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Summary

Due to the complex three-dimensional shape of turbomachines, their design is a delicate
and difficult task. Small changes in geometrical details can lead to large changes in
performance, like resulting head, efficiency and cavitation characteristics. In industry,
turbomachines are often designed based on a combination of experience of the designer and
direct Computational Fluid Dynamics (CFD) analyses of the flow inside these machines.
The goal of this study is to develop advanced CFD-based design methods which can assist
the designer in realizing better designs in shorter turn-around times.

The present work addresses the development of such CFD-based design methods for
turbomachines. Both an inverse-design method and an optimization method have been
developed. In particular, the developed methods can be applied to the design of machines
for which the flow is assumed to be incompressible. As such, these methods are applicable
to pumps, fans and hydraulic turbines. Furthermore, the core flow is considered to be
inviscid and viscosity effects are assumed to be restricted to relatively thin boundary
layers. In this thesis the focus is on the design of centrifugal pump impellers.

For the design methods developed in this thesis a potential flow method is employed,
for which appropriate boundary conditions are formulated. This model is valid for flows
that are inviscid, irrotational and incompressible. The Finite Element Method is utilized
to solve the governing Laplace equation numerically. The augmented potential-flow model
is discussed, which includes an estimate of the boundary layer losses in the impeller using
a semi-empirical analysis of the inviscid flow field.

An inverse-design method for centrifugal pump impellers has been developed. For a
direct method, the geometry of the impeller is used as input and the flow field and the
performance are obtained as a result. In contrast, for an inverse method the performance
is prescribed, via a loading function, and both the flow field and the blade curvature dis-
tribution are obtained as a result of the inverse-design analysis. Since the inverse-design
method introduces an additional unknown, i.e. the blade curvature, an additional bound-
ary condition is needed to solve the inverse-design problem. This is the so-called loading
function on the blades. In this thesis it is given either by the mean-swirl distribution or by
a velocity difference over the blades. By prescribing a suitable loading function, impellers
are obtained with the prescribed pump head and zero incidence at the leading edge. The
method has been verified and applied to the design of two three-dimensional impellers,
a radial-flow type and a mixed-flow type impeller. For all inverse-designs improvements
in the inception Net Positive Suction Head (NPSHinc) are obtained. This is the result
of the prescribed zero-incidence at the leading edge. It is shown that by changing the
build-up of the loading at the blades, performance parameters can be improved further.
Generally, shifting the loading towards the trailing edge leads to an increase in blade
length and boundary layer losses, as well as a decrease in NPSHinc and velocity loading.
Also, shifting the loading towards the leading edge leads to a reduction in blade length
and loss coefficient, but also to an increase in velocity loading and NPSHinc, combined
with a higher risk of back-flow.

In addition to the inverse-design method, an optimization method for centrifugal pump
impellers has also been developed. The direct optimization method employs a parame-
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terization of the impeller geometry, a formulation of the cost function that quantifies the
performance of the design, and an optimization algorithm. In the parameterization part
the geometry is parameterized in terms of a parameter vector x and appropriate bounds
are selected. In the formulation of the cost function, relevant performance objectives are
selected and weight factors for various flow rates and objectives are chosen such that the
cost function F (x) can be determined for each parameterized geometry. The cost func-
tion is evaluated for several flow rates around the design point, resulting in a multi-point
optimization method. An optimization algorithm is utilized to solve the minimization
problem and the optimum geometry is found with the lowest value for the cost-function.
The method of Differential Evolution is employed to solve the minimization problem.
This is an evolutionary method in which a population of geometries evolves over a num-
ber of generations towards the optimum. The developed method has been applied to the
optimization of a radial pump impeller in which blade curvature, number of blades and
shroud curvature are parameterized. The cost function incorporates objectives relating
to cavitation characteristics, boundary layer losses, and pump head. A penalty factor
is used for impellers with back-flow for the considered flow rate. For the selected range
of number of blades an optimized impeller is obtained with improved cavitation char-
acteristics. Additional optimizations show that a further improvement could have been
obtained if a larger number of blades would have been allowed in the optimization. For
the main optimization the number of blades has been bounded at a maximum of 6 im-
peller blades in order to have a good optical accessibility for Particle Image Velocimetry
(PIV) measurements of the velocity field inside the impeller.

The optimization method has also been applied in combination with the inverse-design
method. This combined approach is labeled inverse-optimization. Here, instead of a di-
rect parameterization of the blade curvature distribution, the mean-swirl distribution is
parameterized. The cost function includes the boundary layer losses, the velocity load-
ing on the blades, the cavitation parameter NPSH and a penalty factor for back-flow.
Only a single flow rate is considered for the inverse-optimization, making this approach
a single-point optimization. The method of Differential Evolution is used once more as
optimization algorithm. The inverse-optimization has been applied to the design of a
mixed-flow impeller. The inverse-optimization results in an impeller with the blade load-
ing at the shroud shifted towards the leading edge, and the blade loading at the hub shifted
towards the trailing edge. The optimized impeller shows an improvement in NPSH and
in the velocity loading on the blades.

The radial impeller that has been optimized with the direct optimization method, has
been geometrically scaled, manufactured in perspex and installed in a newly designed,
largely transparent experimental setup. The setup consists of a large cylindrical vessel
filled with demineralized water. The impeller is attached to a hollow rotating cylinder,
which is driven using a belt drive. The water flows through a central tube towards the
impeller. At the upstream side of this central tube a spring valve is located that is used
to control the flow rate separately from the rotational speed. A Venturi flow meter is
used to measure this flow rate. For the measurements rotational speeds between 30 and
200rpm could be realized. Measurements above 200rpm were not possible due to the
entrapment of air bubbles originating from the water-air interface. The operating range
of the setup is between 0.3 and 1.9 times the design flow rate of the impeller, independent
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of the rotational speed. By adding small concentrations of polyamide seeding particles
and using a digital camera, located in the rotating cylinder, PIV measurements have
been carried out at 75 and 150rpm and for flow rates ranging from 50% to 150% of the
design flow rate. A Nd:YAG laser is used to illuminate the seeding particles. The flow
field has been measured in two planes perpendicular to the rotation-axis of the impeller,
one near the hub and one near the shroud. The measurements in the plane near the
hub show qualitative agreement with potential flow predictions, i.e. a low velocity at
the pressure side and high velocity at the suction side of the blade. Quantitatively, the
measured velocity in the plane near the hub is somewhat higher, however. In the plane
near the shroud the velocity is lower than in the plane near the hub and they also differ
from the potential flow predictions. In the plane near the shroud a jet-wake structure is
clearly observed, featuring a large wake area of low relative velocity (but no back-flow)
at the suction side of the blade, which is not predicted by the potential flow model. The
suction side wake is observed in the plane near the shroud for all considered flow rates,
and it is also seen in the plane near the hub for flow rates smaller than the design flow
rate. Secondary flow theory can be used to explain the flow phenomena observed in the
measurements. It is concluded that the potential flow model can be used adequately at
the design point to predict global pump performance parameters like the pump head, but
that for a more detailed and accurate description of the flow field a more sophisticated
flow model is needed.
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Samenvatting

Het ontwerp van turbomachines is een ingewikkelde procedure, door de gecompliceerde
drie-dimensionale vormen van turbomachines. Kleine veranderingen in geometrische de-
tails kunnen leiden tot grote veranderingen in prestaties, zoals de opvoerhoogte, rende-
ment en cavitatie karakteristieken. In de industrie worden turbomachines dikwijls ont-
worpen gebaseerd op een combinatie van ervaring van de ontwerper en directe stromings-
analyses door middel van Computational Fluid Dynamics (CFD). Het doel van dit onder-
zoek is om geavanceerde ontwerpmethodes te ontwikkelen die gebaseerd zijn op CFD. Deze
ontwerpmethodes kunnen de ontwerper helpen bij het realiseren van betere ontwerpen in
kortere tijden.

Dit proefschrift behandelt de ontwikkeling van zulke op CFD-gebaseerde ontwerp
methodes voor turbomachines. Zowel een inverse-ontwerp methode, als een optimalisatie
methode zijn ontwikkeld. De ontwikkelde methodes kunnen worden toegepast voor het
ontwerp van turbomachines, waarin de stroming incompressibel is. Daarom zijn de me-
thodes geschikt voor het ontwerp van pompen, ventilatoren en hydraulische turbines. Er
wordt aangenomen dat de hoofdstroming niet-viskeus is en dat viscositeitseffecten beperkt
zijn tot relatief dunne grenslagen. Dit proefschrift concentreert zich op het ontwerp van
centrifugaal waaiers voor pompen.

Voor de ontwerp methodes die ontwikkeld zijn in dit proefschrift wordt het potentiaal
stromingsmodel gebruikt, waarvoor gepaste randvoorwaarden geformuleerd worden. Dit
model is geldig voor stromingen die niet-viskeus, rotatievrij en incompressibel zijn. De
Eindige Elementen Methode wordt aangewend om de geldende Laplace vergelijking nu-
meriek op te lossen. Het uitgebreide potentiaal stromingsmodel wordt behandeld, waarin
de grenslaag verliezen in de waaier worden berekend met een semi-empirisch beschouwing
van het niet-viskeuze stromingsveld.

Een inverse-ontwerp methode voor centrifugaal waaiers is ontwikkeld. Voor een directe
methode wordt de geometrie van de waaier als invoer gehanteerd en het stromingsveld
en de prestaties worden als resultaat verkregen. Daarentegen, voor een inverse methode
worden de prestaties opgelegd, via een bladbelasting, en zowel het stromingsveld als de
bladkromming worden verkregen als resultaat van de inverse analyse. Er is een extra rand-
voorwaarde nodig voor het invers probleem, aangezien de inverse-ontwerp methode een
extra onbekende introduceert, namelijk de bladkromming. Deze extra randvoorwaarde
is de zogenaamde bladbelasting. In dit proefschrift wordt deze gegeven door middel van
ofwel een ’mean-swirl’ verdeling ofwel een snelheidsverschil op het bladoppervlak. Door
een geschikte bladbelasting op te leggen kunnen waaiers ontworpen worden met de vereiste
opvoerhoogte en schokvrije aanstroming aan de neus van het blad. De methode is geve-
rifieerd en toegepast bij het ontwerp van twee driedimensionale waaiers, namelijk een
radiale waaier en een ’mixed-flow’ waaier. Voor alle inverse ontwerpen worden verbeterin-
gen in ’Net Positive Suction Head’ (NPSH) gevonden. Dit is het gevolg van de opgelegde
schokvrije aanstroming aan de neus van het blad. Er wordt aangetoond dat door de
opbouw van de blad belasting te veranderen, prestatie parameters verder verbeterd kun-
nen worden. In het algemeen geldt dat als de bladbelasting naar de staart van het blad
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verschoven wordt, de bladlengte en de grenslaag verliezen toenemen, terwijl de NPSH en
de snelheidsbelasting aan het bladoppervlak afnemen. Als de bladbelasting verschoven
wordt richting de neus van het blad, worden de bladlengte en grenslaag verliezen kleiner,
terwijl de NPSH en de snelheidsbelasting aan het bladoppervlak toenemen, gecombineerd
met een grotere kans op terugstroming.

Naast de inverse-ontwerp methode is tevens een optimalisatie methode voor centrifu-
gaal waaiers ontwikkeld. De directe optimalisatie methode bestaat uit een parameterisatie
van de waaier geometrie, een formulering van de kost functie, die de prestatie van een
geometrie quantificeert en een optimalisatie algoritme. In het parameterisatie gedeelte
wordt de waaier geometrie geparameteriseerd in termen van een parameter vector x en
gepaste grenzen worden geselecteerd. In de formulering van de kost functie worden rele-
vante prestatie doelen geselecteerd en weeg factoren worden gekozen zodat de kost functie
F (x) voor iedere geparameteriseerde geometrie bepaald kan worden. De kost functie
wordt geëvalueerd op verschillende debieten rond het ontwerp debiet en dit resulteert in
een multi-punt optimalisatie methode. Een optimalisatie algoritme wordt gebruikt om
het minimalisatie probleem op te lossen en de optimale geometrie wordt verkregen met
de kleinste waarde voor de kost functie. De methode van Differentiële Evolutie wordt
gehanteerd om het minimalisatie probleem op te lossen. Dit is een evolutionaire metho-
de waarin een populatie van geometriëen over een aantal generaties evolueert richting
een optimum. De ontwikkelde methode is toegepast bij de optimalisatie van een radi-
ale waaier van een pomp, waarbij de bladkromming, het aantal bladen en de kromming
van het bovendeksel geparameteriseerd zijn. De kost functie omvat doelen gerelateerd
aan cavitatie karakteristieken, grenslaag verliezen en opvoerhoogte. Een penalty factor
wordt toegepast voor waaiers met terugstroming voor het beschouwde debiet. Voor het
geselecteerde bereik van het aantal bladen is een geoptimaliseerde waaier verkregen met
een verbetering in cavitatie karakteristieken. Extra optimalisaties hebben laten zien dat
een verdere verbetering verkregen kan worden indien een groter aantal bladen zou zijn
toegelaten in de optimalisatie. Voor de hoofd optimalisatie is het aantal bladen begrensd
op maximaal 6 opdat een goede optische toegankelijkheid wordt bewerkstelligd voor de
’Particle Image Velocimetry’ (PIV) metingen van het snelheidsveld in de waaier.

De optimalisatie methode is tevens in combinatie met de inverse-ontwerp methode
toegepast. Deze gecombineerde aanpak wordt inverse-optimalisatie genoemd. Hier wordt
de ’mean-swirl’ verdeling geparameteriseerd, in plaats van een directe parameterisatie
van de bladkromming. De kost functie omvat grenslaag verliezen, de snelheidsbelasting
van de bladen, de cavitatie parameter NPSH en een penalty factor voor terugstroming.
Slechts één debiet wordt beschouwd in de inverse-optimalisatie, waardoor deze aanpak
resulteert in een enkel-punt optimalisatie. Wederom wordt de methode van Differentiële
Evolutie gehanteerd als optimalisatie algoritme. De inverse-optimalisatie is toegepast bij
het ontwerp van een ’mixed-flow’ waaier. De inverse-optimalisatie resulteert in een waaier,
waarvoor de bladbelasting aan het bovendeksel is verschoven naar de neus van het blad
en de bladbelasting aan het onderdeksel is verschoven naar de staart van het blad. De
geoptimaliseerde waaier vertoont een verbetering in NPSH en snelheidsbelasting op de
bladen.

De radiale waaier die geoptimaliseerd is met de directe optimalisatie methode is geo-
metrisch geschaald, vervaardigd in perspex en toegevoegd aan een nieuw ontworpen, gro-
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tendeels transparante, experimentele opstelling. De opstelling bestaat uit een groot cilin-
drisch vat gevuld met gedemineraliseerd water. De waaier is bevestigd aan een holle
roterende cilinder, welke aangedreven wordt door middel van een V-snaar. Het water
stroomt door een centrale buis naar de waaier. Stroomopwaarts van deze centrale buis
bevindt zich een regelklep in de vorm van een veer, waarmee het debiet kan worden in-
gesteld, onafhankelijk van de rotatie snelheid. Een Venturi debiet meter wordt gehanteerd
om dit debiet te kunnen meten. Voor de metingen konden rotatie snelheden tussen de
30 en 200rpm gerealiseerd worden. Metingen boven 200rpm waren niet mogelijk doordat
luchtbellen afkomstig van het water-lucht interface in de opstelling kwamen. Het werkge-
bied van de opstelling ligt tussen de 0.3 en 1.9 keer het ontwerp debiet van de waaier,
onafhankelijk van de rotatie snelheid. Door kleine concentraties polyamide deeltjes toe te
voegen en gebruik te maken van een digitale camera, gelokaliseerd in de roterende cilin-
der, konden PIV metingen uitgevoerd worden op 75 en 150rpm voor debieten variërend
van 50% tot 150% van het ontwerp debiet. Een Nd:YAG laser is gebruikt om de PIV
deeltjes te belichten. Het stromingsveld is gemeten in twee vlakken loodrecht op de ro-
tatie as van de waaier, een bij het onderdeksel en een bij het bovendeksel van de waaier.
De metingen in het vlak bij het onderdeksel laten een kwalitatieve overeenkomst zien
met de berekeningen op basis van het potentiaal stromingsmodel, d.w.z. een lage snel-
heid aan de drukzijde en een hoge snelheid aan de zuigzijde van het blad. Kwantitatief
gezien echter zijn de snelheden in het vlak bij het onderdeksel enigszins hoger dan voor-
speld door de berekeningen. In het vlak bij het bovendeksel zijn de gemeten snelheden
lager dan bij het onderdeksel en tevens is er een verschil met de berekende snelheden. In
het vlak bij het bovendeksel wordt een zogenaamde ’jet-wake’ structuur waargenomen,
wat onder andere bestaat uit een zog gebied van lage snelheid (maar geen terugstro-
ming) aan de zuigzijde van het blad, wat niet voorspeld wordt door het potentiaal stro-
mingsmodel. Het lage snelheidsgebied aan de zuigzijde wordt waargenomen in het vlak
bij het bovendeksel voor alle beschouwde debieten en het is tevens te zien in het vlak bij
het onderdeksel voor debieten kleiner dan het ontwerp debiet. Secondaire-stromings the-
orie kan gebruikt worden om de waargenomen stromingspatronen te verklaren. Er wordt
geconcludeerd dat het potentiaal stromingsmodel gehanteerd kan worden in het ontwerp
punt om globale pomp prestatie parameters zoals de opvoerhoogte te voorspellen, maar
dat voor een gedetailleerdere beschrijving van het stromingsveld een meer geavanceerd
stromingsmodel nodig is.
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CHAPTER 1

Introduction

The development of methods that support the design of turbomachines, and more specif-
ically centrifugal pumps and fans, is the main objective of this thesis. In this first chapter
an introduction to centrifugal pumps is given. Firstly, some important centrifugal pump
characteristics are discussed. Secondly, a 1D performance analysis is given for radial
pumps, in order to show the main parameters that determine turbomachine performance.
The objective and outline of the thesis are given in the final section.

1.1 Centrifugal pumps

A pump or a fan is a machine that, by increasing the pressure of a fluid, is used to
transport liquids or gasses, respectively. The focus in this thesis will be on pumps, but
the principles for fans are very similar. Usually two types of pumps can be distinguished,
centrifugal pumps and positive displacement pumps. In centrifugal pumps energy is trans-
ferred directly to the fluid by the contact between the rotating blades and the fluid. In
positive displacement pumps a portion of fluid is trapped and moved in a given direc-
tion. The famous Archimedes screw, invented in the 3rd century B.C., is an example of
a positive displacement pump. In this thesis centrifugal turbomachines are considered.

In this section some general pump definitions and terminology are presented. Firstly,
the centrifugal pump components are discussed. Secondly, important pump performance
characteristics are given. Furthermore, the meridional geometry, which plays an impor-
tant role in pump design, is described. The blade angle definition is given thereafter.
Dimensionless coefficients, which are frequently used for scaling purposes, are given at
the end of this section.

1



2 Chapter 1. Introduction

1.1.1 Centrifugal pump components

In Fig. 1.1 a typical centrifugal pump is displayed. A centrifugal pump consists of an
impeller, a diffuser and a casing. An impeller consists of a rotating disc called the hub,
to which blades are attached. The impeller is attached to an axis, which is driven by a
motor. The rotating motion of the impeller blades moves the fluid outwards. Examples
of impellers are shown in Fig. 1.1b and Fig. 1.2.

(a) view from the outside (b) rotating parts

Figure 1.1: Centrifugal pump. The arrows in (b) indicate the flow direction. Left picture
taken from [72].

Impellers are frequently classified as either unshrouded or shrouded, both types are
illustrated in Fig. 1.2. In shrouded impellers the blade tips are attached to the shroud
surface, consequently the shroud rotates with the hub and the blades. In unshrouded
impellers the tip of the blades has a small clearance with the stationary shroud. In this
thesis shrouded impellers are considered, unless mentioned otherwise.

When the fluid leaves the impeller it enters the diffuser, where a large part of the
dynamic pressure is converted into static pressure. Diffusers are either vaned diffusers,
containing stationary blades (or vanes), or vaneless diffusers, which do not have these
blades. In this thesis the focus will be on the design of impellers, but it has to be stressed

(a) unshrouded (b) shrouded

Figure 1.2: Unshrouded and shrouded impeller types. Picture taken from [29].
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that diffuser design is very important as well.

1.1.2 Pump performance parameters

Pumps are usually designed to operate at a certain design flow rate Q and an angular
speed Ω. At these conditions the pump generates an increase in stagnation pressure ∆p0,
which is expressed in terms of a pump head H

H =
∆p0

ρg
(1.1)

where ρ is the density of the fluid, g the gravitational acceleration and the stagnation
pressure p0 is given by

p0 = p +
1

2
ρv2 (1.2)

where p is the static pressure and v the fluid velocity.
Another important performance parameter is the power supplied to the pump via the

shaft, PS. The net hydraulic power transferred by the pump to the fluid PH is obtained
from the pump head and the flow rate

PH = ρgHQ (1.3)

Since losses occur, the hydraulic power PH is always smaller than the shaft power PS.
These losses can be divided in mechanical losses and hydraulic losses. Mechanical losses
are friction related losses, like for example in bearings and seals. Hydraulic losses include
leakage losses, dissipation in boundary layers, mixing losses and disc friction. This leads
to another important pump performance parameter, the pump efficiency η. The pump
efficiency is readily obtained from the shaft power and the hydraulic power

η =
PH

PS

(1.4)

A further important phenomenon that may occur in pumps is that of cavitation. If
the pressure of the liquid p drops below the vapor pressure pv of the liquid, bubbles start
forming and even sheets of vapor arise on the blades. Since the pressure in the pump
increases whilst moving from the inlet towards the outlet, these gas pockets will collapse
again to form liquid. This can cause severe damage to the impeller, called cavitation
erosion. An example of a pump impeller affected by cavitation erosion is given in Fig. 1.3.
Not only does cavitation lead to a reduction in pump life time, but the occurrence of cav-
itation also leads to a drop in pump head and efficiency, noise generation and vibrations.
Therefore it is important to avoid cavitation as much as possible.

Parameters influencing the occurrence of cavitation in pumps for given flow rate and
rotational speed are the vapor pressure of the liquid, pv, the stagnation pressure at the
inlet of the pump p0,in and the geometry of the pump impeller. Note that the vapor
pressure is a function of the temperature. The NPSH, Net Positive Suction Head, is
used to indicate the over-pressure needed at the inlet of the pump to avoid cavitation.
NPSHinc, the cavitation inception criterion, is defined by
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Figure 1.3: Cavitation erosion in a centrifugal pump. Picture taken from [7].

NPSHinc =
p∗0,in − pv

ρg
(1.5)

where p∗0,in is the value of the stagnation pressure at the inlet of the pump at which the
first cavitation bubbles inside the pump start to form. A low NPSHinc value is therefore
desirable for design purposes, since the lower the NPSHinc the lower the pressure can be
at the inlet of the pump, while still avoiding cavitation.

Several NPSH criteria are used and the ones most frequently used are given here.
Firstly, the NPSHinc, which gives the NPSH value at cavitation inception, as discussed
above. Another frequently used criterion in industry is that of NPSH3%, which is the
NPSH value for which the pump head in cavitating condition is 3 percent less than that
without the occurrence of cavitation. Usually at such a drop in pump head the pump is
already severely cavitating, since NPSHinc > NPSH3%.

1.1.3 Meridional geometry

A centrifugal pump rotates around an axis, here taken as the z-axis, and therefore it
is often convenient to employ a cylindrical coordinate system r, θ, z. A very useful and
frequently used projection of an impeller blade is the so-called meridional geometry of
an impeller blade. This is an r, z-projection of the blade. An example of a meridional
geometry is given in Fig. 1.4, where m is the non-dimensional meridional distance along a
blade contour in the meridional plane from leading to trailing edge. Hence, at the leading
edge m = 0 and at the trailing edge m = 1. Note that not only the blade is shown in this
meridional view, but also an inlet and an outlet section.

1.1.4 Definition of blade angle

Pump impeller blades usually have complicated curved shapes and a common way to
describe this shape is to define an impeller blade angle. In this thesis the blade angle
β is defined as a function of the meridional direction m, as sketched in Fig. 1.5. The



1.1. Centrifugal pumps 5

(a) full impeller view

Inlet 

Blade

Exit

z 

r 

axis of rotation 

m 

hub 

shroud 

leading edge

trailing edge

(b) meridional view

Figure 1.4: Example of an impeller and its corresponding meridional geometry. Note that for
the full impeller view only the blade section is shown.

blade angle β is the angle between the blade contour and the circumferential direction,
i.e. a circular arc around the axis of rotation. The blade contour is an intersection of
the blade surface with the surface of revolution of a meridional line (see Fig. 1.5). For a
three-dimensional geometry the blade angle is given by

tan β =
1

r

dxm

dθ
(1.6)

where dxm is the infinitesimal arc length in the meridional direction m (dxm =
√

dr2 + dz2),
see also Fig. 1.4. For a two-dimensional configuration dz = 0 and therefore, dxm = dr.
Note that m is dimensionless, whereas xm has the dimension of length. The variation of
the blade angle β reflects the blade curvature and hence the blade shape. The blade angle
also occurs in the 1D flow analysis presented in section 1.2.

1.1.5 Dimensionless coefficients

Scaling of machines, whilst maintaining favorable performance characteristics, e.g. a max-
imum efficiency η, is important in the field of turbomachines. Dimensionless performance
coefficients are often used to describe the performance parameters introduced in section
1.1.2. One such coefficient is the flow coefficient φ, which gives the dimensionless flow
rate

φ =
Q

ΩD3
(1.7)

where D is the impeller outer diameter. The pump head is usually given in the form of a
head coefficient ψ

ψ =
gH

Ω2D2
(1.8)

For a fixed rotational speed Ω turbomachines operate with a maximum efficiency η for
a certain flow rate Q and a corresponding pump head H. Based on the flow and head
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Figure 1.5: Definition of the blade angle β. The surface of revolution of a meridional line
is shown by the dotted lines. The meridional line is also shown in the meridional plane (top-
right). The blade contour is an intersection of the blade surface with this surface of revolution.
The blade angle is defined as the angle of the blade contour with respect to the circumferential
direction.
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Figure 1.6: Impeller shapes and associated specific speeds, taken from [42]. Here N is the
rotational speed of the pump in revolutions per minute (rpm), Q the flow rate in liters per
minute and H the pump head in meters.

coefficients, another dimensionless number can be formulated that only contains the pa-
rameters determining the duty Q,Ω,H. This dimensionless number is the specific speed
Ns

Ns =
Ω
√

Q

(gH)
3
4

(1.9)

The specific speed also reflects the impeller shape. For increasing specific speeds the
impellers that are used shift from radial, via mixed-flow, to axial impellers, as is depicted
in Fig. 1.6. Note that a slightly different definition of the specific speed is used, i.e. the
gravitational constant g is not included in the definition, and also different units are used
in this figure.

The dimensionless cavitation inception number κi is defined in a similar fashion as the
head coefficient

κi =
gNPSHinc

Ω2D2
(1.10)

An important parameter to describe the type of flow in the pump is the Reynolds
number. For the Reynolds number, the diameter D of the impeller is frequently employed
as the characteristic length scale and for the velocity the blade velocity at the trailing

edge ute =
1

2
ΩD is taken, resulting in

Re =
ΩD2

2ν
(1.11)

where ν is the kinematic viscosity of the fluid. In pumps the Reynolds number is typically
in the order of 106− 107, which indicates that the flow inside the boundary layers will be
turbulent, except in a region very close to the leading edge.
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1.2 Basic pump analysis

The relation between Q, Ω and H can be clarified by considering a 1D flow model. Such
a model, based on the Euler pump equation, is presented in this section. The 1D theory
is a frequently-used method for estimating the performance of (radial) pumps.

Since the impeller rotates around an axis, it is often convenient to work in a rotating
frame of reference. For this purpose the relative velocity w is considered, which is defined
as the difference between the absolute velocity v and the blade velocity u = Ω×r, which
is in circumferential direction.

w = v − u = v −Ω× r (1.12)

where Ω is the angular speed vector of the impeller, and r the position vector relative
to the origin of the coordinate system, positioned on the axis of rotation. Note that
for inviscid flow the relative velocity w is tangential to the blade, since the blade is an
impenetrable body, whereas for viscous flow the relative velocity at the blade surface is
given by the no-slip condition, w = 0. The definition of the relative velocity leads to the
velocity triangle, as shown in Fig 1.7.

Ω

Figure 1.7: The velocity triangle, with v the absolute velocity, w the relative velocity and u
the blade velocity. PS indicates the pressure side and SS the suction side of the blade.

To analyze pump performance, the Euler pump equation and velocity triangles are
employed. Firstly, the flow is assumed to be steady in the rotating frame. Secondly,
the approach assumes a uniform velocity profile from blade to blade, as is illustrated in
Fig. 1.8. The analysis is presented here for radial pumps. The Euler pump equation is
given by (see for example [26])

W = gH = utevθ,te − ulevθ,le (1.13)

where H is the inviscid-flow pump head and W is the energy transfer per unit mass
between rotor and fluid. Furthermore, u denotes the (azimuthal) velocity of the blade
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and vθ the azimuthal component of the absolute flow velocity. The subscripts le and te
indicate the leading and trailing edge, respectively. If the fluid enters the pump without
pre-rotation (vθ,le = 0), the second term on the right side of Eqn. (1.13) cancels out and
by substituting ute = Ωrte the Euler relation becomes

Figure 1.8: Profile of relative velocity in a radial pump channel for the 1D consideration (left)
and the 2D inviscid situation (right). PS indicates the pressure side and SS the suction side of
the blades.

W = gH = Ωrtevθ,te (1.14)

The 1D assumption implies that the flow is aligned to the blade, i.e. the flow direction is
everywhere equal to the tangent to the blade. Therefore, vθ can be derived from a velocity
triangle as is sketched in Fig. 1.9.

vθ,te = ute − vr,te

tan βte

(1.15)

where βte is the blade angle of the impeller at the trailing edge, as defined in section
1.1.4 and vr,te is the radial component of the absolute velocity (which equals the radial
component of the relative velocity wr,te). For a two-dimensional radial pump, assuming
uniform flow from pressure to suction side, the flow rate can be computed by

Q = 2πrtebtevr,te (1.16)

where bte is the width of the impeller at the trailing edge, i.e. the distance from hub to
shroud. By substitution of Eqns. (1.15) and (1.16) in Eqn. (1.14), a relationship for the
1D Euler head H can be obtained, showing its dependence on the flow rate Q, the angular
speed Ω, and the impeller geometry, i.e. bte, rte and βte.

gH = Ωrte

(
Ωrte − Q

2πrtebte tan βte

)
(1.17)
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Figure 1.9: Velocity triangle at the trailing edge of a radial pump impeller.

