations for the weigtgad
abscissagi. The latter set of equations is derived by substituting the quadrature ex-
pression in Eq. (4.50) fory in Eq. (4.5), followed by expanding its left-hand side.
To obtain a conservative transport equation for both the weights amisahs it is
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convenient to replace the abscissas by the so-called weighted absgf_gisSaﬁned
by:
é:_k = kak (4.84)

Elaboration of the moment equation then yields:

M M
(L=K) > mLlwm) +k > & LEm) = Sk (4.85)
m=1 m=1

whereSy is the right-hand side of either Eq. (4.5), or Eq. (4.82). By taking a set of
2M moment equations, a unique solution {w,) and L(&,) can be obtained. Itis
noted that to obtain a closed set of equations, it is not necessary to tafkest2é
moment equations, i.e., frokn= 0 tok = 2M — 1. To maintain consistency with the
QMOM, however, the moment set is restricted to the fildtidoments. As a result,
the system of balance equations for the weights and weighted abscissagpizotly
given by:

A(LW), LE) =S, (4.86)

where:w = (W]_, Wo, ..,WM)T, f_ = (gl, gz, ..,EM)T, S = (So, Sl, ..,SZM_]_)T, and the
2M x 2M-matrix A is given by:

1 . 1 0 . 0
0 . 0 1 . 1
A= -& . & 26 . 26

2(1- M)EM-1 21— M)Wt oM - 1)ZMTD (oM - 1)eEMD
(4.87)
Having chosenM, the system of equations given by Eq. (4.86) can be solved for
L(w), L(£), and subsequently, the weights and abscissas can be determined-by solv
ing these balance equations.

Properties of the method

The DQMOM inherits the same properties of the QMOM, as discussed pstyiou
The only diterence between these two methods is that realizability of the moment
set is no longer a problem in the DQOMOM, as the weights and abscissas-are d
rectly determined, without using the moments. All other problems associated with
accuracy, steady state and transient behavior, as well as the failizaltwith zero-
distributions, are identical to that of the QMOM.
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4.4 Numerical evaluation of closure methods

4.4.1 Global procedure

In contrast to what is claimed in much quoted references (see, e.g.,[T0}), it
was not possible to apply the QMOM nor the DQMOM successfully in the ptese
investigation, due to the various problems that have been discussed ireteselipg
sections. For the two test cases that were presented in chapter 3 (&s \welleral
others), the DQMOM consistently generated non-physical abscissiab wtema-
turely terminated the simulations. As a consequence, an evaluation of thra@ccu
of the DQMOM for condensing flows cannot be given here, and tholy, ill's
MOM for uy, or the MOM foryy will be considered.

To quantify the accuracy of these moment methods, the condensing naxzle fl
considered in chapter 3 (test case 2), will be employed. For the sakkarity,che
solutions predicted with the various methods are indexed as follows:

- index 'KE' refers to variables predicted by simultaneously solving the FDE
with the KE;

- index 'HillIMOM ' refers to variables predicted by simultaneously solving the
FDE with Eq. (4.21) for the momenjg, u1, u2, andus, using the approxi-
mation given in Eq. (4.39), and by setti®pk = O (i.e., denucleation is ne-
glected);

- index 'MOMKE' refers to variables predicted by simultaneously solving the
FDE with Eq. (4.45) for the momentg andv. The lower boundary is set to
eitherng =3 orng = 5.

The relative diferenceAq’ between solution variablg obtained with the FDEMOM
andgXF predicted with the FDKE, is defined as follows:

q/ _ qKE

Aq/ = 100%x qK—E’ (488)

where the prime can be replaced by eithdittiMOM’ or ' MOMKE'.
4.4.2 Results and discussion

The flow field variables predicted with the MOM are shown in Figures 4.2zdedg

with the benchmark solution obtained by solving the KE and FDE simultaneously.
For the KE, the sticking probability is set to unity(= 1), and the backward rates
are calculated by using the Courtney equilibrium distribution (see chaptert®)
relative diterences shown in Figures 4.3.a-d correspond with the solutions shown in
Figures 4.2.a-d. Both sets of figures clearly show that the larg@stetices between
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the MOM-predictions and the benchmark solution occur within the nucleatiog, zo
located betweem ~ 0.016m andx ~ 0.042m. The large diferences irg occur for

x < 0.01am, i.e., upstream of the nucleation zone, but this region can be neglected
because condensatioffexts are of minor importance in this region. Downstream
of the nucleation zonex(> 0.042m) the relative diference in each variable is con-
sistently much smaller, witAT < 0.2% andAg < 0.5% at the nozzle exit. These
observations are a consequence of the two-way coupling between theufidthe

KE on one hand, and the FDE and moment equations on the other hand.Fhayw
coupling occurs due to thdfects of latent heat release and vapor depletion, and their
influence can be described as follows. At the onset of condensat®hqthd mass
fraction rises steeply, which simultaneously increases the temperaturengard the
vapor density. As a consequence, the saturation gatlecreases rapidly, which in
turn slows down the rate of liquid production, as can be observed in Egl2c

and d. The approximations associated with the MOM wiill likely result in either too
low or too high rates of liquid production, compared with the benchmark solution
Initially, this will lead to relatively large dferences between both sets of solutions,
but as the vapor saturation adjusts itself to the variation in the liquid mass fraction
the closure errors in the MOM will, to a certain extent, be compensated fachwh
explains why the liquid mass fraction profiles almost coincide near the nogtle e

The ditferences between the FPEOM- and FDEKE-solutions are a consequence
of the closure errors in the MOM, and the large-droplet approximation insHill’
MOM. Despite these approximations, the MOM gives reasonably accuratkcp
tions, especially when noting that theffdrences between results obtained with var-
ious master equations (see, e.g., the temperature- and liquid mass fracfitas pro
in Figure 3.23) can be significantly larger. Given that the number of equsatmbe
solved for the MOM is about a factor of 100 smaller than the number of eausatito
be solved for the KE, the MOM constitutes a very good traffdsetween accuracy
and computational expense.

Of course, the apparent drawback associated with the MOM is that thietsize
distribution remains unknown. However, the size distribution can be appately
reconstructed by solving the KE in a postprocessing step, using the floldééa
generated by the MOM. This has been demonstrated in [42], where thev@B&sed
instead of the KE. Application of this reconstruction is demonstrated by congputin
the droplet number densities at various nozzle positions, as shown iresigut.a-d
where the corresponding droplet radius distribution functions are ploktede, the
index 'HillIMOM refers to the radius distribution which has been reconstructed by
solving the KE, using the velocity, temperature and saturation profiles cothpitte
Hill's MOM. Similarly, ' MOMKE' refers to the radius distribution reconstructed by
means of the KE, using the flow field data predicted with the MOMKE. The agree
ment of the various size distributions is fairly good, considering that theatato
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Ficure 4.2: Flow field and thermodynamic variables for test case 2, predicted with
Hill's MOM for uy (denoted as 'HillMOM, GDE’ in the figure, see also Egs. (4.21)
and (4.39)), or Hill's MOM foryy (denoted as 'MOMKE' in the figure, see also Eq.
(4.11)), along with the benchmark solution from a FRE-simulation. g denotes
the lower boundary for the moments

ratio shows dierences of up to 60% in the nucleation zone.

4.5 Conclusions

Reduced models based on the moments of the droplet size distribution, feve be
evaluated for application to condensing flow. In addition to Hill's method of masnen
derived from the general dynamic equation (GDE), a novel set of mbewgrmtions,
derived from the kinetic equation (KE) has been presented.
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Ficure 4.3: Relative djferences between flow field and thermodynamic variables for
test case 2, corresponding with the data in Figures 4.4.a-d. 'HillMOM’ i®a&ged
with the MOM forug, wheras '"MOMKE' is associated with the MOM fog, with

no = 5.

Each variant of the method of moments (MOM) has two associated closure pro
lems: (i) one representing a sum, or an integral over droplet size spaddii) an-
other one which requires the local solution of the droplet size distributi@D(at a
single droplet size. Two quadrature based methods (QMOM and DQM@Mval-
uated for closure of the first problem, whereas the second one renraesolved.
Analysis reveals that both QMOM and DQMOM fail to reproduce the stesate s
and equilibrium behavior of the KE, with both additionallyffaring from a lack of
robustness.

The accuracy of the MOM is finally quantified by using a condensing ndizzie
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Ficure 4.4: Droplet radius distribution function (f) at four diferent positions along
the nozzle: (a) x= 0.016m (start of nucleation zone), (b) x 0.022m, (c) x =
0.042m (end of nucleation zone), and (d}»x0.070m (nozzle exit). 'KE' denotes the
DSD from a KE-DE-solution, 'HillIMOM’ refers to the DSD that is reconstructed
by postprocessing flow field data predicted with Hill's MOM, and '"MOMKHers
to the DSD that is reconstructed by postprocessing flow field data predidtiedhe
MOM for vy, with np = 5.

experiment for which benchmark KE-solutions have been computed. Cmoipaf
predicted flow field variables reveals that the MOM is capable of encorimgassn-
densation ffects with reasonable accuracy. Moreover, the DSD reconstructed fro
flow field data predicted with the MOM compare favorably with solutions computed
directly from the KE and FDE.




EVALUATION OF A FLOW MODEL
WITH BINARY CONDENSATION

In this chapter, an evaluation is made of a condensing flow model, whichestiliz
a kinetic equation to predict the evolution of a two-component (binary)edsspn,
generated by homogeneous nucleation. The evaluation is based onlatgEimof

a nozzle flow experiment, for which measurement data are reported litetfzgure.
The application of a full two-way coupling between the thermodynamic viagab
and the binary droplet size distribution has not been done before. Quisopaof
predicted and measured temperatures and partial pressures at get ohconden-
sation shows a fair agreement between theory and experiment. Theshilitien
of the binary droplet size distribution is exploited to verify whether or not astg4
teady treatment of the nucleation process is warranted. Finally, the setysafithe
condensation model with respect to the binary equilibrium distribution is @en

5.1 Introduction

Multi-component condensation is an area of research which is of fundahieter-

est to applications in nature and industry, e.g., in the formation of cloud osatlen
nuclei [101], or the conditioning of natural gas [91], [92]. Throaghthe years,
various condensation models have been developed, which focus aficspppli-
cations. The modelling approach in this investigation is tailored to condensation in
rapid expansions, where the kinetically driven process of homogenmealeation is
responsible for the conception of condensation nuclei.

The success of the kinetic model pioneered by a.o. Becker @nishdd[13] for
unary (single component) condensation, logically prompted the extensi@dsw
multi-component systems. Having reviewed the uncertainties associated with the
unary kinetic equation (KE) in chapter 3, it can be stated that these algoasar
to the multi-component case. The composition of multi-component droplets leads
to additional uncertainties in physical modelling, therefore, most investigaliave
been limited to binary (two-component) condensation.

The theoretical treatment of binary condensation is primarily focused adyste
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state nucleation, where the aim is to predict the steady-state nucleation rate in tw
dimensional component space. The first treatise on binary (or hetermutalenu-
cleation was conceived by Flood [32], who predicted an exponentiritence of
the binary nucleation rateJ) on the critical Gibbs free energy of droplet formation
(AG*), i.e.,J ~ exp(-AG*/kgT), with T the temperature arkp the Boltzmann con-
stant. This is similar to the generic expression for the nucleation rate for #érg un
case. The first exposition on the actual kinetics of binary condensa@sngwen
by Reiss in [97]. In this seminal work, the binary kinetic equation (BKE)tfa
two-component droplet size distribution is presented, and subsequéntgyeady-
state form is utilized to derive expressions for both the magnitude and drgentd
the steady-state nucleation rate vector. The theory developed by Réess swainly
from inconsistencies associated with the equilibrium binary droplet sizédistm,
which is used to calculate the evaporation (or backward) rate of drodlbese in-
consistencies have been examined in various previous investigationa,ramdber
of attempts have been made to derive more sound expressions, notat#y, ian8
[135].

Besides the inconsistencies associated with the equilibrium distribution, tieere a
also a number of inaccuracies related to the derivation of the expredsiotise
steady-state nucleation rate in [97]. The cardinal assumption in this thetbiat ihe
maximum nucleation flux follows the path corresponding with the smallest energy
barrier through the saddle-point of the binary Gibbs free energyepl@m exten-
sive analysis by Stdier in [114] has revealed that this steepest descent approach is
generally not valid, although for a number of systems, it does appear dogbed
approximation. Both Reiss and Stkar utilize the continuum approximation of the
BKE in their derivation of the steady-state nucleation rate. The inhersotgsgtion
made is that droplets are so large that a single monontkareince between suc-
cessive droplet sizes can be regarded as an infinitesimal variatiorh altoavs the
discrete BKE to be replaced by a continuous Fokker-Planck type of [rdiftierential
equation in binary size space [30].

The latest trend in binary nucleation theory is to use numerical techniquelo s
the steady-state form of the BKE directly, without resorting to continuunmcgdp
mations, such as demonstrated in [74], and [126]. This allows for a mongres
hensive comparison with experiments, as the steady-state droplet sidautlstris
resolved in full detail. With the advent of new measurement techniques titia¢ u
condensing nozzle flows [144], [44], it is very likely that the rapid Véwias in va-
por supersaturation and temperature do not allow for application of qeadjsstate
nucleation theory. Under such conditions, it is necessary to incorpi@at&ects of
vapor depletion and latent heat release on the flow variables, whickgiktes the
simultaneous solution of the fluid dynamics equations (FDE) and the BKE.

In this chapter a fully two-way coupled model is presented for inviscid cesgar
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ible flow with binary condensation. The accuracy of the model is evaluatedin-
paring the predicted temperatures and pressures at condensatibwitimeeeasure-
ment data taken from literature [144]. By using a sectional method, the BKHys
resolved beyond the nanometer size scale, in order to quantify the latgntlease
and vapor depletionfiect with sudficient accuracy. The numerical method is first
tested utilizing one-way coupled test cases reported in literature, whesrdsd re-
sults obtained with a two-way coupled simulation of a nozzle flow experimeiatrare
alyzed. Subsequently, the fully resolved solution of the BKE is analyzeetamine
the validity of the quasisteady-state approximation. Finally, a sensitivity daasys
carried out to quantify the influence of the binary equilibrium size distributiothe
flow field variables.

5.2 The kinetic equation for the binary size distribution

Similar to the unary KE, the BKE is a mass conservation law for droplets in binary
size space. Assuming the Szilard model for condensation, i.e., dropletsnhay o
capture or expel a single monomer of either type at any instant, the BKEnfor a
advected dispersion can be written as:

%n , O

o tox; (Pnt)) = In-e,1 = Ina + In-e2 = Jn.2, (5.1)

wheren = (ng,ny)" is the coordinate in binary spaca, = (1,0)", & = (0,1)", pn
is the volumetric concentration of droplets consistingipfnonomers of component
1, andnz monomers of component 2, and whekg denotes the nett rate at which
clusters of sizan grow to sizen + e. Schematically, the BKE can be represented as
a series of chemical reactions, such as depicted in Figure 5.1. It is natez¢ation
of the binary dimen = (1,1)" from two monomers (10)" and (Q1)" constitutes a
single reaction, which means that (i) the monomer flukes)» andJo 1)1 are equal,
and (i) that only one of these should be used to compute the residuaig for

The condensation flud, x comprises the netttkect of condensation and evapora-
tion, via corresponding forward ratdsx and backward ratds, x, respectively:

Jn,k = fn,k,f)n - bn+a<,k,5n+e,<- (5-2)

Forward and backward rates

Assuming Maxwellian velocity distributions for the monomers and the droplets, the
forward ratef, x for thek-component is given by [127]:

Ouk 1 1 /3\l6 2
= e VBT o () (7 edE) 69
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Ficure 5.1: Schematic representation of the Szilard model for binary condensation.

wherean, ¢y, My, andv, are the sticking probability, shape factor, mass, and volume
of a cluster of size, respectively. The mass and volume associated with a monomer
of componenk are denoted byn,x andvyy, respectively. The same uncertainties
regarding the sticking probability and the shape factor for the unary(sasehapter

3) are present in the binary case, and therefore, these will be exefmmedurther
discussion in this chapter. The sticking probability will be set to constanewailu

an = 1, and a spherical droplet shape will be assungd= 1), as is common
practice in the nucleation literature.

The backward rate, x for componenk is calculated from the corresponding for-
ward rate and the equilibrium droplet size distributjgifi, by virtue of the principle
of detailed balance, [127]:

P
bk = ek —sor- (5.4)

—eq
Pn
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Binary equilibrium size distributions

The binary equilibrium distributiop;" has been the subject of many discussions in
the nucleation literature, e.g., in [135], [56], and [31]. The genericesgion fops"
is given as [127]:

AG”) (5.5)

~eq ~
= poexg—
Pn = PO F( KaT
whereAG,, is the Gibbs free energy associated with a droplet of 8jzndpy is a
pre-factor which determines the magnitude of the equilibrium number densities.

Most models forAG, reported in the literature, utilize the following expression
[135], [127], [71]:

Ay,2

av,1
AG = -k T(n In——= +nyIn
" st an.1 g an,2

)+Aﬂm (5.6)

wherea, is the vapor activity of componeitin the vapor phase,  is the liquid
activity of vapor componerk in ann-droplet, and wheré\,, ando, denote the sur-
face area and surface tension ofredroplet, respectively. The activities of the vapor
and liquid phases are defined as:

S
Pvk Puk
ak = 5 -and: any = %p (5.7)
pv,k pv,k

respectively, whergy is the partial vapor pressure of componknp?? = pP(T)

is the pure-component saturation pressure of vapor compénever a flat liquid
surface, and wherg$, = p],(n, T) is the partial saturation pressure for vapor com-
ponentk over the surface of an-droplet. The liquid activity is usually expressed
as

Ank = YnkXnk (5.8)

whereynk = ynk(T) is the so-called activity cdicient, andx, x denotes the molar
fraction of vapor componeiitin the droplet,

Nk
B ni + n2.

