
On a Method for Simulation-Based
 Wind Turbine Blade Design

O
n a M

etho
d
 fo
r Sim

ulatio
n-B
ased

 W
ind
 Turb

ine B
lad
e D
esig
n

S. H. Jongsma

S. H
. Jo
ng
sm
a

op vrijdag 11 juli 2014
om 12:45 uur in de

prof. dr. G. Berkhoff-zaal
van gebouw de Waaier
van Universiteit Twente

in Enschede.

Uitnodiging

Sietse Jongsma
Landbouwstraat 23
7545 WR Enschede

s.h.jongsma@utwente.nl
+31 (0)616352327

voor het bijwonen van de
openbare verdediging
van mijn proefschrift

On a Method for
Simulation-Based Wind
Turbine Blade Design

U bent tevens van harte
welkom op de receptie
na afloop van de

promotieplechtigheid.

Voorafgaand aan de
verdediging geef ik
om 12:30 uur een korte
toelichting op mijn
promotieonderzoek.

On a Method for Simulation-Based

Wind Turbine Blade Design

S. H. Jongsma

On a Method for Simulation-Based Wind Turbine Blade Design
S. H. Jongsma

Thesis University of Twente, Enschede, The Netherlands
July 2014
ISBN: 978-90-365-3698-1
DOI: 10.3990/1.9789036536981
http://dx.doi.org/10.3990/1.9789036536981

Cover design: Kay Jongsma

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International Public License, S. H. Jongsma (2014)

ON A METHOD FOR SIMULATION-BASED
WIND TURBINE BLADE DESIGN

PROEFSCHRIFT

ter verkrijgen van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 11 juli 2014 om 12:45 uur

door

Sietse Harmen Jongsma

geboren op 15 april 1985

te Doetinchem, Nederland

Dit proefschrift is goedgekeurd door de promotor:
prof. dr. ir. H. W. M. Hoeijmakers

en de co-promotor:
dr. ir. E. T. A. van der Weide

Summary

W
ind turbines are an important means for the production of renewable energy. This
energy, commonly referred to as wind energy, is produced by extracting the kinetic

energy from the wind and to subsequently convert it, usually via a rotational motion,
to electrical energy. Wind conditions vary from one site to another and the design
of a horizontal axis wind turbine depends on these local wind conditions. One of the
important aspects of the design of a wind turbine concerns the aerodynamic shape of
the rotor blades. The research presented in this thesis focusses on the development of a
computational method that can be used for aerodynamic shape optimization.

Other aspects — apart from the aerodynamic shape of a wind turbine rotor blade —
are also important in the design of a wind turbine, for instance the structural design of the
blade. To take this multidisciplinary character of wind turbine design into account, one
of the aims of the research presented in this thesis has been that the aerodynamic shape
optimization method seamlessly fits into the design process. Moreover, the optimization
method is required to be efficient and fully automatic.

A suitable method for the parametrization of the wind turbine blade geometry has
been investigated. This investigation lead to the choice to use a non-uniform rational
basis spline (NURBS) surface for representing the aerodynamic shape of the wind tur-
bine blade. Such a description of the parametrization of the geometry is compatible
with computer aided design methods, which eases the incorporation of the aerodynamic
shape optimization method in the multidisciplinary design process. A model optimiza-
tion problem has been considered to determine the relation between the number of design
variables that is required to sufficiently accurately represent the design space for solving
an aerodynamic shape optimization problem to the number of design variables that is
required to realize an accurate NURBS representation of an aerodynamic shape. For the
purpose of obtaining a NURBS surface representation of a wind turbine rotor blade, a
fitting procedure has been developed. The accuracy of the resulting fit for two represen-
tative wind turbine blades is presented. It has been found that sufficient accuracy can
be achieved with a NURBS surface described by 13 chordwise sections with 13 control
points each.

In the present research, objective functions are considered for which the evaluation
requires the solution of partial differential equations that govern flow: the Euler equa-
tions. Since only for very particular flow configurations an analytical solution of these
equations can be found, an approximate solution is computed by solving the discretized
equations. Solving the discretized Euler equations requires the discretization of the whole
flow domain. During the optimization procedure, the geometry of the rotor blade adapts,

i

Summary

requiring a discrete representation of the new flow domain. To accommodate the change
in shape during the optimization, a hyperbolic grid generation method has been imple-
mented, which provides a high quality grid in the near-field region of the blade throughout
the optimization process.

In conjunction with the hyperbolic grid generation method, for the remainder of the
computational domain additional grid blocks are used that are allowed to overlap. This
approach — commonly referred to as a composite overset grid strategy — requires that
the flow solution is transferred between grid blocks in the regions of overlap. To determine
the so-called connectivity information, required for transferring the flow solution, an
implicit hole cutting method is used.

A solution to the Euler equations for steady flow — for a flow domain, discretized
by means of a structured composite overset grid — is obtained, using a cell-centred
second-order finite volume method. Steady-state solutions are computed using Newton’s
method. The initial guess required for Newton’s method is obtained by performing a
series of explicit Runge-Kutta pseudo-time steps. The order of accuracy of the numerical
method is verified, furthermore the numerical method is validated against experimental
results.

For the aerodynamic shape optimization method a gradient-based approach is adopted
to allow for the use of a large number of design variables, while keeping the number of
times the objective function must be evaluated limited. The discrete adjoint equation
method is used to efficiently compute the total derivative of the objective function with
respect to all design variables. Dual number arithmetic is employed to compute partial
derivatives. By using template functions and graph vertex colouring a method is realized
that can be used for efficiently computing partial derivatives that are fully consistent with
the associated function. Moreover, this approach eliminates the need for creating new
functions for computing these partial derivatives. Consistency of the derivatives, com-
puted by means of the adjoint equation method, has been demonstrated by comparison
with the derivatives computed using a different method.

An optimization framework has been developed by coupling the different components
implemented in the present research to a gradient-based optimizer. Subsequently, two
different optimization problems have been considered. One problem involves the reduction
of the drag for a swept wing subject to transonic flow conditions. The other problem
concerns the maximization of the wing span efficiency for a wing subject to subcritical
flow conditions. The results show that the method is robust and can be used to effectively
solve such aerodynamic shape optimization problems. However, it is also found that a
more careful consideration of the constraints used might be required to increase the
feasibility of the optimal aerodynamic shape that is obtained.

Subsequently, a discussion is presented on solving aerodynamic shape optimization
problems involving a wind turbine rotor blade. For that purpose, possible objective
functions for the present optimization framework are discussed. Moreover, the issues
that arose solving the optimization problem for a wind turbine blade are identified and
suggestions are put forward for resolving these issues.

ii

Samenvatting

V
oor het opwekken van duurzame energie levert de windturbine een belangrijke
bijdrage. De zogenaamde windenergie die hiermee wordt geproduceerd, wordt

opgewekt door de kinetische energie — ook wel bewegingsenergie genaamd — uit de
wind te winnen. Dit gebeurt door een roterende beweging om te zetten in elektrische
energie. Op verschillende geografische locaties heersen verschillende windomstandighe-
den en het ontwerp van een windturbine is afhankelijk van deze omstandigheden. Een
belangrijk aspect bij het ontwerp van een windturbine betreft de aerodynamische vorm
van het rotorblad. Het onderzoek dat in dit proefschrift wordt gepresenteerd, richt zich
op het ontwikkelen van een rekenmethode die gebruikt kan worden voor aerodynamische
optimalisatie van windturbinebladen.

Andere dan aerodynamische aspecten zijn ook belangrijk bij het ontwerp van een
windturbine, bijvoorbeeld het constructietechnische ontwerp van het rotorblad. Eén van
de doelen van het onderzoek dat in dit proefschrift wordt gepresenteerd is dat de me-
thode voor het aerodynamische bladontwerp zo naadloos mogelijk in te passen is in het
multidisciplinaire ontwerpproces. Daarnaast moet de optimalisatiemethode efficiënt en
volledig automatisch zijn.

Na onderzoek naar een geschikte parametrisatiemethode voor de geometrie van het
windturbineblad is er gekozen om gebruik te maken van het niet-uniforme rationale ba-
sis spline (NURBS) oppervlak om de aerodynamische bladvorm van het windturbineblad
te representeren. Een dergelijke beschrijving van de parametrisatie van de geometrie
is verenigbaar met zogenaamde CAD methoden, waardoor het opnemen van de aero-
dynamische optimalisatiemethode in het multidisciplinaire ontwerpproces wordt verge-
makkelijkt. Er is een modeloptimalisatievraagstuk beschouwd om te bepalen welk ver-
band er bestaat tussen het aantal ontwerpvariabelen dat nodig is om de ontwerpruimte
voldoende nauwkeurig te beschrijven voor het succesvol oplossen van een aerodynamisch
optimalisatievraagstuk en het aantal ontwerpvariabelen dat nodig is voor een nauwkeurige
NURBS representatie van een aerodynamische vorm. Om een NURBS oppervlak repre-
sentatie van een windturbineblad te verkrijgen, is er een rekenmethode ontwikkeld die
passende waarden voor de NURBS parameters bepaalt, zodanig dat het NURBS opper-
vlak de oorspronkelijke bladvorm nauwkeurig benadert. De nauwkeurigheid waarmee het
NURBS oppervlak de referentiegeometrie benadert, is gepresenteerd voor twee represen-
tatieve windturbinebladen. Daaruit blijkt, dat voldoende nauwkeurigheid kan worden
behaald met een NURBS oppervlak dat bestaat uit doorsnedes, ter plaatse van 13 sta-
tions langs de spanwijdte. Elke sectie heeft 13 controlepunten.

In het onderhavige onderzoek zijn doelfuncties beschouwd, waarvoor de oplossing

iii

Samenvatting

nodig is van partiële differentiaalvergelijkingen die de stroming beschrijven: de Euler
vergelijkingen. Een benadering van de oplossing van deze vergelijkingen wordt bepaald
door middel van het oplossen van de gediscretiseerde vergelijkingen. Voor het oplossen
van de gediscretiseerde Euler vergelijkingen is discretisatie van het volledige stromings-
domein noodzakelijk. Tijdens het optimalisatieproces wordt de vorm van het rotorblad
aangepast, zodat er telkens een nieuwe discretisatie van het rekendomein nodig is. Om
hierin te voorzien, is er een hyperbolische rekenroostergeneratiemethode geïmplementeerd
die voor elke stap in het optimalisatieproces een rekenrooster van hoge kwaliteit kan ver-
schaffen, met name in het deel van het stromingsdomein in de buurt van het oppervlak
van het rotorblad.

In combinatie met de hyperbolische rekenroostergeneratiemethode, toegepast in de
buurt van het blad, is er gebruik gemaakt van extra rekenroosterblokken in het resterende
deel van het rekendomein waarbij overlap van de verschillende blokken is toegestaan.
Deze aanpak — die meestal wordt aangeduid met de Engelse term ‘composite overset
grid ’ strategie — vereist, dat in het gebied waar blokken elkaar overlappen, de stro-
mingsoplossing wordt overgedragen tussen de verschillende rekenroosterblokken. Om de
zogenaamde verbindingsinformatie te bepalen, die nodig is om de stromingsoplossing te
kunnen overdragen, is er gebruik gemaakt van een zogenaamde implicit hole cutting
methode.

Een oplossing van de Euler vergelijkingen voor stationaire stroming — voor een
stromingsdomein gediscretiseerd door middel van een gestructureerd composite overset
rekenrooster — is verkregen door gebruik te maken van een celgecentreerde tweede-orde
eindige-volume methode. Stationaire oplossingen worden berekend door gebruik te maken
van de methode van Newton. De geschikte beginoplossing die nodig is voor de methode
van Newton wordt verkregen door een reeks expliciete Runge-Kutta pseudotijdstappen
uit te voeren. De orde van nauwkeurigheid van de numerieke methode is geverifiëerd en
bovendien is de numerieke methode gevalideerd, door de resultaten van de numerieke
methode te vergelijken met uit de literatuur verkregen resultaten van een experiment.

Voor de aerodynamische vormoptimalisatiemethode wordt een gradiënt-gebaseerde
aanpak toegepast, zodat er gebruik gemaakt kan worden van een groot aantal ontwerp-
variabelen, terwijl het benodigde aantal bepalingen van de doelfunctie beperkt blijft.
De discrete geadjungeerde vergelijking-methode wordt gebruikt, om efficiënt de totale
afgeleide van de doelfunctie naar alle ontwerpvariabelen te bepalen. Er is gebruik gemaakt
van duale getallen rekenkunde om de partiële afgeleiden te bepalen. Door het toepassen
van sjabloon functies en de knopenkleuring van grafen is er een methode ontwikkeld,
die kan worden gebruikt om op een efficiënte wijze partiële afgeleiden te berekenen die
volledig consistent zijn met de bijbehorende functie. Bovendien vermijdt deze aanpak
de noodzaak om een nieuwe functie te gebruiken waarmee de partiële afgeleiden kunnen
worden bepaald. Verder is er aangetoond dat de afgeleiden die berekend zijn met behulp
van de geadjungeerde vergelijking-methode consistent zijn met afgeleiden die door een
andere methode zijn bepaald.

Er is een optimalisatiekader ontwikkeld, door de verschillende onderdelen die geïmple-
menteerd zijn te koppelen aan een gradiënt-gebaseerd optimalisatiealgoritme. Vervolgens
zijn er twee verschillende vormoptimalisatievraagstukken beschouwd. Het ene vraagstuk
betreft de reductie van de weerstand van een pijlvleugel in transone stromingscondities.
Het tweede vraagstuk heeft betrekking op de maximalisatie van de vleugelspanwijdte-
efficiëntie voor een vleugel die onderhevig is aan subcritische stromingscondities. De

iv

Samenvatting

resultaten laten zien dat de methode robuust is en kan worden gebruikt om op een
effectieve manier aerodynamische vormoptimalisatievraagstukken op te lossen.

Vervolgens wordt het oplossen van een vormoptimalisatievraagstuk besproken, dat
betrekking heeft op een windturbinerotorblad. Mogelijke doelfuncties zijn bediscussieerd.
Verder zijn de problemen die optreden bij het oplossen van een optimalisatievraagstuk
voor een windturbineblad geïdentificeerd en er worden suggesties gedaan voor het oplossen
van de betreffende kwesties.

v

Contents

Summary i

Samenvatting iii

Contents vii

Nomenclature and notation xi

1 Introduction 1

1.1 Objectives . 2
1.2 Wind turbine blade design . 2
1.3 Flow model . 2

1.3.1 Discretization method . 3
1.4 Flow domain discretization . 3

1.4.1 Overset grids . 5
1.5 Optimization . 5

1.5.1 Optimization methods . 5
1.5.2 Parametrization method . 6

1.6 Sensitivity analysis . 7
1.6.1 Analytical differentiation . 7
1.6.2 Finite-difference approximation 7
1.6.3 Complex-step finite-difference method 9
1.6.4 Dual number method . 10
1.6.5 Algorithmic differentiation . 10
1.6.6 Adjoint equation method . 12
1.6.7 Approach . 13

1.7 Implementation on parallel computers 14
1.8 Related work . 14
1.9 Thesis outline . 16

2 Shape parametrization 17

2.1 Introduction . 17
2.1.1 Requirements . 17
2.1.2 Methods employed in aerodynamic shape optimization 18
2.1.3 Considerations . 21

vii

Contents

2.2 Non-uniform rational basis spline surface 21
2.2.1 Basis spline curve . 21
2.2.2 Rational basis spline curve . 24
2.2.3 NURBS surface . 24

2.3 Aerofoil parametrization with NURBS curve 25
2.3.1 Aerofoil optimization . 26

2.4 Parametrization of the wind turbine rotor blade 29
2.5 Summary . 31

3 Flow domain discretization 33

3.1 Introduction . 33
3.1.1 Requirements . 34
3.1.2 Considerations . 34

3.2 Surface grid generation . 35
3.2.1 Vertex distribution on boundary curves 35
3.2.2 Transfinite interpolation . 38
3.2.3 Elliptical surface grid generation 40

3.3 Field grid generation . 43
3.3.1 Hyperbolic field grid equations 43
3.3.2 Spatial discretization . 43
3.3.3 Implementation details . 45
3.3.4 Boundary conditions . 48

3.4 Background grids . 49
3.4.1 Cartesian . 49
3.4.2 Cylindrical . 50
3.4.3 Rhombus . 50

3.5 Summary and results . 50

4 Overset block connectivity 53

4.1 Introduction . 53
4.1.1 Concept and terminology . 54

4.2 Alternating binary tree search . 55
4.2.1 Tree generation . 55
4.2.2 Search procedure . 56
4.2.3 Other entities . 56

4.3 Evaluation of surface integrals . 58
4.3.1 Zipper grid generation method 58
4.3.2 Verification . 62
4.3.3 Use of zipper grid . 63

4.4 Elimination of cells outside physical flow domain 64
4.4.1 Ray-casting method . 65

4.5 Domain connectivity . 68
4.5.1 Concept . 68
4.5.2 In cell qualification . 69
4.5.3 Interpolation coefficients . 70
4.5.4 Explicit expression in terms of field cells 71

4.6 Summary . 74

viii

Contents

5 Flow model and solution method 75

5.1 Governing equations . 76
5.2 Spatial discretization . 77

5.2.1 Finite volume method . 77
5.2.2 Computation of metrics . 79

5.3 Numerical fluxes . 80
5.3.1 Jameson-Schmidt-Turkel scheme 80
5.3.2 Roe’s approximate Riemann solver 81

5.4 Reconstruction of state at interface . 83
5.4.1 Reconstruction about centre of mass 83
5.4.2 Reconstruction considering grid as uniform Cartesian 84
5.4.3 MUSCL-type reconstruction . 84

5.5 Boundary conditions . 85
5.5.1 Solid wall . 85
5.5.2 Periodicity . 86
5.5.3 Symmetry . 87
5.5.4 Far-field . 87
5.5.5 Subsonic outflow . 88
5.5.6 Overset grids . 88

5.6 Pseudo-time-integration to steady state 89
5.6.1 Runge-Kutta time-integration . 89
5.6.2 Newton’s method . 90

5.7 Non-inertial frame of reference . 96
5.7.1 Geometric conservation law . 97

5.8 Verification . 97
5.8.1 Spatial order of convergence . 98
5.8.2 Flow configuration . 98
5.8.3 Results for single block grid . 100
5.8.4 Results for composite overset discretization 109
5.8.5 Summary of the results and concluding remarks 110

5.9 Validation . 114
5.9.1 Numerical set-up . 114
5.9.2 Results . 115

6 Sensitivity analysis 121

6.1 Dual numbers . 121
6.1.1 Implementation . 122
6.1.2 Approach . 124

6.2 Discrete adjoint equation method . 125
6.2.1 Derivation . 125
6.2.2 Discrete versus continuous . 126

6.3 Efficient application of dual number method 127
6.3.1 Graph vertex colouring . 127

6.4 Jacobian matrix . 129
6.4.1 Verification . 133

6.5 Grid sensitivity of flow residual . 134
6.6 Flow sensitivity of objective function . 136

ix

Contents

6.7 Grid sensitivity of objective function . 137
6.8 Design variable sensitivity of objective function 138
6.9 Design variable sensitivity of grid . 139
6.10 Solution method for the adjoint equations 140
6.11 Verification of adjoint implementation 141

6.11.1 Approach . 141
6.11.2 Geometry and flow configuration 142
6.11.3 Results . 143

6.12 Summary . 143

7 Optimization method and results 147

7.1 Introduction . 147
7.2 General aspects . 149

7.2.1 Initial geometry and parametrization 149
7.2.2 Flow domain and discretization 150
7.2.3 Geometrical constraints . 151

7.3 Drag minimization in transonic flow . 152
7.3.1 Definition of optimization problem 152
7.3.2 Results and discussion . 154

7.4 Wing span efficiency maximization . 156
7.4.1 Definition of optimization problem 156
7.4.2 Results and discussion . 157

7.5 On solving a rotor blade optimization problem 160
7.5.1 Geometry and parametrization 160
7.5.2 Flow conditions . 161
7.5.3 Flow domain and discretization 162
7.5.4 Objective function and constraints 163
7.5.5 Approach and discussion . 167

7.6 Concluding remarks . 169

8 Concluding remarks and recommendations 171

8.1 Concluding remarks . 171
8.2 Recommendations . 174

Bibliography 179

Index 195

A Method for computing grid generation dissipation coefficient 199

B Kármán-Trefftz O-grid generation 203

C Results spatial order of convergence study 207

D Measuring the efficiency of the dual number method in vector mode 213

Acknowledgements 217

Curriculum Vitae 219

x

Nomenclature and notation

F
or the convenience of the reader of this thesis, a list of most symbols used in
this dissertation is provided here. Furthermore, the reader is informed about the

typographical custom that is applied to improve the readability and understandability of
formulas.

Notation

To improve the readability and understandability of formulas, figures and text presented
in this thesis, a particular custom has been adhered to. All variables for which a Latin
letter has been used and which can only take an integer value have been printed in roman
typeface, e.g. n. Dimensionless quantities, like the Reynolds number Re, are also printed
in roman typeface. Other variables for which these conditions do not apply are printed
in italic typeface, e.g. x. However, units are also printed in roman typeface, but these
are always presented between square brackets, e.g. [m]. Furthermore, sets are always
represented by so-called black-board bold letters, e.g. R. Moreover, when a subscript in
roman serif typeface is encountered, it is used to specify an element of, for instance, a
matrix or a vector, e.g. ui. On the other hand, if the subscript is in roman sans-serif
typeface, it is used as a qualification or specification of a variable, e.g. cd. Vectors are
depicted in bold face, e.g. x, while matrices can be recognized by a double underline,
e.g. A.

Nomenclature

Most special characters, symbols and abbreviations encountered in this thesis are listed
here. The symbols are grouped according to alphabet and case. They are listed in
alphabetic order and for some symbols a reference is given to the most significant equation
in which the symbol appears, by means of the equation number between square brackets
at the end of the row. Some variables have been used more than once to represent
different quantities, the correct meaning is in that case believed to be clear from the
context.

xi

Nomenclature and notation

Capital Roman

Ã approximation to flux Jacobian
A matrix in hyperbolic field grid equations [3.25]
B matrix in hyperbolic field grid equations [3.26]
C Courant number [5.47]
C vector of constraint functions [1.1]
Cp non-uniform rational basis spline (NURBS) curve of order p [2.5]
C matrix in hyperbolic field grid equations [3.27]
C set of complex numbers
C parametric curve
CD drag coefficient [5.80]
CL lift coefficient [5.79]
Cp pressure coefficient [5.81]
Cpower power coefficient [7.5]
D artificial dissipation term central flux discretization [5.17]
DII shock capturing term central flux discretization [5.18]
DIV background dissipation term central flux discretization [5.19]
D set of dual numbers [1.9]
D

n
set of dual numbers, with a non-real component of dimension n [6.2]

D (·) non-real part of dual number
F a force per unit span exerted on aerofoil [5.74]
F x first column vector of the convective flux tensor
F convective flux tensor [5.5]
Frot convective flux tensor considered in co-rotating frame of reference [5.67]
F numerical convective flux [5.11]
H total enthalpy per unit mass
Hm upper Hessenberg matrix of dimensions (m + 1) × m [5.55]
I identity matrix
I objective function [1.1]
I (·) imaginary part of complex number
J0 Bessel function of the first kind
K̃ right eigenvector of approximation to flux Jacobian [5.26]
Km Krylov subspace of dimension m [5.53]
L characteristic length scale
M Mach number
Mz, c̄

4
pithing moment of aerofoil [5.77]

NF number of donors for fringe control volume [5.44]
Nc number of control volumes
Nq

i polynomial basis function of degree q [2.2]
Nη approximation of local matrix norm [A.1]
Nξ approximation of local matrix norm [A.1]
N0 set of natural numbers, including zero
N1 set of natural numbers
O (·) order of magnitude
P control function [3.19]

xii

Nomenclature and notation

P̄ power extracted by the wind turbine rotor [7.5]
P coordinate1 of control point of NURBS curve/ surface [2.6]
P preconditioning matrix [5.58]
Q control function [3.19]
Q volumetric source term in conservation equations due to rotation [5.68]
Qm matrix containing the first m basis vectors of the Krylov subspace [5.56]

R radius of the wind turbine rotor [7.5]
Rc radius of the core of isentropic vortex
Ra residual of the semi-discrete governing equations for control

volume a
[5.45]

R
q
i rational basis function NURBS curve [2.4]

R
pq
ij rational basis function NURBS surface [2.7]

R̄ right hand side of equation used to compute control functions [3.19]
R set of real numbers
R vector of residuals of discretized flow equations. [5.49]
Re Reynolds number
S planform area wing
Sk scaling function for grid layer k [A.6]
Swing surface area wing
S parametric surface
Spq non-uniform rational basis spline surface of order p and q [2.6]
T triangle
T rotation matrix [5.10]
U vector with conserved variables [5.4]
Ub set containing values of parametric variables for boundary vertices [3.10]
Ui set containing values of parametric variables for inner vertices [3.11]
Um element m of the ordered set of vectors with

control-volume-averaged conserved variables
[5.44]

U characteristic velocity
U vector with conserved variables for the discrete flow solution [5.45]
U

∗ steady-state solution [5.51]
V volume of a cell [5.13]
V signed volume of a tetrahedron [4.4]
Vwind wind speed [7.5]
Vwing internal volume of wing [7.3]
X computational grid
Xs set containing all coordinates of a surface grid [3.17]

Lower-case Roman

b wing span [7.4]
c speed of sound
c̄ chord length of aerofoil
c̄loc local chord length of wing section

1In this dissertation, a coordinate is considered a vector quantity. Therefore, the singular form is used
for denoting a single physical location.

xiii

Nomenclature and notation

ĉ mean aerodynamic chord length of wing
cd drag coefficient for aerofoil section [5.76]
cl lift coefficient for aerofoil section [5.75]
cm moment coefficient for aerofoil section [5.78]
dη

i,j,k ratio of the distance between grid vertices from two subsequent
grid layers in η-direction

[A.5]

d̃η
i,j,k grid point distribution sensor function for η-direction [A.3]

dξ
i,j,k ratio of the distance between grid vertices from two subsequent

grid layers in ξ-direction
[A.4]

d̃ξ
i,j,k grid point distribution sensor function for ξ-direction [A.2]

∂V surface bounding a control volume
e wing span efficiency [7.4]
eint internal energy per unit mass
et total energy per unit mass [5.4]
ex unit vector in x-direction [5.77]
ez unit vector in z-direction [5.77]
e0 first column vector of identity matrix [5.56]
f arbitrary analytic function
f right hand side vector for hyperbolic field grid equations [3.28]
h magnitude of finite-difference disturbance
h typical control volume size [5.72]
hc typical control volume size for coarse grid
hf typical control volume size for fine grid
hm typical control volume size for medium grid
hij non-zero entry of upper Hessenberg matrix [5.54]
i imaginary unit, i.e.

√
−1

i index
j index
k index
k‖ unit vector parallel to the flow
k⊥ unit vector perpendicular to the flow
m index
n number of control volumes
n number of vertices
n unit normal vector
nadd number of floating-point additions [D.5]
nc number of control volumes
ncons number of conserved flow variables
nd dimension of the non-real part of the dual number
nder number of derivatives that must be computed to populate the

Jacobian matrix
[D.1]

nfp number of floating-point operations required to populate the
Jacobian matrix

[D.5]

n̄fp number of floating-point operations required to populate the
Jacobian matrix by means of a central-difference approach

nadd number of floating-point multiplications [D.5]
np number of design parameters

xiv

Nomenclature and notation

nv number of vertices
p static pressure [5.6]
p order of NURBS curve/ NURBS surface
p̄ spatial order of convergence [5.72]
q order of NURBS surface for second direction
q orthonormal basis vector of Krylov subspace [5.54]
r coordinate of grid vertex
rle leading edge radius of aerofoil
s arc length along curve
s entropy [5.40]
t time
t parametric variable
t̄ relative maximum thickness of aerofoil
t̄jac time required to populate the Jacobian matrix [D.2]
t̄min minimum thickness aerofoil
t̄ref reference time [D.2]
u velocity of the fluid ∈ R3, with components (u, v, w)

T

u parametric variable NURBS surface ∈ R2, with
components (u, v)

T

u parametric variable NURBS curve/ NURBS surface
urot velocity considered in co-rotating frame of reference [5.64]
u∂V velocity of surface bounding a control volume [5.1]
uD0 velocity for first control volume near boundary [5.38]
uH0 velocity for first halo control volume [5.38]
um vector that minimizes ℓ2-norm of the projection of a vector on

the orthonormal basis of the Krylov subspace of dimension m
[5.56]

v second parametric variable NURBS surface
va weighting factor cell volume smoothing [3.36]
v01 vector pointing from vertex 0 to 1 [4.2]
x first component of coordinate in physical space
x̃ coordinate in transformed coordinate system
xcm centre of mass of control volume [5.14]
xte x-component of coordinate of trailing edge
y second component of coordinate in physical space
z third component of coordinate in physical space
z1 mapping parameter Kármán-Trefftz conformal transformation [5.73]
z2 mapping parameter Kármán-Trefftz conformal transformation [5.73]

Capital Greek

∆ta local time-step size for control volume a [5.47]
∆tres time required for a single computation of residual vector [D.2]
Γ strength of isentropic vortex
Θ shock sensor [5.24]
Λ estimate of spectral radius for local convective flux Jacobian [5.20]
Λle leading edge sweep angle

xv

Nomenclature and notation

Λte trailing edge sweep angle
Ξj perimeter of local blade contour [2.8]
Υ ratio of curvature-weighted arc length for two subsequent

elements of a discretized curve
[3.6]

Φ grid orthogonality measure [3.43]
Φ− limiting function left of the interface [5.33]
Φ+ limiting function right of the interface [5.34]
Ω angular velocity [5.64]

Lower-case Greek

α angle of attack
αm wave strength corresponding to eigenvector m [5.26]
ᾱ maximum allowable relative distance between consecutive

vertices on a curve
[3.1]

αsplay extrapolation factor that specifies amount of splay [3.42]
ãη

i,j,k grid angle function for η-direction

ãξ
i,j,k grid angle function for ξ-direction [A.12]

βm Runge-Kutta time-integration coefficient [5.46]
δ stretching factor [3.7]
δη finite-difference operator for first derivative in η-direction [3.32]
δ2η finite-difference operator for second derivative in η-direction,

implicit part
[3.34]

δ̄2η finite-difference operator for second derivative in η-direction,
explicit part

[3.34]

δξ finite-difference operator for first derivative in ξ-direction [3.32]
δ2ξ finite-difference operator for second derivative in ξ-direction,

implicit part
[3.34]

δ̄2ξ finite-difference operator for second derivative in ξ-direction,
explicit part

[3.34]

γ ratio of specific heats [5.6]
ǫe dissipation coefficient proportionality factor, explicit part
ǫi dissipation coefficient proportionality factor, implicit part [3.37]
ǫi variable for preventing undefined result of limiter function [5.35]
ǫη dissipation coefficient grid generation, implicit part [A.14]
ǭη dissipation coefficient grid generation, explicit part [3.34]
ǫξ dissipation coefficient grid generation, implicit part [A.13]
ǭξ dissipation coefficient grid generation, explicit part [3.34]
ǫII artificial dissipation coefficient central flux discretization [5.21]
ǫIV artificial dissipation coefficient central flux discretization [5.22]
ε dual number unit, i.e. ε2 ≡ 0 [1.9]
ζ third component of coordinate in computational space
ζc mapped coordinate of centre of line connecting leading edge to

trailing edge in Kármán-Trefftz conformal transformation
ζle mapped coordinate of leading edge in Kármán-Trefftz conformal

transformation

xvi

Nomenclature and notation

ζ1 mapping parameter Kármán-Trefftz conformal transformation [5.73]
ζ2 mapping parameter Kármán-Trefftz conformal transformation [5.73]
η second component of coordinate in computational space
ηn̄ parameter for controlling required convergence accuracy of the

GMRES method
[5.63]

θ ratio of curvature weighted arc length [3.6]
θ̄ implicit weighting factor [3.34]
κ local curvature [3.3]
κ̄max maximum allowable curvature
κ̂ linear reconstruction weighting factor [5.28]
λ relative importance of curvature [3.5]
λ taper ratio
λ vector of Lagrange multipliers [1.12]
λ̄ approximation of spectral radius [5.48]
λ̃ eigenvalue of approximation to flux Jacobian [5.27]
µ0 characteristic viscosity
ν second knot vector NURBS surface [2.6]
ξ first component of coordinate in computational space
π ratio between a circle’s circumference and diameter
ρ density of fluid [5.1]
ρ0 characteristic density
σ scaled computational coordinate [3.12]
τ scaled computational coordinate [3.12]
τ stress tensor [5.1]
τte trailing edge angle aerofoil
υ knot vector NURBS curve/ NURBS surface [2.5]
φ arbitrary scalar field [4.1]
φ∗ estimate for functional value for infinite resolution [5.72]
χ vector of design variables [1.1]
ψ adjoint vector [6.9]
ω interpolation weight fringe cell [4.8]

Other symbols

= equal to
≡ identically equal to
:= equal to by definition
A ∩ B intersection of set A and B

A ∪ B union of set A and B

A ⊆◦ B A is an open subset of B
Cov [·, ·] covariance of two stochastic variables
⌈·⌉ ceiling
⌊·⌋ floor
E [·] expected value of a stochastic variable
mod modulus operation
∀x for all elements x

xvii

Nomenclature and notation

〈U〉a control-volume-averaged quantity for control volume a
x ∈ A x is an element of A
x /∈ A x is not an element of A
f :a 7→b f maps the element a to the element b
f :A→B f maps set A into the set B

Var [·] variance of a stochastic variable

Abbreviations

A.D. Anno Domini
ADT alternating digital tree
AGARD Advisory group for aerospace research and development
BEM blade element momentum
BFGS Broyden-Fletcher-Goldfarb-Shanno
CAD computer aided design
CPU central processing unit
CFL Courant Friedrichs Lewy
CST class function/ shape function transformation
DLR Deutsches Zentrum für Luft- und Raumfahrt
DNS direct numerical simulation
DOI digital object identifier
dr. doctor
e.g. exempli gratia
elsA ensemble logiciel pour la simulation en Aérodynamique
et al. et alii
i.e. id est
ir. ingenieur
Fortran The IBM Mathematical Formula Translating System
FPGA field programmable gate array
GMRES generalized minimal residual
GCL geometric conservation law
GPU graphical processing unit
IBM International Business Machines corporation
ILU incomplete lower-upper
INRIA l’Institut de recherche en informatique et en automatique
ISBN international standard book number
LES large eddy simulation
LU lower-upper
MHD magnetohydrodynamics
MPI message passing interface
MUSCL monotone upstream-centred scheme for conservation laws
NACA National advisory committee for Aeronautics
NASA National aeronautical and space administration
NREL National renewable energy laboratory
NURBS non-uniform rational basis spline
ONERA Office national d’etudes et de recherches aerospatiales

xviii

Nomenclature and notation

OpenCL open computing language
PETSc portable, extensible toolkit for scientific computation
PhD doctor of philosophy
prof. professor
RANS Reynolds-averaged Navier-Stokes
RPM recursive projection method
SNOPT sparse nonlinear optimizer
Tapenade tangent and adjoint penultimate automatic differentiation engine
viz. videlicet
WENO weighted essentially non-oscillatory

xix

1
Introduction

“We can only see a short distance ahead, but we can see plenty there that needs to
be done.” [189]

— Alan M. Turing (1912 – 1954)

T
he power provided by the wind has been harnessed by mankind for millennia. First
primarily for transport, such as in sailboats, later on it has also been used for

mechanical work, like pumping water or milling grain. Nowadays, the principal application
of wind power is for the production of electrical energy, by means of wind turbines; its
use for transport is mainly of recreational nature.

Although the energy contained in the wind is free of charge, its collection and con-
version to electrical energy are not. The construction and maintenance of wind turbines
is a costly matter, which is reflected in the energy cost of the electrical energy produced
by wind turbines — from here on referred to as ‘wind energy’.

For a horizontal axis wind turbine — the wind turbine type considered in the present
research — air flows over the blades of the rotor. Due to the geometry of the blade and
its orientation with respect to the wind, a pressure difference is present between its lower
and upper surface, resulting in a torque that makes the rotor rotate. The blades are
connected to a hub, which is connected to the generator via a shaft. In most cases there
is also a gearbox between the shaft connected to the rotor and the shaft connected to
the generator. This gearbox increases the rotational speed of the generator axis, which
allows for the design of a more compact generator. The generator subsequently converts
the mechanical energy of the rotor to electrical energy. Because of the large capital cost
associated with a wind turbine, it is important to design a rotor that operates efficiently,
such that a large part of the kinetic energy available in the wind is extracted.

Wind conditions vary from site to site. Different wind conditions require a different
wind turbine design. Since the design of a wind turbine is complicated, involving multiple
disciplines, it is a tedious process to design wind turbines that satisfy the requirement
of producing energy at a price competitive to the price of electrical energy from non-
renewable energy sources. This statement is especially true for sites with non-optimal
wind conditions, which are increasingly employed in order to meet the growing demand
for renewable energy. This thesis presents an aerodynamic shape optimization method
that can be used to facilitate the aerodynamic design of wind turbine rotor blades.

This chapter starts by stating the objective of the research presented in this thesis.
Subsequently, the current common practice in wind turbine blade design is discussed and
the approach taken in the present research is presented. Then, all aspects important in
the development of an aerodynamic shape optimization method are introduced. This

1

1. Introduction

chapter ends with an overview of the work performed by others, related to the work
treated in this thesis and finally, an outline of the present dissertation is given.

1.1 Objectives

The objective of this research is to investigate the potentials of an aerodynamic shape
optimization method for improving the aerodynamic performance of a wind turbine rotor.
Furthermore, the aim is to provide an optimization framework which can be used as a
solid basis for a more extensive multidisciplinary optimization method for wind turbine
rotors. For this purpose, the different aspects important in a shape optimization method
are considered and a well informed choice is made with respect to each of these aspects.
Therefore, in making these choices, the potential of extending the method is taken into
account.

1.2 Wind turbine blade design

The current practice in the aerodynamic design of wind turbine blades is to design 2D
sections of the blade at a number of different spanwise locations [86]. The 3D blade
shape is then created by combining these 2D sections into a 3D geometry. For designing
the rotor blade, it is common practice to use so-called engineering models — which are
characterized by a low-fidelity modelling of the underlying physics at the gain of reduced
computational requirements. Widely adopted engineering models used for blade design
are based on the blade element momentum (BEM) theory [72, 157]. In this theory, the
rotor blade is divided into different sections in radial direction. The flow around each
section is assumed to be independent of each other. Moreover, the forces on the blade
are determined solely by the lift and drag characteristics of the aerofoils used for each of
the sections. In this approach, it is difficult to assess the 3D effects — that inherently
exist in the flow field around a wind turbine blade, in particular in the tip and root
region — and take these 3D flow features into account in the design. Therefore, in
the research presented in this thesis, a different approach is taken. In this approach
a method is employed which, instead of combining 2D aerofoil sections, uses a three-
dimensional blade geometry as starting point. Based on results of the simulation of the
flow around this three-dimensional geometry, the shape is adapted. For this purpose, an
aerodynamic shape optimization method is developed. In this way, 3D flow features are
automatically taken into account in the aerodynamic design of the blade. The different
aspects considered in the development of the method are treated in the following sections.

1.3 Flow model

The flow around a wind turbine rotor can be modelled to different degrees of complexity.
There are the potential flow models, which are most efficiently implemented using an
integral boundary element method for incompressible flows. These methods only require
the discretization of the boundary surfaces leading to the aforementioned efficiency. More
elaborate methods belong to the class of field methods, which do require the discretization
of the three-dimensional flow domain. This class includes models based on the Euler and

2

1.4 Flow domain discretization

Navier-Stokes equations. The former do not include effects of viscosity, while the latter do.
If effects of viscosity are included, the phenomenon turbulence and its modelling must be
considered. The most accurate modelling approach is direct numerical simulation (DNS)
of the flow. In this approach, all relevant length and time scales of the turbulent flow
are resolved. For a wind turbine application however, the computational requirements of
such a method are such that they cannot be met with currently available computational
resources. Large-eddy simulation [167] gives the most accurate results, when the effect
of turbulence is modelled. However, due to the inherently unsteady nature of this flow
model and because of the quite severe requirements with respect to grid resolution,
application of this model in an aerodynamic design optimization context is not feasible
for currently available computational resources. One of its alternatives is the application
of turbulence models based on the Reynolds-averaged Navier-Stokes (RANS) equations.
In these models averaging of the flow variables is performed, in such a way that unsteady
effects due to turbulence are eliminated from the result, but its influence on mean flow
variables is modelled. Aerodynamic optimization methods have been developed for which
the flow model is based on a RANS turbulence model [53, 115, 130]. For the present
work however, the Euler equations are used to model the flow. This choice was made to
alleviate the required computational resources for solving an optimization problem and to
be able to focus on the other aspects that are important for an aerodynamic optimization
method.

1.3.1 Discretization method

The spatial discretization of the partial differential equations that model the flow is carried
out based on a cell-centred finite volume method. Second-order spatial accuracy can be
achieved, either by using a central discretization of the convective flux with an added
fourth-order artificial dissipation term [92] or by means of an upwind scheme [147] in
combination with linear reconstruction of the state at the interface.