This relationship can also be written in dimensionless form, by considering the defini-
tion of the head coefficient ψ and the flow coefficient φ

ψ =
1

4


1− φ

4

π
bte

rte

tan βte


 (1.18)

For backward curved blades, i.e. 0◦ < β < 90◦, the pump head will decrease with
increasing flow rate. In reality the velocity distribution at the pump outlet is not uniform,
as sketched in Fig. 1.8. The flow experiences a certain ’slip’, resulting in a lower value for
vθ,te and hence a lower value for the pump head H than predicted by the 1D assumption.
If the number of blades for an impeller is increased, this slip is reduced and the head will
be closer to the 1D Euler head of the pump. Therefore, the 1D Euler head can be viewed
as the head produced by an impeller with an infinite number of blades, where the flow is
inviscid. The advantage of the 1D Euler analysis is that it shows the relationship between
pump performance and relevant quantities: ψ = f(φ, geometry).
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1.3 Objective and outline

The design of centrifugal pump impellers is a highly complicated task due to the complex
three-dimensional shape of impeller blades, hub and shroud. Small differences in geom-
etry can lead to significant changes in the performance of such a machine. Advances in
computational power over the last few decades have resulted in the application of ad-
vanced CFD analysis methods to the prediction of the performance of turbomachines.
These methods range from potential flow methods, to fully viscous flow methods.

In this thesis computational methods are developed which can assist the engineer in
the design of impellers. The task of the hydraulic engineer is to design a machine which
meets the head requirements for a given flow rate with a maximum efficiency and long
lifespan. The occurring flow fields determine the hydraulic losses that occur in a pump
and also whether cavitation might occur, depending on the inlet pressure of the pump.
The occurrence of cavitation influences not only the performance of the machine, but also
its lifespan.

In chapter 2 the equations governing the flow inside centrifugal pumps are derived.
In this chapter it is argued that for flow conditions near the design point, an inviscid
flow model and more specifically a potential flow model can be employed. The derivation
of the potential flow model is presented and the employed numerical method, a Finite
Element Method, for solving the potential flow equations is discussed.

In this thesis two types of CFD design methods are presented, namely an inverse-
design method and an optimization method. The inverse-design method for centrifugal
impeller blades is treated in chapter 3. For an inverse-design method the performance of
a machine is prescribed and both the flow field and the blade geometry are obtained as a
result.

An optimization method for centrifugal impellers is formulated in chapter 4. In such
a method the impeller geometry is parameterized and its performance, determined by
the flow field, is quantified by a cost function which is to be minimized. The developed
method is applied to the design of a radial machine.

This optimized impeller is scaled using the dimensionless numbers discussed in section
1.1.5 and manufactured for use in experiments, which are presented in chapter 5. Particle
Image Velocimetry (PIV) is employed to validate the computed velocity profiles for the
optimized impeller and to gain more insight in the occurring flow fields inside the impeller.
To this end a new experimental setup has been designed and realized. The results of
the measurements are compared to the computed results, which have been used in the
optimization method.

The results of the preceding chapters are discussed in chapter 6. Here a critical view
is given on the obtained results and recommendations for future research are formulated.





CHAPTER 2

Potential Flow Model

The flow field inside turbomachines influences all performance parameters like head, ef-
ficiency and the occurrence of cavitation. Therefore it is eminent that the flow inside
the pump is to be modeled accurately. For the inverse-design and optimization methods
presented in subsequent chapters a hydrodynamical model is needed. In chapter 1 the 1D
theory was presented, for which the flow is assumed to be uniform from blade to blade
and from hub to shroud. In this chapter the governing equations for fluid flow in three
dimensions are formulated.

In the formulation the simplification is made that the flow can be described by using
an incompressible potential flow model. This is an inviscid flow model and in the next
section it will be shown under which conditions the potential flow model can be derived
from the incompressible Navier-Stokes equations.

2.1 Flow model

In this section the potential flow equations are derived. The equations are considered in
the absolute frame of reference first, i.e. a frame of reference that is stationary in space.
Subsequently, the equations are formulated in the rotating frame of reference, i.e. a frame
of reference rotating with the impeller blade speed, leading to a steady flow model. The
resulting relative velocity field is that seen by an observer rotating with the impeller.

2.1.1 Absolute frame of reference

The starting point for the present flow model is formed by the continuity equation (2.1)
and the Reynolds-averaged Navier-Stokes equations (2.2) for an incompressible Newtonian
fluid with constant viscosity. In an absolute frame of reference they are given by

∇ · v = 0 (2.1)

13
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ρ
∂v

∂t
+ ρv · ∇v = −∇p + η∇2v + ∇ ·R + ρg (2.2)

where ρ is the density, v the absolute velocity, η the dynamic viscosity, p the pressure,
R the turbulent Reynolds stresses and g the gravitational acceleration. The Reynolds
stresses are given by R = −ρv′v′, where v′ indicates the velocity fluctuation and the
over-bar indicates time-averaging.

In Eqns. (2.1) and (2.2) the flow is assumed to be incompressible. This assumption is
justified when the following condition is met

Ma2 =

(
v∗

a

)2

<< 1 (2.3)

where v∗ is the magnitude of a reference velocity, Ma is the Mach number and a the speed
of sound.

When Re is large (Re >> 1), as is the case in most turbomachinery flows, the viscous
term η∇2v in Eqn. (2.2) can be neglected outside boundary layers and wakes. Further-
more, the turbulence intensity Tu is defined as the ratio between the velocity fluctuation
v′ and the mean velocity v

Tu =
|v′|
|v| (2.4)

In the core flow, outside the boundary layers, the turbulence intensity is low: Tu << 1,
meaning that the Reynolds stresses ρv′v′ can be neglected [31]. Thus the Euler equations
are obtained

ρ
∂v

∂t
+ ρv ·∇v = −∇p + ρg (2.5)

When viscous effects are neglected, as in Eqn. (2.5), the flow is called inviscid.
This equation is rewritten, using the vector identity:

v ·∇v =
1

2
∇(v · v) + (∇× v)× v (2.6)

Combining Eqn. (2.5) and Eqn. (2.6) gives

∂v

∂t
+

1

2
∇(v · v) + (∇× v)× v = −1

ρ
∇p + g (2.7)

According to Kelvin’s circulation theorem, in an inviscid barotropic fluid subjected to
a conservative force field the circulation of any closed curve moving with the flow field
remains constant. This means that if the incoming flow is irrotational, the flow remains
irrotational everywhere in the domain considered. The flow is said to be irrotational when

∇× v = 0 (2.8)

For irrotational flow a velocity-potential φ can be defined such that Eqn. (2.8) is
satisfied automatically

v = ∇φ (2.9)
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The continuity equation (2.1) and the Euler equation (2.7) now reduce further to

∇2φ = 0 (2.10)

∂∇φ

∂t
+

1

2
∇(v · v) = −1

ρ
∇p + g (2.11)

Equation (2.10) is the well-known Laplace equation for fluid flow. From Eqn. (2.11) the
Bernoulli equation for unsteady incompressible potential flow is obtained

∂φ

∂t
+

1

2
v · v +

p

ρ
+ g · r = c(t) (2.12)

where r is the position vector.
The boundary-layer thickness δ for the turbulent boundary layer on a flat plate, with

a uniform velocity outside the boundary layer, can be estimated for 5 · 105 < Rex < 107

by (see for example [58])
δ(x) = 0.37xRe−0.2

x (2.13)

where x is the distance from the starting point of the boundary layer. For a Reynolds
number of 107, typically encountered in turbomachines, this implies a boundary layer
thickness of δ/x = 0.023. This indicates that for most turbomachinery applications the
boundary layer is sufficiently thin, so for attached flows the displacement effect of the
boundary layer on the core flow is neglected here.

2.1.2 Rotating frame of reference

In this section the transformation is made to a rotating frame of reference, i.e. a frame
which rotates with the impeller blade speed. The equations are to be formulated in terms
of the relative velocity w, as has been discussed in section 1.2. This relative velocity is
thus the velocity as seen by an observer rotating with the impeller.

The material derivative of a scalar quantity is objective, hence

∂φ

∂t
+ v ·∇φ =

Dφ

Dt
=

Dφ

Dt

∣∣∣∣
R

=
∂φ

∂t

∣∣∣∣
R

+ w ·∇φ (2.14)

where
∂φ

∂t

∣∣∣∣
R

is the time derivative in the rotating frame. Substitution of Eqns. (2.14)

and (1.12) in Eqn. (2.12) gives the following equation (in the rotating frame of reference)
after some algebra

∂φ

∂t

∣∣∣∣
R

+
p

ρ
+

1

2
|w|2 − 1

2
|Ω× r|2 + g · r = c(t) (2.15)

The free impeller case is considered. This implies that the flow inside the stationary
parts of the diffuser does not influence the flow inside the rotating parts of the impeller and
that the incoming flow is rotationally symmetric. Furthermore, all blades are assumed to
be equal in shape and equally spaced. These assumptions can be justified for an impeller
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without a diffuser or for an impeller with a well designed vaneless diffuser operating at
the Best Efficiency Point (BEP). In the free impeller case the potential-flow field is steady

for an observer that rotates with the impeller, i.e.
∂φ

∂t

∣∣∣∣
R

= 0. Then a rothalpy I can be

defined such that it is constant in the rotating frame of reference

I =
p

ρ
+

1

2
|w|2 − 1

2
|Ω× r|2 + g · r = c(t) (2.16)

as follows from Eqn. (2.15). This equation is referred to as the Bernoulli equation in the
rotating frame of reference.

Summarizing, the assumptions that are made in incompressible potential-flow theory
are

• Inviscid flow : Re >> 1; boundary layer separation does not occur; low turbulence
intensity.

• Incompressible flow : Ma2 << 1

• Irrotational flow : ∇× v = 0 at the inlet

For centrifugal pumps or fans these assumptions are quite reasonable when they are
operating near the design point. By solving Eqn. (2.10) the velocity field is obtained, and
the pressure is calculated by using Eqn. (2.16).

Furthermore, it has to be mentioned that usually relative velocity profiles are consid-
ered in this thesis. Since the absolute velocity field is irrotational, i.e. ∇ × v = 0, this
means that the relative velocity field is not irrotational

∇×w = ∇× (v −Ω× r) = −∇× (Ω× r) = −2Ω (2.17)

as follows from Eqn. (1.12). This means that the model is capable of predicting back-flow
(also called reverse-flow) in the impeller, as is sketched in Fig. 2.1. Back-flow can occur
for low flow rates and is undesirable since it is known to lead to unstable operation in
the field, although in practice many impellers are known to have a back-flow region, even
when operating at design conditions. Note that when back-flow is predicted, the validity
of the potential flow model is lost, since boundary layer separation will have occurred in
reality.

When the free impeller case is considered, it suffices to consider a single impeller blade
channel only. Such a domain is sketched in Fig. 2.2. Boundary conditions for the Laplace
equation need to be formulated on this domain. This is discussed in the next section.

2.2 Boundary conditions

In order to solve the Laplace equation (2.10), boundary conditions need to be formulated
at the boundary of the domain of interest. Assuming periodicity of the flow field, i.e.
when all blades are identical in shape and equally spaced from each other (free impeller
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Figure 2.1: Sketch of an inviscid relative velocity profile in an impeller with straight blades
with back-flow occurring at the pressure side. PS indicates the pressure and SS the suction side,
respectively.

LE

TE

+Ω

TE

LE

SS

Periodic section

Periodic section

Blade

Blade

Outlet

Inlet

PS

Figure 2.2: Flow domain of interest between two blades. The hub is above and the shroud
below this plane. PS is the pressure side and SS the suction side, LE the leading edge and TE
the trailing edge of the blade.
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case), only a single impeller channel needs to be considered. This impeller channel is
sketched in Fig. 2.2.

For an incoming flow without pre-swirl, a Dirichlet or essential boundary condition
applies at the circular inlet of the domain

φ = 0 (2.18)

At the outlet of the domain, sufficiently far away from the trailing edge, the flow is
assumed to be uniform and thus a Neumann boundary condition is formulated

∂φ

∂n
= vn =

Q

ZAout

(2.19)

where Aout is the surface area of the outlet section and Z the number of blades on the
impeller.

The hub and the shroud are impenetrable surfaces of revolution. Thus the following
Neumann boundary condition holds

wn = vn =
∂φ

∂n
= 0 (2.20)

Since the flow field within each channel formed by the two blades is identical, it follows
that for the periodic sections upstream and downstream of the blade (see Fig. 2.2) the
following must hold

v(r, θps) = R v(r, θss) (2.21)

where ps and ss indicate the pressure and suction side of the domain, respectively. R is
the rotation matrix for rotation around the z-axis over an angle of −2π/Z. Alternatively,
the normal components and in plain components of the velocity at the pressure side and
suction side are equal. The corresponding boundary conditions for the velocity potential
φ are given by

∂φ

∂n
(r, θps) = −∂φ

∂n
(r, θss) (2.22)

φ(r, θps) = φ(r, θss) + c (2.23)

Upstream of the blade surface c = 0, due to the assumption of incoming flow without
pre-swirl, and downstream the value will be determined by the circulation Γ generated
by the impeller (c = Γ).

The pressure and suction side of the blades are impenetrable. Thus the impenetrability
or blade stream-surface condition applies

w · n = 0 (2.24)

where n is the outward normal vector at the blade surface. By making use of Eqn. (1.12)
this condition can also be written as

vn =
∂φ

∂n
= un = (Ω× r) · n (2.25)
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At the trailing edge the the flow is tangential to the blade, which is the so-called
Kutta condition. Several approaches can be utilized to impose the Kutta condition (see
for example [14]). For the direct method, used in the optimization method presented
in chapter 4, the employed Kutta condition is that the velocity just downstream of the
trailing edge is parallel to the blade, i.e.

vn,te = un,te (2.26)

where un,te is the blade speed at the trailing edge. For the inverse-design method dis-
cussed in Chapter 3 the Kutta condition will be enforced via the prescribed mean-swirl
distribution.

2.3 Augmented potential flow model

In the preceding sections the potential flow model with associated boundary conditions
has been presented. This model is an inviscid flow model and can not be utilized to
determine hydraulic losses inside turbomachines directly. However, the model can be
extended to the so-called augmented potential flow model, by adding loss models to the
potential flow model. If the boundary layers are thin and flow separation does not occur,
the boundary layer losses in the power, ∆Ploss, can be estimated by (see [24])

∆Ploss =

∫

S

CD
1

2
ρw3dS (2.27)

where CD is the energy dissipation coefficient, estimated at 0.0038 [24] and S is the surface
area of the boundary considered. By using this approach the losses can be quantified.

The boundary layer losses in the impeller are only a part of the total losses occurring.
Firstly, there are also boundary layer losses occurring in the volute, but these are not
considered here, since the focus is on the design of impellers. Furthermore, leakage losses,
mixing losses and disc friction losses also lead to a reduction in efficiency. These extra
losses can be taken into account in the model as well, as is done elsewhere [32], but they
are also largely dependent on the specific speed Ns as is shown for example in [63]. Since
the specific speed of the impellers in this thesis are not altered, these hydraulic losses
occurring in the impeller are not considered, and only the boundary layer losses in the
impeller are taken into account.

The loss coefficient ζ is defined as the ratio between the boundary layer losses and the
hydraulic power of the machine PH , which is given by Eqn. (1.3).

ζ =
∆Ploss

PH

(2.28)

One of the aims in pump impeller design obviously is to obtain an impeller with a low
loss coefficient ζ.
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2.4 Numerical method

For the incompressible potential flow model the equation to be solved is the Laplace equa-
tion (2.10) with appropriate boundary conditions. By solving this equation the velocity
potential φ becomes known. Then the velocity v can be determined from Eqn. (2.9) and
the static pressure follows from Eqn. (2.16).

This section is devoted to the numerical method employed for solving the Laplace equa-
tion. The adopted Finite Element Method (FEM) approach is based on the discretization
of the weak form of the Laplace equation.

2.4.1 Weak form of the Laplace equation

The weak form of the Laplace equation (2.10) is derived here. It is obtained by multiplying
the Laplace equation by a test function ψ and integrating over the domain V.

∫

V

(
ψ∇2φ

)
dV = 0 (2.29)

Using Gauss’ theorem, it follows that

∫

V

∇ψ ·∇φdV =

∫

S

∂φ

∂n
ψdS (2.30)

The boundary of the domain consists of a Dirichlet (or essential) boundary surface, SD, a
Neumann boundary, SN , and periodic boundaries, S+ and S− (see section 2.2). The test
function ψ must vanish on the Dirichlet boundary and on periodic boundaries it must
satisfy ψ+ = ψ−. Hence, it follows that

∫

V

∇ψ ·∇φdV =

∫

SN

vnψdS +

∫

S+

vnψdS +

∫

S−

vnψdS (2.31)

where vn is the prescribed value of the absolute velocity normal to the surface under
consideration.

The boundary surfaces at which a Neumann boundary conditions applies, SN , consist
of the outlet section, Sout, the hub, Shub, the shroud, Sshr, the blade pressure side, SPS,
and the blade suction side, SSS, see also Fig. 2.2. The contribution of the hub and the
shroud to the right hand side of Eqn. (2.31) is zero, since (∂φ/∂n) = 0, see Eqn. (2.20).

The periodic boundary condition given in Eqn. (2.21), i.e. (∂φ/∂n)+ = −(∂φ/∂n)−,
and the condition for the test function, ψ+ = ψ−, imply that the second and third term
of the right hand side cancel, resulting in

∫

V

∇ψ ·∇φdV =

∫

SN

vnψdS (2.32)
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2.4.2 Structured mesh generation

For both the direct and inverse method tetrahedral meshes are employed. These tetrahe-
dral meshes are the meshes on which the finite element method is applied. The generation
of the mesh starts by dividing the domain into a structured mesh of hexahedrons, each
with eight nodes. Each hexahedron is subsequently divided in six tetrahedra, as sketched
in Fig. 2.3. In this figure it is also shown how, starting from a 2D mesh of quadrilaterals
(analogous to hexahedrons in 3D), a mesh of triangles (analogous to tetrahedrons in 3D)
is obtained. The diagonal of each quadrilateral is chosen such that a mesh of triangles
with good quality is obtained. Mesh refinement can also be applied. This is generally

SS 

PS 

Figure 2.3: The division of a 2D quadrilateral mesh into a triangular mesh (left) and the
division of a 3D hexahedron into six tetrahedra.

employed near boundary surfaces of interest.

2.4.3 Finite Element Method

In this section the weak form of the Laplace equation (2.32) is discretized using the Finite
Element Method (FEM). The volume V forming the computational domain is divided
into volume elements. The potential φ(x) is described by using basis functions N j(x)
corresponding to the finite element mesh. The weight functions ψ are taken equal to the
basis functions, i.e. the Galerkin method is employed.

φ(x) =
n∑

j=1

φjN j(x) (2.33)

ψ(x) = N i(x) i = 1 . . . n (2.34)

where n is the number of nodes in the domain and xi are the nodes in the domain. Since
N j(xi) = δij, the φj-values correspond to the unknown nodal values. The discretized
equations become





n∑
j=1

∫

V

∇N i ·∇N jdV



φj =

∫

SN

vnN idS (2.35)
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This is a linear system of equations for φj. Linear basis functions are employed here,
leading to a second-order accuracy for the velocity potential.

2.4.4 Determination of velocity

In the preceding section the numerical method for computing the velocity potential in the
mesh nodes has been presented. In each tetrahedral centroid the velocity is determined
by using the velocity potential φi at the four nodes of the tetrahedron.

vc = ∇φc =
4∑

i=1

φi∇N i (2.36)

where c denotes the centroid of a tetrahedron. The velocity potential φ(x) is continuous
for linear basis functions N i. However, the velocity v = ∇φ is discontinuous over element
edges, since ∇N i is constant inside the elements, and discontinuous at the element edges.
This is illustrated for a 1D mesh in Fig. 2.4.

x
i−1

 x
i−2

 x
i+2

 x
i+1

 x
i
 

Ni 

x
i−1

 x
i−2

 x
i+2

 x
i+1

 x
i
 

dNi 

dx 

0 

Figure 2.4: Linear basis function N i(x) (left) and its derivative
dN i

dx
(right) on a 1D mesh.

To obtain values for v in the nodal points, the Superconvergent Patch Recovery (SPR)
method is utilized (Zienkiewicz et al. [84]). For this purpose patches are constructed.

Figure 2.5: 2D patch used for velocity reconstruction.
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The patch for a node consists of those elements to which this nodes belongs. A two-
dimensional sketch of such a patch (thus with triangles instead of tetrahedrons) is given
in Fig. 2.5. The velocity in a nodal point vi is determined by a linear least-squares fit,
i.e. v = a + bx + cy + dz, using the data points vc taken from the patch for node i.

The SPR method is very accurate for the internal domain, where large, more or less,
symmetrical patches are constructed. The second-order accuracy for the potential is
retained in a second-order accuracy for the velocity [31]. However, the accuracy of the
SPR method decreases near boundaries, where smaller patches are considered. This will
generally result in a lower order of accuracy for the velocity near boundaries.





CHAPTER 3

Inverse-design Method

The design and analysis of turbomachines is a complex task due to the involved three-
dimensional shapes, for example of the impeller blades. The application of CFD software
to evaluate the performance of a specified geometry is frequently designated as a direct
method. The performance characteristics, like pump head and pressure distribution, are
obtained as a result of this direct flow analysis.

For design purposes it is often desirable to solve the inverse problem. In such an
inverse-design method the performance characteristics are prescribed by some perfor-
mance function, the so-called loading distribution, and the corresponding geometry is
obtained as a result of an inverse analysis. Both flow field and geometry are obtained
from this procedure.

In this chapter such an inverse-design method for centrifugal impeller blades is pre-
sented. A literature overview of inverse-design methods is given in section 3.1, with
the focus on turbomachinery applications. Next, the developed inverse-design method is
discussed in section 3.2. The numerical implementation is treated in section 3.3. The de-
veloped method is verified in section 3.4, where also the order of accuracy of the method
is determined. Inverse-design cases are considered in section 3.5 and 3.6, for a radial
and a mixed-flow impeller, respectively. Alternative loading distributions are presented
in section 3.7. Finally, in section 3.8 the developed method is discussed and conclusions
are drawn.

3.1 Literature overview

In this section an overview is given of available literature on inverse-design methods, with
the focus on turbomachinery applications. Inverse-design methods are frequently used in
the design of airfoils. In the 1980s and 1990s several programs were developed that can be
used for inverse airfoil design, most notably Xfoil [27] and Profil [30], which are available
on the internet. Both of these codes are based on a panel method for two-dimensional

25
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incompressible potential flow, with incorporated inverse-design methods. Since then more
sophisticated Navier-Stokes methods have been developed.

Inverse-design methods for turbomachinery impellers originate from Werner von Braun’s
group of scientists, which was responsible for designing the V-1 and V-2 rockets in World
War II. Hans Spring [61] reports on attending a lecture by a German professor entitled
Theory of Impeller Vane Design via Prescribed Averaged Circulation in the 1950s. Since
the 1950s, several two-dimensional and later quasi three-dimensional inverse-design meth-
ods have been developed. In fact, quasi three-dimensional methods are still being used
for example by Peng et al. [51],[52].

The first three-dimensional inverse-design method for turbomachines was outlined in
the combined papers by Hawthorne et al. [40] and Tan et al. [66]. A prescribed mean-
swirl distribution is used to design impeller blades for annular cascades of infinitesimally
thin blades. This method was extended by Borges [6] and Zangeneh [80] to radial and
mixed-flow turbomachines. In these approaches the potential flow model is employed.
Borges applied his method to the design of a low-speed radial-inflow turbine and gives
some recommendations on the choice of a suitable mean-swirl distribution. Zangeneh et
al. used a derivative of the mean-swirl distribution with the aim of suppressing secondary
flows both in a mixed-flow pump impeller [81] and a compressor diffuser [82]. Goto et
al. [39] employed a similar approach to the redesign of pump diffuser blades, in order to
suppress flow separation. The hub side was more front loaded than the shroud side to
achieve this. Moreover, Zangeneh et al. [83] utilized this method to design a centrifugal
compressor with splitter blades.

Demeulenaere et al. [22] developed an inverse-design method incorporating a pre-
scribed pressure distribution, instead of a mean-swirl distribution, to design compressor
and turbine blades using the Euler model for three-dimensional inviscid flow. Veress et
al. [68] used this inverse-design approach in the design of a multistage radial compressor,
in order to obtain a smoother Mach number distribution along the blades. The inviscid
inverse-design method of Demeulenaere was used by De Vito et al. [70] in combination
with a direct two-dimensional Navier-Stokes method in an iterative scheme to re-design
a turbine nozzle blade.

Dang et al. developed an inverse method utilizing the Euler model for two-dimensional
cascades [19] and later for fully three-dimensional geometries [18]. They utilized a pre-
scribed pressure distribution and a prescribed thickness distribution. Damle et al. [16]
used the same approach in order to increase the efficiency of a first-stage rotor in a cen-
trifugal compressor. Jiang et al. [43] employed the method for the design of an inlet guide
vane, a turbine blade and a compressor blade.

Peng et al. [50, 51, 52] developed a quasi 3D inverse-design method by circumferential
averaging. They employed a stream function for the inviscid flow analysis and used a
prescribed mean-swirl distribution as loading function. The method was applied to the
design and optimization of a turbine. Cao et al. [10] utilized this quasi 3D approach
in combination with a direct flow analysis for the hydrodynamic design of a gas-liquid
two-phase flow impeller.

Daneshkhah et al. [17] developed a two-dimensional Navier-Stokes inverse method
using a prescribed pressure and thickness distribution. They applied the method to the
redesign of a subsonic turbine and a transonic compressor. Wang et al. [71] presented
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a 3D inverse method based on the Navier-Stokes equations, using a prescribed pressure
distribution.

In the next sections an inverse-design method is presented based on similar principles
as outlined by Borges [6] and Zangeneh [80]. The method is thus also based on a potential
flow model. The main difference is that a coupled approach (from hub to shroud) is
utilized to find the solution of the inverse-design problem. Due to this coupled approach
the method is very robust and capable of dealing with a higher resolution of the flow in the
region from blade to blade. Furthermore, a different numerical approach, using the Finite
Element Method, is employed. The presented work has also been reported elsewhere [76].

3.2 Inverse-design method

In this section the inverse-design problem is formulated, whose solution provides the
flow field and the impeller geometry that realizes the specified hydraulic characteristics.
Firstly, the design conditions are considered. These are the conditions that are speci-
fied before an inverse-design computation can be performed. They describe the desired
performance of such an inverse-design. Secondly, a curvilinear coordinate system in the
meridional plane is presented in section 3.2.2. One of the design conditions, the mean-
swirl distribution, is discussed in detail in section 3.2.3. The inverse-design algorithm
and the impenetrability condition are treated in subsequent sections. Only cases with
infinitesimally small blade thickness are considered.

3.2.1 Design conditions

At the start of each inverse-design problem, the design conditions have to be selected.
If one of these conditions is altered, a different inversely-designed impeller is obtained.
These so-called design conditions are

• Q, the flow rate

• H, the pump head to be achieved

• Ω, the rotational speed of the impeller

• (r, z)blade, the meridional blade shape, including inlet and outlet sections

• δ = 0, blades of zero thickness

• θTE, the stacking condition at the trailing edge

• Z, the number of blades of the impeller

• rvθ(r, z), the mean-swirl distribution

The mean-swirl distribution is employed as performance function. By prescribing the
distribution of this quantity in an appropriate way the desired pump head and desirable
flow conditions are obtained. In section 3.2.3 the mean-swirl distribution is discussed in
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Figure 3.1: Meridional coordinates m and s.

more detail. Note that part of the geometry, i.e. the meridional geometry, is prescribed
in the inverse-design method. Thus only the unknown blade curvature is to be obtained
as a result of the inverse-design procedure.

3.2.2 Curvilinear coordinate system

In the preceding section it has been discussed that the meridional geometry of the im-
peller blades is part of specified design conditions and therefore remains unchanged in
the inverse-design method. The mean-swirl distribution, which is discussed in the next
section, is prescribed as function of the meridional coordinates r, z, i.e. rvθ(r, z).

It is often convenient to use a curvilinear coordinate system m, s in the meridional
plane, as is sketched in Fig. 3.1, with r(m, s) and z(m, s). Here m is the normalized
length from leading to trailing edge, along the meridional line for which s is constant;
m = 0 corresponds to the leading edge and m = 1 to the trailing edge of the blade.
Similarly, s is the normalized length from hub to shroud in span-wise direction for which
m is constant; s = 0 corresponds to the hub and s = 1 to the shroud. Note that the
m- and s-directions do not need to be orthogonal. The main advantage of using such
a curvilinear coordinate system is that it can be used for radial, mixed-flow and axial
impellers, i.e. for any impeller. Summarizing, the coordinate system is often formulated
in terms of m, θ, s instead of r, θ, z.

3.2.3 Mean-swirl distribution

The mean-swirl is defined as the mean of the swirl rvθ (or angular momentum) along a
circular arc from pressure to suction side of the blades. Therefore it is a function of the
meridional coordinates r, z or of m, s (see section 3.2.2), i.e. rvθ(m, s).

The difference in potential between the pressure and suction side of a blade, ∆φ, is



3.2. Inverse-design method 29

related to the mean-swirl distribution

∆φ(m, s) ≡ φss − φps =

ss∫

ps

∂φ

∂s
ds =

θss∫

θps

vθ(m, θ, s)rdθ = r

θss∫

θps

vθ(m, θ, s)dθ

=
2π

Z
rvθ(m, s) (3.1)

The integration is performed along a circular arc (ds = rdθ) and the blades are assumed
to be of infinitesimally small thickness, i.e. θss − θps = 2π/Z, where Z is the number of
blades of the impeller.

In order to design impeller blades with desired flow conditions, requirements need to
be formulated for the mean-swirl distribution. An important requirement follows from the
assumption that the flow enters the impeller without pre-rotation, hence at the leading
edge, vθ(0, s) = 0, see section 1.2. Thus

rvθ(0, s) = 0 (3.2)

where rvθ is written as function of m and s. The Euler pump equation has been given
in section 1.2. Here it is utilized, in combination with Eqn. (3.2), to formulate a second
requirement for rvθ(m, s), since an impeller is designed for a certain inviscid head H

gH = u(1, s)vθ(1, s)− u(0, s)vθ(0, s) = Ωr(1, s)vθ(1, s) (3.3)

rvθ(1, s) =
gH

Ω
(3.4)

where u(1, s) and u(0, s) are the blade speeds at the trailing edge and leading edge,
respectively. The ideal-flow head H utilized in Eqn. (3.4) can be obtained from the head
using some viscous correction. Note that the slip factor is included in the ideal-flow head.