Xn.k (5.9)
In analogy with unary condensation, a component saturation &iacan also be

introduced,

Ay,
Svk = Suk(n, T, puk) = _Pok___ Sk (5.10)

p\ik(n7 T) - aﬂ,k’

so thatAG,, can be expressed in more familiar form as:

AGn = —kBT(nl In Sv,l + No In Sv,z) + AnO'n. (5.11)
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For the pre-factopg in Eq. (5.5), the variation in available models is more diverse.
Since the pre-factor can also be a function of the droplet size, it maya@genfound
influence on the evolution of the droplet size distribution via the backwaedera
pression, viz. Eq. (5.4). In view of its anticipated significance, the follgwiariants
for pg are considered in the present investigation:

1. po for the classical equilibrium distribution by Reiss, [97]:
p6 = Po) + Ao.): (5.12)

2. po for the equilibrium distribution with limited self-consistency, by Wilemski
and Wyslouzil , [134]:

= (L) e 539

0 my1 my2/ '

3. po for the equilibrium distribution with full consistency, by Wilemski and Wys-
louzil, [134]:

P2 = ol explXn 161 + Xn,26v2), (5.14)

Wherep\f’lf is the mass density of pure vapor componieat saturation, and where
the dimensionless surface enefigy is given by:

ev,k = : . N (515)

with Ay the @fective surface area of a monomer of comporkeando x the surface
tension of a flat liquid interface of pure componént

Itis noted that each of the three equilibrium distribution models is based oaphe ¢
illarity approach, which treats a droplet as a macroscopic entity. As notedlbyn-
ski and Wyslouzil [135], the use of such models constitutes a pragmatioagp
which is necessarily maintained until a sound molecular theory becomes évailab

In calculatingAG,, the dfect of both droplet curvature and composition should
ideally be taken into account when specifying the liquid phase activities @and s
face tension for am-droplet. It is important to note that the droplet composition
is generally not uniformly distributed within the droplet. The consensus witl@n th
nucleation community is that a droplet can be modelled as consisting of a bulk in-
ternal phase and a surface phase, for which the respective comp®sgitiocand Xsk
can be introduced [127]. Due to the phenomenon of surface enrichthersurface
composition is usually dierent from the bulk composition, especially for non-ideal
systems such as aqueous alcohols [71]. Moreover, the bulk composjfi@an also
differ significantly from the total compositiog k (see Eq. (5.9)), which means that
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when calculating the liquid phase activities and surface tension based aricainp
expressions, one should use the bulk composition and not the total composiie
tunately, the surface tension of the binary systems studied in this investigation d
not vary appreciably with molar composition, and consequently only a snnatlier
made wherx,k (Eq. (5.9)) is used instead of the bulk compositigi. In principle,
it is possible to incorporate surface enrichmefiiées into the model, but this will
not be attempted here because available models which take surface entiaiime
account are not void of unphysical behavior, as illustrated in [57]a2d]. Further-
more, incorporation of surface enrichment is not desired from a cortiqueih point
of view, as determination of the surface composition usually proceeds inrativiee
fashion (see, e.g., [127]), which can significantly increase computhggpanses.
The equilibrium size distributions given by Eq. (5.5), Eq. (5.11), with tleefpctor
0o given by either Eq. (5.12), (5.13), or (5.14), should satisfy the followdansis-
tency conditions:

1. the law of mass action needs to be satisfied, i.e., substitutjaif of Eq. (5.4)
should yield a backward rate that is independent of the monomer concentra
tions.

2. the binary equilibrium distribution should reduce to the appropriate wetariy
librium distribution when only one component is present (i.e., eithet O, or
ny = 0).

3. the monomer concentrations of each component should be retrievedheo
equilibrium distributions upon substitution of the unary gize .

If all three conditions are satisfied, the equilibrium size distribution is said fallye
self-consistent, otherwise it is said to have limited self-consistency. Thevfabjo
observations can be made regarding the preceding equilibrium size distngu

- the Reiss distribution does not satisfy any of the three conditions;

- both distributions by Wilemski and Wyslouzil satisfy the first and last condi-
. - . . g W2
tion, whereas the second condition is only satisfieg Py -.

Given thatpﬁquoes not satisfy the law of mass action, this equilibrium distribu-
tion will not be considered any further in the present investigation. Eveugththe
WW1-equilibrium distribution has limited self-consistency, it will be employedther
along with the WW2-equilibrium distribution, in order to quantify the influence of
the equilibrium size distribution on the flow field solution.
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5.3 Mixture properties and fluid dynamics equations

Mixture properties

The binary mixtures employed in this investigation can be approximated as ideal
systems, both in the gaseous and liquid states. Therefore, the thermadland c
equations of state as derived in chapter 2 are valid for the test casgdarenl here.

The thermodynamic model needs to be augmented with suitable expressithres for
saturation vapor densitig§ , and the surface tensiary,. Both the liquid mixture in
the droplets and the vapor mixture in the gas phase are assumed to be idefal, wh
means that the liquid phase activity ¢ideents are unity:ynx = 1. Neglecting
droplet curvature, the partial saturation preswlg(n, T) of vapor componerk over
the surface of an-droplet is given by [103]:

Pk T) = Xakp)e(T)- (5.16)
Using the thermal equation of state, the saturation density then follows as:

Pik
R\/’ kT )

Pox(Xnk) = (5.17)
For the surface tension of the liquid mixture, a linear weighing of the punepoment
surface tensions in terms of the molar fractions will be employed, i.e.,

on = Xn10v1 + (L= Xn1)ov2 (5.18)

with Xn k given by Eq. (5.9).
The latent heat of condensatidm,( see, e.g., Eqg. (2.130)) for a binary droplet, is
calculated in similar fashion, i.e.,

Ln = Wnalp1 + (1 = Wn2)Lp 2, (5.19)

whereLyp is the bulk latent heat of pure vapor componknandw,y is the mass
fraction of componenk in the droplet (see Eqg. (2.118)).

Fluid dynamics equations

The conservation form of the FDE for binary condensation has bezsepted in
chapter 2. Due to the relatively large number of degrees of freedoosiatsd with
the BKE, itis computationally convenient to employ a so-called space marabling s
tion method here, instead of the standard finite-volume discretization usedptech
3. Furthermore, a quasi-one dimensional approximation is employed forothie n
zle flow, since the area variation depicted in Figure 5.2 implicates a slendelenoz
geometry.
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The unknown variables at each point along the nozzle include the temigcaail
vapor densities, as well as the binary number dengitietnsStead ofn, the specific
number density, = pn/p Will be employed. By combining the continuity equation
for the mixture (Eq. (2.84)) with the BKE (Eq. (5.1)), the steady-state &agjan
form of the BKE is obtained: .

dn _ Sn

dx u’
where x is the co-ordinate along the nozzle axisthe axial velocity, and where
Sh = Sn/p, with Sy, the right-hand side of Eq. (5.1).

Due to the assumed steady-state character of the nozzle flow, the masatéow r
¢m of the mixture is constant, which means that at each position

(5.20)

PUA= ¢, (5.21)

whereA = A(X) is the cross-sectional area of the nozzle at posixioBy assuming
choked flow, and that the onset of condensation takes place downgifélae throat,
the mass flow rate can be obtained from isentropic flow theory, thus:

l+ym0
2(1_7m0)

¢m = poymoRmoTo A, (5.22)

whereA; is the flow area at the nozzle thro@t, andpg are the total temperature and
density of the dry mixture, respectively, and where:

Cp’o
Ymo= 5 - Rmo = Cpo — Cyo,
v,0

1
1+ é(?’m,o -1)

are the Poisson constant, and specific gas constant of the dry mixspectigely.
Differentiation of Eq. (5.21) with respectxgields the following quasi-one-dimensional
and steady-state fiierential form of the continuity equation for the mixture:

ldu 1dp 1dA_
udx pdx Adx
In the absence of viscous dissipation and heat conduction, the totalpsnithaf

the mixture remains invariant along streamlines. Using Egs. (2.128) ang,(8h&9
total mixture enthalpy is expressed as:

(5.23)

1
ht = CpoT — [91.1L61(T) + Gi2Lb2(T)] + EUZ, (5.24)

where the liquid mass fractiam of vapor componerk is given by Eqg. (2.119). Itis
noted thag x is completely determined by the number densjiies (52.0) £(0.2)s - ONN)) | -
Differentiation of Eq. (5.24) with respect xdhus yields:

dlp1 Lp2\| dT dg: dg. du B
[Cp,o - (gl,ld—T + gl,zd—T)} ax WLb’l - WLb’Z + U& =0. (5.25)
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Due to the inviscid modelling approach, the momentum equation for the mixture

is reduced to:
du . 1ldp _

x5 (5.26)

for a quasi-one-dimensional system.

Egs. (5.20), (5.23), (5.25), and (5.26) constitute the governing syatenuations
which describe the condensing flow in a quasi-one-dimensional georimeteyms
of the state variables, p, T, u, andp. To complete the system, the thermal equation
of state:

p=pRT

is also included, with the specific mixture gas constnat R(g 1, 9i.2) given by Eq.
(2.122). Diferentiation with respect tyields:

1dp 1dp 1dR 1dT
pdx pdx+ Rdx | T dx’ (5.27)

where:
dR 4R dg1 OR dg2

kil . 5.28
dx dg.1 dx +ag|,2 dx ( )

By combining Egs. (5.23), (5.25), (5.26), and (5.27), the following eggion for
the spatial derivative of the temperature can be derived:

dg,lL .\ dg,zL ¥ [1drR 1dA
dx P17 Tdx P2 2 |Rdx ~ Adx
dT 1-&7
at _ 5 (5.29)
dx c dLb’]_ N Lb2 N us/T
A e ) 2

T RT

The governing system of equations can now be reduced to Eq. (512p) dnd Eq.
(5.29) forT. Knowing p, the liquid mass fractiong; 1 andg 2 can be calculated by
means of Eq. (2.119). As the total enthalpyis invariant, the fluid velocity can be
calculated from the temperature and the liquid mass fractions, via Eq. (Fi2d)ly,

the fluid velocity and flow areA(x) can be used to compute the mixture density via
Eq. (5.21).

It is noted that the calculation strategy of using Eq. (5.20) and Eq. (5.203jyace
marching method can only be applied when the flow remains supersonic irvére di
gent part of the nozzle. This restricts the applicability of the condensingrflodel
to gradually expanding (i.e., shock-free) nozzle flows.
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5.4 Evaluation procedure

5.4.1 Description of test cases

Two test cases will be considered in this investigation: the first one is a simulate
nucleation experiment, and the second one a condensing nozzle flow.

Test case 1: nucleation simulation

The first test case is utilized for verification of the numerical algorithm whadiies
the BKE. A one-way coupled simulation is carried out, ites 0 and the mixture
state variablep, T, andpyy are frozen. The initial condition for the binary size dis-
tribution is a zero-distribution, i.eon "= 0 for ||n|| > 1. The binary system considered
is a mixture of ethanol and hexanol vapor, which are assigned the cemigodices

1 and 2, respectively. The relevant material properties are giverpenaix A. Ver-
ification of the numerical code is carried out by comparing the predictediénain
and quasisteady-state binary size distributions with the results publishetRirgid
[143]. For each of the simulations related to the first test case, the temgeistu
maintained at a constant value Bf = 260K, whereas three fierent pairs of va-
por activities are considered: @&,1 = 0.5 anday2 = 14.0 (case 1.1)a,1 = 1.5
anday2 = 9.0 (case 1.2), (iiijay1 = 2.5 anday2 = 6.0 (case 1.3). By default, the
backward rates in test cases 1.1-1.3 are computed by using the WW2-egulib
distribution.

Test case 2: condensing nozzle flow

In the second test case, a condensing nozzle flow is simulated for whicureegent
data is reported in [144]. The mixture contains ethanol- and propanok \agpthe
condensable components, with nitrogen as the carrier gas. The nczalesaiation,
depicted in Figure 5.2, is reconstructed from the dry-flow pressurfdge@iven in
[144] by means of the isentropic relationships for quasi-one-dimensiamapress-
ible flow. This approach is adopted, because the measured pressfiles@ccount
for the presence of boundary-layers in the experiments. The totaltimorsdat the
nozzle inlet are maintained @y = 28615K, andpy = 59.1kPa and the mixture
compositions are given in table 5.1. The relevant fluid properties for theusa
components are given in appendix A.

In the simulation for each test case, a full two-way coupling is employed, mmean
ing that Eq. (5.20) fop, and Eq. (5.29) foll are simultaneously solved throughout
the nozzle. Unless specified otherwise, the backward rate is computesingythie
WW?2-equilibrium distribution.
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case no.. Wi() W2 () gv1(x10%) g2 (x1073)
2.1 (100 % ethanol)  1.00 0.00 4.379 0.0

2.2 (75 % ethanol) 0.75 0.25 2.592 1.127
2.3 (50 % ethanol) 0.50 0.50 1.524 1.992
2.4 (25 % ethanol) 0.25 0.75 7.366 2.886
2.5 (0 % ethanol) 0.00 1.00 0.0 2.931

TasLe 5.1: Molar composition of the vapor phase and mixture mass fractions for the
ethanol-propanol mixtures studied in the second test case. Note thgt coaden-
sation takes place in test cases 2.1 and 2.5.
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Ficure 5.2: Reconstructed nozzle profiléx)\ and dimensionless pressure profile for
a dry flow of N from [144], used for test cases 2.1 - 2.5.

5.4.2 Numerical methods

For the stagnant systems in the first test case, Heun'’s predictoctmormethod is
used to march the BKE in time. The maximum droplet size is séditx Ny =
100x 100, whereas the lower boundary is taken at the unary droplets cogsitin
either vapor component. Furthermore, the smallest clusters are the urassd
(n=(2,0)7, or (0. 2)"), and the binary dimemn(= (1,1)"), as depicted in Figure 5.3.
The boundary conditions for the BKE are prescribed via the vapor monoconeen-
trationspg, = pvk/Myk at the lower boundary, whereas the number densities for the
largest droplets are extrapolated from the interior of the computationalidoifiae
method described here is actually similar to the one used by Wyslouzil and Wilemsk
in [142] and [143].
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Ficure 5.3: Close-up of the binary computational domain at the lower boundary
(indicated by the dashed line); the arrows represent the fluxes betilveararious
clusters, and the boundary fluxeg e} 1, Jo,1),1, and Jo1)2 are indicated.

To solve Egs. (5.20) and (5.29) for the second test case, a spachkimgaatgo-
rithm is used, which also employs Heun’s predictor-corrector method forpethe
numerical integration. The calculation starts at a position which is located slightly
downstream of the throat, and proceeds until the nozzle exit is reattedntrast
with the first test case, it is necessary here to extend the binary compatattonain
to include droplets with radii of over 10°8m, in order to adequately capture the
effects of vapor depletion and latent heat release. Therefore, the BKiivesison
the domain O< ny < 10°, 0 < ny < 10°, with ||n|| > 1, which allows the binary DSD
to be captured in almost full extent. To reduce the computatidiialtea sectional
approximation is used, which is very similar to the one previously presentédtip c
ter 3 for the single component KE. As illustrated in Figure 5.4, a set of nergtiip
droplets is grouped into a bin, and each bin exchanges fluxes with its wegghhe
(k, 1)-th bin is defined as:

Q) = {(nl, )" e N? | n(LkJ) <n < nﬁq), nﬁ(’l) <n, < n(Tk’l)}, (5.30)

wherent iy Ny nB )’ andnT denote the limiting values af; andn; at the left
(L), rlght (R) %ottom (B), and top (T) boundaries@f, respectively. The left, right,
bottom and top boundaries are defined by:

00k, = {(n,m)" € Qi I =g} (5.31)
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aQIIZI = {(nl, o)’ € Qg = n(FiJ)}, (5.32)
992, = {(n. )" € Qy Imp =i}, (5.33)
908, = {(n.m)" € Q1 me = njyy). (5.34)

respectively.
For each bin the following sectional approximation of the BKE can be written:

Dﬁ(kJ) 3 1
Dt Wik ),2

(J_(k-l,l),l - J_(k,l),l) + (J_(k,l—l),z - J_(k,l),Z)- (5.35)

Wk ),1

where p(y denotes the bin-averaged number density for ki)

_ 1 .
Pkl = ———— > pn, (5.36)
Wik 1), 1W(kI).2 nEZQkJ
with:
W(el)1 = Ny = My + 1+ Woan2 = Mgy — Ny + 1, (5.37)
and with: _
Jh1 = Z Jna, (5.38)
neanR,I
and similarly: _
Jok1) = Z Jn.2. (5.39)
neaqy,

To compute the fluxed, 1 andJ, 2 on the boundaries @by, the local number density
is interpolated from the bin-averaged number densities of neighboring bins

The reconstruction of the number densities at the bin-edges has to kel cart
at every time step and for every bin within the computational domain. For bibs tha
comprise a large number offtirent droplet sizes (i.e., whemy ) > 1 andor
Woi,y > 1), the summation in Egs. (5.38) and (5.39) constitutes a computationally
expensive task. To reduce the amount of work, the large sum canpbexapated

N

by a smaller sum as follows. Suppose the sEmf(n) has to be calculated for some

n=0
given functionf(n). Whenf(n) is approximated by a polynomi#y(n) (whereM
denotes the degree of the polynomial), then the sum is decomposed into seims ov
N

powers ofn, e.g.,z n¥, which can be evaluated using Bernoulli numb@rs
n=0

N k
1 k+1
k _ _ — k—1+1
E nt = 1 E B|( | )n . (5.40)
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Ficure 5.4: Schematic representation of the sectional approximation of the BKE in
binary space.