Only configurations for which a steady-state solution of the governing equations exists,
will be considered in the optimization method. For that purpose, time-integration of the
governing equations is used to reach the steady-state solution. This is achieved by a
combination of explicit and implicit time-integration. First, an explicit scheme is used to
determine a suitable solution which can be used as a starting point for the implicit time-
integration method. This implicit method is subsequently used to accelerate — both in
terms of CPU-time as well as in terms of number of iterations — the convergence to a
steady-state solution.

1.4 Flow domain discretization

Solving the discretized equations that govern the flow requires the discretization of the
flow domain. For this purpose multi-block structured grids are used. Unstructured grids
have the advantage of a large geometrical flexibility and easy application for complex
geometries. For structured grids on the other hand, it is simpler to extend the spatial
discretization of the finite volume method to higher-order schemes — i.e. higher than
second-order. It is also easier to apply efficient flow solution methods for structured
grids. Furthermore, structured grids require fewer cells, compared to unstructured grids,
to satisfy the requirement of having adequate grid resolution in one direction — to

3

1. Introduction

Figure 1.1: Composite overset grid consisting of body-fitted O-grids around two aerofoils and
a Cartesian background grid — with overlap removed, i.e. only field cells shown.

accommodate large gradients of the flow solution in that direction — while retaining
a much coarser spacing in the other direction. For a structured grid, grid quality can
be maintained by using a smaller resolution of nodes in the direction along the surface
at locations where variations in the flow solution are smooth — e.g. in the spanwise
direction of the wind turbine blade. For an unstructured grid the same approach leads to
a deterioration of the grid quality. Therefore, the choice is made to use structured grids
for the discretization of the flow domain around the wind turbine blade.

Since the shape of the wind turbine blade changes during the aerodynamic optimiza-
tion procedure, a new discretization is required for the resulting new flow domain around
the modified blade geometry. The approach taken in the present research is to gener-
ate a body-fitted grid — instead of deforming the existing grid, which may result in an
excessively distorted grid [29] — for each geometry that forms during the optimization
procedure. For this purpose, a hyperbolic grid generation method has been implemented.
Hyperbolic grid generation methods are known for being fast and providing high quality
grids [81]. Generation of a new grid for each new flow domain, instead of the deformation
of an initial discretization to match the modified domain, ensures that a high grid quality
is maintained throughout the optimization, resulting in better flow solutions and a more
stable algorithm. Better flow solutions in turn lead to a more accurate evaluation of
the objective function used in the optimization. Moreover, a stable algorithm is of key
importance for an effective optimization procedure.

To render the discretization of the flow domain less involved and to allow for flexibility
of the optimization procedure, block overlap is allowed for the multi-block discretization
of the flow domain. Grids for which overlap of the blocks occurs, such as in figure 1.1,
are designated composite overset grids.

4

1.5 Optimization

1.4.1 Overset grids

The conventional overset grid discretization method — in which multiple structured
grids overlap in order to cover the flow domain — combines the advantages of structured
grids with the geometrical flexibility of unstructured grids. The price to pay for the
advantages inherent to an overset grid approach is reflected in the need to establish
domain connectivity [120], which is required for enforcing boundary conditions in the flow
solution method. Block connectivity information, for the multi-block discretization of a
flow domain, is used to transfer the dependent variable information between components
of the grid [120]. For point-matching grids this procedure is straightforward. However,
if overlap of the blocks is allowed, more work needs to be done to determine a suitable
block connectivity. The method used for this purpose is subject of chapter 4.

Apart from determining the domain connectivity for a composite overset grid, addi-
tional work is also required for the flow solution method to be able to handle overset
grids. In regions of overlap, the dependent variables must be transferred by means of
interpolation.

1.5 Optimization

Solving a shape optimization problem is equivalent to finding an optimum — either
a maximum or a minimum — of a mathematical function in a multidimensional space
spanned by the independent variables. These independent variables, denoted by χ ∈ Rn,
n ∈ N1, are composed of the parameters that define the geometry and parameters that
specify the conditions of the optimization problem, e.g. the angle of attack for an aerofoil
optimization. A general minimization problem is expressed as:

minimize I (χ)
over χ ∈ Rn

subject to C (χ) ≤ 0

(1.1)

Where I (χ) : Rn → R, n ∈ N1 is the objective function and C (χ) : Rn → Rm,
m ∈ N1 is the vector of constraint functions. Various strategies exist for solving such an
optimization problem. The most suitable strategy depends on the optimization problem
that is considered.

A general optimization procedure is depicted in figure 1.2. An optimization always
starts with the definition of the optimization problem, which involves the definition of
the objective function, the constraint functions and the design space. Subsequently, the
design is specified — or multiple designs, depending on the optimization method. Then
the performance in terms of the objective function of each design is analysed. Based on
this performance, the design is considered to be optimal or not. If the design is optimal,
the optimization procedure is terminated. Otherwise, the design parameters are updated
and the procedure is repeated.

1.5.1 Optimization methods

Optimization methods can be divided in two different classes, viz. zeroth-order methods
and first-order methods. Zeroth-order methods only require the value of the objective

5

1. Introduction

define

optimization

problem

specify design(s)
based on design

parameters

analyse
performance
of design(s)

optimal done

update
design

parameters

yes

no

Figure 1.2: Flow chart of a general optimization procedure.

function and constraint functions. Since these methods do not require derivative in-
formation they are suitable for solving optimization problems with objective functions
that are non-differentiable. An example of such an optimization problem involves the
minimization of the sonic boom for supersonic aircraft [35, 43]. Moreover, zeroth-order
methods are less sensitive to the existence of local optima in the design space. However,
as the number of design variables increases, the number of function evaluations needed
for reaching the optimum rapidly increases [113,116].

First-order methods — also called gradient-based methods — do require derivative
information during the optimization procedure. Therefore, they are not suited for appli-
cation in optimization problems with non-differentiable objective or constraint functions.
Moreover, when multiple (local) optima exist, the optimum found depends on the initial
condition used to start the optimization procedure, which may not be the global opti-
mum. The great strength of first-order methods comes from the use of the derivative
information. This information allows to use a large number of design variables without
the number of required function evaluations becoming prohibitively large.

For the optimization problem considered in the present research, the evaluation of the
objective function requires at least one flow solution, i.e. a solution of the Euler equations.
Therefore, it is expensive — in terms of required CPU-time — to evaluate the objective
function. For this reason, the number of evaluations of the objective function should be
limited. Furthermore, the accurate representation of the design space for a wind turbine
blade optimization problem features a large number of design variables. Based on these
two observations, a gradient-based optimization method is the method of choice for this
research. Although this choice implies that the result of solving an optimization problem
might yield a local optimum, results of solving aerodynamic design problems using a
gradient-based approach indicate that the optimum obtained can be very close to the
global optimum [94], in terms of the objective function2.

1.5.2 Parametrization method

Solving a shape optimization problem requires a mathematical representation of the geo-
metry to be optimized. This mathematical representation, also known as the parametriza-
tion method, must be able to represent the relevant part of the design space. Or in other
words, the optimal design needs to be representable employing the chosen parametriza-

2An estimate of the value of the objective function for the global optimum can be obtained by
considering physical bounds of the problem.

6

1.6 Sensitivity analysis

tion method. Moreover, the number of parameters required for this representation should
be small, in order to limit the dimension of the design space and to limit the number
of derivatives that needs to be computed. The dimension of the design space should
be limited because the number of required optimization iterations to reach the optimum
increases with the dimension of the design space [93].

In this research a non-uniform rational basis spline (NURBS) surface is used to rep-
resent the wind turbine blade geometry. A NURBS surface is used because it provides
great flexibility for representing various shapes with a limited number of design variables.
Moreover, NURBS surfaces are compatible with computer aided design (CAD) meth-
ods, which in the future will help to integrate the aerodynamic design process in the
multidisciplinary wind turbine blade design procedure.

1.6 Sensitivity analysis

Sensitivity analysis refers to the estimation of the first directional derivative of one or
more functions with respect to one or more independent variables [115]. For first-order
optimization methods, the sensitivity analysis is an important aspect of the optimization
procedure. Therefore, the computation of derivatives has to be carried out accurately.
Several methods exist for the estimation of derivatives. These methods are treated in the
following subsections and the advantages and disadvantages of their use are discussed.

1.6.1 Analytical differentiation

The most obvious method to estimate a derivative of a function is to differentiate the
underlying function with respect to the independent variable of interest and subsequently
compute the derivative by evaluation of the differentiated function. However, if the
function to be differentiated becomes more involved, performing the differentiation also
becomes more complicated. Therefore, this method is only feasible for functions that
can be differentiated easily, which is generally not the case for the functions encountered
in a flow method. Although, examples exist that this has been done for a 3D Euler
method [31].

1.6.2 Finite-difference approximation

The most straightforward method to estimate the derivative is to use a finite-difference
approximation of this derivative. The concept of this method can be explained by consid-
ering a Taylor series expansion of an analytic function f (x) : R → R to obtain f (a + h)
with a, h ∈ R:

f (a + h) = f (a) +
df

dx

∣
∣
∣
∣
a

h +
1

2

d2f

dx2

∣
∣
∣
∣
a

h2 +
1

3!

d3f

dx3

∣
∣
∣
∣
a

h3 + O
(
h4
)
. (1.2)

The following first-order approximation of the first derivative can be obtained from this
series expansion

df

dx

∣
∣
∣
∣
a

=
f (a + h) − f (a)

h
+ O (h) . (1.3)

7

1. Introduction

10
0

10
−10

10
−20

10
−30

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Magnitude of h

∣ ∣∣ ∣
f

′
(5

)−
d

f
d

x

∣ ∣ x
=

5

∣ ∣∣ ∣

d
f

d
x

∣ ∣ x
=

5

second-order finite-difference

first-order finite-difference

dual number method

complex-step method

Figure 1.3: Relative error for various approximations of the derivative of the Bessel function of
the first kind J0 (x) evaluated at x = 5 for different step sizes h. The exact result
is denoted by df

dx
and the approximation by f ′ (x). If the relative error is zero,

no marker is present in the graph. Results show that the complex-step method
reaches machine accuracy (employing double-precision arithmetic) for sufficiently
small h and the accuracy of dual number method is independent of the step size.
Results of both finite-difference methods illustrate the effect of truncation error
for large h and cancellation error for too small h.

This expression indicates that an estimation of the derivative can be obtained by two
evaluations of the function. Therefore, no explicit knowledge of the function that is
evaluated is required to compute a finite-difference approximation of the derivative. This
property is both an advantage of this method as well as a disadvantage. The advantage is
that it can be applied as soon as a method for the evaluation of the function is available.
The disadvantage is however, that the method requires additional evaluations of the
function to estimate its derivative. Therefore, when evaluation of the function considered
is expensive, computing the derivative using a finite-difference approximation is not a
suitable method when a large number of derivatives must be determined. Moreover, the
accuracy of the approximation depends on the magnitude of h. However, choosing h
too small may result in the occurrence of subtractive cancellation errors, due to finite-
precision arithmetic, which renders the result inaccurate, see figure 1.3. Accuracy of the
finite-difference method can be increased by performing an additional function evaluation
for f (a − h). The central-difference approximation of the derivative then reads

df

dx

∣
∣
∣
∣
a

=
f (a + h) − f (a − h)

2h
+ O

(
h2
)
. (1.4)

This approximation has a second-order accuracy at the cost of one additional function
evaluation — compared to the first-order finite-difference approximation — for each
variable for which the derivative must be determined. Moreover, this method is still
sensitive to subtractive cancellation errors, as illustrated in figure 1.3 as well.

8

1.6 Sensitivity analysis

1.6.3 Complex-step finite-difference method

A variation on the finite-difference concept is the complex-step finite-difference
method [111, 175]. For an analytic function f (z) : C → C the Cauchy-Riemann equa-
tions apply [153]. Therefore, when f is expressed as f (z) = u (z) + iv (z), u, v : C → R

and z ≡ x + iy, x, y ∈ R the following equations must hold:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
. (1.5)

Next, require f (x) ∈ R ∀ x ∈ P for the open subset P ⊆◦ R. Then, consider the Taylor
series expansion f (z) for z = a + ih with a ∈ P, h ∈ R

f (a + ih) = f (a) + i
df

dz

∣
∣
∣
∣
a

h − 1

2

d2f

dz2

∣
∣
∣
∣
a

h2 − i

3!

d3f

dz3

∣
∣
∣
∣
a

h3 + O
(
h4
)
. (1.6)

Using the definition of the derivative and considering that the direction in the complex
plane from which zero is approached does not influence the result, ǫ ∈ R can be chosen,
such that

df

dz

∣
∣
∣
∣
a

= lim
ǫ→0

f (a + ǫ) − f (a)

ǫ
≡ df

dx

∣
∣
∣
∣
a

. (1.7)

Since P is an open set, (a + ǫ) ∈ P for ǫ → 0. This observation means that both f (a)
and f (a + ǫ) are in R, which also means that

df

dz

∣
∣
∣
∣
a

≡ df

dx

∣
∣
∣
∣
a

∈ R ∀ a ∈ P.

Using this result and considering the Taylor series expansion of equation (1.6), it is found
that the derivative of f with respect to x can be estimated by evaluating the expression

df

dx

∣
∣
∣
∣
a

=
I (f (a + ih))

h
+ O

(
h2
)

, (1.8)

i.e. taking the imaginary part of the result — denoted by I (·) — for the function evaluated
at a + ih, with ih an imaginary-valued disturbance of magnitude h and dividing this
result by h. Since this expression does not involve a difference operation, the estimate
obtained with this so-called complex-step derivative approximation [118] is not subject to
subtractive cancellation errors. Therefore, the magnitude of h can be chosen extremely
small — e.g. O

(
10

−30
)

— without losing accuracy due to finite-precision arithmetic, see
figure 1.3. By choosing h sufficiently small this method effectively returns derivatives
with an accuracy of machine precision, i.e. O

(
10

−16
)

for double-precision arithmetic [47] ;
except when df

dx happens to tend to zero [118].
Like the finite-difference approximation, the disadvantage of the complex-step method

is that it requires one additional evaluation of the objective function for each derivative
that needs to be computed. Moreover, the execution of a function with complex arith-
metic requires extra floating-point operations. Therefore, the complex-step method is
more expensive than the finite-difference method, although it provides more accurate
derivatives and is more stable. In contrast to the finite-difference method, the complex-
step method requires intervention in the numerical method — in order to evaluate the
functions with complex-valued numbers — making the application of the complex-step
method more involved.

9

1. Introduction

1.6.4 Dual number method

Yet another variation on the finite-difference concept is the dual number method. Before
this method is presented, first the concept of dual numbers is explained. The set of dual
numbers, D, is defined as [54]:

D :=
{

x + εy : x, y ∈ R, ε2 ≡ 0
}
. (1.9)

In appearance, as well as in its properties, dual numbers, x + εy, are quite similar to
complex numbers, x + iy. One of the main differences is, however, that ε2 ≡ 0, instead
of i2 ≡ −1 for complex numbers. This interesting property makes dual numbers very
convenient to use in sensitivity analyses. For that purpose, require f (x) ∈ R ∀ x ∈ E

for the analytic function f (z) : D → D and the open subset E ⊆◦ R. Consider the Taylor
series expansion of f (z) for z = a + εh with a ∈ E, h ∈ R:

f (a + εh) = f (a) + ε
df

dz

∣
∣
∣
∣
a

h +
ε2

2

d2f

dz2

∣
∣
∣
∣
a

h2 + O
(
ε2
(
εh3
))

. (1.10)

Since ε2 = 0 by definition, this Taylor series expansion truncates at the first derivative.
Analogous to the verification presented in the preceding subsection, it can be shown that

df

dz

∣
∣
∣
∣
a

≡ df

dx

∣
∣
∣
∣
a

∈ R ∀ a ∈ E.

These interesting properties make dual numbers useful for computing derivatives, because
the derivative can now be determined by evaluation of a function with a dual number
and considering the non-real part only, i.e.

df

dx

∣
∣
∣
∣
a

≡ D [f (a + εh)]

h
, h ∈ R. (1.11)

Here D (·) indicates taking the non-real part of the dual number argument, equivalent
to I (·) taking the imaginary part of a complex-valued number. Since all terms of the
Taylor series expansion of order 2 and higher are exactly equal to zero, no truncation
error occurs and therefore the choice of the value of h is arbitrary, which can be observed
in figure 1.3. Choosing h equal to 1.0 is a convenient choice.

The advantage of the dual number method is that this method renders derivatives
up to machine accuracy, just as the complex-step finite-difference method [60, 61]. An-
other similarity between this method and the other two finite-difference methods is the
requirement of an additional function evaluation to compute a single derivative. There-
fore, this method is also not very efficient for a large number of independent variables.
As with the complex-step method, the dual number method requires intervention in the
computational method in order to make it use and handle dual number arithmetic. More
details on dual number arithmetic and the dual number method are given in section 6.1.

1.6.5 Algorithmic differentiation

Algorithmic differentiation [75] — also known as automatic differentiation — is consid-
erably different from the methods discussed so far. This method is based on the sys-
tematic application of the chain rule of differentiation to each operation in a computer
program [115].

10

1.6 Sensitivity analysis

Every computational method consists of a sequence of combinations of unary and
binary operations3, performed on the independent input parameters x and the subsequent
intermediate results, leading eventually to a final result f . Each of these operations can be
differentiated, which is done by the method that performs the algorithmic differentiation.
The result of applying an algorithmic differentiation method is a new algorithm that
computes the derivatives of f with respect to the independent variables x. This result
can either be achieved by means of source code transformation or by so-called operator
overloading. Both methods will be discussed briefly. Because each operation in the
original program is differentiated exactly, the resulting differentiated method yields a
derivative accurate up to machine accuracy.

Source code transformation

An algorithmic differentiation method that applies source code transformation to generate
the algorithm that computes the derivatives first parses the original source. This approach
is similar to that of a compiler, although a compiler generates machine code, while the
algorithmic differentiation method generates a new source code which can be used to
compute the derivatives.

Algorithmic differentiation by means of source code transformation distinguishes two
different so-called modes. The forward mode produces source code that performs each
step of the algorithm in the same order as the original source. The resulting new source
computes the derivative of each output f with respect to a single input variable. On the
other hand, the reverse mode, as the name implies, produces a new source that performs
the steps of the original algorithm in the reverse order. The effect of performing the steps
in the reverse order is that the resulting new function computes the derivative of a single
output variable with respect to all input parameters x. The consequence of computing
the derivatives in the reverse direction is that intermediate results need to be stored in
case these intermediate results are overwritten in the original source. This requirement
for storing intermediate values makes the reverse mode more memory intensive than
the forward mode. Which one of these methods is most efficient, depends on the ratio
between the number of input and the number of output parameters. If a function has
more output parameters than input parameters, the forward mode is more efficient, while
the reverse mode is the better choice if the number of input parameters exceeds the
number of output parameters.

This method generates new source code which computes the derivatives. A disadvan-
tage of this approach is that the code that is generated can be quite unreadable [115],
which is especially true when the reverse mode has been used. Therefore, maintenance of
the code and performing modifications can be troublesome. An example of an algorithmic
differentiation method that performs source code transformation is the program called
Tapenade [80], developed at INRIA. This method can be applied to programs written in
either Fortran or C.

Operator overloading

The other approach for generating an algorithmically differentiated code is by means of
operator overloading. Operator overloading means that the unary and binary mathemati-

3Note, that in some programming languages the ternary operator ?: also exists, which is essentially
a conditional expression.

11

1. Introduction

cal operations in an algorithm are redefined for a new user-specified data type. This data
type is used to replace the data type representing real numbers in the original source.
Redefinition or overloading of the operators is performed in such a way that when an
operator is applied to a particular input, the operations to compute the derivative of the
output with respect to the input are also directly applied. The result, i.e. both the value
as well as the derivative, is then stored. To use this approach, the programming language
that is employed needs to have the ability for the user to redefine these mathematical
operations. Fortunately, this is true for a significant subset of modern programming
languages [116], e.g. C++, Fortran and Python.

Since this method only requires the use of a new data type — for which the operators
have been redefined — instead of the data type for real numbers, in order to realize the
algorithm that computes the derivatives, this approach has less impact on the readability
of the resulting source code. A disadvantage of operator overloading is that the resulting
algorithm is generally less efficient than when source code transformation is used [144].
The difference in efficiency is because for operator overloading for all steps in the algorithm
the derivative is computed, also for operations that do not influence the final result. With
source code transformation, computing the derivative for these operations is omitted,
resulting in fewer mathematical operations required to be performed to generate the final
result.

1.6.6 Adjoint equation method

The methods discussed above can be generally applied in any situation in which derivatives
need to be computed. For the method discussed in this section, i.e. the adjoint equation
method, however, an additional requirement needs to be met, in order to be able to use
it for computing sensitivities.

Consider the analytic functional f (u (x) ,x) : Rm × Rn → R, u (x) : Rn → Rm,
m, n ∈ N1 and the vector of analytic constraint functionals g (u (x) ,x) : Rm×Rn → Rm,
which must satisfy g (u (x) ,x) = 0. This additional requirement is not as restrictive
as it may seem. Many mathematical problems are governed by partial differential equa-
tions (PDE). For these problems, functional g (u (x) ,x) can be viewed as a representa-
tion of these governing partial differential equations.

Since g (u (x) ,x) equals zero, a new functional can be formulated

F (u (x) ,x) = f (u (x) ,x) + λTg (u (x) ,x) , (1.12)

which evaluates to the same result as the original functional f (u (x) ,x), independent
of x, as long as the requirement for the vector of constraint functionals g (u (x) ,x) is
met. In this equation λ ∈ Rm is the vector of so-called Lagrange multipliers. The total
derivative of functional F with respect to x reads

dF

dx
=

[
∂f

∂u

du

dx
+

∂f

∂x

]

+ λT

(
∂g

∂u

du

dx
+

∂g

∂x

)

+
dλT

dx
g. (1.13)

rearranging this equation, and considering that g ≡ 0, gives

dF

dx
=

[
∂f

∂u
+ λT ∂g

∂u

]
du

dx
+

(
∂f

∂x
+ λT ∂g

∂x

)

. (1.14)

12

1.6 Sensitivity analysis

The matrix du
dx

can be eliminated from this expression, by requiring the part between the
square brackets to be equal to the null vector. This requirement is met, when λ satisfies

[
∂g

∂u

]T

λ = −
[

∂f

∂u

]T

. (1.15)

When λ is determined, by solving equation (1.15), the total derivative of f is computed
by evaluation of

df

dx
≡ dF

dx
=

∂f

∂x
+ λT ∂g

∂x
(1.16)

This method requires the solution of the system of linear equations of equation (1.15)
in order to find λ and subsequently compute the derivatives. However, this procedure
thereby eliminates requiring the computation of du

dx
, which can be a computationally in-

tensive procedure; especially, when u is governed by a set of partial differential equations.

The adjoint equation method provides derivatives up to machine accuracy. Moreover,
the computational requirements of the method are largely independent of the dimension
of x. In contrast to the methods discussed in sections 1.6.2 to 1.6.5, for which the com-
putational requirements are proportional to the dimension of x — except for analytical
differentiation and to some extent algorithmic differentiation. A major drawback of the
adjoint equation method is, however, that the implementation is considerably more com-
plicated [115] than in particular the finite-difference method. The reason for it is that
considerable knowledge of how both f and g are computed is required in order to com-
pose equation (1.15), while for instance for the finite-difference method the evaluation
of both functions can be treated as a ‘black box’.

Different approaches exist on how the adjoint equations are handled. For the continu-
ous adjoint equation method, the constraint functions are first linearized. These linearized
equations are subsequently discretized, in order to solve them. On the other hand, for the
discrete adjoint equation method, discretization of the constraint functions is performed
before the linearization is carried out. Each approach has its own implications regarding
the implementation of the method, which is discussed in more detail in section 6.2.2.

1.6.7 Approach

Various methods for the sensitivity computation have been presented. Each of these
methods has its advantages and disadvantages. The approach taken in the present
research is to combine these methods for the computation of the sensitivities of the
objective function with respect to the design parameters. In this way, full advantage is
taken of the strength of each method. The optimization problems considered permit the
use of the adjoint equation method, which is the most efficient method provided the
number of design parameters is large compared to the number of non-linear functions
in the problem considered. The partial derivatives, appearing in the adjoint equations
are computed using the dual number method. In this way, the partial derivatives are
computed accurately, resulting in an accurate gradient of the objective function. A more
detailed discussion of the approach is presented in chapter 6.

13

1. Introduction

1.7 Implementation on parallel computers

Solving an aerodynamic shape optimization problem requires multiple flow solutions.
Therefore, in order to realize a feasible method, the starting point has been that the
method must be executed in parallel, such that no sequential bottle-necks are present.
In that way the algorithm can be executed efficiently on a cluster of computers. For this
purpose the software library Message Passing Interface (MPI) [182] is used.

For an efficient parallelization of the method, it is of key importance that: (i) the
amount of work is distributed evenly over the available processor cores, (ii) the number
of communications between the processor cores is limited and (iii) the amount of data
being communicated between the processor cores is limited as well. However, these
factors depend on the task that is to be performed. For instance, to determine the
overset block connectivity, the amount of work is proportional to the number of control
volumes for which a donor needs to be found, while for obtaining a flow solution, the
amount of work is proportional to the number of control volume faces over which the
flux needs to be computed. Similar differences exist for the amount of data that needs
to be communicated and the number of communications that needs to be performed for
the different tasks.

As obtaining the flow solution has a major contribution to the overall computation
time, the focus has been on the efficiency of the parallelization of the flow solution
method. Therefore, the blocks used for the discretization of the flow domain are split4

and distributed in such a way that the amount of work for obtaining a flow solution
is spread evenly over the available cores — assuming the task being performed on a
homogeneous cluster, i.e. a cluster consisting of compute nodes that have the same
properties in terms of clock speed and other performance related parameters. Such a
block, assigned to a single core is denoted a compute block. Moreover, splitting is
done such that the required amount of communication is minimized too. The resulting
decomposition is also used for the other tasks in the optimization procedure; except for
the grid generation. For the grid generation it is in general not possible to use the same
decomposition as for the flow solution method, because in the hyperbolic grid generation
procedure, the previous layer of the grid is required to determine the next layer. Therefore,
a different decomposition is used for the grid generation. In that case, the number of
grid blocks that must be generated is distributed evenly over the available processor cores
without splitting them; and one block is always generated by a single processor.

1.8 Related work

Numerical aerodynamic shape optimization started with the work of Vanderplaats et
al. [192]. Vanderplaats et al. used a gradient-based optimization method for the opti-
mization of aerofoils. Gradients were computed using a finite-difference approximation.
Pironneau [140,141] suggested a different approach for computing the sensitivities, i.e. by
means of the adjoint equations. This approach renders computing the sensitivities to be
largely independent of the number of design parameters. Later on, the same approach
was adopted by Jameson [90], using a continuous adjoint equation method. Since these
pioneers introduced numerical aerodynamic shape optimization, much research effort has

4Assuming that the number of cores exceeds the number of blocks.

14

1.8 Related work

been devoted to the subject and many researchers made their contribution to this fas-
cinating research area. In this section, the contributions are presented in some detail,
since large portions of the work presented in this thesis have been inspired on these
contributions.

Nielsen implemented the discrete adjoint equation method in an unstructured RANS
method [130]. The solution of the adjoint equations was subsequently used for deter-
mining the sensitivities for various optimization problems. Results of aerodynamic shape
optimization problems have been presented for, amongst others, the drag reduction of a
wing in transonic flow — considered both using a viscous as well as an inviscid flow model
— starting with an ONERA M6 wing as initial design. Since the initial implementation,
the optimization method has been extended to solve aerodynamic optimization problems
for unsteady flow as well [131,132].

Another discrete adjoint equation method was implemented by Carpentieri [31]. In
this case an inviscid flow model was considered. Unstructured grids were used for the
discretization of the flow domain. Distinctive features of the method presented are the
implicit time-integration and the possibility to compute the adjoint vector for different
non-linear constraint functions simultaneously. This approach increases the efficiency of
the method in terms of required CPU-time, with respect to handling the adjoint vectors
sequentially. The method was tested for a similar case as the drag minimization problem
of a wing in transonic flow presented by Nielsen [130], also using an ONERA M6 wing
as starting geometry.

The research presented by Marta features a novel method to compute partial deriva-
tives for the adjoint equations [115]. In the method, an algorithmic differentiation method
— by means of source code transformation — is applied to large portions of the original
procedures that are used to compute the flow solution. Utilizing this approach it is pos-
sible to greatly reduce the time required to develop an adjoint equation method for an
arbitrary numerical method. The particular implementation was only suitable for using
non-geometrical design variables, such as angle of attack. The method was subsequently
tested by solving several magnetohydrodynamics (MHD) optimization problems.

The use of the adjoint equations for performing gradient-based aero-structural op-
timization was investigated by Martins [116]. Focus of the research was on coupling
of the adjoint equations for the two different disciplines. The procedure was tested by
performing an aero-structural optimization of a supersonic business jet. The work also
presents an elaborate and clear description on the implementation of the complex-step
finite-difference approximation for computing partial derivatives, for which the concept
has been discussed briefly in section 1.6.3.

The effect of applying approximations to some of the terms involved in the adjoint
equations on the resulting sensitivities was investigated by Dwight [53]. The research also
investigated the effect of the approximations on the result of the optimization. For this
purpose 2D cases in turbulent flow were considered. Focus of the research was, however,
on the improvement of the efficiency of the flow solution method, in terms of CPU-time,
by implementing an implicit solution method.

Hicken used an Euler based discrete adjoint equation method to investigate the po-
tential of using an inviscid flow model for minimization of induced drag [82]. This inves-
tigation was performed for different wing configurations, including configurations with
one or multiple winglets. The adjoint equations were solved using a specially developed
Newton-Krylov method.

15

1. Introduction

Other subjects, not directly related to gradient-based optimization, but which have
been of great importance for the successful implementation of the optimization method
presented in this thesis are hyperbolic grid generation and composite overset grid con-
nectivity. With respect to the application of composite overset grids notable work has
been performed by Zahle, who implemented an overset method in the RANS method
for incompressible flow EllipSys3D [206]. Due to the nature of the incompressible flow
model, special care needed to be taken in transferring the pressure between the different
overlapping grids. The method was used to simulate the flow around a wind turbine
rotor and to investigate the effect of the presence of the tower on the flow and on the
performance of the rotor.

A similar feat as that of Zahle was achieved by Schwarz, who had a major contribution
in the implementation of an overset method in the TAU code of DLR [160]. In the method
presented, special care was taken to ensure the transfer of the correct flow solution in
regions near curved solid walls. Flow simulations were performed for, amongst others,
the flow around an aircraft in landing configuration.

The development of the implicit hole cutting — used in the present research for
the overset block connectivity — can largely be attributed to Lee [107], who applied
the method to rotorcraft aerodynamics. A significant contribution to developing the
concept of zipper grids — used for the accurate evaluation of surface integrals — was
done by Chan [37]. Chan also carried out much research on the subject of hyperbolic
grid generation [36, 39]. That work was based on the work of Steger [176, 177], who
introduced the concept of hyperbolic grid generation.

1.9 Thesis outline

In the remainder of this thesis a more thorough consideration is given of each of the
aspects important in an aerodynamic shape optimization method. The first aspect con-
sidered is the shape parametrization method to be used for representing the wind turbine
blade geometry, which is discussed in chapter 2. Subsequently, in chapter 3 the method
used for the discretization of the flow domain is presented. Chapter 4 treats the method
used for determining the block connectivity of the composite overset grid. The flow
model and the corresponding solution method are subject of chapter 5; in this chapter
the discretization of the governing equations — both in space and time — is discussed
in more detail. Moreover, results of the case considered to verify the correct implemen-
tation of the flow model is presented in this chapter as well. Chapter 6 is dedicated
to sensitivity analysis, providing, amongst others, more details on the concept of dual
numbers. The discrete adjoint equation method is also discussed in this chapter. The
approach taken in computing the partial derivatives involved in these equations is outlined
as well and the accuracy of the derivatives computed by this method is verified. In the
subsequent chapter, chapter 7, results are presented of the optimization method. First,
the general concept of the optimization method is discussed. Subsequently, some test
cases are considered to demonstrate the capabilities of the optimization method. The
final chapter of this thesis states the conclusions drawn from the present investigation.
Also recommendations for extension and improvement of the method are pointed out.

16

2
Shape parametrization

“If they would, for Example, praise the Beauty of a Woman, [. . .] they describe it by
Rhombs, Circles, Parallelograms, Ellipses, and other geometrical terms [. . .].”

— Jonathan Swift (1667 – 1745), Gulliver’s Travels

T
he choice of the parametrization method for the geometry in an aerodynamic shape
optimization problem is a key aspect in the effectiveness and efficiency of the opti-

mization procedure [65, 114]. This chapter considers the desired characteristics for the
parametrization in a general gradient-based aerodynamic optimization problem. Based
on this specification, a suitable choice is made for the parametrization method of the
wind turbine blade geometry. The method chosen is elaborated on in more detail, espe-
cially regarding the mathematical formulation of the particular parametrization method.
Subsequently, an investigation is performed on the number of design variables required
to accurately represent a wind turbine blade geometry. In addition, it has been deter-
mined how this number relates to the number of design variables that is required for a
sufficiently accurate representation of the design space for solving a model aerodynamic
shape optimization problem.

2.1 Introduction

This section formulates the requirements for the parametrization method of the geo-
metry in an aerodynamic shape optimization problem. A brief overview is given on the
parametrization methods that have been employed — and presented in the literature —
for this kind of problems. Finally, the parametrization method is considered that will be
applied in the present research for the parametrization of the wind turbine blade geometry.

2.1.1 Requirements

Before the choice of a method for the parametrization of the wind turbine blade geo-
metry can be made, it is important to consider the key aspects and requirements for the
parametrization employed for solving an aerodynamic shape optimization problem.

First and foremost, the parametrization method must be able to span the complete
design space: ‘complete’ in the sense that any geometry with a topology similar to the
topology of the initial geometry must have a representation in the parametrization method
that is considered. This requirement is important, since it would be very undesirable if the

17

2. Shape parametrization

optimal geometry could not be obtained by applying the optimization method, because
it cannot be represented by that parametrization method.

As a second requirement, the number of design variables required to satisfy the first
requirement should be limited. This statement is not very precise, because in the present
context it is hard to give an absolute quantification of the term ‘limited’. However,
this requirement can be used to measure the suitability of one parametrization method
relative to another. Limiting the number of design variables is important for an efficient
optimization procedure, because an increase in the number of design variables increases
the computational cost per iteration. Moreover, it results in an increase in the number
of optimization iterations that must be performed to reach the optimum. The latter
statement can be explained by considering the dimension of the design space in which the
optimum is to be searched for. In general, a search space of a high dimensionality requires
more optimization iterations before the actual optimum is obtained than a search space
with fewer dimensions. Results of an investigation of a model optimization problem [93]
confirm this idea. Secondly, a large number of design variables may restrict the choice
of the gradient-based optimization method to be used. A Newton-like method is the
preferred choice, because of the low number of design iterations needed to obtain an
optimum. However, for a large number of design variables, the matrix involved in the
Newton-like method becomes prohibitively large and one is forced to apply less efficient
gradient-based optimization strategies [71], requiring a larger number of design iterations.
Thirdly, it must be noted that for a gradient-based optimization, the larger the number
of design variables, the more sensitivities have to be determined. Even for the adjoint
equation method, which is employed because its characteristics do not depend on the
number of design variables, it is advantageous to use a compact parametrization. Because
the adjoint equation method requires the evaluation of a number of partial derivatives.
The evaluation of these partial derivatives may depend on the number of design variables,
depending on the particular implementation. Therefore, the computational cost per
iteration increases with the number of design variables.

Another requirement of the parametrization method is that varying the design vari-
ables should result in local changes of the geometry. In this way, the geometry can be
modified locally without affecting regions that do not need to be changed any more in
order to render the optimal shape.

The final requirement concerns the behaviour of the parametrization during the opti-
mization procedure, this behaviour must be smooth [31]. This requirement is formulated
to prevent the optimization procedure from failing, because of the occurrence of geo-
metrical features — like sharp dents in the surface — that present problems for the
discretization of the flow domain. Just like the requirement for a limited number of
design variables, this requirement is not easily quantified. However, by envisaging the
general characteristics of the parametrization method, the method can be qualified to
display smooth behaviour or not; for example, by considering the degree of continuity of
the parametrization employed.

2.1.2 Methods employed in aerodynamic shape optimization

In the literature there are many examples of parametrization methods used in aerodynamic
shape optimization problems. An overview of the various existing methods adopted is
presented below. However, this overview is not meant to be complete, but merely gives

18

2.1 Introduction

a good indication of what the options are.
For most optimization procedures presented in the literature, just one particular

parametrization method is adopted, without explicitly considering the alternatives. One
of the most straightforward means of the parametrization of an arbitrary shape is using a
discrete representation of its geometry. The vertices of the surface mesh can be used for
this purpose. In the work of both Jameson [90] and Mohammadi [125] this parametriza-
tion method was employed. The main advantage of this method is that it is easy to apply.
However, its disadvantage is that the method is not inherently smooth, and therefore ad-
ditional smoothing of the obtained geometry may be required. Furthermore, since the
coordinates of the vertices of the surface mesh are the actual design variables, combined
with that a considerable number of vertices is necessary for an accurate representation of
a curved shape, the number of design variables becomes rapidly large for this method.

An alternative approach was taken by both Gauger [67] and Kim [97]. They employed
so-called Hicks-Henne bump functions [84]. In this method, the actual shape is not
parametrized, but the change in shape with respect to the initial geometry. This method
requires less design variables than the mesh point approach to represent the geometry.
Also this method results in smoother geometric shapes.

Carpentieri [31] employs a similar parametrization method, by using Chebychev poly-
nomials instead of the Hicks-Henne bump functions. This approach has the additional
advantage that the Chebychev polynomials are orthogonal, which could result in better
convergence properties of the optimization process. Although Chebychev polynomials
have originally been applied for 2D parametrization only, Carpentieri also presents an
extension of the concept for the parametrization of 3D shapes. This method was subse-
quently used for the optimization of wings in inviscid flow.

Other widely used parametrization methods in aerodynamic optimization problems
employ splines to describe the aerofoil or wing geometry. These methods generally provide
a smooth parametrization and require only a limited number of design variables. For
splines, control points are used to specify the shape of a curve. In this case, the location
of these control points, and in some cases also the corresponding weights, represent
the design variables. Furthermore, a collection of basis functions is used to convert the
control point locations to the actual curve shape. Different kinds of splines are used for
this same basic concept, such as the basis spline, successfully employed by Buckley [26]
for the multi-point optimization of aerofoils. Another type of spline is known as the Bézier
spline, which has been used for the optimization of transonic aerofoils [170]. The most
general type of spline is the so-called non-uniform rational basis spline (NURBS) [186],
which can be used for the parametrization of curves as well as of surfaces of almost any
shape. This parametrization method has been used, for example, for the optimization of
aircraft wings [109].

For 2D aerodynamic optimization problems the parametrization method PARSEC [169]
is widely used. This method employs general geometrical characteristics of an aerofoil,
such as the nose radius and trailing edge angle, to describe the geometry. These geomet-
rical features are subsequently used to impose boundary conditions on a more general
curve parametrization method, e.g. polynomials [135] or Bézier splines [50]. However,
there is no generalization of this concept for the parametrization of 3D wing-like shapes
and extension of the method to be able to describe a true 3D wing-like shape is not triv-
ial. Therefore, it is not considered further in the present research. Moreover, Castonquay
showed that only limited control over important regions, such as the leading edge and

19

2. Shape parametrization

Table 2.1: Summary of the most widely used parametrization methods in aerodynamic shape
optimization problems and their most important characteristics. Favourable charac-
teristics are indicated by a ‘+’ and adverse characteristics by a ‘−’.

Method Major characteristics

+ easy to apply
Mesh points − not inherently smooth

− large number of design variables

Hicks-Henne bump functions/
Chebychev polynomials

+ smooth
+ small number of design variables
− not a parametrization of the actual shape
+ inherently smooth

Splines + local influence
+ small number of design variables
− limited to 2D

PARSEC + small number of design variables
+ smooth

trailing edge shape, is possible [33].

In the literature, various parametrization methods have been compared and assessed
for their suitability for a particular optimization problem. Castonguay [33], for example,
compares different methods for the optimization of aerofoils in transonic flow. For that
particular optimization method, NURBS curves are considered the most suitable choice.
Samareh [155] gives a more general overview of the various shape parametrization meth-
ods employed in aerodynamic shape optimization and also lists the reasons to use a
particular method for a specific problem; this choice depends on the requirements of the
problem considered. Another comparison for the optimization of aerofoils is presented
in the research performed by Marinus [114], in which the parametrization by means of
Bézier curves is compared with parametrization based on the use of basis splines. This
research indicates that basis splines surpass Bézier curves in performance. Three different
3D parametrization methods are compared in the work by Mousavi [128], namely mesh
points, basis spline surfaces and the so-called Class function/ Shape function Transfor-
mation [105] (CST) method. The latter method combines an analytical class function
with a parametric shape function. The class function describes a basic class of shapes
and the shape function describes the permutation around this basic shape [179]. The
authors conclude that the mesh points show a slightly better performance than the basis
spline surface for the test-cases performed. However, it is also noted that considering
the number of design variables employed, the basis spline surface is the preferred choice.
Additional investigations on the influence of shape parametrization on the optimization
procedure can be found in the literature [135,171,204]. Table 2.1 summarizes the major
parametrization methods used in aerodynamic optimization problems and lists their most
important features.