Furthermore, the pressure difference between pressure side and suction side pps − pss

is derived from the Bernoulli equation in the rotating frame, Eqn. (2.16), for blades with
zero thickness, i.e. ups = uss

∆p ≡ pps − pss =
1

2
ρ(w2

ss − w2
ps)−

1

2
ρ(u2

ss − u2
ps) (3.5)

= ρw · ∇(φss − φps) (3.6)

where w = 1
2
(wps +wss) is the average of the relative velocity on the pressure and suction

side.
At the leading and trailing edge the difference in potential ∆φ is constant in span-

wise direction (see Eqns. (3.2) and (3.4)). Therefore, at the leading and trailing edge
∂∆φ/∂s = 0. Furthermore, the impenetrability condition states that wn,ss = wn,ps = 0.
Therefore, the following requirements are found at the leading edge (m = 0) and at the
trailing edge (m = 1)

∆p(0, s) = ρwl(0, s)
∂

∂xl

∆φ(0, s) (3.7)

∆p(1, s) = ρwl(1, s)
∂

∂xl

∆φ(1, s) (3.8)
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where l indicates the direction tangent to the blade surface whose projection on the
meridional direction gives the m-direction in the meridional plane. Note that xl has the
dimension of length. The blade angle has been defined in Eqn. (1.5), from which the
following relation is obtained

sin β =
∂xm

∂xl

=
wm

wl

(3.9)

where the latter identity follows from the alignment of w with the blade. Substitution of
Eqns. (3.1) and (3.9) into Eqns. (3.7) and (3.8) gives

∆p(0, s) =
2π

Z
ρwm(0, s)

∂(rvθ)

∂xm

(0, s) (3.10)

∆p(1, s) =
2π

Z
ρwm(1, s)

∂(rvθ)

∂xm

(1, s) (3.11)

At the trailing edge the Kutta condition states that pss = pps and at the leading edge
the zero-incidence condition implies the same. These conditions are always satisfied when

∂(rvθ)

∂m
(0, s) = 0 (3.12)

∂(rvθ)

∂m
(1, s) = 0 (3.13)

This results in two additional constraints for the mean-swirl distribution. Eqn. (3.12) is
referred to as the zero-incidence or shock-free condition and Eqn. (3.13) as the Kutta con-
dition for the inverse-design method. Note that for the inverse-design method, the Kutta
condition is satisfied via Eqn. (3.13), and the Kutta condition formulated in Eqn. (2.26)
for the direct method, does not have to be applied separately.

Summarizing, in order to obtain an impeller with target performance the mean-swirl
distribution is described by

rvθ(m, s) =
gH

Ω
f(m, s) (3.14)

The non-dimensional function f(m, s) therefore must satisfy the following constraints

1. no pre-swirl at the leading edge: f(0, s) = 0

2. desired total pressure increase at the trailing edge: f(1, s) = 1

3. zero-incidence at the leading edge:
∂f

∂m
(0, s) = 0

4. Kutta condition at the trailing edge:
∂f

∂m
(1, s) = 0

In order to prescribe the mean-swirl distribution, a distribution is specified at the hub
f(m, 0) and at the shroud f(m, 1). Both these distributions have to satisfy the constraints
formulated above. An interpolation function g(s) in span-wise direction is employed to
specify the span-wise variation.

f(m, s) = f(m, 0) + g(s) [f(m, 1)− f(m, 0)] (3.15)
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The span-wise interpolation function g(s) has to satisfy g(0) = 0 and g(1) = 1. The linear
interpolation function, g(s) = s, is used unless mentioned otherwise.

Impellers are sometimes designed to have a small incidence at the leading edge, this
implies that the zero-incidence condition, given by Eqn. (3.12), is not mandatory. Since
the method presented here assumes blades of zero thickness, a zero incidence angle is
needed for potential flow considerations, since otherwise a singularity occurs at the leading
edge. This is not the case for blades with non-zero thickness.

3.2.4 Inverse-design algorithm

By introducing a prescribed mean-swirl distribution, at the blade surface two boundary
conditions are specified in the flow problem formulation, the impenetrability condition
given in Eqn. (2.24) and the mean-swirl condition formulated in Eqn. (3.1). Only one of
these conditions is needed to solve the Laplace equation for a fixed geometry. For the
solution of the inverse-design problem both conditions must be satisfied. The following
basic iterative algorithm is employed for the inverse-design method:

One boundary condition is used to solve the flow field for a fixed geometry, while the other
is used to adjust the blade geometry. This process is repeated until this other boundary
condition is also satisfied.

In the iterative approach used here the mean-swirl condition is employed as boundary
condition in the solution of the Laplace equation and the impenetrability condition is
utilized to adjust the blade shape until both conditions are satisfied.

The algorithm for the inverse-design method is displayed in Fig. 3.2. It starts by
specifying the design conditions, followed by the selection of an initial blade shape. The
Laplace equation is solved on a Finite Element mesh generated for the current shape,
using the mean-swirl distribution as a boundary condition, yielding the velocity potential
φ in the nodal points. In the next step the velocity vector field v is obtained from the
computed potential field. The velocity components are then used to adjust the blade shape
in order to satisfy the impenetrability condition. If convergence has not been obtained,
these steps are repeated until the change in blade shape is sufficiently small to assume
convergence. The final result is an inversely-designed blade, which has the prescribed
performance in terms of the prescribed mean-swirl distribution, i.e. with the prescribed
pump head H, zero incidence at the leading edge and the Kutta condition satisfied at the
trailing edge.

3.2.5 Impenetrability condition

In order to solve the inverse-design problem, the impenetrability condition from Eqn. (2.24)
is employed to iteratively change the blade shape. The only unknown for the blade shape is
the distribution of θ(m, s), since r(m, s) and z(m, s) are fixed via the prescribed meridional
shape of the blade. Therefore Eqn. (2.24) needs to be rewritten as a partial differential
equation for θ. In the numerical implementation of Eqn. (2.24) the computed velocity
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Figure 3.2: Inverse-design algorithm.

components at iteration n are used to obtain the new geometry for iteration n + 1

w(n) · n(n+1) = 0 (3.16)

The surface normal vector n is a function of the blade coordinates (r, θ, z), where r, z
are taken from the prescribed meridional geometry, and θ is the unknown blade coordinate.

The impenetrability condition is to be formulated in terms of the curvilinear coor-
dinates m and s. For this purpose an expression is needed for the surface normal n.
Therefore the two vectors ∂x/∂m and ∂x/∂s, tangent to the blade, need to be deter-
mined. For the general case the tangent vector ∂x/∂t along a curve is parameterized by
r = r(t), θ = θ(t), z = z(t). Using cylindrical coordinates, i.e. x = r cos θ, y = r sin θ,
z = z the following expression for ∂x/∂t is obtained

∂x

∂t
=

∂x

∂t
ex +

∂y

∂t
ey +

∂z

∂t
ez (3.17)

=

(
∂r

∂t
cos θ − r sin θ

∂θ

∂t

)
ex +

(
∂r

∂t
sin θ + r cos θ

∂θ

∂t

)
ey +

∂z

∂t
ez (3.18)

=
∂r

∂t
er + r

∂θ

∂t
eθ +

∂z

∂t
ez (3.19)

where ex, ey, ez, er and eθ are the unit vectors in x, y, z, r and θ directions, respectively.
Therefore, if the meridional direction m and s are used to define the tangent vectors, the
following expressions are obtained

∂x

∂m
=

∂r

∂m
er + r

∂θ

∂m
eθ +

∂z

∂m
ez (3.20)

∂x

∂s
=

∂r

∂s
er + r

∂θ

∂s
eθ +

∂z

∂s
ez (3.21)
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The normal vector n can now easily be determined by taking the vector cross product of
the directional vectors ∂x/∂m and ∂x/∂s

n∗ =
∂x

∂m
× ∂x

∂s
= r

(
∂θ

∂m

∂z

∂s
− ∂θ

∂s

∂z

∂m

)
er +

(
∂z

∂m

∂r

∂s
− ∂z

∂s

∂r

∂m

)
eθ

+r

(
∂θ

∂s

∂r

∂m
− ∂θ

∂m

∂r

∂s

)
ez (3.22)

n =
n∗

||n∗|| (3.23)

where n∗ is the unscaled normal vector. Since the right hand side of Eqn. (2.24) equals
zero, the impenetrability condition can also be written as follows

w · n = w · n∗ = 0 (3.24)

By substituting Eqn. (3.22) in Eqn. (3.24), using w = wrer + wθeθ + wzez,the following
partial differential differential equation is obtained

∂θ

∂m
= a(m, s)

∂θ

∂s
+ b(m, s) (3.25)

a(m, s) =

(
wr

∂z

∂m
− wz

∂r

∂m

)

(
wr

∂z

∂s
− wz

∂r

∂s

) (3.26)

b(m, s) =
wθ

r

(
∂r

∂m

∂z

∂s
− ∂z

∂m

∂r

∂s

)

(
wr

∂z

∂s
− wz

∂r

∂s

) (3.27)

The meridional blade geometry, given by r(m, s), z(m, s), is prescribed and therefore
∂r/∂m, ∂r/∂s, ∂z/∂m, ∂z/∂s are known. Note that the relative velocity components wr,
wθ, wz are taken from the previous iteration, as is described in Eqn. (3.16).

If the derivatives are taken with respect to the radial direction m = r and the axial
direction s = z, Eqn. (3.25) can be written as

wr
∂θ

∂r
+ wz

∂θ

∂z
=

wθ

r
(3.28)

Equation (3.25) is a hyperbolic equation which is to be solved in the meridional plane.
The ’initial’ condition is given by the prescribed stacking condition θte(s) at the trailing
edge, which defines the shape of the trailing edge from hub to shroud

θ(1, s) = θte(s) (3.29)

Extra boundary conditions may be needed at s = 0 (hub) or s = 1 (shroud). At
the hub and at the shroud the velocity is aligned to hub and shroud surfaces, respec-
tively. These surfaces are surfaces of revolution. The meridional tangential vector ym =
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Figure 3.3: Meridional tangential vector and the corresponding meridional normal vector along
the shroud

(∂r/∂m)er + (∂z/∂m)ez in the meridional plane (r, z-plane) and the corresponding nor-
mal vector nmer = −(∂z/∂m)er + (∂r/∂m)ez are depicted in Fig. 3.3. The condition
that the flow be aligned to the hub and shroud, which are both surfaces of revolution, is

w · nmer = −wr
∂z

∂m
+ wz

∂r

∂m
= 0 (3.30)

for s = 0 (hub) and s = 1 (shroud). Therefore, at the hub and the shroud, the coefficient a
in Eqn. (3.25) equals zero and the partial differential equation reduces to a linear ordinary
differential equation for θ, both at hub and at shroud

dθ

dm
= b(m, s) (3.31)

This means that in order to obtain θ-values at the hub and the shroud, only information
is needed along the meridional hub and shroud line, respectively. Thus the hub and
shroud contours are characteristics of the hyperbolic equation formulated in Eqn. (3.25)
and no extra boundary condition is needed at the hub and shroud. Summarizing, the
impenetrability equation is given by Eqn. (3.25), with the initial condition specified by
the stacking condition at the trailing edge. By solving this equation an update is obtained
for the blade shape.

3.3 Numerical Implementation

The numerical implementation of the inverse-design method is discussed in this section.
The section gives descriptions of an initial estimate for the blade shape, the flow solution,
the blade shape adjustment and furthermore, a comparison of the current method with
other inverse-design methods.
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3.3.1 Quasi 3D initial estimate

The initial estimate of the blade shape is an important quantity for the iterative approach.
The closer the initial estimate is to the blade shape corresponding to the solution of the
inverse-design problem, the fewer iterations are usually needed to achieve convergence.

A first possibility is to select a blade with a constant blade angle. The unknown
coordinates θ for the initial blade shape can then be computed from the definition of the
blade angle β (see Eqn. (1.6)).

tan β =
1

r

dxm

dθ
=

wm

wθ

(3.32)

Note that the latter part of this equation is not required if a constant blade angle is
prescribed.

For a quasi two-dimensional geometry a good estimate can be found for the blade
angle at the leading edge from velocity triangles using vθ,le = 0 and for the blade angle at
the trailing edge βte from the Euler pump equation (for both see section 1.2). Therefore,
a linear interpolation of the blade angle between the leading and trailing edge can also be
utilized to obtain an initial estimate for the blade shape.

Another approach is to use a quasi three-dimensional approach (Q3D), i.e. the velocity
in the flow channel is assumed to be uniform from blade to blade. This corresponds to
the case of an infinite number of blades.

For such an impeller the velocity wθ is constant from blade to blade and can be
obtained from the prescribed mean-swirl distribution prescribed by Eqn. (3.14), i.e.

wθ = vθ − Ωr ∼= rvθ

r
− Ωr (3.33)

For a quasi two-dimensional geometry, with no variation in the z-direction, the meridional
velocity wm can be estimated from

wm = wr =
Q

2πrb
(3.34)

where b is the width of the impeller. For a fully three-dimensional geometry, the meridional
velocity wm can be obtained from a single flow computation without the presence of blades,
or in other words for a first iteration with φ+ − φ− = 0 at the blade surface. The initial
estimate is found by rewriting Eqn. (3.32) as

dθ

dxm

=
wθ

rwm

(3.35)

where xm is the (unscaled) meridional length.

3.3.2 Flow solution

The solution of the Laplace equation for the velocity potential φ is obtained, using the
Finite Element Method as described in section 2.4. At the blade surface the periodic
boundary condition, as specified in Eqn. (3.1), is employed. This means that, unless
convergence is obtained, the flow solution will not satisfy the impenetrability condition
from Eqn. (2.24), which is employed to adjust the blade shape instead.
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3.3.3 Blade shape adjustment

In section 3.2.5 it has been discussed how the blade shape is changed iteratively by solving
a partial differential equation that corresponds to the impenetrability condition, w ·n = 0.
Here the numerical implementation of the adjustment procedure is elucidated. Firstly,
the discretization of the impenetrability equation is treated. Secondly, under-relaxation of
the update equation is described. The final section is devoted to the adopted convergence
criteria.

Discretization of the impenetrability condition

During each iteration a new blade shape is found utilizing the impenetrability condition,
given in Eqn. (3.25). The numerical approach is summarized by

• the initial condition is the stacking condition at the trailing edge, Eqn. (3.29).

• the ordinary differential equation (3.31) is solved for the hub and the shroud curve.

• the partial differential equation (3.25) is solved for the internal blade domain in the
meridional plane.

The ordinary differential equation (3.31) is solved at the hub and the shroud by using
a second order Runge-Kutta scheme. For the internal domain the partial differential
equation (3.25) is solved by employing the implicit Crank-Nicolson scheme, which is of
second order accuracy in ∆m and ∆s. The scheme is given by

θi+1,j − θi,j

∆m
=

1

2

ai+1,j(θi+1,j+1 − θi+1,j−1) + ai,j(θi,j+1 − θi,j−1)

2∆s
+

bi+1,j + bi,j

2
(3.36)

where i is the index in the m-direction and j the index in the direction of s-direction. The
solutions for the hub and the shroud are employed here as well. The equation is solved
from trailing to leading edge (in the m-direction). Note that the equations are coupled
in span-wise direction s.

Under-relaxation

Using the approach outlined in the preceding sections, an update θu(m, s) is obtained.
However, in order to achieve convergence of the iterative problem, it is often necessary to
use under-relaxation

θn+1 = θn + ω∆θ (3.37)

where ω is the relaxation coefficient, n the iteration number and ∆θ = θu−θn. Usually the
finer the mesh, the smaller ω will need to be in order to obtain convergence. An additional
approach to increase the robustness of the method is to use a maximum change in θ per
iteration, ∆θlim

∆θ = θu − θn if |∆θ| < ∆θlim (3.38)

∆θ = ∆θlim if ∆θ > ∆θlim (3.39)

∆θ = −∆θlim if ∆θ < −∆θlim (3.40)
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Convergence

During the iteration process the blade shape changes. Hence, a convergence criterion
is needed to determine whether convergence has been obtained. The adopted criterion
is that ∆θmax, the maximum of the change in θ over all nodes i,j on the blade before
relaxation, is smaller than a specified tolerance ε, i.e.

∆θmax = max
i,j

|θn+1
i,j − θn

i,j| < ε (3.41)

Alternatively, deviations from the impenetrability condition (2.24) can be considered.
It is preferred to use a dimensionless criterion for this purpose. In the numerical dis-
cretization, the blade surface consists of surface triangles. The net flow through the blade
surface Qbl is computed by calculating the flow through each surface triangle p. This
residual quantity RQ is made dimensionless by dividing by Q, the flow through the pump,
which is one of the design parameters.

RQ =
|Qbl|
Q

=

m∑
p=1

|wp
n|Ap

t

Q
(3.42)

where m is the number of triangles on the blade surface, Ap
t the surface area of triangle

p and |wp
n| the absolute value of the normal component of the relative velocity. For an

infinitely fine mesh, RQ = 0.

3.3.4 Comparison with other methods

The proposed inverse-design method is based on similar principles as the method presented
by Borges [6] and Zangeneh [80]. The difference in approach is mainly in the numerical
approach of the problem. In the present method the Laplace equation is solved using
the Finite Element Method, whereas in the method of Borges [6] the Laplace equation
is expanded into a Fourier series in the circumferential direction θ. The amplitudes
of these Fourier modes, which depend on r, z, satisfy a Helmholtz-type equation. The
number of these Helmholt-type equations depends on the order of the Fourier series.
Each of these equations is then solved numerically with appropriate boundary conditions.
Furthermore, in the method by Borges the update equation is solved along meridional
lines, in a decoupled fashion (along the span). In the method proposed here, the update
method is coupled in span-wise direction from hub to shroud. In the experience of the
author, in the method of Borges a relative low resolution is frequently used from blade
to blade to avoid convergence problems, whereas in the current method generally a larger
number of elements from blade to blade can be used, while still obtaining a converged
solution. Finally, the previous method is known to have problems for impellers with few
blades. The method proposed here works well for such cases, although for a low number
of blades generally more under-relaxation is needed in the update procedure.
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3.4 Verification cases

In this section two verification cases are presented for the developed inverse-design method.
Both are quasi two-dimensional cases, i.e. they are two-dimensional cases solved on a
three-dimensional mesh. The first verification case deals with a source with vortex flow.
This case has no direct connection to turbomachines, but it is a good verification case,
since the analytical solution for the inverse-design problem can be derived. The second
case deals with a quasi two-dimensional radial pump geometry.

3.4.1 2D source with vortex

By combining two elementary potential flows a verification case can be obtained. These
elementary flows are a source flow and a free-vortex flow. For this two-dimensional case
the analytical solution for the potential φ(r, θ) is known

φ(r, θ) =
q

2π
ln r +

γ

2π
θ (3.43)

where q is the two-dimensional flow rate, i.e. the flow rate per unit length with the third
dimension given by the width of the impeller b

q =
Q

b
(3.44)

and γ is the constant circulation given by

γ = φ+ − φ− (3.45)

The relative velocity components wr and wθ are determined from Eqn. (3.43)

wr = vr =
∂φ

∂r
=

q

2πr
(3.46)

wθ = vθ − Ωr =
1

r

∂φ

∂θ
− Ωr =

γ

2πr
− Ωr (3.47)

Note that both components depend on r only. The velocity potential and hence the
velocity itself are known everywhere. They are not influenced by the position of the ’blade’
in this case. Thus the mean-swirl distribution and the potential jump are independent of
the meridional distance m, see Eqn. (3.45).

Subsequently, the ’blade’ shape is determined, such that it is aligned with the direction
of the relative flow. In the quasi two-dimensional case the impenetrability condition,
Eqn. (3.28), is

wr
dθ

dr
=

wθ

r
(3.48)

Substituting the relative velocity components from Eqns. (3.46) and (3.47) in (3.48) the
following ordinary differential equation for θ, the angular coordinate of the ’blade’, is
obtained

dθ

dr
=

wθ

wrr
=

γ

qr
− 2πΩr

q
(3.49)
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Figure 3.4: ’Blade’ shape (left) and blade angles (right) for the source with vortex verification
case. The analytical solution is given by the lines and the crosses mark the numerical solution.
γ = 7.62m2/s, q = 6.0m2/s, Ω = 40.4rad/s, rte = 0.36m and θte = 0.0rad. The mesh
parameters are ni = 50, nj = 15 and nk = 2.

The integration of this equation is straightforward. The result, when starting at the
trailing edge with prescribed polar coordinates (rte, θte), is

θ = θte +
γ

q
ln

r

rte

− πΩ

q
(r2 − r2

te) (3.50)

The analytical solution for the blade angle β, as defined in Eqn. (1.6), can be determined
as well

tan β =
dr

rdθ
=

wr

wθ

=
q

γ − 2πΩr2
(3.51)

To verify the developed method an inverse-design is performed with the periodic
boundary condition given by Eqn. (3.45). The numerical result is then compared to
the analytical solution given in Eqns. (3.50) and (3.51). The computation has been per-
formed using a three-dimensional mesh with ni = 50, nj = 15 and nk = 2. Here ni is
the number of nodes from inlet to outlet, nj the number of nodes from blade to blade
and nk the number of nodes from hub to shroud, for which only 2 nodes are taken since
it is a quasi two-dimensional case. The inversely-designed ’blade’ agrees very well with
the analytically determined shape, as is shown in Fig. 3.4. This verifies the developed
method.

3.4.2 Reproducing a logarithmic blade

In this second verification case a radial impeller with 7 logarithmic blades is considered. A
logarithmic blade is a blade with a constant blade angle β from leading to trailing edge. In
the case considered the constant blade angle is chosen equal to 20◦. The impeller diameter
is 0.64m. The dimensionless performance coefficients (see section 1.1.5) for this impeller
are listed in table 3.1. The logarithmic blade will be reproduced by using the mean-swirl
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Table 3.1: Performance characteristics of the logarithmic impeller.

φ ψ Ns

0.0073 0.13 0.40

distribution from a direct analysis of this impeller as input for the inverse-design method.
The result of the inverse-design method should be identical to the original logarithmic
blade. The procedure is summarized by

• perform a direct computation for a fixed geometry with a direct method.

• determine the potential difference between pressure and suction side (and thus the
mean-swirl distribution) from the results of the direct computation.

• carry out an inverse-design computation using the mean-swirl distribution, deter-
mined from the direct computation, as input.

• compare the blade shape and the blade angles from the inverse-design method to
those of the original geometry.

The same meridional meshes are used for the direct method and for the inverse-design
method in order to make the computations more similar. Therefore, the only differences
that can occur are in the discretization of the direct and inverse solution steps. The
meshes which were used in this approach are summarized in table 3.2. Here ni is the
number of nodes in stream-wise direction, nj the number of nodes from blade to blade
and nk the number of nodes in span-wise direction, i.e. from hub to shroud. Since the
case considered is a quasi two-dimensional case, nk is set to 2. ntets indicates the number
of tetrahedrons in the mesh.

The resulting blade shapes and blade angles are plotted in Fig. 3.5. The blade curves
are almost overlapping and can hardly be distinguished from one another. The blade
angles are always close to 20◦, only near the leading edge for the first few nodes some
deviations can be observed. Similar behavior is encountered at the trailing edge. For
finer meshes the blade angles are closer to 20◦, but the deviations at the leading edge
remain. This is caused by the small flow incidence at the leading edge for the original
blade, resulting in a weak singularity at the leading edge. This analysis clearly shows the
consistency of the results of the direct and the inverse-design method.

Table 3.2: Mesh parameters for the direct and inverse-design computations.

ni nj nk ntets

mesh a 73 29 2 12, 096
mesh b 145 57 2 48, 384
mesh c 289 113 2 193, 536
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Figure 3.5: Top view of the blade shape (top) and the corresponding blade angles (bottom)
for the logarithmic verification case for meshes a, b and c.
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3.4.3 Order of accuracy

The logarithmic blade case has been used to determine the order of accuracy of the inverse-
design method. The θ at the leading edge at mid-span is computed for three different
meshes, that are listed in table 3.3. Richardson extrapolation based on θle can then be
used to determine the order of accuracy of the inverse-design method

θle(h) = θle,exact + Chp + o(hp) (3.52)

where C and p are unknown constants and h indicates the length scale of the mesh
elements. The higher order terms o(hp) are omitted from consideration.

Table 3.3: Mesh influence for the inverse-design method applied to the logarithmic blade.

ni nj nk h/h0 θle(rad)
31 9 3 2.0 1.8054
61 17 5 1.0 1.8417
121 33 9 0.5 1.8591
∞ ∞ ∞ 0 1.8751

Using the data from table 3.3 the order of the method is determined

θle(2h)− θle(h)

θle(h)− θle(h/2)
= 2p ⇒ p = 1.1 (3.53)

For the logarithmic blade case the developed inverse-design method appears to be first
order accurate. A second-order accurate method is desirable. The potentials from the
solution of the Laplace equation and the update discretization are of second order. The
determination of the velocities with the SPR-method (see section 2.4.4) is less accurate at
the blade surface (a boundary of the solution domain). The relative velocity components
at the blade surface are used to update the blade geometry using Eqn. (3.25). The reduced
accuracy in the determination of the blade velocity components apparently reduces the
method as a whole to first order. If the order of the inverse-design method is to be
increased, the order of the scheme to determine the velocity components near boundaries
has to be increased, but this has not been carried out in the work presented here. For
future work it is recommended to investigate a more accurate method to determine the
velocity, especially near domain boundaries of the solution domain.
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3.5 Inverse-design of radial impeller blades

The first design case that is considered is the inverse-design of a three-dimensional radial
pump impeller. For this purpose the so-called SHF impeller is studied. This impeller
was originally designed by the Société Hydrotechnique de France in order to study inlet
and outlet recirculation in centrifugal pumps at off-design conditions. It is still used as
a reference case for experimental and numerical research (for example in Wuibaut et al.
[77, 78]).

It is a radial impeller with an axial inlet, making it a fully three-dimensional geometry,
rather than the quasi 2D geometries that have been used as verification cases in the
preceding section.

In this section first some details about the original design are given, followed by two
inverse-design computations. In the first design case a default loading is applied and
in the second design case the loading is changed in order to improve the loading at the
blades. Finally, the results of the two designs are compared to those of the original design
in section 3.5.4.

3.5.1 SHF impeller original design
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Figure 3.6: Meridional shape of the SHF impeller.

The geometry of the original SHF impeller is discussed here. The meridional shape of the
SHF impeller is depicted in Fig. 3.6 including the inlet, blade and outlet sections. The
original impeller, which has zero stacking at the trailing edge, and the original blade angle
distribution are shown in Fig. 3.7. The blade angles (with respect to the circumferential
direction) are between 17◦ and 27◦. For a large part of the blade, close to the trailing
edge, the blade angle is fairly constant with a value around 22◦. The design parameters
for the impeller are listed in table 3.4. The specific speed Ns has been computed from
Eqn. (1.9) using the inviscid flow pump head. This ideal pump head has been determined
by performing a direct computation for the original geometry with blades without thick-
ness. When investigating the performance of pumps the focus is on cavitation properties,
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Figure 3.7: Original design of SHF impeller: the impeller (left) and its blade angle distribution
β(m, s) in the meridional plane (right).

Table 3.4: Dimensionless characteristics of the SHF impeller at design point.

Z φ ψ Ns

7 0.035 0.23 0.57
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Figure 3.8: Original design of SHF impeller: the velocity loading on the blades (left) and the
non-dimensional pressure distribution (right). PS indicates the pressure side and SS the suction
side.

boundary-layer losses and velocity loading on the blades. The cavitation performance is
expressed by the cavitation inception coefficient κi (see Eqn. (1.10)), the boundary-layer
losses are expressed by the loss coefficient ζ (see Eqn. (2.28)) and the velocity loading χ
on the blades is given by the ratio between the velocity difference between pressure and
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suction side and the average blade velocity

χ =
wss − wps

w
(3.54)

where w is the average of the velocity at the blade pressure and suction side surface,
w = 1/2 (wss + wps). A general rule in pump design is that this velocity loading should
not exceed a certain specified value, frequently the value of 1.0 is employed for this
quantity, i.e. wss = 3wps. The exact value of this (maximum) design target depends on
the type of pump under consideration and the maximum values are ranging from 0.7 to
1.5, when going from high to low specific speeds Ns [62].

For the cavitation inception coefficient we find κi = 2.65 · 10−2 and for the loss coef-
ficient ζ = 2.50 · 10−2. The velocity loading on the blades is plotted in Fig. 3.8, together
with the pressure distribution along the intersection of the blade with the hub and with
the shroud. The large gradients observed in both velocity loading and pressure distribu-
tion near the leading edge indicate that there is a non-zero incidence at the leading edge
for the original geometry. The maximum velocity loading on the blades is χmax = 1.34,
which is larger than the general design target of 1.0 referred to above.
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3.5.2 SHF impeller inverse-design case 1

For the inverse-design a mean-swirl distribution needs to be specified. The first mean-
swirl distribution that is selected can be regarded as the simplest polynomial that satisfies
the constraints specified in Eqn. (3.14). It is

f(m, s) = 3m2 − 2m3 (3.55)

This distribution is constant from hub (s = 0) to shroud (s = 1) and it is depicted in
Fig. 3.9, where it is compared to the mean-swirl distribution for the original geometry
along the hub and the shroud, which has been obtained from a direct flow analysis.
The parameters specified in table 3.4 are used as input conditions for the inverse-design
method.
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Figure 3.9: SHF impeller inverse-design case 1: the prescribed mean-swirl distribution (con-
stant from hub to shroud) as a function of the meridional length compared to distribution for
the original geometry at hub and shroud (left). Contour plot for the prescribed swirl in the
meridional plane (right)

Since this is the first fully three-dimensional case that is considered, the influence
of the numerical parameters on the results is investigated. For this purpose, the inverse
computation has been carried out on three different meshes. The numerical parameters for
the inverse computations are listed in table 3.5. Here ntets is the number of tetrahedrons
in the mesh. For the inverse computations a straight blade is taken as initial estimate, in

Table 3.5: Numerical parameters for the SHF impeller.

mesh ni nj nk ntets ω ∆θlim(rad) ε

coarse 73 15 8 42, 336 0.25 0.25 1.10−3

medium 109 22 12 149, 688 0.25 0.25 1.10−3

fine 145 29 16 362, 880 0.25 0.25 1.10−3

order to check the robustness of the method.
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Figure 3.10: SHF impeller inverse-design case 1: the convergence of dθmax and RQ shown for
the inverse computations on the coarse, medium and fine mesh.

The convergence plots are shown in Fig. 3.10. Note that the iteration process is
stopped when ∆θmax < ε. The final value of RQ (see Eqn. (3.42)) depends on the mesh
size, i.e. it decreases with increasing mesh resolution. Moreover, it is observed that the
∆θmax first decreases slowly and then after about 40 iterations drops rapidly. This is
caused by the ∆θlim-criterion, which prevents large changes in the θ-distribution. This
criterion increases the robustness of the method greatly, especially when there is a large
difference between the initial and final blade shape. The number of iterations needed to
achieve convergence is similar for the three considered meshes: 60 for the coarse mesh, 61
for the medium mesh and 60 for the fine mesh.

In Fig. 3.11 the θ-distribution at the hub is given for the resulting inversely-designed
blades, in order to investigate the influence of the mesh size on the obtained results. It
is clear that for finer meshes the result is mesh independent. From this point onwards
the results for the finer mesh are discussed. The iterative process for the fine mesh is
illustrated in Fig. 3.12. The largest changes in blade shape occur during the first 10
iterations, after that the blade shape changes slowly.

The resulting inversely-designed impeller and blade angle distribution β(m, s) are
depicted in Fig. 3.13. The blade angles are between 15◦ and 30◦ and the blade angles show
a much larger variation from leading to trailing edge than for the original design (see also
Fig. 3.7). Near the leading edge the differences in blade curvature are most pronounced.
The inversely designed blade has a higher degree of twist and is slightly longer.