The Bernoulli numbers are given by [93]:

| o0
Bo=1, Byy1=0, By = 2(—1)'+1% ;(21' +1)72 121 (5.41)

Using Eq. (5.40), the original sum comprising Mf+ 1 terms is replaced by a sum
comprising of%(M + 1)(M + 2) terms. Hence, iM? is suficiently small compared
to N this implies a significant reduction of work. The Bernoulli numbers can be
pre-computed and conveniently stored in computer memory for later usegdhen
simulation.

Once the bin-averaged number densities have been updated, the liquitfanass
tions are calculated:

O,m = Mym Z ﬁnnm-
neQn

Using the sectional approach, this can be written as

Om= m\/mzz Z PnNm,
ko

neQy
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and upon assuming that, is suficiently smooth and small for larger droplets, the
second summation can be approximated by:

Z PnNm zly(k,l) Z Nm

neQy neQy

The remaining sum can be evaluatedroe 1 andm = 2 as:

1
2 M= 5wz iy (W +2) = ey (e — I

neQy

1
S ZWikD.L {nfn (e + 1) = ey (e — -
neQy

In each of the simulations carried out in the first test case, convergédice nu-
merical integration is verified by performing the solution using successsrabller
integration time stepat. Typically, a value ofAt = 10719 was found to yield
suficiently converged results. For the simulations in the second test casdjad spa
resolution ofAx = 10-8mon a total nozzle length of.08m was found to yield suf-
ficiently converged solutions for both the binary DSD and the flow variabl¢ish
respect to the sectional approximation of the BKE, it was found that a nuofbe
N1 x N2 = 400x 400 bins yielded dficiently converged values for the liquid mass
fractions. By using a parallel implementation of the current numerical methed,
solution for the binary DSD and flow variables is obtained in typical run timéof
hours.

5.5 Results and discussion

5.5.1 Test case 1: verification of quasisteady-state and taient solu-
tions

Quasisteady-state solution of the BKE

Before turning to the actual verification of the solutions generated by timencal
method, it is instructive to examine certain salient features of the quasisttatdy
solution for the binary DSD. The results obtained for test cases 1.1, Ad21.8,
obtained by using the WW2-equilibrium distribution for calculation of the bakiv
rates, are depicted in Figures 5.5.a, ¢ and e, respectively, whereastbgponding
equilibrium distributionspﬁ"’wWz are depicted in Figures 5.5.b, d, and f, respectively.
The equilibrium distributions show the typical saddle-shaped form, with teiipo

of the saddle point approximately coinciding with the critical compositibn The
departure from equilibrium is shown in Figures 5.6.a, b, ¢, where thegiati§*" 2
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is plotted. Clearly, the quasisteady-state number densities associated withatlhe s
clusters are very close to the equilibrium distribution, whereas the largsrdeviate
away from it.

For actual verification of the predicted solution, the flux-vectdrs (Jn2)" have
been computed and plotted in Figures 5.7.a, b, and ¢, along with the iso-lirtg fo
Gibbs free energpG,,. As can be verified by comparison with figures 2.a, b, and cin
[142], the agreement between both sets of predictions appears tojmoes, albeit
that a comparison between actual numerical data instead of graphs vemsiitute
a more credible verification method.

The data shown in Figures 5.7.a, b, and c also reveals the influence dd-the v
por activities on the quasisteady state condensation fluxes. For eadhrepibrted
activity pairs, the highest magnitude of condensation fluxes passegthtioe crit-
ical compositiomn*, as expected. The major distinguishing feature between Figures
5.7.a, b, and c is that the orientation of the condensation flux vectorsessigely
deviates from the path of minimum energy, as the ratio between the ethandlexand
anol vapor activities is increased. This behavior was extensively zathlyy Statfer
[114], who correctly noted that in addition to the thermodynamic notion that sys
tems tend to follow the path of steepest descent, it is also important to conséder th
kinetic dfects of monomer impingement. Simply stated, this means that the concen-
tration and mobility of monomers plays a major factor in the path traversed during
the nucleation process. This is clearly illustrated when Figure 5.7.a is codhwéhe
Figure 5.7.c, where the ratio between the ethanol and hexanol monomejygais e
to pvi1/pv2 = 3.7, andpy1/pv2 = 425, respectively. The relatively higher ethanol
monomer concentration in Figure 5.7.c results in a flux of droplets that is alapst p
allel to the ethanol-axis, which implies that the majority of large droplets will consis
almost entirely of ethanol.

Transient solution of the BKE

The transient solution of the binary DSD for the ethanol-hexanol sysféesibcase
1.2 is depicted in Figures 5.8.a, b, ¢, and d, where snapshots are takertiates
t =240-108s (b)t = 1.29-10's, (c)t = 6.93- 10 s, and (d)t = 2.00- 107°s,
respectively. These are the same times for which solution data are repofidd].
Starting from a zero-distribution &t= 0.0s, the stream of droplets passes through
the saddle region surroundimg= n*, until a quasisteady state is achieved in Figure
5.8.d.

In the quasisteady statk,,/dt = 0, which consequently leads to

don
D o =0 (5.42)

neQ{




120 GIAPTER 5. EVALUATION OF A FLOW MODEL WITH BINARY CONDENSATION

n
=]

N
<)

&
&

8

-60|

[eR=]

(1440 Dd) / Cuu)d)Boy,,
(@140 )d) / Cutu, d)dor,,

= s ™~
? a2 ™S

-60.0

o

)
]

(((0'1)d+(0° 1) / (u'u)d)3oy,
(((0*Dd+(0' 1) / (u‘'u), d)3oy,,

o \ 0 N \
=20 e Q
& < o
2 -40 & 40
£ £} /
B 5 60
< -60 R
2 g0 2 80
G -10.2 = -10.2
“¥-100| -48.5 ~$-100] -485 [
= -86.7 =3 -86.7
2 20 125.0 ool M 1250
= 0 0 =, 0 0
=, = RN
inpe,. 20 0 ™ g, 20 20 5™
oW OF e
p, o ley, 40 20 \°
g, 40 20 o Ny, o™
oy, 60 % 0@«\%“ ey, 60 60 oﬁai““\
(S
. 5080 (& s, 5, 8080 o

%
(e) )
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whereQ; is the region stretching from the lower boundary (see Figure 5.3) up to and
including a curvedQ2; which connects thae,-axis with then;-axis. Since

ds
% = Jnl—el,l - Jn,l + Jn—e2,2 - \]n,2,
t
it follows from Eq. (5.42) that:
Z \Jnlfel’l - Jn’l + Jnfez’z - Jn’z = 0 (543)

nEQ{
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Ficure 5.7: Condensation fluxe€ln1, Jn2)" corresponding with the quasisteady-
state solution of the BKE for the ethanol-hexanol systems correspondmthe test
cases 1.1 (a), 1.2 (b), and 1.3 (c). The solid circle denotes the sadiielpoation

(n = n*), and the iso-lines correspond with the binary Gibbs free enafgy (dashed
iso-lines indicateAGy-valleys). These figures correspond with figures 2.a-c of [142].

Due to mutual cancellation of fluxes for neighboring cells, the sum in EQB)5.4
reduces to a sum of fluxes over the boundarieQ of

Z et = It + In-e2 — In2 = J10)2 + Jou1 + Jo1.2 — hot(0€), (5.44)

neQ(
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where:
Jo(@2) = > Ina+ Ina. (5.45)

neHQ;

Combining Eq. (5.43) with Eq. (5.44) thus yields
Jiot(0€%) = J0)2 + Jo.1).1 + Jo.1).25

which means thal; is independent of the cun#, in the quasisteady state.
To verify that the binary DSD shown in Figure 5.8.d indeed corresporittistiae
guasisteady-state solution, the total fligg is calculated along the line

n+np=7¢, (5.46)

where the parametérallows the line to be moved in binary space. Using the numer-
ical solution data obtained for test case 11R;(¢) has been calculated and plotted

in Figure 5.9, for the same times corresponding with Figure 5.8. Here, it idyclea
observed that the nucleation rakg; evolves in time until it becomes independent of

¢ fort = 2-107°s, which consequently shows that the quasisteady state has indeed
been achieved.

For verification of the transient solution, Figures 5.10.a, b, ¢, and d shew
temporal evolution of the suh = J, 1 + Jn 2 of condensation fluxes in binary space.
As can be verified by comparison with figures 2.a, b and c in [143], theeagent
between both numerical predictions is very good. Thus in conclusionethéts
obtained for test cases 1.2, 1.2 and 1.3 have demonstrated that theé numemical
code is able to accurately predict both the quasisteady-state and traudigian of
the BKE.

5.5.2 Test case 2: nozzle flow with binary condensation
Validation of flow model with binary condensation

The solution for the flow field- and thermodynamic variables for test cagds 2.5,
are depicted in Figures 5.11.a-f. These solutions have been obtainetving €q.
(5.29) simultaneously with Eg. (5.20), with the backward rates calculated tine
WW2-equilibrium distribution. Qualitatively, the depicted trends are similar to the
ones observed for single-component condensation (see chapteregch case, the
influence of condensation becomes noticeable at a certain onset paéng, tvh con-
densational release of latent heat causes a slight rise in temperathieeyeuny slight
reduction in the Mach number, as shown in Figures 5.11.a and b, reghgckur-
thermore, the presence of nucleation zones is observed in the regierestive vapor
activities attain extremal values in Figures 5.11.c and d. Downstream of the-nu
ation zone the vapor activities are significantly smaller, which leads to aeddate
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Ficure 5.8: Temporal evolution of the binary DSD for an ethanol-hexanol mixture
at T = 2600K, with respective activities ofya = 1.5 and g,2 = 9 [143]: (a)
t=240-108s; (b)t=129-10"s; (c)t= 6.93-10"'s; (d) t = 2.00- 10°s

(steady state solution). The contours correspond Withg —

— P the solid
£(1,0) T P(0,1)

circle indicates the position of the saddle-pont= n*).

of liquid production, as can be observed from the component liquid massdins

depicted in Figures 5.11.e and f.

The solution for the binary DSD at the nozzle exit is shown in Figures 5.b2.a,
and c for the test cases 2.2, 2.3 and 2.4, respectively. The influertbe @iitial
vapor composition is qualitatively similar to what has been observed for thea@th
hexanol systems studied in test cases 1.1-1.3. As the inlet vapor compbsitimmes
richer in ethanol, the flux of droplets draws increasingly more parallel tettnanol
axis, so that large droplets consist of ethanol almost exclusively.
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Ficure 5.9: Temporal evolution of the total flux.d¢) measured along the line i+
n, =/, for test case 1.2.

To validate the condensation model, the temperatures and partial vapsunges
at condensation-onset are compared with the measurement data repdttéd].
Here, the onset-point of condensation is defined as the position alongzhke axis
where the temperature of the condensing flow deviatg$ com that of a dry flow
under choked conditions. The predicted and measured data are listedei®b &b
with corresponding plots given in Figures 5.13.a, b and c. The agredraemeen
both data sets is fairly good, given that the flow model is inviscid and onlgieree-
dimensional, and that the condensation model is based on macroscopic fhieer
latter is especially remarkable, since at condensation onset, the liquidsiispeon-
sists predominantly of droplets that typically contain only a few tens of molecules
so that one would expect the macroscopic theory to be invalid. The prediciio
tained with the current model seem to suggest, however, that the WWithggm
distribution, which was derived from pragmatic arguments in [135], may st g
a reliable description of the average cluster dynamics at the microscoplc leve
is noted, however, that comparison of condensation onset data is flictesu to
validate the current model, as one would rather use a complete pressuperde
ture andor vapor saturation profile measured over the entire nozzle length to make
a more thorough analysis. Contrary to unary condensation, reliable atabanary
condensation in nozzles is hardly available; to the author’s knowledgdatheyiven
by Tanimuraet al. in [120] are the only reported measurements on binary condens-
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Ficure 5.10: Temporal evolution of the sum=J J, 1+Jn 2 of binary fluxes for test case
1.2 (ethanol-hexanol mixture at ¥ 2600K, with respective activities of,a = 1.5
and a,» = 9), such as reported in figures 2.a - d of [143]: (axt2.40- 1078s ; (b)
t=129-10"s;(c)t=6.93-10's; (d) t = 2.00- 10~°s (steady state solution).
The iso-lines correspond witt! log J, with J expressed in TAs™t. The solid circle
indicates the position of the saddle-poim = n*), and the arrows represent the
condensation flux vecto(sn 1, Jo2)" at a vertical line passing through®.

ing nozzle flow. Because they have used a strongly non-ideal mixturéhahe

and heavy water (BD) as the condensing vapors in [120], the current model is not
suited for application to their experiments. It is anticipated that surfaceheneiat
effects need to be incorporated in the current condensation model, in o toe
measurements reported in [120] for validation purposes.
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Ficure 5.11: Solution of flow field and thermodynamic variables for test cases 2.1
to 2.5 (ethanol percentages are molar fractions, see table 5.1 for detad})}e(n-
perature (with insert for the nucleation zone), (b) Mach number, (Qreghand (d)
propanol vapor activities, (e) ethanol and (f) propanol liquid massticats.
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Figure 5.12: Binary DSD at the nozzle exit (x 0.08m), for test cases (a) 2.2, (b)

2.3, and (c) 2.4. The contours correspond wittog #.
£(1,0) +p0,1)
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caseno: py"(Pa) pii"(Pa) pyp" (P pi5"(Pa) THP(K) TMM(K)

2.1 52.6 49.2 210.2 210.9
2.2 30.9 30.1 10.3 9.5 209.5 212.8
2.3 18.5 175 18.5 17.2 210.7 212.8
2.4 9.3 8.4 27.8 254 2129 213.2
2.5 27.6 22.9 211.4 207.6

TasLe 5.2: Comparison of experimental (index 'exp’, from [144]) and simulation
data (index 'num’) for vapor pressureg pand temperature T at condensation onset.
The simulation employs the WW2-equilibrium distribution to compute the bagkwar
rates in the BKE; the uncertainty in the measured onset temperatwEdsand the
relative uncertainty in the measured pressuréds
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Ficure 5.13: Comparison of condensation-onset data for test case 2 (the figures
correspond with the data of table 5.2): onset vapor pressures for eth@ah and
propanol (b); (c) onset temperatures .

Analysis of the spatial variation of the binary DSD

In this section it is examined whether or not condensing nozzle flows #ebku
for extracting data on quasisteady-state nucleation. For nozzle flows métly aon-
densation, it has been demonstrated in chapter 3 that rapid expansioesoénn
significant deviations from results predicted with quasisteady-state hiocle¢he-
ory. In this section, the changes in the binary DSD along a Lagrangiactogjeare
analyzed. Along such a path, the Lagrangian variatig,inan be compared to the
transient behavior gf, observed in the stagnant systems of test cases 1.1 - 1.3.
Using the simulation of test case 2.3 (50% ethanol), the contours of the dimensio
less number densipyn/ (0(1.0) + P0,1)) have been plotted in Figures 5.14.a, b, cand d
for the positions< = 0.019m, x = 0.029m, x = 0.036m, andx = 0.060m, respectively.
To actually verify whether or not the solution is locally in a quasisteady stadpth
tal flux Jiot(¢) is again calculated, similar to what was done in the transient analysis




130 GiaPTER 5. EVALUATION OF A FLOW MODEL WITH BINARY CONDENSATION

for test case 1.2. Thefiierence here, however, is that &éient line is chosen along
which Jio; is measured. Due to the sectional approach of solving the BKE, it is more
convenient to measutky; along the linesy = £, andn, = £, from the point at which
they intersect the coordinate axes, up to their mutual intersection poinFigee
5.15). The results fadis(¢), calculated at the five positioxs= 0.019m, x = 0.025m,
x = 0.029m, x = 0.036m, andx = 0.060m, are shown in Figure 5.16.a, with a sep-
arate plot forx = 0.060m in Figure 5.16.b. The first four positions lie within the
nucleation zone, as can be seen from the vapor activities shown in &iguté.c
and d. Considering the curves fdg; for these positions, it is clear that the binary
DSD does not achieve quasisteady-state behavior within the nucleatien Kear
the end of this regionx= 0.036m), it is even observed that the total flux is negative
for small droplets, whereas large droplets>(11) show a positive total flux. For the
positionx = 0.060m located far downstream of the nucleation zone, the total flux is
much smaller compared to its value in the nucleation zone. Figure 5.16.b shaws tha
Jiot is negative for small clusters, whereig > O for large clusters{{> 100). This
relatively small positive flux is also noticeable as the low rate of liquid prodadtio
Figures 5.11.e and f.

These results clearly illustrate that quasisteady-state nucleation is ngsalal@eved
during supersonic expansions. The conclusion drawn from this isal#ba should
be exercised when analyzing the measurement data obtained from smdeozzle
flow experiments based on quasisteady-state nucleation theory.

Influence of equilibrium distribution

In this section, the influence of the binary equilibrium distribution on the flold fie
variables is investigated. The simulations are carried out for test casea 2 2nd
2.4, with either the WW1- or WW2-equilibrium distribution used for calculating the
backward rates in the BKE. The results are shown in Figures 5.17.a efewhe
temperature and component liquid mass fractions have been plotted foofetheh
cases mentioned. Clearly, both the temperature and liquid mass fractionlsdrase
~eqWWL : - 20 WW2

on are very much dferent from the ones corresponding wjf? . The use

of [)ﬁqWWl consistently delays the onset of condensation until halfway the diviergen
section of the nozzle, where the liquid mass fractions start to rise. Titesahce be-
tween the results predicted witi*™"** andge*"V'"*? is actually comparable to what
has been observed in the unary case, when the results predicted witbuheey
equilibrium distribution, are compared to those of the SCC-equilibrium distributio
(see chapter 3). In essence, the fully consistent character of the-g#¢uibrium
distribution causep®¥"V"? > 5eMWW2 for small clusters. As the number densities
associated with the small clusters are very near the equilibrium value, aaddse
the liquid dispersion is dominated by these small droplets at condensatiet)-ibis

concluded that usin;glﬁe‘wwl to calculate the backward rate should indeed delay the
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Ficure 5.14: Spatial evolution of the binary DSD corresponding with test case 2.3
(50%ethanol): (a) x= 0.019m, (b) x= 0.029m, (c) x= 0.036m, and (d) x= 0.060m.
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onset of condensation.