20

2.2 Non-uniform rational basis spline surface

2.1.3 Considerations

The choice has been made to use non-uniform rational basis spline surfaces to parametrize
the wind turbine blade shape. This choice was made based on: (i) a NURBS surface
parametrization can meet all the requirements mentioned in subsection 2.1.1; (ii) the expe-
rience and results presented in the literature; (iii) compatibility of the NURBS parametriza-
tion with computer aided design (CAD) methods. Because NURBS surfaces are widely
used in CAD methods for representing arbitrary shapes, it is an expedient choice to use a
NURBS surface for representing the wind turbine blade shape; since this approach helps
to integrate the aerodynamic design process in the multi-disciplinary wind turbine blade
design procedure.

When choosing a NURBS surface, there is one more choice that needs to be considered
for the actual blade surface representation. The blade shape can be represented by
the NURBS surface itself, such that the NURBS surface is equal to the blade surface.
The alternative is to decompose the blade shape in a way that is analogous to the
representation of an aerofoil by its camber line and thickness distribution, i.e. the method
also used to describe the geometry of the well-known NACA aerofoils. The extension of
this concept to 3D means that the thickness distribution is to be represented by a surface
rather than a curve. This statement is also true for the camber line, which becomes a
camber surface. Complementing this transformation, one additional curve is required to
embody the twist distribution along the span of the blade. The direct parametrization of
the blade surface has the advantage that it can also be employed directly in the generation
of the surface grids. On the other hand, it was found by Marinus that, depending on the
optimization method used, the indirect approach outperforms the direct parametrization
regarding the required number of design iterations [114]. On the other hand, the indirect
approach is incompatible with CAD methods, while the direct approach is. Furthermore,
since the optimization procedure that led Marinus to this conclusion strongly differs
from the planned approach in the present research, it can not be assumed to be also
true in this case. Moreover, reusing the blade surface parametrization in the surface
grid generation procedure is regarded a significant advantage of the direct approach.
Therefore, the choice is made to employ a non-uniform rational basis spline surface for the
direct parametrization of the surface of the blade of the wind turbine rotor. Nevertheless,
it is interesting to investigate the performance of both methods, which, however, is not
pursued in the present research.

2.2 Non-uniform rational basis spline surface

The parametrization method chosen to describe the wind turbine blade geometry is the
non-uniform rational basis spline surface. In this section, the method is described, starting
with the concept of the basis spline. Subsequently, this concept is extended to the
rational basis spline. Thereafter, the extension from a curve to a surface is presented in
section 2.2.3.

2.2.1 Basis spline curve

A basis spline curve is specified by a set of control points, with coordinate P k ∈ R3, the
order p ∈ N1 ≥ 1 of the spline and the so-called knot vector υ. For a basis spline curve

21

2. Shape parametrization

of order p specified by n ∈ N1 ≥ 2 control points, the knot vector contains a sequence
of p + n non-decreasing real valued numbers:

υ0 ≤ υ1 ≤ ... ≤ υp+n−1 , υi ∈ R ∀ i ∈ N0 : 0 ≤ i ≤ p + n − 1.

Without loss of generality it can be assumed that 0 ≤ υi ≤ 1. When all the components
of the knot vector and the coordinate of all control points are defined, the shape of the
basis spline curve is given by

Cp (u) :=
n−1∑

i=0

[

P iN
(p−1)
i (u)

]

, υ0 ≤ u ≤ υp+n−1, (2.1)

where Nq
i is a polynomial basis function of degree q ∈ N0. These polynomial basis

functions are given by the Cox-de Boor recursion formula [139]:

Nq
i (u) :=

u − υi

υi+q − υi
N

(q−1)
i (u) +

υi+q+1 − u

υi+q+1 − υi+1

N
(q−1)
i+1

(u) , q ≥ 1. (2.2)

The recursive relation starts for q ≡ 0 with a piece-wise constant function, also known
as the boxcar function [23], defined as:

N0

i (u) :=

{

1 if υi ≤ u < υi+1

0 otherwise.
(2.3)

This equation concludes the mathematical model to represent curves in R3 by means of
a basis spline curve. Some general properties of basis functions can be identified, which
are listed below.

Consider basis functions of degree q for a curve specified by n control points:

1. sum equal to one, i.e.
n−1∑

i=0

[Nq
i (u)] ≡ 1 , υ0 ≤ u ≤ υq+n;

2. are non-negative, i.e. Nq
i (u) ≥ 0 , ∀ u ∈ R;

3. equal zero outside their range of influence, i.e. Nq
i (u) ≡ 0 if u /∈ [υi,υi+q+1].

Figure 2.1 illustrates basis functions of a different degree and with different knot vectors.
Non-uniformity of the knot vector is treated next.

Knot vector

The knot vector can either be uniform or non-uniform. The latter provides greater flex-
ibility for the curve parametrization [186], since the knot vector — in combination with
the order of the curve — determines the amount and range of influence of a control
point. A special case of non-uniformity in the knot vector is the occurrence of a repeated
knot value, also known as knot multiplicity. A direct consequence of the occurrence of
a repeated knot value in the knot vector is the reduction of the parametric continuity
of the curve by one order for each repetition of a single knot. To be more precise, for
a basis spline curve of order p with a knot vector with a maximum knot multiplicity k,
the parametric continuity is of the order p − k. Knot multiplicity can, for instance, be

22

2.2 Non-uniform rational basis spline surface

N3

0 N3

1 N3

2 N3

3

u

N
3 j

(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N3

0
N3

1

N3

2

N3

3

u

N
3 j

(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N1

0 N1

1 N1

2 N1

3

u

N
1 j

(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 N1

0
N1

1 N1

2 N1

3

u

N
1 j

(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Basis functions of degree 1 (upper two) and 3 (lower two) for a spline defined
by 4 control points. Basis functions depicted on the left employ a knot vector with
uniform spacing of 1

7
. For basis functions depicted on the right, the non-uniform

knot vector
(
0, 1

10
, 1

5
, 1

2
, 3

4
, 4

5
, 17

20
, 1
)T

has been employed. In each graph the area
underneath basis function Np

2 (u) is shaded.

used to introduce a sharp corner, i.e. a discontinuity in the slope in the curve; see for
instance figure 2.2 on page 24. In this figure the solid curve represents an aerofoil and it
is specified using 8 control points — indicated by the open circles, which are connected
by the control polygon indicated by the dashed line — and has basis functions of degree
four. A knot multiplicity of 5 is applied at the trailing edge, resulting in a curve that has
locally only a C0-continuity. However, when two or more elements of the knot vector are
of equal value, the problem of division by zero arises in the evaluation of equation (2.2).
To cope with this difficulty, in such cases the following convention is applied:

0

υi+q − υi
:= 0 if υi+q ≡ υi.

In general, the control points of a basis spline curve are not located on the curve
itself. However, if such an intersection is required for control point P i of equation 2.1,
it can be achieved by the application of a knot multiplicity equal to the order p of the
curve for the elements of the knot vector ranging from element i to i + p − 1. This
approach is customary for the first and final control point that define the curve. In this
way, the beginning and end of the curve are fixed, as illustrated by the aerofoil depicted
in figure 2.2.

23

2. Shape parametrization

0.0 0.2 0.4 0.6 0.8 1.0
x/̄c

y
/̄c

-0.1

0.0

0.1

Figure 2.2: Aerofoil represented by a NURBS curve, with 8 control points, depicted by
the open circles, and basis functions of degree 4. Control polygon, connecting
consecutive control points, represented by the dashed line. Note, that at the
trailing edge there are two control points that coincide. Dimensions are scaled
by the chord length c̄.

2.2.2 Rational basis spline curve

The concept of the basis spline can be extended by the introduction of a weighting
factor wk linked to each of the control points. To render the method coordinate invari-
ant after the introduction of this weighting factor, a normalization factor needs to be
introduced as well. Otherwise, the weighting factor effectively only scales the distance
of the control point from the origin of the coordinate system, which means that the
parametrization method is not coordinate invariant; this characteristic is undesirable. In-
cluding the normalization factor, the expression for the resulting so-called rational basis
spline becomes

Cp (u) =
1

n−1∑

j=0

[

N
(p−1)
j (u) wj

]

n−1∑

i=0

[

wiP iN
(p−1)
i (u)

]

, υ0 ≤ u ≤ υp+n−1,

with p again the order of the curve and n the number of control points used to specify
the curve. In this equation the fraction in front of the summation sign represents the
normalization factor. By rearranging this equation and the introduction of the rational
basis function

Rq
i (u) :=

Nq
i (u) wi

n−1∑

j=0

[
Nq

j (u) wj

]
, (2.4)

the rational basis spline curve can be expressed as

Cp (u) :=

n−1∑

i=0

[

P iR
(p−1)
i (u)

]

, υ0 ≤ u ≤ υp+n−1. (2.5)

2.2.3 NURBS surface

From the above description of the NURBS curve, an extension can be made to the
2D equivalent of the curve, i.e. the NURBS surface. This extension is achieved by the
introduction of a second parametric variable v, an additional knot vector ν and the use

24

2.3 Aerofoil parametrization with NURBS curve

Figure 2.3: Part of an ellipsoid represented by a NURBS surface in cyan, to-
gether with the corresponding grid of control points represented
by red spheres.

of a rectangular grid of control points, instead of a single array. If this grid consists of
n × m control points and the order of the NURBS surface equals p in the direction that
corresponds to variable u and q in the other direction, the shape of the surface is given
by

Spq (u, v) :=
n−1∑

i=0

(
m−1∑

j=0

[

P ijR
(p−1)(q−1)
ij (u, v)

]
)

,

{

υ0 ≤ u ≤ υp+n−1,

ν0 ≤ v ≤ νq+m−1.
(2.6)

This expression is quite similar to the equation that describes a NURBS curve, equa-
tion (2.5). Now, the rational basis spline for a NURBS surface is:

Rpq
ij (u, v) :=

Np
i (u) Nq

j (v) wij

n−1∑

k=0

(
m−1∑

l=0

[Np
k (u) Nq

l (v) wkl]

) . (2.7)

The aforementioned features and characteristics of the NURBS curve also apply to the
NURBS surface. Figure 2.3 shows part of the surface of an ellipsoid, represented by a
NURBS surface, together with the corresponding grid of control points.

2.3 Aerofoil parametrization with NURBS curve

Before the parametrization of the blade of a wind turbine rotor is investigated with
respect to the number of control points required for the representation of the design
space, a less involved case is considered, namely the parametrization of an aerofoil using

25

2. Shape parametrization

x/̄c

y
/̄c

−100 −50 0 50 100

−100

−50

0

50

100

x/̄c

y
/̄c

0.0 0.5 1.0

−0.5

0.0

0.5

Figure 2.4: Flow domain used for solving 2D optimization problem, discretized using a C-
grid consisting of 640×112 cells. For clarity, only every 4th grid line is displayed.
Right picture shows detail of the grid around NACA 0012 aerofoil, used as initial
geometry. Dimensions are scaled by chord length c̄.

a NURBS curve. This test case is expected to give an indication of the number of design
variables required for an aerodynamic optimization problem using non-uniform rational
basis splines as a parametrization method. An investigation of the number of control
points required for an accurate fit was performed by Lépine et al. [108,109,188]. In that
research it was found that an arbitrary aerofoil can be represented sufficiently accurately,
in terms of the accuracy required for a flow simulation, using 13 control points for the
direct representation of the aerofoil shape. This result is adopted as a starting point for
addressing the research question of how the number of control points required for an
accurate fit of the geometry relates to the number of design variables necessary for an
adequate representation of the design space for an aerodynamic optimization problem.
This investigation is performed by solving an actual aerodynamic optimization problem,
using a NURBS curve as the shape parametrization method. The optimization problem
used for this purpose is the minimization of the wave drag of an aerofoil subject to the
constraint of fixed lift, in a transonic inviscid flow. Even though the flow conditions
considered in this test case are not particularly representative for the flow around a wind
turbine blade, the transonic wave drag minimization problem is considered to sufficiently
reflect the problem of the wind turbine blade optimization. The results will indicate the
number of design variables required for an adequate representation of the design space
in relation to the number of control points necessary for an accurate fit of the geometry.

2.3.1 Aerofoil optimization

This subsection gives a concise description of the optimization method employed for
the 2D test case. For a more detailed treatise of the procedure, the reader is referred
to the work of Hartkamp [79]. The compressible Euler equations are used to model
the flow. The sensitivities needed for the optimization have been computed using the
discrete adjoint equation method [90]. Furthermore, the optimization is performed using
SNOPT [71], i.e. a library for performing gradient-based constrained optimization which
employs a BFGS quasi-Newton method [143], developed at Stanford University. The flow
equations have been discretized using a cell-centred finite volume scheme with an upwind

26

2.3 Aerofoil parametrization with NURBS curve

n = 6 n = 9 n = 12 n = 13

Figure 2.5: Results of the minimization of I ≡ cd for fixed cl = 0.5 in inviscid flow at
a free-stream Mach number of M∞ = 0.75 using a variable number of control
points for the parametrization of the aerofoil. Geometrical constraints imposed
are: κ̄max c̄ ≤ 150, t̄min/̄c ≥ 0.12 and τte ≥ 10

◦. Results shown for — from left to
right — a parametrization using 6, 9, 12 and 13 control points, respectively. For
the version in the bottom row, the vertical scale is multiplied by a factor of 1/7 to
highlight the difference in shape.

convective flux discretization, using Roe’s approximate Riemann solver [147]. Second-
order spatial accuracy is achieved utilizing MUSCL-type reconstruction [193] via the Van
Albada limiter [5]. The choice has been made to optimize an aerofoil in a transonic flow
at a free-stream Mach number of M∞ = 0.75. The drag coefficient acts as the objective
function in this optimization problem, i.e. I := cd in equation (1.1), which defines the
optimization problem. Besides some geometrical constraints, in order to obtain more or
less realistic aerofoil shapes — for example in terms of the minimum trailing edge angle τte,
the minimum thickness of the aerofoil t̄min and the maximum allowable curvature κ̄max —
a constraint is imposed on the lift; the lift coefficient is set equal to 0.5. The NACA 0012
aerofoil is selected as the initial geometry to start the optimization procedure. For the
specified condition and constraint5 on the lift, the value of cd equals 1.77 . 10−2 for
the NACA 0012 aerofoil. This result is obtained on a C-grid consisting of 640 cells
along the aerofoil contour and wake line and 112 cells in the direction normal to the
aerofoil. Moreover, the far-field is situated at 100 chord lengths away from the aerofoil.
This domain — with its corresponding discretization, depicted in figure 2.4 — is also
employed in the optimization procedure. To perform the actual optimization, a NURBS
curve representation of this aerofoil is required. This representation has been obtained
by performing a fit of the aerofoil shape, with the specified number of control points
and degree of the splines, as described by Hartkamp [79]. Moreover, note that the
curve fitting was performed using a fixed knot vector, with an initial uniform interior
knot distribution. The choice was made to use a NURBS curve representation of the
NACA 0012 aerofoil, modified to have a sharp trailing edge, with the number of control
points ranging from 5 to 13. The final shapes resulting from solving this optimization
problem for 6, 9, 12 and 13 control points are presented in figure 2.5. This picture clearly
shows the diversity in shape for the different minima obtained. If on the other hand
the value of the objective function of the final result is considered, listed in table 2.2,
it can be observed that for the range considered, the minimum value of cd is more or
less independent of the number of control points used. This observation indicates that

5For the dimensions of the domain and the grid used, the required angle of attack — for the
NACA 0012 aerofoil to satisfy the lift constraint, i.e. cl ≡ 0.5 — equals 2.32855◦.

27

2. Shape parametrization

Table 2.2: Results of the minimization of I ≡ cd for fixed cl = 0.5 in inviscid flow at a free-stream
Mach number of M∞ = 0.75 — subject to geometrical constraints: κ̄max c̄ ≤ 150,
t̄min/̄c ≥ 0.12 and τte ≥ 10

◦ — using a variable number of control points for the
parametrization of the aerofoil, listed in column one. The second column provides
the number of design variables used in the optimization. The third column shows
the accuracy of the geometric fit, by means of the quadratic mean of the error, of
the NACA 0012 aerofoil for the corresponding NURBS curve representation, which
was used as an initial guess for the optimization procedure. The fourth column lists
the attained minimum resulting from solving the optimization problem. The three
remaining columns provide the value of the geometrical constraint functions for the
geometry obtained.

n ndesign rms-error of fit Imin t̄min/̄c τte κ̄max c̄

5 10 1.17
.
10

−4
2.1321

.
10

−4 12.5 48.1◦ 66.7
6 13 8.75 . 10−5

2.2141
.
10

−4 13.9 32.0◦ 66.4
7 16 2.76 . 10−5

2.0840
.
10

−4 12.0 12.8◦ 82.6
8 19 1.34 . 10−5

1.9616
.
10

−4 12.0 10.0◦ 67.0
9 22 3.81 . 10−6

1.9381
.
10

−4 12.0 10.0◦ 66.9
10 25 2.47 . 10−6

1.9362
.
10

−4 12.0 10.8◦ 68.6
11 28 1.09 . 10−6

1.9020
.
10

−4 12.0 10.0◦ 66.2
12 31 7.21 . 10−7

1.9529
.
10

−4 12.0 10.0◦ 68.3
13 34 3.30 . 10−7

1.8388
.
10

−4 12.8 10.0◦ 76.7

from the aerodynamic shape optimization point of view, the number of control points
required for an accurate fit — accurate in terms of the accuracy required for a flow
simulation [188] — can be regarded as an upper limit for the number of control points
needed for an adequate representation of the design space. However, it must be noted
that the nature of this model optimization problem differs from the 3D blade optimization
problem in the sense that the present model problem inherently exhibits multiple global
minima due to the used inviscid flow model. Since the flow is subcritical, the exact value
of cd is equal to zero. For the optimized aerofoils the drag coefficient is not equal to
zero due to the occurrence of numerical dissipation and the approximate evaluation of
the integration of the surface pressure to compute the force coefficient. Moreover, the
relative effect of the treatment of the far-field boundary condition or the location of the
far-field boundary can be quite considerable [195].

From the results presented in table 2.2, it can be concluded that a NURBS curve
representation of an aerofoil with five control points is sufficient to be able to obtain at
least one of the many global minima present in the design space for this optimization
problem. On the other hand, it is not known a priori if similar characteristics could
be expected for the design space corresponding to the wind turbine blade optimization
problem. Therefore, the safe approach is to choose the number of control points employed
in the wind turbine blade optimization to be equal to the number of control points required
for an accurate geometric fit. The parametrization of the wind turbine blade is discussed
in the next section.

28

2.4 Parametrization of the wind turbine rotor blade

2.4 Parametrization of the wind turbine rotor blade

This section discusses the procedure employed to determine a NURBS surface represen-
tation of the geometry of the blade of a wind turbine rotor.

A discrete representation of the blade surface is required that has a fixed number
of points representing each cross-section. The blade can, for example, be represented
by n1 ∈ N1 points per cross-section for n2 ∈ N1 cross-sections. Once this representa-
tion has been obtained, a least-square fit of the discrete representation of the blade is
performed.

From the 2D experiments of fitting aerofoils with a NURBS curve, it was found
that specifying a knot vector with a uniform interior knot distribution, did not have a
limiting effect on the achievable accuracy of the resulting parametrization. Based on
this experience, the choice has been made to apply the same procedure for both knot
vectors of the 3D NURBS surface used in the least-square fit procedure. The x, y and z-
component of the coordinate as well as the weight of the control points are used as design
variables in the fit procedure. To further improve the fit, the values of the parametric
variables u and v for which the spline surface is evaluated are also used as design variables.
Moreover, the actual fitting procedure is split in two parts. In the first step, the four
boundaries of the reference surface are fitted as NURBS curves. Upon having obtained a
NURBS curve representation of the edges of the blade surface, a fit of the remainder of
the discrete blade surface is performed. The decision to split the fitting procedure into
these two parts has been made to improve the accuracy of the fit at the edges of the
blade surface. In this way the resulting fit will more accurately represent the trailing edge
of the blade as well as its tip. Moreover, to account for the relative error being larger
in the tip region, when carrying out a standard least square minimization where only the
absolute error is considered, also a weighting of the error has been applied. This approach
results in a more accurate representation of the blade in the tip region. Weighting has
been implemented by dividing the error by the value Ξj of the perimeter of the local
blade contour of the discrete version of the original blade. Applying this adjustment, the
objective function for fitting the blade now reads

I (x) := (weighted error)2rms ≡ 1

n1n2

n2−1∑

j=0

[

1

Ξj

n1−1∑

i=0

(∣
∣
∣
∣x (ui, vj) − x′

ij

∣
∣
∣
∣
2
)
]

, (2.8)

where x′
ij represents a point of the original geometry and x (ui, vj) is the corresponding

point of the fitted surface. Note, that the quadratic mean squared is used as objective
function instead of just the quadratic mean, because it results in a smoother design space.

The fitting procedure has been used to determine the number of control points re-
quired to accurately represent the wind turbine blade surface. This investigation was
done for two different wind turbine blade geometries. As discussed in the preceding sec-
tion, an accurate representation of an arbitrary aerofoil using a NURBS curve for the
direct parametrization of the shape requires about 13 control points. This finding is
used as a starting point for the investigation of the number of control points required
for the accurate representation of the shape of the wind turbine blade using a NURBS
surface. Furthermore, some preliminary tests showed that 13 control points is also a
suitable choice for the number of control points in the spanwise direction of the blade.
The simple shape in that direction — simple relative to the shape of the cross-section —

29

2. Shape parametrization

Table 2.3: Results of fitting the geometry of the blade of a wind turbine rotor using 13 control
points for the cross-section of the blade and also 13 control points for representing
the shape in the spanwise direction. The geometrical fit is performed for two typical
blades of different span, denoted by the name of the rotor for which they are used.
The second column lists the span of the blade. The last two columns list the
unweighed error of the fit by means of the quadratic mean and the ℓ∞-norm, non-
dimensionalized using the length of the blade and the wetted surface area.

Blade Span [m] (error)rms ||error||∞
Suzlon S88 43.25 8.21 . 10−4

6.39
.
10

−3

Suzlon S64 29.50 5.05 . 10−4
4.53

.
10

−3

might give the impression that fewer control points would also be sufficient. However, it
was found that using fewer control points in the spanwise direction results in an inaccu-
rate representation of the blade in the region near the root, especially in the region where
the shape of the cross-section changes significantly. The degree of the basis functions
for the NURBS surface was chosen to equal four in both directions. This choice was
made to have a sufficiently differentiable surface, which, for example, is required to be
able to determine the local curvature. Besides that, the use of basis functions of a higher
degree results in a wider range of influence on the shape of the surface of a control
point. Therefore, to retain the local controllability — considering the third property of
basis functions, listed on page 22 — the degree of the basis functions has been limited
to four. The results of the fitting procedure for two different blades are summarized
in table 2.3. In the errors listed in this table, the weighting by the perimeter of local
blade contour is not taken into account. These results show that both geometries can
be represented with a similar accuracy using a grid of 13 × 13 control points. The
accuracy of the fit can be improved by increasing the number of control points in one
or both directions. Furthermore, it is possible that a more elaborate fitting procedure,
for example the method suggested by Becker [15], would provide a more accurate fit for
the same number of control points. However, the accuracy achieved with the current
approach and for the given number of control points is considered adequate, based on
the aim of this investigation and the aforementioned results and remarks presented in
the preceding section. Therefore, a NURBS surface representation by a grid of 13 × 13
control points should be used for the parametrization of the wind turbine blade in the
optimization procedure.

When in the optimization all three components of the coordinate, as well as the
corresponding weight are used as design variables, it results in a total number of 13 × 13
× 4 = 676 design variables. However, in practice the number of design variables used
for solving an optimization problem will be lower than this number, for several reasons:
(i) the blade must be closed at the trailing edge, which reduces the number of design
variables by 4 · n2; (ii) the weights may not be used — solving 2D problems indicated
that similar results can be obtained without using weights — which reduces the number
of design variables by n1 · n2; (iii) the coordinates of not all control points need to be
fully independent; (iv) the coordinate of some control points must be fixed, to control
the absolute position of the blade.

30

2.5 Summary

2.5 Summary

Various parametrization methods have been investigated by reviewing publications on
parametrization methods that have been employed for solving aerodynamic shape op-
timization problems. Based on this investigation, the choice has been made to use a
NURBS surface for the direct parametrization of the geometry of the surface of the wind
turbine blade. Subsequently, the mathematical description of the basis spline, the ratio-
nal basis spline and the non-uniform rational basis spline has been presented, followed
by the equations to describe a NURBS surface. Next, the results were presented of an
investigation performed to determine the number of design variables required for the ac-
curate representation of the design space for a typical aerodynamic shape optimization
problem. This investigation was carried out using a model aerodynamic shape optimiza-
tion problem, viz. the minimization of the wave drag for an aerofoil in transonic inviscid
flow subject to the constraint of fixed lift. This research showed that the number of
design variables required for an accurate representation of the geometry of an aerofoil
can serve as an upper limit for the number of design variables required to represent the
design space for solving an aerodynamic shape optimization problem. Finally, the number
of control points required to represent a wind turbine blade using a NURBS surface was
investigated. It has been found that a grid of 13 × 13 control points is sufficient for this
task for a NURBS surface with basis functions of degree four.

31

3
Flow domain discretization

“I saw before me a vast multitude of small Straight Lines [. . .] interspersed with
other Beings still smaller and of the nature of lustrous points [. . .].”

— Edwin A. Abbott (1838 – 1926), Flatland

T
he nature of the equations that describe the flow of a fluid is such that they cannot be
solved analytically for a non-trivial flow configuration. If, however, a solution of these

equations is required, one has to accept an approximate solution of the equations, which
can be obtained by solving the flow equations numerically [29, 200]. For this purpose,
a discrete representation of the geometric configuration is required, for which the flow
equations need to be solved. This chapter treats the methods employed in the present
research for the discretization of the geometry and the corresponding flow domain around
the configuration. First, the requirements for the grid generation method are considered,
focused on solving an aerodynamic wind turbine rotor blade shape optimization problem.
Subsequently, a choice is made regarding the discretization method to be used in the
present research. Related to the choice to use a hyperbolic grid generation method,
composite overset grids are used to facilitate the block connectivity. Thereafter, the
surface grid generation is treated. Two methods are discussed for the discretization of
curves bounding the surface. Then, two different methods for the discretization of the
parametric surface are treated. The resulting surface grid is used as an initial condition
for the generation of the volumetric hyperbolic field grid; this method is presented in
section 3.3. The chapter ends with a summary and an example of field grid that is
generated using the methods presented in this chapter.

3.1 Introduction

The generation of a discretized flow domain consists of three steps. The first step is the
definition of the flow domain; this definition refers to the specification of the surfaces
bounding the flow domain. Subsequently, these surfaces need to be discretized, to serve
as a basis for the volume grid. The generation of this volume grid is the third and
final step in the discretization of the flow domain. For all three steps different methods
exist. The most prominent advantages and disadvantages are discussed of the methods
considered.

33

3. Flow domain discretization

3.1.1 Requirements

In order to choose a suitable method for the discretization of the flow domain for solving a
wind turbine optimization problem, first the requirements are discussed. The prerequisite
follows directly from the choice for the flow solver that is employed to solve the flow
equations. As discussed in chapter 1, a multi-block structured grid flow solver is used.
Therefore, the flow domain discretization method must provide a grid of this type. The
second requirement concerns the efficiency of the generation of the grid. Since a new grid
is required for each design iteration, the generation of the grid must not be very costly in
terms of the CPU-time required, relative to the CPU-time requirements for obtaining a
flow solution. This demand also brings up the next requirement, that is, the generation
of the grid needs to be fully automatic. The need for intervention of the user to generate
a new grid for each iteration, will render the optimization method impractical. Moreover,
the grid generation procedure must be robust, i.e. the grid generation must be able to
generate a grid for each feasible blade, from an aerodynamic perspective. Otherwise,
the optimization procedure can abort prematurely and user intervention is required to
continue the optimization. Another requirement concerns the grid quality. As discussed
in subsection 1.3, the Euler equations are used to model the flow. The hyperbolic nature
of the Euler equations for unsteady flow has certain implications with respect to the
discretization of the flow domain. Because a hyperbolic operator in general does not
provide any smoothing effect [81], a poor quality of a grid is directly reflected in the
discrete solution of the Euler equations. Furthermore, physical effects, such as refraction
or reflection of waves, can occur due to a non-physical cause, like non-smooth features of
the discretized flow domain. Moreover, a poor grid quality negatively affects convergence
and stability of the flow solution method. Based on these requirements, a choice for a
suitable discretization method is made in the next section.

3.1.2 Considerations

Different methods exist for the generation of a structured grid that can be used for solving
the equations that govern the flow. Two of these methods can satisfy the requirement of
providing a good grid quality6. The first method is called elliptic grid generation [174].
In this case elliptic refers to the type of partial differential equation that is solved to
determine the location of the vertices of the grid. Due to the nature of the underlying
partial differential equations, the surface grid of all six faces bounding the part of the
volume that needs to be discretized must be specified. The second method that provides
a volume grid of good quality is also named after the class of partial differential equations
that must be solved in this method, i.e. hyperbolic equations [177]. This type of equations
has also certain implications for the particular grid generation procedure. A hyperbolic
grid generation method requires the specification of the surface grid of only one of
the faces bounding the volume for which a discrete representation is required. This
surface provides the initial condition for the hyperbolic partial differential equation. The
surface grids of the remainder of the faces bounding the discretized volume follow from
the solution of the hyperbolic equations and the boundary conditions enforced; they
are effectively the result from marching the specified surface grid into the domain. A

6Note, that for specific cases it is also possible to realize a good grid quality, using algebraic grid
generation methods. However, the grid generation method should be universal. Therefore, an algebraic
method is less suitable, because generally it provides grids of lower quality.

34

3.2 Surface grid generation

consequence of this approach is, that the remainder of the boundaries cannot be specified.
An advantage of the hyperbolic grid procedure is that this method is considerably faster
than an elliptic method [20, 81]. Therefore, the choice is made to use a hyperbolic grid
generation method for the generation of the field grid in the optimization procedure, since
the computational efficiency of the method is a strict requirement.

To alleviate the problem of not being able to specify all boundaries of the volume grid
explicitly, the choice is made to use a composite overset grid approach, see section 1.4.1
on page 5. With this approach, the block connectivity can be achieved when there is
sufficient overlap between the different blocks. With a hyperbolic grid generation method,
this requirement is easily met. The method to determine the block connectivity for the
composite overset grids method is discussed in more detail in chapter 4. However, this
choice has also certain implications for the flow solution method itself, i.e. it needs to be
able to handle composite overset grids. Another advantage of the use of overset grids
is that it simplifies the domain decomposition in different blocks; this task can be quite
cumbersome when point matching of the blocks is used as the sole method for the block
connectivity.

The generation of a volume grid requires a surface grid as a boundary or initial
condition. Because the quality of the surface grid is reflected in the volume grid, especially
when a hyperbolic volume grid generation method is used, the surface grid needs to be
of good quality. Therefore, the choice is made to use two different methods for the
generation of the surface grid. The first method is surface grid generation by means of
linear transfinite interpolation and the second method is elliptical surface grid generation.
The first method is the preferred choice because it is more efficient in generating a surface
grid. However, situations exist for which linear transfinite interpolation cannot provide
adequate grid quality. For these cases, the computationally more intensive elliptical
surface grid generation method is used. Both methods are presented in the next section.

3.2 Surface grid generation

The generation of a surface grid is analogous to the generation of a volume grid. There-
fore, the grid generation procedure requires a discrete representation of the entity bound-
ing the domain to be discretized. In case of a surface, the bounding entity consists of
curves. Two methods for the discretization of the curves bounding the surface are treated
in subsection 3.2.1. Subsequently, the two different methods for the generation of the
actual surface grid are discussed, viz. linear transfinite interpolation in subsection 3.2.2
and elliptical grid generation in subsection 3.2.3.

3.2.1 Vertex distribution on boundary curves

Consider a surface S : R2 → R3 bound by four parametric curves Ck (t) : R → R3, k ∈
{0, 1, 2, 3}. The distribution of the vertices on these boundary curves serves as a boundary
condition for the surface grid. Therefore, it is important to note that requirements for
the discretization of the domain must already be taken into account in the distribution of
the vertices on the boundary curves. Smoothness of the variation in grid spacing is the
first requirement. Another requirement concerns clustering of vertices in regions of rapid
spatial variation of the flow variables. This rapid variation can be due to geometrical

35

3. Flow domain discretization

features like highly curved surfaces, or it can find its origin in the nature of the flow.
The method discussed in the next subsection takes the curvature of the bounding curve
into account in determining the vertex distribution. In situations that other factors than
the geometrical feature curvature are decisive for the required vertex distribution, the
algebraic stretching function by Vinokur [198] is used, which is also presented.

Curvature based vertex distribution

This method considers the smoothness of the spacing of the vertices and the vertex density
in regions of high curvature for determining the vertex distribution. A smooth spacing
means that the distance from one vertex to its neighbouring vertices in both directions
must not differ too much. For vertex i on curve Ck (t [ξ]), ξ ∈ R, with coordinate
ri ≡ Ck [t (i)] ≡ (xi, yi, zi)

T this requirement can be quantified as

|ri+1 − ri|
|ri − ri−1| < ᾱ, ᾱ ∈ R, i ∈ N1, (3.1)

where ᾱ is the factor specifying the maximum allowable relative distance between consec-
utive vertices. For a good quality grid, the upper bound yields a value of ᾱ = 1.3 [36].

The arc length sξ ≡ s (t [ξ]) along curve Ck (t [ξ]) from the beginning of the curve
at t (0) to vertex i can be determined by the evaluation of the integral

si =

t(i)∫

t(0)

∣
∣
∣
∣

dCk (τ)

dτ

∣
∣
∣
∣

dτ . (3.2)

Furthermore, the local curvature κξ ≡ κ (t [ξ]) for a parametric curve in R3 can be
computed from

κi =

∣
∣
∣

dCk(t)
dt × d2Ck(t)

dt2

∣
∣
∣

∣
∣
∣

dCk(t)
dt

∣
∣
∣

3

∣
∣
∣
∣
∣
∣
∣
t(i)

. (3.3)

A vertex distribution along a curve to be discretized can be obtained by solving

d2s (t [ξ])

dξ2

∣
∣
∣
∣
i

= f (s, κ) , (3.4)

subject to boundary conditions s0 = 0 and sn−1 equal to the length of the curve, for
t ∀ i ∈ N1 : i < (n − 1), where n ∈ N1 is the number of vertices used for the
discretization of the curve. Function f (s, κ) can be used to take into account specific
features of the curve for determining the vertex distribution. Solving equation (3.4)
for f (s, κ) = 0 results in an equidistant vertex distribution along the curve. To take into
account the effect of curvature, the following expression for f (s, κ) is formulated

f (s, κ) =

(
1−ᾱ

ᾱ

)
(si+1 − si) tanh (λ [θ − 1]) if Υ ≥ 1,

−
(
1−ᾱ

ᾱ

)
(si+1 − si) tanh (λ [θ − 1]) if Υ < 1,

(3.5)

36

3.2 Surface grid generation

0.0 1.0x/̄c

y
/̄c

-0.1

0.1
0.0

0.0 0.5 1.0 1.5 2.0

10
-1

10
0

10
1

0.0

1.0

2.0

3.0

C
u
rv

a
tu

re
κ

N
o
rm

a
li
ze

d
ve

rt
ex

sp
a
ci

n
g

s

Figure 3.1: The aerofoil in the left picture has 31 vertices distributed along its circumference.
Parameters used to obtain this distribution are ᾱ = 1.2 and λ = 1.0; dimensions are
scaled by chord length c̄. The right picture shows the characteristics of the vertex
distribution of 513 vertices around the aerofoil. The arc length, along the x-axis,
starts at the trailing edge and runs from the lower side to the upper side. The solid
line depicts the curvature. The dashed line represents the vertex spacing obtained
for λ = 1.0, the line with the dash-dot pattern is obtained for λ = 2.0. Both results
have been normalized by the average vertex spacing and use parameter ᾱ = 1.2.

where λ ∈ R is a parameter which can be used to specify the relative importance of the
curvature and θ ∈ R is the ratio of the curvature-weighted arc length of two subsequent
elements of the curve, specified as

θ =

Υ if Υ ≥ 1,

Υ−1 if Υ < 1,
with Υ :=

κi (si+1 − si)

κi−1 (si − si−1)
. (3.6)

The distribution of vertices along the curve is obtained by solving equation (3.4) iteratively
for each discrete value of ξ. This iterative procedure is stopped when the average change
in parametric value, for all vertices, between two subsequent iterations is below 5 · 10−5.
This threshold is typically reached in less than a thousand iterations. The left picture of
figure 3.1 shows the result of the vertex distribution, on a curve representing an aerofoil,
that was obtained with the method outlined above for n = 31. Furthermore, figure 3.1
shows the characteristics of the curve by means of its curvature plotted against the arc
length along the aerofoil, starting at the trailing edge on the lower side, represented
by the solid line. The dashed line in this graph represents the vertex spacing obtained
for λ = 1.0 and ᾱ = 1.2 for a vertex distribution of 513 vertices along the curve. The
result is normalized by the average spacing. This figure shows how the method decreases
the vertex spacing in regions of high curvature. To show the influence of parameter λ,
the procedure is repeated for λ = 2.0. This result is represented by the line with the
dash-dot pattern. It clearly shows the tendency to decrease the vertex spacing even more
than for λ = 1.0 in regions of high curvature and vice versa for regions of low curvature.

37

3. Flow domain discretization

Vinokur’s stretching function

In situations for which the curve, for which the vertex distribution needs to be determined,
shows no large variations in curvature or when other factors are more important for the
grid spacing, the algebraic vertex distribution function provided by Vinokur [198] is used.
For the particular function employed, the required vertex spacing at both ends of the
curve must be specified, i.e. (s1 − s0) and (sn−1 − sn−2) . For this purpose, define the
following parameters

A :=

√
sn−1 − sn−2√

s1 − s0
, B :=

1

(n − 1)
√

(s1 − s0) (sn−1 − sn−2)
.

Note, that s0 usually equals zero. Depending on the value of B, the stretching factor δ
is computed by solving

sin (δ)

δ
= B, for B < 1

sinh (δ)

δ
= B, for B > 1

for δ. Stretching factor δ is subsequently used to determine t (ξ)

t (ξ) =
1

2

1 +
tanh

([
ξ

n−1
− 1

2

]

δ
)

tanh
(

δ
2

)

 . (3.7)

Note, that for the limiting case of B ≡ 1, intermediate variable t is uniformly distributed.
This intermediate variable can then be used to determine arc length s (t [ξ]) according to

s (t [ξ]) =
t (ξ)

A + [1 − A] t (ξ)
, (3.8)

which completes the mathematical formulation for this particular algebraic stretching
function.

3.2.2 Transfinite interpolation

Again, consider a parametric surface S (u) : R2 → R3 bound by four parametric curves
Ck (t) : R → R3, k ∈ {0, 1, 2, 3}. The vertex distribution on each of these parametric
curves is used as a starting point for the discretization of surface S. The parametric
curves that are topologically opposite to each other need the same number of vertices.
Therefore, the discretization of the surface by n1 × n2 vertices, requires curves C0 and C1

to be discretized by n1 ∈ N1 vertices and curves C2 and C3 by n2 ∈ N1 vertices. Then,
the boundary vertex distributions in the parametric space of the surface parametrization
are obtained by solving

S (u) = C0 (t [i]) for uij ∀ i ∈ N0 : i < n1 , j ≡ 0

S (u) = C1 (t [i]) for uij ∀ i ∈ N0 : i < n1 , j ≡ n2 − 1

S (u) = C2 (t [j]) for uij ∀ j ∈ N0 : j < n2 , i ≡ 0

S (u) = C3 (t [j]) for uij ∀ j ∈ N0 : j < n2 , i ≡ n1 − 1,

(3.9)

38

3.2 Surface grid generation

where uij ≡ (uij, vij)
T . Next, define the set Ub to contain the value of the parametric

variable vector u for all boundary vertices, i.e. the solution of equation (3.9):

Ub := {uij : (i ∈ N0 : i < n1) , j ≡ 0} ∪ {uij : (i ∈ N0 : i < n1) , j ≡ n2 − 1} ∪
{uij : (j ∈ N0 : j < n2) , i ≡ 0} ∪ {uij : (j ∈ N0 : j < n2) , i ≡ n1 − 1} . (3.10)

Subsequently, interpolation is performed to obtain the coordinate in parameter space
of the inner vertices of the surface grid, i.e. finding the set

Ui :=

{

u (ξ, η) , v (ξ, η) :
ξ ∈ {R ∩ N1 : ξ < n1 − 1} ,
η ∈ {R ∩ N1 : η < n2 − 1}

}

. (3.11)

Then, the parametric coordinate is used to determine the actual coordinate of the vertices
in physical space. For clarification of the concept parameter space and computational
space, see figure 3.2.