The velocity loading for this inverse-design case 1 is shown in Fig. 3.14. The velocity
loading shows a large variation from leading to trailing edge with a clear maximum.
The maximum velocity loading coefficient is χmax = 1.74, which is considerably higher
than that found for the original design. The pressure distribution is shown on the right
in Fig. 3.14, and the distribution is clearly much smoother than that for the original
design, caused by the enforced zero-incidence flow at the leading edge. The cavitation
inception coefficient is therefore much lower κi = 0.47 · 10−2, compared to the original
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Figure 3.11: SHF impeller inverse-design case 1: the θ-distribution at the hub for a coarse,
medium and fine mesh.
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Figure 3.12: SHF impeller inverse-design case 1: iterative blade adjustment. The blade shape
is shown after 0,5,10,...,60 iterations.
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Figure 3.13: SHF impeller inverse-design case 1: the inversely-designed impeller (left) and
blade angle distribution β(m, s) in the meridional plane (right).
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Figure 3.14: SHF impeller inverse-design case 1: the velocity loading on the blades (left) and
the non-dimensional pressure distribution (right). PS indicates the pressure side and SS the
suction side.
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κi = 2.65 · 10−2. The boundary layer loss coefficient is slightly higher than that for the
original design, ζ = 2.63 · 10−2, versus ζ = 2.50 · 10−2 for the original design.

Clearly, this first inverse-design has a better cavitation performance than the original
geometry. However, the velocity loading is considerable higher than that for the original
design. Therefore, a second inverse-design is investigated in the next section, in order to
reduce the maximum in the velocity loading.
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3.5.3 SHF impeller inverse-design case 2

A second inverse-design is carried out for the SHF impeller with the aim of reducing
the maximum in the velocity loading. For this purpose, a mean-swirl distribution is
selected which is close to a linear build-up. This mean-swirl distribution is constant
from hub to shroud and it is shown in Fig. 3.15, where it is compared to the mean-
swirl distribution used for case 1. Such a mean-swirl distribution is obtained by using a
spline interpolation [35] based on values of the non-dimensional mean-swirl distribution
f(m) = {rvθ(m)}/{rtevθ,te} given at user specified points from leading to trailing edge,
as is shown in table 3.6. The numerical parameters for this inverse-design calculation are
equal to the ones presented in table 3.5 for the fine mesh; 59 iterations are needed to
achieve convergence.

Table 3.6: Non-dimensional mean-swirl values for the SHF impeller design case 2.

m 0.0 0.2 0.8 1.0
f(m) 0.0 0.15 0.85 1.0
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Figure 3.15: SHF impeller inverse-design case 2: the normalized mean-swirl distribution as a
function of the meridional length (left) and as a contour plot in the meridional plane (right).

The newly designed impeller and the corresponding blade angle distribution are shown
in Fig. 3.16. The blade angles are between 15◦ and 27◦ degrees. The maximum of the
blade angle is lower than for the first inverse-design case. The variation in blade angle
from leading to trailing edge is also smaller when compared to the first inverse-design
case, but still more pronounced than for the original design. The blade angles at the
leading and trailing edge are similar to those of the first inverse-design case, which is
hardly surprising since both designs have a prescribed zero incidence at the leading edge,
and a prescribed pump head at the trailing edge. The velocity loading and the pressure
distribution at the hub and the shroud are shown in Fig. 3.17. It is observed that the
maximum in the velocity loading is reduced and a more evenly distributed velocity and
pressure loading have been obtained.
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Figure 3.16: SHF impeller inverse-design case 2: the inversely-designed impeller (left) and
blade angle distribution β(m, s) in the meridional plane (right).

The maximum velocity loading coefficient is χmax = 1.44. This is considerably lower
than the first inverse-design case, for which χmax = 1.74, but still slightly higher than the
original design, for which χmax = 1.34. The cavitation inception coefficient is again much
lower than the original design and comparable to the default inverse-design, κi = 0.52 ·
10−2. The boundary layer loss coefficient for this second inverse-design is ζ = 2.43 · 10−2,
which is slightly lower than that for the original (ζ = 2.50 · 10−2) and inverse-design case
1 (ζ = 2.63 · 10−2).

3.5.4 Comparison of SHF impeller designs

In this section the three designs are compared and discussed. Firstly, the blade geometries
are compared. To this end the blade shapes and the blade angles at the hub are compared
in Fig. 3.18. The largest differences are observed at the leading edge, where the original
blade angle at the hub differs significantly from that of the two inverse-designs. This is
in accordance with the conclusion drawn earlier that the original design does not satisfy
the zero-incidence condition at the leading edge. The blade angles at the trailing edge
are comparable for all designs, due to the designs having the same pump head.

In Fig. 3.19 the relative velocity profiles of the designs are compared at the intersection
of the blade with the hub and with the shroud. The influence of the non-zero incidence for
the original design can clearly be observed in the distribution near the leading edge. The
lowest relative velocities and the largest decelerations occur for the first inverse-design
case, at the pressure side. This means that this design would experience back-flow first
when the flow rate is lowered gradually from the design flow rate Qd, which clearly is
disadvantageous. Furthermore, the difference in relative velocity between pressure and
suction side is largest for the first inverse-design case, as has already been concluded from
the large maximum in the velocity loading.
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Figure 3.17: SHF impeller inverse-design case 2: the velocity loading on the blades (left) and
the non-dimensional pressure distribution (right). PS indicates the pressure side and SS the
suction side.

Table 3.7: Performance coefficients for the SHF impeller designs.

case ζ(10−2) κi(10−2) χmax

original 2.50 2.65 1.34
inverse-design case 1 2.63 0.47 1.74
inverse-design case 2 2.43 0.52 1.44

The performance coefficients are compared in table 3.7. The loss coefficient ζ for
the three designs are comparable, with the second inverse-design case having the best
value. The losses are comparable since the largest velocities in the designs considered are
of similar magnitude (see Fig. 3.19) with the largest velocities mainly determining the
boundary layer losses in the impellers (see Eqn. (2.27)).

The cavitation inception behavior for the original geometry is clearly not as good as
for the inverse-designs, caused by the non-zero zero incidence at the leading edge. The
first and second inverse-design cases have a similar cavitation performance, due to the
prescribed zero incidence at the leading edge. This accomplishment is a major advantage
of the inverse-design method.

The maximum velocity loading coefficient for the first inverse-design case is very high
when compared to the original and the second inverse-design case.

Summarizing, the boundary layer losses are similar for all designs considered. The
original design has a relative low maximum velocity loading, but has a poor cavitation
inception performance due to the non-zero incidence angle at the leading edge. The first
inverse-design case has a much better cavitation performance due to the zero-incidence
at the leading edge. However, the first inverse-design case has a relative high maximum
velocity loading and will be the first design to suffer from back-flow when the flow rate
is lower than the design flow rate. Finally, the second inverse-design case has both a
good cavitation performance and a good velocity loading performance. Therefore, it is
concluded that the second inverse-design case is the best design considered. This also
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Figure 3.18: Comparison of SHF impeller designs: top view of the blade shapes (left) and
blade angle distribution at the hub β(m, 0) (right).
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Figure 3.19: Comparison of SHF impeller designs: the relative velocity profiles at the hub
(left) and at the shroud (right). PS indicates the pressure side and SS the suction side.

shows that specific design objectives can be achieved by an appropriate choice of the
mean-swirl distribution. Further adjustment of the mean-swirl distribution rvθ(m) could
be considered to reduce the maximum velocity loading χmax further, while maintaining a
good cavitation inception number κi.
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3.6 Inverse-design of mixed-flow impeller blades

In the preceding section the inverse-design of a 3D radial impeller has been presented. Here
we apply the inverse-design method to the redesign of a mixed-flow impeller. The original
impeller is a design from Flowserve [25]. Firstly, the original design will be presented.
Two inverse-design cases are discussed subsequently, followed by the comparison of the
designs.

3.6.1 Mixed-flow impeller original design
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Figure 3.20: Meridional shape of the mixed-flow impeller.

The meridional shape of the impeller blades is shown in Fig. 3.20. The impeller has 5
blades and is displayed in Fig. 3.21, along with the blade angle distribution. The blade
angles are rather constant for the original design, varying between 18◦ and 21◦. The blade
has a considerable stacking angle distribution at the trailing edge of 14◦ from hub to
shroud. The design parameters for the impeller are listed in table 3.8. These parameters
have been determined from a direct computation of the impeller, with zero-thickness
blades. The velocity loading and the pressure distribution are shown in Fig. 3.22. The

Table 3.8: Dimensionless characteristics of the mixed-flow impeller at design point.

Z φ ψ Ns

5 0.31 0.35 1.24

blades clearly do satisfy the zero-incidence condition at the leading edge, as shown by the
large gradients in the velocity loading and pressure distributions near the leading edge,
especially at the hub. The pressure difference between pressure and suction side is larger
at the shroud, which seems to be in contradiction with the velocity loading, which is
larger at the hub. The reason for this is that the average relative velocity is higher at
the shroud than at the hub, as can be seen from the relative velocity profiles in Fig. 3.30,
which will later be discussed in more detail.
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Figure 3.21: Mixed-flow impeller original design: the mixed-flow impeller (left) and its blade
angle distribution β(m, s) in the meridional plane (right).
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Figure 3.22: Mixed-flow impeller original design: the velocity loading on the blades (left) and
the non-dimensional pressure distribution (right). PS indicates the pressure side and SS the
suction side.
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The maximum for the velocity loading coefficient, defined in Eqn. (3.54), is rather
large, χmax = 1.28. The cavitation inception coefficient, given by Eqn. (1.10), for the
original impeller is κi = 3.69 · 10−2 and the boundary layer loss coefficient, defined by
Eqn. (2.28), is ζ = 3.73 · 10−2.

3.6.2 Mixed-flow impeller inverse-design case 1

For the first inverse-design of this impeller the modified mean-swirl distribution, from
section 3.5.3 has been selected. The advantage of this mean-swirl distribution, which is
constant from hub to shroud, is that it has a more or less evenly distributed loading over
the blade.

The function values that determine the interpolation, based on cubic splines, are given
in table 3.9. The corresponding dimensionless swirl distribution f1(m1) is displayed in
Fig. 3.23, where it is compared to the mean-swirl distribution of the original geometry
obtained from a direct computation. The function f2(m2), also given in table 3.9, will be
used for the loading at the hub in the next section.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m (−)

(r
 v

θ)/
(r

 v
θ,

T
E
) 

(−
)

prescribed
hub−original
shroud−original

0.
1

0.
2

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

0

0.
3

R/D

Z
/D

0.3 0.4 0.5 0.6

0.1

0.2

0.3

Figure 3.23: Mixed-flow impeller inverse-design case 1: the prescribed mean-swirl distribution
compared with the computed profiles for the original impeller (left). A contour plot of the
prescribed mean-swirl distribution in the meridional plane is shown on the right.

Table 3.9: Mean-swirl function values for the mixed flow impeller computations.

m1 f1(m1) m2 f2(m2)
0.0 0.0 0.0 0.0
0.2 0.15 0.4 0.2
0.8 0.85 1.0 1.0
1.0 1.0 - -

The considerable stacking at the trailing edge and the low number of blades (5) make it
a difficult inverse-design computation. Therefore, a a small value of the under-relaxation
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Figure 3.24: Mixed-flow impeller inverse-design case 1: the inversely-designed impeller (left)
and its blade angle distribution β(m, s) in the meridional plane (right).

coefficient has to be selected. The employed numerical parameters are listed in table 3.10.

Table 3.10: Numerical parameters for the mixed flow impeller.

ni nj nk ntets ω ∆θlim(rad) ε
75 35 13 204, 750 0.1 0.5 1.10−3

Starting from an initial estimate with a constant blade angle of 18◦, 31 iterations are
needed to obtain convergence. The resulting impeller is shown in Fig. 3.24 along with
the corresponding blade angle distribution β(m, s). The blade angles for this inverse-
design are mainly between 13◦ and 23◦. The variations in curvature between leading and
trailing edge are clearly much larger than for the original design (compare Fig. 3.24 with
Fig. 3.21).

The velocity loading and the pressure distribution for the inverse-design case 1 are
displayed in Fig. 3.25. As is the case for the original geometry, the velocity loading at the
shroud is lower than that at the hub, although the difference is smaller for this design. No
large gradients are observed near the leading edge, indicating that this geometry indeed
results in the prescribed zero-incidence at the leading edge, unlike the original geometry.

The maximum for the velocity loading coefficient, χmax = 0.85, is significantly reduced
in comparison with the original geometry, for which χmax = 1.28. The cavitation inception
coefficient for the inversely-designed impeller is found at κi = 1.60 · 10−2, which is also a
significant improvement (for the original impeller κi = 3.69 · 10−2) due to the better flow
conditions at the leading edge. The boundary layer loss coefficient for the inverse-design
is ζ = 4.30 · 10−2, which is somewhat higher than for the original geometry, for which
ζ = 3.73 · 10−2.
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Figure 3.25: Mixed-flow impeller inverse-design case 1: the velocity loading on the blades
(left) and the non-dimensional pressure distribution (right). PS indicates the pressure side and
SS the suction side.

3.6.3 Mixed-flow impeller inverse-design case 2

For the second inverse-design case an attempt is made to further reduce the maximum
velocity χmax on the blades. Since the maximum velocity loading occurs at the hub, the
loading function for the shroud is maintained (given by f1) and the loading function for
the hub is altered to f2, i.e. the loading is increased towards the trailing edge, see also
Fig. 3.26 and table 3.9. 42 iterations are needed to achieve convergence, using the same
numerical parameters as for the first inverse-design case (see table 3.10).

The inversely-designed impeller and the associated blade angle distribution are given
in Fig. 3.27. The blade angles are largely between 12◦ and 25◦, which is comparable
with the distribution obtained in the first inverse-design case. The blade angles at the
shroud are very similar for both inverse-design cases, but the blade angle distribution at
the hub shows marked differences, as can be seen by comparing Fig. 3.24 and Fig. 3.27.
The hub blade contour is longer than for the first inverse-design and the blade angles
are smaller (small blade angles lead to long blades). These differences at the hub are a
direct consequence of the modification of the mean-swirl distribution at the hub for the
second inverse-design case. Shifting the loading towards the trailing edge generally leads
to longer blade contours.

The velocity loading and the pressure distribution at the hub and the shroud are
shown in Fig. 3.28. It can be concluded that the maximum velocity loading is indeed
reduced, to χmax = 0.76, compared to the original impeller for which χmax = 1.28 and
the first inverse-design case for which χmax = 0.85. However, this comes at the cost
of a considerably larger boundary layer loss coefficient, ζ = 4.91 · 10−2, compared to
ζ = 3.73 · 10−2 for the original impeller and ζ = 4.30 · 10−2 for the first inverse-design
case. Furthermore, for this second design the pressure build up at the hub is shifted more
towards the trailing edge, and this leads to a higher minimum pressure and therefore
a lower value for the cavitation inception coefficient, κi = 1.39 · 10−2, compared to the
original geometry for which κi = 3.69 · 10−2 and the first inverse-design case for which
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Figure 3.26: Mixed-flow impeller inverse-design case 2: the modified prescribed mean-swirl
distribution. Shown as function of the meridional length (left) and as a contour plot in the
meridional plane (right).

κi = 1.60 · 10−2. The second design has a higher loading near the trailing edge at the hub
and it is up to a designer to assess whether this is desirable. In this case it was selected
to reduce the maximum velocity loading, which has been accomplished successfully.
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Figure 3.27: Mixed-flow impeller inverse-design case 2: the inversely-designed impeller (left)
and its blade angle distribution β(m, s) in the meridional plane (right).
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Figure 3.28: Mixed-flow impeller inverse-design case 2: the velocity loading on the blades
(left) and the non-dimensional pressure distribution (right). PS indicates the pressure side and
SS the suction side.



62 Chapter 3. Inverse-design Method

Table 3.11: Performance coefficients for the mixed-flow impeller designs.

case ζ(10−2) κi(10−2) χmax

original 3.73 3.69 1.28
inverse-design case 1 4.30 1.60 0.85
inverse-design case 2 4.91 1.39 0.76

3.6.4 Comparison of mixed-flow impeller designs
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Figure 3.29: Comparison of mixed-flow impeller designs: top view of the blade contours (left)
and blade angle distribution at the hub (right).

In this section the three designs are compared and discussed. In Fig. 3.29 the blades
and the distribution of the blade angle along the blade-hub intersection are compared.
The blade angle distribution at the hub is shown, since the differences in geometry of the
designs are most pronounced here. The hub contour is longest for inverse-design case 2
(also seen from the small value of the blade angles) and shortest for the original design
(also seen from the large value of the blade angles). The original impeller has an almost
uniform blade angle distribution at the trailing edge across the span (from hub to shroud),
whereas the inverse-designs have a high trailing edge blade angle at the shroud and a low
trailing edge blade angle at the hub, see also the meridional blade angle distributions in
Figs. 3.21, 3.24 and 3.27. This results in all designs having the same pump head.

The distribution of the relative velocity at the blade-hub and the blade-shroud inter-
section are compared in Fig. 3.30. The differences between the inverse-design cases 1 and
2 are small at the shroud, due to the identical prescribed mean-swirl distribution at the
shroud. At the hub, case 2 differs from case 1 due to the shift in prescribed mean-swirl
distribution. The effect of shifting the hub loading more towards the trailing edge for case
2 can clearly be seen in the relative velocity profile at the blade-hub intersection.

In table 3.11 the performance parameters for the three designs are listed. The cavi-
tation inception performance is best for inverse-design case 2, and worst for the original
geometry, which does not have zero-incidence at the leading edge.
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Figure 3.30: Comparison of mixed-flow impeller designs: distribution of the relative velocity
at the hub (left) and at the shroud (right). PS indicates the pressure side and SS the suction
side.

The boundary layer losses are lowest for the original design, and highest for the second
inverse-design case, due to the relative large relative velocities near the trailing edge (see
Fig. 3.30) and the larger surface area of the blades.

The two inversely-designed impellers form an improvement when compared to the
original impeller, due to the much lower value of the cavitation inception coefficient κi

and the maximum velocity loading coefficient χmax. The drawback of somewhat higher
boundary layer losses is considered to be less significant. Whether inverse-design case 1
is preferred over design case 2, depends on the application. For example, if cavitation
prevention is important inverse-design case 2 is preferred and if boundary layer losses are
considered to be more important, inverse-design case 1 will be selected.
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3.7 Alternative specification of loading

In preceding sections inverse-design calculations have been presented that are based on
prescribed mean-swirl distributions. It has been illustrated how the prescribed mean-swirl
distribution can be changed in order to obtain a front or aft loaded blade. By using a
different loading, this design process may be made easier to tune.

Not only mean-swirl distributions can be employed, but also other ways to prescribe
the loading can be utilized that are more frequently used in industry. In the next sections
several alternative prescriptions of the loading are presented. However, it has to be
stressed that the method in itself does not change. All these alternative specifications
are converted into a mean-swirl distribution, which is then used as a periodic boundary
condition to solve the Laplace equation, as is illustrated by the numerical algorithm shown
in Fig. 3.2. More details about the use of different specifications of the blade loading can
be found in [5].

3.7.1 Derivative of the mean-swirl distribution

The first alternative prescription of the loading that will be discussed is that of the
derivative of the mean-swirl distribution, i.e. ∂(rvθ)/∂m. It is often more convenient
to adjust certain loadings through the derivative of the mean-swirl rather than through
the mean-swirl itself. If the derivative is prescribed, the mean-swirl distribution can be
obtained by straightforward integration.

rvθ =

m∫

m=0

∂rvθ

∂m
dm (3.56)

In the method the prescribed derivative is dimensionless, and therefore the obtained mean-
swirl distribution rvθ has to be scaled such that the prescribed pump head is obtained.
This is done by employing the condition at the trailing edge given by Eqn. (3.4), so we
use the quantity (rvθ)/(rvθ)te, with (rvθ)te = gH/Ω.

3.7.2 Velocity difference distribution

In industry the blade loadings are frequently formulated as the velocity difference. Here
the velocity difference is formulated in terms of the magnitude of the velocity difference
in the direction of the blade contour l, wps

l − wss
l . Here it is assumed that the loading is

constant from hub to shroud, thus independent of the span-wise direction s. Therefore, it
suffices to focus on the difference in velocity in the direction of the blade contour l only.
For blades of zero thickness ups

n = uss
n and we can write this velocity difference distribution

as

wps
l − wss

l = vps
l − vss

l =
∂ (φps − φss)

∂xl

(3.57)

At the blade surface the impenetrability condition holds and therefore vps
n = un and

vss
n = un. The blade angle gives a relation between the blade contour direction l and
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the meridional coordinate m, as has been shown in Eqn. (3.9). Using this equation, the
following relation is obtained for the velocity difference distribution

wps
l − wss

l = sin β
∂ (φps − φss)

∂xm

(3.58)

Using Eqn. (3.1), the velocity difference distribution can be written as function of the
mean-swirl distribution

∆w = wps
l − wss

l = ||wps −wss|| = 2π sin β

Z

∂rvθ

∂xm

(3.59)

where β is defined with respect to the circumferential direction (see Eqn. (1.6)).
The velocity difference distribution ∆w is to be prescribed in a dimensionless form.

From this velocity distribution the mean-swirl distribution needs to be derived. During the
iterative adjustment of the blade shape, the blade angle distribution β changes. Therefore
the mean-swirl distribution has to be calculated at the start of each iteration i based on
the blade angle from the previous iteration i − 1. The dimensionless velocity difference
distribution is converted to the derivative of the mean-swirl distribution using Eqn. (3.59)
and the mean-swirl distribution is then obtained by integration, as described in Eqn. (3.56)
and scaling with Eqn. (3.4).

Finally, it is has to be noted that the velocity difference distribution presented here is
not the same as the velocity loading χ, which has been used in preceding sections and is
defined in Eqn. (3.54).

3.7.3 Application of a velocity difference distribution

In the preceding sections two alternative ways to prescribe the loading are discussed, i.e.
the derivative of the mean-swirl distribution and the velocity difference distribution ∆w.
Here an inverse-design is presented based on a prescribed velocity difference distribution.
The case considered is the SHF case, which has been treated in section 3.5. The prescribed
velocity difference distribution used is constant from hub to shroud and is loaded towards
the trailing edge (aft loaded), as is shown in Fig. 3.31 and in table 3.12. The resulting
inversely-designed impeller and corresponding blade angle distribution are displayed in
Fig. 3.32. When compared to the previous designs from section 3.5, the inversely-designed
impeller is not markedly different from the earlier inverse-designs. The blade is somewhat
longer, due to the shift in loading towards the trailing edge.

Table 3.12: Prescribed dimensionless velocity difference values ∆w(m) used for the inverse-
design of the SHF impeller.

m 0.0 0.5 0.8 1.0
∆w(m) 0.0 0.5 0.5 0.0

The velocity loading coefficient and the pressure distribution on the blade are shown
in Fig. 3.33, and it is clear that the loading has been shifted towards the trailing edge.
The maximum for the velocity loading coefficient is χmax = 1.43. The cavitation inception
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Figure 3.31: Velocity difference distribution for the inverse-design of the SHF impeller: the
prescribed dimensionless velocity difference as a function of the meridional distance m (left) and
the corresponding mean-swirl distribution of the inverse-design (right).

coefficient for this inversely-designed impeller is κi = 0.44 · 10−2 and the boundary layer
loss coefficient is, ζ = 3.05 · 10−2. These values are comparable to those of the inverse-
designs presented in section 3.5 (see table 3.7).

It is concluded that besides using a mean-swirl distribution as loading function for the
inverse-design method, it is also possible to use the (dimensionless) velocity difference as
loading function. In practice, there is little difference between using the velocity difference
or the derivative of the mean-swirl distribution as loading function, unless there is a large
variation in blade angle from leading to trailing edge (see Eqn. (3.58). For such large
differences, the method will become less robust due to the implicit influence of the blade
angle on the velocity loading (see Eqn. (3.59)), and therefore it is preferred in most cases
to use a derivative or mean-swirl distribution itself as loading function instead, although
the velocity difference distribution is physically more meaningful.
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3.8 Discussion and conclusions

An inverse-design method for centrifugal impeller blades has been presented. The main
strength of the method is that desirable performance conditions, like the desired pump
head and the zero-incidence condition at the leading edge can easily be prescribed via
the mean-swirl distribution. By changing the build up of the mean-swirl distribution the
loading of the blades can be modified as well.

In the inverse-design method the blade curvature is changed, whereas other geometrical
quantities remain unchanged, like the number of blades on the impeller, the stacking
condition at the trailing edge and the meridional geometry. The design choices of these
geometrical features partly determine the quality of the inverse designs.

The method has been verified by two cases in section 3.4, for which the resulting
geometry is known and can be compared to the inversely-computed geometry. The method
is robust and it is first-order accurate as is shown in 3.4.3, caused by the relative low
accuracy of the relative velocities near the blade surface when using the SPR-method (see
section 2.4.4).

The developed inverse-design method has been applied to the radial SHF impeller in
section 3.5. For the first case a default mean-swirl distribution is applied. The inversely-
designed impeller satisfies the zero-incidence condition at the leading edge (unlike the
original geometry), leading to a significant improvement in the cavitation inception be-
havior. However, the maximum velocity loading coefficient χmax is relatively high. The
second inverse-design presented has been performed in order to reduce this maximum
velocity loading on the blade. By using a mean-swirl distribution, which has a more or
less constant blade loading from leading to trailing edge, the maximum loading coefficient
has been reduced successfully.

Furthermore, an inverse computation of a mixed flow impeller, with a considerable
stacking at the trailing edge, is presented in section 3.6. For the first inverse-design case
considered, the loading is applied which was used successfully for the radial impeller.
This again leads to an impeller with a relatively low maximum velocity loading and a
zero-incidence at the leading edge. A second inverse computation is considered for the
mixed-flow impeller in order to further reduce the velocity loading. This second inversely-
designed impeller has more favorable cavitation properties, but the boundary layer losses
and the maximum in the velocity loading are less favorable than for the first inversely-
designed impeller.

In section 3.7 different ways of prescribing a loading distribution are presented, i.e.
through the derivative of the mean-swirl distribution or through a velocity difference
distribution. A prescribed loading using the latter approach is employed to the inverse-
design of the SHF impeller, showing its capabilities.

The method has been developed for blades of zero thickness. In reality the blades
have a certain thickness, which results in a blockage effect that influences the velocity
and the pressure distribution on the blade, especially near the leading edge. A prescribed
tangential blade thickness distribution, as has been proposed by Zangeneh [80], can be
used to describe the blockage effect. However, for backward curved blades the round shape
of the blade nose can not be presented accurately, making this approach limited in its
use, especially in conjunction with analyzes of cavitation inception characteristics. For the
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implementation of a prescribed thickness distribution in two-dimensional configurations
in the current method the reader is referred to Bijleveld [5].

The impeller performance parameters, like the velocity loading, the cavitation charac-
teristics and the boundary layer losses can be improved through the inverse-design method
by changing the prescribed mean-swirl distributions. In this way certain aspects of the
blade geometry can be adjusted. However, an exact control over the resulting blade angles
and thus the blade shape is not obtained. Generally, front loaded blades lead to shorter
blades with low relative velocities. These impellers have the advantage of relative low
losses, but back flow will occur sooner for these impellers when operating at lower flow
rates. Aft loaded blades, for which the loading is shifted more towards the trailing edge,
lead to longer blades.





CHAPTER 4

Optimization Method

In the preceding chapters it has been pointed out that the design of turbomachines is
a complicated task. In the inverse-design method presented in chapter 3, the impeller
blade curvature is determined such that a prescribed performance function is achieved.
Instead of prescribing a desirable performance function, one can also parameterize the
geometry and optimize the performance, given in the form of a cost function. Through this
cost function the designer can specify desirable and undesirable aspects of designs. This
procedure of parameterization, specifying a cost function and solving the minimization
problem is called an optimization method.

Optimization methods for turbomachines have become popular in the last decade,
made possible by the advances in computing power. A flow analysis is usually carried out
to determine the value of the cost function for a specified geometry. Typical performance
parameters that are included in the cost function are head, efficiency and cavitation
characteristics. The cost function is then optimized using an optimization algorithm.

The contents of this chapter are as follows. Firstly, a general introduction to optimiza-
tion methods is given in section 4.1. This includes a literature overview of optimization
methods for turbomachines. Subsequently, the optimization algorithm used to solve the
minimization problem is discussed in section 4.2. The employed method, i.e. the method
of Differential Evolution (DE), is verified by application of the method to three analyti-
cal cost functions. In section 4.3 the optimization of a radial pump impeller is presented.
The parameterization, cost function and the optimization results are discussed and a com-
parison is made of the original and the optimized geometries. Furthermore, additional
optimizations have been performed to investigate the influence of both parameterization
and formulation of the cost function on the results. In section 4.4 a hybrid method is
presented, which is labeled inverse-optimization. The mean-swirl distribution, which is
used as input for the inverse-design method, presented in chapter 3, is parameterized for
this purpose. A description is given of this parameterization, the employed cost function
and the resulting optimized inverse-design. Finally, the utilized optimization approaches
are discussed in section 4.5.

71
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4.1 Introduction to optimization

In the optimization of a turbomachine the performance properties are optimized by chang-
ing relevant parameters. The performance properties are usually expressed in the form
of a cost or fitness function F . The parameters are frequently presented as a parameter
vector x. When the parameters are changed, the cost function F (x) changes as well.
Optimization methods are usually formulated as minimization problems. Therefore, the
goal of the optimization is to find the parameter vector x for which the object function
F (x) is minimal. An appropriate algorithm is to be selected to solve such a minimization
problem. The general procedure of optimization can be summarized as follows

• Parameterization: selection of a parameter vector x and possible constraints on x,
for example a bounded range.

• Cost function: how to evaluate the fitness F (x) of each individual geometry param-
eterized by x. For this purpose, turbomachine characteristics are included in an
appropriate fashion in this object function.

• Optimization algorithm: selection of a suitable algorithm to solve the minimization
problem

Optimization methods can be either single-point or multi-point, meaning that the
performance and thus the cost function is considered for a single operating point or
for multiple operating points, respectively. Since the performance of turbomachines is
not only important at design condition but also at off-design conditions, a multi-point
optimization method is proposed, such that the performance is optimized for a certain
operating range rather than a single operating point only.

Several objectives can be considered for optimization, dealing with pump head, effi-
ciency and cavitation characteristics. There are two approaches that can be used to carry
out an optimization in which multiple objectives are considered. Firstly, all the objec-
tives can be added to a single so-called lumped cost function using weight factors. For
this approach a single optimum is found. Secondly, a multi-objective optimization can be
considered in which each objective is optimized and a so-called Pareto front of optimal
solutions is obtained [1]. This approach thus yields multiple optima and the designer
has to select one of these geometries employing certain criteria. In the present study the
lumped cost-function approach is used. An important step in this approach is to choose
the weight factors for the different objectives such that all have a desired contribution to
the lumped cost function.

4.1.1 Literature overview

In this section an overview is given on the application of optimization methods for tur-
bomachinery design.