Given the reasonable agreement found between the onset tempeaaitnesgpor
pressures from experiment and simulation with the WW2-equilibrium distribution
(see table 5.2), it is thus concluded that the WW1-equilibrium distribution yeelds
rather poor description of the average cluster dynamics at the microsuahéc This
is apparently in contrast with the case of unary condensation, for wredBdhrtney-
equilibrium distribution was found to perform much better than the fully consiste
SCC-equilibrium distribution.
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5.6 Conclusions

The kinetic equation for the binary droplet size distribution (DSD) has lsebred
numerically for a simulated nucleation experiment and condensing flow inzAdenoz

The first test case has been used to verify that the numerical method iwable
accurately solve the binary kinetic equation (BKE), whereas the seqmméased
for validation of the condensing flow model by means of comparison with kctua
measurement data from [144].

The verification has proven successful for each simulated nucleatperiment.
Furthermore, the influence of the vapor composition on the resulting birabyias
been examined, which is found to be in agreement with the analysis bife3tdil4].

The validation of the condensation model has been carried out for fiveasss,
with different inlet compositions of the vapor phase. The predicted temperahares a
pressures at condensation-onset are found to be in good agreeitheneasurement
data, when the fully self-consistent WW2-equilibrium distribution is usedltutate
the backward rates in the BKE.

By analyzing the total condensation flux in binary space, it has beerd fthat
the binary DSD does not approach a Lagrangian quasisteady-statiersaluring
the rapid expansions considered here. The conclusion drawn frois that caution
should be exercised when analyzing the measurement data obtainedfrdensing
nozzle flow experiments based on quasisteady-state nucleation theory.

Finally, the sensitivity of the flow field solution to the equilibrium distribution has
been quantified. The results obtained by calculating the backward rates BK&&
using either the partially self-consistent WW1-equilibrium distribution, or thiky f
self-consistent WW2-equilibrium distribution, show profoundtetiences in terms
of predicted temperatures and component liquid mass fractions. Furtlegrther
condensation-onset data predicted by using the WW1-equilibrium distribatie
shown to be much tlierent from the reported measurements.
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Ficure 5.17: Comparison of temperature and liquid mass fraction profiles for simu-
lations in which the backward rates in the BKE are computed by using eiﬁwrm
or pEWW2 for test cases 2.2 (a, b), 2.3 (c, d), and 2.4 (e, f).




DROPLET CONDENSATION IN
SYNTHETIC TURBULENCE

The condensation of micro-droplets in a synthetic turbulent flow, ren@ntsaf at-
mospheric clouds, is investigated numerically and analytically. Droplets lha&en
followed through a synthetic turbulent flow field compose@@if random Fourier
modes, with wave numbers ranging from the integral scal¥4@®m)) to the Kol-
mogorov scales(10-3m)). As the influence of all turbulence scales is investigated,
direct numerical simulation is not practicable, making kinematic simulatiorotig
viable alternative. Two fully Lagrangian droplet growth models are pregosa
one-way coupled model in which only adiabatic cooling of a rising air plasceon-
sidered, and a two-way coupled model which also accounts forfhet® of local
vapor depletion and latent heat release. The simulations with the simplifidelmo
show that the droplet size distribution becomes broader in the course efaimd
resembles a Gaussian distribution. This result is supported by a thedratiadysis
which relates the droplet surface area distribution to the dispersion oflétejm the
turbulent flow. Although the droplet growth is stabilized by vapor depletimhatent
heat release in the two-way coupled model, the calculated droplet sizédigins
are still very broad.

The work in this chapter has been submitted in revised form as: R.S.R. Sidin,
R.H.A. 1Jzermans, and M.W. Reeks, "A Lagrangian approach to droplelensation
in atmospheric clouds” to Physics of Fluids (2009).

6.1 Introduction

Despite being a familiar phenomenon, the development of rain showers j&hot
completely understood and therefore subject to many studies (see, 84].afd
references therein). In general terms, three stages can be distegjirighe process
of rain drop formation. First, droplets are generated by heterogememisation of
water vapor on sub-micron sized aerosols which act as cloud coridensaclei
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(CCNSs). Although it has been speculated that very large condensatabei may
existin acloud [19], [20], itis generally believed that CCNs have a ditgsoorder of

rn = 10'm[90], [101], so that droplets starffaat sub-micron sizes. If the conditions
allow, the droplets grow to a diameter of millimeters in a subsequent stage, in which
droplet inertia plays a dominant role. Finally, the droplets are large entaufzl,
under the influence of gravity, through the cloud and reach the ground.

The growth process of droplets from sub-micron scale to millimeter scale is due
to condensation (i.e., impingement of vapor molecules onto a droplet) and due to
coalescence of droplets. While the condensation process depends praiolyal
thermodynamic quantities such as temperature and supersaturation, tteeeoade
process is related to the inertia of droplets. In order to determine for whagied
sizes coalescence is important, it is instructive to look at the Stokes number St,
measure for the droplet inertia compared to the momentum of the smallest dcales o
turbulence [24]. Here, it is conveniently expressed as:

s )z

wherep, denotes the bulk density of the water in the dropieis the radius of the-
droplet in a cloudp is the density of the surrounding mixture of vapor and airand

is the Kolmogorov length scale. In systems like atmospheric clouds, typicas/afu
the Kolmogorov length, velocity and time scales are respectivgly: 1073m, v =
0.025m/s, andri = 0.04s[101]. Hence, for droplets of size gthand a ratio between
the bulk density of the water droplet and the density of the surrounding wioist
po/p = 103, the Stokes number is approximatel)®. The settling velocitys of
these droplets in still air under the action of gravity (with acceleragier9.81m/s%)

and drag forces isvs = Stryg = 0.008m/s, which is considerably smaller than the
Kolmogorov velocity scale. Therefore, droplets with radius smaller thaum can

be expected to closely follow the turbulent flow in an atmospheric cloud, e@iser
inertia dfects become important only for larger droplets. In conclusion, it is clear
that condensation must be the dominant mechanism for the initial growth pietso

of radii between 10’m and 10°m, whereas coalescence becomes important for the
growth of droplets with radii larger than 1%m.

To predict the variation in droplet size in the coalescence stage of grawihi-
able and accurate description of the droplet size distribution at the ditbét stage
is necessary. In particular, the broadness of the size distribution mayal@efound
influence on the coalescence rate of droplets, and thus on the time scalesdnv
in the initiation of rain. Indeed, Beet al. [12] have found that the collision rates
in a turbulent flow between polydisperse droplets can be consideraliigrhiljan
between monodisperse droplets. For the current investigation, this is thenmpain
tivation to study the evolution of the droplet size distribution during the psoés
condensation in a model-system that simulates atmospheric clouds.
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One of the first theoretical studies on droplet condensation in cloudpuwidished
by Twomey in 1959 [123], [104]. His theory is based upon the assumptinath
group of droplets may rise through a cloud in a parcel of air and remaitheg®r
along time. As the Knudsen numbers associated with droplets in atmospheds clou
are relatively largeKn > 1), the growth of droplets takes place in théfukion
controlled regime [39], so that the approximatian/dit = Gs/r,, is valid. HereG is
a constant andis the local supersaturation [104], defined as:

s=S-1, (6.2)

with S denoting the saturation ratio (see Eq. (1.1)). As the growth rate is inversely
proportional tor,, small droplets grow faster than large droplets, and therefore, the
droplet size distribution is expected to become narrower as the mean changilet
increases. This prediction is, however, not in agreement with experihexdance,
which suggests that the droplet size distributions in atmospheric cloudscad, b
even when the droplets are of micrometer sizes (see, e.g., [11], [19]).

It is noted that some numerical and analytical studies on condensation tsclou
have been published in recent years, also. Vaillanatuat. [124], [125] carried out
a direct numerical simulation (DNS) of condensation in a turbulent flowethein-
cluding a remarkable number of physical phenomena relevant for atmesplouds.
Celaniet al. ([17], [18]) recognized that, in addition to a turbulent velocity field, the
supersaturation and temperature fields are unsteady and spatially inh@ooge
Using a two-dimensional DNS, they solved an energy balance for the tatoper
field and a liquid-vapor mass balance for the supersaturation field simultsigeo
with the Navier-Stokes equations. By employing this Eulerian-Lagrangiareimod
they were able to show that the droplet size in a cumulus cloud may be very much
varied, with the largest droplets situated in regions where the supetsatusathe
highest.

All of these numerical simulations are understandably restricted by commathtio
limitations, since real atmospheric clouds are associated with excessigeyRaynolds
numbers and large separations of length scales. For example, perf@amiNG of
the turbulent flow in a cloud with an integral length sclage= 100mandz, = 10-3m
would require at leastp/nx)® = 10'° grid cells, with billions of droplets that need to
be traced. Evidently, such requirements are beyond the capabilities of muute-
puters. In order to circumvent this problem, Vaillanceetral. [125] focussed on the
smallest scales of turbulence and chose a calculation domairiLof)f0 Celaniet al.

[18], on the other hand, did include the largest scales in the their DNShaflamnce,

but they were not able to resolve the smallest scales, despite the two-dineditigio

of their model. Nonetheless it is important to note that the droplet size distribution
on millimeter scales isféected by both the large and small scales of the turbulence.

As Celaniet al. [17] point out, large scale motions can transport individual droplets
over large variations in altitude, which results irffdrent droplet sizes for flerent
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droplet trajectories. Small scale turbulent fluctuations can mix dropletdfefelt
sizes. Both phenomena together result in a broad droplet size distritbotialty,
which is essential for the coalescence mechanism to be enhanced.

The condensation of droplets in atmospheric clouds is a very complexgstoce
Condensing droplets release latent heat, thereby increasing the temperfatioe
surrounding mixture of dry air and water vapor. Simultaneously, the dpie
transported by a turbulent flow field over several hundreds of metish itself is
affected by the condensation processes taking place on micro scales. € froth-
plication involves the expansion of an air parcel as it rises, therebyimglnon-zero
gradients in the density, pressure and temperature fields of the mixtutkefroore,
many other phenomena take place in a cloud, such as additional tempeié&eire d
ences due to solar radiation (the higher parts of a cloud receive mordrbighthe
sun than the lower parts) and due to various chemical processes 124@], [11].
Given this rich interaction between various processes, the developfreecomplete
physical model, which takes into account all chemical, and thermo-hydraluie
nomena occurring in actual atmospheric clouds, is an extremely challengladta
is noted, however, that a complete model is less appropriate if one desisette
the influence of a specific phenomenon, which, in this specific investigasidhe
role of turbulence in the cloud condensation process. In this regargyéisent in-
vestigation assumes that the velocity field of thévajpor mixture in an atmospheric
cloud corresponds to a statistically stationary homogeneous isotropic tuirfiole
in three dimensions, independent of the presence of the condensijplgtdroThis
is the main assumption here, which conveniently allows the turbulent flow field to
be simulated by means of a kinematic simulation (KS) employing random Fourier
modes [55]. This approach has the major advantage that the flow modehenc
passes all turbulent length scales, from the integral scales to the Kolovogales.
Of course, the presence of condensing droplets in actual clouds & dounflu-
ence the fluid dynamics within the system, e.g., by increasing the ascent ckdaf
parcels due to increased buoyancy stemming from latent heat releasgpdration
of such dfects in the current model is, however, not easily achieved, nor is itedesir
to do so in view of the specific research questions addressed here.

In the present chapter, a fully Lagrangian numerical approach iopeajpto in-
vestigate the condensation of droplets in model-systems, representing aemosp
clouds. Using the KS-flow field, the trajectories of a limited number of indiMidua
droplets, contained inside a small sampling space, are calcldatdevard in timen
order to determine their past trajectories. Subsequently, the size of rgudbtcdlong
its trajectory is then calculatéddrward in time This approachféciently produces a
detailed local size distribution without the necessity of integrating the trajestofie
billions of droplets individually, which would have been the case if the ustiat-
egy of following droplets which are uniformly distributed over the entire dorhaih
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been adopted.

The predictions obtained with the proposed Lagrangian condensatiornl neede
veal that the droplet size distribution becomes broader in the course of tiemeod
turbulent dispersion of droplets, both on large scales and on small sbé&desover,
it is shown that it is essential to take this entire range of scales into accaxnt: e
cluding the largest scales, for instance, does not result in a verg Ispectrum of
droplet sizes, since all droplets in the simulation experience approximatedahe
supersaturation (a result found by [124], [125] and [40]). Noirtgknto account the
smallest scales does not show turbulent mixing of dropletsfédréint sizes on the
smallest scales ([18]), arffect which is vital for the enhanced coalescence mecha-
nism. Finally, it is demonstrated that although tlfieets of vapor depletion and the
release of latent heat slow down the droplet growth, they do not quatitgtiter the
broadening of the droplet size distribution at the smallest scales.

This chapter is organized as follows. In the following section, the physicdl
mathematical models describing the turbulent velocity field and the condensation
process are discussed. Two approaches are proposed for motieliogndensation
process: a two-way coupled model in which the droplet growth exertediifack
on the temperature and supersaturation fields, and a simplified model in whsich th
feed-back is neglected. Section 6.3 is devoted to the results of the statistroplst
dispersion in the turbulent flow field. Subsequently, results are prestmttne evo-
lution of droplet size distributions, using either the simplified condensation Inode
or the two-way coupled model. Finally, the conclusions are formulated in the las
section.

6.2 Physical-mathematical model

6.2.1 Flow field composed of random Fourier modes and relatedroplet
trajectories

The flow of the aifvapor mixture is prescribed by a synthetic velocity fielg, t)
composed oM random Fourier modes [55]:

M
u(x,t) = Z [Amcos(Km - X + wmt) + Bmsin(Km - X + wmt)] , (6.3)

m=1

whereAn, and By, are orthogonal td,, so that an incompressible flow field is ob-
tained, which varies smoothly in both space and time. Such synthetic turbaent fl
fields are frequently used to study the dispersion of particles in turbylerge[81],
[113].

The wave numberky, amplitude cofficientsA,, Bn, and frequenciea, are all
random numbers, generated in similar fashion as described in [81]. rEhstép is
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to adopt an energy spectrum, which characterizes the energy distributimmgst the
various scales of turbulence. In this investigation, the wave ve&ipare chosen
from a model energy spectrum given by [87]:

E(K)
E(K)

ak™>3 1 (kLo) f, (ki) , k1 < Kk < kw (6.4)
0, otherwise

wherek = |k||, andLg denotes the integral length scale. The functip(kLp) is

a correction to the standareb/3-spectrum that incorporates the contribution of the
largest scales of motion, and is given by:

5/3+po

kLo
VikLo)2 +CL

with: C_ = 6.78, and: pp = 2. Similarly, the functionf, (ki) incorporates the
contribution of the eddies in the dissipative range, and is given by:

fL(kLo) = [

(6.5)

fy(knd = exp( g {[ ko + 2] - ¢, }). (6.6)

with C, = 0.40 andB = 5.2. The factorr contained in the energy spectrum is related
to the energy dissipation rateby o « €%/3, and is obtained from the condition:

(59

f E(k)dk = gug, (6.7)
0

whereUy is a specified reference velocity, takenlas= 1m/s. Figure 6.1 shows the
resulting energy spectrum which is used to generate the velocity field inélsergr
investigation.

The normsky,, = ||kl are distributed in logarithmic fashion between the wave
numbers associated with the maximum length stalg and the Kolmogorov length
scaleny:

m-1

; K = kl(k—“")m forl<m< M. (6.8)
k1

21 21
k]_ = . kM = —
Lmax nk
The maximum length scaleyax must be larger thahp, and its value is set equal
to 5L in this study. The wave numbeks, are determined by settindcy, = kmém,
whereey, is a unit vector whose direction is chosen randomly. This is achieved by

specifying:

em1 = V1-h2cosf, en2 = V1-h2cosd, enz=h (6.9)
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Ficure 6.1: Turbulent energy spectrum used in the kinematically simulated flow field.
The integral length scale is)L= 10°m and the Kolmogorov length scalesng =
103m

for the components oy, where the variablek and6 are randomly sampled from
the respective domain®, = [-1, 1], andQy = [0, 2], based on uniform probability
distributions. The probability densities farandé are thus given by?DF(h) = 1/2,
andPDF(0) = 1/2r, respectively.

To show that Eq. (6.9) indeed results in a uniform distributionggion the unit
sphere, the following analysis is carried out. First, it is recognized tha{6E®)
maps each regiof2, g € Qn x Qy uniquely to a regiorfe on the surface of the unit
sphere. The probability densiBDF(ey,) associated witlg, satisfies the following
relationship ore:

fPDF(e,n)demdemdqm: fPDF(h)PDF(Q)dhdH, VQe. (6.10)
Qe Qng
From vector-calculus it follows that also:

Pro
fPDF(em)danldanzdang:fPDF(em(h,e))Haié"xa—T]"Hdth, VQe. (6.11)

Qe Qhﬂ
Using Eq. (6.9), it is derived that
0en 0en
ll— X

=1 (6.12)
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which means that;
PDF(ey) = PDF(h)PDF(0) = 1/4nr, (6.13)

because Eq. (6.10) and (6.11) must be satisfied for arbi@aryhus it is established
that the mapping in Eq. (6.9) indeed results in a uniform distributicey,afmn the unit
sphere.