The interpolation procedure used to find Ui is outlined next, following the method
described by Khamayseh and Kuprat [96]. The method starts with performing a scaling
of the computational coordinate, defined as

σξ :=
ξ

n1 − 1
and τη :=

η

n2 − 1
, (3.12)

such that σξ and τη both range from 0 to 1. Then the inner vertices of the surface grid
are obtained by evaluating

ui,j = uσ
i,j + uτ

i,j − uστ
i,j , 0 < i < n1 − 1, 0 < j < n2 − 1, (3.13)

where uσ
i,j stands for an interpolation in σ-direction between the lower and upper boundary

in ξ-direction. Equation (3.14) provides an expression for σ, if linear interpolation is used
for this purpose. The interpolation in τ -direction is represented by uτ

i,j, which in turn is an
interpolation between the upper and lower boundary in η-direction, for linear interpolation
expressed by equation (3.15). Moreover, uστ

i,j stands for the combined interpolation in
both directions. First, an interpolation in τ -direction is performed between the four
corners of the grid, which gives an interpolated upper and lower boundary in η-direction.
Subsequently, an interpolation is performed in the σ-direction between the interpolated
upper and lower boundary obtained in the previous step. When linear interpolation is also
used for this purpose, the procedure can be expressed by equation (3.16). Besides linear
interpolation, also higher-order interpolation methods exist. However, in the present
research, only linear interpolation is applied, for which the corresponding equations are
given below:

uσ
i,j = ([1 − σi] , σi) ·

(
u0,j

un1−1,j

)

, (3.14)

uτ
i,j = (ui,0,ui,n2−1) ·

(
[1 − τj]

τj

)

, (3.15)

uστ
i,j = ([1 − σi] , σi) ·

[
u0,0 u0,n2−1

un1−1,0 un1−1,n2−1

](
1 − τj

τj

)

. (3.16)

Once the interpolation is performed, the set Ui is obtained. This result is combined
with Ub to arrive at the representation of the surface grid in parametric space — an

39

3. Flow domain discretization

z

x

y

ξ

η

u

v

(a) (b) (c)

Figure 3.2: Mapping from: (a) computational space, with coordinate (ξ, η)T , to (b) parameter
space, with coordinate (u, v)T , which in turn is mapped to (c) physical space, with
coordinate (x, y, z)T .

example of such a representation can be seen in the centre picture of figure 3.2. If the
parametric surface S (u) is represented by a NURBS surface Spq (u, v), the surface grid
in physical space is subsequently obtained by evaluating Spq (u, v) for all distinct u in
parameter space, i.e.

Xs = {Spq (u) ∀ u ∈ {Ub ∪ Ui}} . (3.17)

3.2.3 Elliptical surface grid generation

For non-complex shapes, surface grid generation by means of the above linear transfinite
interpolation provides good grid quality. However, situations exist for which this quality
is not satisfactory, such as for the surface grid on the spinner of the wind turbine rotor.
In these cases, a different surface grid generation method must be employed. One such
method is the so-called elliptical surface grid generation. As the name indicates, an
elliptical partial differential equation is solved for the location of each vertex of the
surface grid. This grid generation technique starts with a surface grid that acts as an
initial guess for the elliptical surface grid generation method. This initial grid can be
determined using a different grid generation method, such as the method described in
the preceding section.

In the elliptical surface grid generation procedure, just as with the transfinite inter-
polation, the parametric value corresponding to each vertex value is first determined.
Subsequently, the parametrization used for the surface is used to determine the corre-
sponding physical location of each of the vertices, resulting in the actual surface grid. For
a parametric surface S (u) the elliptical surface grid generation equations can be written
as [96]:

[
∂S
∂η

]2(
∂2u

∂ξ2
+ P

∂u

∂ξ

)

− 2

[
∂S
∂ξ

∂S
∂η

]
∂2u

∂ξ∂η
+

[
∂S
∂ξ

]2(
∂2u

∂η2
+ Q

∂u

∂η

)

= J2∆2u, (3.18)

40

3.2 Surface grid generation

where P and Q are the so-called control functions, J is the determinant of the Jacobian
matrix of the transformation from computational to parametric space, i.e. J = ∂u

∂ξ
∂v
∂η −

∂u
∂η

∂v
∂ξ , and ∆2u is defined as

∆2u := J

∂
∂u

[

(∂S

∂v)
2

J

]

− ∂
∂v

[
∂S

∂u
∂S

∂v

J

]

∂
∂v

[

(∂S

∂u)
2

J

]

− ∂
∂u

[
∂S

∂u
∂S

∂v

J

]

.

In this equation J is given by

J :=

√
(

∂S
∂u

)2(
∂S
∂v

)2

−
(

∂S
∂u

∂S
∂v

)2

.

Control functions P and Q are used to control the characteristics of the surface grid,
such as the spacing of the grid lines and their orthogonality. When the equations are
solved for both P and Q equal to zero, a grid with uniform spacing of the grid lines is
obtained [96]. However, when some of the characteristics of the initial surface grid need
to be retained, P and Q can be specified in such a way that this aim is achieved. The
control functions used in the present research realize an improved orthogonality of the
grid lines, while maintaining the grid spacing of the initial grid in the direction normal
to the boundaries. For this purpose, the value of the control functions is obtained by
solving the following system of linear equations:

(
∂S
∂η

)2
∂u
∂ξ

(
∂S
∂ξ

)2
∂u
∂η

(
∂S
∂η

)2
∂v
∂ξ

(
∂S
∂ξ

)2
∂v
∂η

(
P
Q

)

= R̄ (3.19)

for each vertex in the surface grid. In this equation R̄ is defined as

R̄ := J2∆2u+ 2

(
∂S
∂ξ

∂S
∂η

)
∂2u

∂ξ∂η
−
(

∂S
∂η

)2
∂2u

∂ξ2
−
(

∂S
∂ξ

)2
∂2u

∂η2
.

Before P and Q are actually used in equation (3.18), they are smoothed by applying

Pi,j =
1

2
(Pi,j+1 + Pi,j−1) ∀ i, 1 < j < n2 − 2 and

Qi,j =
1

2
(Qi+1,j + Qi−1,j) ∀ j, 1 < i < n1 − 2

for a fixed number of iterations. The result is that P , which controls the spacing
in ξ-direction, is only smoothed in the η-direction and Q, which controls the spacing
in η-direction is only smoothed in the ξ-direction. In this way, the grid spacing of the
initial grid in the direction normal to the boundaries is maintained, while the orthogo-
nality of the grid lines is improved with respect to the initial grid. Alternatives for the
specification of the control functions, e.g. when different characteristics than smoothness
and orthogonality are important, can be found in the literature [96,174].

Equation (3.18) is discretized, in order to solve it numerically. For this purpose,
the derivatives of the parametric variables with respect to ξ and η are replaced by a

41

3. Flow domain discretization

x

y

✻
✲

Figure 3.3: Surface grid constructed for the spinner of a wind turbine rotor. Left grid, con-
structed by means of linear transfinite interpolation, is used as starting point for
the elliptical grid generation method, of which the result is depicted on the right.
Initial grid shows large differences in spacing and regions with only C0-continuity
of grid lines.

second-order central-difference finite-difference approximation. Since ∆ξ = ∆η ≡ 1, this
substitution results in the following discrete version of the elliptical surface grid equations:

[
∂S
∂η

]2(

[ui+1,j − 2ui,j + ui−1,j] +
Pi,j

2
[ui+1,j − ui−1,j]

)

−

2

[
∂S
∂ξ

∂S
∂η

]

(ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1) +

[
∂S
∂ξ

]2(

[ui,j+1 − 2ui,j + ui,j−1] +
Qi,j

2
[ui,j+1 − ui,j−1]

)

= J2∆2u.

(3.20)

The partial derivatives of the parametric surface with respect to ξ and η can be ex-
panded, using the chain rule of differentiation. Subsequently, the partial derivatives of S
with respect to u and v are determined analytically, by differentiating the expression for
the NURBS surface, presented in chapter 2, i.e. equation (2.6) on page 25. For the
remaining partial derivatives, those of u and v with respect to ξ and η, a finite-difference
approximation is employed. With this approach, the remaining terms in equation (3.20)
— i.e. ∂S

∂ξ , ∂S
∂η and J2∆2u — are evaluated for ui,j. The resulting equation is solved

iteratively using Gauss-Seidel [150,196] relaxation ∀u ∈ Ui. When a certain convergence
criterion is met, a surface grid, created by means of the elliptical surface grid generation
method, is obtained. An example of a surface grid that is created using this method, is
depicted in figure 3.3.

Subsequently, the surface grid — obtained using either the linear transfinite interpo-
lation or the elliptical surface grid generation method — is used as an initial condition for
the generation of the hyperbolic field grid. This method is presented in the next section.

42

3.3 Field grid generation

3.3 Field grid generation

As discussed in section 3.1.2, a hyperbolic grid generation method is used for the dis-
cretization of the flow domain. This section treats the particular method by first pre-
senting the equations that need to be solved to generate a field grid. Subsequently, the
numerical solution method used for solving the set of partial differential equations is
discussed. Thereafter, details on the implementation of the method are presented.

3.3.1 Hyperbolic field grid equations

Consider a grid for which the coordinate r ≡ (x, y, z)
T ∈ R3 of the vertices of the

grid are obtained from a mapping of the computational space to the physical space.
The computational coordinate is represented by (ξ, η, ζ)

T ∈ R3, where ξ and η are the
in-plane directions and ζ is the marching direction, i.e. the direction perpendicular —
perpendicular in the computational space — to the surface. For a grid of good quality,
the grid lines must be close to orthogonal. This requirement of orthogonality can be
expressed as [176]:

∂r

∂ξ
· ∂r

∂ζ
= 0, (3.21)

∂r

∂η
· ∂r

∂ζ
= 0. (3.22)

Apart from orthogonality of the grid lines, a good grid quality also requires a smooth
variation in the spacing of the grid lines. The spacing between the grid lines can be
enforced through the specification of the volume of the grid cells for the subsequent grid
layer, which is achieved by requiring

∂r

∂ζ
·
(

∂r

∂ξ
× ∂r

∂η

)

∆ξ∆η∆ζ = V (3.23)

for the volume V ∈ R of a particular cell. Note, that there is always a unit increment in
one direction, between the computational coordinates of two neighbouring vertices, hence
∆ξ = ∆η = ∆ζ ≡ 1. To determine the volume that needs to be specified to satisfy a
specific grid spacing in ζ-direction, the area of the cell face of the current layer is used.
Equations (3.21) to (3.23) compose the equations for hyperbolic grid generation. This
set of partial differential equations needs to be discretized, in order to be able to solve
them numerically. The method used for the discretization of these equations is presented
next.

3.3.2 Spatial discretization

To discretize the partial differential equations given in equations (3.21), (3.22) and (3.23),
the equations are first linearized around a given state (·)

k
. Linearization is achieved by

substitution of

r = r
k

+ ∆r

43

3. Flow domain discretization

in equations (3.21) to (3.23). Upon dropping the higher-order terms, these equations
can be written as a system of linear equations, as follows:

A
k

∂

∂ξ
(r − r

k
) + B

k

∂

∂η
(r − r

k
) + C

k

∂

∂ζ
(r − r

k
) = (0, 0, V − V

k
)
T , (3.24)

where V
k

represents the volume of the cell from the previous grid layer. Moreover,
matrices A, B and C — in equation (3.24) evaluated for r

k
— are given by

A :=

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

0 0 0
(

∂y
∂η

∂z
∂ζ − ∂y

∂ζ
∂z
∂η

) (
∂x
∂ζ

∂z
∂η − ∂x

∂η
∂z
∂ζ

) (
∂x
∂η

∂y
∂ζ − ∂x

∂ζ
∂y
∂η

)

 , (3.25)

B :=

0 0 0

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ(

∂y
∂ζ

∂z
∂ξ − ∂y

∂ξ
∂z
∂ζ

) (
∂x
∂ξ

∂z
∂ζ − ∂x

∂ζ
∂z
∂ξ

) (
∂x
∂ξ

∂y
∂ζ − ∂x

∂ζ
∂y
∂ξ

)

 , (3.26)

C :=

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η(

∂y
∂ξ

∂z
∂η − ∂y

∂η
∂z
∂ξ

) (
∂x
∂η

∂z
∂ξ − ∂x

∂ξ
∂z
∂η

) (
∂x
∂ξ

∂y
∂η − ∂x

∂η
∂y
∂ξ

)

 . (3.27)

The system of linear equations of (3.24) can be rewritten to

A
k

∂r

∂ξ
+ B

k

∂r

∂η
+ C

k

∂r

∂ζ
= f , (3.28)

for which the right hand side vector reads

f = (0, 0, V + 2V
k
)
T , (3.29)

since

A
k

∂r

∂ξ

∣
∣
∣
∣
r

k

+ B
k

∂r

∂η

∣
∣
∣
∣
r

k

+ C
k

∂r

∂ζ

∣
∣
∣
∣
r

k

≡ (0, 0, 3V
k
)
T
.

Equation (3.28) can be used to obtain an expression for ∂r
∂ζ , i.e.

∂r

∂ζ
=
(
C

k

)−1

[

f −
(

A
k

∂

∂ξ
+ B

k

∂

∂η

)

r

]

. (3.30)

From the linear combination of equations (3.21) to (3.23) it follows that ∂r
∂ζ can also be

expressed as

∂r

∂ζ

∣
∣
∣
∣
r

k

=
(
C

k

)−1

0

0

V
k

 , (3.31)

for grid layer k. Next, the partial derivatives of r with respect to ξ and η in equation (3.28)
are discretized by replacing them by finite-difference operators, respectively denoted by
δξ and δη. The semi-discrete equation for grid layer k + 1 then reads

(
A

k
δξ + B

k
δη

)
r

k+1
+ C

k

∂r

∂ζ

∣
∣
∣
∣
r

k+1

= f
k+1

. (3.32)

44

3.3 Field grid generation

Using equations (3.30) and (3.31), this expression can be written as

(
C

k

)−1 [
A

k
δξ + B

k
δη

] (
r

k+1
− r

k

)
+

∂r

∂ζ

∣
∣
∣
∣
r

k+1

=
(
C

k

)−1

0

0

V
k+1

 . (3.33)

Following the method first proposed by Kinsey et al. [98] for 2D hyperbolic grids and
later on extended by Chan [36, 39] to 3D hyperbolic grids, the partial derivative with
respect to ζ is discretized using an implicit weighted average method. After approximate
factorization and the introduction of numerical dissipation to both the implicit part as
well as the right hand side, the discrete equations read

[
I +

(
1 + θ̄

)
C−1

k
B

k
δη − 2ǫηδ2η

] [
I +

(
1 + θ̄

)
C−1

k
A

k
δξ − 2ǫξδ2ξ

] (
r

k+1
− r

k

)
=

C−1

k

0

0

V
k+1

+
[
ǭξ δ̄2ξ + ǭη δ̄2η

]
r

k
, (3.34)

where δ2ξ and δ2η denote finite-difference operators for the second derivative with respect
to ξ and η, respectively. The corresponding dissipation coefficients ǫξ and ǫη are used
for smoothing of the grid in ξ and η-direction. Moreover, note that an overbar is used
to denote the dissipation coefficient in the explicit part of the equation. Similarly, an
overbar is used for the second-order finite-difference operators, to accommodate the use
of a different finite-difference stencil for the implicit and explicit part of the equations.
The dissipation coefficients may also differ for each vertex in the grid; the method used
for specifying the value is discussed in the following section. Implicit weighting factor θ̄ is
used to cope with concave regions in the flow domain. If no concave regions exist, θ̄ = 0

is the default choice. Otherwise, a value between 0 and 5 can be used.

3.3.3 Implementation details

Before equation (3.34) can be solved, a number of terms appearing in this equation must
be specified. Details of the treatment of these terms are presented below.

Finite-difference operators

Finite-difference operators appear in both the explicit part as well as in the implicit part
of equation (3.34). For the explicit part, a central-difference stencil, with fourth-order
spatial accuracy, is employed for vertices away from the boundary. Near the boundaries,
a central-difference stencil with a lower order spatial accuracy is employed; except when
the particular boundary condition allows for maintaining the fourth-order stencil, see
section 3.3.4.

In the implicit part of the equations, a central-difference stencil with second-order
spatial accuracy is used to represent the finite-difference operator. This choice was
made to limit the complexity of constructing the matrix involved in the system of linear
equations.

45

3. Flow domain discretization

Cell volume and grid spacing

Specification of the grid spacing is enforced by prescribing the cell volume. The cell
volume that is prescribed is computed based on the surface area of the face of the
previous layer and the required spacing. In this computation, it is assumed that the face
is planar and that the marching direction is normal to the plane of the face. The grid
spacing that is prescribed is governed by two parameters: (i) the spacing between the
first and second grid layer, |∆r|

0
and (ii) the spacing between the before last and final

grid layer, |∆r|n3−2
. Based on these parameters, the spacing is defined by:

|∆r|k = |∆r|n3−2

[

1 − tanh

(

γ̄

[

1 − k

n3 − 2

])]

, (3.35)

with

γ̄ := arctanh

(

|∆r|n3−2
− |∆r|

0

|∆r|n3−2

)

.

A favourable property of this spacing function is that the variation in grid spacing is
smooth. Moreover, this approach allows for the explicit specification of both |∆r|

0
and

|∆r|n3−2
, such that an adequate grid resolution can be achieved near the body as well as a

compatible off-body spacing for regions of overlapping grids. The latter property does not
apply to, for instance, a geometric stretching function, because for that method the off-
body spacing is a direct consequence of the near-body grid resolution, the number of grid
layers used and the chosen growth factor. Therefore, the present approach provides more
flexibility. Moreover, note that a compatible off-body spacing in regions of overlapping
grids is an important property, when composite overset grids are used to obtain a flow
solution, because a compatible grid spacing in the region of overlap yields more accurate
flow solutions [206] and better convergence properties of the numerical flow solution
method. Figure 3.4 shows an example of this stretching function for |∆r|

0
= 0.05,

|∆r|n3−2
= 0.20 and n3 = 30.

In order to compute the cell volume, the required spacing — determined using the
stretching function — is multiplied by the face area of a cell. Subsequently, this result is
transferred to the vertex by averaging the volume over the faces neighbouring the vertex.
This value can be used in the construction of the system of linear equations. However,
the smoothness of the grid can be enhanced by taking a weighted average of the volume
computed for the neighbouring vertices, as [36]

∆V̄i,j = (1 − va) ∆Vi,j +
va

4
(∆Vi−1,j + ∆Vi,j−1 + ∆Vi,j+1 + ∆Vi+1,j) , (3.36)

where ∆V̄i,j is the averaged result and va ∈ R is a weighting factor for which a value
of 4/25 is used. This procedure can be repeated multiple times to further increase the
amount of smoothing.

Dissipation coefficient

Smoothing is also achieved by the introduction of a numerical dissipation term in the
equations, by means of a second-order finite-difference operator. Apart from increasing
the smoothness of the resulting grid, the second-order finite-difference operator also pre-
vents the occurrence of numerical instabilities due to odd-even decoupling. The amount

46

3.3 Field grid generation

k

|∆
r

| k

|∆
r

| k

|∆
r

| k
−

1

0 5 10 15 20 25
0.05

0.10

0.15

0.20

1.040

1.045

1.050

1.055

1.060

Figure 3.4: Example of stretching function defined by equation (3.35) for |∆r|
0

= 0.05,
|∆r|n3−2

= 0.20 and n3 = 30. Dashed line with square shaped markers represents
the grid spacing. Solid line with circular shaped markers represents the growth
factor between two consecutive grid layers.

of dissipation is controlled by the dissipation coefficients. The required dissipation de-
pends on local properties of the grid. The method described by Chan and Steger [39] is
used to account for this observation. Following their approach, the dissipation coefficient
for the implicit part can be expressed as

(ǫξ)i,j,k = ǫif

(

r,
∂r

∂ξ

∣
∣
∣
∣
i,j,k

,
∂r

∂ζ

∣
∣
∣
∣
i,j,k

, k

)

and (3.37)

(ǫη)i,j,k = ǫif

(

r,
∂r

∂η

∣
∣
∣
∣
i,j,k

,
∂r

∂ζ

∣
∣
∣
∣
i,j,k

, k

)

, (3.38)

i.e. a constant ǫi ∈ R times a function f that depends on the derivative with respect
to the direction considered, the derivative in ζ-direction and the index of the present
layer. For the details on the exact formulation of this function, see appendix A or the
original description [39]. The dissipation coefficient for the explicit part is subsequently
computed, using the result for the implicit part, employing a different proportionality
factor ǫe ∈ R, i.e.

(ǭξ)i,j,k =
ǫe

ǫi
(ǫξ)i,j,k and (ǭη)i,j,k =

ǫe

ǫi
(ǫη)i,j,k .

For the proportionality factor of the implicit part, a default value of 1.0 is used and 0.5
for the explicit part. These default values can be changed independently when more or
less numerical dissipation is required.

Solution method

Considering equation (3.34), it is observed that a block tridiagonal matrix is encountered,
for which a very efficient solution algorithm exists, i.e. the Thomas algorithm [127,183].

47

3. Flow domain discretization

However, the possibility of using different boundary conditions, which locally alters the
structure of the matrix, prevents the straightforward application of the Thomas algorithm.
Therefore, the choice was made to use a more generally applicable method for solving
systems of linear equations, to compute the next grid layer. Given the generally limited
dimension of the system of equations, which is dictated by the dimension of the surface
grid, it is feasible to use a direct method, for instance utilizing an LU decomposition, to
solve the problem. However, in the present implementation, a preconditioned GMRES
method is used instead, because it was found to be more efficient than performing an
LU factorization of the matrix and subsequently performing a forward and backward
substitution. The particular iterative method employed for this purpose is discussed in
more detail in section 5.6.2. Note on the other hand, that for computing grid sensitivities,
the use of a direct method can be advantageous over an iterative method, see section 6.9
for more details. Moreover, with some additional work, it is still possible to employ the
Thomas algorithm [164]. However, considering the very limited amount of CPU-time
required for the grid generation, relative to for instance obtaining the flow solution, the
effect of this improvement on the efficiency of the over-all optimization method would
be minor and is therefore not pursued further in the present research.

3.3.4 Boundary conditions

For hyperbolic grid generation, one boundary — the ζmin boundary at ζ = 0 — is
specified by the surface grid. The ζmax boundary, at ζ = n3 − 1, directly follows from
solving the hyperbolic grid equations for the number of layers specified. Like for a physical
model governed by partial differential equations, the equations for the grid generation
require boundary conditions for the remaining four boundaries. The boundary conditions
employed in the present research are: symmetry boundary conditions, periodic boundary
conditions and so-called splay boundary conditions. The first two of these boundary
conditions allow for maintaining the fourth-order central-difference approximation of the
derivatives. For vertices near splay boundary conditions on the other hand, a second-order
central difference stencil is used instead.

Symmetry

Symmetry boundary conditions are used to create a grid that is mirror-symmetric about
a symmetry plane, represented by the boundary of the grid. This boundary condition is
enforced by mirroring the vertices that occur in the finite-difference stencils about the
symmetry plane, as

r−i,j = 2r0,j − ri,j (3.39)

for a symmetry boundary condition at the ξmin boundary. For application of this boundary
condition at a different boundary, the approach is similar.

Periodicity

Periodic boundary conditions are used for domains that exhibit spatial periodicity. Trans-
lational periodicity for the ξmin is enforced by using

r−i,j = r0,j −
(
rn1−1,j − rn1−(i+1),j

)
, (3.40)

48

3.4 Background grids

(a) (b) (c)

✟✟✙

✻
❍❍❥

x y

z

Figure 3.5: Example of different background grids: (a) Cartesian background grid; (b) partial
cylindrical background grid, 120◦; (c) rhombus-shaped background grid.

in the finite-difference stencil. In this case, the same approach must be taken for the ξmax

boundary.
For enforcing rotational periodicity at the ξmin boundary

r−i,j = r0,j − T (ϑ)
[
rn1−1,j − rn1−(i+1),j

]
(3.41)

is used to obtain the appropriate coordinate to satisfy the finite-difference stencil at
the boundary. In this equation T (ϑ) is the rotation matrix corresponding to the an-
gle ϑ ∈

{
2π
c : c ∈ N1

}
for which rotational periodicity is observed.

Splay

The so-called splay boundary conditions are used for ensuring sufficient overlap between
different blocks, to accommodate overset block connectivity. In contrast to the previous
two boundary conditions, this boundary condition is enforced by making the increment
in r from one grid layer to the next of the boundary vertex linearly dependent on the
increment in r for interior vertices, neighbouring the boundary vertex. This approach
can be expressed as

∆r0,j = ∆r1,j + αsplay (∆r1,j − ∆r2,j) ; (3.42)

again for the ξmin boundary and where 0 ≤ αsplay ≤ 1 is the extrapolation factor, which
can be used to adjust the amount of splay.

3.4 Background grids

The composite overset grid method allows for using a different grid in the off-body region
of the flow domain. Since these blocks, which are commonly referred to as background
grids, do not need to conform with the body, the construction of these grids is straight-
forward. Usually an algebraic generation method provides satisfactory results. In this
section the background grids available in the present grid generation method are briefly
discussed.

3.4.1 Cartesian

Figure 3.5 (a) shows a uniform Cartesian background grid. Cartesian background grids
can be generated with any arbitrary orientation. For the spacing in each direction either

49

3. Flow domain discretization

a uniform or a non-uniform spacing can be used. The non-uniform spacing can be
employed to realize a compatible spacing in the region of overlap, while maintaining a
coarser spacing near the far-field boundaries of the domain.

3.4.2 Cylindrical

Cylindrical background grids, depicted in figure 3.5 (b), are the obvious choice for the
discretization of the off-body region of cylindrical domains. For the construction of a
cylindrical background grid, the inner and outer radius must be specified. The inner
radius should be chosen larger than zero, to prevent the occurrence of a singular grid
line. For rotational periodic problems, a sector of the cylinder can be used, instead of
the complete cylinder. The spacing in each of the directions can be chosen to be either
uniform or non-uniform, depending on the requirements.

3.4.3 Rhombus

The rhombus-shaped background grid, shown in figure 3.5 (c), is similar to the Cartesian
background grid, apart from the fact that the grid lines in the three directions are not
mutually orthogonal. With this feature, the rhombus-shaped background grid can be
used for the discretization of the rotationally periodic flow domain in the region near
the axis of rotation of a wind turbine rotor with more than two blades. In this way the
cylindrical grid does not need to be used in this region, avoiding the occurrence of a
singular grid line.

3.5 Summary and results

The requirements for the grid and the grid generation method in an aerodynamic shape
optimization problem have been considered. The most important requirements identified
are that grid quality is maintained throughout the optimization procedure and that the
grid can be generated efficiently. Based on these requirements, the choice was made
to use a hyperbolic grid generation method for the discretization of the flow domain.
Surface grids are generated using either linear transfinite interpolation or an elliptical
surface grid generation method. For the purpose of generating a surface grid, first the
edges of the surface grid need to be discretized. Two methods are available for this
purpose. One method takes the local curvature into account for the distribution of the
vertices, applying a higher vertex density in regions of high curvature. For the other
method, the vertex density is user controlled.

The surface grid, generated on the geometry of the object in the flow domain, is used
as a boundary condition for the hyperbolic field grid generation method, for which the
equations have been presented. Discretization of these equations has been discussed and
details on the implementation have been given.

Background grids are used in composite overset grids for discretization of the off-
body regions of the flow domain. Three different background grid topologies available in
the present grid generation method have been presented, viz. Cartesian, cylindrical and
rhombus-shaped background grids.

To give an idea of the results that can be obtained by the method presented in this
chapter, an example is provided here. Figure 3.6 shows part of the body-fitted grid with

50

3.5 Summary and results

✘✘✿
✻
❳❳③

x

y

z

Figure 3.6: Example of a body-fitted grid with CO-topology around a wing. Note, that the
x-direction is chordwise and the z-direction is spanwise.

a CO-topology around a wing. To also quantify the quality of the grid, the orthogonality
of grid lines is investigated. As a measure for the orthogonality of the grid lines, the
following quantity is defined

Φ :=

i=7∏

i=0

([ui × vi] ·wi) , (3.43)

where ui, vi and wi are unit vectors pointing from vertex i, each in a direction parallel
to the edges of the cell, that intersect at the vertex. The order of vectors is chosen such
that together they form a right-handed coordinate system. Considering the definition
of Φ, the result will always have a positive value for valid cells. Moreover, the result
is equal to one for perfectly orthogonal cells and close to zero for cells that are highly
skewed.

Following the approach presented by Hicken [82], the range of possible values for Φ,
ranging from 0 to 1, is divided in 100 equally sized bins. Subsequently, the orthogonality
measure of equation (3.43) is computed for every cell and its corresponding bin is de-
termined. This procedure results in an orthogonality distribution for the grid considered.
For the grid shown in figure 3.6 the orthogonality distribution is depicted in figure 3.7.
Considering this result, the peak near Φ = 1 shows that the grid generation method is
successful in realizing orthogonality of the grid lines for the majority of the cells. A strik-
ing detail in the orthogonality distribution graph is, however, the slight peek occurring

51

3. Flow domain discretization

Φ

0.0 0.2 0.4 0.6 0.8 1.0

fr
a
ct

io
n

o
f

ce
ll
s

b
el

o
n
g
in

g
to

b
in

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 3.7: Distribution of the orthogonality, defined by equation (3.43), for the cells of the
grid depicted in figure 3.6.

near Φ = 0. This peak means that quite a number of cells exist for which orthogonality
of the grid lines is not achieved. The cause for this peak is found in the use of a grid with
an O-grid topology for a wing with a sharp trailing edge. Moreover, the grid depicted
is quite coarse, i.e. coarser than what would be used for computing an accurate flow
solution, which also has a negative effect on the quality of the grid.

52

4
Overset block connectivity

“To horses beyond all mortal creatures cunning Nature has given a subtle mind and
heart. [. . .] A horse carried above the clouds him that slew the Chimaera;”

— Oppian of Apamea (3rd century A.D.), Cynegetica

U
sing composite overset grids for the discretization of the flow domain offers many
opportunities. However, it also provides a number of challenges. One of the main

challenges encompasses determining a suitable block connectivity for multiple overlapping
grids. Moreover, the evaluation of surface integrals is also not straightforward, when the
same part of the geometry is discretized by multiple surface grids. These matters, among
others, are addressed in this chapter, together with the approach taken in the present
research to deal with these challenges.

First, a concise overview of the history and current status of the composite overset
grid technology is presented. Subsequently, the concept and terminology of overset grids
is introduced. Then, the method used for efficiently performing a search procedure is
treated in section 4.2. The particular method used is called an alternating binary tree
search. Thereafter, the zipper grid method is discussed, which is employed to accurately
evaluate surface integrals and to provide a non-overlapping closed surface grid. This non-
overlapping surface grid is used by the ray-casting technique, explained in section 4.4,
used to identify cells that reside outside the physical flow domain and are therefore not
needed for solving the governing equations. Next, the actual method used for determining
the block connectivity is presented. A so-called implicit hole cutting method is applied
for this purpose. The chapter concludes with a summary.

4.1 Introduction

The concept of using composite overset grids for the discretization of the flow domain
was first introduced by Atta [10,11] in 1981. Subsequently, a lot of work on the develop-
ment of overset grid technology was carried out at NASA by, among others, Benek [16]
and Steger [178]. An excellent and complete overview of the advancement on this area of
research throughout the years within NASA was given by Chan [38]. Since the introduc-
tion of the original concept, many different methods have been developed for determining
the block connectivity for composite overset grids; a good overview of common methods
currently in use has been given by Lee [107].

Research in this field has mainly been focused in the United States of America.
Well known methods developed include the structured grid Navier-Stokes method Over-

53

4. Overset block connectivity

(a) (b) (c)

Figure 4.1: Composite overset grid consisting of two body-fitted O-grids around aerofoils and
a Cartesian background grid. Cells with three possible qualifications are shown:
(a) field cells; (b) fringe cells; (c) hole cells.

flow [129], developed at NASA and the unstructured-mesh flow solver Fun3D [18, 19],
developed at aircraft manufacturer Boeing. However, driven by the benefits of the use
of overset grids, the technique also started to emerge in other parts of the world. For
instance, DLR has incorporated an overset grid capability in their unstructured Reynolds-
averaged Navier-Stokes TAU code [159, 160, 162]. The same is true for the incompress-
ible Reynolds-averaged Navier-Stokes method developed at Risø National Laboratory and
the Danish Technical University, for which the overset capabilities were implemented by
Zahle [206]. The French aerospace research centre ONERA also included a capability for
handling composite overset grids in their flow solver elsA [27].

4.1.1 Concept and terminology

For solving a partial differential equation on a domain that is discretized by several
mutually overlapping grids, boundary conditions need to be imposed on the boundary of
each grid block discretizing the domain. The required boundary conditions for a certain
block are obtained from the flow solution of the block that overlaps the block considered.
The flow solution in the overlapped cell is in that case obtained by means of interpolation
of the flow solution from cells of the overlapping block. Cells that obtain a solution by
interpolation are designated fringe cells. On the other hand, cells for which the solution
is obtained by solving the discretized partial differential equations are called field cells.
Because the overlap between blocks is in general not only restricted to the region near the
boundary, parts of blocks can be discarded and are therefore not required for obtaining
the flow solution. Cells for which this condition applies are called hole cells. These are the
three qualifications that can be given to cells used in a composite overset grid; figure 4.1
shows an example of each of these qualifications for a composite overset grid.

To specify the qualification of each cell, a so-called iblank-array is used. This iblank-
array is an array of signed integers that can take three different values: 1, 0 and -1.
The value 1 is used to indicate that a cell is a field cell. Zero is used for hole cells and
consequently -1 designates a cell being a fringe cell.

Apart from the three above cell qualifications, a cell can also be qualified as donor
cell . This qualification can only be assigned to field cells and as the name indicates, the
flow solution of a donor cell is used for the interpolation of the dependent variables of a
fringe cell.

54

4.2 Alternating binary tree search

root node

subtree

terminal leaf

Figure 4.2: Schematic representation of
a perfectly balanced binary tree with the
corresponding terminology.

z

x

y

A

B

Figure 4.3: Arbitrary hexahedral cell with
its corresponding bounding box, specified
by the coordinate of vertex A and B.

4.2 Alternating binary tree search

For overset grids, a donor cell needs to be found for each fringe cell, which means that
a considerable number of search operations needs to be performed in order to determine
the block connectivity. To expedite the search procedure, a so-called alternating binary
tree search — also known as an alternating digital tree (ADT) [22] search — is used. In
this method, a tree — i.e. an undirected connected graph with no loops or cycles [76],
see figure 4.2 for a schematic representation — is used to resemble each compute block
of the grid used for the discretization of the flow domain. Each tree encompasses all the
cells of the particular block that is represented by the tree, where each cell corresponds
to a node in the tree.

4.2.1 Tree generation

The first step in the generation of the alternating binary tree is the determination of a
Cartesian bounding box for each cell in the block for which the tree is generated. This
bounding box is constructed such that it is just large enough to completely enclose its
corresponding hexahedral cell, as illustrated in figure 4.3. The advantage of using a
Cartesian bounding box is that it is fully specified by only two coordinates, viz. coor-
dinate a of vertex A and coordinate b of vertex B in the bounding box in figure 4.3.
Using a so-called point-based approach [57,156] reduces the bounding box to a point in
6-dimensional space. Next, all cells are sorted and the resulting ordered set of bounding
boxes is bisected. This bisection is performed based on the number of elements in the
set and not on for instance, their geometric properties. With this approach the result-
ing tree is always well balanced, even for non-uniformly distributed data. The sorting
is first performed based on the x-component of coordinate a. The component of the
coordinate for which this sorting is performed changes after each bisection, in a cyclic
manner. Once all three components of coordinate a have been used for sorting the
bounding boxes, coordinate b is used. For each bisection, a node in the tree is created.
Then, one part of the bisected set is assigned to the left child node and the other part
to the right child node. Both new sets are then sorted in the next coordinate direction
and the above procedure is repeated. This procedure is performed, until a remaining set

55

4. Overset block connectivity

consists of three bounding boxes or fewer. In the case that there are two bounding boxes
remaining, both bounding boxes are assigned to the present node and the node itself is
qualified as a so-called terminal leaf, as the tree terminates at that node. If there are,
on the other hand, three bounding boxes remaining, the left child node is created as a
terminal leaf, containing two bounding boxes. Instead of creating a second child node,
the remaining bounding box is then stored in the present node. The result of the whole
process is that in the end, all bounding boxes of the current block have been assigned to
a terminal leaf. Next, the nodes of the tree need to be assigned a key, to accommodate
the search procedure. This key consists of a bounding box that is dimensioned such that
it encloses all bounding boxes of the terminal leaves of the subtree that is considered.
Once a bounding box is determined for each node in the tree, the generation of the tree
is complete.

A separate tree is generated for each block. Trees are generated by the processor for
every compute block that has been assigned to that particular processor. The root node
of each tree is distributed among the processors taking part in the computation.

4.2.2 Search procedure

The containment search for a point P , with coordinate p, starts by checking the contain-
ment of P by the bounding box assigned to the root node — which encloses all bounding
boxes of the tree — of each tree. If a tree is encountered for which the bounding box
of the root node encloses coordinate p and which corresponds to a block that resides
on a different processor, the information of the point is transmitted to that processor. If
the tree is on the same processor, no additional operations need to be performed. The
processor that holds the block, and its corresponding binary tree, will always perform the
actual tree search for a particular point.

For a tree that is identified to enclose P , the search procedure is as follows. The root
node was already checked to contain P . Next, the bounding box of the left and right
child node of the root node are checked if they contain P as well. If the bounding box
corresponding to the node contains P , its child nodes are stored. After both nodes of
the present level have been handled and at least one of the bounding boxes was found to
contain P , the tree is traversed down one level. Then, all bounding boxes corresponding
to the child nodes that have been stored, are checked for containment of P . This
procedure is repeated until either the end of the tree is reached or none of the bounding
boxes of the present level contains P . In the case that a terminal leaf is reached for
which one of the bounding boxes contains P , a more accurate check — which is treated
in subsection 4.5.2 — is performed that can identify whether or not the hexahedral cell
corresponding to the bounding box also contains P . If the accurate check determines
that the point is enclosed by the cell, the binary tree search is terminated for that tree,
since no more than one cell of a single block can contain P . To elucidate the search
procedure just described, a flow chart of the process is provided in figure 4.4.

4.2.3 Other entities

The two preceding sections describe the procedure for the generation of the binary tree
and its subsequent use in the containment search procedure for a hexahedral cell of the
volume grid. However, with minor modifications, the same framework can be used to

56

4.2 Alternating binary tree search

startconsider
root node

bounding box of
node contains P

node has 2 children

store child nodes

node has 1 child

store child node

check available
bounding
boxes for

containment of P

bounding box
contains P

accurate check
of containment
by correspond-

ing entity

entity contains P

found donor cell

other nodes
available at
current level

traverse tree
1 level down

nodes stored
for new level

no entity contains P

done

co
n
si

d
er

fi
rs

t
n
o
d
e

o
f

cu
rr

en
t

le
ve

l

co
n
si

d
er

n
ex

t
n
o
d
e

o
f

cu
rr

en
t

le
ve

l

no

yes

yes

no

yes

no

yes

yes

no

no

no

no

yes

yes

Figure 4.4: Flow chart for the binary tree search for the containment search of point P .

57

4. Overset block connectivity

facilitate the containment search for other entities. If, for instance, a surface grid is
considered, instead of a field grid, the bounding boxes are constructed based on the
quadrilateral faces of the surface grid. Moreover, the accurate check, that follows the
bounding box containment check of a terminal leaf, must be altered. The rest of the
procedure can remain exactly the same.

4.3 Evaluation of surface integrals

Overlap of grids is in general not restricted to the off-body part of the grid, which means
that surface grids can also overlap. Occurrence of overlap on surface grids presents a
number of challenges. One of these challenges is the accurate evaluation of surface
integrals, required for instance to compute force coefficients. This problem is dealt with
by application of so-called zipper grids [37]. A zipper grid consists of a single layer of
triangles between two structured surface grids. First, the method used for the generation
of these zipper grids is discussed, subsequently, the implementation is verified. Finally,
the approach taken to use a zipper grid in the evaluation of a surface integral is discussed.

Requirements

Before the zipper grid generation method is explained, the requirements for the overlap-
ping surface grids are stated. Although, in principle, there are no restrictions for the
applicability of the zipper grid generation method, some restrictions have been imposed
in the current implementation. These restrictions have been imposed to limit the amount
of code to be implemented.

The current implementation of the zipper grid generation method requires the number
of different surface grids in one region of overlap to be no more than two. In this way,
only two surface grids need to be zipped together in a single region of overlap. The
second requirement is that the resulting front of the surface grid forms a closed loop
when overlapping faces have been removed from the surface grid.

For the current application, these requirements are easily met. However, to make the
method more generally applicable these restrictions need to be alleviated. Suggestions
on how this can be done have been presented by Chan [37].

4.3.1 Zipper grid generation method

Surface grid overlap identification

The first step in the generation of the zipper grid is the identification of the surface grids
that require zipping. Zipping is only required for surface grids that represent a solid wall
boundary, since this type of surface is typically used in the surface integrals to compute
the force coefficients. This information is available, because the flow solution method
also requires knowledge of surfaces that represent solid walls, to impose the appropriate
boundary conditions. An alternating binary tree is created for each of these surfaces.