Pierret et al. [53] developed an optimization method for turbomachinery blades using
an artificial neural network as approximate model. They applied their method to redesign
a compressor, the so-called NASA rotor 67, by optimizing the efficiency at three different
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operating conditions. Their analysis consists of both a flow analysis and a structural
analysis. Jang et al. [41] optimized the blade sweep in a transonic axial compressor rotor
(NASA rotor 47) using a response surface method and a three-dimensional Navier-Stokes
analysis to increase its efficiency. Burguburu et al. [8, 9] presented an optimization
method based on a quasi three-dimensional Navier-Stokes analysis. They employed the
conjugate-gradient method (and a genetic algorithm for verification [8]) to find the op-
timum of a cost function, which was based on efficiency. They applied their method to
the design of both compressor rotor blades and turbine stator blades. Talya et al. [65]
developed a multi-disciplinary optimization method for film-cooled gas turbines, using a
quasi three-dimensional Navier-Stokes method. The cost function was based on the blade
temperature and a gradient method was used to find the optimum.

A hybrid method, considering the optimization of an inverse-design method has been
presented by Peng et al. [51]. In their research the mean-swirl distribution is parame-
terized and both efficiency and cavitation objectives are considered in the cost function.
The conjugate gradient method was used as optimization algorithm. Yiu et al. [79] also
optimized the mean-swirl distribution for an inviscid inverse-design method. For each
resulting inverse-design a viscous flow analysis is performed using a three-dimensional
Navier-Stokes method. The cost function consists of the viscous losses computed with
this method. They investigated the effect of parameterization, cost function and opti-
mization algorithm, i.e. the simplex method and the alternating-variables method. This
approach was further extended by Tiow et al. [67], who used simulated annealing as opti-
mization algorithm. They successfully applied the method to the design of a compressor
rotor and a turbine stator.

The above overview is by no means complete, but gives an overview on the available
literature on optimization methods in the field of turbomachinery. An overview on recent
work on optimization methods can be found in [37].

4.1.2 Requirements for the optimization algorithm

It is important to select an optimization algorithm, that satisfies the requirements for
optimization. The following requirements are relevant for the optimizations considered in
this chapter. The algorithm

• has to be able to deal with non-differentiable objective functions;

• should yield the global minimum;

• has a limited number of parameters, which can be selected easily.

Adjoint or gradient-based methods are frequently used optimization methods. These
methods search for the optimum of the cost function F (x1, x2, ..) by making use of the
gradient of the cost function ∂F/∂x1, ∂F/∂x2, ... These methods are usually relatively
fast, but they are not able to deal with cost functions that are non-differentiable or have
several local optima. An overview on gradient-based optimization methods can be found
in [54].
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Several global methods have been investigated for possible use, including Simulated
Annealing, Genetic Algorithm, Pattern Search and Differential Evolution. For an overview
of such methods, see for example [59]. The Differential Evolution method was selected,
since it was easy to implement and showed promising results, as will be demonstrated in
section 4.2. An optimization of a radial pump impeller using a genetic algorithm has been
carried out by Antonakis [3] as starting point in the present project.

4.2 Differential Evolution

In this section the Differential Evolution (DE) method is presented, which is used as opti-
mization algorithm in the present investigation. The method has been developed by Storn
and Price [64]. More extensive overviews of Differential Evolution and its applications are
given, for example, in [33, 55]. The DE method can be classified as a member of the family
of evolutionary algorithms. Other algorithms that belong to this family are Genetic Al-
gorithms (GA), Evolutionary Strategies (ES) and Evolutionary Programming (EP). Five
important steps can be distinguished in DE, i.e. initialization, mutation, recombination,
selection and termination. The method satisfies the requirements formulated in section
4.1.2.

The parameter vector x is N -dimensional, where N is the number of parameters in
the optimization process. Evolutionary algorithms are population based. The size of a
population is denoted by P . For a population member p the nth parameter is indicated
by xp

n (with n = 1...N and p = 1...P ).

Initialization

Initialize a random population X with a population size P . Each individual parameter
vector xp, with p the index in the population P , has a specific set of values for the design
parameters and a corresponding value of the cost function F (xp).

Mutation

Create a new population Y of population size P by mutating individuals from the previous
population X for each parameter n.

yp = xa + T (xb − xc) (4.1)

where xa, xb and xc are randomly selected but different individuals of the population
(p = 1 . . . P ,p 6= a 6= b 6= c) and T is the mutation coefficient with 0 < T < 1.

Recombination

For each component yp
n of the new parameter vectors yp a random number q is generated

(0 < q < 1). If q ≤ C, then the newly mutated individual component is introduced in the
new population, otherwise the previous individual component xp

n is retained in the new
population. C is the recombination coefficient with 0 < C < 1.
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Selection

Determine the cost function for each individual yp in the new population Y and compare
its value F (yp) to the cost function of the corresponding individual in the previous pop-
ulation F (xp). If F (yp) < F (xp), the new individual replaces the previous one in the
population X, otherwise the previous individual is retained. This procedure is designated
as selection based on the greedy criterion [64].

Termination

Repeat the mutation, recombination and selection for a fixed number of generations G.
Analyze the iterative data to see whether sufficient convergence is obtained.

Note that geometrical parameters that are of integer value, like for example the number
of blades in an impeller, are treated as real numbers in the optimization algorithm. They
are converted back to integer values when the new geometries are created, based on the
parameter vectors.

4.2.1 Verification for test problems

For verification purposes the implementation of the DE method has been applied to
various test functions. The selected two-dimensional test functions are a parabolic test
function f1, one with multiple local minima f2, i.e. Rastrigin’s function, and function
f3, which has a large flat valley around the global minimum. All functions have a global
minimum of f = 0 at (x1, x2) = (0, 0). These functions are frequently used for verification
of optimization algorithms (see for example [33, 57]) and they are listed below

f1(x1, x2) = x2
1 + x2

2 (4.2)

f2(x1, x2) = 20 + x2
1 + x2

2 − 10 [cos(2πx1) + cos(2πx2)] (4.3)

f3(x1, x2) = 100((x2 + 1)− (x1 + 1)2)2 + (1− (x1 + 1))2 (4.4)

Since evolutionary methods are stochastic, multiple optimizations (100) have been
carried out for each optimization problem. The parameters for the DE model are T = 0.5,
C = 0.5, P = 20 and G = 100. The initial range for both x1 and x2 is set at [−10, 10],
and the three test functions are sketched for this range in Fig. 4.1. The results are listed
in table 4.1. From table 4.1 is deduced that for all test functions the global minimum is

Table 4.1: Test function optimization results. T = 0.5; C = 0.5; P = 20; G = 100.

function x1m σx1 x2m σx2 fm σf

f1 4.1 10−10 1.4 10−8 1.8 10−9 1.5 10−8 4.2 10−16 9.8 10−16

f2 −6.1 10−8 3.7 10−7 −8.6 10−9 3.7 10−7 5.4 10−11 3.6 10−10

f3 −2.0 10−2 0.19 −1.2 10−3 0.35 4.2 10−2 0.11

found. For test function f3 the standard deviations σx1 and σx2 are rather large, which
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Figure 4.1: Test functions used for verification of the DE method. Functions shown are f1

(top-left), f2 (top-right) and f3 (bottom).

is caused by the large flat valley around the optimum. The standard deviation in the
function value σf is also rather large, which is mainly caused by the much larger values
of f3 on the range of interest (see also Fig. 4.1). It is concluded that the implemented
DE algorithm can be employed to solve the minimization problems, for complicated cost
functions with many local minima (e.g. f2). Additional tests have also been performed
to show that Differential Evolution works well for non-differentiable cost functions.

4.2.2 Applied numerical algorithm

In the preceding sections the building blocks of the optimization method have been dis-
cussed. These are the parameterization, the cost function and the optimization algorithm.
The employed numerical algorithm is shown in Fig. 4.2. The augmented potential flow
package COMPASS is used to compute the flow field inside the impellers. This program
has been developed at the University of Twente [46] and uses the Finite Element Method
approach to solve the equations governing potential flow, as is described in Chapter 2.
Note that a (non-zero) blade thickness distribution is incorporated in COMPASS.



4.3. Optimization of a radial centrifugal pump impeller 77

Figure 4.2: Optimization algorithm for impeller design.

4.3 Optimization of a radial centrifugal pump im-

peller

In this section the optimization of a radial centrifugal pump impeller is presented. The
optimization is based on an existing industrial radial impeller from Flowserve [25], which
has been used previously for an optimization study [23]. Firstly, the original impeller is
discussed. The parameterization of the impeller geometry and the definition of the cost
function are treated subsequently. The optimization process and the obtained result are
presented in section 4.3.4. Finally, in order to demonstrate the influence of the selected
parameterization and cost function, additional optimizations have been carried out and
the results of these optimizations are compared and discussed in section 4.3.5.

4.3.1 Original impeller

The original radial impeller is shown in Fig. 4.3 along with the blade angle distribution
in the meridional plane. The dimensionless design parameters for the impeller are shown
in table 4.2. The blades have zero stacking at the trailing edge, i.e. the blade is straight
from hub to shroud at the trailing edge. A direct flow computation is carried out for
the original impeller and as expected the computed inviscid-flow head coefficient ψinv is
somewhat higher than the measured value, ψ/ψinv = 0.88.
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Table 4.2: Dimensionless characteristics of the original radial impeller at design point.

Z φ ψ Ns

7 0.016 0.12 0.64
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Figure 4.3: Original radial impeller: the impeller (left) and blade angle distribution β(m, s)
in the meridional plane (right).

4.3.2 Parameterization

The parameterization of the optimization determines the range of considered geometries
and hence also the quality of the obtained optimum. Therefore, it has to be chosen
adequately. In the present study the parameterization includes the number of blades, the
blade curvature and the shroud curvature.

The first parameter employed is the number of blades of the impeller. For optical
accessibility of the scale model, to be used in the validation experiments described in
chapter 5, the number of blades considered for optimization is reduced from 7 to a bounded
range of [4,6]. This means that the original number of blades is not included in this range.

The second series of parameters is related to the blade angle distribution. The blade
angle is taken relative to the circumferential direction, i.e. a small blade angle implies
a more curved, and hence, a longer blade. The blade angle is specified at 10 different
locations in the meridional plane, as is shown in Fig. 4.4. The blade angle at the trailing
edge has been taken constant from hub to shroud. The bounded range for the blade angle
is defined based on a deviation from the original blade angle β0

i at each location i. It
is given by [β0

i − 5◦, β0
i + 10◦]. This approach is used to avoid a large number of invalid

meshes in the optimization process.

The last two parameters, ∆z1 and ∆z2, are employed to parameterize the shroud
curve in the meridional plane, at r1/D = 0.34 and r2/D = 0.44 respectively. The two
parameters give an axial displacement in the meridional plane, as is shown in Fig. 4.4. It
is given by
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Figure 4.4: Meridional view of the impeller: parameterization of blade curvature (left) and
parameterization of the meridional shroud curve (right).

z1 = z0
1 + ∆z1 (4.5a)

z2 = z0
2 + ∆z1 + ∆z2 (4.5b)

A cubic spline interpolation is used to describe the shroud curve from the leading edge
up to point 2, after which the axial height remains constant. The bounded range for ∆z1

is [−0.02D, 0.03D] and for ∆z2 it is [−0.01D, 0.01D].

In summary, in total there are 13 parameters that describe geometrical variations, 1
for the number of blades, 10 for the blade angle distribution and 2 for the shroud shape.
Note that in the inverse-design method described in the preceding chapter, the blade
curvature is obtained as a result of the procedure. For the optimization method not only
the blade curvature is considered, but other parameters can also be included easily. In
this case these additional parameters describe the shroud curvature and the number of
blades in the impeller. The optimization case discussed here is labeled opt4,6, referring to
the selected bounded range for the number of blades.

4.3.3 Cost function

In this section the definition of the cost function for the current optimization is presented.
For each geometry a flow computation is performed, for each flow rate considered, from
which the selected objectives are evaluated. Firstly, the considered objectives are treated.
Secondly, the definition of the lumped cost function is presented, which considers the
performance of these objectives at different flow rates.

The first design objective that is considered is based on the inviscid-flow pump head
H generated by the impeller. The objective is to design a new impeller with a pump
head coefficient ψ = (gH)/(Ω2D2) that is higher than or equal to the design target ψd.
In this case the head coefficient of the original pump is taken as design target. The head
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Figure 4.5: Pressure distribution around the minimum pressure point. The blade coordinate
s runs from the pressure side trailing edge (s = 0), via the leading edge (s = 0.5) to the suction
side trailing edge (s = 1).

objective fψ is therefore given by

fψ = 1− ψ

ψd

ψ < ψd (4.6a)

fψ = 0 ψ ≥ ψd (4.6b)

This formulation gives a penalty to designs with ψ < ψd.
The second design objective is that the boundary-layer losses are as low as possible.

The boundary-layer losses ∆Ploss are estimated with the hub, shroud and blade surfaces
using Eqn. (2.27). The loss objective fζ is determined by

fζ = ζ =
∆Ploss

PH

=

1

2

∫
S

CDρw3dS

ρgQH
(4.7)

where PH is the inviscid-flow hydraulic power which is defined in Eqn. (1.3) and S the
surface area of boundary walls, i.e. the hub, shroud and impeller blade surfaces. Note that
the actual pump head H of the geometry considered is utilized to compute the hydraulic
power PH , and not the design target Hd.

The third and fourth objectives are cavitation objectives. In Fig. 4.5 the pressure
distribution around a pressure minimum is sketched as a function of the dimensionless
blade coordinate s, running from the pressure side trailing edge (s = 0), via the leading
edge (s = 0.5) to the suction side trailing edge (s = 1). Since both the value and the
width of the suction peak are of importance, two cavitation criteria are employed. The
first is the cavitation inception coefficient κi, which is based on the lowest pressure pmin,inc

on the impeller blade. This inception criterion is also discussed in chapter 1. The second
criterion is the cavitation width coefficient κw, which is based on the pressure pmin,length,
at which the width of the pressure peak exceeds a specified dimensionless width ∆s, see
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Fig. 4.5. In the current optimization ∆s = 0.02. The cavitation objectives fκi and fκw

are defined by

fκi
= κi =

gNPSHi

Ω2D2
(4.8)

fκw = κw =
gNPSHw

Ω2D2
(4.9)

where the NPSH is computed based on pmin,inc for the inception objective fκi
and based

on pmin,length for the cavitation width objective fκw (see Eqn. (1.5) for a definition of
NPSH).

At a given flow rate Qj the cost function Fj is determined by summing over the
objectives i using the weight factors cj,i

Fj = Bj (cj,ψfj,ψ + cj,κi
fj,κi

+ cj,κwfj,κw + cj,ζfj,ζ) (4.10)

where B is the back-flow factor, which is equal to 1 if back-flow does not occur and equal
to 4 if it does occur. This approach is utilized to penalize impellers with back flow. The
cost function, formulated in Eqn. (4.10), is evaluated at three different flow rates, i.e. at
80%, 100% and 120% of the design flow rate Qd. In this way the performance of the
impeller is optimized for a range of flow rates, rather than for a single design flow rate.

The total cost function is determined by summing over the flow rates j

F =
3∑

j=1

Fj (4.11)

The weight factors cj,i for the j-th flow rate are chosen such that the contribution of each
objective to the cost function is of similar order of magnitude, see table 4.3. This was
achieved by investigating the variation of the objectives for several geometries, before the
actual optimization was carried out. The head has only been considered at the design

Table 4.3: Weight factors for the optimization.

Q/Qd cψ cζ cκi
cκw

0.80 0 2.5 0.5 7.5
1.00 10.0 10.0 2.0 30.0
1.20 0 2.5 0.5 7.5

flow rate, while the importance of the other objectives is selected to be high for the design
flow rate and low for the off-design flow rates.

4.3.4 Optimization results

The convergence rate of the optimization process is shown in Fig. 4.6. For 30% of all
considered geometries a valid mesh could not be obtained. These geometries are given
a high value for the cost function (1030) in order to remove them from consideration.
The optimized impeller has a cost function of 1.35, compared to the value of 1.68 of the
original impeller.
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Figure 4.6: Convergence history of optimization case opt46. The cost function (F/Foriginal) of
the population mean, minimum and original geometry plotted as a function of the number of
generations G.

The optimized impeller has 6 blades, which is the maximum number of blades allowed
in the present optimization (but one less than that of the original impeller). The original
and optimized blade shapes are compared in Fig. 4.7. The optimized blade shape is more
curved than the original blade shape (smaller blade angles), except at the trailing edge in
order to meet the head requirement. The optimized shroud curve differs slightly from the
original one, see Fig. 4.8. The optimized impeller is shown in Fig. 4.8 on the right-hand
side, where the shroud is not displayed for clarity.

Table 4.4 shows the contributions to the cost function at the three flow rates consid-
ered for the optimized and for the original impeller. The cavitation characteristics of the
impeller, given by the objectives fκi

and fκw , have been improved, whereas the loss objec-
tive fζ and head objective fψ are comparable to those of the original impeller. If a larger
number of blades than 6 had been allowed, the loss objective could have been reduced
further, as will be shown in section 4.3.5. The head objective fj,ψ is only considered at
the design flow rate (for off design conditions cj,ψ = 0) and therefore both the original
and optimized design meet the head requirement and the difference observed in fψ for the
high flow rate has no influence.

For the flow rates considered back-flow does not occur, for either the original or the
optimized impeller. The distributions of the relative velocity at the design flow rate Qd

are plotted in Fig. 4.9 as a function of the meridional distance m for the original and
optimized impeller. The peak in the velocity distribution near the leading edge is clearly
reduced for the optimized design. Furthermore, the velocity difference across the blades is
somewhat higher for the optimized design. This is caused by the fact that the optimized
design has 6 blades, whereas the original has 7. The difference is not very large though,
since the optimized blade is longer than the original.

In Fig. 4.10 the corresponding static pressure distributions are plotted. The pressure
peak at the suction side, near the leading edge, is not as deep for the optimized geometry
compared to that for the original geometry, indicating that from the point of view of
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Figure 4.7: Top view of the blade contours of the original and optimized blade shape (left)
and the optimized blade angle distribution (right).
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Figure 4.8: Optimized and original meridional shroud curve (left) and the optimized impeller
(right).
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Table 4.4: Comparison of objectives for the optimized and original impeller.

Q/Qd fj,ψ fj,ζ fj,κi
fj,κw

j Optimized Impeller
0.80 0.000 0.035 0.082 0.019
1.00 0.000 0.039 0.045 0.012
1.20 0.073 0.046 0.098 0.010

j Original Impeller
0.80 0.000 0.035 0.226 0.017
1.00 0.000 0.038 0.133 0.015
1.20 0.100 0.046 0.070 0.012
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Figure 4.9: Relative velocity distributions along the blade-hub intersection (left) and the blade-
shroud intersection (right) at design condition. PS indicates the pressure side, SS the suction
side.

cavitation the flow conditions near the leading edge are more favorable for the optimized
design than for the original impeller.

It is interesting to see whether the four objectives that are used to evaluate the per-
formance of a geometry are correlated or not. To this end the cavitation inception coeffi-
cient κi, the pump head coefficient ψ and the loss coefficient ζ are compared in Fig. 4.11
for all geometries considered in the optimization (the cavitation width objective is not
considered, since it is complementary to the cavitation inception criterion). The pump
head coefficient ψ and the loss coefficient ζ are negatively correlated. The corresponding
objectives fψ and fζ are positively correlated, since high head coefficients and low loss co-
efficient are beneficial for the cost function (see section 4.3.3). The explanation for these
observations is that blades with a higher pump head are less curved (near the trailing
edge) and therefore have a smaller surface area S and hence smaller losses, as can be seen
from the definition of the loss objective in Eqn. (4.7). Furthermore, this loss objective
fζ is defined as the ratio of power loss and the hydraulic power, which scales with the
pump head. Therefore, higher pump heads lead to lower loss coefficients. The cavitation
inception coefficient κi and the head coefficient ψ are practically uncorrelated, as are their
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Figure 4.10: Static pressure distribution along the blade-hub intersection (left) and the blade-
shroud intersection (right) at design condition. PS indicates the pressure side, SS the suction
side.

corresponding objectives fκi
and fψ. This can be seen in Fig. 4.11 on the right hand side.

The explanation is that the shape of the blade near the leading edge mainly determines
the cavitation characteristics, whereas the part near the trailing edge mainly determines
the head coefficient. Thus κi and ψ are predominantly determined by different parts of
the blade.
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Figure 4.11: Loss coefficient ζ (left) and cavitation inception coefficient κi (right) as function
of the head coefficient ψ/ψd for all geometries considered in the optimization at the design flow
rate φd. The dashed lines indicate the objectives for the optimum.

In appendix A a parameter sensitivity analysis is carried out. The purpose of this
analysis is to investigate which parameters have a large influence on the cost function
and to determine whether the optimized geometry indeed is the optimum for the current
parameterization and formulation of the cost function. It is concluded that for the present
parameterization and formulation of the cost function, the optimized design is indeed
optimal.
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4.3.5 Additional optimizations

In this section the influence of parameterization and formulation of the cost function
on the resulting design is investigated. For the parameterization the focus will be on
the bounded range for the number of blades. For the cost function a slightly different
definition of the head objective is considered. This results in a number of additional
optimizations which have been carried out. Firstly, the bounded rage for the number of
blades is considered.

The original impeller has 7 blades whereas the first optimization is carried out for a
bounded range of [4, 6], motivated by the requirement to have a good optical accessibility
of the scale model to be used for experiments. This first optimization is labeled opt4,6,
where 4, 6 denotes the bounded range for the optimization. Two further optimizations
are presented in this section for a fixed number of 7 blades, opt7, and for a bounded range
of [4, 10], opt4,10. These optimizations are summarized in the top half of table 4.5. The
cost function is determined in the same way as described in section 4.3.3.

The definition of the cost function also can have a large influence on the resulting
optimized geometry. Therefore an extra optimization is carried out in which the head
objective fψ is computed in a slightly different manner. Instead of having an objective in
which the head coefficient ψ needs to exceed a certain design target ψd, the new objective
is to obtain a head coefficient ψ, which is as close as possible to ψd. This alternative head
objective fψ,2 is defined by

fψ,2 =

√
(ψ − ψd)2

ψ2
d

=

∣∣∣∣1−
ψ

ψd

∣∣∣∣ (4.12)

In Fig. 4.12 a sketch is given of the original and the alternative head objective. It can

ψ = ψ
d
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(a) original head objective

ψ = ψ
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(b) alternative head objective

Figure 4.12: Original and alternative head objectives.

be argued that fψ,2 is a more suitable approach to define the head objective, since the
meridional geometry is often chosen based on the specific speed of an impeller, which also
includes the pump head. The cost function which uses the alternative definition of the
head objective fψ,2 is denoted as F2. The conventional cost function is referred to as F1.

The optimization based on cost function F2 is denoted as optf2 (see table 4.5). The
purpose of this optimization is twofold. First of all, the goal is to investigate the conse-
quences of using a different formulation of the cost function, or more specifically the head
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objective. Secondly, the purpose is to study how much the cost function can be further
reduced, when continuing the optimization process for a larger number of generations G.

The parameters for the additional optimizations opt7, opt4,10 and optf2 are summarized
in table 4.5. The optimization results are discussed in the next sections.

Table 4.5: Summary of all optimization cases.

optimization blade number range cost function G
opt4,6 [4, 6] F1 30
opt7 [7] F1 30

opt4,10 [4, 10] F1 30
optf2 [4, 10] F2 90

opt7

For this optimization the number of blades is fixed at 7, and the default cost function
F1 is employed. This will give a fair comparison between the original impeller, which
has 7 blades, and an optimized impeller. The results for this optimization are listed in
table 4.6. The cost function F1 has been reduced significantly to F1 = 1.20, compared
to the cost function of the original (F1 = 1.68) and the first optimized geometry (F1 =
1.35). The further improvement is mainly in the loss objective fζ and the cavitation
inception objective fκi

, see table 4.6. The optimized meridional shroud curve is shown
in Fig. 4.14 and the blade angle distribution at the hub is shown in Fig. 4.15. Note
that the meridional shroud curve for this design has a shape which may be undesirable
for construction purposes. If this is indeed the case a different bounded range has to
be selected for the parameters ∆z1 and ∆z2, which describe the shroud curvature in the
meridional plane. When compared to the original design, the width of the impeller has
clearly increased and the blade angle at the hub is also slightly higher, leading to an
increased head coefficient of ψ = 1.05ψd. The increase in impeller width also leads to a
reduction in relative velocity, thus leading to a lower loss coefficient ζ.

opt4,10

In this optimization the bounded range for the number of blades is set at [4, 10]. Further-
more, the default cost function F1 is utilized. This optimization is performed in order to
allow for impellers with a large number of blades. The cost function F1 of the optimum
is reduced from F1 = 1.68 for the original geometry to F1 = 1.07 for the optimized ge-
ometry, which is also significantly lower than the cost function F1 obtained for the other
considered optimizations. The main improvement is in the loss objective, which has been
reduced by a substantial margin. The optimized impeller has 10 blades and the width of
the impeller is increased, see Fig. 4.14. The blade angle distribution at the hub is shown
in Fig. 4.15.

The increase in impeller width, the large blade angle at the trailing edge and the
large number of impeller blades, all lead to a large increase in the pump head coefficient,
ψ = 1.18ψd. This large increase in head coefficient leads to a significant reduction in the
loss objective, which is seen from the definition of the loss objective in Eqn. (4.7).
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Furthermore, for the determination of the loss coefficient ζ it is assumed that the
boundary layers are thin relative to the channel width and that their influence on the
core flow can be neglected. However, when the number of blades is increased, this as-
sumption may no longer be justified. This effect has not been considered in the current
optimizations.

Although this optimization shows a significant improvement of the objectives, most of
the improvements are attributed to the increase in the pump head coefficient ψ. In the
next optimization the alternative definition of the pump head objective fψ,2 is utilized to
investigate its influence.

optf2

The purpose of this optimization is twofold. We consider the influence of the definition
of the cost function and the number of generations used in the optimizations. The opti-
mization is carried out for cost function F2, which uses the alternative definition of the
head objective fψ,2, see Eqn. (4.12), and it is run for 90 generations, instead of the usual
30 generations.

Firstly, it is investigated what the influence of the number of generations is on the
obtained optimum. Fig. 4.13 shows the convergence plot of the cost function for this
optimization. After 30 generations the cost function for the optimum is F2 = 1.29 and
after 90 generations it has been further reduced to F2 = 1.21. When compared to the cost
function for the original geometry (F2 = 1.68), this means an improvement of 24% after 30
generations and an improvement of 28% after 90 generations. Therefore, it is concluded
that 30 generations, employed for most optimizations in this chapter, is sufficient to obtain
a substantial improvement in performance.

Next, the focus will be on the optimized geometry. When compared to the original
geometry, the improvement of the optimized geometry is both in the cavitation objectives
and the boundary layer losses. As expected by the formulation of the head objective,
the head coefficient for the optimized geometry is close to the design target, ψ = 0.99ψd.
The optimized impeller has 8 blades, and the optimized shroud curve and blade angle
distribution at the hub are shown in Fig. 4.14 and 4.15, respectively. Since the impeller
has more blades than the original impeller geometry, as well as a slightly higher blade
angle at the trailing edge, the impeller width is reduced in order to obtain a similar head
as for the original impeller.
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Figure 4.13: Convergence history of optimization case optf2. The cost function (F/Foriginal)
of the population mean, minimum and original geometry plotted as a function of the number of
generations G.

Discussion of additional optimizations

The additional optimizations have shown the influence of both the selected range for the
number of blades and the formulation of the cost function, in this case the head objective.
The meridional shroud curve and the blade angle distribution at the hub are compared for
all optima and the original geometry in Fig. 4.14 and 4.15, respectively. The optimized
geometries all have a similar blade angle at the hub near the leading edge, which results
in favorable cavitation characteristics. The impeller optimized for a blade range of [4, 6],
opt4,6, has the largest blade angle at the trailing edge to compensate for the relative low
number of blades (see table 4.6). A low number of blades corresponds to a large slip factor
and hence a relative low pump head.

The build up of the cost functions for the various designs is summarized in table 4.6,
where fψ indicates the original head objective, used in cost function F1 and fψ,2 indicates
the modified head objective, employed in the calculation of cost function F2.

From this table it is concluded that for cost function F1, the optimization case opt4,10,
with 10 impeller blades, results in the best overall optimum. However, the large head
coefficient for this design results in a large value for cost function F2. The best geometry
for cost function F2 is optf2, which has 8 impeller blades. This is hardly surprising,
since this is the only optimization using F2 as optimization cost function. Since the head
coefficient of the optimum of opt4,10 is very large, its corresponding meridional geometry
might have to be altered. Furthermore, especially in the case of a large number of blades
it might no longer be justified to neglect the influence of the boundary layers on the core
flow.

The original optimized impeller opt4,6 has been manufactured in PMMA for use in
experimental investigations. This optimized impeller was selected for its good optical
accessibility due to the relatively low number of blades. The PIV measurements carried
out with this impeller are presented in chapter 5.
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Figure 4.14: Optimized and original meridional shroud curves. Note that the scaling for the
r-axis and z-axis is different (z-axis is stretched).

Table 4.6: Optimization objectives summed over the considered flow rates j.

objective original opt4,6 opt7 opt4,10 optf2

Σcψfψ 0.000 0.000 0.000 0.000 0.011
Σcψfψ,2 0.000 0.213 0.492 1.838 0.011
Σcζfζ 0.582 0.591 0.544 0.411 0.572
Σcκi

fκi
0.414 0.180 0.099 0.091 0.088

Σcκwfκw 0.687 0.583 0.560 0.570 0.539

F1 1.683 1.354 1.202 1.073 1.210
F2 1.683 1.566 1.694 2.911 1.210
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Figure 4.15: Optimized and original blade angle distributions at the hub.
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4.4 Inverse-optimization of a mixed flow impeller

The developed optimization method presented in this chapter, based on Differential Evo-
lution, can be employed for different optimizations as well. This is accomplished by em-
ploying an alternative method for obtaining the flow solution instead of the direct method
utilized (see flowchart in Fig. 4.2). In the preceding chapter an inverse-design method has
been presented. This inverse-design method will now be used in the optimization method.
This hybrid approach is labeled inverse-optimization. Such inverse-optimizations have
also been carried out by Peng et al. [51].

Here an inverse-optimization is presented of the same mixed flow impeller which has
been treated in section 3.6 of chapter 3. The parameterization, the cost function and the
optimization results will be discussed next.

4.4.1 Parameterization

In the preceding chapter it has been shown how the mean-swirl distribution can be mod-
ified in order to improve impeller performance. Here the mean-swirl distribution is pa-
rameterized. Since the impeller geometry is determined from the mean-swirl distribution,
its parameterization yields an indirect parameterization of the impeller geometry.