In order to ensure that the velocity field satisfies the energy spectrumitimes iof
the amplitude co@cientsA, andBpy, are determined from:

Km1/2
IAmII? = IBmll* = 2 f E(K)dk, (6.14)
Km-1/2

where: kne1/2 = (Km + kme1)/2. The direction ofAy, is specified by settingAn, =
lAmllam; the unit vectoray, is given by:

tm X Km

=" - 6.15
[[tm X Kmll ( )

wheret,, is a randomly directed unit vector. Determination of the amplitudeticoe
cientsBn, proceeds in a similar way as outlined #f,.

The velocity field is completed by specifying the angular frequenojgswhich
are chosen to be proportional to the eddy-turnover time associated witin-the

Fourier mode [35]:
wm = AK3SE(Km), (6.16)

whereA is the so-called unsteadiness parameter which is generally taken tabe 0
A < 1. In this investigation its value is set fio= 1.

Droplets are assumed to be advected by the turbulent flow as passe#es trakis
is a valid approximation in the present research, since the focus is primarily o
droplets with sizes 10m < r, < 10°m, for which the Stokes number based on
the Kolmogorov scales is®x 10° < St < 0.02, and the ratio between the settling
velocity and the Kolmogorov velocity is®x 10* < vs/v < 0.3. Also, Brownian
motion is neglected, since Browniarfidision is much smaller than the turbulent dif-
fusion for the flow fields that are simulated in this investigation. Thus, the positio
Xn(t) of a droplet in the course of tintds given by:

dxn
- u(xn(t), 1), (6.17)

with u(xn(t), t) specified by Eq. (6.3).
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6.2.2 Two-way coupled droplet condensation model

The average number density of droplets in atmospheric clouds is much loaver th
the number densities observed in condensing nozzle flows. In condemsizle
flows the inter-droplet separation distances are typieo-°m), whereas in atmo-
spheric clouds, the average inter-droplet separation distar@€ &3m), which is
comparable to the typical Kolmogorov length scales of atmospheric turbulirise
therefore not possible to use a continuum modelling approach to descgibgdhu-
tion of the droplet size distribution in systems where the details on such smlak sca
are of interest. As a consequence, a discrete particle approach te@dopwhich
the condensation of droplets is tracked in Lagrangian fashion along itsttgjeln
contrast to the usual practice in discrete particle models, the present niefaty
Lagrangian, because the fluid velocity does not need to be solved oedaHixe-
rian grid, since it can be computed by means of Eq. (6.3) at any point in tintiee a
position of each individual droplet.

To derive the Lagrangian condensation model, a single droplet of myaisscon-
sidered, which moves in a turbulent velocity fiel(k,t). The droplet is contained
within an aiyvapor parcel of volum¥&_, which is assumed to be much larger than the
droplet’s volume, but small enough so that all molecules in the parcel renugathir
for along time, i.e., the diusive mass and energy transport at the outer surface of the
parcel is neglected. First, an expression is introduced for the stypeisan in the
parcel based on a mass balance, and subsequently, the equationtéonpleeature
variation following from an energy balance is derived. Furthermoreteimperature
and vapor mass density are assumed to remain uniform over the entirk parce

The volume of the parcél; can be considered as the volume of air and vapor
available per droplet. It is therefore related to the droplet number dexsity:

Ve =N (6.18)

If the mass of air inside the parcel is denotediyy the mass of vapor by, and the
mass of the droplet by, a mass balance yields:

dm, _ _dmy
da — dt’
as only vapor can be transformed into liquid and vice versa. Upon negetitin

droplet’s volume compared ¥, the partial vapor densipy, in the aiyvapor mixture
can be determined by:

(6.19)

my
= 6.20
Pv VC s ( )
and its time derivative along the droplet’s trajectory is:
d 1d dv, 1d dv,
doy _ 1dm mdve  1dm, mdVe (6.21)

dt Ve dt  v2 dt Ve dt V2 dt
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The rate-of-change oV, is not necessarily zero because the volufiemay ex-
pand (shrink) when it is transported to higher (lower) altitudes. Since insgthawic
cloudsm, > m, + m, [101], the evolution ol in time can in principle be deter-
mined fromV; = my/pa, Wherep, denotes the partial density of air. It can be shown
that the variation op4 is so weak in atmospheric clouds that the influence of the
second term on the right-hand side of Eq. (6.21) is negligible compared tittae
thermodynamicalfects. Therefore,

dVe
T
and, as a consequence of Eq. (6.28)¢an be considered constant as well.

The law describing the condensational growth of a droplet varies cenadily with
the droplet’s size. For very small droplets (i.e., for large Knudsen nutiegrowth
is described by the Hertz-Knudsen law which includes the so-called Kefteate
[90], whereas the growth rate of large droplets (i.e., for small Knudsenber) is
governed by dfusion. For the sake of simplicity, thefflisional growth law is em-
ployed for all droplet sizes in the present study. Although it overestintiagedroplet
growth rate for the smallest droplets of sizes 10~'m, it is accurate for the majority
of the droplets in the present simulations, whose radius is generally mueh taep
the capillary length scale.

The difusional growth law for a spherical droplet is [39]:

dm, dr .
&= 4nr§pbd—t” = g = 4nrDyaloy — p3), (6.23)
whereD, 4 is the binary ditusion codicient of water vapor in airpy is the bulk
density of waterg, = 10°%kg/m®) andp$ denotes the saturation vapor density, which
depends on the temperaturg:= p3(T) (see appendix A).

By writing the supersaturatios of the moist air surrounding the droplet in the
form:

=0, (6.22)

s=2_1 (6.24)
Pv
Eq. (6.23) can be cast as:
m'] = 4ﬂrnDV,a$s. (625)

The rate-of-change of the supersaturation can be obtainedfiieyefitiating Eq.
(6.24) with respect to time, and making use of Eq. (6.21), Eq. (6.22) an@E2&) in
order to obtain:

ds s dT 1 dpj

a = _T_S - (S+ 1)&;\?5, (626)
where the vapor depletion time scalgis given by:

Ts Ve ! (6.27)

- 47TrnDV’a - 47TrnDV’aN| )
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An equation for the temperature of the moist air surrounding the droplebean
obtained by considering the conservation of energy in the vogné-or a system
of this size, the variation of the enthalpy within the volumeis negligible, and
therefore the conservation of energy is given by:

d
a(maha +myhy + Myhy) = —(Ma + my + mMy)u - &,0, (6.28)

wherehg, h, andh, denote the specific enthalpy of the air, the vapor and the droplet,
respectively. Eq. (6.28) expresses the balance between the chdhgeirergy of the
parcel of moist air and the work done by gravity, as viscous dissipatidrirermal
heat conduction are neglected. Since the supersaturation is close {d@&fothe
liquid enthalpyh, may be approximated by:

hn = hv - Lb, (629)

wherely = Lp(T) is the bulk latent heat of vaporization. By employing a caloric
equation of state for a perfect gas; = CpaT and: hy = Cp, T (with C,; denoting
the isobaric specific heat of substarifein combination with Eq. (6.19) and Eq.
(6.29), Eq. (6.28) may be cast into the following form:

ar _ fmlp—(Ma+ My + Myu - &g
dt  maCpa+ (M + My)Cpy — MydLp/dT’

(6.30)
Since in atmospheric clouds it holds tha{Cpa > (my + my)Cpy andmaCpa >
mydLp/dT, Eqg. (6.30) may be further simplified to:

dT _ myleN
dt Pan,a

Tu-e, (6.31)

where the factor is the so-called adiabatic lapse rate [101], given by:

g

I'= .
Cp’a

(6.32)

The two-way coupled system is now closed, and it can be solved alongathe tr

jectory of a droplet in the course of time. Specifically, Eq. (6.26) and &§1] for

the supersaturation and temperature of the moist air surrounding thetdrepfeec-
tively, and Eqg. (6.25) for the rate-of-change of the droplet masg] teeée solved,
using some initial conditions fos(t = 0), T(t = 0) andmy(t = 0). This system

of ODE'’s is augmented by Eg. (6.27) for the saturation relaxation tign@s well

as the expressions for the quantit@ga(p, T), Lo(T) andpy(T) andC,;, which are

all given in Appendix A. Finally, the parametepg and N, can be chosen freely
depending on the problem at hand.
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The model just presented is referred to as the “Two-way coupled osaten
model’. It should be noted that Eq. (6.26) is actually very similar to the exfmes
used by Twomey to calculate the variation in the supersaturation in [123]. gtho
the dfect of latent heat release has been excluded in that particular investigatio
cent work by Celanet al. [17] does take it into account by means of an appropriate
sink term in the balance equation for the supersaturation. The mi@@netice be-
tween the current ‘Two-way coupled condensation model’ and the ord&]ng that
the latter uses an Eulerian formulation to describe the evolutisnvimereas here, a
fully Lagrangian approach is employed.

6.2.3 Simplified droplet condensation model

As can be noted from Eg. (6.26) and Eq. (6.31), the supersaturatiomgeh due to
three dfects: adiabatic cooling, vapor depletion (i.e., the finitenesg:pfand the
release of latent heat by the condensing droplet. The latent heatraledshe vapor
depletion term tend to slow down the growth of droplets and thus have a stabpilizin
effect on the development of the droplet size distribution,ispace. Adiabatic cool-
ing, however, is the only mechanism capable of increasing the supeatiatuvhen

a droplet is growing. It can therefore be seen as the only stimulaffegteon the
condensation process. Indeed, adiabatic cooling is widely believed teladim
source of supersaturation, and therefore of the condensationelhgod droplets in

a cloud [104], [17].

In order to isolate theffect of adiabatic cooling, a simplified condensation model
is proposed, in which theflects of vapor depletion and latent heat release are ne-
glected. This approach has two advantages: firstly, it allows one to degethen
influence of adiabatic cooling on the development of the droplet size ditrilu
without the results being obscured by seconddfgots. Secondly, in a subsequent
stage, the results obtained with the simplified condensation model can be edmpar
with the results from the two-way coupled condensation model. Afigréinces be-
tween the results can unambiguously be related to the feed-back of thetdpapvth
on the temperature and supersaturation fields.

The simplified condensation model follows readily from the two-way coupded ¢
densation model presented in section 6.2.2. If latent heat release istadglgq.
(6.31) reduces to:
ar _ —-Tu- (6.33)
i €. :
Similarly, if the dfect of vapor depletion is neglected, all terms involving the finite-
ness of the volum¥ are zero and Eq. (6.26) becomes:

ds dT 1 do§ 1 do§
i —(s+ l)ap_\?d_T =(s+1lu- ezp_ﬁﬁ'
Finally, the droplet growth law is still given by Eg. (6.23).

(6.34)
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This model, which is similar to the model employed by [17], is referred to as
the ‘Simplified condensation model’, and accounts for condensation insarfived
temperature field resulting from adiabatic expansion cooling.

6.3 Results

6.3.1 Statistics of droplet dispersion

It is instructive to discuss some statistics of the one-droplet and two-dmdipjeer-
sion in the turbulent flow described by Eg. (6.3). Here and in the follovtimgjnte-
gral length scale of the flow is set equalltg = 10°m, and the Kolmogorov length
scale tog, = 1073m.

In this flow field, the trajectories of droplets in the course of time are determined
by integrating Eq. (6.17) numerically, using a fourth-order Runge-Kattaime. The
numerical time step in all simulations presented here is fixetitat 0.1/wy, SO
that the motion of a droplet through the smallest turbulent eddies is resoltied w
suficient accuracy. Convergence tests have been carried out with snadiles\of
At, and the results for the dispersion or the condensation of droplets wesagnifi-
cantly diferent.

First, the one-droplet dispersion is investigated by calculating the trajectofrie
500 droplets in five dferent realizations of the flow field. Each droplet is released at
a random poink,(0) and traced for a time & t < 10%s, during which the distance
to the point of injectiorjjx,(t) — X,(0)|| is calculated. The square root of the squared
distance averaged over all dropléliga(t) — xn(0)/[?)Y/? is plotted in Figure 6.2.a as
a function of time. The result shows that the droplets in an atmospheric cioud c
be transported over distances of the order ofr®dthin a time span of 108 In
addition, it is clear thag||xn(t) — xn(0)||2)¥/2 « t for small values of, and(||x,(t) —
Xn(0)I2)Y? o t1/2 for large values of, which is perfectly in agreement with Taylor’s
famous prediction of one-particle dispersion in a turbulent flow [121].

The statistics of the two-droplet dispersion are determined by releasingah@0
of droplets at an initial separatiady in five different realizations of the flow. The
initial distance is chosen as the Kolmogorov length scdde= nx, and the direc-
tion of the inter-particle separation vector is selected randomly in three dinmsnsio
The trajectory of each droplet in a droplet pair is calculated from Eq7jpand at
each time step the distance between the droglgtss measured. Averaging over all
droplet pairs then results i?(t))Y/2, which is plotted in Figure 6.2.b as a function
of time. The separation distance is apparently proportionafdosmall values of,
and proportional ta'/2 for very large values of. In the intermediate time range, the
separation distance in a turbulent flow should be proportiortdl2evhen the separa-
tion distance is of the order of the size of the eddies in the turbulent inenigéras
the classical theory by Richardson predicts [94]. Due to the limited statistiss\at
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Ficure 6.2: (a) Lagrangian one-particle statistics, based 500 droplets in5 dif-
ferent realizations of the flow field compose®600 random Fourier modes; (b) La-
grangian two-particle statistics, based 600droplet pairs in5 different realizations
of the flow field composed @00 random Fourier modes. The initial inter-particle
separation distance is equal to the Kolmogorov length scaje: gk = 10-°m.

immediately clear whether or not the current kinematic simulation producefiyexac
that behavior, but in spite of this, a range is observed in wtdéft))*/? « tP, with p
somewhere betweernyd < p < 3, in general agreement with Thomson & Devenish
[122] who foundp =~ 2.3. It is well known that KS are not able to fully reproduce
all details of a real turbulent flow field, such as the sweeptfiigce of large eddies
on smaller ones. Regardless of the in itself interesting question whetherradtine
simulation is able to produce Richardson’s law (see, e.g., [4], howe&)), [it is
clear from Figure 6.2.b that two droplets which are initially separated by a siisall
tance may end up in completelyfidirent regions of the flow field after affgiently
long time. Vice versa, since the equation of motion Eq. (6.17) is reversiblisoit a
holds that two droplets which are nucleated at two distantly separated pssitiag
end up very close to one another at some instant of time. This concepotutrts
be essential for the explanation of the results obtained with the curredéosation
models.

6.3.2 Results for simplified condensation model

In the present section the results obtained for the simplified condensatia ared
discussed. The size and position of a droplet at a final tinaee obtained in three
steps. First, the final positiothe = (Xe, Ve, Z)" is specified by choosing an altitude
Ze, Whereas the horizontal coordinate,ye) is chosen randomly in a square with
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sides of lengthL..
Second, the trajectory of the droplet is calculated backward in time (i.e. tfrota
tot = 0) from the final position. In this step, the position of the droplet followsiro

W) === = ne (6.3
with 7 = te — t running from 0 tate, andu(xn(7), 7) prescribed by Eqg. (6.3).

Third and finally, the droplet growth is determined forward in time along its trajec
tory. Eq. (6.23) for the droplet maas(t) is solved forward in time, starting from the
initial conditionm,(0). All droplets are supposed to have the samegjze 10-'m
initially, so thatmy,(0) = (4r/3)pnr 3.

Using this procedure, a total 4§ o = 16,000 droplets is traced through the flow
field in each simulation. This proceduréieiently produces droplet size statistics
within the sampling area € [0,L], y € [0,L] andz = Z at timet = tg, whilst it
avoids the necessity to follow a huge number of particles uniformly distributed o
the entire domain, like in traditional Eulerian-Lagrangian methods.

It is noted that for the simplified model, the local temperature and supersatura
values are obtained from a prescribed profile (see Figure 6.3), fichwhe data is
obtained from the adiabatic cooling of a parcel of rising air. The profilg} and
S(2) are given by:

Pv
T(2=T(z=0)-Tz and 92 5T@) 1, (6.36)
where the vapor densify, is constant because its variations are much smaller than
the variations ipy. The vapor density is therefore set equal to its value at the earth’s
surface;py = py(z = 0). For all the simulations presented in this paper, the conditions
at the earth’s surface & 0) are taken asT (z = 0) = 20°C = 293K, with a relative
humidity of 50% € = —0.5).

Given Eg. (6.23), it is obvious that a droplet may shrink to a mass of #eito,
experiences negative supersaturation for ficgantly long time. Physically, this
means that it is completely evaporated. If such happens, the droplet is eéchina
from the calculation and makes no contribution to the size distribution function.

Figure 6.4 shows the droplet size distribution fgi= 1350m and a sampling area
L? = (500m)?, for seven diterent values of.. The distribution function is a Dirac
delta function ate = 0, and becomes broader for lardgr Already afterte = 20s,
some droplets have reached a size of tens of microns, which is at firsegiamark-
able, because the supersaturation.a 1350mis very close to zero (see Figure 6.3).
The explanation of the spectral broadening lies in turbulent dispersidndioplets
with different histories are located in the sampling space situated at altitatieme
te. Droplets which have been at higher altitudes have experienced higpenrsatu-
rations and thus have grown more than droplets which have been at |ibivetes.
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Ficure 6.3: Temperature and supersaturation profiles as a function of altitude z. At
the earth’s surface 2 0, T = 293K and s= -0.5.

Comparing these results with those of Twomey [123], [104], it is evidenttieof
fundamental importance to include turbulent dispersion in the model.