The alternating binary tree is first used to identify which of the corresponding surface
grids are point matching. This information can be used later on to combine surface
grids to satisfy the requirement of surface grids in the region of overlap to form a closed
loop. Moreover, point matching surface grids do not need to be checked for overlap with

58

4.3 Evaluation of surface integrals

O
ξ

η

1.0

1.0
Figure 4.5: Quadrilateral cell in general-
ized coordinate system.

Figure 4.6: Schematic representation of
a part of a partially blanked surface grid.
The solid dots represent non-blanked ver-
tices. The open circles represent vertices
that have been identified as boundary ver-
tices.

each other. Subsequently, non-point matching surface grids are checked for overlap by
considering overlap of the bounding boxes of the root node of the binary tree. When these
do not overlap, the corresponding surface grids will not overlap either. However, if root
node bounding boxes are found to overlap, a tree search is performed. This search consists
of a containment search of the vertices of one of the surface grids. Faces corresponding to
a terminal leaf for which the bounding box contains the vertex are subjected to additional
checks. First, the surface unit normal vector is checked for compatibility with the surface
unit normal vector of the face corresponding to the boundary vertex, by considering the
dot product of both vectors. A second check is performed if compatibility of both vectors
is observed — i.e. if the result is larger than (1 − δ), for a small value of δ. In this second
check, the minimum distance of the vertex to the face is determined, together with the
coordinate of the vertex in the generalized coordinate system of the quadrilateral cell, see
figure 4.5. If the coordinate satisfies

0 ≤ (ξ, η) ≤ 1

and if the minimum distance of the vertex to the face is smaller than a distance d, for
which the value is based on the local grid dimensions, the vertex is qualified to be inside
the face. If this condition is true for at least a small number of vertices, both surface
grids are qualified to overlap with each other.

Closed loops

A single surface grid does not always form a closed loop by itself. For a closed loop to
exist, the surface grid needs to have at least two vertices that share the same physical
location. Moreover, a loop is only closed if the equation

∮

[∇φ (x)] · dl = 0 (4.1)

59

4. Overset block connectivity

is satisfied for an arbitrary path along the grid lines from one vertex to the other vertex
sharing its coordinate. In this equation φ (x) : R3 → R is an arbitrary scalar field that
is at least once differentiable in each coordinate direction. Therefore, if equation (4.1) is
not satisfied or if no matching vertices exist in a surface grid, the surface grid does not
form a closed loop and needs to be combined with other point matching surface grids to
do so. Note, that the point matching information was already acquired in the procedure
to find overlapping surface grids and can therefore be reused here. In the process of
combining two surface grids, the relative orientation of each grid is determined and then
the grids are combined. Subsequently, the line integral of equation (4.1) is evaluated for
the newly created surface grid. When the result satisfies the criterion for a closed loop,
the surface can be used for the generation of a zipper grid; otherwise, the procedure is
repeated until it is true for all surface grids that need to be considered in the zipper grid
generation.

Zipping procedure

Consider two surface grids, grid SA and grid SB, that have been identified to require
zipping and for which the zipper grid requirements have been met. The first step in the
generation of the zipper grid is the identification of the faces of the surface grids for
which the actual overlap exists. This identification is done in the same way as for the
identification of the actual overlap. Faces in the region of overlap are removed from the
surface grid by blanking out all vertices of the face for which at least one vertex has been
found to be inside a face of the other surface grid. This process starts with the surface
grid that has the least number of vertices in the region of overlap, because this grid is in
general the coarsest of the two. If overlap still remains after the faces have been removed
from the coarser grid, the same procedure is repeated for the finer grid.

Now that no overlap remains, the resulting gap must be closed. For that purpose, the
vertices that are on the boundary of the surface grid in the region where the overlap existed
need to be identified. This identification is done based on two criteria: (i) the vertex is
blanked out; (ii) the vertex neighbours a vertex that is not blanked out. Vertices satisfying
these criteria are collected and used in the generation of the zipper grid. Figure 4.6
shows an example of an already partly blanked surface grid for which the previously
stated criteria have been employed to identify boundary vertices, indicated by the open
circles. However, for the surface grid with the highest density of vertices in the region of
overlap, which is therefore blanked after the first grid has been blanked, it often occurs
that the whole boundary, or at least part of it, is not blanked at all. This situation exists,
because blanking of the first grid already results in no remaining overlap between both
grids. Hence, no faces have been removed from the second grid and therefore no blanked
vertices exist. This plight is dealt with as follows. Since by requirement the surface forms
a closed loop, the vertices of two of the boundaries of the surface grid must match. First,
it is determined for which two boundaries matching occurs; this identification is done for
each surface grid. For the two remaining boundaries, the average minimal distance to
the boundary to which the grid is to be zipped is computed. The boundary for which
this result is the smallest is the boundary that is closest and hence the boundary that will
be zipped to the already blanked boundary of the other surface grid. Therefore, vertices
belonging to this boundary are blanked and subsequently identified as boundary vertices
for the zipper grid procedure.

60

4.3 Evaluation of surface integrals

B+

A+

A

B

(a)

B+

A+

A

B

(b) (c)

Figure 4.7: Examples of triangles that must not be created when a zipper grid is made. The
boundary with the open circles, containing vertex A and A+, must be zipped to
the boundary with the solid dots, containing vertex B and B+. The last valid edge
created connects vertex A with vertex B. The proposed next edge is indicated by
the dashed line. In subfigure (a), the resulting triangle encloses vertex A+ and is
therefore invalid. In subfigure (b), creating the proposed edge always results in the
triangle created by placing a next edge to enclose vertex A and is therefore also
invalid. Subfigure (c) shows a situation where the surface normal of the triangle,
created by placing the proposed edge, is incompatible with the surface normal of
the face with which the triangle shares an edge. The insets in subfigure (a) and (b)
show the proper way of placing the edges, to create the zipper grid.

The next step in the zipping procedure is to create the triangles. First, it is inves-
tigated if valid triangles can be created between vertices of one boundary. In this case
a triangle is considered valid if it does not enclose a vertex of either boundary. After
that, triangles are created between the vertices of both boundaries. For the generation
of these triangles, there are three criteria that need to be satisfied:

◦ a triangle must not enclose a vertex of one of the boundaries;

◦ the counterpart of a triangle must not enclose a vertex of either boundary, example
of such a situation is shown in subfigure 4.7 (b);

◦ the surface normal vector should be compatible with that of the original geometry.

Situations for which placing an edge results in the construction of an invalid triangle
are illustrated in figure 4.7. Furthermore, there is an additional requirement for the
triangles to ensure a better quality of the zipper grid. If two possible triangles can be
created, the triangle that realizes the most orthogonal propagation front is the preferred
choice. An example of this situation is given in figure 4.8. In this case both triangles
are valid based on the requirements stated above. However, the triangle on the right is
preferred over the left one, because of the orthogonality requirement. This procedure of
generating triangles is repeated, until all vertices of both boundaries are part of a triangle.
When this condition is true, the complete gap between both surface grids is filled with
triangles. The final step in the generation of the zipper grid is to order the vertices of
each triangle in such a way that the direction of the surface normal vector is compatible
with the surface normal vector of both surface grids that it connects. For this purpose,

61

4. Overset block connectivity

A

B

A+

B+

A

B+B

A+

Figure 4.8: Both triangles resulting from creating the edge indicated by the dashed line are
valid. The option on the right is preferred, because it gives the most orthogonal
propagation front.

0

1 2 1 0

2

10

2

0

1

2

Figure 4.9: Ordering of the vertices of a triangle, depending on the edge it is connected to, to
realize a compatible surface normal vector. The counter-clockwise directed arrow
indicates a vector pointing outward of the paper.

the outward pointing surface unit normal vector of a triangle is defined as

n :=
v01 × v02

||v01 × v02||
, (4.2)

where v01 is the vector pointing from vertex 0 to vertex 1 of the triangle, vector v02 is
defined in an analogous way, see figure 4.9. The order of the vertices of the triangle that
satisfies the requirement of a compatible surface normal is determined using information
about the order of the vertices of the quadrilateral the triangle is connected to. In
figure 4.9 the four possible ways to connect a triangle to a quadrilateral are depicted. For
this quadrilateral the surface normal is pointing outward of the paper, indicated by the
arrow directed counter-clockwise. The algorithm for the vertex ordering of the triangle
determines to what side of the quadrilateral the triangle is connected and chooses the
vertex order of the triangle for the corresponding situation. In this way, there is no need
to perform floating-point operations, making the procedure more robust.

It should be noted that the procedure described above does not introduce new vertices.
The method only uses existing vertices and connects them to create the zipper grid.

4.3.2 Verification

The integral of the outward pointing surface unit normal vector over a closed surface is
equal to the null vector. This property of a closed surface is used to verify that the zipper
grid method provides a closed surface for a configuration that originally has overlapping
surface grids. Since the surface grid provides a discrete representation of the surface,
the surface integral reduces to a summation over the faces used for the discretization.
For a configuration consisting of surface grids SA and SB — for which the non-blanked
quadrilateral faces are collected in the sets QA and QB — that are connected by a zipper

62

4.3 Evaluation of surface integrals

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲

❆
❆

❆
❆

❆
❆

xy

z✟✟✯❅❅■ �
�✒

Figure 4.10: Surface grid on one blade and part of nose cone, including zipper grids to connect
the different surface grids. Insets show details of zipper grid in region near tip
and around collar grid.

grid for which the triangles are collected in set T, this summation is expressed as
∑

F ∈A

(nF AF) , (4.3)

with A = QA ∪ QB ∪ T, nF the outward pointing surface unit normal vector of face F
and AF its corresponding surface area.

The configuration used to verify the zipper grid generation method consists of a three-
bladed wind turbine rotor and a nose cone, with a rotor diameter of approximately 88 [m].
To completely close the geometry, the open part of the nose cone, downstream of the rotor,
is closed using triangles. These triangles are constructed by connecting two successive
vertices on the edge of the cone with a common vertex at the axis of rotation of the rotor.
The surface geometry of a single rotor blade is discretized using 8 different overlapping
body-fitted surface grids. The nose cone is discretized using three point-matching body-
fitted surface grids. A collar grid is used in the region where a blade intersects with
the nose cone. The resulting zipper grid for part of this configuration is presented in
figure 4.10. The result of the summation of equation (4.3) for the whole configuration is
depicted in table 4.1. Considering the small values of this result and the finite-precision
of the floating-point arithmetic used for the evaluation of the summation, the surface
grid configuration is considered closed, indicating that the zipper grid method has been
successful in creating a closed non-overlapping surface grid.

4.3.3 Use of zipper grid

Once a zipper grid has been generated, it can be used for the accurate evaluation of
surface integrals, for instance to compute a power coefficient. However, since the triangles
of the zipper grid have no explicit connection with the flow domain — which is the case
for the quadrilateral faces of the surface grids — a flow solution must first be obtained
for the triangles, in order to be able to evaluate the surface integral. The flow solution

63

4. Overset block connectivity

Table 4.1: Result of the evaluation of equation (4.3) for the configuration of a surface grid for
which a part is displayed in figure 4.10.

direction value
[
m2
]

x 2.01 . 10−15

y 1.94 . 10−13

z −1.36 . 10−13

for the quadrilateral cells neighbouring a triangle is used for this purpose. The approach
taken is as follows.

First, two faces are selected from each surface grid neighbouring the zipper grid. Se-
lection is based on the smallest distance of the centroid of the face to the centroid of
the triangle. The centroids of the quadrilateral faces are connected, to create a new
quadrilateral face, see figure 4.11. Again, the transformation to a generalized coordi-
nate system, this time for this new quadrilateral face, is used to determine the bi-linear
coordinate of the centroid of the triangle. If this bi-linear coordinate indicates that the
centroid of the triangle is inside the newly created quadrilateral, the result is used to
determine the weighting factors for the interpolation of the flow solution from the quadri-
lateral faces of the surface grids. If, on the other hand, the centroid of the triangle is
outside the quadrilateral, a different face of the surface grid is selected, based on the
bi-linear coordinate found. This process is repeated, if required, until a quadrilateral can
be constructed which encloses the centroid of the triangle.

When the interpolation weights have been determined for all triangles of every zipper
grid involved in the evaluation of the surface integral, an accurate result can be computed.
This result is obtained by neglecting the contribution of the quadrilateral faces of the
surface grids which have been blanked for the construction of the zipper grid. Moreover,
the contribution of the zipper grid to the surface integral is computed by means of
interpolation of the flow solution, using the corresponding weights.

Note, that for the construction of a zipper grid that is involved in a surface integral,
the blanking of the field grid must be taken into account when blanking the surface grid.
Satisfying this requirement makes sure that no faces neighbouring a hole cell — for which
the flow solution is not updated — are used for the interpolation of the flow solution of
a triangle in the zipper grid.

4.4 Elimination of cells outside physical flow domain

Overlap occurs between different field grids, but it can also happen that part of a grid
resides outside the physical flow domain and hence does not necessarily overlap other
grids. This situation occurs when for example an off-body grid shares part of the domain
with a geometrical entity, such as a wing or a wind turbine blade. A 2D example of
such a situation is presented in figure 4.12. Cells that are inside this geometrical entity
do not contribute to the flow solution and must therefore be removed from the active
computational grid. Different methods exist to achieve this goal. Some examples are:

64

4.4 Elimination of cells outside physical flow domain

Figure 4.11: Schematic representation of
a part of a zipper grid. The centroid of
the triangle, depicted by a circle inside the
dotted quadrilateral cell used for interpola-
tion of the flow solution, required for the
evaluation of the surface integral.

Figure 4.12: Aerofoil geometry and a uni-
form background grid. A number of cells
from the background grid reside (partly) in-
side the aerofoil geometry.

the object x-ray technique [121], a Cartesian hole map [41] or a ray-casting method. The
latter method is used in the present research and its concept and implementation are
explained in the next subsection.

4.4.1 Ray-casting method

Concept

The concept of the ray-casting method is very simple. A ray is being cast from a certain
location in an arbitrary direction and the number of physical surfaces crossed by the ray
is counted. Depending on the result being odd or even, a qualification of the point the
ray was cast from can be made regarding the status of that point. When the number
of crossings found is odd, the point must be inside a geometrical entity and is therefore
outside the physical flow domain. For an even number of crossings, the opposite is true.

Approach

Since the direction of the ray being cast is arbitrary, a convenient choice is to choose the
casting direction collinear with one of the coordinate directions. Then, a single binary
tree is constructed containing all non-blanked surface elements. In the case of surface
grid overlap, a zipper grid must be generated first. In such an event, the tree also includes
the triangular faces of the zipper grid.

Next, a ray is cast from the centre of mass of a cell — assuming a cell-centred
discretization being used — in the casting direction chosen, for all cells used for the
discretization of the flow domain. For each ray cast, a tree search is performed, looking
for bounding boxes crossed by the line collinear with the ray. For bounding boxes found
to be crossed by this line it is verified if they are also crossed by the actual ray, taking into
account the origin and the direction of the ray. When this result is true, the actual face
corresponding to the bounding box is checked for being crossed by the ray. The method
used for this verification is treated in the next subsection. If the face is found to be crossed
by the ray, it is determined if the ray enters or leaves the flow domain, considering the

65

4. Overset block connectivity

z

x
y

P

T0

T1

T2

Q

d d

Figure 4.13: Ray, indicated by dashed line, is cast from P in positive x-direction. Point Q
is placed at distance 2d from P in the casting direction. To investigate triangle
T0T1T2 being crossed, the signed-volume is computed for tetrahedron T0T1T2P
and T0T1T2Q. The triangle is crossed by the ray if both values have the opposite
sign.

surface normal vector of the face. This analysis is done to identify situations for which a
miscount of the number of crossings occurs, making the whole procedure more robust.

Note, that in this case, the tree search is not terminated after one match has been
found, since more than one face of a single surface grid can be crossed by a ray.

Verification of face being crossed by ray

A bounding box found to be crossed by the ray can either correspond to a quadrilateral
face or a triangular face. In the case a quadrilateral face is encountered, the face is
split along the diagonal, such that two triangular faces arise. Then, for a triangular face,
the following checks are performed. When the origin of the ray does not correspond
with either of the vertices of the triangle, a signed-volume check [3] is performed. This
signed-volume check is used to verify if the ray really crosses the face and is not just
collinear with it.

The signed-volume check comprises of the computation of the signed-volume of two
tetrahedral cells. The first tetrahedron is constructed by connecting each of the vertices
of the triangle with the origin of the ray. For the construction of the second tetrahedron,
a suitable end point of the ray must be selected. This end point is placed at a distance
of two times the distance d from the origin of the ray in casting direction; where d is
the distance in casting direction from the origin of the ray to the farthest vertex of the
triangle, see figure 4.13. Subsequently, the signed-volume is computed. For a tetrahedron
specified by the coordinates v0, v1, v2 and v3 the signed-volume V : R3 → R is found
by evaluating

V (v0,v1,v2,v3) =
1

3!
det

x0 y0 z0 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

. (4.4)

If point P with coordinate p and point Q with coordinate q lie on the opposite side of
triangle T with its vertices at coordinates t0, t1 and t2, the signed-volumes V (t0, t1, t2,p)

66

4.4 Elimination of cells outside physical flow domain

x
y

z

P

A

B

C

D

Figure 4.14: Schematic representation of a non-planar surface element ABCD, split in two
triangles ABD and BCD, which are both crossed by the ray originating from
point P cast in the positive x-direction.

and V (t0, t1, t2, q) have the opposite sign. In this situation the triangle being crossed
by the ray is verified by considering the barycentric coordinate [124] of the origin of the
ray with respect to the triangle, both projected on the plane perpendicular to the casting
direction. For the purpose of limiting problems with finite-precision arithmetic, the origin
of the coordinate system is chosen to coincide with one of the projected vertices of the
triangle.

Any coordinate p within a triangle can be expressed as the linear combination of the
coordinates of its vertices. For a triangle with vertex 2 at the origin of the coordinate
system, this linear combination is expressed as

p =

i=1∑

i=0

(
λ̄iri

)
, (4.5)

with weights λ̄i subject to the constraint

i=2∑

i=0

(
λ̄i

)
= 1.

The weights are found by solving equation (4.5), using this constraint. For a coordinate
within the triangle, the solution satisfies

0 ≤ λ̄i ≤ 1 ∀ i ∈ {0, 1, 2} .

This method is used to check if the projection of P is located in the triangle resulting
from the projection of triangle T on the plane. If it is, then the triangle considered is
crossed by the ray. When the bounding box corresponds to a quadrilateral face, crossing
of the second triangle — originating from splitting the quadrilateral face — is verified
using the same procedure. This action is also performed when the result for the first
triangle indicates that it is crossed by the ray, because it can happen that a ray enters
the quadrilateral via the first triangle and exits again through the second one — or vice
versa — as shown in figure 4.14. This situation arises, when a non-planer surface is
discretized and the resulting face is slightly twisted. Not checking both triangles would
therefore result in an incorrect qualification of the status of the cell the ray was cast
from.

67

4. Overset block connectivity

4.5 Domain connectivity

After the ray-casting procedure has been performed, to get rid of cells outside the physical
flow domain, the block connectivity needs to be determined. The method used for
this purpose is the so-called implicit hole cutting method [107]. The advantage of this
method compared to most of the other methods devised for determining the domain
connectivity, is that this method does not require the manual specification of hole cutting
surfaces. Not having this requirement is a significant advantage, considering the use in
the optimization method; because user intervention must be absent, in order to realize a
feasible optimization procedure.

4.5.1 Concept

The first step in the implicit hole cutting is the identification of overlapping cells between
the different blocks of the field grid. For a cell-centred approach the containment of
the centre of mass is employed to qualify the existence of overlap. For a vertex-centred
approach, the vertex itself is the obvious choice. In regions of overlap, a choice is made
regarding which cells are used for solving the governing equations and which cells are
used to transfer the dependent variables from one block to another. This choice is based
on three criteria, in order of importance:

(i) user defined block priority;

(ii) index distance to the wall;

(iii) cell volume.

The first criterion is only used in cases for which the other two criteria result in
ambiguous results and therefore acts as a means to manually control the hole cutting
procedure. For that reason, it is the first criterion to be considered. Cells of a block with
high priority are used as field cells while a low block priority results in cells to become
potential hole cells. If no block priority has been specified, or if the priority is the same
for both blocks, the second criterion is considered.

This criterion considers the index distance to the wall, i.e. the number of cells a cell
is away from a block boundary for which a wall boundary condition is imposed. A cell
with a lower index distance to a wall is the preferred choice to act as a field cell over a
cell with a higher index distance, which becomes a potential hole cell. For this criterion,
a value can be specified to indicate what the maximum index distance is for which this
criterion is relevant; typical values range from 5 to 10. When the first two criteria do not
give a conclusive result, the third and final criterion is used.

The cell volume criterion considers the volume of the cells that overlap with each
other. The cell with the smallest volume is used as field cell, while the other overlapping
cells become potential hole cells.

After the potential hole cells have been identified, a choice must be made regarding
which cells are used as fringe cells, to transfer the dependent variable information. Fringe
cells are chosen from the cells that have been labelled as potential hole cell in such a way
that for all field cells the stencil used for solving the governing equations can be satisfied.
Therefore, cells that are near a block boundary for which no explicit boundary conditions
are imposed — i.e. a so-called overset-outer-boundary — are automatically fringe cells.

68

4.5 Domain connectivity

Unless there is a cell farther away from that particular boundary, that is already used as
a fringe cell to satisfy the stencil of the closest field cell. In that case the cell near the
boundary becomes a hole cell.

The donor cell corresponding to a fringe cell is one of the cells that was found to
overlap with the current fringe cell. Determining the corresponding interpolation stencil
is treated in subsections 4.5.3 and 4.5.4.

4.5.2 In cell qualification

In section 4.2.2 the binary tree search procedure, used to find cells for which the Cartesian
bounding box encloses a certain point, was explained. This method is used to identify the
overlap between cells. Note, that for a vertex-centred scheme, the bounding boxes of the
actual cells are used, while for a cell-centred approach, bounding boxes are constructed
for the cells of the dual mesh instead. Once a bounding box has been found, a more
accurate check must be performed to identify if the cell corresponding to the bounding
box actually encloses the cell as well. This method is explained next.

The containment of a point P with coordinate p by a cell defined by vertices with
coordinates rn, n ∈ N0, n < 8 is divided into two steps. The first step considers the
containment of the point by a different bounding box. However, this second bounding
box has in general a different orientation than the Cartesian bounding box used in the
binary tree. The new bounding box with the alternative orientation has been introduced
to increase the robustness of the method. The accurate containment check requires
the solution of a set of non-linear equations. A Newton algorithm is employed for this
purpose. However, for high-aspect ratio cells, that are not very well aligned with the
Cartesian axes directions, a point within the Cartesian bounding box is not necessarily
very close or inside the cell itself. Applying the Newton algorithm in such a case can result
in divergence of the solution procedure. Therefore, the alternatively oriented bounding
box acts as a means to filter out points that are within the Cartesian bounding box, but
which could present difficulties for the solution algorithm used for the accurate check.

The new bounding box is constructed in a transformed coordinate system. The
corresponding coordinate transformation is determined as follows. The first coordinate
axis of the transformed coordinate system, x̃, is chosen to be parallel to the axis of the
hexahedron for which the dimension is the largest, i.e. the length of the vector connecting
two opposite surfaces, see figure 4.15. The second axis is perpendicular to this axis in
the direction of the vector which is second in length. For this purpose, the projection
of the corresponding vector onto the normalized first coordinate direction is subtracted
from the original vector. The direction of the third axis is then determined by taking
the cross product of the vectors that define the first two axes. A Cartesian bounding
box is constructed in the new x̃ỹz̃-coordinate system and the containment of P by the
bounding box is determined.

If the search point is also enclosed by this second bounding box, a third check is
performed, which establishes if the search point is actually in the cell itself. For this
purpose, the tri-linear transformation R3 → R3 is used of a unit cube to a general
hexahedron with one of its corners at the origin, see figure 4.16. This transformation

69

4. Overset block connectivity

x̃

ỹ
z̃

Figure 4.15: Definition of the new coordinate system based on shape and orientation of a
hexahedral cell. The coordinate axes used to determine the second bounding box
for the in-cell-qualification of a point.

reads

r′ (ξ) =
1

8

k=1∑

k=0

j=1
∑

j=0

[
i=1∑

i=0

([

(−1)
i
(1 − 2ξ) + 1

] [

(−1)
j
(1 − 2η) + 1

]

[

(−1)
k

(1 − 2ζ) + 1

]

r′
n

)
]

 , (4.6)

with index n = 4k + 2j + i, r′
n the coordinate of the corners of the hexahedron

and ξ ≡ (ξ, η, ζ)
T . Note, that in general an arbitrary hexahedron representing a cell

of the grid will not have one of its vertices coincide with the origin. This requirement
can however, simply be met, by performing a translation of the cell, such that vertex
0, with original coordinate r0, is at the origin; therefore r′

n ≡ rn − r0. The purpose
of first performing a translation, before the transformation is performed, is to limit the
effect of using finite-precision arithmetic for performing the computations. Subsequently,
containment of P is determined by solving

r′ (ξ) − (p− r0) = 0, (4.7)

for ξ. Based on the solution of equation (4.7), it can be determined if P is inside the
hexahedron, i.e. when

0 ≤ (ξ, η, ζ) ≤ 1.

Otherwise, the point is considered to be outside the cell.

4.5.3 Interpolation coefficients

When a cell is qualified as fringe cell and the corresponding donor cell has been identi-
fied — based on the procedure explained in subsection 4.5.1 — the interpolation coeffi-
cients must be determined. For this purpose, the result of solving equation (4.7) for ξ is

70

4.5 Domain connectivity

ζ

ξ
η0

1

5

2
3

76

4

z
x

y

0

1

5

2

3

7

6

4

Figure 4.16: Schematic representation of the tri-linear transformation of a unit cube on the
left to an arbitrary general hexahedral cell on the right.

used. The weights ω are then given by

ω :=

(1 − ξ)(1 − η)(1 − ζ)
ξ (1 − η)(1 − ζ)

(1 − ξ) η (1 − ζ)
ξ η (1 − ζ)

(1 − ξ)(1 − η) ζ
ξ (1 − η) ζ

(1 − ξ) η ζ
ξ η ζ

, (4.8)

where the ith component of this vector corresponds to vertex vi of the donor cell; the order
of the vertices according to figure 4.16. These weights are used to determine the value
of the dependent variables for the fringe cell, based on the flow solution corresponding to
the vertices of the donor cell. Note, that for a cell-centred discretization, these vertices
of the dual mesh correspond to the cell centres of the primal mesh. Therefore, it can
happen with the cell-centred approach that one or more of the donors of a fringe cell
is a fringe cell itself. For the purpose of preventing inconsistencies in the interpolation,
which can result in, for instance, hampering convergence of the flow solution method, the
interpolation stencil of a fringe cell must be an explicit expression in terms of field cells
only. The approach taken to achieve this purpose is presented in the next subsection.

4.5.4 Explicit expression in terms of field cells

To obtain an interpolation stencil for a fringe cell, that is an explicit expression in terms
of field cells only, first fringe cells are considered for which the flow solution can be
computed using field cell information only. When such a fringe cell, referred to as cell A,
also provides donor information for a different fringe cell, referred to as cell B, the donor
information of cell A can be transferred to cell B by multiplying the weight corresponding

71

4. Overset block connectivity

to cell A by the weight of each of the donors of cell A. With this procedure, the total
number of donors of cell B is increased with the total number of donors of cell A minus
one7 and cell A is effectively eliminated as donor of cell B. When cell B is also a donor
of a different cell, then it can be eliminated as donor as well, provided that cell A was the
only non-field donor of cell B. This procedure is repeated until no fringe cells remain for
which an explicit expression in terms of field cells can be found by means of this replacing
procedure.

After that, it is still possible that fringe cells exist for which one or more fringe cells
provide donor information. These fringe cells — from here on referred to as incomplete
fringe cells — are collected and a system of linear equations is constructed. This system
of linear equations resembles the linear dependency of incomplete fringe cells on other
incomplete fringe cells and field cells. The corresponding matrix has a sparse structure
with a unit diagonal. All non-zero off-diagonal terms are negative and have a magnitude
equal to the weight corresponding to the incomplete fringe cell on which the incomplete
fringe cell depends.

To determine the right-hand side of the system of linear equations, first all field cells
must be identified that act as donor for at least one of the incomplete fringe cells. Next,
the right-hand side is constructed by selecting one of the field cells. The weight corre-
sponding to the selected field cell for an incomplete fringe cell that is explicitly affected
by that field cell is assigned to the row entry of the right-hand side that corresponds to
the incomplete fringe cell. Therefore, the row entries of the right-hand side correspond-
ing to all incomplete fringe cells that are explicitly affected by this field cell have been
assigned a value. The remaining entries are zero. Subsequently, the LU decomposition
of the matrix is determined and stored. Note, that determining and storing the LU de-
composition of the matrix is feasible because of the presence of a fairly limited number
of incomplete fringe cells — at least for the cases considered so far. The solution is then
obtained by subsequently performing a forward and a backward substitution for the lower
and upper triangular matrix, respectively. This solution provides the value for the weight
corresponding to the field cell that was selected, for all incomplete fringe cells. All non-
zero values of the result, exceeding a certain threshold value, are stored, together with
the incomplete fringe cell to which it corresponds and the field cell that was selected.

This procedure is repeated for all field cells that have been identified to explicitly
affect at least one incomplete fringe cell. Since only the right-hand side changes, the
previously stored LU decomposition of the matrix can be reused for obtaining the subse-
quent solutions of the system of linear equations. Once all field cells have been handled,
the explicit dependency of the incomplete fringe cells on only field cells is determined.

To limit the size of the interpolation stencil, it is possible to specify a maximum
number of donors. If the number of donors of a fringe cell exceeds this maximum,
additional donors are ignored, in descending order of the corresponding weight value. To
make sure that the combined weights sum to one, an additional normalization is required
if the specified maximum number is exceeded, or if donor weights have been encountered
that did not exceed the threshold value. Normalization is, however, performed by default,
because round-off errors, caused by using finite-precision arithmetic, can also result in
the sum of the weights not being equal to one.

To illustrate the whole procedure a flow chart is provided in figure 4.17. Furthermore,
consider the following example, in which the dependency of incomplete fringe cells F0

7Assuming none of the donors of cell A was already a donor of cell B

72

4.5 Domain connectivity

start

collect incomplete fringe cells

construct matrix A containing

weights of all incomplete fringe cells

collect all field cells that
act as donor of at least
1 incomplete fringe cell

select first field cell

assign — for all explicitly affected
fringe cells — the weight, cor-

responding to the selected field
cell, to the right-hand side vector

LU decomposi-
tion available

solve Aω = b

ω corresponding to se-
lected field cell for all
incomplete fringe cells

all field cells
handled

post-process all weights

done

se
le

ct
n
ex

t
fi

el
d

ce
ll

perform LU
decomposition

yes

yes

no

no

Figure 4.17: Flow chart of the procedure used to determine an interpolation stencil and the
corresponding weights for the incomplete fringe cells, containing only field cells.

to F3 is given by

φF0 = ω0φF1 + ω1φF2 + ω2φF3 + ω3φa,

φF1 = ω4φF0 + ω5φF2 + ω6φa + ω7φb,

φF2 = ω8φF1 + ω9φF3 + ω10φa,

φF3 = ω11φF0 + ω12φb.

In this equation φ resembles a conserved flow variable for which the interpolation must
be applied and φa and φb correspond to two different field cells. Based on the given
dependency, the resulting matrix obtained by means of the procedure described above

73

4. Overset block connectivity

reads

A ≡

1 −ω0 −ω1 −ω2

−ω4 1 −ω5 0

0 −ω8 1 −ω9

−ω11 0 0 1

.

Because there are two different field cells involved, two different right-hand side vectors
must be constructed, which read

ra ≡

ω3

ω6

ω10

0

and rb ≡

0

ω7

0

ω12

,

respectively. Solving the system of linear equations

Aω = b ∀ b ∈ {ra, rb} (4.9)

for ω, gives the dependency of the incomplete fringe cells F0 to F3 on field cells a and b.
Note, that all elements of the resulting solution vector ω still satisfy: 0 ≤ ωi ≤ 1.

4.6 Summary

To conclude this chapter, a brief summary is provided, highlighting the most important
aspects discussed. The chapter started with an introduction on the history of composite
overset grids and its application in computational fluid dynamics. The application of this
domain connectivity method in modern research codes has also been treated. Moreover,
the terminology used in overset grid technology has been presented. Subsequently, the
search procedure, used to efficiently determine the block connectivity has been pointed
out. Alternating binary trees are used for this purpose. Then, the method has been
explained that is used to cope with overlapping surface grids, regarding the correct and
accurate evaluation of surface integrals. The accurate evaluation is achieved employing
so-called zipper grids. Zipper grids, consisting of a single layer of triangles, are created
by removing quadrilateral surface cells in the region of overlap between different surface
grids and closing the resulting void between the surface grids with triangles. These zipper
grids are also employed to determine which cells reside outside the physical domain and
can therefore be excluded from the computation of the flow solution. By casting a ray
originating from a cell centre, in an arbitrary direction, and counting the number of times
the ray crosses a surface grid, the inside/outside status of that cell can be determined.
Finally, the block connectivity method was discussed. Block connectivity is determined
using an implicit hole cutting technique. Three different criteria are used, to decide which
cells are used for solving the discretized partial differential equations, governing the flow
and which ones are obsolete or must be used to transfer the flow solution between
overlapping blocks. For consistency of the interpolation, the interpolation stencil for
fringe cells is determined, such that only field cell data is used in the interpolation.

74

5
Flow model and solution method

“Even if there is only one possible unified theory, it is just a set of rules and equations.
What is it that breathes fire into the equations and makes a universe for them to
describe?”

— Stephen W. Hawking (1942 – present), A Brief History of Time

T
he physical phenomenon of a fluid in motion can be described by a mathematical
model, often composed of partial differential equations. The validity of the model

for a certain flow regime depends on the assumptions made in constructing the model.
This chapter presents the mathematical model used in the optimization method to model
the flow. Subsequently, the spatial discretization of the governing equations is treated,
along with the treatment of the boundary conditions that are enforced. Moreover, the
method used to solve the discretized equations is discussed. At the end of the chapter,
the current implementation is verified by applying the method to subcritical 2D flow
around the NACA 0012 aerofoil and comparing the solution with results obtained with
different numerical methods, that have previously been verified. Also the spatial order
of convergence of the method is investigated. Moreover, for the transonic flow around
an ONERA M6 wing, the numerical solution is compared with experimental results from
the literature, to validate the method.

V(t)

x

y

z
∂V(t)

n

u∂V u

O

Figure 5.1: Schematic representation of an arbitrary moving control volume V(t) with a moving
permeable boundary ∂V(t).

75

5. Flow model and solution method

5.1 Governing equations

Starting with basic fundamentals of physics, i.e. the conservation laws, the equations of
motion of a fluid can be derived for an arbitrary time-dependent control volume V(t) ∈ R3

with permeable boundary ∂V(t) ∈ R3, see figure 5.1. Under the assumption that: (i) the
fluid is a continuum ; (ii) the fluid has a fixed composition; (iii) no relativistic effects oc-
cur [55], then the conservation of momentum is governed by the Navier-Stokes equations.
Without an external volumetric force field present, these equations can be expressed in
integral conservation form as

∂

∂t

∫

V(t)

ρu dV +

∫

∂V(t)

ρu
([
uT − uT

∂V

]
· n
)

dS = −
∫

∂V(t)

(
pn− τ · n

)
dS, (5.1)

where ρ is the local density of the fluid, u ≡ (u, v, w)
T the local velocity of the fluid,

p the static pressure, τ the stress tensor which is assumed to behave as a Newtonian
fluid , u∂V the local velocity of the permeable boundary surface of the control volume
and n ≡ (nx, ny, nz)

T the corresponding outward pointing unit normal vector. To
gain insight in the relative importance of the different components of the Navier-Stokes
equations, it is good practice to carry out a dimensional analysis of the equations. For
that purpose, a number of scaling parameters are introduced: a characteristic length
scale, L, e.g. the local chord length of the wind turbine blade; a characteristic velocity, U ,
e.g. the magnitude of the relative velocity of the free-stream around the blade; and a
characteristic density, ρ0, and characteristic viscosity, µ0. For both the density and
viscosity the free-stream value can be used. With these scaling parameters, the variables
in the Navier-Stokes equations can be expressed as

u = Uũ, ρ = ρ0ρ̃, t =
L
U t̃, p = ρ0U2p̃, τ = µ0

U
L τ̃ , dS = L2d̃S, dV = L3d̃V ,

where the variables denoted with a tilde are non-dimensional. Note, that for u∂V a similar
expression as for u can be found. Substitution of these expressions in the Navier-Stokes
equations of equation (5.1), yields

∂

∂t̃

∫

V(t̃)

ρ̃ũ d̃V +

∫

∂V(t̃)

ρ̃ũ
([
ũT − ũT

∂V

]
· n
)

d̃S = −
∫

∂V(t̃)

p̃n d̃S + Re−1

∫

∂V(t̃)

τ̃ · n d̃S, (5.2)

where Re := ρ0UL
µ0

represents the Reynolds number. This non-dimensional number was
named after Osborne Reynolds [106] — one of the founders of modern fluid dynamics —
and represents the ratio between inertia and viscous forces in a flow. Inspection of the non-
dimensional Navier-Stokes equations learns that two limiting cases can be distinguished.
For Re ≪ 1 the viscous term dominates the equations and inertia terms can be neglected.
On the other hand, if Re ≫ 1, the viscous term has a negligible influence relative to the
inertia terms and the hyperbolic nature of the equations becomes predominant. For a
typical modern wind turbine, the Reynolds number is of O

(
10

6
)

for a large part of the
blade. It is therefore permitted to ignore the term representing the viscous effects for
this kind of application. Note however, that in the region of the blade near the hub of
the rotor viscous effects can be quite important. This observation must be taken into

76

5.2 Spatial discretization

account, when optimization results are considered, since physical behaviour that is not
modelled, can also not be considered by the optimization method.

By dropping the last term of equation (5.2), the Euler equations are obtained. To-
gether with the equations for conservation of mass and energy the equations that govern
the motion of a fluid are expressed in dimensional integral conservation form as

∂

∂t

∫

V(t)

U dV +

∫

∂V(t)

[
F (U) −UuT

∂V

]
· n dS = 0. (5.3)

Note, that in the equation for energy conservation the effects due to viscosity and heat
conduction are neglected. In this set of equations the vector with conserved variables is
given by

U := (ρ, ρu, ρet)
T ∈ R5, (5.4)

where et ≡ eint + 1/2 ||u||2 represents the total energy per unit mass, with eint the internal
energy per unit mass. The convective flux tensor is defined as

F (U) ≡ [F x (U) ,F y (U) ,F z (U)] :=
(
ρuT , ρuuT + pI, [p + ρet]u

T
)T

, (5.5)

with identity matrix I ∈ R3. Moreover, the thermodynamic equations of state of a
calorically perfect gas are used to relate the static pressure to the density and internal
energy. For a calorically perfect gas, the internal energy is equal to the product of the
specific heat capacity at constant volume and the absolute temperature. Using this
relation together with the perfect gas law, the pressure can be expressed as

p = ρ (γ − 1)
(

et − u · u
2

)

, (5.6)

with γ the ratio of specific heats, which is taken to be equal to 1.4 for air.

5.2 Spatial discretization

In order to solve the system of integral conservation equations of equation (5.3) numer-
ically, these equations must be discretized. For this purpose, a finite volume method is
employed, which is explained next.

5.2.1 Finite volume method

If the control volume is chosen to be equal to a cell, for instance cell a ∈ N0, of the
grid that is used for the discretization of a stationary flow domain, the aforementioned
conservation equations can be expressed for control volume a as

Va
d 〈U〉a

dt
+

∫

∂Va

F (U) · ndS = 0. (5.7)

where the volume of the control volume Va and the control-volume-averaged value of the
conserved variables 〈U〉a are defined by

Va :=

∫

Va

dV and 〈U〉a :=
1

Va

∫

Va

U dV ,

77

5. Flow model and solution method

respectively. Note, that the term
(
UuT

∂V

)
present in equation (5.3) is absent, because

the domain, and therefore also its discrete representation, is assumed stationary and rigid.
For a discrete hexahedral shaped cell, the integral of the flux over the boundary of the
control volume can be assembled as a summation of the flux over each of the six faces
of the hexahedral control volume. Equation (5.7) can then be expressed as

Va
d 〈U〉a

dt
+

m=5∑

m=0

∫

∂Vam

F (U) · nm dS = 0. (5.8)

Based on the rotational invariance property of the Euler equations [100,187], the equation
can be rewritten to

Va
d 〈U〉a

dt
+

m=5∑

m=0

∫

∂Vam

T −1F x

(
TU

)
dS = 0, (5.9)

replacing the dot product of the flux tensor with the normal vector by a single flux
evaluation for a transformed vector with conserved variables and transforming the result
back to the original direction. In this equation, the rotation matrix T is given by

T :=

1 0 0 0 0

0 nx ny nz 0

0 t1,x t1,y t1,z 0

0 t2,x t2,y t2,z 0

0 0 0 0 1

, (5.10)

with t1 and t2 the unit vectors tangent to the surface, which form an orthogonal system
together with n. Note, that the inverse of T is easily obtained by taking its transpose.
The advantage of applying this transformation is that it suffices to compute a single
unidirectional flux and account for the result for the other directions by application of
the inverse transformation.

Due to the hyperbolic nature of the set of equations considered, special care must be
taken in the treatment of the flux in the numerical method [127]. For this purpose, the
numerical flux is introduced as an approximation of the actual flux, i.e.