The parameterization of the mean-swirl distribution is based on a cubic spline rep-
resentation of the distribution at the hub-blade and at the shroud-blade intersection. A
cubic spline is constructed based on 3 points (mi, f(mi)), where m is the dimension-
less meridional coordinate from leading to trailing edge and fi(m) is the value of the
dimensionless mean-swirl distribution at m = mi. Two fixed points are located at the
leading and trailing edge, i.e. (0,0) and (1,1), respectively. The third point is given by
(0.5, f2(0.5)) where f2(0.5) is the value to be found in the optimization. This leads to two
parameters for the geometry used in the optimization process, fhub, for the mean-swirl
distribution along the hub-blade intersection, and fshr, for the mean-swirl distribution
along the shroud-blade intersection. This parameterization is sketched in Fig. 4.16. The
bounded ranges for the parameters fhub and fshr is [0.3, 0.7].
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Figure 4.16: Parameterization of the dimensionless mean-swirl distribution f .
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The number of blades and the meridional geometry can also be parameterized, but
this has not been considered in the present optimization.

4.4.2 Cost function

For the inverse-optimization the cost function is determined in a slightly different way, in
compared with the direct optimization.

For the direct optimization the cost function has been computed at several flow rates.
Since an inverse-design method uses a design flow rate as input to obtain a desired blade
shape, no off-design considerations are taken into account, since this would lead to different
blade shapes. Moreover, the design head Hd is used as input for the inverse design method.
Therefore, it does not need to be included in the cost function for an inverse-optimization.

For the cavitation characteristics we only consider the cavitation inception objective
fκi

in this investigation. Furthermore, the boundary layer loss objective fζ is also taken
into account. Moreover, as was the case for the direct optimization, geometries with
back-flow are penalized by a penalty factor B. For geometries without back-flow B = 1
and for geometries with back-flow B = 4.

In the preceding chapter geometries are analyzed utilizing the velocity loading χ on the
blades. Therefore, a new velocity loading objective fχ is added for the inverse-optimization

fχ = χmax = max
wss − wps

w
(4.13)

Summarizing, the cost function is evaluated at the design flow rate and is given by

F = B (cκi
fκi

+ cζfζ + cχfχ) (4.14)

The weight factors are chosen such that approximately all objectives have an equal im-
portance in the cost function, i.e. cκ = 80, cζ = 20 and cχ = 1. This has been achieved
by considering several inverse-design computations for different sets of parameters.

4.4.3 Optimization result

Since the number of parameters for this optimization is rather small, it is sufficient to
consider a relative small population size, P = 20. Furthermore the number of generations
has been selected at G = 20, leading to a total of 400 inverse-design computations. Note
that each inverse-design computation requires many flow solutions. The model parameters
for the DE method are selected at T = 0.5 and C = 0.8, which is the same as used for
the direct optimizations. The convergence history for the population mean of the cost
function and the population minimum of the cost function is shown in Fig. 4.17 and it is
concluded that convergence has been obtained. 20% of the inverse-design computations
did not lead to a converged solution and these computations have been given a high value
for the cost function.

The parameters and the objectives for the optimum are summarized in table 4.7 which
compares the original geometry and the two inverse-design cases discussed in chapter 4.
The optimal mean-swirl distribution is shown in Fig. 4.18.
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Table 4.7: Optimized inverse-design compared with different designs from section 3.6.

optimum original case 1 case 2
fhub(−) 0.375 − − −
fshr(−) 0.646 − − −
κi(10−2) 1.13 3.69 1.60 1.39
ζ(10−2) 4.39 3.73 4.30 4.91
χmax(−) 0.83 1.28 0.85 0.76

F (−) 2.62 4.98 2.99 2.85
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Figure 4.17: Convergence history of the inverse-optimization. Population mean and minimum
of cost function as function of generation number.

It is concluded that the mean-swirl distribution is shifted more towards the trailing
edge at the hub side, and more towards the leading edge at the shroud side. The optimized
inversely-designed impeller and blade angle distribution are shown in Fig. 4.19. The blade
angles are between 13 and 30◦ and the blade contour at the shroud is markedly shorter
than that of the hub contour, resulting from the front loading at the shroud and the aft
loading at the hub. The velocity loading and the pressure distribution are displayed in
Fig. 4.20. The velocity loading at the shroud has clearly increased when compared to the
previous designs. This is not disadvantageous for the maximum velocity loading χmax,
since the maximum still occurs at the hub.

When the objectives are analyzed, it is observed that the optimized geometry has a
favorable maximum velocity loading and cavitation inception coefficient, and a slightly
higher loss coefficient than the original geometry. For all converged inverse-designs the
objectives are compared in Fig. 4.21. If one focuses on the region where the most points are
located, i.e. near the optimum, it is seen that the cavitation coefficient is not correlated
with the other objectives (horizontal line near the optimum) and that the maximum
velocity loading χmax and the boundary layer loss coefficient ζ are negatively correlated.
This means that geometries can be obtained from the database which have a lower velocity
loading, but at the expense of a higher loss coefficient.
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tribution (right) for the optimized inverse-design.
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4.5 Discussion

In this chapter an optimization method for centrifugal pump impellers has been presented.
The method uses the Differential Evolution algorithm to solve the minimization problem.
This is an evolutionary method in which a population of geometries evolves over a number
of generations towards the optimum. The optimization method (generally) yields the
global optimum and can deal with non-differentiable cost functions. This method has
been verified by application to 3 test functions. The method considers multiple objectives
which are summed in a so-called lumped cost function. The objectives are considered at
3 flow rates around the design point, making it a multi-point optimization method.

In section 4.3 the method is applied to the optimization of a radial centrifugal pump
impeller. The resulting optimum shows an improvement when compared to the original
geometry, mainly on the basis of cavitation inception and cavitation peak width. Ad-
ditional optimizations with different settings show the influence of the parameterization
and the formulation of the cost function. The optimizations considering different param-
eterizations have shown that further improvements are obtained if the bounded range for
the number of blades is increased from [4, 6] to [4, 10]. For the latter bounded range, an
optimum impeller is found with 10 blades. An optimization carried out for a different
formulation of the head objective resulted in an optimized impeller with 8 blades for a
bounded range of [4, 10].

In section 4.4 a hybrid method is presented, the so called inverse-optimization. By
parameterizing the mean-swirl distribution and formulating a cost function, a inverse-
optimization has been carried out of the mixed flow impeller, which was also used in
section 3.6. An optimal mean-swirl distribution has been found with a front loading at
the shroud-blade intersection and an aft loading at the hub-blade intersection.

An advantage of this hybrid approach is that it is possible to add geometrical param-
eters, like the number of blades or meridional shape, to the optimization procedure. This
is not possible for the conventional inverse-design method. A disadvantage of inverse-
optimization is that only the performance at design conditions is considered, whereas for
the direct optimization the performance is considered at several flow rates instead. It is
possible to consider off-design performance by a combination of an inverse-design com-
putation at design conditions and direct flow computations for off-design conditions (for
the inversely designed impellers). This is not pursued in the current method. Another
disadvantage is that the inverse-optimization requires many flow computations, since each
inverse-design computation requires typically 50 iterations to obtain a converged solution.

One of the main problems for the current optimization method, both for the direct op-
timization and the inverse-optimization is that it requires many flow computations. The
run time can be reduced significantly however, if a response surface method or artificial
neural network would be used to estimate the cost function. By optimizing this approx-
imation of the cost function the number of required flow computations can be reduced
drastically. Examples of such approaches can be found for example in [23, 34, 57]. This
would speed up the procedure drastically. Especially if more sophisticated flow models,
than the potential flow model employed here, would be used, this reduction in number of
flow computations becomes very important.

Furthermore, the method considers many objectives, but they are all lumped into
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a single cost function which is then minimized. By performing a true multi-objective
optimization, the designer will have a choice of many more geometries based on an analysis
of the Pareto front [1]. Therefore, it is worthwhile to consider such a multi-objective
optimization in the future. If however a response surface method is used, the Pareto
front can be approximated from this representation and a multi-objective optimization
would no longer be required. Even with the current optimization method, an engineer can
choose a geometry from the large database of geometries acquired in the optimization,
and does not necessarily need to choose the geometry with the lowest value of the cost
function.





CHAPTER 5

PIV-measurements in an optimized impeller

In this work two design methods have been presented for the design of centrifugal pump
impellers, i.e. an inverse-design method in chapter 3 and an optimization method in
chapter 4. Both methods have been applied to impeller design cases, as has been demon-
strated in preceding chapters. For these design methods the flow inside the impeller is
modeled by the augmented potential flow model, which has been derived in chapter 2. In
the present chapter experiments, carried out in a newly designed facility, are discussed
with the aim of validating the computed inviscid flow fields, and gaining more insight in
the occurring viscous flow fields inside impellers.

An impeller has been designed with the proposed optimization method, as shown in
section 4.3. The optimization method has been selected over the inverse-design method,
since the optimization method is a multi-point approach, i.e. it considers the performance
at both off-design and design conditions, whereas the inverse-design method is applicable
to design conditions only. Furthermore, in the inverse-design method only the blade cur-
vature distribution is determined by the method, whereas for the optimization method
additional parameters like the number of blades in the impeller and the meridional geom-
etry are varied as well. For the number of blades in the impeller a bounded range of [4, 6]
has been selected, whereas the original impeller has 7 blades. This bounded range was
selected in order to have a good optical accessibility for the PIV measurements presented
in this chapter.

In the optimization process the pump impeller has been optimized, based on global
performance parameters, being the pump head H, efficiency η and NPSH. Therefore, it is
desirable to measure these global performance parameters directly in a setup. However, in
this study the focus has been on measuring detailed velocity distributions in the impeller
by means of Particle Image Velocimetry (PIV) measurements, in order to compare the
results of these with the predictions of the potential flow model. The static pump head
has also been measured, but efficiency and NPSH have not been measured in the current
experimental program.

In this chapter the measurements in the optimized impeller are presented. The outline
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is as follows. Firstly, the experimental setup is presented in section 5.1, followed by the
operational aspects in 5.2. A description of the PIV method and the PIV parameters
is given in section 5.3. The quality of the measurements is discussed in section 5.4.
Subsequently, the measurement results are presented for design and off-design conditions
in sections 5.5 and 5.6, respectively. The measured velocity distributions are discussed in
section 5.7. Finally, in section 5.8 conclusions and recommendations are given related to
the measurements. A detailed description of the performed measurements is given by van
Andel [2]. Part of these results have also been presented in [75].

5.1 Experimental setup

The optimized impeller has been down-scaled from full scale to model scale by approx-
imately a factor 2, in order to limit the size of the new experimental setup. The flow
coefficient φ and head coefficient ψ (see chapter 1) are retained in the scaling, whereas
the Reynolds number has been reduced by the scaling of the impeller size and the lower
rotational speed. The optimized impeller has been manufactured in PMMA. It is shown
in Fig. 5.1 before and after assembly.

Figure 5.1: Optimized impeller before (left) and after (right) assembly.

The impeller has been placed in a newly designed experimental setup, which is illus-
trated in Fig. 5.2. The design of the setup is inspired by the experimental setup used by
Pedersen [48] for PIV measurements.

The setup consists of a cylindrical Perspex vessel with a diameter of 0.65m and a
height of 2.0m. The impeller is located at the top of the setup and it is mounted below a
rotating hollow cylinder, which is driven by an electromotor using a belt drive. The flow
enters the impeller in upward direction through a central tube, with an inner diameter of
150mm. By measuring the pressure difference over a calibrated Venturi flow meter inside
the central tube, the flow rate is acquired. By changing the opening of a spring, which
is located at the bottom of the central tube, the flow rate can be adjusted separately
from the rotational speed of the impeller. This spring thus acts as a control valve, which
is adjusted with a control valve wheel. A flow straightener, positioned upstream of the
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Figure 5.2: Sketch of the experimental setup. The arrows indicate the direction of the flow.
The impeller, attached to the rotating cylinder, is rotating; the other parts shown are stationary.

Venturi in the central tube, is used to establish uniform flow at the inlet of the impeller.
A photograph of the realized experimental setup is shown in Fig. 5.3.

The operational aspects are discussed in the next section. For more details of the
experimental setup the reader is referred to [2].

5.2 Operational aspects

In this section the operational aspects of the experimental setup are discussed. This
includes an analysis of the Venturi characteristics, a description of the Q − Ω working
envelop and determination of the static pump head.

5.2.1 Venturi flow meter

A Venturi flow meter has been manufactured for the measurement of the flow rate Q.
The configuration is based on general rules for design of Venturis [20, 38]: the converging
section upstream of the throat of the Venturi has an angle of 10.5◦ and the diverging
section downstream of the Venturi has an angle of 7.5◦.
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Figure 5.3: Photograph of the experimental setup.

The Venturi tube has been calibrated in a special calibration facility in Aachen, Ger-
many. A picture of the Venturi in the calibration facility is shown in Fig. 5.4 along with
a schematic view. The flow rate Q is based on the measurement of the pressure difference
∆p, either for pressure taps 1 and 2 (see Fig. 5.4), or for pressure taps 2 and 3. Only one
pressure tap is inserted per section, since the flow is expected to be rotationally symmet-
ric. However, some authors advise to use four or more pressure taps per section in order
to obtain a more accurate average pressure at each section [20].

The calibration curves are displayed in Fig. 5.5. A quadratic fit is employed for both
curves, since a quadratic dependency between pressure drop and flow rate is expected from
the Bernoulli equation. The pressure loss ∆ploss inside the Venturi tube is quantified by a
loss coefficient k, based on the average velocity v2 in the narrowest section of the Venturi

∆ploss =
1

2
kρv2

2 (5.1)

The loss coefficient based on pressure measurements at taps 1 and 2, k12, is smaller
than the loss coefficient for taps 2 and 3, k23. This difference is caused by the higher losses
in the diverging section of the Venturi. From Fig. 5.5 it is observed that for increasing
flow rates the loss coefficient k12 decreases in magnitude. This observed trend, however,
is smaller than the measurement uncertainty. The loss coefficient k23 remains rather
constant, as expected.

After the central tube had been inserted into the actual setup, the flow rates were
measured based on the two calibration curves for the pressure differences. It became
apparent that there was a small difference between the flow rate Q12 predicted from taps
1 and 2 and Q23 predicted from taps 2 and 3, especially for relatively low flow rates. This
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Figure 5.4: Locations of pressure taps 1, 2 and 3 in the Venturi. A picture of the Venturi in
the calibration facility is shown on the left; a schematic view is shown on the right.
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Figure 5.5: The venturi calibration curves (left) and the pressure loss coefficients as function
of the flow rate.

is illustrated in Fig. 5.6, where the ratio of both predicted flow rates, α, is plotted as a
function of the flow rate Q12

α =
Q23

Q12

(5.2)

Note that in the calibration the relation between ∆p12 and ∆p23 is determined such that
α = 1. The fact that α 6= 1 in the realized setup must be due to differences in the
configuration between calibration setup and experimental setup. The differences for flow
rates around the design flow rate Qd, are in the order of 3− 4% and for lower flow rates
they are even larger. The main difference between the configuration in the calibration and
that in the experimental setup is that an impeller is present in the experimental setup,
relatively close to pressure tap 3. Since the influence of the impeller will be smallest for
pressure taps 1 and 2, the flow rate is determined from these pressure taps (Q12).
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Figure 5.6: The ratio α = Q23/Q12 of predicted flow rates as function of the dimensionless
flow rate Q12/Qd.

5.2.2 Operating range of the experimental setup

The experimental setup has been designed for a rotational speed range of 30 − 600rpm.
However, at speeds above 200rpm air bubbles entered the setup due to sloshing at the
water-air interface near rotating parts, see Fig. 5.7. These bubbles influence the impeller
performance and prevent the generation of a homogenous light sheet in the impeller
(each bubble casts a shadow behind it). Therefore, the operating range at which PIV
measurements can be performed in the current state of the test facility is 30− 200rpm.

The so-called system resistance of the setup has been estimated during the design of the
setup, such that the desired flow rates could indeed be realized by the scaled impeller. In
this analysis the pressure loss of components like the Venturi, flow-straightener, the central
tube and the pressure loss at the impeller exit have been considered. It was concluded
that the pressure losses in the system are sufficiently small and that the impeller can
realize the desired flow rates.

The flow rate Q is a function of the rotational speed Ω. The control valve, upstream
of the Venturi (see Fig. 5.2), is also utilized to control the flow rate Q separately from
the rotational speed Ω. At several rotational speeds Ω the non-dimensional flow rate,
i.e. φ, has been measured for two situations, one in which the spring is opened as far as
possible (minimum resistance), and one in which it is closed as far as possible (maximum
resistance). The resulting working envelop is plotted in Fig. 5.8. It is concluded that the
operating envelop is in the range of 0.3φd < φ < 1.9φd, where φd is the flow coefficient at
design flow rate. This range is largely independent of the rotational speed and therefore
is expected to be similar at rotational speeds larger than 200rpm.

5.2.3 Pressure drop over the impeller

The pressure tap close to the inlet of the pump, i.e. pressure tap 3 (see Fig. 5.4), can be
utilized to measure the static pressure drop over the impeller. The outlet of the impeller
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Figure 5.7: The water-air interface. Zoomed-in sketch of the experimental setup around the
impeller. The hub, blades and shroud are rotating parts, the other parts are stationary. Above
rotational speeds of 200rpm air bubbles will enter the setup at this interface due to sloshing
effects.
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Figure 5.8: Ω-φ working envelop. The flow coefficient φ = Q/(ΩD3) as a function of the
rotational speed Ω for the situation with the spring fully closed and fully open, respectively.

is close to the air-water interface (see Fig. 5.7), which is at atmospheric pressure patm, and
therefore it is assumed that the pressure at the pump outlet is at atmospheric pressure.
By measuring the pressure difference ∆p34 between pressure tap 3 and a reference pressure
p4, with p4 = patm, the static pressure drop ∆p over the impeller is measured. The static
pump head Hstat = ∆p/(ρg) can therefore be determined.

Note that the static pump head differs from the conventional pump head, since the
change in static pressure is considered and not the change in stagnation pressure. By
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Figure 5.9: Measured static pump head coefficient ψstat = gHstat/(Ω2D2) as a function of the
flow coefficient φ = Q/(ΩD3) compared with results from potential flow model predictions with
and without viscous correction. Measurements carried out at Ω = 100rpm.

measuring ∆p34 as a function of the flow rate Q a Q−Hstat curve has been determined;
it is compared to the computed curves in Fig. 5.9. Note that the dimensionless values
are displayed, i.e. the flow coefficient φ = Q/(ΩD3) and the head coefficient ψstat =
gHstat/(Ω

2D2). For the computations an inviscid-flow curve is shown and one corrected
for viscous losses by using Eqn. (2.27) (see section 2.3). As expected, the measured values
are somewhat lower than the inviscid-flow predictions, due to the viscous losses that occur
in the flow through the impeller. These losses are somewhat higher than predicted by the
viscous-flow correction.

The difference between measurements and computations is smallest near the design
point, indicating that the impeller is well designed. In the design point the measured
static pump head deviates 7% from the computed inviscid-flow pump head and 3% from
the computed pump head, which has been corrected for viscous-flow losses.
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5.3 Particle Image Velocimetry

In order to measure the velocity field inside impellers it is advantageous to make use of
non-intrusive measurement techniques. The most frequently used techniques used for this
purpose are Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). In
the present study PIV has been selected as measurement technique, since it is a whole-
field measurement technique, whereas LDV is a single point measurement technique. The
PIV measurements presented here are 2D in nature, that is only the in plane velocity
components are measured. Using Stereo PIV (SPIV), it is also possible to determine
the out-of-plane velocity component utilizing a second camera. However, his has not
been pursued in this research. The camera is stationary and hence the absolute velocity
components are measured, whereas it is sometimes convenient to use a co-rotating camera
to measure the relative velocity directly, as is done for example in [69]. A major advantage
of PIV is that instantaneously a complete velocity vector field is obtained and detailed
instantaneous flow phenomena can be revealed. This was the main reason for the selection
of PIV as flow measurement method in this project.

In this section the PIV measurement technique is discussed and general guidelines for
good PIV measurements are presented. Firstly, a literature overview of PIV measurements
performed in turbomachine impellers is given in section 5.3.1. Secondly, the working
principle of PIV is introduced in 5.3.2. General rules of thumb for PIV are addressed in
section 5.3.3. Furthermore, the parameters used in the PIV measurements are presented.

5.3.1 Literature overview

The purpose of this section is to give an overview of the literature on PIV measurements
carried out in turbomachine impellers. The main observations from these measurements
are presented. They show the interesting possibilities of PIV measurements in turboma-
chine impellers.

Visser [69] carried out PIV measurements in a low specific speed radial pump impeller.
From the PIV measurements it was concluded that the measured flow was predominantly
of a potential flow type over a wide range of flow rates, i.e. low values of the relative
velocity at pressure side and high values of the relative velocity at the suction side of the
blades. Wuibaut et al. performed PIV measurements in the radial SHF impeller in air
[77, 78]. In these papers the focus is on PIV measurements in the outer part of the impeller
and in the diffuser. In both papers a jet-wake structure is observed near the shroud. The
wake-like region, which is a region of low velocity but not of back-flow, is located at the
suction side. Pedersen [48, 49] executed PIV measurements in a radial impeller with 6
blades and reports predominantly identical flow in all channels, in which the flow follows
the blades. A wake-like region is observed at the suction side of the blades. At off-
design conditions, i.e. at a flow rate of 25% of the design flow rate, a two-channel flow
pattern is observed, in which one channel shows a flow structure similar to that at design
conditions, and the other is exhibiting stall at the inlet. Krause et al. [45] performed
time-resolved PIV measurements in a radial pump impeller and focussed on unsteady
flow phenomena occurring at off-design flow rates. For decreasing flow rates a spatially
stable stalled region was observed. Further reduction in flow rate led to the occurrence
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of rotational stall inside the impeller. Choi et al. [12] executed PIV measurements in
two unshrouded impellers (contrary to the shrouded impellers considered here), a six-
bladed impeller with straight vanes and a four-bladed impeller with backward curved
blades. For both impellers the large tip leakage flows result in a complex flow behavior
dominated by reverse flow and secondary flow effects, even at design conditions. Sinha et
al. [60] carried out PIV measurements in a centrifugal pump and they studied the flow
in the outer part of the impeller and the vaned diffuser at low flow rates. They observed
rotating stall in one diffuser channel, which extended to two channels when the flow rate
was further decreased. Frölig et al. [36] performed Stereo PIV (SPIV) measurements in
three unshrouded impellers at both off-design and design conditions. The measured flow
patterns are dominated by a strong interaction between secondary flow and leakage flow
through the gap.

5.3.2 PIV principle

The goal of PIV measurements is to measure velocity distributions in a flow. For this
purpose small tracer (or seeding) particles are added to that flow. By determining the
particle displacements during a fixed time interval, the particle velocities vp can be de-
termined. If the seeding particles are small and have a small density difference with the
fluid, the slip between seeding particles and fluid can be neglected. This means that the
local fluid velocity vl is equal to the average particle velocity vp. Therefore, by choosing
appropriate seeding particles, the fluid velocity distributions can be determined from the
particle displacements.

A fixed plane is illuminated with laser light, for which a Nd:YAG laser is frequently
utilized. A digital camera is then used to obtain two snap shots, frequently called an
image pair, with a relative short time interval ∆t apart. The particles scatter the laser
light and can be observed in the two camera images. The key problem is to find a typical
particle displacement ∆s such that the in-plane liquid velocity can be computed

v =
∆s

∆t
(5.3)

The magnification factor M0 gives the ratio between the image size on the chip and the
real length scale

M0 =
∆xchip

∆xreal

(5.4)

The magnification factor is needed to determine the real particle displacement ∆s =
∆schip/M0.

In order to obtain a velocity vector field the image area is divided into smaller areas,
so-called interrogation areas (IAs), for each of which a velocity vector is to be determined.
The displacement of particles inside an interrogation area thus leads to the determina-
tion of a velocity vector for this interrogation area. For each interrogation area the light
intensities between two corresponding images are correlated. The average particle dis-
placement ∆s, is the value for which the correlation R(∆s) is maximal. The correlation
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function R(∆s) is defined by

R(∆s) =

∫
I1(x)I2(x + ∆s)dx (5.5)

where I1 and I2 are the light intensity distributions for the first and second camera image,
respectively; x is the interrogation location. The larger the number of interrogation areas
is, the higher the spatial resolution of the PIV measurement is. A typical PIV setup is
shown in Fig. 5.10.

Figure 5.10: A typical PIV setup configuration. Original picture taken from Deen [21].

By considering the displacement at which the maximum correlation occurs, an in-plane
displacement vector is found, with its (two) components expressed in pixels, resulting in
an error in the particle displacement of the order of 1 pixel. In order to obtain a more
accurate particle displacement vector, a fit of the correlation function near the peak is
made using a so-called sub-pixel interpolator. The Gaussian sub-pixel interpolator is
preferred over centroid or quadratic sub-pixel interpolators, since it has been shown to
give the best results [73]. By using such a Gaussian sub-pixel interpolation method the
error in the particle displacement can be reduced to typically 0.1 pixel or even less [73]. If
relatively small particles are used, typically with an image diameter of less than one pixel,
no good sub-pixel interpolation can be performed and a bias towards integer displacements
may occur. This phenomenon is referred to as peak or pixel locking. An investigation on
peak-locking effects is given, for example, by Christensen [13].

The choices of appropriate seeding particles, interrogation area size and time step are
very important in PIV measurements. General guidelines for good PIV measurements are
therefore discussed next.

5.3.3 PIV parameters

In this section the guidelines for PIV measurements are presented and the selected settings
for the measurements are elucidated. These guidelines are summarized for example in [56].
Firstly, parameters related to the employed laser and camera are discussed. This includes
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the numerical aperture, the focal depth and the image calibration. The time interval
selected for the PIV measurements is discussed next. Subsequently, particle properties
are addressed, including particle image size, concentration and slip. Finally, the processing
options are treated and an overview of the measurement program is given.

Laser and camera

A PIV system from LaVision has been utilized for the measurements. It consists of a
double-pulsed Nd:YAG laser with a wavelength of 532nm, which is employed to illuminate
a horizontal plane in the impeller. Measurements have been performed at two heights z
in the impeller, i.e. at z/b = 0.35, close to the hub, and at z/b = 0.85, i.e. close to the
shroud, as illustrated in Fig. 5.11. Here b is the width of the impeller at the trailing edge.
A digital camera, with a resolution of 1024x1280 pixels, is used for image acquisition. The

Figure 5.11: The horizontal light-sheets, which are illuminated with a laser, indicated in a
cross-section of the impeller. One plane is located near the hub, z/b = 0.35, and one near the
shroud, z/b = 0.85.

camera is located inside the rotating cylinder, viewing down at the impeller (see Fig. 5.2).
During each impeller revolution an image pair is acquired at the same angular position
in the impeller by using a trigger system coupled to the position of the rotating cylinder.

Numerical aperture

For image acquisition the diaphragm of the camera has to be set, resulting in a value of
f#, the numerical aperture of the camera. The numerical aperture is defined as the ratio
between focal distance f and the lens aperture dl

f# =
f

dl

(5.6)

The numerical aperture influences the light intensity of the image, the particle image
diameter and the focal depth. Initially a value of f# = 8 was considered, but this led to
relative poorly illuminated images, which resulted in a relatively high number of spurious
vectors in the obtained PIV vector fields. By decreasing the numerical aperture to f# = 4,
an image pair was obtained with sufficient light intensity, such that good vector fields,
with a limited amount of spurious vectors, could be obtained. The influence of numerical
aperture on particle image size and focus depth is discussed in subsequent sections.
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Figure 5.12: Markings on hub (left) and shroud (right) used for PIV image calibration.

Focal depth

The laser optics are selected such that the light sheet thickness z0 inside the impeller is
around 2mm. The focus depth δz of the camera is determined from [56]

δz = 4

(
1 +

1

M0

)2

f#2

λ (5.7)

The camera has been placed at such a distance from the impeller that effectively more than
one channel could be viewed. This resulted in a magnification factor of M0 = 0.065. Using
this value, the focus depth for the measurements is computed at 9mm, which is roughly
four times larger than the light sheet thickness, caused by the relative low magnification
factor M0. In setting up PIV measurements the aim usually is to match z0 and δz, but
this is not an exact requirement.

Image calibration

In order to determine the absolute and relative velocity components in the impeller, an
image calibration has to be performed. For this purpose, calibration markings have been
drawn on both the hub and the shroud surface of one of the impeller channels, as shown
in Fig. 5.12. The image is calibrated for each laser-light sheet plane between hub and
shroud based on a linear interpolation from the hub and shroud markings. The image
calibration is first of all used to determine the magnification factor M0 and therewith
for the calculation of the absolute velocity v from the measurements. Secondly, the
calibration markings are used to convert the absolute velocity v to the relative velocity
w by (see also section 1.2)

w = v −Ω× r (5.8)

where r is the position vector and Ω is the angular speed vector of the impeller.
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Time interval

The time interval ∆t between two corresponding images is chosen such that the displace-
ment ∆x of the seeding particles is close to a quarter width of an interrogation area DIA

[56].

∆x < 0.25DIA (5.9)

A larger time step would mean that too many particles leave the interrogation area within
in one time interval, whereas a smaller time step will mean a smaller displacement, and
hence a larger relative error in the velocity. A time step of ∆t = 600µs has been selected.
Only near the trailing edge and close to the blades, the particle displacement slightly
exceeds the range specified in Eqn. (5.9).

The out-of-plane displacement ∆z is also of importance for similar reasons as the in-
plane displacement: the out-of-plane velocity component vz needs to be small enough to
avoid that many particles leave the laser sheet, with sheet thickness z0, within the time
step ∆t

∆z = vz∆t < 0.25z0 (5.10)

From the computed flow field it is concluded that this condition is easily satisfied.

Particles and particle image size

Polyamide particles from Dantec are employed as seeding. These particles have a mean
particle diameter of dp = 50µm and a density of 1030kg/m3. The particles are distributed
fairly homogeneously throughout the setup, although they settle down when the setup is
not operational for some time.

The particle image size dt is a combination of the real particle size dp and the diffraction
limited spot size ds

ds = 2.44 (1 + M0) f#λ (5.11)

dt =
√

M2
0 d2

p + d2
s (5.12)

where λ is the wavelength of the laser light. The particle image size dt is optimal for PIV
measurements when it is close to 2 pixels [73, 74].

For the measurements the particle image size is computed to be dt = 6.4µm (with
M0 = 0.065, f# = 4 and λ = 532nm). The camera pixel size is 6.7µm and therefore the
particle image size in pixels is 0.95px. This value is somewhat low, caused by the low value
of the magnification number M0 and the relatively low value of the numerical aperture
(f# = 4), which was required for good image illumination. However, when inspecting the
PIV images the particles are found to be generally larger than 1 pixel, as is seen from
Fig. 5.13. The reason for this is not clear, but it might be caused by either a difference
in real particle size or imperfect focussing. Peak locking might occur for particles with
an image diameter smaller than one pixel. It will be investigated in section 5.4.2 whether
this phenomenon occurs in the measurements.
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Figure 5.13: A zoomed-in PIV image. The particles are typically somewhat larger than 1
pixel.