In Figure 6.5, a comparison is made of the droplet size distributions after time
te = 100s, at five diferent altitudesz.. Sampling spaces at high altitudesare
predominantly populated by droplets which (on average) have expedemigher
supersaturations than droplets at low altitudes (see Figure 6.3). Treersfe mean
size of droplets at higla, is larger than at lowz,, and this trend is clearly visible
in Figure 6.5. The variance df(r,), however, does not seem to bffeated much
by the altitude, as the droplet size distributions are relatively broad foitilldes
considered.

The fraction of evaporated droplets is determined by simply counting the mumbe
of evaporated dropleth evap in the simulations presented in Figure 6.5 and com-
paring them to the total number of droplés;: initially released in the flow. The
ratio Nj evap/Ni tot Is plotted in Figure 6.6. It is clear that more droplets evaporate at
lower values ofz., which is a consequence of the fact that the supersaturation is less
at lower altitudes, and therefore, the fraction of droplets experienaggtive su-
persaturation is higher. The high initial evaporation rate is due to the facsahze
of the droplet trajectories have a starting pag(0) in a region wheres < 0: these
droplets evaporate almost immediately.

Itis important to note that droplet nucleation after O is not taken into account in
the current model. In reality, however, a new droplet may grow along #jectory
of a previously evaporated droplet. The regeneration of dropletsdes eglected
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Ficure 6.4: Droplet radius distribution function (f,) for seven dferent moments in
time t. The final altitude of droplets issz= 1350n, and the sampling area?L=
(500m)?. The results have been obtained with the simplified condensation model.

for the sake of simplicity, but this phenomenon is likely to be present in atmdsphe
clouds and could eventually result in a multi-modal droplet size distributioctifum

At this point it is useful to examine the relationship between the results and the
relevant parameters which determine the temperature and supersaturetiles.plt
follows from Eq. (6.23) that the surface of the dropigtt) = 4ar2(t) changes as:

A, =Gs with:  Ay(0) = 4ar3, (6.37)

whereG = 87D, 05/pn. Most droplets in the current simulations experience temper-
ature variations that are so small tiiatemains approximately constant. In addition,
in the simplified condensation model, the equation for the supersaturatiqi6, Zg).

can be integrated to obtain:

S(t) = s(za()) = Azd(t) - Ze), (6.38)

for a constant value of the parameges I'd(Inpg)/dT, which is a reasonable approx-
imation in the present case where the temperature variations are relatiadty ime
fact, Eq. (6.38) stems from a local linearization of the adiabatic supeasiatuipro-
file shown in Figure 6.3. The valug.s denotes the reference altitude for which the
supersaturation is zero. Eq. (6.37) can be integrated along the traje€tidroplet
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Ficure 6.5: Droplet radius distribution function (f,) for five djferent final altitudes
of droplets g The sampling timest= 100s, and the sampling area?l= (500m)2.
The results have been obtained with the simplified condensation model.

using Eq. (6.38), and the result is:
An(t) = 413 + GAL(Y), (6.39)
with:

t
£) = f (2(t') - Zer)a. (6.40)
0

Thus, An(t) and/(t) are proportional, and their statistics, determined by averaging
over a large number of droplets, are similar:

An — 47rr§)

PDF() = PDH A

(6.41)
In other words, one could, in principle, estimate the droplet size distributimgigen
altitudez, by using only the statistics for the dispersion.

The PDF off atte = 100sis shown in Figure 6.7 for droplets which have a final
position in a sampling area of sité = (500m)? at altitudeze = 1350m. The same
graph also includes the PDF of the mean supersaturatitig) along the trajectory
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Ficure 6.6: Number of evaporated droplets relative to the total number of droplets
in the simulation as a function of time, for fivgfdrent final altitudes gafter time

te = 100s. The results have been obtained with the simplified condensation model
with L2 = (500m)2.

of a droplet, which is defined as:

t
1
sn®) = = [ s(t)t. (6.42)
1

It is noted that all droplet trajectories have been included in generatisg PIBF’s,
i.e., including those for which droplets evaporate completely. In order to alimet
comparison, the PDFs are shown as a function of the scaled standardizdues:

N

{4 , _ Sm—(Sm)

X

Wwar@)’ S \War(sy)

where var{) stands for the variance obtained from averaging over all droplets. A
perfect agreement is observed, as is expected from the linearity (6.88). In ad-
dition, it is noteworthy that the PDFs are symmetric, which follows from the ipgtro
of the flow field, and furthermore, they are almost perfectly Gaussian.

Next, the correlation between the parameteand A, is investigated. Figures
6.8.a and b show the PDF of the normalized quant'»t}esndx;n (with Xa, obtained

X
Il

(6.43)
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Ficure 6.7: Standardized PDFs af (see Eq. (6.40)) in the simulation (evaporated
or not), and the mean supersaturatiog along their trajectories. For the sake of
comparison, a Gaussian distribution with zero mean and unity variance teglas
well. The sampling time;t= 100s, the final altitude of droplets,z= 1350m, and
the sampling area £ = (500m)2. The results have been obtained with the simplified
condensation model.

analogously t0<2) only for droplets that haveot evaporated, for sampling altitudes
Ze = 1350m andz, = 1380m, respectively. Both figures show a perfect agreement
betweenPDF(x,) andPDF(x, ), which confirms the previous analysis presented in
Eg. (6.41). From comparing Figure 6.8.a with Figure 6.8.b, it is clear thatitred?
Xa, is more symmetric for highez.. This can be explained as follows. Any asym-
metry in the graphs is purely due to the evaporation of droplets becaus®khefP
¢ measured for all droplets (evaporated and non-evaporated) shewdgntimetric
due to the isotropy of the turbulent flow. 2f increases, the number of evaporated
droplets decreases (see Figure 6.6) and therefore, the standdpiEedf A, be-
comes more symmetric. Figure 6.8.a and Figure 6.8.b also show the PDF of the stan
dardized droplet radiug _, which is remarkably close to Gaussian. This is probably
a coincidence since there is no evidence that the POF isfdirectly governed by a
Gaussian process.

The evolution of the mean and variance of the PDRpIn the course of time can
be estimated on the basis of the mean and the variance of the RDSioice:

te
z4(t) = 2 — | w(t')dt’, (6.44)
I
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Ficure 6.8: Standardized PDFs af (see Eq. (6.40)), the droplet radiug, rand the
droplet surface area ffor non-evaporatedroplets. For comparison, a Gaussian
distribution with zero mean and unity variance is plotted as well. The results hav
been obtained with the simplified condensation model for sampling §imel00s,

and the sampling area?.= (500m)2. (a) The final altitude of droplets,z= 1350m.

(b) The final altitude of dropletsz 1380m.

wherew is the vertical velocity component of the flow field, and due to symmetry, it
is clear that?) = (Ze — zef)t. The variancés?) — (£)? then follows from:

t t
(&)~ () = 2w f f £,V tdt (6.45)
0 0
where:
te to
ULt = f f R(r - B)dadg. (6.46)

t/ t//
Here,R(|x|) is the Lagrangian correlation ceient for which:R(0) = 1, and:

(o)

f R(X)dX = 7w, (6.47)

0

wherer,, denotes the integral time scale. Due to statistical stationarity of the flow
field, the term(w?) is a constant. Dierentiation of Eq. (6.45) with respect to time
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then yields:

t
d
G - @ =2 [ e iar (6.48)
0

Since:R(x) > 0, it follows that: £(t,t”;te) > O, and therefore't%(@z) - >0,
which implies that the variance ¢ft) increases with time. The mean and the variance
of the droplet surface distributioRDF(A,) at altitudez. can be estimated in the
course of time as:

(Any = 4nr5 + GA(L) = dnr + GAZe — Zeet ),

t
%(var(An)) = 2G2AX(WP) f E(t 1 te)dt”, (6.49)
0

with d/dt(van¢)) given by Eqg. (6.48). This shows that the average droplet size in-
creases in size whem > 7.+, and that the PDF o\, becomes broader in the course
of time. It is noted that this analysis is only valid when droplet evaporatiorbean
neglected.

Finally, the sensitivity of the droplet size distribution with respect to the sample
area sizel is investigated. For this purpose the droplet distributions in sampling
areas of five dferent size4.? are calculated in one realization of the flow field, and
the results are shown in Figure 6.9. It appears that the droplet size dlismils
broad in all sampling areas, also within sampling areas of the siz& ef(1cm)?. It
is thus demonstrated that the condensation process leads to a broadtsizetidis
within volumes comparable to the smallest scales of turbulence.

Like Celaniet al. [17] explain, both large scales and small scales are responsible
for the spectral broadening at small scales: large scales are mydessiaeate sfii-
ciently large dfferences in supersaturation among droplets, whereas the small-scale
fluctuations can mix droplets offtierent sizes. This process can be illustrated in the
current model by calculating the droplet size distribution in a small sampliregadre
sizeL? = (1cm)? in a flow field in which only the large-scale wavemodes f < 10
are accounted for in Eqg. (6.3), and in a simulation in which only the small-s@ale-w
modes 191 n < 200 are considered. In Figure 6.10.a both results are shown, along
with the predictions in which all 200 wave modes have been taken into acdgmt.
parently, neither the model in which the small scales have been neglectetheno
simulation in which the large scales have been neglected are able to pretbeida b
size distribution in a small sampling space. Furthermore, Figure 6.10.b shatvs th
the distribution is nearly uniform in case only the large scales of motion aredied)u
whereas the distribution tends to be Gaussian-like when only the smallest apale
considered. Since both size distributions are very narrow, it is cleaathedlistic
model for droplet condensation in clouds should include both the lardessmad the
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Ficure 6.9: Droplet radius distribution function (f,) as a function of the droplet
radius r,, for six diferent sampling areas@in one realization of the flow field. The
sampling timed = 100s, and the final altitude of dropletg z 1350m. The results

have been obtained with the simplified condensation model.

small scales of turbulence, as both of them are essential in the procepgsabfal
broadening.

6.3.3 Results for two-way coupled condensation model

All results in the preceding section have been obtained with the simplified osade
tion model, which does not take into account the feed-back of the drapteiensa-
tion on the carrier flow. In this section, the extent to which these phenonfiecathe
growth of droplets, is quantified. For the two-way coupled condensatiatemthe
initial conditions for the droplet radius, the temperature, and the supeatiatuare
the same as for the simplified condensation model, and the same holds for tire nume
ical methods used. In the two-way coupled model, two additional parametezsdn
be chosen that are not needed for the simplified model: the partial air demisiti
has only minor variations in clouds, is assigned a constant vajue-ofl.2kg nt2 in
all simulations, whereas the droplet number denljtywhich may dffer from cloud
to cloud, is varied.

First, the evolution of the droplet size distribution is shown in Figures 6.1Xa an
b for an altitude ofze = 1350m, and in Figures 6.11.c and d for an altitude of
Ze = 1380m. The sampling area is taken bB$ = (500m)?, whereas the droplet num-
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Ficure 6.10: Droplet radius distribution function (f,) for three dfferent flow fields:
one with only the largest scales taken into accounk(n < 10, correspondingly:
1,26-102 < k < 2,74- 102m1), one with only the smallest scales taken into
account 91 < n < 200, correspondingly3,47- 10° < k < 6,28- 10°m™1), and one
with all scales taken into account £ n < 200). (a) shows all three results in one
figure, where the droplet size distribution function obtained with the full spectr
(1 < n < 200 should be read from the left scale, the other two from the right scale;
(b) shows close-ups of the droplet size distribution function for the larglesamall
scales. The sampling timg £ 100s, the final altitude of dropletsz= 1350m and
the sampling area4.= (0.01m)2. The results have been obtained with the simplified
condensation model.

ber density is chosen & = (57¢)~3. The data obtained with the simplified coupled
model (using the same parameter settings) are also shown (indicated by sheitme
filled symbols, also see Figure 6.4) for comparison. From these figuresléady
observed that vapor depletion and latent heat slow down the drophthycmn-
siderably, so that the mean droplet size predicted with the two-way couplddimo
is consistently smaller than that predicted with the simplified coupled model. The
differences between the two models are especially manifett fol0s, as the vari-
ance of the droplet size distribution for the two-way coupled model is signifi
smaller. The initial growth of droplets from sizes ofi@m to 5um does not seem to
be significantly &ected by vapor depletion and latent heat.

The results plotted in Figure 6.11.c and d for the higher altizgde 1380m show
the same trends as those corresponding wdte 1350m. For both altitudes, the
droplet size distributions tend to a steady state, as the results corregpavittin
te = 80sandt, = 100s are almost identical. As can be expected from the analysis
presented in the previous section, the mean droplet radius is highey f01.380m
than forz, = 1350m. The size distribution predicted with the two-way coupled model
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Ficure 6.11: Droplet radius distribution function (f,) for seven dferent instants

of time t: (a) and (b) correspond withgz= 1350m, (c) and (d) correspond with
Z. = 1380m. In (a) and (c), the size distributions fart 5s are plotted on the right
vertical scale. The lines with open symbols have been obtained with thegyoew-
pled condensation model, witif & (500m)? and N = (5m)~2 = 0.8 x 10’m3. The
data for the one-way coupled simulation obtained with the same parametegsettin
(filled symbols, also see Figure 6.4) are shown for comparison.

is still broad for both altitudes, so it can be concluded that the phenomdatent
heat release and vapor depletion do not qualitativéiigcathe spectral broadening.
They mainly seem toftect the average size and variance of the droplet size distribu-
tion, but not the shape of the distribution function itself.

These results can be explained in more detail as follows. If the supexsaituis
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positive, but small (& s< 1), Eq. (6.26) can be rewritten using Eq. (6.31),

ds 1dps (1 1
— ~Tu- —+ —, 6.50
dt u ezp\? dT Ts - TL) ( )

where the time scale_ associated with the latent heat release is equal to:

paCpa (dps)_l. (6.51)

L= 22roNiDyalp\ dT

Thus, vapor depletion and latent heat release have very sinfiigat®on the super-
saturation. Comparison between Eq. (6.27) and Eq. (6.51) showssthatir| are
related by the expression:
7s _ Lp do§
L Pan,a dar’

which ratio is plotted in Figure 6.12.a as a function of the temperature suirgund
the droplet. Apparently, theffect of latent heat is dominant T > 280K, whereas
the dfect of vapor depletion is more importanflifs 280K.

(6.52)
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Ficure 6.12: (a) Ratio between the vapor depletion time scale and the latent heat
time scaler|, as a function of the temperature T. The partial air density is taken
aspy = 1.2kgnT?3 and the pressure i$0°Pa. (b) Vapor depletion time scatg as a
function of the droplet radius, for four gerent values of the droplet number density
Ni. The temperature is taken asT280K and the pressure ak0°Pa.

The actual value ofs depends only weakly on the pressure and the temperature
throughD, a. Using Eq. (6.27)7s has been calculated for several number densities
N; and droplet radiry; the result is plotted in Figure 6.12.b.
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The time scalers is inversely proportional to,, and hence thefkect of vapor
depletion (and thus also th&ects of latent heat release at a given temperature, see
Figure 6.12.a ) becomes more important as the droplet grows. For instnae,
number densit\N, = (57¢)~2 and a droplet radius smaller thaars, s is much larger
than the time scale in which the condensation process takes plgtgo(~ 100s).
Therefore, the condensation process of droplets with 5umis hardly dfected by
vapor depletion and latent heat release, which is confirmed by Figurésa@ll

Figure 6.12.b also illustrates the importance of the droplet number density: the
higher the number density, the less volume ofveater mixture is available per
droplet and the less the droplets are able to grow. This is confirmed byeFdL8,
where the droplet distribution functionat= 1350nafterte = 100shas been plotted.
Indeed, the droplet growth is most impeded for the highest number dewosisjde
ered (\| = 7,°), whereas the graph fo¥ = (107)~2 is only slightly diferent from
the droplet size distribution & = 100s shown in Figure 6.4.

Finally, the sensitivity of the resulting droplet size distributions to the size of the
sampling ared is examined. The droplet size distributions obtained for the two-way
coupled model withN, = (21)~2 are plotted in Figure 6.14 for six fierent values of
L for one realization of the flow field. A broad droplet size distribution is olesd
for L > 10m, whereas the variance is much smallerlfor 1m. This is diferent from
the results obtained with the simplified model (see Figure 6.9), for which thenear
was observed to be almost equal for all sampling sizes. THisrdihce in behavior
between the two-way coupled and the simplified model can be explained wieen o
compares the typical time scale for dispersive motion of droplets to set iot@kn
by 74) to the condensation time scate For droplets which are released in a small
sampling space and traced backward in time, dispersive motion sets in much later
compared to droplets which are released in larger sampling spaces, méwsatifay
the latterrq is smaller. As all droplets end up at the same altitadat timet = t,
the dispersive motion takes place duringc® < te — 74, Whereas the influence of
vapor depletion gectively sets in fot > 7s. If te — 74 < 15, the variation in droplet
size stems from the dispersive motion througffedent supersaturation fields. If
te — 7q > 15, however, the fect of vapor depletion causes a locally equilibrated size
of each droplet regardless of the droplet’s origin, which results in @war droplet
size distribution. This explains why the droplet size distribution is much broade
for the larger sampling spaces. Despite thi$edence in broadening of the droplet
size distribution, it may still be concluded that limited spectral broadening tdées
place, even when thefects of latent heat release and vapor depletion are taken into
account (see Figure 6.9).