F (UL,UR,nm) ≈ T −1F x

(
TU

)
, (5.11)

where UL and UR are the states of the vector with conserved variables on the left and
right side of interface m, respectively. Using this approximation and assuming that the
numerical flux is constant over the interface considered, equation (5.9) can be written as

Va
d 〈U〉a

dt
+

m=5∑

m=0

F (UL,UR,nm) Sm = 0, (5.12)

where Sm is the surface area of face m. For a first-order accurate spatial discretization,
an upwind method can be used with the control-volume-averaged state of the elements
of the vector with conserved variables as an approximation of the state at the interface.
To achieve a second-order spatial accuracy with an upwind method, linear reconstruction

78

5.2 Spatial discretization

of the state at the interface needs to be performed. For the simulation of transonic
flows, the occurrence of spurious oscillations — due to the linear reconstruction of the
state at the interface – can be prevented by application of a so-called MUSCL-type [193]
reconstruction. Alternatively, second-order spatial accuracy can also be achieved with a
central discretization of the flux, with added artificial dissipation terms to achieve stability.
Both approaches are subject of section 5.3.

5.2.2 Computation of metrics

The evaluation of equation (5.12) requires the metrics of the grid to be available. These
metrics include the surface area of the faces bounding the control volumes, their cor-
responding surface unit normal vectors and the volume of the control volumes. The
location of the centre of mass of the control volumes is also required for the application
of certain boundary conditions, for the reconstruction of the state at the interface and
also for the donor search, when a composite overset domain discretization is employed.

The surface normal vectors of a face are computed by taking the cross product of the
two diagonal vectors of that face. The magnitude of this vector equals twice the surface
area. The unit normal vector can subsequently be obtained by dividing the vector by
its magnitude. However, the unnormalized result is stored, because the product of the
unit normal vector and the surface area is what is usually required. This approach saves
computing the magnitude, performing the normalization and storing them separately.

The volume of a control volume is computed employing the tri-linear transformation
also used in the donor search for fringe control volumes, given by the equation

r′ (ξ) =
1

8

k=1∑

k=0

j=1
∑

j=0

[
i=1∑

i=0

([

(−1)
i
(1 − 2ξ) + 1

] [

(−1)
j
(1 − 2η) + 1

]

[

(−1)
k

(1 − 2ζ) + 1

]

r′
n

)
]

 , (4.6)

where r′
n represent the coordinates of the vertices of the control volume after performing

the translation to the origin and ξ ≡ (ξ, η, ζ)
T . The vertices are numbered in the same

order as shown in figure 4.16 on page 71, with n = 4k + 2j + i. The volume is then
computed by performing the integration over the tri-linear coordinate directions:

V =

1∫

0

1∫

0

1∫

0

det

(
∂r′

∂ξ

)

dξ dη dζ, (5.13)

which requires the determinant of the Jacobian matrix of the transformation specified by
equation (4.6).

Using this same coordinate transformation, the location of the centre of mass, xcm,
of a control volume can be determined with

xcm =
1

V

1∫

0

1∫

0

1∫

0

r′ (ξ) det

(
∂r′

∂ξ

)

dξ dη dζ. (5.14)

79

5. Flow model and solution method

5.3 Numerical fluxes

The hyperbolic nature of the convective flux requires a special treatment in the numerical
method to accurately compute the flux at the interface of two control volumes. The flux
can be computed in different ways; one way is to exactly solve the Riemann problem —
i.e.

∂U

∂t
+

∂

∂x
F (U) = 0, (5.15)

for an interface normal to the x-direction — at the interface and use the result to compute
the flux at the interface. Also other methods exist, for which either an approximate
solution of the Riemann problem is used to compute the flux at the interface or a central
discretization of the flux is computed. The latter two methods are discussed in the
following subsections, starting with the central discretization of the flux using the so-
called Jameson-Schmidt-Turkel (JST) scheme [92]. An example of a very commonly
used upwind method is Roe’s approximate Riemann solver [147], this method is treated
in subsection 5.3.2.

5.3.1 Jameson-Schmidt-Turkel scheme

The JST scheme [92] uses a central discretization of the flux at the interface. However,
since a central discretization allows for the occurrence of odd-even decoupling, artificial
dissipation must be added to obtain a stable scheme. This artificial dissipation is also
required to remove the energy from modes for which the wavelength cannot be resolved
by the computational grid, giving rise to aliasing. These high frequency modes have a
large amplitude when discontinuities are present in the flow solution, such as in the case
of the appearance of shocks in transonic and supersonic flow. Therefore, more artificial
dissipation is required to realize a stable numerical scheme, in the event of a shock. With
the addition of an artificial dissipation term, the flux at the interface between control
volume i and control volume i + 1 is computed according to

F

(

U L,U R,ni+ 1
2

)

=
1

2

[
F (〈U〉i) + F

(
〈U〉i+1

)]
−Di+ 1

2
, (5.16)

with Di+ 1
2

the artificial dissipation term and using the control-volume-averaged values
of the conserved variables to represent the state at the left and right of the interface.
This artificial dissipation term consists of a second-order shock capturing term and a
fourth-order background dissipation term, which can be expressed as

Di+ 1
2

= DII

i+ 1
2

−DIV

i+ 1
2
. (5.17)

The shock capturing term is proportional to a first-order forward-difference operator
applied to the control-volume-averaged value of the conserved variables:

DII

i+ 1
2

= ǫII

i+ 1
2

(
〈U〉i+1 − 〈U〉i

)
Λi+ 1

2
. (5.18)

The background dissipation term is proportional to the first-order accurate third-order
forward-difference operator applied to the control-volume-averaged value of the conserved
variables:

DIV

i+ 1
2

= ǫIV

i+ 1
2

(
〈U〉i+2 − 3 〈U〉i+1 + 3 〈U〉i − 〈U〉i−1

)
Λi+ 1

2
. (5.19)

80

5.3 Numerical fluxes

In both equations, the coefficient Λi+ 1
2

is an estimate of the spectral radius of the local
convective flux Jacobian, which reads

Λi+ 1
2

=
1

2

(
|〈u〉i| + 〈c〉i +

∣
∣〈u〉i+1

∣
∣+ 〈c〉i+1

)
, (5.20)

where 〈c〉i =
√

γp (〈U〉i) / 〈ρ〉i is the local speed of sound determined using control-
volume-averaged density and pressure determined based on the control-volume-averaged
conserved flow variables. The dimensionless artificial dissipation coefficients are defined
as

ǫII

i+ 1
2

= min

{
1

4
, k2Θi+ 1

2

}

, (5.21)

ǫIV

i+ 1
2

= max
{

0, k4 − βΘi+ 1
2

}

. (5.22)

Parameters k2, k4 and β are dimensionless constants and Θi+1/2 is a so-called ‘shock
sensor’ or pressure-switch function, which is used to detect regions with a high pressure
gradient. For this purpose, the pressure sensor is defined as

Θi+ 1
2

= max {Θi, Θi+1} , where (5.23)

Θi =

∣
∣p
(
〈U〉i+1

)
− 2p (〈U〉i) + p

(
〈U〉i−1

)∣
∣

p
(
〈U〉i+1

)
+ 2p (〈U〉i) + p

(
〈U〉i−1

) . (5.24)

The dissipation coefficients are defined such that in regions of strong variation in the
pressure the fourth-order dissipation term vanishes and the second-order dissipation term
is O (1), making the scheme behave locally as first-order accurate. In regions where
the pressure shows smooth behaviour, the second-order dissipation term is small and the
fourth-order term is non-zero, resulting in a second-order spatial accuracy. Typical values
for the dimensionless constants [20,199] are k2 ∈ [1/4, 1/2], k4 ∈ [1/128, 1/32] and β = 2.

5.3.2 Roe’s approximate Riemann solver

In the method of Roe’s approximate Riemann solver, the Riemann problem is linearized,
resulting in

∂U

∂t
+

∂F

∂U

∂U

∂x
≡ ∂U

∂t
+ A (U)

∂U

∂x
= 0. (5.25)

Subsequently, an approximation Ã (UL,UR), to the flux Jacobian is sought, that retains
the properties of the original problem:

(i) the system is hyperbolic, i.e. Ã (UL,UR) has real eigenvalues λ̃m, m ∈ N0, m < 5,

and a corresponding set of linearly independent right eigenvectors K̃
(m)

;

(ii) the matrix is consistent with the exact Jacobian, i.e. as UL → UR → Û , then

Ã (UL,UR) → ∂F

∂U

∣
∣
∣
∣
Û

;

(iii) conservation is assured, i.e. Ã (UL,UR) [UR −UL] = F (UR) − F (UL).

81

5. Flow model and solution method

This goal is achieved by using so-called Roe-averaged variables for the evaluation of the
entries of the flux Jacobian. These variables read

ρ̃ :=
√

ρLρR , ũ :=

√
ρL uL +

√
ρR uR√

ρL +
√

ρR

, H̃ :=

√
ρL HL +

√
ρR HR√

ρL +
√

ρR

,

where H ≡ et + ρ−1p is the total enthalpy per unit mass. The eigenvalues expressed in
terms of Roe-averaged quantities are [95,187]:

λ̃0 = ũ − c̃, λ̃1 = ũ, λ̃2 = ũ, λ̃3 = ũ, λ̃4 = ũ + c̃,

where c̃ is the speed of sound evaluated using Roe-averaged quantities. The right eigen-
vectors are

K̃(0) =

1

ũ − c̃
ṽ
w̃

H̃ − ũc̃

, K̃(1) =

1

ũ
ṽ
w̃

1

2
|ũ|2

, K̃(2) =

0

0

1

0

ṽ

, K̃(3) =

0

0

0

1

w̃

, K̃(4) =

1

ũ + c̃
ṽ
w̃

H̃ + ũc̃

.

The hyperbolic system allows the jump in the solution to be expressed as a linear combi-
nation of the eigenvectors, i.e.

U R −U L =

m=4∑

m=0

αmK̃
(m)

, (5.26)

where αm represents the wave strength, associated with the direction of eigenvector K̃
(m)

.
Since the jump in conserved variables across the interface is known, equation (5.26) can
be used to solve for the wave strengths. The solution yields:

α0 =
∆p − c̃ρ̃∆u

2c̃2
, α1 = ∆ρ − ∆p

c̃2
, α2 =

ρ̃∆v

ṽ
, α3 =

ρ̃∆w

w̃
, α4 =

∆p + c̃ρ̃∆u

2c̃2
.

Using this result, the flux across the interface between control volume i and control
volume i + 1 can be computed from

F

(

U L,U R,ni+ 1
2

)

=
1

2
[F (U L) + F (U R)] − 1

2

m=4∑

m=0

αm

∣
∣λ̃m

∣
∣ K̃

(m)
. (5.27)

When for the state at the left and right of the interface the control-volume-averaged
quantities are used of control volume i and control volume i + 1, respectively, this flux
scheme is first-order accurate. Second-order accuracy can be achieved, using linear recon-
struction of the quantity at the interface. In transonic flow, linear reconstruction gives
rise to non-physical oscillatory behaviour of the solution. This non-physical behaviour
can be mitigated using a MUSCL-type reconstruction instead, both methods are treated
in the next section.

In the Roe scheme as such, expansion shocks violating the entropy condition [187] are
admissible. To prevent the occurrence of such non-physical behaviour, various authors
have suggested different entropy fixes. In the current implementation, the approach
proposed by Harten [78] is used.

82

5.4 Reconstruction of state at interface

5.4 Reconstruction of state at interface

To achieve higher than first-order spatial accuracy for an upwind method, it is not suffi-
cient to use control-volume-averaged values for the evaluation of the flux at the interfaces.
In that case, a linear reconstruction of the state at the interface is required. Linear recon-
struction requires information on the gradient of the flow solution. Subsequently using
this gradient information, the state at the interface can be reconstructed. Different ap-
proaches can be taken for the computation of gradients and the reconstruction of the
state at the interface. Two methods are discussed. The first method is the more ac-
curate of the two. The second method trades some of this accuracy for an increase in
robustness of the method. The general formula for the 1D reconstruction of the state at
the interface, for flow variable ϕ, reads

ϕR = 〈ϕ〉i+1 − βR

[

(1 + κ̂) (∇ϕ)i+ 1

2

+ (1 − κ̂) (∇ϕ)i+ 3

2

]

, and (5.28)

ϕL = 〈ϕ〉i + βL

[

(1 + κ̂) (∇ϕ)i+ 1
2

+ (1 − κ̂) (∇ϕ)i− 1
2

]

, (5.29)

with a weighted average of the gradients computed at the interfaces of a control vol-
ume, with weighting factor κ̂ ∈ [−1, 1]. For κ̂ = 1/3, a convective flux discretization
of third-order spatial accuracy can be achieved [102]. Coefficients βR and βL depend on
the method used for the reconstruction of the state at the interface. The methods used
for computing the gradients and more details on the actual reconstruction, including the
specification of βR and βL, are presented in the following two subsections. Moreover,
subsection 5.4.3 considers the situation in which large gradients result in linearly recon-
structed states violating the maximum principle and how this situation can be coped
with.

5.4.1 Reconstruction about centre of mass

This reconstruction method explicitly considers the location of the centre of mass of the
control volume as well as the centroid of the face for which the reconstruction must
be performed. The gradient of variable ϕ is computed for three consecutive interfaces
centred around the interface considered. For the interface between control volume i ∈ N0

and i + 1 the gradient is computed according to

(∇ϕ)i+ 1
2

=
〈ϕ〉i+1 − 〈ϕ〉i

∣
∣(xcm)i+1 − (xcm)i

∣
∣

(5.30)

For the reconstruction of the state at the interface, the distance between the centre of
mass and the centre of the face is used, therefore

βR =
∣
∣
∣(xF)i+ 1

2
− (xcm)i+1

∣
∣
∣ ,

βL =
∣
∣
∣(xF)i+ 1

2
− (xcm)i

∣
∣
∣ ,

where (xF)i+ 1
2

is the location of the centroid of the face between control volume i

and i + 1. By performing the reconstruction about the centre of mass of the control
volume, the control-volume-averaged value is conserved [95].

83

5. Flow model and solution method

5.4.2 Reconstruction considering grid as uniform Cartesian

The method presented in the preceding section generally provides an accurate approxi-
mation of the state at the interface. However, for grids with high aspect ratio cells in
regions near curved surfaces, it can occur that the centre of mass of a control volume is
not in the control volume itself. In that case using the location of the centre of mass for
the reconstruction of the state at the interface, can lead to inconsistencies, hampering
convergence of the solution method. Therefore, in this section a different approach for
reconstruction of the state at the interface is presented. For this method, the assumption
is made that a uniform Cartesian grid is used for the discretization of the computational
domain. In this way, the distance between the centre of mass of a control volume and
the centroid of the face at which the gradient is approximated does not need to be con-
sidered explicitly. This approach increases the robustness of the method for situations in
which grids with high aspect ratio cells are used in the region near curved surfaces. The
undivided gradient scaled with the distance at the interface between control volume i
and i + 1 is now approximated as

(∇ϕ)i+ 1

2

=
〈ϕ〉i+1 − 〈ϕ〉i

2
. (5.31)

Note, that the actual dimensions of the grid do not matter in the computation of the
gradient, because this information drops out in the final result. The corresponding choices
for βR and βL are

βR = βL =
1

2
. (5.32)

The increase in robustness of the method comes at the price of a reduction of the order
of accuracy, because reconstruction is not performed about the centre of mass.

5.4.3 MUSCL-type reconstruction

In regions where the flow solution exhibits large gradients, linear reconstruction of the
state at the interface can result in a reconstructed state that does not satisfy the maximum
principle. In this situation the reconstructed value exceeds the extrema in its stencil,
which can give rise to the occurrence of spurious oscillations in the solution. Therefore,
it is necessary to limit the gradients in order to avoid this situation. This solution was
originally proposed by Van Leer [193], who named the method the Monotone Upstream-
Centred Scheme for Conservation Laws (MUSCL). Since its introduction, many MUSCL-
like methods have been constructed, which have in common that some sort of slope
limiting is applied in case the gradients are too large. In the present research the Van
Albada limiter [5] is used. The corresponding limiting functions read for the interface
between control volume i and i + 1

Φ−
i+ 1

2

=
2 (∇ϕ)i− 1

2
(∇ϕ)i+ 1

2
+ ǫi

[

(∇ϕ)i− 1
2

]2

+
[

(∇ϕ)i+ 1
2

]2

+ ǫi

, (5.33)

Φ+
i+ 1

2

=
2 (∇ϕ)i+ 1

2
(∇ϕ)i+ 3

2
+ ǫi+1

[

(∇ϕ)i+ 1
2

]2

+
[

(∇ϕ)i+ 3
2

]2

+ ǫi+1

. (5.34)

84

5.5 Boundary conditions

Variable ǫi is used to prevent an undefined result in regions of uniform flow, for this
purpose, it is defined as

ǫi := (ǫa [|〈ϕ〉i| + ǫb])
2

, (5.35)

where ǫa ∈ R and ǫb ∈ R are some constants for which the values 0.1 and 0.01 are
used, respectively, in the present implementation. Note, that the unit of ǫb is taken
to be equal to that of the flow variable for which limiting is applied, to end up with a
dimensionally consistent equation. Including these limiting functions, the approximation
of the state at the interface is now computed by taking a weighted average of the slope
limited approximation of the derivative at both interfaces — in one direction — of the
control volume, i.e.

ϕR = 〈ϕ〉i+1 − βR

[

(1 + κ̂) Φ+
i+ 1

2

(∇ϕ)i+ 1

2

+ (1 − κ̂) Φ−
i+ 3

2

(∇ϕ)i+ 3

2

]

, and (5.36)

ϕL = 〈ϕ〉i + βL

[

(1 + κ̂) Φ−
i+ 1

2

(∇ϕ)i+ 1
2

+ (1 − κ̂) Φ+
i− 1

2

(∇ϕ)i− 1
2

]

. (5.37)

5.5 Boundary conditions

Boundary conditions are used to represent the inevitability of the flow domain being
bounded. The boundary can have a physical nature, such as a solid wall, or it can be
artificial. The latter is the case for example for periodic boundaries or for a far-field
boundary, which accounts for the computational domain being finite. In the present
research, boundary conditions are enforced using halo control volumes — also known
as ghost control volumes. The number of halo control volumes used depends on the
stencil used for the evaluation of the numerical flux. For a second-order accurate spatial
discretization this number is equal to two. The flow solution enforced at these halo
control volumes depends on the boundary condition that it represents. For the boundary
conditions employed in the present work, the approach is discussed in the following
subsections.

5.5.1 Solid wall

Neglecting effects of viscosity — in the mathematical model representing the flow —
results in a reduction of the order of the partial differential equations, compared to a
model that includes effects of viscosity. This reduction, in turn, affects the physical
boundary conditions that can be represented in the mathematical model. Enforcing a
so-called no-slip condition at a solid wall is therefore not possible in a flow governed by
the Euler equations. In inviscid flows, solid walls are represented by a zero normal velocity
at the wall. For this purpose, the velocity vector in the first halo control volume, uH0, is
computed according to

uH0 = uD0 − 2 (uD0 · nS)nS, (5.38)

where uD0 is the velocity vector for the first control volume in the interior domain next
to the face representing a solid wall, and nS the unit surface normal vector of the
corresponding face, pointing in the direction outward of the flow domain; see figure 5.2
for a schematic representation. The value of the density assigned to the halo control
volume is equal to ρD0 and the pressure for the halo control volume is obtained by means
of a linear extrapolation of the pressure from inside the domain, based on the value of the

85

5. Flow model and solution method

nS

uH0

uD0

Figure 5.2: Schematic representation of solid wall boundary condition. Hatched area indicates
the region outside of the computational domain.

pressure of the control volume in the first and second layer in the interior of the domain
and taking into account the location of the respective centres of mass. Subsequently,
the conserved flow variables for the halo control volume are determined based on the
primitive variables just computed.

When a flux discretization with second-order spatial accuracy is used, the flow solution
in the second layer of halo control volumes must also be provided. For these halo control
volumes the variables are computed using linear extrapolation of the conserved flow
variables, which are then used to determine the primitive variables in the control volumes
in the second layer of halo control volumes.

As an alternative to using linear interpolation of the pressure to compute the state
for the halo control volume a different approach exists, which uses the local momentum
equation to specify the pressure for the halo control volume. This approach reduces
the entropy generation and total pressure loss introduced by the boundary condition [95].
However, to employ this method, the local curvature at the solid wall is required, which is
not readily available in the present method. Therefore, this curvature corrected boundary
condition proposed by Rizzi [146] has not been implemented.

5.5.2 Periodicity

Periodic boundary conditions are employed in situations in which the flow exhibits spatial
periodicity. By exploiting spatial periodicity of the flow solution, the flow domain is
reduced, allowing for a higher grid resolution in the remaining part of the flow domain.
For rotational periodicity, see figure 5.3, the conserved flow variables for the halo control
volumes are computed according to

U H0 = T (ϑ)UD0, U H1 = T (ϑ)UD1

where T (ϑ) is a transformation matrix, which takes care of the correct rotation of the
vector quantity momentum. Angle ϑ ∈

{
2π
n : n ∈ N1

}
is the angle over which period-

icity of the solution is observed. Note, that the scalar quantities of the vector with
conserved variables are rotationally invariant. Therefore, the top and bottom row of this
transformation matrix only have a non-zero diagonal element, of unit magnitude.

86

5.5 Boundary conditions

H1

H0

D0

D1

ϑ

Figure 5.3: Schematic representation of flow domain with point matching rotational periodic
boundaries. Halo control volume H0 gets the flow solution from inner domain con-
trol volume D0, with the vector quantities transformed, using the corresponding
transformation matrix. Similarly, halo control volume H1 is assigned the trans-
formed flow solution from control volume D1.

5.5.3 Symmetry

If the flow solution is supposed to exhibit a symmetrical result, symmetry boundary
conditions can be used to enforce this behaviour. The flow solution, assigned to the halo
control volumes associated with a symmetry boundary, is obtained by mirroring the flow
solution about the boundary surface in a similar way as for the solid wall boundary. The
pressure and density for the halo control volume are the same as for the corresponding
control volume in the interior domain. For a second-order flux discretization, the flow
solution in the second layer of halo control volumes is also obtained by mirroring the
flow solution about the boundary surface, now for the control volume in the second layer
inside the flow domain.

5.5.4 Far-field

Far-field boundary conditions are imposed in external aerodynamics problems to account
for the discretized flow domain being finite. However, in physical reality, no such boundary
exists. The existence of the boundary in the discrete representation can give rise to the
occurrence of non-physical behaviour. Examples of such non-physical effects are the
reflection of pressure waves at the boundary or the sudden dissipation of circulation
induced by a lifting body inside the flow domain [20]. Various approaches can be taken
to handle the problems associated with a domain of finite dimensions. The most universal
and straightforward solution is, however, to place the boundary sufficiently far away, such
that effects of the existence of a far-field boundary are negligible. Note, that this approach
might not always be appropriate; for example for unsteady flow computations involving
travelling pressure waves. For the far-field boundary located sufficiently far away, it is
sufficient to just assign the free-stream conditions to the first layer of the corresponding
halo control volumes. When appropriate, the flow solution in the second layer of halo
control volumes is obtained by linear extrapolation using the values in the first layer inside
the flow domain and the first layer outside the domain.

87

5. Flow model and solution method

5.5.5 Subsonic outflow

Situations exist for which the flow conditions at the far-field boundary are not correctly
represented by the free-stream flow conditions. Another example of such a situation is
the flow field downstream of the wind turbine rotor. In the wake of a wind turbine rotor,
the flow velocity significantly differs from the free-stream velocity. To determine suitable
boundary conditions for situations like these, the properties of the underlying mathemat-
ical model are considered. Due to the hyperbolic nature of the Euler equations, the
number of boundary conditions imposed must equal the number of characteristics that
enter the computational domain [199,202]. For subsonic outflow, the only characteristic
that enters the domain, corresponds to the acoustic wave with eigenvalue (u · n− c) —
where n is the unit normal vector pointing into the domain. Therefore, only one boundary
condition must be imposed for the subsonic outflow boundary. Considering that the static
pressure is constant far downstream from any disturbance, it is a convenient choice to pre-
scribe the free-stream pressure p∞ at the subsonic outflow boundary. The remaining flow
variables can be determined using the property that the Riemann-invariants are constant
across a rarefaction wave [187]. For the left rarefaction wave, the wave corresponding to
the characteristic travelling into the domain, the Riemann invariants read

u · n+
2c

γ − 1
= constant, (5.39)

s = constant, (5.40)

where s denotes the entropy. Recall that γ represents the ratio of specific heats. Using
these Riemann invariants, the state in the halo control volume can be determined. For
the density:

ρH0 = ρD0

(
p∞
pD0

) 1

γ

. (5.41)

The density in the halo control volume can subsequently be used to compute the speed
of sound associated with the halo control volume

cH0 =

√

γ

(
pH0

ρH0

)

. (5.42)

Using this value for the speed of sound, the velocity components can be determined
according to

uH0 = uD0 − 2

γ − 1
(cH0 − cD0)n. (5.43)

With the primitive variables determined, the conserved variables can be computed. If
a second layer of halo control volumes exists, the conserved variables for these control
volumes are computed by means of linear extrapolation using the values in the first layer
inside the flow domain and the first layer outside the domain.

5.5.6 Overset grids

Overset grid boundary conditions are used when in regions of grid overlap the flow solution
must be transferred from one grid to another. In this case, the halo control volumes are

88

5.6 Pseudo-time-integration to steady state

represented by the fringe control volumes which have been determined by the overset
block connectivity method during the preprocessing of the grid. The conserved flow
variables for a halo control volume are determined based on interpolation of the flow
solution of the donor control volumes of the particular fringe control volume

〈U〉fringe =

NF−1∑

m=0

(ωmUm) , (5.44)

where NF ∈ N1 is the number of cells that are donor of the fringe control volume, ωm the
interpolation coefficient corresponding to donor m and Um element m of the ordered set
of vectors with control-volume-averaged conserved variables of the donor control volumes.
When the conserved flow variables have been obtained by means of interpolation, the
primitive variables are computed using the appropriate relations for the equations of state.

5.6 Pseudo-time-integration to steady state

In the present research, only flow problems are considered for which a steady-state solution
of the governing equations exists. In this situation, the time derivative in the semi-
discrete conservation equations (5.12) vanishes. Although time-dependent behaviour is
not considered, integration in time is performed as a means of relaxation to a converged
solution which corresponds to the steady-state solution. For that purpose, the following
approach is taken.

A flow simulation is started with uniform free-stream conditions in every control
volume in the flow domain. Then, explicit pseudo-time-integration — by means of a
multi-stage Runge-Kutta method — is performed. The aim of this explicit pseudo-time-
integration is to obtain a suitable initial condition for Newton’s method to commence.
Subsequently, Newton’s method is used to converge the solution to the final solution.

The residual of the semi-discrete governing equations, for a single control volume
a ∈ N0, is defined as

Ra (Un) = − 1

Va

m=5∑

m=0

F [UL (Un) ,UR (Un) ,nm] Sm, (5.45)

where U := (〈U〉0 , 〈U〉1 , . . . , 〈U〉N)
T , i.e. the concatenation of the control-volume-

averaged conserved flow variables for all N ∈ N1 control volumes used in the discretization
of the domain. Superscript n ∈ N0 denotes the current pseudo-time level.

5.6.1 Runge-Kutta time-integration

The Runge-Kutta method used to integrate the solution from pseudo-time level n to
the subsequent level n + 1, is a standard low-storage multi-stage Runge-Kutta method,
which can be expressed as

Ŭ
0

= U
n,

Ŭ
m+1

= Ŭ
0

+ βm∆taRa

(

Ŭ
m
)

, for m = 0, . . . , 3

U
n+1 = Ŭ

3
.

(5.46)

89

5. Flow model and solution method

The value of coefficients βm — which range between 0 and 1 — depends on the character-
istics of the method used. In the present approach, the coefficients have been chosen such
that the resulting method allows for maximum stability of the scheme. These coefficients
read [89,172]:

β0 =
1

3
, β1 =

4

15
, β2 =

5

9
, β3 = 1.

The magnitude of the local time-step ∆ta is determined based on the CFL-condition [46]
as follows

∆ta = C
Va

λ̄i + λ̄j + λ̄k

∈ R, (5.47)

where C ∈ R is the Courant number. Although, the coefficients used in the present
implementation allow for the use of a Courant number exceeding one, a value of 0.8 is
used by default, to assure a stable time-integration. An approximation of the spectral
radii — in the three directions of the computational coordinate (i, j, k)

T — is obtained
by the evaluation of

λ̄i =
1

2

∣
∣
∣〈u〉i ·

(

ni− 1
2
Si− 1

2
+ ni+ 1

2
Si+ 1

2

)∣
∣
∣+ 〈c〉i

(
Si− 1

2
+ Si+ 1

2

2

)

(5.48)

for the i-direction. The result for the j and k-direction is obtained in a similar fashion.
Since time-accuracy of the solution is not relevant, a global time-step size is not required.
Therefore, the magnitude of the time-step can be different for each control volume.

Runge-Kutta time-integration is used to determine an intermediate flow solution,
sufficiently close to the final solution, such that Newton’s method can be used to obtain
the final fully converged flow solution.

To determine if an initial guess is sufficiently close, can be a tedious and very time
consuming task. Therefore, a more practical approach is adopted here. In this approach
the reduction of the ℓ2-norm of the residual relative to its initial value is considered. When
this ratio is below a certain threshold, the solution procedure is switched to Newton’s
method.

5.6.2 Newton’s method

Once a suitable initial guess has been obtained, Newton’s method is used to find the
solution of the equations for steady flow. Consider equation (5.12), the semi-discrete
conservation equation for a single control volume. For each control volume in the flow
domain, this equation can be expressed as

dU

dt
= R, (5.49)

where R = (R0,R1, . . . ,RN)
T . Note, that the expression for the residual, given by

equation (5.45), is only valid for field control volumes. For a fringe control volume
a ∈ N0, the residual is defined as

Ra := 〈U〉a −
NF−1∑

m=0

ωmUm ≡ 0, (5.50)

90

5.6 Pseudo-time-integration to steady state

based on equation (5.44), which is actually not really a true residual.
For a steady-state solution U

∗, the time derivative vanishes and the residual vector
must therefore equal the null vector. Based on this observation, it can be derived from
a first-order Taylor series expansion of R around state U

n that the following equation
must hold

∂R

∂U

∣
∣
∣
∣
Un

(
U

n+1 − U
n
)

= −R (Un) + O

(

(U∗ − U
n)

2
)

. (5.51)

Neglecting the higher-order terms, the resulting system of linear equations is solved
iteratively using a Krylov subspace method. An iterative method is used, because the
dimensions of a matrix resulting from the accurate spatial discretization of the domain
for a 3D flow problem are such that the computational cost — both in terms of memory
as well as in terms of the number of floating-point operations required — is prohibitively
large if a direct method would be used. Details on the solution strategy follow in the
subsequent subsections.

Krylov subspace methods

Most iterative methods for the solution of a system of linear equations:

Ax = b,

with x, b ∈ Rn and n ∈ N1, can be considered as a projection method. In a projection
method an approximation x′ to the exact solution is determined. Consider A to be
an n × n matrix and both K and L to be m-dimensional subspaces of Rn. For an initial
guess x0 ∈ Rn a projection method finds an approximate solution

x′ ∈ x0 + K : r ≡ b− Ax′ ⊥ L, (5.52)

i.e. x′ is an element of the affine subspace x0 + K, such that the resulting residual is
orthogonal to subspace L. The characteristics of the projection method depend on the
particular choice for subspaces K and L.

In Krylov subspace methods the definition of K and L is based on a so-called Krylov
subspace. A Krylov subspace of dimension m ∈ N1 for matrix A and vector r is defined
as

Km

(
A, r

)
:= span

{
r, Ar, . . . , Am−1r

}
for m ≥ 3. (5.53)

The Krylov subspace method considered in this research is called the generalized
minimal residual method [151], GMRES for short. The GMRES method defines the
subspaces for the projection method as

K = Km and L = AKm.

This choice makes sure that the approximate solution x′ satisfying the Galerkin-Petrov
condition of equation (5.52) minimizes the ℓ2-norm of the residual vector r [150]. Instead
of using the vectors that define the Krylov subspace — which are in general not orthogonal
— an orthonormal basis is constructed, for which

q
0

=
r0

||r0||2

91

5. Flow model and solution method

is used as the first basis vector. Every subsequent orthonormal basis vector is computed by
means of a Gram-Schmidt process or a similar orthogonalization procedure. Next, denote
by Qm the n×m matrix of which the column vectors are q0, . . . , qm−1 and denote by Hm

the (m + 1) × m upper Hessenberg matrix for which the non-zero entries hij are defined
by

hij = Aqj · qi. (5.54)

Then, the following equation holds

AQm = Qm+1Hm. (5.55)

Using this equation and that an arbitrary vector x ∈ x0 + Km can be expressed as a
linear combination of the basis vectors of the subspace, the residual can be written as

r (u) = Qm+1

(
||r0||2 e0 − Hmum

)
, (5.56)

where um ∈ Rm is a vector that minimizes the ℓ2-norm of r and e0 ∈ Rm+1 represents
the first column vector of the identity matrix. Since Qm+1 is constructed of orthonormal

vectors, the problem of minimizing the ℓ2-norm of equation (5.56) can be reduced to
solving an (m + 1) × m least-square problem for um. Once the result um is obtained,
the approximate solution x′ is found by evaluating

x′ = x0 + Qmum. (5.57)

Since its introduction, the GMRES method has been widely used for solving sys-
tems of linear equations and various implementations are readily available. An example
of such an implementation is available in the Portable Extensible Toolkit for Scientific
Computing (PETSc) [12], developed at Argonne National Laboratory. The GMRES im-
plementation of this particular numerical method is employed in the present research.

Jacobian matrix

The elements of the matrix resulting from the derivative of the residual of the flow
equations with respect to the conserved flow variables — commonly referred to as the
Jacobian matrix — are computed using the dual number method [60, 61], explained in
section 1.6.4. Therefore, the functions used for computing the residual for each of the
control volumes is called with a dual number data type. Since the dual number method
provides numerically exact results, the resulting Jacobian matrix is also exact to machine
precision. A more elaborate description on the construction of the Jacobian matrix is
given in the next chapter, in section 6.4, starting on page 129.

The Jacobian matrix can be computed based on the second-order discretization of the
convective flux, but also based on the first-order discretization — from here on referred
to as first-order Jacobian matrix. The latter approach is useful for the construction of
the preconditioning matrix, which is employed to improve the convergence characteristics
of the Krylov subspace method.

92

5.6 Pseudo-time-integration to steady state

Preconditioning

The rate of convergence of a Krylov subspace method depends on the condition number
of the matrix [40]. For a Jacobian matrix, computed based on the second-order dis-
cretization of the convective flux, this condition number can be quite high — which is
also apparent from the significant amount of scattering of the eigenvalues of this matrix
in the left Argand diagram of figure 5.4 — resulting in a poor convergence of the iterative
method. This problem can be alleviated by application of a preconditioning matrix, which
transforms the original problem of equation (5.51) to

AP −1P
(
U

n+1 − U
n
)

= −R (Un) , (5.58)

for right preconditioning. In this equation, matrix A is used to designate the Jacobian
matrix and matrix P to denote the preconditioning matrix. Note, moreover, that the
higher-order term present in the original equation is dropped here and that matrices and
residual vector are evaluated for U

n. By the application of right preconditioning, the
original problem must be solved in two steps, first for an intermediate vector y

AP −1y = −R (Un) . (5.59)

The final result is then obtained by solving

P
(
U

n+1 − U
n
)

= y. (5.60)

Note, that for a right preconditioned GMRES method, the intermediate vector y does
not need to be obtained explicitly. In that case it is sufficient to construct an orthonormal
basis for the Krylov subspace Km

(
AP −1, −R

)
— using an initial guess for the increment

in U to the next pseudo-time level equal to the null vector. Once the corresponding
orthonormal basis is obtained and vector um is found, which minimizes the ℓ2-norm
of the GMRES residual, the update for the conserved variables of the flow solution is
computed according to

(
U

n+1 − U
n
)

= P −1Qmum. (5.61)

A carefully constructed preconditioning matrix clusters the eigenvalues of the matrix,
resulting in a reduction of the condition number of the matrix and an improvement of
the convergence of the iterative method. The challenge is to construct a preconditioning
matrix that realizes this clustering of the eigenvalues, while making sure that computing
the inverse of the preconditioning matrix is computationally less expensive than computing
the inverse of the original Jacobian matrix. Different strategies have been devised for the
construction of a suitable preconditioning matrix. In the present research an incomplete
lower-upper (ILU) decomposition is used.

The lower-upper decomposition of a matrix refers to the method used to construct a
lower and an upper triangular matrix for which the product is equal to the original matrix.
For an ILU(k) decomposition, a lower and upper triangular matrix are also constructed.
However, in this case, the extent of fill-in — relative to the sparsity pattern of the original
matrix — is limited to a certain level k ∈ N0. This level is related to the number of
steps to be performed in a Gaussian elimination process [150]; for ILU(0), the sparsity
pattern of the triangular matrices resulting from the ILU decomposition correspond to
the sparsity pattern of the upper and lower triangular part of the original matrix.

93

5. Flow model and solution method

(a) (b) (c)

++++

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++++++++++++++++
+
+++
++

R (z)

I
(z

)

0 2·106 4·106

-106

0

10
6

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++++++++
+

+
+++ +++ ++ +

+

+

++ ++++ ++

+

+

+

+

+

+

++ +

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

++++ +++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+++++++++
+
+
+++++++++ ++
+

+

+

+

++

+

+

+
+

+
++ +++ ++ ++ ++++ +++++++ +++

+

+

+++++

+

+

+ +++++

+

+

++
+ ++

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++ ++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

++++++

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++
+

+
++++ ++ +++++ +++ +++++++++ +++ ++

+

+

++++++ ++ +++ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+ +++ ++ +++++

+

+

+

+

+

+

+

+
+
+
+++ +

+

+

++

+

+

+++++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

++

+

+

++

+

+

++++

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++ ++ +++++++ ++ +

+

+

+ +

+

+

+

+

+

+ ++

+

+

+

+

+

+

+

+ ++ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++ +

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++++ +++++ +++
+

+
++++++

+

+

+

+

+++++

+

+

+++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+++

+

+

+++

+

+

+
+

+
+++++++

+

+

+

+

+

+++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+++
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
+
+
++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+++

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+++
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+++++++++++++++++++++
+
+
+++++++
+

+
++++++++++++

+

+

++++++++++++

+

+

+

+

+

+

+++

+

+

+++++++

+

+

+++++

+

+

++

+

+

++

+

+

+

+

+

++++

+

+

+

+

+

+++

+

+

+++

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++++++++++++++++++++++++++++++++

+

+

++
+

+
++

+

+

++++++

+

+

+++++

+

+

+
+

+

+

+

+

+

+++++

+

+

+

+

+

+

+

+

+

+

++++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+
+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+
+
+
+
+
+
+

+

+
+
+++++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
++

+

+

+

+

+

+

++++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++++
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++
+

+

+

+

+

+

+

+++++++

+

+

+++

+

+

+

+

+

+

+

++
+

+
++

+

+

+

+

+

+

+

+

+

+++++

+

+

++++

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

++++

+

+

+++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

++++++++++++++++++++

+

+

+++++

+

+

+++

+

+

+

+

+

++++

+

+

+

+

+++++
+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

R (z)

I
(z

)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+++

+
+
++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+++

+

+

+
+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
++

+

+

+

+

+
+

+

+

+
+
+
+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

R (z)

I
(z

)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5.4: The eigenvalues computed for different matrices presented in an Argand diagram.
The matrices have been computed for the flow about a swept wing subject to
transonic flow conditions. The flow domain has been discretized with a single block
grid consisting of 64 × 44 × 40 control volumes, the dimension of the resulting
matrix equals 563 200 × 563 200. Value between the square brackets represents
the number of distinct Eigenvalues depicted. (a) Jacobian matrix based on the
second-order discretization of the convective flux [494]; (b) Same Jacobian matrix
with ILU(0) preconditioning based on the first-order discretization of the convective
flux [9162]; (c) Same Jacobian matrix with ILU(0) preconditioning based on the
second-order discretization of the convective flux [8462].

An ILU decomposition can be performed for the Jacobian matrix, computed based
on the second-order discretization of the convective flux. Alternatively, the first-order
Jacobian matrix can be used for this purpose. Numerical experiments have indicated
that the latter approach results in better convergence characteristics of the iterative
method. Similar behaviour has also been observed by McHugh et al. [119]. Further
investigation of the eigenvalues shows that this can be attributed to the preconditioning
matrix, based on the first-order Jacobian matrix, being more successful in clustering the
eigenvalues, as can be seen in figure 5.4. Therefore, the first-order Jacobian matrix is
used for the construction of the preconditioning matrix. Since the first-order Jacobian
matrix is more sparse, this approach also requires less memory and the construction takes
less time; which both are desirable properties for the solution method.