Particle concentration

In order to obtain a distinct correlation for each interrogation area, a number of particles
is needed for each interrogation area. For PIV measurements of good quality, the number
of particles per interrogation area, NI , should satisfy [56]

NI > 10 (5.13)

NI can be determined from the particle concentration Cn (the number of particles per
unit volume) by

NI = Cnz0D
2
IA (5.14)

The particle concentration Cn in turn is obtained from the particle volume concentration
Cv (volume of particles per volume of fluid) via the particle diameter dp

Cn =
Cv

Vp

=
6Cv

πd3
p

(5.15)

where Vp is the particle volume. Particles have been added to the setup, leading to a
volume concentration Cv of 5 · 10−5, which should correspond to NI ≈ 17. However, in
the PIV images it has been observed that the actual concentration was lower, since not
all particles were homogenously dispersed in the water. Therefore, the volume concen-
tration Cv has been increased to 1 · 10−4, which is a rule of thumb frequently used in
PIV measurements. From PIV images it was concluded that equation (5.13) then was
satisfied.
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Particle slip

The assumption in PIV measurements is made that the seeding particles follow the flow
and that particle slip can be neglected. In reality particle slip does exist. A rough
estimate is made here for the magnitude of the particle slip v′ = vp − v in the impeller
in the horizontal plane, which means that gravity and buoyancy are not considered. An
order of magnitude analysis of the slip velocity is performed by assuming equilibrium
between the drag force FD and the centrifugal force FC

FC ≈ FD (5.16)

Vp(ρp − ρl)Ω
2r ≈ 1

2
ApCDρlv

′2 (5.17)

where Ω2r is the centrifugal acceleration, Vp the particle volume, Ap the cross-sectional
area of the particle, CD the drag coefficient, ρp the density of the particles and ρl the
density of the liquid. The drag coefficient CD is a function of the Reynolds number and
thus of v′. For sufficiently low Reynolds numbers, Stokes drag may be assumed

CD =
24

Red

=
24η

ρlv′dp

Red < 0.1 (5.18)

where η is the dynamic viscosity of the liquid. This results in the following equation for
the slip velocity v′, which is in accordance with similar considerations [21, 56]

v′ =
(ρp − ρl)d

2
p

18η
Ω2r (5.19)

At design conditions a particle slip is found of v′/ute = 6.3 · 10−5. This low value of the
slip velocity is mainly caused by the small difference in density between the particles and
that of the liquid. Therefore particle slip can be neglected.

PIV processing options

The interrogation area size has been set at 32 by 32 pixels and an overlap of 50% has
been selected. The digital camera has a resolution of 1280 by 1024 pixels and therefore a
vector field of 80 by 64 vectors is obtained.

In order to determine the velocity vectors, a multi-pass algorithm with a median filter
has been used. Firstly, a correlation is determined based on interrogation areas with a
size of 64 by 64 pixels, followed by 2 further passes for interrogation areas of 32 by 32
pixels. This procedure was found to be adequate and additional passes did not lead to
further improvement of the results, for more details see [2].

Overview of PIV parameters and measurements

The PIV parameters that have been utilized for the measurements are summarized in
table 5.1. These parameters have been used, unless mentioned otherwise.

Measurements have been performed at a rotational speed of 150rpm and for two
horizontal planes in the impeller (see Fig. 5.11). For each plane measurements have been
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performed for 50%, 80%, 100%, 120% and 150% of the design flow rate Qd. Furthermore,
additional measurements have been executed at 75rpm to investigate the influence of the
Reynolds number on the results. Reproducibility measurements have also been carried
out.

Table 5.1: PIV parameters used in the experiments.

parameter value

particle image diameter, dt 1− 2px
magnification number, M0 0.065
time step, ∆t 600µs
focus depth, δz 9mm
light sheet thickness, ∆z 2mm
numerical aperture, f# 4
interrogation area width, DIA 32px
interrogation area overlap 50%
camera resolution 1280− 1024px
particle volume concentration, Cv 1.0 · 10−4

In the next sections certain aspects of the measurements are discussed based on a
so-called reference case. The parameters for this reference case are Q = Qd, z/b = 0.35
(near the hub) and Ω = 150rpm.

5.4 PIV measurement quality

Before presenting all measured velocity fields, the quality of the PIV measurements is
investigated. The measurements are analyzed here for the reference case (Q = Qd, z/b =
0.35 and Ω = 150rpm), unless mentioned otherwise. Firstly, the PIV images and the
corresponding vector fields are considered, followed by an investigation on the possible
occurrence of peak-locking. Subsequently, the time averaging of instantaneous vector
fields is studied. Finally, reproducibility is examined, by executing a second measurement
at the default settings.

5.4.1 PIV images

A typical obtained PIV image of the considered impeller area is displayed in Fig. 5.14.
Downstream of the trailing edge, the view is blurred by the presence of the diffuser screen.
Clearly no reliable results can be expected here. Upstream of the leading edge (in the
center of the right side of the images) the image is not sharp, due to the curvature of the
hub (see also Fig. 5.11). No reliable results are expected here as well. Furthermore, the
trailing edge casts a shadow in the image, which can be seen in the bottom right of the
image. The blades can also be clearly seen in the picture, not only the hub part but also
the shroud parts are visible. Due to reflections no good measurements can be expected
here either.
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Figure 5.14: A typical PIV image of the considered impeller area.

At locations where no good results are expected, i.e. downstream of the trailing edge,
upstream of the leading edge and at the blade locations, the relative velocity components
are not considered and they are set to zero.

By analyzing an image pair (see Fig. 5.14 for one of the images) an instantaneous vector
field of the absolute velocity v is determined using the PIV algorithm and the settings
from table 5.1. Using the image calibration (see section 5.3.3), the relative velocity vector
field w is determined from the absolute velocity vector field v. To illustrate the influence
of the post-processing parameters, one vector field is obtained for a single pass without
median filter and one for multi-pass with median filter. The obtained results are compared
in Fig. 5.15. First of all, it is concluded that the raw vector field of relative velocity is of
acceptable quality for further post-processing, i.e. the number of spurious vectors does not
exceed 5%, which is a rule of thumb frequently used in PIV measurements. By applying
post-processing options, the spurious vectors can be removed and replaced by interpolated
values. For a more extensive investigation into the influence of post-processing options
the reader is referred to [2].

5.4.2 Peak locking

Peak locking or pixel locking occurs when the image size of the seeding particles is smaller
than a single pixel. In that case a bias towards displacements of an integer number of
pixels occurs, since no good sub-pixel interpolations can be performed (see section 5.3.2).
In section 5.3.3 it has been noted that the predicted particle image diameter is slightly
smaller than optimal, ds = 0.95. From the images that have been taken, however, it
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Figure 5.15: The influence of post-processing. An instantaneous relative velocity vector field
for the reference case without (left) and with post-processing (right). The post-processing in-
cludes the use of a median filter and a multi-pass approach, i.e. a single pass for an interrogation
area size of 64 by 64 pixels and two additional passes for an interrogation area size of 32 by 32
pixels.

appears that the particle image diameter is larger than the computed value, 1 − 2px.
Therefore, it is relevant to investigate the quality of the measurements with respect to
peak locking.

In order to investigate this, the probability density function of all occurring displace-
ments of an instantaneous vector field is studied. This is can be done for both the x- and
y-components of the displacement. The results are presented in Fig. 5.16 for an instan-
taneous measurement at the reference settings. It is observed that there are peaks in the
probability density function. However, these peaks do not occur at integer values. Thus
peak-locking does not occur.

To demonstrate the absence of peak locking effects more clearly, it is convenient to
look at decimal values of the pixel displacements. For this purpose the following reduced
displacements are defined

∆x∗ = ∆x− floor(∆x) (5.20)

∆y∗ = ∆y − floor(∆y) (5.21)

where floor(x) is a function which returns the largest integer value smaller than or equal
to the value x. The probability density functions for ∆x∗ and ∆y∗ are shown in Fig. 5.17.
There is practically no bias towards 0 or 1, indicating that peak locking does not occur,
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Figure 5.16: Probability density functions of particle displacements at default settings: the
x-component of the displacement (left) and the y-component of the displacement (right).

and thus that the particle size is not too small, which is supported by analysis of the PIV
images (see Fig. 5.13).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

∆ x* (px)

co
un

ts
 (

−
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

∆ y* (px)

co
un

ts
 (

−
)

Figure 5.17: Probability density functions of reduced particle displacements at default set-
tings. the x-component of the reduced displacement (left) and the y-component of the reduced
displacement (right).

The reason that local maxima are present in the probability density function in
Fig. 5.16, which is seen most clearly for the displacement in y-direction, is attributed
to the fact that three different parts of an impeller channel are visible in the PIV image
(see Fig. 5.14). The channel at the bottom right of the image corresponds to the lowest
displacements in y-direction, the channel in the middle of the image to the middle peak
in y-direction and the the channel in the top-left side of the image to the largest displace-
ments in y-direction. Basically, the probability density function of each separate channel
contributes to a part of the overall probability density function.
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5.4.3 Time averaging

In the flow model it is assumed that the flow field is stationary in the rotating frame, and
also that the turbulence intensity Tu << 1 (see section 2.1.1). Here we will investigate
if these assumptions hold. The unbiased estimator of the standard deviation σ of the
velocity in the plane of measurement is defined here by

σ2
x =

1

n− 1

n∑
i=1

(vi
x − vx)

2 (5.22)

σ2
y =

1

n− 1

n∑
i=1

(vi
y − vy)

2 (5.23)

σ =
√

σ2
x + σ2

y (5.24)

where n is the number of measurements, vi the instantaneous velocity and v the mean
velocity. These root-mean square (rms) values are an indication for both the physical
velocity fluctuations and the error in the measurements. In Fig. 5.18 the non-dimensional
rms-values (σ/ute, with ute the blade speed at the trailing edge) are plotted for the default
measurement in a contour plot for the whole domain and along a circular arc at r/D = 0.4
from pressure to suction side. The circular arc is made up of two channels and its location
is shown in Fig. B.1 in appendix B. Here θ∗ is the distance from pressure to suction side
along the circular arc, i.e. θ∗ = 0 corresponds to the pressure side and θ∗ = 1 to the suction
side. Downstream of the impeller (large radii), upstream of the impeller (small radii) and
at locations where the blades are located, the rms values are very high, indicating a low
accuracy for the measurements there, as has been predicted previously (see section 5.4.1).
These regions are therefore frequently masked out in the vector fields shown subsequently.
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Figure 5.18: rms values σ/ute for the default measurement. A contour plot (left) and the
values from blade to blade along a circular arc at r/D = 0.4 (right).

In pumps typically velocity fluctuations of 5% are encountered for the core flow [31].
The velocity fluctuations for the default measurement are investigated in more detail by
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considering the velocity fluctuations v′ in a single point in the core of the flow, near the
trailing edge. The results are plotted in Fig. 5.19. The velocity measurements are obtained
at a frequency of 2.5Hz (= 150rpm). The rms of the velocity fluctuations is found to be
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Figure 5.19: Velocity fluctuations of the size of the absolute velocity in the horizontal plane
v =

√
v2
x + v2

y at a point in the middle of a channel near the trailing edge for the default settings.

4.6% for this measurement, which is of the same order of magnitude as observed elsewhere
[31].

Concluding, the measured velocity fields can indeed be considered as stationary in the
rotating frame of reference, with moderate velocity fluctuations.

5.4.4 Reproducibility

Following the series of measurements, reproducibility measurements were performed for
the reference case, i.e. Q = Qd, z/b = 0.35 and Ω = 150rpm. To investigate whether
differences occur, the original measurements at the reference settings are compared to
these new measurements. The time-averaged velocity profiles for the original and the
reproducibility measurement at r/D = 0.4 are compared in Fig. 5.20. Clearly, the results
are very similar indeed and the obtained profiles show adequate reproducibility. The
time-averaged velocity profiles are generally within 1%, except near the blades where the
rms values are large (see the right image in Fig. 5.18)).
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Figure 5.20: Comparison of relative velocity profiles obtained from the original and from the
reproduced experiment along a circular arc at r/D = 0.4 for the default settings (Q = Qd,
z/b = 0.35 and Ω = 150rpm). PS and SS indicate the pressure and suction side, respectively.
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5.5 Measurement results for design conditions

In this section the measurements at the design point are presented. For this purpose con-
tour plots of the magnitude of the relative velocity, w =

√
w2

x + w2
y, in the measurement

plane are shown. Streamlines are also plotted for one of the channels. The streamlines are
generated from three starting points, located in the upper part of the plots at y/D = 0.24.
Furthermore, at a radius of r/D = 0.4 the distributions of relative velocity are given from
pressure to suction side along a circular arc in the measurement plane near hub and
shroud. The measured relative velocity vector fields at design conditions near hub and
shroud are also shown in Fig. B.1 and Fig. B.2 in appendix B. Here the circular arc,
along which interpolated data are shown later, is depicted as well. The measurements
performed at the design conditions are considered for 150rpm, which corresponds to a
Reynolds number of number of Re = (ΩD2)/(2ν) = 5.1 · 105.
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Figure 5.21: Measured and computed profiles of relative velocity along a circular arc at r/D =
0.4 for Q = Qd. PS and SS indicate the pressure and suction side, respectively. The profiles
consist of data fromx two impeller channels. The transitions is located at θ∗ = 0.64 near the
hub and at θ∗ = 0.57 near the shroud.

In Fig. 5.22 the time-averaged relative velocity vector fields near the hub and shroud
are compared with the computed results. In both measurements and computations a low
relative velocity is seen, as expected, near the pressure side. Near the hub the relative
velocity increases from pressure to suction side, corresponding to a drop in pressure.

This increase in relative velocity from pressure to suction side is shown even more
clearly in Fig. 5.21a, where the velocity is interpolated to obtain the velocity along a
circular arc of radius r/D = 0.4. This circular arc covers two impeller channels (see
Fig. B.1). Qualitatively, a similar profile is observed, only it is striking that near the
hub the relative velocity is larger than that predicted by the computations. Note that at
the blade surface, i.e. at the pressure side, θ∗ = 0, and at the suction side, θ∗ = 1, of
the blade no measurement results are shown due to the unreliable results near the blade
surface due to the reflections of the blade.
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In Fig. 5.22c and Fig. 5.22d the time-averaged relative velocity vector fields near the
shroud are shown for measurements and computations, respectively. When studying these
contour plots, it is observed that the relative velocity near the pressure side is low for
both the measurements and the computations. However, in the plane near the shroud a
region of low relative velocity is seen in the measurements near the suction side, which
is not found in the computations. It appears that there is a kind of wake formation
at the suction side, for larger radii. In this wake-like region the magnitude of relative
velocity is low, but note that no back-flow occurs here, which is seen from the streamlines
shown for the upper channel, or from the vector plots for the relative velocity shown in
Fig. B.2. This wake-like region can also be considered as a thickened boundary layer.
This phenomenon is not predicted by the computations, and is also not observed in the
measurements performed in the plane near the hub. In Fig. 5.21b the velocity profile near
the shroud is shown at a radius of r/D = 0.4, and here also a drop in the magnitude of
relative velocity in the plane near the suction side becomes apparent.

Due to the large drop in velocity near the shroud suction side, the average velocity in
the plane near the shroud is lower than predicted by the computation. The presence of
the suction side wake at the shroud leads to a blockage effect, which results in an increase
in velocity in regions outside the wake, i.e. at the hub and also at the shroud pressure
side, when compared with the computation.

The velocity profiles shown in Fig. 5.21 are composed of data from two separate
impeller channels (see Fig. B.1) and the transition point between the channels is hard to
spot in Fig. 5.21. Quantitatively, the difference in relative velocity for the transition point,
the point where the data sets meet, is around 1%, which falls within the measurement
uncertainty. Therefore, it is concluded that the velocity profiles in all impeller channels
are indeed identical, as was assumed in the derivation of the flow model presented in
chapter 2.

Not only the magnitude of the relative velocity is of interest, but also its direction.
To this end a flow angle βw is defined as

tan βw =
wr

wθ

(5.25)

This is the angle of the relative velocity vector with the circumferential direction. In
Fig. 5.23 contour plots are shown for the flow angle for measurements and computations
in the plane near hub and the one near the shroud. The flow angle distributions βw seen
in experiment and computation are qualitatively comparable. For a large part of the
considered domain, the flow angles are slightly smaller for the measurements, indicating
that the relative flow is directed slightly more towards the pressure side. This is probably
a result of the presence of the suction side wake area. Note that deviations resulting from
the reflections of laser light at the blades near the shroud side are seen in the measurements
(see also Fig. 5.14).
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(b) computed flow field near hub
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(c) measured flow field near shroud
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(d) computed flow field near shroud

Figure 5.22: Contour plots of measured and computed relative velocity, w/ute, near hub (z/b =
0.35) and shroud (z/b = 0.85) at Q = Qd. Streamlines, with starting points at y/D = 0.24, are
given for the upper channel with a dashed line.
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(a) measured flow angle near hub
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(b) computed flow angle near hub
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(c) measured flow angle near shroud
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(d) computed flow angle near shroud

Figure 5.23: Contour plots of measured and computed flow angle βw in degrees near hub
(z/b = 0.35) and shroud (z/b = 0.85) at Q = Qd.
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5.5.1 Influence of Reynolds number

In the preceding section it has been shown that at 150rpm for design conditions a wake
region of low relative velocity exists in the plane near the shroud, at the suction side.
Before investigating the velocity profiles at off-design conditions, it is interesting to see
if the Reynolds number has an effect on the resulting velocity fields. The wake region
located at suction side is a region of low velocity and hence viscous effects are expected
to be important. The appearance of this thickened boundary layer or wake can thus be
affected by the Reynolds number. In the current setup it was not possible to increase the
rotational speed above 200rpm (see section 5.2.2), therefore it has been chosen to lower
the Reynolds number by a factor of 2. This is achieved by lowering the rotational speed
to 75rpm and changing the design flow rate Qd accordingly, leading to a Re-number of
2.6 · 105. The measurements are carried out in the plane near the shroud (z/b = 0.85),
since this is the region where viscous flow effects are expected to be most important.

In Fig. 5.24 the contour plots for the (dimensionless) relative velocity are compared.
The flow patterns are rather similar indeed, as is also seen from the velocity distribution at
r/D = 0.4 displayed in Fig. 5.25. Note that the dimensionless velocity profiles obtained
from the computations are independent of the Reynolds number, since viscous effects
are not considered in the potential flow model. When examining these figures more
closely, it appears that the wake area is slightly larger for the measurements performed
at 75rpm. However, the effect is rather small. Therefore, it is advised to carry out
similar investigations at rotational speeds at 300 and 600rpm in the future, to investigate
whether this wake area decreases in size for increasing Reynolds numbers. Currently,
these rotational speeds could not be realized with the experimental setup (see section
5.2.2).
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(a) 75rpm
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Figure 5.24: Contour plots of measured relative velocity w/ute at Q = Qd. A comparison
between 75 and 150rpm near the shroud (z/b = 0.85). Streamlines, with starting points at
y/D = 0.24, are given for the upper channel with a dashed line.
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Figure 5.25: Measured profiles of relative velocity along a circular arc at r/D = 0.4 for
Q = Qd near the shroud (z/b = 0.85). A comparison between the results at 75 and 150rpm.
The measured profiles are composed of data from two impeller channels, the transition is at
θ∗ = 0.57.
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5.6 Measurement results at off-design conditions

In this section measurement results at off-design conditions are presented. The measure-
ments have been performed at a rotational speed of 150rpm for flow rates in a range of
0.5Qd < Q < 1.5Qd. The lower flow rates are discussed in sections 5.6.1 and 5.6.2. The
higher flow rates in sections 5.6.3 and 5.6.4.

5.6.1 Q = 0.8Qd

The first off-design flow rate that is considered is Q = 0.8Qd. The computations carried
out for this flow rate have been included in the optimization of the impeller (see section
4.3). The time-averaged results are presented in Fig. 5.27 in the plane near the hub and the
shroud. Compared to the results at the design point, the results obtained at Q = 0.8Qd

show similar features. The measured velocity in the plane near the hub is larger than
predicted by the computations, which is best seen in Fig. 5.26a. For this flow rate, a small
wake can be seen near the trailing edge at the hub side (see Fig. 5.27a), indicating that
for lower flow rates suction side wakes also occur in the plane near the hub. Note that
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Figure 5.26: Measured and computed profiles of relative velocity along a circular arc at r/D =
0.4 for Q = 0.8Qd. The profiles consist of data from two impeller channels, the transition is at
θ∗ = 0.64 for the hub and at θ∗ = 0.57 for the shroud.

the matching of the two data sets in the plane at the shroud is more apparent than for
the design conditions (5% difference, see Fig. 5.26b), indicating that the difference in flow
velocity between the two channels exceeds the frequently encountered values of around
1%.
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(b) computed flow field near hub

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x/D (−)

y/
D

 (
−

)

(c) measured flow field near shroud
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(d) computed flow field near shroud

Figure 5.27: Contour plots of measured and computed relative velocity, w/ute, near hub
(z/b = 0.35) and shroud (z/b = 0.85) at Q = 0.8Qd. Streamlines, with starting points at
y/D = 0.24, are given for the upper channel with a dashed line.
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5.6.2 Q = 0.5Qd

The second off-design flow rate that is considered is that of Q = 0.5Qd. This is already far
off-design and the predictions from the potential flow model are expected to deteriorate
considerably, and this is indeed the case. The measured and computed velocities in both
measurement planes are shown in Fig. 5.29. Moreover, the distribution of relative velocity
magnitude is shown at r/D = 0.4 near hub and shroud in Fig. 5.28. For this low flow
rate, it can clearly be seen that not only at the shroud, but also at the hub a wake region
exists at the suction side of the blade. The existence of low velocities near the suction and
pressure side leads to a flow pattern which in a way resembles a jet: high velocities in the
center of the channel and low velocities near the surfaces of the blade. The low velocity
region at the suction side results in a blockage effect. This in turn causes the velocities
at the pressure side to be higher than predicted by the inviscid flow model. Therefore,
no back-flow region near the pressure side is observed for the measurements, whereas a
small back-flow region at the hub is predicted by the potential flow model, caused by the
counter vortex.

For this flow rate the measured vector fields of relative velocity are shown in appendix
B in Figs. B.3 and B.4 for the plane near the hub and the shroud, respectively. From
these figures it can be seen that the observed suction-side wakes near hub and shroud are
regions of low velocity. However, note that flow-reversal does not occur.
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Figure 5.28: Measured and computed profiles of relative velocity along a circular arc at r/D =
0.4 for for Q = 0.5Qd. The profiles consist of data from two impeller channels, the transition
point is at θ∗ = 0.64 for the hub and at θ∗ = 0.57 for the shroud.
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(b) computed flow field near hub
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(c) measured flow field near shroud
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Figure 5.29: Contour plots of measured and computed relative velocity, w/ute, near hub
(z/b = 0.35) and shroud (z/b = 0.85) at Q = 0.5Qd. Streamlines, with starting points at
y/D = 0.24, are given for the upper channel with a dashed line.
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5.6.3 Q = 1.2Qd

Measurements have also been performed at a flow rate of Q = 1.2Qd, which is one of the
flow rates at which the computed results are used in the optimization (see section 4.3).
For this high flow rate the measured and computed distributions of relative velocity are
shown in the measurement plane near the hub and the shroud in Fig. 5.31. To show the
differences between the measurements and computations more clearly, the velocity profiles
at a radius of r/D = 0.4 are shown in Fig. 5.30. From these results it can be concluded
that the situation is very much comparable to that at the design point, Q = Qd. In the
plane close to the hub larger velocities are measured than predicted, and no wake exists
at the suction side. In the plane near the shroud, a wake region is present at the suction
side. This wake is somewhat smaller than for the design flow rate.
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Figure 5.30: Measured and computed profiles of relative velocity along a circular arc at r/D =
0.4 for Q = 1.2Qd. The profiles consist of data from two impeller channels, the transition is at
θ∗ = 0.64 for the hub and at θ∗ = 0.57 for the shroud.
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(a) measured flow field near hub

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x/D (−)

y/
D

 (
−

)

(b) computed flow field near hub
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(c) measured flow field near shroud
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(d) computed flow field near shroud

Figure 5.31: Contour plots of measured and computed relative velocity, w/ute, near hub
(z/b = 0.35) and shroud (z/b = 0.85) at Q = 1.2Qd. Streamlines, with starting points at
y/D = 0.24, are given for the upper channel with a dashed line.
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5.6.4 Q = 1.5Qd

Finally, measurements have been performed at a flow rate of Q = 1.5Qd and the measured
and computed relative velocities are shown in both planes in Fig. 5.33. The distributions
of relative velocity in the measurement plane near the hub and near the shroud are shown
in Fig. 5.32 at a radius of r/D = 0.4. Again the situation is very much comparable to
that at the design point, Q = Qd and at Q = 1.2Qd. In the plane near the hub larger
velocities are measured than predicted, and no wake exists at the suction side. For the
plane near the shroud, a wake region is present at the suction side. However, it does seem
that the wake region is smaller when compared to the measurements at lower flow rates.
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Figure 5.32: Measured and computed profiles of relative velocity along a circular arc at r/D =
0.4 for Q = 1.5Qd. The profiles consist of data from two impeller channels, the transition is at
θ∗ = 0.64 for the hub and at θ∗ = 0.57 for the shroud.

An interesting observation is that the predictions by the potential flow model at this
flow rate are better than those at Q = 0.5Qd. At Q = 0.5Qd the wakes at the suction side,
both in the plane near the hub and in the plane near the shroud, lead to large differences
between computations and measurements. At high flow rates the suction side wake effects
are much smaller, i.e. they are only present at the shroud and are reduced in size, leading
to smaller differences.
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(b) computed flow field near hub
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(c) measured flow field near shroud
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Figure 5.33: Contour plots of measured and computed relative velocity, w/ute, near hub
(z/b = 0.35) and shroud (z/b = 0.85) at Q = 1.5Qd. Streamlines, with starting points at
y/D = 0.24, are given for the upper channel with a dashed line.
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5.7 Discussion

In sections 5.5 and 5.6 the measurements have been presented and compared to the
computations for design and off-design conditions, respectively. The main observations
for the results at design conditions are

• In the plane near the hub the measured velocity profiles are qualitatively similar
to those predicted by the computations. Low relative velocities are observed at the
pressure side, increasing to high relative velocities at the suction side.

• In the plane near the hub the relative velocities are higher than those predicted by
the computations.

• In the plane near the shroud there is a qualitative difference between measurements
and computations. A region of low velocity is observed at the suction side, which
increases in size towards the trailing edge. This results in a so-called jet-wake flow
pattern.

• The average relative velocity near the shroud is lower than predicted due to the
drop in velocity at the blade suction side.

For off-design conditions it is observed that for higher flow rates, Q > Qd, the same
conclusions can be drawn for the velocity distributions as for design condition Q = Qd.
However, the wakes seem to become smaller for increasing flow rates. For lower flow rates,
Q < Qd, not only in the plane near the shroud, but also in the plane near the hub a region
of low velocity is detected at the suction side. Especially at Q = 0.5 Qd the differences
between computations and experiments are large. The measured velocity profile in the
plane near the shroud at design condition is sketched Fig. 5.34, where it is compared to
the predicted inviscid-flow velocity profile.

The measured relative velocity in the plane near hub and that near the shroud are
plotted in Fig. 5.35 along a circular arc at r/D = 0.4, in order to investigate whether the
suction side wake regions decrease in size with increasing flow rate, where the maximum
velocity for each flow rate considered is indicated by a triangle. From these plots it is
indeed concluded that at the shroud the suction side wake is always present and the size
of the wake at this radius decreases with increasing flow rate. Near the hub the wake
effect is only visible, at this radius, for the lowest considered flow rate.

The observed deviations from the inviscid flow predictions are considered to be caused
by secondary flow effects. Therefore, secondary flow is discussed next, followed by a
comparison with results of impeller flow measurements from literature.

5.7.1 Secondary flow

In this thesis the flow inside impellers is described by the augmented potential flow model
(see chapter 2). This inviscid flow model does not account fully for the presence of
boundary layers near walls. In reality the presence of such boundary layers in impellers
is known to induce flows perpendicular to the main flow. Such flows are referred to as
secondary flows. These secondary flows are the result of wall curvature and impeller
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Figure 5.34: Sketch of the wake with low relative velocity near the suction side, as observed
in the measurements in the plane near the shroud at design condition (left) compared with a
sketch of an inviscid flow pattern (right). PS indicates the pressure and SS the suction side of
the blade.
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Figure 5.35: Measured profiles of relative velocity in the plane near hub (z/b = 0.35) and near
the shroud (z/b = 0.85) along a circular arc at r/D = 0.4 for different flow rates. The triangles
indicate the locations of maximum velocity. The measured profiles consist of data from two
impeller channels, the transition is at θ∗ = 0.64 for the hub and at θ∗ = 0.57 for the shroud.

rotation. For centrifugal impellers two wall curvatures are important, i.e. the axial-to-
radial turn at the shroud and the blade curvature. Overviews of secondary flows are given
in [11] and more specifically for turbomachines in [15]. The secondary flows that occur in
the present measurements are discussed here.

Before discussing the secondary flow effects occurring in the impeller a definition of
directions is given in Fig. 5.36. Here a quasi 2D boundary layer is sketched on a wall
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Figure 5.36: A boundary layer on a wall. s is in the direction of the main flow, y is normal to
the wall and n is normal to s and y.

surface. The main flow is in s-direction. The y-direction is directed normal to the wall
surface. Finally, the n-direction is normal to the s- and y-direction. These directions are
used in the subsequent paragraphs.

The first secondary flow effect that might play a role is caused by the axial-to-radial
curvature at the shroud. For this purpose we will consider the influence of this curvature
on the flow in the boundary layers at the blade pressure and suction side. A fluid particle in
a local frame of reference moving along the axial-to-radial turn will experience a centrifugal
force which is in balance with the pressure gradient [11]

∂p

∂n
=

ρw2

RC

(5.26)

where RC is the radius of curvature of the stream line and w the relative velocity. In-
side the boundary layer the pressure gradient ∂p/∂n does not vary in the y-direction, i.e.
normal to the wall [11]. Since the velocity w is lower inside the pressure and suction side
boundary layers, the radius of curvature RC must also be smaller to satisfy Eqn. (5.26),
with ∂p/∂n = constant. The result is that inside the boundary layers at pressure and
suction side a secondary flow is induced towards the shroud. In other words, low mo-
mentum fluid is carried from the pressure and suction side boundary layers towards the
shroud. This secondary flow phenomenon caused by the axial-to-radial turn is sketched
in Fig. 5.37 in situation a, and is considered to be responsible for the low velocities near
the shroud, observed in the measurements.

The second secondary flow effect that is considered is that of blade curvature. In this
situation the influence of the boundary layers at the hub and shroud are considered. In
this case n is in the direction from pressure to suction side. For similar considerations as
described in the previous paragraph, a fluid element inside the hub and shroud boundary
layers will move to a smaller radius of curvature, due to the low velocity inside the
boundary layers. This means that fluid particles will tend to move towards the blade
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(a) axial-to-radial turn effect (b) blade curvature effect

(c) impeller rotation effect

Figure 5.37: Secondary flow phenomena in centrifugal pump impellers, schematic frontal view
of an impeller channel. Picture after [48]. PS indicates the pressure side and SS the suction
side, respectively.

pressure side for backward curved blades. This situation is sketched partly in Fig. 5.37
situation c, together with another secondary flow effect which counteracts this blade
curvature effect, which will be discussed now.