From the results presented in this section it becomes clear that the droplet siz
distribution within a fixed sampling area becomes statistically stationary after a suf
ficiently long time. An estimation of the average droplet sizg)tq) in this equilib-
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Ficure 6.13: Droplet radius distribution function (f,,) at an altitude z = 1350n
after a time £100s, for four djferent droplet number densities. The results have been
obtained with the two-way coupled condensation model, with (500m).

rium situation can be made by the following heuristic approach. First, EQ)(&5
reformulated in an Eulerian frame of reference as:

dS
1oy (1 1). (6.53)

Js
E‘FU'VS—FU'eZp—Sd—T— :s"'T—L
To facilitate further analysis, it is assumed th&s| < I'd(Inpg)/dT, so that this
term can be excluded from Eq. (6.53). By averaging over all droplatsisampling
area, bearing in mind that botl andr_ depend on the droplet size (see Egs. (6.27)
and (6.51)), and assuming that the variatios and T over the area is much smaller
than the corresponding average values, the following expression ia@thta

s 1 dp? 1 1
o= Tuesar -0+ () (6:59)

If the turbulent velocity fluctuations are accurately described by a Gaussndom
noise, then Eq. (6.53) can be written in the form of a stochadfiierdntial equation
(SDE) [51]:
d S
ds = —s(<1> + <i>)dt + 2% J2D,dW, (6.55)

Ts T Pv
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Ficure 6.14: Droplet radius distribution function (f,,) at an altitude z = 1350m
after a time ¢ = 100s, for six dfferent sizes of the sampling ared IThe results have
been obtained with the two-way coupled condensation model, with (2i¢) 2 =

1.25% 108me.

. , : 1
where dV denotes an increment of a Wiener process,ns tI|m t‘1§<|z(t)—z(0)|2>

is the difusion codicient of droplets in the vertical direction. Since the flow is sta-
tistically isotropic,D, = %Dturb, whereDy,p, is the three-dimensional filision coef-
ficient which can be determined from Figure 6.2.a. Eqg. (6.55) describ€srastein-
Uhlenbeck process [51], for which the steady-state solution of the PBB&ussian
distribution with a meais = 0 and a variance equal to:

var() = & = (/%%f)zoz«%J + <T—1L>)_1 (6.56)

Itis noted from Eqg. (6.27) and Eq. (6.51) thatandrs are both inversely proportional
to the droplet radius, so thé\{—> < 1> Blrn)eq Where(ry)eqis the droplet radius
averaged over all droplets situated in the small volume arayadd where the factor
B is given by:

d(pi)/dT)

B = 4nDV,aN|(1 +
Pana

(6.57)
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Therefore, Eq. (6.56) can be rewritten as:

(Edﬁ)z dog \*
1 pvdT ) D, dT
(MYeq = () N B |t e (6.58)

Thus, an explicit expression has been obtained for the average tdragies in an
air parcel located at positiox, which is valid at statistical equilibrium. Eq. (6.58)
depends only on the droplet number densltythe turbulent diusion codficientD,,
the mean-square supersaturation fluctuatsrasd the temperature (through s, T,
(09)~1d(S)/dT andrs/7). In the flow field employed in the present study, the tur-
bulent difusion codficient Dy, ~ 46m7?/s, as can be deduced from the one-particle
statistics in Figure 6.2.a. Therefoi®, is estimated to b®, ~ 1517?/s. Furthermore,
the r.m.s. supersaturation fluctuations are approximately 1%. Using thess,valu
(rn)eq have been calculated as a function of temperature for fdterdnt values of
N, and the results are plotted in Figure 6.15.

It is observed that the order of magnitude(of)eq corresponds reasonably well
to the order of magnitude observed in Figure 6.11.b and Figure 6.11.d, ieatedl
by the symbols in Figure 6.15. Since the valugmbeq decreases moderately with
temperature, itis clear that the eventual droplet radius in Figure 6.1kbhseurve
for t = 100s) is somewhat larger than in Figure 6.11.a. More generally, the present
analysis suggests that the largest droplets are found in the coolestsed®a cloud.

6.4 Conclusions

In this chapter the condensation of microdroplets in model systems repingsen
mospheric clouds has been investigated numerically. Droplets have Heewmefb
through a synthetic turbulent flow field composed of 200 random Fourietes)o
with wave numbers ranging from the integral scal¥1(0’m)) to the Kolmogorov
scale ©(103m)). Two fully Lagrangian droplet growth models have been devel-
oped: a two-way coupled model which includes adiabatic cooling, vapuetien
and latent heat, and a simplified model in which the latter two are neglected.

The simulations with the simplified model demonstrate that the droplet size distri-
bution becomes broader in the course of time. At higher altitudes, the meas rad
of droplets is larger than at lower altitudes and the number of evaporatipiets
decreases. It has been shown analytically that the PDF of the dropiatesA,, is
related to the turbulent dispersion of droplets, and becomes broaderdoutse of
time. At altitudes where the supersaturation is close to zero, the PBF isfposi-
tively skewed due to thefkect of droplet evaporation, whereas the PDF of the droplet
radius is very similar to a Gaussian distribution.
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Ficure 6.15: Long-time value of the average size of droplets in an air paiGgtq as
a function of temperature calculated from Eq. (6.58), for foyfedént values of the
droplet number density;NThe turbulent gfusion cogicient is D, = 15n7?/s and the
r.m.s. of the supersaturatiafs?)/2 = 1%. The open circle corresponds Withh)eq
extracted from the data in Figure 6.11.k.(z 1350m, N = (57)~3, and t = 100s),
and the filled circle similarly corresponds with the data in Figure 6.11,0<4380m,
N = (57¢) 3, and t = 100s).

By testing diferent ranges of wave modes, it is illustrated that the spectral broad-
ening on centimeter scales is caused by both large scales of turbulensenatd
scales: large scales transport droplets through regiongfefeht supersaturations,
whereas small scales mix droplets ofteient sizes.

Whilst the simplified condensation model neglects vapor depletion and lat&nt he
release, theirféects are slightly overestimated in the two-way coupled condensation
model, as mechanisms likefflision, which allow the parcel to exchange water va-
por and thermal energy with its surroundings, have been neglectectiNdess the
results for the droplet size distributions obtained with the two-way coupleceimod
are qualitatively similar to the results from the simplified model: broad droplet size
distributions are found for droplets with radigs>~ 10um. Quantitatively, the droplet
sizes obtained are smaller than predicted with the simplified model, and the droplet
size distribution in the two-way coupled case reaches a more narrow eiguilibr
shape after a sficiently long time. The results have been explained by determining
typical time scales for the vapor depletiogand for the latent heat releasge It is
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shown thatr, is smaller tharrg for high temperature$ > 280K, so that latent heat
release is dominant over vapor depletion in this regime. Vice versa, vaptetibn

is more important than latent heat forg 280K. Sincers andr, are inversely pro-
portional to the droplet radius,, both @fects become more important as the droplet
radius grows. This is the reason why an equilibrium is reached when tpdeth
have become sficiently large. The average droplet size in the equilibrium situation
is of the order of 1Amfor a realistic value of the droplet number densifysuch as
(2m) 2 [125].

To conclude, the present results demonstrate that the condensati@spina
synthetic turbulent flow field leads to a broad droplet size distribution, extin
volumes comparable to the smallest scales of the turbulent flow. Althoughykegh
in the model have been significantly simplified, this result ddésr @ possible ex-
planation for the broadening of the droplet size distribution in actual atneosph
clouds.

Although the approach in this study is tailored to droplet condensation in atmo-
spheric clouds, it could be of importance in other turbulent flows with cosatgon
as well, especially in case the condensation takes place non-homodgreetlifn
case the time scales of the condensation process are comparable to the lesmefsca
turbulent mixing.




CONCLUSIONS AND PERSPECTIVE

This chapter summarizes the main conclusions derived from the investmgatitis
work. The main challenges related to condensation modelling are briefigwed,
and suggestions are given for future research.

7.1 Conclusions

The thermodynamic model and transport equations for a two-phaseNigpa mix-
ture in transonic condensing flow have been presented in chapter 2nddeds are
specifically tailored to mixtures where the droplet number densities dieisatly
large to employ a continuum modelling approach. Both non-isothermal aneisoth
mal unary condensation models have been discussed, in which the complagitie
sociated with the former have been exposed. Furthermore, the thernmoidgrend
governing transport equations for systems displaying multi-componedeasation
have been derived for the case of isothermal condensation.

In chapter 3 the kinetic equation (KE), and its first- and second-organajma-
tions, the general dynamic equation (GDE) and the Fokker-Planck egqu&tRi),
respectively, have been evaluated, based on (a) a numerical simuldiondeation
pulse experiment, and (b) an expanding nozzle flow. The former is andltivetcase
of quasi-steady nucleation, for which good agreement is found bettheesize dis-
tributions predicted using the various models. In the second test caséférerttes
between the obtained results are more pronounced, both in terms of the diyermo
namic variables and in the predicted droplet size distributions. This wassiodve
a consequence of the deviation of the droplet size distribution from it9-gtesly
state solution. The solutions of the KE and GDE have been validated by cioigpar
the predicted solutions to measurement data obtained from literature. FoiEthe K
specifically, a sensitivity analysis has been carried out in order to exgiierextent
to which key physical uncertaintieffact the predicted solutions. The strongest influ-
ence pertains to the equilibrium size distribution, with the semi-empiricak\&nd
Strey-corrected Courtney distribution giving the best agreement withrtegp mea-
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surements. Given this result, the incorporation of empirical data in the neatien
models constitutes a potential improvement compared to existing purely thebretica
models. For each of the methods used to simulate the nozzle flow, it has lvesis co
tently found that the liquid production rate and the corresponding temperétarare
overestimated. Apparently, this is a consequence of using an isothenmaigiregation
model, for which the droplet temperature during condensation is underéstima

In chapter 4 the method of moments (MOM) has been evaluated, in which tivo var
ants of the moment equations (ME) are considered: the ME derived frekirthtic
equation (KE), and those derived from the general dynamic equatid&Y3Jwo clo-
sure methods for the MOM, viz. closure based on mean droplet sizexap@tions,
and closure based on quadrature approximations (QMOM and DQMGIMg, lbeen
qualitatively evaluated, based on key requirements that have been idkfrifie
steady state and transient characteristics of the KE. From this it is coddhatenei-
ther of the closure methods performs satisfactorily, and that the quaslegiproxi-
mations stfer severely from a lack of robustness. From a simulation of a condensing
nozzle flow, the influence of the closure error in the MOM is quantified. tRer
particular test case considered, the agreement between results predibtélill’'s
MOM and detailed calculations with the KE appears to be reasonable, battefor
flow field variables as well as the droplet size distributions. These resgtgest
that the MOM dters an acceptable tradé&detween accuracy and computational
expense, which is especially relevant for engineering applications.

In chapter 5 a condensing flow model has been presented, which utilizies a
netic equation to predict the evolution of a two-component (binary) digpergen-
erated by homogeneous nucleation. The model has been implemented in &almer
method which has been verified by means of two test cases reported in the liter
ture. Subsequently, the model has been validated using measuremenbdaia f
nozzle flow experiment. Comparison of predicted and measured conidersaset
data has shown a good agreement between theory and experiment.riaarthet
has been verified that the binary droplet size distribution does not agpits quasi-
steady state solution as is usually assumed in condensation experiments. Stmilarly
the case of unary condensation, it is found that the equilibrium size distriblas a
profound influence on the predicted results.

Finally, in Chapter 6 an excursion is made into the field of turbulent condgnsin
flow, for a model-system reminiscent of atmospheric clouds. Droplets beer
followed through a synthetic turbulent flow field composed of randomiEpmorodes,
with wave numbers ranging from the integral scales to the Kolmogorov scbies
fully Lagrangian droplet growth models have been proposed: (a)-avwagecoupled
model in which only adiabatic cooling of a rising air parcel is considered,(Bha
two-way coupled model which also accounts for tifieets of local vapor depletion
and latent heat release. The simulations with both models have shown thadyihet d
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size distribution becomes broader in the course of time, even though dgopleth
is stabilized by vapor depletion and latent heat release in the two-way daunplgel.

7.2 Perspective

Although condensation modelling started early in the twentieth century, there still
remains a number of challenges that needs to be addressed, both itichéored-
elling, as well as in numerical simulation. The following list, which attempts to give
an overview of specific issues which remain unanswered, is by no meansete:

1. With respect to theoretical modelling there is first and foremost the tanaigr
associated with the physics of small droplets (clusters), which are pesen
still treated by means of macroscopic theory. With the increase in compu-
tational power, a number of detailed molecular dynamics simulations (MDS)
have been carried out for the condensation of water vapor (e.g. &)[Iut
these results have not (yet) been used to derive more complete modelks for th
condensation kinetics and thermodynamics at the microscopic level. Of par-
ticular importance is the Gibbs free enerfés, of droplet formation, which
has shown to exert a profound influence on both unary and binaigecsa-
tion processes. In this respect, it would be very instructive toASgdata
predicted with detailed molecular theory, to improve the condensation model
that has been employed in the present investigation.

2. In theoretical modelling, there is the issue of properly accounting far no
isothermal &ects during homogeneous nucleation. The usual practice in con-
densation modelling is that a distinction is made between nucleation and droplet
growth (e.g. in the GDE or Hill's MOM), with non-isothermafects being in-
cluded in the growth-stage only (see e.g. [110]). As the evaporatiorofate
droplets is strongly dependent on droplet temperature, and becausenthis
perature can be significantlyftBrent from the gasapor-phase temperature, it
is expected that incorporation of non-isotherm@ets will significantly alter
the predicted nucleation rates. Thifeet has been considered in a number of
previous investigations, but these have either resorted to simplified treaifment
the droplet energy balance [141], or they did not include validation withr mea
surement data [7], [10]. The proper way to account for non-isatbheefects
is to employ a bi-variate distribution function, which includes both droplet size
and temperature as the independent variables (see chapter 2). Syghr@ach
has already been reported in [10], and it is expected that its incorpoiatm
numerical methods, such as the ones that have been used to simulate the test
cases of chapter 3, can proceed without significafficdities.
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3. With respect to multi-component condensation, the uncertainty assowi#tted
the compositional structure of small droplets represents a major challenge in
condensation modelling. This is especially important for applications involv-
ing fluids with limited miscibility. A number of models have been devised
to take the #&ects of surface enrichment into account, but these are not en-
tirely void of unphysical behavior [127]. Recently, the emphasis haseshif
towards the use of molecular dynamics simulations to gain more insight into
the problem, notably in [21] and [64]. The latter is of special relevancaume
it attempts to generate a phase-diagram for the composition of aqueous nan-
odroplets based on MDS-data. By using this data in the condensation model
as presented in chapter 5, it should be possible to obtain reliable predictions
of binary condensation for systems in which surface enrichmffatts are
important.

4. Computationally, the challenge lies in devising reduced models that satisfy
the key requirements which have been identified in chapter 4. By way of ex-
ample, it has been demonstrated that moment methods can yield reasonably
accurate predictions for condensing nozzle flows. However, the impiasta
sue is whether or not this will still hold for unsteady and three-dimensional
flows, such as typically encountered in industrial applications. In thigdaga
is necessary to devise both robust, consistent and accurate closucelsiieth
application to condensing flow.

5. Finally, there remains the problem of condensation in turbulent flowshwh
has been addressed in chapter 6. For the specific case of condemsatio
mospheric clouds, a number of improvements can be incorporated in the La-
grangian model of chapter 6. Specifically, the activation (or deactiatibn
condensation nuclei can be added, and also the turbulfosidin of air and
vapor at the boundaries of the /diroplet parcels can be simulated. There is,
however, a limit to the realism of the physical behavior simulated by the gresen
model, as it utilizes a synthetic turbulent flow field. Nevertheless, such-a syn
thetic field could also be used to perform a preliminary investigation of con-
densation in systems more akin to rapidly expanding flows. This would be
an important step in gaining more insight into the role of turbulence in such
condensing flows, and could possibly result in improvements of the Reynold
Averaged Navier-Stokes methods that are currently employed for flaths w
condensation [108].
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FLUID PROPERTIES

Note:

All variables are expressed in S.I. units
Under ambient conditions = 29815K andp = 1.013- 10°NnT2.

Universal gas constan®, = 8.314Jmol 1K1

Properties of water (H,O)

. Molar mass [86]:

Mol = 18015- 10-3kgmot?

. Vapor specific heat at constant pressure (ambient conditiorjk, [90

Cp = 18590Jkg K2

. Critical temperature and pressure [86]:

Te = 647.14K, pe = 22.064- 10°NnT2

. Surface tension (iNnT1, [90]):

o =o®for T <2493%K, else:o = @, where:

o (0.1131283 10°° - 0.3709125 107 *?T)T* — 0.56464- 10°°

@ = 761-107°+0.155-103(27315-T).

. Liquid mass density (ikgnT?, see [91] and references therein):
pb = p for T < 27315K, else:py = pi?, where:
p(bl) = Ao+ AT +ALLT?
%) B|_70 + BL,lT + BL,2T2 + BL,3T3 + BL’4T4 + BL’5T5
pb = s

B|_,6 + BL’7T
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with:

Ao = 17055 ;A 1 = 59860 ;A , = —0.06458 ;B_ o = —200766 ; B_; =
—-13.0134 ;B = 0.184709 ;B 3 = —0.51251- 1073 ; B_ 4 = 0.6869- 107° ;
BLs=—-0.3933-10%; B_ g = -3.96032 ;B_7 = 0.1816.

6. Saturation pressure (MnT2, see [91] and references therein):

A
Ps = exp(Ap1 + Ap2T + ApsT? + AgaIn(T) + 7"’5),

with:
Ap1 = 21125 ;A,, = —2.7246- 1072 ; Ap3 = 1.6853- 107 ; Ap4 = 2.4576 ;
Aps = —60944642.

7. Latent heat of condensation @ikg?, for 200K < T < 300K, [90]):

with Lo = 310591339J/kgandL; = —221297J/(kgK)

8. Binary difusion codficient of water vapor in air (im?s™1, see [58] and refer-
ences therein):

D,.,=—=
va 295

. (A.2)

B 2.49( T )1-75

A.2 Properties of heavy water (BO)

All properties are taken from [110] and references therein.