Solution strategy

First, the flow solution for the current pseudo-time level is used to compute the Jacobian
matrix based on both the second-order discretization of the convective flux, as well as on
the first-order discretization. The first-order Jacobian matrix is used for constructing the
preconditioning matrix and the second-order Jacobian matrix is required for the system
of linear equations itself. Subsequently, the system of linear equations (5.51) is solved by
means of a restarted GMRES method. Restarted means that the maximum dimension of
the Krylov subspace is chosen to be smaller than the dimension of the system of linear
equations for which it is used to solve; this approach reduces the memory requirements
of the method. The dimension used in the present work is 200. Initial guess x0 is taken
equal to the null vector. Moreover, the required convergence of the GMRES iterations is

94

5.6 Pseudo-time-integration to steady state

made dependent on the number of Newton iterations, n̄ ∈ N0, performed:
∣
∣
∣
∣A
(
U

n+1 − U
n
)

+ R (Un)
∣
∣
∣
∣
2

≤ ηn̄ ||R (Un)||
2

, (5.62)

where ηn̄ controls the required accuracy for the update of the solution, starting with
η0 = 0.5. Note, that limiting the required convergence is permitted because of the
monotonic convergence behaviour of the GMRES method. Subsequent values of ηn̄ are
provided by the following relation [56]

ηn̄ = max

{

ηmin, η
1

2 (1+
√
5)

n̄−1

}

∈ R for n̄ ≥ 1, (5.63)

where parameter ηmin can be specified by the user; a value of 0.01 is a suitable choice [82].
This approach is taken to prevent the solution of the system of linear equations, that
determines the increment in the flow solution from one pseudo-time-step to the next, to
be unnecessarily accurate when the intermediate solution is still relatively far from the final
solution. In this way faster convergence, in terms of CPU time [82], is achieved. Moreover,
it has been observed that this method is more robust than using a fully converged solution
of the system of linear equations, especially for the early iterations. Because limiting
the required convergence of the GMRES iterations effectively acts as a kind of under-
relaxation.

Once the convergence criterion is satisfied, equation (5.61) is used to compute the
required update for the flow solution. Subsequently, the flow solution is updated and
the residual vector is recomputed, using the flow solution for the new pseudo-time level.
Note, that the flow solution for the fringe control volumes is updated by means of
interpolation of the updated flow solution of the donor control volumes. The solution
of the system of linear equations is not used for this purpose, because this approach
can lead to an inconsistent flow solution, since the system is not solved to full precision.
When the ℓ2-norm of the residual vector is below a certain threshold, the flow solution
is considered converged. Otherwise, the Jacobian matrix for both the first and second-
order discretization are also recomputed and the solution procedure is repeated until the
convergence criteria are met.

From the aforementioned description of Krylov subspace methods, it is apparent
that these methods only require matrix vector products during the iterative solution
procedure — equation (5.54). It is therefore also possible to use a Fréchet derivative [4]
to directly compute the matrix vector product. This approach avoids the need to explicitly
compute and store the second-order Jacobian matrix, reducing the memory requirements
of the method. Moreover, by exploiting dual numbers for the evaluation of the residual
function, the Fréchet derivative still yields the exact result. However, this approach
only outperforms the method in which the second-order Jacobian matrix is computed
explicitly, in terms of CPU-time, if the number of GMRES iterations required to reach
convergence is very limited. It was found that this situation does generally not apply.
Another reason for using a matrix-free approach is the limited memory requirements of
the method, compared to storing the complete matrix. However, storing the matrix is
already required for solving the adjoint equations8, used for efficiently computing the

8Note, that it is possible to use a matrix-free approach for the adjoint equations as well, if reverse
mode algorithmic differentiation is used. It is however not possible to use the dual number method for
this purpose, since the dual number method only provides the forward mode, see section 6.1.

95

5. Flow model and solution method

gradients. Therefore, the memory requirements of storing the matrix need to be met
anyway. For these two reasons, the so-called matrix-free approach is not used in the
present research.

5.7 Non-inertial frame of reference

Consider an isolated wind turbine rotor, rotating at a constant angular velocity Ω in
an infinite domain, with the rotor plane perpendicular to the uniform steady wind. In
an inertial frame of reference, this flow configuration is unsteady. However, if the same
configuration is considered in a frame of reference co-rotating with the wind turbine rotor,
a steady situation is encountered9. From an optimization and computational point of
view, it is advantageous to be able to obtain a steady flow solution. For that purpose, the
governing equations considered in a co-rotating frame of reference are presented here.

Variables, considered in the co-rotating frame of reference are denoted by the subscript
‘rot’. Furthermore, it is assumed that the origin of both reference frames coincide. The
velocity in the inertial frame of reference is then related to the velocity in the co-rotating
frame of reference by

u = urot + Ω × x. (5.64)

The time derivative of an arbitrary time dependent vector quantity f (t) considered in
the rotating frame of reference can be expressed as

df (t)

dt
=

(
df (t)

dt

)

rot

+ Ω × f (t) . (5.65)

Using these two relations, the conservation equations, considered in an inertial frame of
reference, expressed in terms of absolute quantities, read [197,199]

∂

∂t

∫

V(t)

U dV +

∫

∂V(t)

Frot (U) · n dS −
∫

V(t)

Q (U) dV = 0, (5.66)

where the co-rotating motion is taken into account in the flux tensor Frot (U):

Frot (U) :=
(
ρuT

rot, ρuuT
rot + pI, puT + ρetu

T
rot

)T
with urot = u− (Ω × x) . (5.67)

The volumetric source term in equation (5.66) reads

Q (U) =

0

−Ω × [ρu]
0

 . (5.68)

Transforming the governing equations to a rotating frame of reference results in the
introduction of a body force in the momentum equations. This force term represents
the combined effect of the centrifugal force and Coriolis force, which are known to arise
when a physical system is considered in a rotating frame of reference. Note, that these
forces do not contribute to the energy equation, because the forces are perpendicular to
the direction of motion and do therefore not perform any work. Moreover, note that
the control volumes are stationary, considered in the co-rotating frame of reference and
since they are assumed rigid, the term in equation (5.3) involving u∂V is not present in
equation (5.66).

9Assuming the flow field does not exhibit any unsteady effects like flow separation or vortex shedding.

96

5.8 Verification

5.7.1 Geometric conservation law

Solving the discretized system of equations presented in equation (5.66), one must make
sure that the so-called geometric conservation law is satisfied [184, 207]. Otherwise, it
may occur that for a flow configuration that should result in a steady uniform flow, does
not yield the expected result. Moreover, for a more arbitrary flow configuration that
involves moving grids, not satisfying the geometric conservation law (GCL) can result in
hampering the convergence of the solution method and loss of accuracy of the solution.

For an arbitrary control volume, rotating with a constant angular velocity around an
axis through the origin — where the rotation is specified by Ω — for the continous case,
the following equation can be derived from equation (5.66):

∂

∂t

∫

V(t)

dV ≡
∫

∂V(t)

(Ω × x) · n dS. (5.69)

Recall, that Euler equations in semi-discrete form for control volume a reads

Va
d 〈U〉a

dt
+

m=5∑

m=0

F (UL,UR,nm) Sm = 0. (5.12)

Using the definition of the control-volume-averaged value, the term involving a time
derivative in equation (5.66) can be expressed as

∂

∂t
(Va 〈U〉a) = Va

d 〈U〉a

dt
+ 〈U〉a

∂Va

∂t
. (5.70)

Note, that the second term in equation (5.70) is not accounted for in the semi-discrete
representation of the Euler equations. To account for this discrepancy, an additional
source term, originating from the equivalence relation of equation (5.69), is added to the
semi-discrete equations (5.12). Including the source term due to rotation, the equation
reads

Va
d 〈U〉a

dt
+

m=5∑

m=0

F (UL,UR,nm) Sm

− VaQ (〈U〉a)
︸ ︷︷ ︸

rotation source term

−

GCL source term
︷ ︸︸ ︷

〈U〉a

m=5∑

m=0

(Ω × x) · nSm = 0. (5.71)

By adding the GCL source term, an artificial source of error, originating from discretization
of the governing equations, is eliminated. The result is that a uniform flow solution will
remain uniform, when a simulation is performed on a moving grid considered in a moving
frame of reference. Note, that analytically this additional term is equal to zero, for the
case of the motion of a rigid control volume in a uniform flow field.

5.8 Verification

In the verification of the flow solution method it is considered whether the implemen-
tation of the method corresponds with the mathematical model the method is based

97

5. Flow model and solution method

on. Verification can either be achieved by: (i) obtaining a numerical solution for a flow
configuration for which an analytical solution exists; (ii) comparing the numerical result
of the present implementation with an accurate numerical result obtained with one or
more implementations that have been verified to be correct. The latter approach is taken
here. First, it is verified if the solution method provides correct results for a single block
discretization of a 2D flow domain around a NACA 0012 aerofoil. To this end, an as-
sessment is made of the order of convergence of the spatial discretization. Subsequently,
the influence of using composite overset grids for the discretization of the same flow
configuration is investigated.

5.8.1 Spatial order of convergence

One way of assessing a flow solution is by the evaluation of a discrete functional φ
which quantifies the flow solution. Examples of such functionals include the lift and drag
coefficient, respectively denoted by cl and cd for 2D flow. These discrete functionals can
also be employed to assess the spatial order of convergence of the flow solution method
— and to obtain an estimate for the limiting case of the grid resolution going to infinity.
For a grid, characterized by typical control volume size h, an estimate of the functional
value of infinite resolution φ∗ can be obtained using Richardson extrapolation [145]:

φ∗ = φ (h) + Chp̄ + O
(
hp̄+1

)
, (5.72)

where p̄ is the spatial order of convergence and C a proportionality constant independent
of the characteristic size. The three unknowns of equation (5.72) — i.e. p̄, C and φ∗ —
can be determined, if the functional has been evaluated for three different values of h.
Note, that this relation assumes that: (i) the discretization error is the leading order error,
(ii) the grid aspect ratio is the same for all grids [154] and (iii) the discretization error
can be expressed as Chp̄ — which is only true for sufficiently small values of h, i.e. when
the method operates within its asymptotic range [29]. For the family of grids considered
in the present research, the control volume sizes are related by

hc = 2hm = 4hf ,

for the coarse, medium and fine grid, respectively. This family of grids is constructed
by first generating the grid for the finest resolution. Subsequent levels are obtained by
removing every other vertex of the grid in both directions.

5.8.2 Flow configuration

The flow configuration considered to investigate the spatial order of convergence, is the
inviscid subcritical flow around the NACA 0012 aerofoil. In contrast to the original
geometry, which has a blunt trailing edge, the aerofoil geometry is extended to have a
sharp trailing edge. This modification was made to accommodate the generation of a
single block high quality grid and to be able to compare the results with results presented
in the literature [194,195], for which the same approach was taken.

Following the procedure, described by Vassberg and Jameson [195], an algebraic grid,
with an O-grid topology, is generated around the extended NACA 0012 aerofoil. The

98

5.8 Verification

x/̄c

y
/̄c

−100 −50 0 50 100

−100

−50

0

50

100

150

x/̄c

y
/̄c

0.0 0.5 1.0

−0.5

0.0

0.5

Figure 5.5: Flow domain used for studying the spatial convergence characteristics of the flow
solution method. The O-grid depicted consists of 128 × 128 control volumes. Left
picture shows detail of the grid around the aerofoil. Dimensions are scaled by the
chord length c̄.

algebraic grid generation method uses the Kármán-Trefftz conformal transformation [122]

ζ − ζ1
ζ − ζ2

=

(
z − z1
z − z2

)P

, P =
π

2π − τte
, (5.73)

to map the extended NACA 0012 aerofoil to a near circle. In this equation τte is the
trailing edge angle of the aerofoil. For the other mapping parameters z1, z2, ζ1, ζ2
and for the full description of the grid generation procedure, see appendix B. The nice
feature of a conformal mapping is that angles between grid lines are preserved. Therefore,
by generating an orthogonal10 grid in the mapped space, the resulting grid obtained by
performing the inverse transformation is also orthogonal. Figure 5.5 shows the grid and
a close-up of the aerofoil for a resolution of 128 × 128 control volumes. The far-field is
situated at approximately 150 chord lengths away from the aerofoil surface.

The investigation is performed for a free-stream Mach number of M∞ = 0.5 and
angle of attack α = 1.25

◦. The finest grid consists of 4096 × 4096 control volumes.
This grid has been coarsened up to 7 times, resulting in a coarse grid containing 32 × 32
control volumes. The force on the aerofoil is computed by integrating the pressure over
the surface, employing the direction of the local outward pointing unit surface normal
vector n. For a 2D geometry the surface integral reduces to a line integral, which reads

F a = −
∮

p (s)n (s)

∣
∣
∣
∣

dx

ds

∣
∣
∣
∣
ds, (5.74)

where F a ∈ R3 is the force per unit span exerted by the flow on the aerofoil, p (s) is the
local pressure as a function of parametric variable s, which follows the closed contour
of the aerofoil, see figure 5.6 for a schematic representation. For the discretized aerofoil
surface, this integral is computed using numerical quadrature by means of the midpoint
rule. The resulting force can subsequently be used to evaluate lift and drag coefficients,

10Actually nearly orthogonal, since the aerofoil is not a perfect circle in the mapped space.

99

5. Flow model and solution method

y

x
x (s)

n

p
s

Figure 5.6: Schematic representation of an aerofoil with the parameters required for computing
the force exerted on the aerofoil indicated.

which are respectively defined as

cl :=
F a · k⊥
1

2
ρ∞U2

∞c̄
, (5.75)

cd :=
F a · k‖
1

2
ρ∞U2

∞c̄
. (5.76)

In these equations ρ∞ denotes the free-stream density, U∞ is the magnitude of the
free-stream velocity and c̄ is the chord length of the aerofoil. Unit vectors k⊥ ∈ R3

and k‖ ∈ R3 point in the direction perpendicular to the free-stream direction and in the
direction of the free-stream direction, respectively. Moreover, note that in this specific
case the original chord length of 1.0 [m] is used instead of the actual chord length of the
extended NACA 0012 aerofoil, which is slightly larger. The pitching moment Mz, c̄

4
per

unit span around the z-axis with respect to the quarter chord length point is computed
by evaluating

Mz, c̄
4

=

(∮ [

x (s) −
(

c̄

4

)

ex

]

× p (s)n (s)

∣
∣
∣
∣

dx

ds

∣
∣
∣
∣
ds

)

· ez; (5.77)

again by means of the midpoint quadrature rule. In this equation ex ∈ R3 and ez ∈ R3

represent the unit vector in x and z-direction, respectively. The dimensionless represen-
tation of the pitching moment reads

cm :=
Mz, c̄

4

1

2
ρ∞U2

∞c̄2
. (5.78)

5.8.3 Results for single block grid

In section 5.3 two different methods have been discussed for handling the convective flux.
Moreover, for the upwind approach, different methods can be used for performing the
reconstruction of the state at the interface. Therefore, to verify these different methods,
three different situations are considered: (i) Roe’s approximate Riemann solver with linear
reconstruction about the centre of mass of the control volumes; (ii) Roe’s approximate
Riemann solver with linear reconstruction assuming a uniform Cartesian grid; (iii) central

100

5.8 Verification

x/̄c

y
/̄c

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Figure 5.7: Subcritical inviscid flow about an extended NACA 0012 aerofoil for α = 1.25
◦

at M∞ = 0.5. Flow domain discretized by means of a composite overset grid;
grid dimensions are listed in table 5.7 on page 110. Iso-Mach contours: lower
level M = 0.0037, upper level M = 0.6637, increment ∆ M = 0.02, dashed contour
line M = 0.5037.

discretization of the flux using the JST scheme. Moreover, an additional series of flow
simulations has been performed with a considerably larger distance between the surface
of the aerofoil and the far-field boundary, in order to investigate the possible influence of
the distance of the far-field boundary on the spatial convergence behaviour. The Mach
number distribution of the flow solution for the flow configuration considered is shown in
figure 5.711.

Upwind discretization with linear reconstruction about the centre of mass

The results of computing the force coefficients and moment coefficient for the different
grid resolutions, obtained for flow simulations performed with an upwind convective flux
discretization, using Roe’s approximate Riemann solver, with linear reconstruction about
the centre of mass of the control volumes, are presented in table 5.1. For the linear
reconstruction the κ-scheme has been used, with κ̂ = 1/3. For all the results, the flow
residual was converged up to machine accuracy. The table also lists the order of conver-
gence for the different coefficients — computed based on the three finest grids12 — and
the expected value if an infinite grid resolution would have been used. The differences
between the extrapolated value and the values listed in table 5.1 are plotted in figure 5.8,
for each of the three dimensionless coefficients. Each of the graphs also includes a trend
line which illustrates the order of convergence observed.

11Note, that the flow solution depicted in the figure has actually been obtained using a composite
overset grid. However, for the grid resolution used, no visual differences from the finest single block grid
result can be observed for the scale at which the results have been presented in the figure.

12In some cases non-monotonic convergence behaviour was observed. In those cases the alternative
approach for computing the convergence order is mentioned in the corresponding caption.

101

5. Flow model and solution method

Table 5.1: Results obtained on single block O-grid with following settings: Roe’s approximate
Riemann solver to compute convective flux; linear reconstruction of the state at
the interface, about the centre of mass of the control volume; linear reconstruction
weighting factor κ̂ = 1/3; far-field at 150 c̄.

grid resolution cl cd cm

Nc

1024 1.79774289 · 10−1
9.34057594 · 10−6

2.26213760 · 10−3

2048 1.79779950 · 10−1
1.14818243 · 10−5

2.26235858 · 10−3

4096 1.79780313 · 10−1
1.21035183 · 10−5

2.26229847 · 10−3

φ∗
1.79780338 · 10−1

1.23578715 · 10−5
2.26237657 · 10−3

p̄ 3.961 1.784 3.731
†

†Order of convergence estimated using result of the coarser grid with Nc = 512, for the corresponding
value of cm see table C.1 on page 208.

(a) (b) (c)

(
p̄ = 3.961, c∗

l ≈ 1.7978 · 10−1
) (

p̄ = 1.784, c∗

d ≈ 1.2358 · 10−5
) (

p̄ = 3.731, c∗

m ≈ 2.2624 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-3

-4

-5

-6

-7

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|)

-3

-4

-5

-6

-7

Figure 5.8: Spatial convergence of the present method for the aerodynamic coefficients: (a) lift;
(b) drag; and (c) moment. For increasing number of control volumes Nc; typical
grid size h ≡ 1/Nc. Dashed line represents the trend line for the observed order of
convergence p̄, listed in table 5.1. Open circles indicate that the result is larger
than the estimate for h = 0; the settings used and more accurate values for the
estimate for h = 0 are also found in table 5.1.

With the type of reconstruction employed, it should be possible to achieve a third-
order spatial convergence. The observed order of convergence however, differs from the
expected order. For the drag coefficient the order of convergence is lower than expected,
which is probably caused by the contribution of the entropy production at the trailing
edge to the drag. This entropy production being a first-order effect, is likely to cause a
reduction in the spatial order of convergence. Moreover, the estimate for h = 0 for the
drag is non-zero. As reported by Vassberg and Jameson, the non-zero drag is caused by
not applying vortex-correction for the far-field boundary condition [195].

The order of convergence for the lift coefficient on the other hand, exceeds the
expected value of three. The precise reason for this discrepancy is not clear. It might
be due to the force coefficients being an integrated quantity, which can give rise to
cancellation of errors [133]. It might, however, also be caused by the way the pressure

102

5.8 Verification

Table 5.2: Results obtained on single block O-grid with following settings: Roe’s approximate
Riemann solver to compute convective flux; linear reconstruction of the state at the
interface, about the centre of mass of the control volumes; linear reconstruction
weighting factor κ̂ = 1/3; far-field at 150 c̄; modified pressure boundary condition at
solid wall.

grid resolution cl cd cm

Nc

1024 1.79775848 · 10−1
7.57986239 · 10−6

2.26224080 · 10−3

2048 1.79780283 · 10−1
1.10345247 · 10−5

2.26237412 · 10−3

4096 1.79780385 · 10−1
1.19908439 · 10−5

2.26230003 · 10−3

φ∗
1.79780387 · 10−1

1.23569050 · 10−5
2.26238171 · 10−3

p̄ 5.449 1.853 4.213
†

†Order of convergence estimated using result of the coarser grid with Nc = 512, for the corresponding
value of cm see table C.2 on page 208.

(a) (b) (c)

(
p̄ = 5.449, c∗

l ≈ 1.7978 · 10−1
) (

p̄ = 1.853, c∗

d ≈ 1.2357 · 10−5
) (

p̄ = 4.213, c∗

m ≈ 2.2624 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-3

-4

-5

-6

-7

-8

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|)

-3

-4

-5

-6

-7

-8

Figure 5.9: Spatial convergence of the present method for the aerodynamic coefficients: (a) lift;
(b) drag; and (c) moment. For increasing number of control volumes Nc; typical
grid size h ≡ 1/Nc. Dashed line represents the trend line for the observed order of
convergence p̄, listed in table 5.2. Open circles indicate that the result is larger
than the estimate for h = 0; the settings used and more accurate values of the
estimate for h = 0 are also found in table 5.2.

103

5. Flow model and solution method

Table 5.3: Results obtained on single block O-grid with following settings: Roe’s approximate
Riemann solver to compute convective flux; linear reconstruction of the state at
the interface, about the centre of mass of the control volume; linear reconstruction
weighting factor κ̂ = 0; far-field at 150 c̄; modified boundary condition for the
pressure at the solid wall.

grid resolution cl cd cm

Nc

1024 1.79763492 · 10−1
1.16340609 · 10−5

2.26003639 · 10−3

2048 1.79776578 · 10−1
1.20558493 · 10−5

2.26171927 · 10−3

4096 1.79779257 · 10−1
1.22470654 · 10−5

2.26211023 · 10−3

φ∗
1.79779947 · 10−1

1.24056429 · 10−5
2.26222855 · 10−3

p̄ 2.288 1.141 2.106

(a) (b) (c)

(
p̄ = 2.288, c∗

l ≈ 1.7978 · 10−1
) (

p̄ = 1.141, c∗

d ≈ 1.2406 · 10−5
) (

p̄ = 2.106, c∗

m ≈ 2.2622 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-2

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|) -4

-5

-6

Figure 5.10: Spatial convergence of the present method for the aerodynamic coefficients:
(a) lift; (b) drag; and (c) moment. For increasing number of control volumes Nc;
typical grid size h ≡ 1/Nc. Dashed line represents the trend line for the observed
order of convergence p̄, listed in table 5.3. Open circles indicate that the result
is larger than the estimate for h = 0; the settings used and more accurate values
for the estimate for h = 0 are also found in table 5.3.

is handled in the solid wall boundary condition. This suggestion is based on the work
presented by Destarac [51], who investigated the effect of the method used for handling
the pressure in the solid wall boundary conditions on the spatial convergence behaviour
of the drag coefficient. That research showed that performing linear extrapolation of
the pressure causes an effect that has been qualified as anti-dissipative, resulting in a
negative drag-coefficient. Considering that the order of magnitude of the reported effect
is similar to the order of the digits significant for the spatial order of convergence of the
lift coefficient, for the finest grid considered, the boundary condition effect could well
be the cause of the apparent increase in the spatial order of convergence for the lift
coefficient. Moreover, this boundary condition effect is probably also the cause for the
non-monotonic convergence behaviour of the moment coefficient.

To check this assumption, also simulations have been performed with an implemen-
tation of the modified pressure boundary condition, i.e. extrapolation of the pressure to

104

5.8 Verification

the halo control volume is done without taking into account the centre of mass of the
two control volumes near the boundary and the halo control volume. The results of
these simulations are presented in table 5.2 and figure 5.9 on page 103. Considering
these results, the supposed effect is not observed. Changing the boundary condition even
results in an increase of the observed order of convergence, with respect to the previous
calculations.

Since the weighting factor κ̂ — for the linear reconstruction of the state at the inter-
face — affects the spatial order of convergence, its effect is also investigated. Table 5.3
presents the results of the series of flow simulations performed for κ̂ = 0 and the modi-
fied pressure boundary condition, the corresponding graphs are found in figure 5.10. For
these settings, a well-behaved convergence behaviour is observed for all three dimension-
less coefficients investigated for the three finest grids considered. Moreover, for the lift
coefficient and the moment coefficient, the spatial order of convergence is in reasonable
agreement with the second-order convergence expected. The order of convergence for
the drag coefficient is slightly lower, probably for reasons previously discussed. When the
graph that shows the convergence behaviour of the drag coefficient is considered more
closely, some striking behaviour is observed. For the coarser grids, it appears that the
most prominent contribution to the drag coefficient shows a third-order trend. Then, for
the finer grids, the effect showing a third-order trend has significantly diminished and an
effect that shows a first-order trend has the most prominent contribution.

Upwind discretization with linear reconstruction based on uniform grid assumption

The next series of flow simulations has been performed, again using an upwind convective
flux discretization by means of Roe’s approximate Riemann solver. However, now the
linear reconstruction is performed assuming a uniform Cartesian grid. Therefore, the
coordinates of both the centre of mass of the control volume as well as the centre of
the face for which the flux is computed, do not need to be considered explicitly. Based
on the experience from the preceding flow simulations, a weighting factor κ̂ = 0 and
the modified pressure boundary condition are employed. The results of this investigation
are presented in table 5.4. A graphical representation of the order of convergence and
the differences between the results for finite grid resolutions and its limiting value at the
continuum where h = 0 are depicted in figure 5.11 for the dimensionless coefficients
computed.

Considering these results, it is observed that using the uniform Cartesian grid assump-
tion has a detrimental effect on the spatial order of convergence. This effect is likely
caused by the fact that only for reconstruction about the centre of mass, the control-
volume-averaged quantities are conserved [95]. Another, notable observation concerns
the sign of the drag coefficient. Although the modified pressure boundary condition is
used, to prevent the so-called anti-dissipative effect [51] from occurring, still a negative
value is found for all grids considered. For the estimate of the exact value, however, a
positive value is obtained.

Central discretization

For the series of flow simulations performed using the convective flux, discretized by means
of the JST scheme, the results are presented in table 5.5 on page 107. The differences

105

5. Flow model and solution method

Table 5.4: Results obtained on single block O-grid with following settings: Roe’s approximate
Riemann solver to compute convective flux; linear reconstruction of the state at
the interface, assuming uniform Cartesian grid; linear reconstruction weighting fac-
tor κ̂ = 0; far-field at 150 c̄; modified pressure boundary condition at solid wall.

grid resolution cl cd cm

Nc

1024 1.79535005 · 10−1 −7.45009630 · 10−4
2.24953016 · 10−3

2048 1.79663081 · 10−1 −3.71797592 · 10−4
2.25683221 · 10−3

4096 1.79723088 · 10−1 −1.81079366 · 10−4
2.25984132 · 10−3

φ∗
1.79775988 · 10−1

1.82339234 · 10−5
2.26195053 · 10−3

p̄ 1.094 0.969 1.279

(a) (b) (c)

(
p̄ = 1.094, c∗

l ≈ 1.7978 · 10−1
) (

p̄ = 0.969, c∗

d ≈ 1.8234 · 10−5
) (

p̄ = 1.279, c∗

m ≈ 2.2620 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-2

-3

-4

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-2.3
-2.4

-2.5

-2.7

-3.0

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|)

-4

-5

Figure 5.11: Spatial convergence of the present method for the aerodynamic coefficients:
(a) lift; (b) drag; and (c) moment. For increasing number of control volumes Nc;
typical grid size h ≡ 1/Nc. Dashed line represents the trend line for the observed
order of convergence p̄, listed in table 5.4. The settings used and more accurate
values for the estimate for h = 0 are also found in table 5.4.

between the estimate for h = 0 — based on the observed order of convergence — and
the results for the different grid resolutions are presented graphically in figure 5.12.

Based on the convective flux discretization employed, a second-order spatial order of
convergence is expected. However, this order of convergence is not achieved for the lift
coefficient. The order of convergence found does not even exceed one. The lower order
of convergence found might be related to the uniform Cartesian grid assumption that
was made in the derivation of the JST scheme. As observed in the preceding subsection,
this assumption negatively affects the observed spatial order of convergence for the lift
coefficient.

For the drag coefficient on the other hand, an observed spatial order of convergence
very close to 2.0 is found. Considering the result for cl, this is a surprising result, certainly
because the entropy production at the trailing edge should also negatively affect the order
of convergence for cd, in a similar manner as the behaviour observed for the upwind
discretization of the convective flux. A possible cause might be the occurrence of the

106

5.8 Verification

Table 5.5: Results obtained on single block O-grid with following settings: JST scheme to
compute convective flux; dissipation coefficients used: k2 = 0.25, k4 = 0.015625;
far-field at 150 c̄; modified pressure boundary condition at solid wall. No estimate
could be obtained for the spatial convergence order for cm.

grid resolution cl cd cm

Nc

1024 1.79685217 · 10−1 −1.39285941 · 10−6
2.25727058 · 10−3

2048 1.79698923 · 10−1
1.02730972 · 10−5

2.25834029 · 10−3

4096 1.79707007 · 10−1
1.30144502 · 10−5

2.25959865 · 10−3

φ∗
1.79718633 · 10−1

1.38565062 · 10−5 —
p̄ 0.762 2.089 —

(a) (b)

(
p̄ = 0.762, c∗

l ≈ 1.7972 · 10−1
) (

p̄ = 2.089, c∗

d ≈ 1.3857 · 10−5
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-3

-4

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

Figure 5.12: Spatial convergence of the present method for the force coefficients: (a) lift and
(b) drag. For increasing number of control volumes Nc; typical grid size h ≡ 1/Nc.
Dashed line represents the trend line for the observed order of convergence p̄,
listed in table 5.5. The settings used and more accurate values for the estimate
for h = 0 are also found in table 5.5.

cancellation of errors [133], due to integrating the pressure.
For the moment coefficient, the convergence behaviour observed for the finest grids

is such that no accurate estimate of the value for h = 0 could be made using Richardson
extrapolation.

Upwind discretization with a larger far-field distance

To reduce the effect of the far-field boundary — and its corresponding boundary condi-
tion enforced there — on the results, the computational domain is expanded. To obtain
a fair comparison, the grid in the ‘near-field’ region is kept unmodified. To that end, the
number of cells in the radial direction is increased in order to increase the far-field dis-
tance. Following exactly the same procedure as for the original O-grid generation, using
double the number of cells in the radial direction results in a far-field situated at approx-
imately 80 · 103 times the chord length away from the aerofoil. For the discretization of
the convective flux, Roe’s approximate Riemann solver is used, with linear reconstruction

107

5. Flow model and solution method

Table 5.6: Results obtained on single block O-grid with following settings: Roe’s approximate
Riemann solver to compute convective flux; linear reconstruction of the state at
the interface, about the centre of mass of the control volume; linear reconstruction
weighting factor κ̂ = 1/3; far-field at 80 kc̄.

grid resolution cl cd cm

Nc

1024 1.80336340 · 10−1 −2.89396662 · 10−6
2.26883841 · 10−3

2048 1.80343874 · 10−1 − 7.974599 · 10−7
2.26908260 · 10−3

4096 1.80345162 · 10−1 − 1.968521 · 10−7
2.26903326 · 10−3

φ∗
1.80345428 · 10−1

4.42929 · 10−8
2.26910430 · 10−3

p̄ 2.548 1.803 3.615
†

†Order of convergence estimated using result of the coarser grid with Nc = 512, for the corresponding
value of cm see table C.6 on page 210.

(a) (b) (c)

(
p̄ = 2.548, c∗

l ≈ 1.8035 · 10−1
) (

p̄ = 1.803, c∗

d ≈ 4.4293 · 10−8
) (

p̄ = 3.615, c∗

m ≈ 2.2691 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-2

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|)

-3

-4

-5

-6

-7

Figure 5.13: Spatial convergence of the present method for the aerodynamic coefficients:
(a) lift; (b) drag; and (c) moment. For increasing number of control volumes Nc;
typical grid size h ≡ 1/Nc. Dashed line represents the trend line for the observed
order of convergence p̄, listed in table 5.6. Open circles indicate that the result
is larger than the estimate for h = 0; the settings used and more accurate values
for the estimate for h = 0 are also found in table 5.6.

about the centre of mass and weighting factor κ̂ = 1/3, i.e. the same settings as for the
first investigation that has been presented.

Considering the results — presented in table 5.6 and figure 5.13 — the effect of
the far-field boundary on both force coefficients is obvious. The lift coefficient becomes
slightly higher, while the drag coefficient approximates the theoretical value of zero con-
siderably closer than when a smaller far-field distance is used. The influence on the
moment coefficient is less significant. When the order of convergence is considered,
some differences are observed. Just as for the smaller far-field distance, the moment
coefficient shows non-monotonic convergence behaviour. The convergence rate for the
drag coefficient also shows the same discrepancy from the expected value as observed for
the situation with a smaller far-field distance. The convergence rate for the lift however,
is significantly lower, changing from almost 4 to less than 3.

108

5.8 Verification

x/̄c

-10 -5 0 5 10

y
/̄c

-10

-5

0

5

10

Figure 5.14: Detail of the overset grid in the region near the aerofoil, used for studying the
spatial convergence characteristics of the flow solution method. This grid is
obtained after coarsening the finest grid 6 times, giving a grid resolution for the
body-fitted grid of n1 = 64 and n2 = 16 cells.

5.8.4 Results for composite overset discretization

Verification of the solution method, using a single block discretization of the flow domain,
indicates a correct implementation. However, it is also necessary to check whether similar
convergence characteristics are achieved, when an overset discretization is used instead.
For this purpose, the part of the grid used for the discretization of the flow domain
close to the aerofoil is retained. For the discretization of the far-field, a sequence of
background grids is used. The configuration used is shown in figure 5.14 for the region
around the aerofoil. The body-fitted grid reaches to about 1.0 c̄, then there is a square
uniform Cartesian grid of dimension 5.0 c̄, for which the cell size approximately matches
the cell size of the cells in the outer layer of the body-fitted grid. The second background
grid is also Cartesian and it is refined towards the centre of the grid, with the cell size of
the smallest cell matching that of the uniform grid. To enable a proper comparison of
the results of the composite overset discretization with the previous results, the far-field
boundary is chosen to be a circle with a radius of 150 c̄ centred at the aerofoil at x = 0.5 c̄.
Therefore, the third background grid is cylindrical with an inner radius of 5.5 c̄ and an
outer radius of 150 c̄.

To generate a family of grids, the grid for the finest level is constructed, based on the
procedure just pointed out. Each coarser grid is obtained by removing every other vertex

109

5. Flow model and solution method

Table 5.7: Dimensions of the blocks for the finest grid used in the composite overset discretiza-
tion of the flow domain around an extended NACA 0012 aerofoil. For body-fitted
and cylindrical grid, n1 denotes number of cells in circumferential direction and n2

the number of cells in radial direction. Coarser grids used in the investigation are
created by removing every other vertex in both directions. The bottom row lists the
total number of control volumes used for the discretization.

block n1 n2

body-fitted 4096 1024
uniform Cartesian 1792 1792
refined Cartesian 2816 2816
cylindrical 4096 1792

total 22 675 456

in both directions. Moreover, special care is taken to make sure that the outer boundary
of the body-fitted grid, i.e. the region where the transition from field control volumes
to fringe control volumes takes place, is always exactly at the same location. For this
purpose, additional cells are added, before the coarsening, to the body-fitted grid for the
most fine member of the family, such that a layer of two fringe control volumes remains
for the coarsest grid. The number of control volumes used for each of the blocks of the
finest grid is listed in table 5.7.

To investigate the influence of using an overset discretization, it is assumed not
to be necessary to test the different flux discretizations and settings previously consid-
ered. Therefore, this investigation has only been performed using Roe’s approximate
Riemann solver, with linear reconstruction about the centre of mass of the control vol-
ume. Weighted averaging of the gradient is performed with κ̂ equal to 1/3. Results of
the calculations are shown in figure 5.15 and in table 5.8 for the three finest grids used.

Considering the close agreement of the computed coefficients as well as their corre-
sponding spatial order of convergence with the results of the single block discretization,
the correct implementation of the methods used for handling a composite overset grid is
verified. Moreover, the results also indicate that the choice regarding how the convective
flux is handled, appears to have a larger effect on the results than the method used for
the discretization of the domain. Therefore, it can be concluded that a similar accuracy
can be achieved using a composite overset discretization than when using a single block
grid.

5.8.5 Summary of the results and concluding remarks

In the process of verification of the numerical implementation of the flow solution method,
it has been found that the spatial order of convergence that is achieved is strongly affected
by the different approaches that can be taken to solve the partial differential equations
numerically. For instance, it has been found that the method used for extrapolating
the pressure to impose a solid wall boundary condition has quite a significant effect on
the observed spatial order of convergence. Moreover, the method used for numerically
handling the convective flux and the way that the state at the interface is reconstructed

110

5.8 Verification

Table 5.8: Results obtained for composite overset discretization of the domain with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 1/3; far-field at 150 c̄.

grid resolution cl cd cm

Nc

1024 1.79778184 · 10−1
9.25195908 · 10−6

2.26219100 · 10−3

2048 1.79783864 · 10−1
1.13978406 · 10−5

2.26240533 · 10−3

4096 1.79784361 · 10−1
1.20153169 · 10−5

2.26234616 · 10−3

φ∗
1.79784408 · 10−1

1.22647777 · 10−5
2.26242260 · 10−3

p̄ 3.516 1.797 3.745
†

†Order of convergence estimated using result of the coarser grid with Nc = 512, for the corresponding
value of cm see table C.7 on page 211.

(a) (b) (c)

(
p̄ = 3.516, c∗

l ≈ 1.7978 · 10−1
) (

p̄ = 1.797, c∗

d ≈ 1.2265 · 10−5
) (

p̄ = 3.745, c∗

m ≈ 2.2624 · 10−3
)

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

l
−

c∗ l

∣ ∣)

-3

-4

-5

-6

-7

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(
∣ ∣ c

d
−

c∗ d

∣ ∣)

-3

-4

-5

-6

log2 (h)
-12 -10 -8 -6

lo
g

1
0

(|
c m

−
c∗ m

|)

-3

-4

-5

-6

-7

Figure 5.15: Spatial convergence of the present method for the aerodynamic coefficients:
(a) lift; (b) drag; and (c) moment, computed using a composite overset dis-
cretization. For increasing number of control volumes Nc = n1 of the body-fitted
grid; typical grid size h ≡ 1/Nc. Dashed line represents the trend line for the ob-
served order of convergence p̄, listed in table 5.8. Open circles indicate that the
result is larger than the estimate for h = 0; the settings used and more accurate
values for the estimate for h = 0 are also found in table 5.8.

111

5. Flow model and solution method

Table 5.9: Comparison of observed spatial order of convergence for force coefficients and moment
coefficient of the present method, for the different settings used. For flow about an
extended NACA 0012 aerofoil at α = 1.25

◦ and M∞ = 0.5. Used settings are
indicated between the parentheses, with: xcm = reconstruction about centre of
mass of the control volumes; 1⁄2 = reconstruction assuming uniform Cartesian grid;
150 c̄ or 80 kc̄ = distance of far-field boundary; P = modified pressure boundary
condition used; κ̂x = value of x used for weighting factor κ̂.

solver (settings) cl cd cm

Roe (xcm, 150 c̄, κ̂1/3
) 3.961 1.784 3.731

Roe (xcm, 150 c̄, κ̂1/3
, P) 5.449 1.853 4.213

Roe (xcm, 150 c̄, κ̂0, P) 2.288 1.141 2.106

Roe (1/2, 150 c̄, κ̂0, P) 1.094 0.969 1.279

JST (150 c̄, P) 0.762 2.089 —
Roe (xcm, 80 kc̄) 2.548 1.803 3.615

Roe, overset (xcm, 150 c̄, κ̂1/3
) 3.516 1.797 3.745

also has a strong influence on the asymptotic behaviour of the flow solution method.
Regarding the location of the far-field boundary, it is well known that for the simulation

of the flow around a lifting body, either the distance to the boundary must be very large
or a correction must be applied at the far-field boundary for the circulation associated
with a lift generating body. The results for the flow simulations with a far-field distance
of about 80 kc̄ show that even a far-field distance of 150 c̄ is insufficient for having a
negligible effect on the result, when there is no vortex-correction applied to the boundary
condition. A considerable difference is observed in the value for lift and drag coefficient,
from the simulations for the large and the one for the ‘small’ far-field distance. Note, that
this effect is less significant when a 3D flow configuration is considered. Furthermore,
application of a vortex-correction to the far-field boundary conditions for a 3D flow
configuration is far less trivial than in the 2D situation. Therefore, no vortex-correction
has been implemented in the present method. Moreover, note that the distance of the
far-field also appears to have an effect on the spatial order of convergence of the lift
coefficient.

Although, a strong influence has been observed, for different aspects in the numerical
solution procedure, no such influence was found for the methods that have been con-
sidered for the discretization of the flow domain. For that purpose, both a single block
discretization, as well as a discretization of the flow domain employing composite overset
grids were used. When the results for these two discretization methods are compared, a
good correspondence is found for both the observed spatial order of convergence, as well
as for the estimate of the exact value.

Finally, the results of all the series of flow simulations that have been performed
are summarized. Table 5.9 lists observed orders of spatial convergence for the three
dimensionless coefficients and the different settings used. Table 5.10 on page 113, lists
the corresponding estimates for the value for h = 0. This table also includes the results
presented by Vassberg and Jameson [195], who performed a similar study for the same
flow configuration.