Apart from the blade curvature effect, another important secondary flow effect that
occurs is caused by the impeller rotation. For this purpose an impeller with straight
blades is considered, so that blade curvature plays no role. The secondary flow effect
caused by the boundary layers on the hub and the shroud surface is considered, like for
the blade curvature effect, and therefore n is in the direction from pressure to suction
side. A fluid particle in a rotating frame of reference inside the impeller will experience a
Coriolis force which is in balance with the pressure gradient

∂p

∂n
= −2ρΩw (5.27)

where Ω is the rotational speed of the impeller. The Coriolis force is directed opposite to
the impeller rotation and therefore is directed towards the pressure side. Inside the hub
and shroud boundary layers the relative velocity is lower and hence the Coriolis force is
smaller than in the core flow, since the pressure gradient ∂p/∂n is constant as was stated
previously. Therefore, effectively inside the hub and shroud boundary layers a secondary
flow is induced towards the suction side. This situation is sketched in Fig. 5.37 in situation
b and as one of the effects occurring in situation c.

Note that the impeller rotation thus induces a secondary flow effect contrary to the
effect of blade curvature for backward curved blades. In order to analyze which effect
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is dominant in a particular centrifugal impeller the Rossby number Ro is defined, which
gives the ratio between centrifugal and Coriolis force

Ro =
w

2ΩRC

(5.28)

Note that the factor 2 is sometimes omitted from the definition of the Rossby number.
When Ro << 1 the Coriolis force is dominant and thus the rotational effect is more
pronounced, leading to an average effective flow of low momentum fluid towards the
suction side in the hub and shroud boundary layers. This phenomenon is considered to be
the origin of the wake observed at the suction side, since in the present measurements the
Rossby number varies roughly between 0.3 near the leading edge and 0.2 near the trailing
edge. For most centrifugal pump impellers Ro << 1 and consequently the jet-wake flow
pattern with the wake at the suction side is a frequently observed flow phenomenon.

Summarizing, the axial-to-radial turn induces a secondary flow effect which results in
the transport of low momentum fluid towards the shroud and hence is considered to be
responsible the observed lower relative velocities at the shroud. Secondly, the rotation of
the impeller induces a secondary flow effect, which is dominant over the effect of blade
curvature when Ro << 1. This secondary flow effect transports low momentum fluid
towards the suction side for backward curved blades. The suction-side wake, which is
observed on the plane near the shroud for all flow rates considered and at the hub for low
flow rates, is attributed to this effect. For a more extensive discussion of these secondary
flow effects the reader is reffered to [2].

However, other effects might also contribute to a decrease in velocity at the shroud.
First of all, in the computations it is assumed that a uniform velocity profile is present in
the central tube, upstream of the impeller. Preliminary PIV measurements have shown
that this velocity profile is not as uniform as was expected. This is possibly caused by
the diverging section in the Venturi. The measured profile in the central tube is shown in
Fig. 5.38, where it is included in a sketch of the experimental setup. This profile should
be considered as a qualitative indication, since it was not possible to get a completely
sharp image of the seeding particles and since the velocity profile has not been corrected
for diffraction of scattering light in the radial direction due to the curvature of the tube
wall. This diffraction plays an important role, especially near the walls of the central tube.
Taking these limitations into account, one can still see that the velocity in the center is
higher than near the walls. This can lead to the situation sketched in Fig. 5.38 where the
lower velocity at the shroud is partially caused by the low velocity near the wall of the
central tube.

Another phenomenon that might play a roll is that when the fluid moves from the
central tube into the impeller, it has to make a sharp turn along the axial-to-radial turn,
and this could lead to a region of low velocity near the shroud. The measurements have
shown that this is not a separated flow region, since no region with reversed-flow has been
observed.
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Figure 5.38: Sketch of the measured velocity profile in the central tube showing the influence
on the velocity profile in the impeller.

5.7.2 Comparison with literature

In this section velocity measurements from literature are compared with the results
of the present measurements. It is investigated if similar flow patterns due to secondary
flow effects have been observed. Note that the focus is here on general velocity measure-
ments in impellers, whereas the focus in section 5.3.1 is on PIV measurements specifically.
Distributions of relative velocity from literature are used here for comparison; they are
summarized in appendix C.

Van Os [47] performed Laser Doppler Velocimetry (LDV) measurements in a mixed-
flow impeller. He measured the velocity profiles in 6 planes, more or less perpendicular to
the main stream, from leading to trailing edge (see Fig. C.1). For the two planes closest
to the trailing edge he reports a strong decrease of the velocity at the shroud suction
side for the design flow rate. Furthermore, from measurements performed at off-design
conditions he concludes that the location at which this wake area starts to form moves
downstream for increasing flow rates, but that it never disappears completely. This is in
accordance with the conclusion from the present measurements: the wake area decreases
in size for increasing flow rate.

The LDV measurements by Eckardt [28] in a compressor impeller without back sweep
(straight blades) also support the formation of a wake-like region without reversed flow
at the suction side near the shroud, as is shown in Fig. C.2. Krain [44] performed mea-
surements in a compressor impeller with backward curved blades and also reports lower
velocities at the shroud surface. However, the wake formation at the suction side of that
shroud side is not observed, but rather a region of low velocity in the center of the channel,
see Fig. C.3.
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Furthermore, Wuibaut et al. [77, 78] also report the existence of a wake region near
the shroud suction side for the radial SHF impeller, both for PIV experiments in air and
for LDV measurements in water (see Fig. C.5). The LDV measurements presented by
Visser [69] carried out in a fifteen bladed radial impeller are shown in Fig. C.6. These
measurements are carried out at mid-height between hub and shroud. The formation of
a suction-side wake is clearly observed.

Concluding, the general deviations observed from inviscid flow predictions in our mea-
surements, are also observed in literature and are therefore of a general character. Most
authors report the suction side wake formation, which is most pronounced at the shroud.
As discussed, these effects are considered to be the result of secondary flow effects. These
effects, which have a viscous origin, are not included in the inviscid flow model used in
this thesis.
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5.8 Conclusions and recommendations

A newly designed setup for testing centrifugal pump impellers has been designed and re-
alized. The setup is largely transparent so that detailed flow phenomena can be measured
by use of PIV.

The setup in its current state has an operating range of up to 200rpm and flow rates up
to twice the design flow rate can be realized at the rotational speed considered. The flow
rate is measured with a calibrated Venturi flow meter. At the design flow rate there is a
3−4% discrepancy between the flow rate predicted by the measured pressure difference of
taps 1 and 2 and that predicted using the values measured at taps 2 and 3. The pressure
taps 1 and 2 are used for flow rate prediction in the measurements, since the influence of
the impeller is expected to be smallest there. The static pump head has been measured
and compared to the inviscid-flow computation. There is a small difference between the
measured and computed inviscid-flow static head. This can be attributed to effects of
viscosity, which are not considered in the inviscid flow model.

PIV measurements have been carried out successfully in the optimized impeller. The
velocity fields do not exhibit peak locking and the time-averaged velocity profiles show a
good match between different impeller channels. Hence, the free impeller assumption, in
which only a single impeller channel is considered for the flow computation, is validated.
Typical velocity patterns occurring in turbomachines, with a low relative velocity at the
pressure side and a high relative velocity at the suction side have indeed been measured.
The relative velocity at the hub is somewhat higher than predicted by the computations.
The relative velocity at the shroud is somewhat lower than predicted, especially near the
suction side where a region of low relative velocity is present. This region is labeled a
wake region. The lower velocity at the shroud is mainly attributed to secondary flow
effects caused by the axial-to-radial turn of the flow channel. The suction-side wake is
accounted for by the secondary flow caused by impeller rotation. The general observed
flow patterns are supported by various sources from literature.

For future measurements it is advised to create a more uniform velocity profile in the
central tube upstream of the impeller. This can be facilitated by inserting an extra flow
straightener in the Venturi following the diverging section or by redesigning parts of the
central tube. It is also recommended to reduce the circulation in the main vessel by
inserting vertical plates.

Furthermore, it is advisable to perform more PIV measurements in planes between
hub and shroud. In this thesis only 2 planes are considered, one near the hub and one
near the shroud. This was largely due to time restrictions. By measuring at more heights
between hub an shroud a more detailed view of the impeller flow is obtained.

Moreover, in order to measure the velocity profile in the central tube more accurately,
it is advised to use a rectangular water prism, so that diffraction of light is less of an issue.
In this way a quantitative estimation of the flow rate can also be achieved and used to
investigate which combination of pressure taps gives the best flow rate prediction.

It is strongly recommended to carry out measurements at higher Reynolds numbers
by increasing the rotational speed. Currently, this could not be done due to the entrap-
ment of bubbles in the setup. From the comparison between measurements carried out at
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75rpm and those performed at 150rpm it did appear that the wake area decreases some-
what in size with increasing Reynolds numbers. However, the difference is only small.
More measurements are needed to investigate whether the suction side wake area indeed
decreases in size with increasing Reynolds number. This is relevant since industrial im-
pellers generally operate at higher Reynolds numbers than those considered in the present
measurements.

Concluding, the potential flow model is capable of predicting flow behavior inside the
impeller reasonably well. Global parameters like static pump head can be estimated quite
well. The general flow phenomenon of low relative velocity at the pressure side and high
relative velocity at the suction side, caused by the counter-vortex, are indeed measured.
However, detailed flow phenomena caused by secondary flow effects, like the encountered
wake at the shroud suction side can not be predicted with this model. To capture such
phenomena a secondary flow model has to be added to the potential flow model, or a
more detailed viscous flow model, with appropriate turbulence model, is needed. The
boundary layer losses predicted by the augmented potential flow model, using a semi-
empirical relation, is likely to be too low, since in reality the boundary layers are thicker
than expected.



CHAPTER 6

Discussion

In this chapter the conclusions from the previous chapters are summarized and recom-
mendations for further research are formulated. The main goal of this work has been to
develop CFD-based design methods for turbomachine impellers that are based on results
of flow computations. For this purpose two methods have been developed: an inverse-
design method, see chapter 3 and an optimization method for centrifugal impellers, see
chapter 4. Both design methods make use of the augmented potential flow model to
describe the hydrodynamics inside an impeller. This flow model has been introduced in
chapter 2 of this thesis. The potential flow model is an inviscid flow model and does not
consider viscous effects directly. Therefore, measurements have been performed in an op-
timized impeller to validate the velocity profiles computed by the potential-flow method.
Particle Image Velocimetry (PIV) measurements have been carried out for this purpose,
see chapter 5.

A major advantage of the inverse-design method is that the three-dimensional blade
curvature distribution is obtained, that gives the prescribed performance. By prescribing
an appropriate loading function, a three-dimensional impeller geometry is obtained with
zero-incidence at the leading edge and with the pump head prescribed by the designer. It
has been shown in chapter 3 that by shifting the prescribed loading towards the leading
or trailing edge, performance parameters like boundary-layer losses, velocity loading and
cavitation inception can be improved. The improvement of these performance parameters,
by modifying the loading distribution, can also be carried out automatically by making
use of an optimization method, leading to a so-called inverse-optimization which is put
forward in chapter 4 in section 4.4.

An interesting situation that might occur is that a designer tries to increase the pump
head of a certain impeller using an inverse-design method, simply by changing the pre-
scribed pump head. However, one needs to consider that by changing the pump head
drastically, ideally a different meridional shape has to be selected as well, due to the
change in specific speed. In the inverse-design method only the blade curvature distribu-
tion is modified however, and the meridional geometry is fixed. Therefore it is important

145
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that a designer always takes a critical look at the obtained inversely-designed impeller
blades.

A possible future addition to the inverse-design method is the use of a prescribed
thickness distribution instead of considering blades with zero thickness as done here. A
first step in this direction has been made by Bijleveld [5], who implemented a prescribed
blade thickness distribution for two-dimensional geometries. The current method uses a
structured mesh generator. It is likely that an unstructured 3D mesh generator is needed
for this purpose. Furthermore, in chapter 3 it has been shown that the inverse-design
method is first order accurate due to the low accuracy of the velocity determination near
domain boundaries, using the superconvergent patch recovery method. Therefore, it is
recommended to improve this recovery technique or use a different method in order to
increase the order of accuracy of the inverse-design method.

The direct optimization method for centrifugal pump impellers has been shown to be
an extremely useful tool in the design of impellers. The utilized optimization algorithm
is the Differential Evolution (DE) method. By including relevant geometrical aspects in
the parameterization and formulating a cost function based on performance parameters
of interest, impellers are obtained with increased performance for a specified operational
range. In chapter 4 an existing radial pump impeller has been redesigned using the de-
veloped optimization method. The included parameters describe the blade and shroud
curvature, as well as the number of blades of the impeller. Other geometric parameters can
be added easily to such optimizations. For instance hub curvature, leading edge location,
blade thickness distribution, or blade stacking at the trailing edge might be considered.
The objectives included in the cost function were the pump head, boundary-layer losses
and cavitation parameters. Other objectives can be added as well, such as the maximum
velocity loading on the blades or the size of the through flow area, which is an important
design objective for dredge pumps. The selection of weight coefficients for the (conflict-
ing) objectives and bounded ranges for the parameters is a delicate procedure, which
determines the possible outcome of the optimization process. Therefore, the designer has
to choose these wisely.

The optimization method can be improved further by including a response surface
method or an artificial neural network for the description of the cost function, see for
example [23, 34, 57]. By using such a method, an approximation of the cost function is
obtained, which can be optimized at low computational cost. Therefore, by utilizing such
methods, the required flow computations can be reduced significantly. Furthermore, in
the direct optimization impeller geometries with back-flow are penalized with a back-flow
factor, which is currently of the on/off type. It might be considered for future optimiza-
tions to quantify this back-flow effect in more detail, for example by considering the size
of the back-flow region in the impeller. Moreover, in the current formulation of the cost
function the objectives are summed into a lumped cost function. It might be considered
for future optimizations to perform true multi-objective optimizations considering Pareto
fronts [1].

It is interesting to make a comparison between both developed design methods and
give an overview of advantages and disadvantages of each of the methods. These are
summarized below
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• The inverse-design method requires much less computational effort when compared
to the direct optimization method.

• The pump head needs to be included in the direct optimization method in the cost
function, while this is not the case for the inverse-design method.

• Off-design performance is taken into account in the direct optimization method.
This is not the case for the inverse-design method.

• The optimization method is more flexible, i.e. additional parameters and objec-
tives can be added easily, whereas the inverse-design method only considers blade
curvature.

Each of the developed methods has its advantages and might be used at a certain
point in the design process. For example, the optimization method might be used for a
complete design of the impeller, with the focus on the meridional shape and the number
of blades. The optimized meridional shape and number of blades might then be used
as input for the inverse-design method, in order to find the blade curvature distribution.
For a fast inverse analysis the designer may also consider the quasi three-dimensional
approach, which only requires a single flow computation (see section 3.3.1).

The PIV measurements presented in chapter 5 show that the potential flow model
gives a reasonable prediction of the flow field inside centrifugal impellers and predicts
the static pump head quite well, apart from a small difference due to viscous flow effects.
However, secondary flow effects, resulting from viscous effects inside boundary-layers near
walls, also play an important role in the hydrodynamics in impellers. These secondary
flow effects lead to the formation of a wake at the suction side, which is most pronounced
near the shroud. This wake region results in a blockage effect of the flow, which in turn
leads to an increase in velocities outside the wake region. Similar observations have been
made by other authors in literature and it is concluded that these secondary flow effects
are frequently present in turbomachines and that for a good detailed description of the
flow inside the impellers these effects need to be accounted for. In the current inviscid
flow model they are not considered. Therefore, it is advised that for future work either
the potential flow model is extended with a secondary flow model or that a transition is
made to a viscous flow model, for example a Reynolds-Averaged Navier Stokes (RANS)
method. Using a RANS method instead of an inviscid flow analysis will lead to a drastic
increase in computational effort, and should only be carried out when needed.

In this work boundary-layer losses are estimated based on the computed inviscid flow
fields by a semi-empirical relation, that uses the potential-flow field as input. The use of
this approach is justified because the boundary-layers are relatively thin due to the high
Reynolds numbers. However, the measurements have shown that the suction side wake
comprises a relative large part of an impeller channel. This will most likely lead to larger
boundary-layer losses than predicted by the semi-empirical relation which is used here.

The tested impeller has been optimized based on global parameters, i.e. pump head,
boundary-layer losses and cavitation characteristics. In the current setup only the (static)
pump head has been measured and a reasonable agreement was found between prediction
and measurements. Since the optimized impeller is mainly improved with respect to
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cavitation parameters, it is advised to measure these characteristics as well and, if possible,
also the efficiency of the impeller. The deviation from inviscid flow predictions is most
pronounced at larger radii. Cavitation occurs generally at lower radii, since the pressure
increases from leading to trailing edge. Therefore it is expected that the deviations from
the flow model will not have a large influence on the predicted cavitation coefficients. A
marked difference is expected in predicted and occurring boundary-layer losses however,
since the boundary-layers due to secondary flow effects are relatively thick and most likely
will lead to an increase in boundary-layer losses.

The employed potential-flow method is just one building block of the optimization
method, used to describe the hydrodynamics inside the impeller and to calculate the cost
function. This building block can easily be replaced by a different flow prediction method,
which gives a more accurate description of the flow. For the optimization method there
are thus ways to combine the advantages of a fast inviscid flow computation and a slower
but more realistic viscous flow analysis by carrying out a limited number of viscous flow
computations alongside the inviscid flow computations. Such an approach is labeled as
a multi-fidelity method, see for example [4, 34]. As was referred to in the optimization
chapter, the use of a response surface method or neural network can also be used to reduce
the number of flow computations needed even further.

In the opinion of the author the use of computer-aided design methods will become
more and more important in the coming decades. In the earlier stages of a design process,
it is probably sufficient to use an inviscid flow model for this purpose. In this stage the
developed inverse-design method and optimization method in their current state can play
a role. For the final design stage, a flow model is needed which incorporates effects due
to viscosity.

Finally it has to be noted that in this thesis the focus is on impeller design, whereas in
reality the design of both impeller and diffuser are of importance. For some applications
it might be desirable to carry out a combined design of impeller and diffuser, rather than
splitting the design process in two separate parts. This is especially relevant at off-design
conditions where complex flow features of the diffuser may influence the hydrodynamics
in the impeller or vice versa.
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APPENDIX A

Sensitivity analysis of optimization parameters

In chapter 4 an optimization has been performed for a radial centrifugal pump impeller.
In order to determine the influence of the optimization parameters and to investigate how
optimal this design is, changes are made in these parameters to investigate the influence
on the performance of the impeller. Firstly, the parameters describing the blade curvature
are investigated. Secondly, the influence of the shroud curve parameters are discussed.
Finally, the influence of the number of blades on the obtained optimum is studied.

The blade curvature is described by 10 (blade angle) parameters (see section 4.3.2). In
order to investigate the influence of the blade curvature, all blade angle parameters of the
optimum are changed by the same ∆β∗ and the cost function is computed. The results are
listed in table A.1. When the blade angle is increased, i.e. the blade becomes straighter,

Table A.1: Influence of blade curvature on the cost function

∆β∗ F Σcψfψ Σcζfζ Σcκ,wfκ,w Σcκ,ifκ,i back-flow?
−2 1.68 0.02 0.74 0.60 0.35 no
−1 1.42 0.00 0.65 0.55 0.21 no

0 1.35 0.00 0.59 0.58 0.18 no

1 2.48 0.00 0.55 0.78 0.19 0.8Qd

2 3.26 0.00 0.52 1.05 0.30 0.8Qd

back-flow occurs at an earlier stage, and hence the cost function becomes very high.
When the blade angle is reduced, i.e. the blade becomes more curved, most performance
characteristics become less beneficial. Furthermore, by decreasing the blade angle, the
pump head is lowered, and for ∆β∗ = −2◦ it can be seen that the head coefficient is
smaller than the target. It is concluded that the found optimum is not improved by
changing the blade curvature and that with respect to the blade curvature the design is
indeed optimal for the current parameterization and formulation of the cost function.

The influence of changing the shroud curvature of the optimum is investigated by
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changing ∆z1. By changing this parameter, the width of the impeller is either decreased
or increased when compared to the optimum. Results are given in table A.2. When
the width of the impeller is increased, the relative velocity becomes smaller, resulting in
lower boundary layer losses, but also a higher possibility for back-flow at the lower flow
rate considered, leading to high values for the cost function. This effect can be clearly
seen from table A.2. When the width of the impeller is decreased, the relative velocities
increase, leading to higher boundary layer losses and lower pump heads. Therefore, it is
concluded that the design is indeed optimal with respect to the shroud curvature for the
selected parameterization and definition of the cost function.

Table A.2: Influence of meridional shroud curve on the cost function

∆z1/D(10−3) F Σwψfψ Σwζfζ Σwκ,wfκ,w Σwκ,ifκ,i back-flow?
−6.3 1.78 0.31 0.70 0.61 0.16 no
−1.3 1.40 0.00 0.64 0.59 0.17 no

3.7 1.35 0.00 0.59 0.58 0.18 no

8.7 2.17 0.00 0.55 0.61 0.18 0.8Qd

13.7 2.17 0.00 0.52 0.62 0.19 0.8Qd

An optimum value of 6 blades is found for the considered bounded range of [4, 6]. In
table A.3 the cost function is shown for a changing number of blades. When the number
of blades is reduced, back flow occurs for those designs at the lower flow rate considered.
Furthermore, the head does not exceed the head target, and hence these geometries are
assigned a large cost function value. When the number of blades is increased the cost
function can become lower than the optimum opt4,6. However, these values are outside
the selected bounded range for the blade count, [4, 6]. As noted in chapter 4, this bounded
range has been selected for experimental reasons, i.e. for a good optical accessibility of
the optimized impeller. Therefore, for the current parameterization (including bounded
range) and formulation of the cost function the optimal number of blades was indeed
found.

Table A.3: Influence of the number of blades on the cost function

Z F Σwψfψ Σwζfζ Σwκ,wfκ,w Σwκ,ifκ,i back-flow?
4 3.68 0.97 0.67 1.04 0.41 0.8Qd

5 2.55 0.25 0.61 0.73 0.22 0.8Qd

6 1.35 0.00 0.59 0.58 0.18 no

7 1.32 0.00 0.60 0.56 0.17 no
8 1.43 0.00 0.62 0.59 0.23 no

From the parameter sensitivity analysis it is noted that for the current selection of
bounded ranges the optimization has converged adequately. Straightforward changes in
the optimization parameters, within the bounded ranges, do not lead to a reduction in
the cost function.



APPENDIX B

Vector plots of relative velocity

In chapter 5 the PIV measurements are presented as contour plots of the magnitude
of the relative velocity in the plane of measurement along with some streamlines. For
a more detailed view of the measured flow fields at design condition (Q = Qd), the
measured relative velocity vector plots are shown near hub and shroud in Fig. B.1 and
B.2, respectively. In these figures a circular arc at r/D = 0.4 spanning two impeller
channels is also shown. This circular arc is used in chapter 5 in order to plot the relative
velocity distribution from pressure to suction side.

The measured relative velocity vector fields are also shown at the lowest flow rate
considered, Q = 0.5Qd, since the largest deviations from potential flow theory occur at
this flow rate. In Fig. B.3 the velocity vector field is shown in the measurement plane near
the hub and in Fig. B.4 it is shown near the shroud. For brevity, the measured reatlive
velocity vector fields at the other considered flow rates are not shown here.
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Figure B.1: Measured relative velocity vector field in a plane near the hub (z/b = 0.35) at
Q = Qd. The circular arc located at r/D = 0.4 and indicated by the dashed line is used in
chapter 5 to plot the relative velocity distribution from pressure to suction side.



161

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x/D (−)

y/
D

 (
−

)

Figure B.2: Measured relative velocity vector field in a plane near the shroud (z/b = 0.85)
at Q = Qd. The circular arc located at r/D = 0.4 and indicated by the dashed line is used in
chapter 5 to plot the relative velocity distribution from pressure to suction side.
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Figure B.3: Measured relative velocity vector field in a plane near the hub (z/b = 0.35) at
Q = 0.5Qd.
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Figure B.4: Measured relative velocity vector field in a plane near the shroud (z/b = 0.85) at
Q = 0.5Qd.





APPENDIX C

Velocity measurements in centrifugal impellers

In this appendix velocity measurements from literature carried out in centrifugal impellers
are shown which are used for comparison with the results of the measurements executed
in this work. This comparison is found in section 5.7.2.

In Fig. C.1 the LDV measurements by Van Os [47] in a mixed flow impeller are shown.
Eckardt [28] performed measurements in a compressor impeller with straight blades and
his results are depicted in Fig. C.2. Furthermore, Krain et al. [44] carried out measure-
ments in a compressor impeller with backward curved blades and the results are displayed
in Fig. C.3. The PIV measurements executed by Pedersen [48] are shown in Fig. C.4.
Wuibaut et al. [78] executed LDV measurements in water and PIV measurements in air
in the radial SHF impeller. The resulting velocity profiles at r/rte = 0.818 are shown
in Fig. C.5. Finally, the LDV measurements in a fifteen bladed impeller carried out by
Visser [69] are presented in Fig. C.6.
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Figure C.1: Velocity distribution measured by Van Os [47] in a mixed flow pump impeller
with LDV.
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Figure C.2: Velocity distribution measured by Eckardt [28] in a compressor impeller with
straight blades with LDV. Picture taken from [15].
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Figure C.3: Velocity distribution measured by Krain et al. [44] in a compressor impeller with
backward curved blades with LDV. Picture taken from [15].
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Figure C.4: Velocity distribution measurements by Pedersen [48] in a radial pump impeller
with PIV.

Figure C.5: Velocity distributions at r/rte = 0.818 measured by Wuibaut et al. [78] with
LDV and PIV. B is the distance from hub to shroud: B/B3 = 0 corresponds to the hub and
B/B3 = 1 corresponds to the shroud.
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Figure C.6: Velocity distribution measured by Visser [69] in a fifteen bladed radial impeller
using LDV. The straight lines indicate computed velocity profiles, whereas the triangles indicate
the measurements.



Acknowledgments

After more than four years I have finished my PhD thesis in the field of fluid mechanics
in turbomachines. It has been a really enjoyable period in my life, and I would not have
been able to finish this work without the help of many people, who I would like to thank
here.

First of all, I would like to thank professor Harry Hoeijmakers for giving me the
chance to do this PhD project. It has been a privilege for me to work with someone,
with such an enormous know how in fluid mechanics. Our monthly meetings were very
useful and always gave me good insight on how to tackle certain problems and how to
proceed further. Also I would like to thank Harry for his contributions and feed-back on
the progress reports, conference papers and this thesis.

Secondly, I would like to thank my mentor Niels Kruyt. It has been a huge pleasure to
work with and learn from Niels, who like Harry has a tremendous knowledge in the field
of fluid mechanics and more specifically also in the field of turbomachines. His door was
always open for my questions and for brain storming sessions on how to address certain
issues. The time he put in initializing the project and in reviewing progress reports,
conference papers and this thesis is enormous, and it is very much appreciated.

Furthermore, during this project I have had the pleasure of working closely together
with three MSc students. I would like to thank Nikolas Antonakis who worked on op-
timization methods for centrifugal pumps. My thanks also goes to Henny Bijleveld who
worked on extending the inverse-design method with different loading functions and using
a prescribed blade thickness. Last but not least, I would like to thank Koen van Andel,
who contributed to building the experimental setup, and performing and evaluating the
PIV measurements.

Designing and building the experimental setup has been the biggest challenge in this
project. I would like to thank Guido Zwart and Chris Vos for designing the setup, and
Chris Vos also for building the setup. Furthermore, I would like to thank Koen van Andel
for building the experimental facility in cooperation with Chris Vos and succeeding in
getting the PIV equipment operational. I still remember the drinks Chris, Koen and
myself had on the day the construction of the setup was finished. It was a very unique
collaboration and a lot of fun as well. My thanks also goes to Herman Stobbe who



helped us greatly with problems that occurred during the building and operation of the
setup. I would like to thank the following people also for their important contributions
to the realization of the setup, Niels Kruyt, Harry Hoeijmakers and Jilles Eindhoven.
Finally, I would like to thank everyone else at the Engineering Technology Department
who contributed to this setup. We got a lot of help from a lot of people within the
Department and that is greatly appreciated.

I want to thank STW for financing this project entitled Inverse-design and optimiza-
tion methods for centrifugal pump impellers and fans (TSF.6157) and also the companies
who were involved in the user committee for this STW project: Flowserve, IHC, Johnson
Pump, Marin, NLR and Urenco Aerospace (Aeronamics). The progress meetings with
the user committee were always very useful and appreciated.

I would like to thank IMPACT for providing the PIV equipment. In particular, I
would like to thank Niels Deen for his help in using the PIV equipment, and his advice on
performing PIV measurements. Also my thanks goes to Wim Leppink and Robert Meijer
for their help with transporting the PIV equipment.

The Engineering Fluid Dynamics group is a really social group of permanent staff,
PhD students and MSc students. The social activities, mainly borrels, were always fun,
and especially the ’AIO vs. student lunch battles’ were really enjoyable. Correct me
if I am wrong, but I think in the end the result was a draw. I would like to thank
my roommates Philip Kelleners, Krzysztof Wrobel and Jesse Slot for the nice working
atmosphere. I would also like to thank my other PhD colleagues Peter van Dijk, Remco
Habing, Jacco Hospers, Rutger IJzermans, Arjen Koop, George Popovici, Ryan Sidin,
Arie Verhoeff, Huseyin Ozdemir, Hein de Vries and Marco van Zoelen. I would also like
to express my gratitude to the permanent staff of the TS group. In particular I would like
to thank our secretary Anjenet Mettivier-Meijer and our system administrator Wouter
den Breeijen for helping me with various matters.

Last but not least, I would like to thank my family and friends for their support
and interest during the last four and a half years. In particular I would like to thank
my parents, Anne and Betty, and my brother and sisters, Anja, Linda, Christiaan and
Marijke for their interest.



About the author

Remko Willem Westra was born on the 14th of December 1976 in Zuidhorn. In 1987 he
moved with his parents to Grou, where he finished primary school in 1989. He completed
his secondary degree in 1995 at the Christelijk Gymnasium in Leeuwarden. In 1995
he started a study of Chemical Engineering at the University of Twente. Part of this
study was an traineeship in 2000 at the Herakles General Cement Company in Volos,
Greece. Here he studied the efficiencies of cyclones and the heat exchange in the rotary
kiln, used for clinker production. In March 2003 he obtained his Master’s degree at the
Fundamentals of Chemical Reaction Engineering group of professor Hans Kuipers. The
topic dealt with the study of the large-scale flow patterns occurring in gas-solid fluidized
beds using the discrete bubble model.

In November 2003 he started his PhD assignment at the Engineering Fluid Dynamics
group of professor Harry Hoeijmakers. The assignment was to develop inverse-design
and optimization methods for turbomachines and perform measurements for validation.
This is the topic of the thesis which lies before you now. Apart from attending several
courses, he presented his work at the ASME 5th International Symposium on Pumping
Machinery in Houston, June 2005, and at the International Symposium on Rotating
Machinery, ISROMAC-12, in Honolulu, February 2008.

173