1. Molar mass :
Mmol = 20.027- 10-3kgmol?

2. Vapor specific heat at constant pressure:
Cp = 1710193kg 1K1
3. Critical temperature and pressure:

T = 64389%K, p. = 21.66- 10°NnT?

4. Surface tension (iNnT?1):
o = 996635+ 0.009133 — 0.000279 2, with: T' = 1.022T
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5.

A3

A4

A.5

Liquid mass density (ikgnT3):

pb = 0.09 tanh§) + 0.847:%32 1 0.338, with:
T-231
~ 515

T= .
yandit=1-+

. Saturation pressure (MnT2):

T .
Ps = Pc (EXp[?C (alr +apr? + agr + agr> + a571°)], with:

ap = —7.815813 ;ay = 17.6012 ;a3 = —18.1747 ;a4 = —3.92488 ;a5 =
419174

. Latent heat of condensation (kg™):

_ Ru o (Ps
B IVlmol In(pc)+¢

¢ = a1 + 1.9a,7%° + 2ag7 + 5.5a47*° + 10a57°

Lp T , with:

Properties of nitrogen (N,)

Molar mass [44]:
Mol = 28.013- 10-3kgmol?

Specific heat at constant pressure [44]:
Cp = 103966Jkg 1K1

Properties of methane (CH)

Molar mass [86]:
Mol = 16.043- 10-3kgmol?

Specific heat at constant pressure (ambient conditions):
Cp = 222465Jkg 1K1

Properties of atmospheric air

Molar mass [90]:
Mol = 28.96- 10-3kgmot?

Specific heat at constant pressure (ambient conditions, [90]):
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Cpa = 10040Jkg K1

3. Specific heat at constant volume (ambient conditions, [90]):
Cva = 71696Jkg 1K1

A.6 Properties of ethanofhexanol mixture

Properties used for test cases 1.1, 1.2 andTL3 600K, see chapter 5 and [142]);
index 1 refers to ethanol, index 2 to hexanol.

1. Molar masses:
Mmot1 = 46.07kgmor? ; Mimoj2 = 10217kgmol*

2. Pure component liquid mass densities:
Pb1 = 817.5kgnT3 ; pp o = 8454kgnT3
3. Pure component saturation pressures:
p;° = 59836NNT2; pyP = 2.643NNT2
4. Pure component surface tensions:
o1 =2502-103Nnrt; 0, = 2890- 10 3NnTt

5. Mixture saturation pressures (T2, x; is the molar fraction of ethanol in
the liquid phase):

pi(xa) = xap;”; p5(xa) = (1= xa)p5”
6. Mixture surface tension (iNn?):

o= (25.02+ 7.31088(1- x1) — 3.43199(1 x1)2) 103

A.7 Properties of ethanofpropanol mixture

Properties used for test case 2 (see chapter 5); index 1 refers mmketimaex 2 to
propanol. All ethanol properties are taken from [128], and all pnoparoperties
from [37].

1. Molar masses:
Mmot1 = 46.07kgmot™ ; Miyo2 = 60.10kgmol?

2. Specific heats at constant pressure:
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Cpv1 = 1.5688- 103Jkg 1K1 Cpy o = 1.4243- 10°Jkg 1K1
3. Pure component liquid mass densitieskgnT3):
Pbl = 103(0.80625— 84.5-1075(T — 27315)+ 29.0- 10T - 27315)2) ;

Pb2 = 1.01077-10° - 3.99649 10°°T - 6.64923 107372+ 2.16751: 10°°T3 -
2.46167- 10°8T4.

4. Pure component saturation pressuredNim?):
p;P = 133322 10L687-(5819T)+(414300T%) for T < 2191K, else:
pip = 133322. 109.760—(2371/T) :

poP = 133322. exp(150248— (112865/T) — 19.19 InT)

5. Pure component surface tensionsNimm?):

o1 = 10°2. (23.97— 0.085(T — 27315)) :

oo =2528-10°% - 8.394. 10°5(T - 27315)
6. Pure component latent heats of condensatiodKar!):

Lps = 4.184- 103(2260 —0.213(T — 27315)- 0.00138( - 27315)2) :
Ru

mol,2

Lo = (855961 — 9.29T)

7. Mixture saturation pressures (WnT2, x; is the molar fraction of ethanol in
the liquid):

pS(x1) = x1py" 5 PS(x) = (1 - x1)p,”
8. Mixture surface tension (iNn?):
o= X101+ (1— X1)0'2

9. Mixture latent heat (idkg™t, wy is the mass fraction of ethanol in the liquid
phase):

L=wilp1+ (1 -wq)lpo







CLASSICAL NUCLEATION THEORY
AND DROPLET GROWTH

In the Classical Nucleation Theory (CNT), the nucleation rate is calculatattlans
of the following expression:

J=K exp(_li(_;rn* ), (B.1)

where,K denotes the kinetic prefactor, an,- the critical Gibbs energy of droplet
formation.
In the classical approach, the kinetic prefactor is given by:

2[5
K = Py 2_0-, (B.2)
Po mnf
and the critical Gibbs energy by:

4
AGp = AGep = én(r*)% (B.3)

The critical radiug™* is obtained from the relationship:
o 20
~ ppRTINS’

The nucleation rate thus obtained is denotedbyr. By subtracting the monomer
formation enthalpyAG; from AG,-, the latter is corrected for the apparent inconsis-
tency associated with monomer formation. The critical Gibbs energy thusnasco

(B.4)

4
AGy = AGicetr = Zo(r )% —r2]. (B.5)

The nucleation rate obtained by means of Eq. (B.1), (B.2) and (B.5) idehy
Jiccr. Itis noted that the CNT-model is consistent with using the Courtney equilib-
rium distribution to calculate the backward rate, whereas the ICCT-modehsEs:
tent with use of the SCC equilibrium distribution [127].
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The fluid propertiesr andpp, as well as the saturation pressyeare all temper-
ature dependent. Therefore, the nucleation riezvely depends solely on the par-
tial vapor pressure and the temperatule: J(py, T), or equivalently:J = J(S, T).

Inthe CGDE, the droplet growth rate is determined by means of the Hertddemu
growth law, which expresses the mass growth rate as:

. 4nra
My = ———(pv — . B.6
HK anVT(pV Psr) (B.6)
The saturated vapor pressyg over a curved surface with radiuss given by the
Kelvin equation:
20
. B.7
erRvT) (B.7)

The Hertz-Knudsen growth law is a valid model when the Knudsen nuikhbes
larger than 2Kn = 1/2r > 2, with | denoting the mean free path length of the vapor
molecules. Closer inspection of the preceding equations again revealsdldition

to the droplet radius itself, only the temperature and saturation ratio arech¢éed
determinem. For suficiently large droplets, it can be shown tmagx = nmy, where
nis given by Eq. (3.19).

Psr = Ps€XP




SUMMARY

In this thesis, the problem of predicting the droplet size distribution in casidgn
flow is investigated numerically. The work is focused on two types of cosatam
problems: one where condensation occurs during the rapid transqaoszn of a
compressible fluid, and a second one where condensation takes plasgnthetic
turbulent flow field, reminiscent of atmospheric clouds.

A description is given of the thermodynamic model and governing transpod-
tions for a two-phase liqujdapor mixture in transonic condensing flow. The physical
model is presented for the cases of non-isothermal and isothermalnsatide, and
for single- and multi-component condensation.

For single-component condensing flow, three master equations foretdetion
of the droplet size distribution are evaluated: the kinetic equation (KE)itarfitst
and second-order approximations, i.e. the general dynamic equatidg)(&id the
Fokker-Planck equation (FPE), respectively. The evaluation is baséa) the equi-
librium distributions, (b) a nucleation pulse experiment, and (c) an expgmdinzle
flow. Large diterences are observed between the equilibrium distributions of the FPE
and KE, whereas no equilibrium distribution exists for the GDE. For the atiole
pulse experiment, good agreement is found between the results of thePEEard
GDE, whereas for the condensing nozzle flow, tféedénce between the GDE- and
the KE-distributions is significant. This is primarily due to the fact that quasidste
nucleation takes place during the nucleation pulse experiment, whereas itlois is
the case for the nozzle flow. A sensitivity study of the KE-solution with respe
uncertainties in (a) the surface tension model, (b) the sticking probabildycithe
equilibrium distribution, revealed that both the sticking probability and the equilib
rium distribution have a significant influence on the predicted condensaiiset.

The research on single-component condensing flow is continued wittadurae
tion of the method of moments (MOM), whicltfigiently generates an approximate
solution for the flow field and moments of the droplet size distribution. Two vari-
ants of the moment equations (ME) are considered: the ME derived frekiribtic
equation (KE), and those derived from the general dynamic equatib)Glwo
well-known closure methods for the MOM are qualitatively evaluated: céobased




192 SUMMARY

on mean droplet size-approximations, and closure based on quadapprexima-

tion. The evaluation is based on key requirements that have been identified f
steady state and transient solutions of the KE. It is found that none ofidkaere
methods perform satisfactorily, and that the quadrature approximatieasesesuf-

fer from a lack of robustness. To quantify the accuracy of the MOMyradensing
nozzle flow is simulated. Using a benchmark solution obtained by simultaneously
solving the fluid dynamics equations with the KE as a reference for compaiise
demonstrated that the MOM can predict condensing flow with acceptahlesagc

With respect to multi-component condensation, an evaluation is made of a con-
densing flow model, which utilizes a kinetic equation to predict the evolution of a
two-component (binary) dispersion. The evaluation is based on a simutatian
nozzle flow experiment, for which measurement data are reported in théurera
full two-way coupling between the thermodynamic variables and the binapletr
size distribution is employed, which is novel for such condensation probl€ms-
parison of predicted and measured temperatures and partial presstire®nset of
condensation shows a fair agreement of the theoretical predictionsxpadraen-
tal data. The full resolution of the binary droplet size distribution is exploited
verify whether a quasi-steady treatment of the nucleation process iergsing noz-
zle flow is warranted. For the test case considered, it is concludedubsi-steady
state theory is not valid, which suggests that caution should be exercisedlyz-
ing the condensation in such flows by means of quasi-steady state theoajly,F
the strong sensitivity of the condensation model to the binary equilibrium distrib
tion is revealed by comparing the nozzle flow field generated by using tfierefit
equilibrium size distributions in the computation of the backward rates in the kinetic
equation.

Finally, the condensation of micro-droplets in a synthetic turbulent flow, rigmin
cent of atmospheric clouds, is investigated numerically and analytically. |&sop
are followed through a synthetic turbulent flow field composed of randouori€r
modes, with wave numbers ranging from the integral length scégd€{m)) to the
Kolmogorov scales(10-3m)) that are typical for atmospheric clouds. Two fully La-
grangian droplet growth models are utilized: (a) a one-way coupled nrogdiich
only adiabatic cooling of a rising air parcel is considered, and (b) a taypeeupled
model which also accounts for théfects of local vapor depletion and latent heat
release. The simulations with the simplified model show that the droplet size distri-
bution becomes broader in the course of time and resembles a Gaussiantestrib
This result is supported by a theoretical analysis which relates the dsapfeice
area distribution to the dispersion of droplets in the turbulent flow. With dpe
the two-way coupled model, it is shown that the predicted droplet size ditstriisu
are still very broad, despite the fact that the growth of droplets is stabitigedpor
depletion and latent heat release.
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Dit proefschrift betreft het bepalen van de druppelgrootte verdgfimgtie in con-
denserende stromingen. In het onderzoek worden twee specifieie wm con-
denserende stromingen onderzocht, namelijk condensatie in een treegpanderende
gasstroom en condensatie in een synthetisch turbulent stromingsvel@, deetion-
densatie in atmosferische wolken nabootst.

Voor transsone condenserende stromingen wordt eerst het theramibgh model
en de relevante transportvergelijkingen voor een twee-fasigtuftubeschreven. Dit
twee-fasen model wordt zowel voor isotherme als niet-isotherme coatikegepre-
senteerd, alsook voor condensati@@m-component en multi-component systemen.

Voor stromingen met condensatie vé@n component wordt een evaluatie uit-
gevoerd van drie balansvergelijkingen waarmee de druppelgroottelveysfunctie
voorspeld kan worden, namelijk de zogenaamde “kinetic equation” (KEyodtker-
Planck vergelijking (Fokker-Planck equation, FPE) en de "generauhyc equation”
(GDE). De FPE en GDE zijn respectievelijk de tweede en eerste-orddd@mgvan
de KE. De evaluatie wordt uitgevoerd aan de hand van (a) de evendisthtautie,
(b) een nucleatie-puls experiment en (c) een transsone condahsdw@maalstro-
ming. Met betrekking tot de evenwichtsdistributie worden grote verschilargenomen
tussen de resultaten van de KE en de FPE, terwijl er voor de GDE geewieliés-
distributie bestaat. De simulatie van het nucleatie-puls experiment toont ede go
onderlinge overeenkomst tussen de resultaten verkregen met de KPElen de
GDE, terwijl bij de kanaalstroming de verschillen relatief groot zijn. Dit isvoo
namelijk te verklaren uit het feit dat bij het nucleatie-puls experiment depl-
grootte verdelingsfunctie een quasi-stationaire oplossing bereikt, teitviijcie
kanaalstroming niet het geval is. Vervolgens is een gevoeligheidsanatgevoerd
om de invloed van (a) de oppervilaktespanning, (b) de waarschijnlijliaad op-
name van monomeren door druppels (zogenaamde "sticking probabilityt) ete
evenwichtsverdeling, op de oplossing van de KE te quantificeren. Uigldtaten
blijkt dat vooral de oppervlaktespanning en de evenwichtsverdelit=deplossing
sterk bénvloeden.

Voor stromingen met condensatie v@n component is verder de momentenmen-
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thode ("method of moments”, MOM) @walueerd, waarmee offfieiente wijze een
benaderende oplossing van het stromingsveld en de momenten van peldroptte
verdelingsfunctie kan worden voorspeld. Twee varianten van de moarggtijkin-

gen worden beschouwd: de eerste is afgeleid aan de hand van ded€éBvesede aan

de hand van de GDE. Hiervoor zijn twee sluitingsmodellen gebréét: gebaseerd

op gemiddelde druppelgroottes en een tweede gebaseerd op numegekataur.
Deze sluitingsmodellen zijn getoetst aan de eisen die zijn afgeleid uit het station-
aire en instationaire gedrag van de KE-oplossing. Uit deze evaluatielekgeldat
geen van de beschouwde sluitingsmodellen aan deze eisen voldoehij ves@ns
duidelijk is geworden dat de quadratuur-sluiting onvoldoende robuusA#@ de

hand van de simulatie van condensatie in een kanaalstroming is een kwantitatieve
analyse gemaakt van de nauwkeurigheid van de MOM. Uit een vergelijkingle
MOM-oplossing met een referentie-oplossing verkregen middels de li{i&,dat de
MOM-resultaten redelijk nauwkeurig zijn .

Met betrekking tot stromingen met multi-componenten condensatie is een evalu-
atie uitgevoerd van een stromingsmodel dat in staat is om binaire (twee-nentpa)
condensatie te voorspellen. Dit model wordt getoetst aan de hand wacoee
denserende kanaalstroming waarvoor data in de literatuur beschikbBarkeppel-
ing tussen de thermodynamische grootheden en de binaire druppelgerdeéngs-
functie is twee-zijdig, welke nieuw is voor dergelijke stromingen. Uit eenelgkg
ing tussen de voorspelde en gemeten temperaturen en drukken bij h@irgtaan
condensatie in de kanaalstroming volgt dat het resultaat van het thelbretsliel het
experiment redelijk dicht benaderd. Aan de hand van de berekenhoeso voor
de binaire druppelgrootte verdelingsfunctie is nagetrokken in hoestem@de quasi
stationaire oplossing benadert. Uit deze analyse is gebleken dat destaimsaire
oplossing niet bereikt wordt in de beschouwde kanaalstroming, waeaérdat de
toepasbaarheid van quasi-stationaire nucleatie theorie op dergelijke gieonmiet
als vanzelfsprekend mag worden beschouwd. Een analyse van aigkeid van
de druppelgrootte verdelingsfunctie voor de keuze van de evenwicttding heeft
verder aangetoond dat deze invloed sterk is.

Als laatste is een onderzoek uitgevoerd naar condensatie in een syihthetisc
lent stromingsveld, welke de condensatie in atmosferische wolken nalddetsyn-
thetisch turbulent veld wordt verkregen door deze uit Fourier snedberdponenten
met willekeurige amplitude, faseverschil enéoriatie samen te stellen. Het gebruikte
condensatiemodel is volledig Lagrangiaans van karakter, waarbij tareanten zijn
gebruikt: @n waarbij de condensatie van druppels geen terugkoppeling heeft na
de thermodynamische toestandsvariabelen (het zogena@mdeegsmodel) en een
tweede waarbij deze terugkoppeling wel in rekening wordt gebracgehaamde
twee-wegsmodel). Uit de resultaten verkregen metdetwegsmodel blijkt dat
de variantie van de druppelgrootte verdelingsfunctie toeneemt in de tijdtesheda
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verdelingsfunctie een Gaussische vorm aanneemt. Dit is in overeenstemeing
een theoretische analyse waarin de toename van de variantie wordtegnekzan
turbulente dispersie. Voor wat betreft het twee-wegsmodel blijkt kwalitddeook
hier de variantie van de druppelgrootte verdelingsfunctie toeneemt, a¢ghdewnate
waarin dit gebuert veel minder is vanwege de terugkoppeling van dkeosatie naar
de temperatuur en verzadiging van de damp.
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