112

5.8 Verification

Table 5.10: Comparison of the extrapolated value for h = 0 for force coefficients and moment
coefficient of present method, for different settings — separated by the horizon-
tal line — with the results presented in the literature [195]. For flow about an
extended NACA 0012 aerofoil at α = 1.25

◦ and M∞ = 0.5. Used settings are indi-
cated between the parentheses, with: xcm = reconstruction about centre of mass;
1⁄2 = reconstruction assuming uniform Cartesian grid; 150 c̄ or 80 kc̄ = distance of
far-field boundary; P = modified pressure boundary condition used; κ̂x = value of x
used for weighting factor κ̂; vortex = vortex-correction boundary condition used.

solver (settings) cl cd cm

Roe (xcm, 150 c̄, κ̂1/3
) 1.79780338 · 10−1

1.2358 · 10−5
2.262377 · 10−3

Roe (xcm, 150 c̄, κ̂1/3
, P) 1.79780387 · 10−1

1.2357 · 10−5
2.262382 · 10−3

Roe (xcm, 150 c̄, κ̂0, P) 1.79779947 · 10−1
1.2406 · 10−5

2.262229 · 10−3

Roe (1/2, 150 c̄, κ̂0, P) 1.79775988 · 10−1
1.8234 · 10−5

2.261951 · 10−3

JST (150 c̄, P) 1.79718633 · 10−1
1.3857 · 10−5 —

Roe, overset (xcm, 150 c̄, κ̂1/3
) 1.79784408 · 10−1

1.2265 · 10−5
2.262423 · 10−3

Roe (xcm, 80 kc̄) 1.80345428 · 10−1
4.4293 · 10−8

2.269104 · 10−3

FLO82 1.80345850 · 10−1
5.0 · 10−8

2.268812 · 10−3

CFL3Dv6 (vortex) 1.80351940 · 10−1
1.34 · 10−7

2.277383 · 10−3

CFL3Dv6 1.79783519 · 10−1
1.2221 · 10−5

2.270588 · 10−3

Overflow v2.1t 1.79777193 · 10−1
1.0030 · 10−5

2.262569 · 10−3

Table 5.9 shows, that the observed order of convergence is strongly influenced by
the settings used. Only when Roe’s approximate Riemann solver is used, with linear
reconstruction of the state at the interface about the centre of mass of the control
volume, the observed order of convergence is in reasonable agreement with the expected
formal order of convergence. Note, that this statement is only true if a weighted averaging
factor of κ̂ = 0 is used. Moreover, for the extrapolation of the pressure to the solid wall
halo control volumes, geometrical information should not be taken into account.

Comparing the estimates for the exact values of the dimensionless coefficients consid-
ered, a good agreement is found between the results presented by Vassberg et al. and the
results obtained in the present research. The largest differences that exist are due to the
larger distance from the aerofoil of the far-field boundary or the use of vortex-correction
for the far-field boundary condition — the FLO82 method uses vortex-correction, as
well as the first entry for CFL3Dv6 method in table 5.10. In these situations, the lift
coefficient is about five counts higher. Moreover, the estimate for h = 0 for the drag
coefficient is considerably closer to zero. Based on the close agreement of the results of
the present method with the results presented in the literature, obtained with previously
verified computational methods, the present implementation of the mathematical model
is considered correct.

113

5. Flow model and solution method

5.9 Validation

In the process of validation, an assessment is made to what extent the numerical imple-
mentation of the mathematical model, used to model the physics, possesses a satisfactory
range of accuracy for representing reality, within the domain of applicability of the math-
ematical model [133]. Performing this task is important, because existence of a large
discrepancy between numerical solution and reality would render the solution of an aero-
dynamic optimization problem useless.

For the validation of the present method, the transonic flow around the ONERA M6
wing is considered. The particular validation case that was selected, has been chosen
because of the very well documented experimental set-up and results [158]. Moreover, this
particular validation case has frequently been used to validate similar numerical simulation
methods for inviscid flow as the one developed in the present research [152,202]. Among
the numerical methods that have been validated using the experimental results presented
in the AGARD report are also other methods that were used for solving aerodynamic
shape optimization problems [31,82,179].

Of the different flow conditions that were investigated experimentally, simulations
corresponding to the experiment performed at a Mach number of M∞ = 0.8395 are
presented here. First, the numerical set-up for the flow simulations is treated. Subse-
quently, the results of the numerical simulations are compared with the results from the
experiment.

5.9.1 Numerical set-up

The geometry used in this validation test case is the ONERA M6 wing. An accurate
description of the original geometry is provided in the AGARD report in which the experi-
mental results have been presented [158]. The cross-section of the original wing geometry
is defined by a single ONERA D aerofoil, which is a symmetrical aerofoil with a finite
thickness at the trailing edge. In the present numerical investigation, however, a wing
with a sharp trailing edge is employed. For this purpose, the tangent of the geometry of
the ONERA D aerofoil at the blunt trailing edge location is computed. The aerofoil is
then extended in that tangent direction, to the point that a zero thickness is achieved.
Note, that the original geometry description specifies that the ONERA D profile is normal
to the generator at 40.18 % chord. It was found, however, that the geometry used in
similar validations of the flow solution method does not always comply with this aspect
of the geometry definition. A likely cause for this quite common anomaly is an incorrect
analytical description for the ONERA D profile, which was also extended to have a sharp
trailing edge, that was provided in a report [152] which compared different numerical
solutions for this particular test case.

The geometry of the tip-cap also slightly differs from the one used in the experiment.
In the experiment, a half-body of revolution was used as a basis for the tip-cap. For
the wing geometry used in the present numerical simulations, the wing tip is constructed
from circular arcs that are exactly tangent to the wing at the location where the tip-cap
starts. The geometrical properties of the ONERA M6 wing, used in the present numerical
simulations, are given in table 5.11.

To facilitate the grid generation method, a NURBS surface representation of the
wing has been computed that accurately resembles the wing geometry just described.

114

5.9 Validation

Table 5.11: Geometrical properties of the ONERA M6 wing used in the numerical simulations.
Values include the wing tip geometry, except for the semi-span.

property symbol value

semi-span b/2 1.1963 [m]
mean aerodynamic chord ĉ 0.6410 [m]
semi plan form area S/2 0.7668 [m2]
taper ratio λ 0.5625
leading-edge sweep angle Λle 30.00

◦

trailing-edge sweep angle Λte 15.70
◦

The control point mesh corresponding to this NURBS surface is depicted in figure 6.10
on page 142 of chapter 6. The free-stream Mach number equals 0.8395. The free-
stream inflow has an angle of incidence of 3.06◦ with respect to the wing chord line. A
body-fitted grid with a CO-topology is constructed, that stretches out to approximately 5
times the mean aerodynamic chord of the wing. The surface grid on the wing is shown
in figure 5.17. There is a square uniform Cartesian background grid, centred at the
centre of the root cross-section of the wing. The block has a dimension of 10 times
the aerodynamic mean chord length and about 3 times the semi-span, in the spanwise
direction of the wing. The side boundary of this block is flush with the root of the wing.
For this grid, the cell size approximately matches the cell size of the cells in the outer
layer of the body-fitted grid. The second background grid is also a square Cartesian grid
and the grid spacing is refined towards the centre of the grid, with the cell size of the
smallest cell matching that of the uniform background grid. The boundaries of this block
are at about 100 ĉ away from the wing surface. In the spanwise direction, the block
extends a distance of about 8 times the wing semi-span.

Figure 5.16 shows the ONERA M6 wing with a schematic representation of the flow
domain. Note, that the dimensions of the depicted flow domain are not to scale. At the
surface of the wing a slip-wall boundary condition is employed. At the outer boundary
of the body-fitted grid, boundary conditions are enforced by means of fringe control
volumes. At the symmetry plane, symmetry boundary conditions are enforced. The
boundary conditions that have been imposed on the outer boundary of the background
grid are indicated in figure 5.16.

5.9.2 Results

Apart from the validation of the inviscid flow solution method, the present investigation
also serves the purpose of verifying the grid resolution required for properly solving a 3D
optimization problem, in terms of the accuracy with which the force coefficients can be
obtained. Therefore, the flow simulation has been performed for different grid resolutions.
The number of cells used for the discretization in the finest grid are listed in table 5.12.
Table 5.13 lists the number of cells of the body-fitted grid for the coarser grids used
in the present investigation. These force coefficients are computed by the evaluation of
the surface integral of the pressure times the unit normal vector over Swing, the surface
of a single wing half and then taking the dot product with the appropriate unit vector.

115

5. Flow model and solution method

�
��✒

0

�
��✠

1

✲2 ✛ 3

✻

4

❄

5

boundary boundary condition

0 free-stream
1 subsonic outflow
2 symmetry
3 far-field
4 free-stream
5 subsonic outflowy

z

x

Figure 5.16: The ONERA M6 wing with a schematic representation of the flow domain and
the imposed boundary conditions indicated. Note, that the dimensions of the
flow domain are not to scale.

y

z

x

Figure 5.17: Surface grid on the ONERA M6 wing and on the symmetry plane for grid IV.
Only every other grid line is shown.

116

5.9 Validation

Table 5.12: The number of cells used for the discretization of the flow domain around the
ONERA M6 wing, for the finest grid. For the body-fitted grid n1 is in the circum-
ferential direction, n2 is in the spanwise direction and n3 is in the direction normal
to the surface of the wing. For the background grids n1 is in the chordwise direc-
tion, n3 is in the spanwise direction and n2 is in the third direction, perpendicular to
both the chordwise and spanwise direction. The bottom row lists the total number
of control volumes used for the discretization.

block n1 n2 n3

body-fitted 512 100 54
uniform Cartesian 50 50 50
refined Cartesian 60 60 30
total 2 997 800

Table 5.13: Grid resolution for the body-fitted grid of the ONERA M6 wing of the coarser grids
employed. See the caption of table 5.12 for the directions corresponding to n1, n2

and n3.

grid n1 n2 n3

I 128 60 44
II 192 80 44
III 256 80 44

Subsequently, the result is non-dimensionalized with the free-stream dynamic pressure
and the planform area of the wing. Note, that an additional factor of two is included to
account for the fact that the surface integral is performed over a single wing half. The
resulting expressions read

CL =
2

1

2
ρ∞ ||u∞||2 S

∮

Swing

pndA · k⊥, (5.79)

CD =
2

1

2
ρ∞ ||u∞||2 S

∮

Swing

pndA · k‖, (5.80)

where n is the unit normal vector pointing outward of the flow domain, i.e. into the wing
interior. Furthermore, k‖ is the unit vector parallel to the free-stream flow, in the same
direction. Vector k⊥ is found by taking the cross product of vector k‖ with the unit
normal vector of the symmetry plane pointing out of the flow domain. The results for
the force coefficients for the different grid resolutions are listed in table 5.14, where the
finest grid resolution is denoted by grid IV. Based on these results, the accuracy of the
flow solution for grid II is considered sufficient to be used in the optimization.

A contour plot of the pressure distribution on the upper and lower side of the wing is
shown in figure 5.18. The pressure distribution that was obtained for the experiment is
plotted in figure 5.19, together with the ones computed, for grid II and IV. The pressure

117

5. Flow model and solution method

1.03329

0.83329

0.63329

0.43329

0.23329

0.03329

0.16671

0.36671

0.56671

0.76671

0.96671

1.16671

1.36671

1.56671

top view bottom view

Cp

1.033

0.233

−0.367

−0.967

−1.567

x

zz

Figure 5.18: Iso-Cp contours on the surface of the ONERA M6 wing at a free-stream Mach
number of M∞ = 0.8395 and an angle of attack of 3.06

◦. Results presented
obtained for grid IV.

Table 5.14: Force coefficients from the numerical simulation of the flow around ONERA M6
wing at M∞ = 0.8395 and angle of attack α = 3.06

◦.

grid CL CD

I 2.87761 · 10−1
1.03179 · 10−2

II 2.88559 · 10−1
1.01124 · 10−2

III 2.88554 · 10−1
1.00779 · 10−2

IV 2.89034 · 10−1
1.01107 · 10−2

distribution is plotted in terms of the dimensionless pressure coefficient, which is defined
as

Cp :=
(p − p∞)

1

2
ρ∞ ||u∞||2

≡ 2

γ M2

∞

(
p

p∞
− 1

)

. (5.81)

The numerical results show a good agreement with the results from the experiment.
Moreover, only minor differences are observed between solutions from the fine and the
coarser grid. Some of the differences observed between numerical solution and experiment
— for instance, the pressure increase across the shock in sub-figure 5.19 (e) and (f) is
larger for the simulation than was measured in the experiment — are caused by not
incorporating viscous flow effects in the mathematical model. However, differences in
the results can also be caused by other discrepancies between the true physics and the
mathematical model used to represent it. For example, for the numerical simulation,
the wing is rigid, while the model in the wind tunnel might be susceptible to aero-
elastic deformation. Moreover, in the numerical simulation, the flow is assumed to be
symmetric about the plane of the root section of the wing, while in the experiment an end-
plate was used. Together with wind tunnel wall effects, this discrepancy can be another
source of the differences observed for the results at the first cross-section, depicted in

118

5.9 Validation

numerical solution, n1 = 192

numerical solution, n1 = 512

experiment, suction side

experiment, pressure side

(a) 2z/b = 0.20

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(b) 2z/b = 0.44

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(c) 2z/b = 0.65

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(d) 2z/b = 0.80

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(e) 2z/b = 0.90

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(f) 2z/b = 0.95

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

Figure 5.19: Comparison between the experimental [158] and numerical results, for grid II
and IV, for the flow around the ONERA M6 wing at a free-stream Mach number
of M∞ = 0.8395 at an angle of attack of 3.06◦ for different sections of the wing.
The error bars provide a measure for the accuracy of the experimental results.

119

5. Flow model and solution method

sub-figure 5.19 (a). These suggestions were also forwarded by Lyu, who performed
similar simulations for the same flow configuration at the same flow conditions, however,
including effects of viscosity, by incorporating a RANS turbulence model [113]. Results
presented for these viscous flow simulations show similar differences between experimental
and computational results as the ones observed here — except for the differences that
are due to the absence of viscous flow effects, in the present results.

120

6
Sensitivity analysis

“To those who ask what the infinitely small quantity in mathematics is, we answer
that it is actually zero. Hence there are not so many mysteries hidden in this concept
as they are usually believed to be.” [14]

— Leonhard Euler (1707 – 1783)

S
ensitivity analysis is an important aspect that must be considered when solving
gradient-based optimization problems. In chapter 1, different methods for sensitivity

analysis have been introduced. The approach taken in this research was also pointed
out in that chapter, viz. a combination of the dual number method and the adjoint
equation method. In this chapter, the approach is discussed in more detail. First, a
more elaborate presentation of the concept of dual numbers is given, including details of
its implementation in the present method. Subsequently, the discrete adjoint equation
method is treated. Thereafter, details are given on the approach taken for computing
the different partial derivatives involved in the adjoint equations and the expression for
the total derivative. With the appropriate derivatives determined, the adjoint equations
must be solved, for which the solution method is also discussed in this chapter.

6.1 Dual numbers

Dual number arithmetic is used to evaluate derivatives of functions that require a relatively
limited number of mathematical operations. Recall the definition of the set of dual
numbers D, as defined in subsection 1.6.4:

D :=
{

x + εy : x, y ∈ R, ε2 ≡ 0
}
. (1.9)

As discussed in that same section, one of the implications of this definition is that dual
numbers can be used to compute derivatives, because the derivative is proportional to
the non-real part of the dual number. If function f : D → D, for which f (x) ∈ R ∀ x ∈
E ⊆◦ R, is evaluated at z = a + ε — i.e. a dual number with a non-real part of unit
magnitude — the derivative equals the non-real part of the result, i.e.

df

dx

∣
∣
∣
∣
a

≡ D [f (a + ε)] , (6.1)

which can be derived from a Taylor series expansion, as has been shown in subsection 1.6.4
on page 10.

121

6. Sensitivity analysis

To elucidate the concept of dual numbers, a couple of examples of the use of dual
numbers in mathematical operations are presented below for a, b, c, d ∈ R. Addition
and multiplication of dual numbers is straightforward. Division can be done in the same
way as for complex numbers, i.e. by multiplying numerator and denominator with the
conjugate of the dual number in the denominator and then rewriting both numerator
and denominator by applying the rules for addition and multiplication of dual numbers.
The exponential function for dual numbers can be derived by considering its Maclaurin
series13. The dual number expression for trigonometric functions like sine and cosine can
subsequently be found using Euler’s identity.

Examples of computational rules for dual numbers.

Addition:

(a + εb) + (c + εd) = (a + c) + ε (b + d)

Multiplication:

(a + εb) · (c + εd) = ac + ε (ad + bc) + ε2bd = ac + ε (ad + bc)

Division:

a + εb

c + εd
=

(a + εb) (c − εd)

(c + εd) (c − εd)
=

ac + ε (−ad + bc) − ε2bd

c2 − ε2d2
=

ac + ε (bc − ad)

c2

Exponential function:

e(a+εb) = eaeεb = ea
∞∑

n=0

(εb)
n

n!
= ea

[

(1 + εb) + ε2
∞∑

n=2

bnεn−2

n!

]

= ea + εbea

Sine:

sin (a + εb) =
ei(a+εb) − e−i(a+εb)

2i
=

eia − e−ia + εib
(
eia + e−ia

)

2i
= sin (a) + εb cos (a)

Other mathematical operations can be derived in a similar manner. Or, they can also
be found by determining the derivative of the mathematical operation and considering
the fact that this result is equal to the non-real part of the dual number, according to
equation (6.1). Note, that the quotient is undefined for a dual number divisor with the
real part equal to zero. This property does not present a problem, since it is also the case
for the real-valued quotient and should therefore not be encountered in the optimization
method. Furthermore note that, in contrast to complex numbers, the real part is not
affected at all by the non-real part.

6.1.1 Implementation

The programming language used for the implementation of the optimization method
is C++ [180]. One of the features of this language is the possibility to define so-called
template functions. Template functions are functions that have not yet been specialized
for a particular data type, which means that the same function can be used with different
data types. Therefore, all functions in the optimization method have been defined as

13i.e. essentially a Taylor series expansion about argument 0.

122

6.1 Dual numbers

template functions. Moreover, a new data type for dual numbers has been introduced in
the method. For this dual number data type, all mathematical operations used in the flow
solution method and hole cutting method have been defined. These two procedures are
all that is required to use the dual number method for computing the required derivatives.
Since, in this way, all functions can be evaluated for both a real-valued floating-point
data type as well as for a dual number data type.

When the computation of the derivatives is considered, it can be observed that it
is common that derivatives of a function need to be computed with respect to multiple
elements of a vector quantity, i.e. partial derivatives. For instance the derivative of a
function f with respect to all elements of a coordinate, i.e. ∂f

∂x
. Another example is

the derivative of a function f with respect to all elements of the vector of conserved
variables, i.e. ∂f

∂U
. To compute these derivatives more efficiently, an alternative means

for the definition of the dual number is introduced:

D
n

:=
{

x + εy : x ∈ R, y ∈ Rn, ε2 ≡ 0
}

, n ∈ N1. (6.2)

For a data type that complies with this definition, it is possible to compute multiple
derivatives with a single function evaluation. The advantage of this so-called vector
mode [75] is that the real part of the result is computed only once. For the non-real
part of, for instance, dimension n = 5, this saves four addition floating-point operations
for each summation of two dual numbers and four floating-point multiplications for each
dual number product encountered in the function evaluation. For a quotient of dual num-
bers, this modification saves eight multiplications and four division operations. The ratio
of the number of operations saved, with respect to using a dual number with a single
non-real component, increases with the length of the vector used. For very large vectors,
this ratio will eventually approach an asymptote, for which the value depends on the
combination of mathematical operations used. If the function, for instance, consists of a
single summation only, than the ratio is limited to a factor of two. A more involved exam-
ple concerns the computation of the residual vector of the Euler equations for unsteady
flow. The asymptotic behaviour for this function is shown in the left graph of figure 6.1.
This figure shows that, in the asymptotic range, the ratio of the number of operations
saved amounts to approximately a factor of 63 for the situation considered. However, the
right graph in figure 6.1 shows the corresponding ratio of the time saved by using a dual
number with a non-real vector of variable size. The behaviour observed in this graph does
not correspond with the result expected, based on the number of operations saved. For
small vectors the efficiency of the method for computing the derivatives increases. For
larger vectors, however, the efficiency deteriorates to a point that there is no significant
advantage over using a dual number with a single non-real component. Further investi-
gation revealed that this discrepancy between the expected efficiency and the observed
one is due to an increase in the number of read misses from the L1 instruction-cache.
These cache misses can have a serious effect on the performance [58], which explains the
gain being less than expected for long vectors. Moreover, using large vectors, has the
additional disadvantage of increased memory requirements of the method.

Since the performance gain does not strongly depend on the length of the vector for
the non-real part, dual numbers with a non-real part of dimension three and five are used.
This choice is made based on practical grounds, because these dimensions correspond
to respectively the number of components of a coordinate and the number of conserved
variables for each control volume. In this way, the derivatives with respect to all three

123

6. Sensitivity analysis

nd

0 100 200 300 400 500

n
fp
/̄n

fp

0.05

0.10

0.15
0.20

0.40

0.60
0.80
1.00

nd

0 10 20 30 40 50

E
[
t̄ j

a
c

]

0.8

0.9

1.0

1.1

Figure 6.1: The left graph shows the ratio of the estimate for the number of floating-point
arithmetic operations saved, as a function of nd, the dimension of the non-real part
of the dual number, for the computation of the sensitivity of the flow residual and
the number of operations required to compute the result by means of a central-
difference finite-difference method, denoted by n̄fp. The right graph shows the
expected value for the corresponding timing, relative to using a real-valued central-
difference approach, denoted by E

[
t̄jac

]
. Error bars indicate the standard deviation

observed for the timing. The results have been obtained for ni = 257, nres = 200

and nrun = 1000. Note, that the range for the abscissa of the two graphs does not
correspond. For more information on the method used to obtain these results, see
appendix D.

components of a coordinate can be computed simultaneously. The same applies for the
derivatives with respect to the conserved variables in a control volume, for a dual number
with a non-real part of dimension n = 5.

Comparison of dual number method with algorithmic differentiation

Comparing the dual number method for computing derivatives with algorithmic differ-
entiation by means of operator overloading [45], a number of similarities are observed:
(i) both methods use a new data type for which the mathematical operators need to be
defined; (ii) both methods yield the numerically exact derivative as a result. Therefore,
the dual number method can be considered equivalent to an algorithmic differentiation
method — just like the complex-step method [116,117].

6.1.2 Approach

The general approach for computing derivatives using the dual number method is as
follows. First, assign the value 1.0 to the non-real part of the dual number of the
independent variable with respect to which the derivative needs to be determined. Make
sure, that the non-real part of all other variables equals zero. Then, the function that
computes the output variable for which the derivative needs to be determined is evaluated.
Subsequently, the derivative is found by considering the non-real part of the output
variable.

124

6.2 Discrete adjoint equation method

When the dual number method is used in vector mode, multiple derivatives can be
computed with a single function evaluation. For that purpose, assign the value 1.0
to a different component of the dual number for each of the independent variables
with respect to which the derivative needs to be determined. After evaluation of the
function that computes the output variable, the derivative is found by considering the
non-real component of the dual number corresponding to the non-real component of the
independent variable that was assigned the value 1.0. The resulting value is equal to the
derivative of the output parameter with respect to that independent variable. The other
non-real components of the output variable correspond to the derivative with respect to
the other input variables for which the non-real part of the dual number was assigned a
value of unit magnitude.

6.2 Discrete adjoint equation method

The adjoint equation method is used to efficiently compute the derivatives of the ob-
jective function with respect to a large number of input parameters. In section 1.6.6
a derivation was given of the general adjoint equation method. Here, first a derivation
of the adjoint equations, focused on the application in aerodynamic shape optimization,
is presented. Subsequently, the distinction between the continuous and discrete adjoint
equation method is pointed out.

6.2.1 Derivation

Consider an objective function I ∈ R for an aerodynamic shape optimization problem.
This objective function is in general a function of the design — represented by the design
parameters χ ∈ Rnp , with np ∈ N1 the number of design parameters — and the flow
solution, represented by the conserved flow variables for all control volumes U ∈ Rncons·nc ,
with nc ∈ N1 the number of control volumes and ncons ∈ N1 the number of conserved vari-
ables. Moreover, since in general only a discrete representation of the flow solution U can
be obtained, the objective function also depends on the computational grid X ∈ R3·nv ,
with nv ∈ N1 the number of vertices, used for the discretization of the flow domain.
Therefore,

I = I (χ, U [χ,X (χ)] ,X [χ]) .

The total derivative of the objective function with respect to a single arbitrary design
variable α ∈ χ then reads

dI
dα

=
∂I
∂α

+
∂I
∂U

dU

dα
+

∂I
∂X

dX

dα
. (6.3)

The term requiring a number of flow solutions proportional to the number of design
variables is the term with dU

dα . This term can be expressed differently, employing the
derivative of the vector of residuals R ∈ Rncons·nc of the discretized flow equations14 with
respect to the same design variable α

dR

dα
=

∂R

∂α
+

∂R

∂U

dU

dα
+

∂R

∂X

dX

dα
= 0. (6.4)

14Note, that the vector of residuals actually just acts as the vector of constraint functionals of equa-
tion (1.12) on page 12.

125

6. Sensitivity analysis

This derivative is equal to the null vector, because the flow has to satisfy the governing
equations, i.e. R = 0, independent of the design considered. This observation is used
to obtain an expression for dU

dα

dU

dα
= −

[
∂R

∂U

]−1(
∂R

∂α
+

∂R

∂X

dX

dα

)

. (6.5)

Subsequently, this result is substituted in equation (6.3), resulting in

dI
dα

=
∂I
∂α

− ∂I
∂U

[
∂R

∂U

]−1(
∂R

∂α
+

∂R

∂X

dX

dα

)

+
∂I
∂X

dX

dα
. (6.6)

Then, define the adjoint vector ψ as

ψ := −
(

∂I
∂U

[
∂R

∂U

]−1
)T

. (6.7)

Substitution of the adjoint vector in equation (6.6) gives the expression that is used
to compute the total derivative of the objective function with respect to the design
variable α:

dI
dα

=
∂I
∂α

+ψT ∂R

∂α
+

(
∂I
∂X

+ψT ∂R

∂X

)
dX

dα
. (6.8)

The adjoint vector ψ is computed solving the system of linear equations, denoted by the
term adjoint equations, which read

[
∂R

∂U

]T

ψ = −
(

∂I
∂U

)T

. (6.9)

6.2.2 Discrete versus continuous

As with most partial differential equations, obtaining an analytical solution for the adjoint
equations is difficult and can usually only be done for very specific cases; for an example
of an analytical solution see the work of Cnossen [44]. For the purpose of obtaining a
solution of these equations for general cases, the adjoint equations must be discretized;
just as is the case for the governing equations describing the flow. In order to discretize
the partial differential equations, different approaches can be taken. One way is to start
with the analytical non-linear partial differential equations, linearize these equations and
subsequently derive an adjoint formulation based on the linearized equations. This adjoint
formulation is then discretized to be able to solve the problem numerically. This approach
is known as the continuous adjoint equation method.

The first step for the discrete adjoint equation method on the other hand, is to dis-
cretize the non-linear partial differential equations of the primal problem, i.e. the flow
equations. Then linearize these discretized equations. Subsequently, this result is used
to derive the adjoint equations. This approach is called the discrete adjoint equation
method, which is the method used in the present research. An investigation of the differ-
ences between both approaches has been performed by Giles [69]. The major difference

126

6.3 Efficient application of dual number method

between both methods is that the continuous approach requires the explicit handling
of the boundary conditions, while these are automatically enforced for the discrete ap-
proach, through boundary condition treatment of the original problem. Advantages of
the discrete approach are:

◦ the derivatives obtained using the discrete adjoint equation method are consistent
with the solution of the discretized governing equations. For the continuous adjoint
equation method this consistency is not automatically achieved;

◦ the implementation of the adjoint equation method is relatively simple, by using
algorithmic differentiation tools — or similar methods for automatically comput-
ing derivatives — for computing partial derivatives. Furthermore, methods imple-
mented for obtaining the solution of the governing equations can be reused for
solving the adjoint equations.

6.3 Efficient application of dual number method

The partial derivatives in equation (6.8) and (6.9) are computed using the dual number
method. This method requires the evaluation of the function for which the partial deriva-
tive needs to be determined with the non-real part of the dual number for the variable
considered disturbed. To limit the time required for the development of the method it
is desirable to be able to reuse functions already available in the original method that is
used to solve the governing equations. For instance, the Jacobian matrix, i.e. matrix ∂R

∂U
,

can be computed reusing the functions for the evaluation of the residuals of the govern-
ing equations for each control volume in the flow domain. However, for efficiency of the
method to compute these residuals, a loop is performed over all control volume faces in
each block. For each face, the flow solution on the face is reconstructed on both sides
of the face and this reconstructed flow solution is subsequently used to compute the flux
over the face. This result is then utilized for both control volumes adjacent to this face,
i.e. it is added to the residual of one control volume and subtracted from the other —
depending on the sign of the flux and the direction of the normal vector of the face. In
this way, conservation is ensured and the flux only needs to be computed once for each
face. Straightforward reuse of this function for the dual number method is, however,
very inefficient, because this approach requires a number of evaluations of the residual
proportional to the number of control volumes in the flow domain to compute all entries
of the Jacobian matrix. However, since the residual of the flow equations only depends
on a limited number of neighbouring control volumes, a more efficient method can be
employed. For this purpose, the concept of graph colouring, or more specifically graph
vertex colouring is introduced.

6.3.1 Graph vertex colouring

The purpose of a so-called proper graph vertex colouring is to assign a label, commonly
— and from here on — referred to as colour, to each vertex of the graph, such that
no two vertices connected by an edge have the same colour. Figure 6.2 shows such a
proper vertex colouring for a simple graph, where the different colours are designated
by an integer number. Vertices of the graph that have been assigned the same colour

127

6. Sensitivity analysis

0

0

0

0

1

1

1
2

2

2

Figure 6.2: Example of a proper ver-
tex colouring for the Petersen graph [21].
Each integer number designates a different
colour.

5
9

7

10

0
12

11

1
2

3

6

4
8

j

ik

Figure 6.3: Stencil for residual computa-
tion of the Euler equations. Figure adapted
from Lyu [112].

7

10

11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2

3

6

j

i

Figure 6.4: Cross-section of the colouring of the control volumes used for computing the Ja-
cobian matrix. Each integer number represents a different colour. Figure adapted
from Lyu [112].

form an independent set. This property is useful for the construction of, for instance, the
Jacobian matrix, using the dual number method.

For this purpose, a graph can be constructed which resembles the method employed
for discretizing the governing equations on the finite volume grid used. Subsequently,
a proper vertex colouring must be determined for the resulting graph. If this proper
colouring uses k colours, then the complete Jacobian matrix can be computed — with
the dual number method — with a number of residual evaluations proportional to k. The
number of colours required for colouring the graph depends on the method used for this
purpose. The minimum number of colours is bound by the chromatic number of the
graph considered [21]. Independent of the method used15, the number of colours found
is in general considerably smaller than the total number of control volumes used for the
discretization of the flow domain. Therefore, the application of graph vertex colouring, to
compile independent sets of control volumes, greatly reduces the number of evaluations
of the function that computes the residual of the flow equations.

15Excluding the naive approach of assigning each vertex a unique colour.

128

6.4 Jacobian matrix

For the computation of the different matrices, treated in the subsequent sections, the
method used for determining the colouring will be discussed.

6.4 Jacobian matrix
(

i.e.
∂R

∂U

)

As pointed out in the preceding section, the aim is to reuse the existing methods for
obtaining the flow solution, without sacrificing too much on efficiency. This approach
not only limits the time required for the implementation and verification of the method,
but also renders the resulting method for computing derivatives fully consistently with
the original method.

For the purpose of computing the Jacobian matrix efficiently, first a suitable colouring
of the control volumes must be obtained. Using a method similar to the procedure
explained by Goldfarb [74] — i.e. a method that seeks to find a three-dimensional packing
sequence that minimizes the unused space between stencils — an expression can be
obtained for determining the colour number c ∈ N0 of a control volume, for a second-order
accurate spatial discretization of the Euler equations, for which the stencil is displayed in
figure 6.3. This expression reads:

c = (i + 3j + 4k) mod 13, (6.10)

where i, j and k ∈ N0 are the control volume indices of the control volume considered
and mod refers to the modulus operation, which can be expressed as

a mod b ≡ a −
⌊a

b

⌋

b, a, b ∈ Z,

with ⌊·⌋ the floor operation, defined for x ∈ R as: ⌊x⌋ := max {m ∈ Z : m ≤ x}.
A cross-section of the three-dimensional packing is shown in figure 6.4. Considering
equation (6.10), it is observed that the number of colours required for this colouring
strategy amounts to 13.

For determining the colours of the control volumes in the multi-block discretization
of the flow domain, the different blocks are treated independently. Halo control volumes
that represent a physical boundary condition, like a solid wall, are not assigned a colour.
Because these boundary conditions are enforced in the method used for the computation
of the residual and are therefore automatically taken into account. Halo control volumes
that represent an internal-matching type of boundary condition, on the other hand, are
assigned a colour. In this way, requiring communication is prevented in the case the
matching block resides in the memory belonging to a different processor core. Moreover,
this approach also prevents the occurrence of two control volumes in the stencil with
the same colour. This situation would otherwise arise if two different boundaries of the
same block match. An alternative solution to this problem is the use of a different
colouring algorithm. However, given the elegance and simplicity of the current algorithm,
an alternative approach would most likely result in a more elaborate colouring procedure.
Furthermore, the number of colours required is also likely to increase, because the current
algorithm requires a number of colours equal to the chromatic number of the graph. Since
the computational effort is proportional to the number of colours, the resulting method
for computing the Jacobian matrix would therefore be less efficient, when the number of
colours increases.

129

6. Sensitivity analysis

start select first colour

collect all control
volumes with
present colour

apply for each control
volume of present colour
a non-real disturbance to

the conserved variables, i.e.

U = (ρ + εe0, ρu + εe1,

ρv + εe2, ρw + εe3,

ρet + εe4)T

compute the
primitive variables

apply boundary
conditions

compute
residuals for all
control volumes

collect residuals
for all control

volumes with non-
zero non-real part

store non-zero
result on the
corresponding
location in the

Jacobian matrix

all colours
handled

done

select next colour

yes

no

Figure 6.5: Flow chart of the approach for computing the entries of the Jacobian matrix.

Once the vertex colouring for the control volumes has been determined, the control
volumes which have been assigned the same colour are collected. Then, the entries of
the Jacobian matrix are determined using the dual number method. Using dual numbers
with a non-real part of dimension nncons, the derivative of the residual with respect
to all conserved variables of a control volume can be determined simultaneously. The
procedure, which is summarized in figure 6.5, is therefore as follows. For all control
volumes with the same colour number the conserved variables are disturbed. For each of
the conserved variables a different component of the non-real part of the dual number
is used. Subsequently, the function used for computing the residuals is called. This
procedure includes computing the primitive variables and applying physical boundary
conditions. For halo control volumes that correspond to a rotational periodic boundary,
the boundary conditions are also applied. Note, that this approach requires the conserved
flow variables to have the value of the conserved variables of the donor control volume,
before rotation is applied, before assigning a non-real disturbance. The other internal
matching boundary conditions are not applied. After the residuals have been computed,
the non-real part of the residual of the control volumes is considered. Only control
volumes for which the stencil contains one of the control volumes for which the non-
real part of the conserved variables has been disturbed, have a non-real part unequal to

130

6.4 Jacobian matrix

c d e

f g h

b′

(xcg)a

Figure 6.6: Schematic representation of halo control volumes c and f that act as donor of
a fringe control volume a for which only the centre of mass is depicted. Cell b′

represents a cell of the dual grid.

zero. These non-zero contributions are then collected and placed in their corresponding
location in the Jacobian matrix. Subsequently, the non-real part of all flow variables is
reset back to zero and control volumes corresponding to the next colour are considered.
This procedure is repeated until all colours have been handled and therewith the Jacobian
matrix has been populated completely.

Extension to composite overset discretizations

To construct the Jacobian matrix for composite overset grids, additional work needs to
be performed, because of the occurrence of fringe control volumes. In contrast to halo
control volumes, which have not been given an explicit representation in the matrix —
in order to limit the dimension of the matrix — fringe control volumes are represented
as an entry in the matrix. This choice was made to simplify the implementation of
the construction of the Jacobian matrix. Halo control volumes are, depending on the
boundary conditions, influenced by a maximum of two control volumes, always from a
single block. While the flow solution for a fringe control volume is in general affected by
at least 8 different control volumes, possibly from different blocks. Therefore, to account
for the effect of a halo control volume for the control volumes affected is a relatively easy
task, while it is considerably more elaborate for the fringe control volumes.

Recall that the residual of a fringe control volume with global index a ∈ N0 was
defined as

Ra := 〈U〉a −
m<NF∑

m=0

(ωmUm) ≡ 0. (5.50)

Linearization of this expression with respect to the conserved variables of the control
volumes involved, gives the relation

∂Ra

∂U
∆U = ∆ 〈U〉a −

m<NF∑

m=0

(ωm∆Um) . (6.11)

131

6. Sensitivity analysis

Considering this equation, it can be observed that constructing the matrix entries for a
fringe control volume does not require the flow solution of the donor control volumes.
Therefore, when the donor control volumes belong to a block that resides in the memory
of a different processor, no communication is required for the construction of the matrix.
Note however, that this statement is only true if all donor control volumes are field control
volumes. Because a cell-centred approach is employed in the present research, it may
happen that the set of donor control volumes contains one or more halo control volumes
as well. But since halo control volumes do not always have an explicit representation in
the matrix, the dependency of the halo control volume must be taken into account, when
the contribution of the fringe control volume is determined. A schematic representation
of such a situation in 2D is depicted in figure 6.6. Consider cell b′ of the dual grid to be
the donor of fringe control volume a. In this case two of the donors of the fringe control
volume are halo control volumes. Let the boundary condition be given by the relation

〈U〉H = f (〈U〉F0 , 〈U〉F1) , (6.12)

where 〈U〉H is the control-volume-averaged value of the conserved variables in the halo
control volume and 〈U〉F0 and 〈U〉F1 are the first and second control volume, respectively,
neighbouring the halo control volume. The linearization of the expression for the residual
of this fringe control volume can then be expressed as

∂Ra

∂U
∆U =∆ 〈U〉a −

([

ω1I + ω0

∂f

∂ 〈U〉g

]

∆ 〈U〉g

[

ω3I + ω2

∂f

∂ 〈U〉d

]

∆ 〈U〉d (6.13)

ω2

∂f

∂ 〈U〉e

∆ 〈U〉e + ω0

∂f

∂ 〈U〉h

∆ 〈U〉h

)

,

which only involves control volumes that have a representation in the matrix. The con-
sequence of this approach is that

∂f (〈U〉d , 〈U〉e)

∂ 〈U〉d

,
∂f (〈U〉d , 〈U〉e)

∂ 〈U〉e

,
∂f
(

〈U〉g , 〈U〉h

)

∂ 〈U〉g

and
∂f
(

〈U〉g , 〈U〉h

)

∂ 〈U〉h

must now be determined explicitly. Moreover, if the halo control volume belongs to a
block that resides on a different processor, communication of this sensitivity information
is required in order to construct the Jacobian matrix.

Regarding the implicit solution method, there is an important note on updating the
flow solution with the solution of the system of linear equations. For field control volumes,
the flow solution is updated by adding the result of solving the system of linear equations
given by equation (5.51) on page 91. However, although fringe control volumes have
been given a representation in the matrix, the flow solution in fringe control volumes is
always determined by means of interpolation of the solution from donor control volumes.
Updating the flow solution for fringe control volumes in the same way as for field control
volumes leads to inconsistencies when the system of linear equations is not solved to
machine accuracy. Since the customary approach in the present research is to let the
residual of solving the system of linear equations only converge to a modest value of

132

6.4 Jacobian matrix

Table 6.1: The number of cells used for the discretization of the flow domain around the
ONERA M6 wing. For the body-fitted grid n1 is in the circumferential direction, n2

is in the spanwise direction and n3 is in the direction normal to the surface of the
wing. For the background grids n3 is in the spanwise direction.

block n1 n2 n3

body-fitted 128 60 44
uniform Cartesian 50 48 47
refined Cartesian 50 48 47
total 563 520

the residual, inconsistencies would therefore be introduced with this updating strategy.
These inconsistencies accumulate and will eventually lead to an unstable or not converging
iterative process.

6.4.1 Verification

For the verification of the correctness of the determination of the Jacobian matrix, it is
employed in the procedure to obtain the flow solution. As pointed out in section 5.6,
Newton’s method is used for this purpose. When the initial state is sufficiently close
to the steady-state solution, Newton’s method features quadratic convergence. There
are techniques to determine if an initial guess is within the domain of attraction of
the method, for which quadratic convergence is observed. However, a more practical
approach is to just try an initial guess and check if the convergence observed is quadratic.
If no quadratic convergence is observed, there are three possible reasons, viz. (i) the initial
guess is not sufficiently close to the solution, (ii) the construction and computation of the
Jacobian is incorrect or (iii) the function considered has particular properties that prevent
Newton’s method from converging quadratically. However, when quadratic convergence
is observed, it shows that neither of these conditions apply, which therefore implies that
the construction of the Jacobian matrix is done correctly. Moreover, it is considered
unlikely that the third reason applies for the current application.

To present a test case that is sufficiently representative for the proposed application
of the flow solution method, the same case as already considered for the validation
of the flow solution method is considered here as well: the transonic flow around an
ONERA M6 wing, subject to transonic flow conditions, i.e. a free-stream Mach number
of M∞ = 0.8395 and an angle of attack of α = 3.06

◦. For the discretization of the flow
domain, a composite overset grid is used, similar to the grid described in section 5.9.1.
The number of control volumes used for the discretization is listed in table 6.1.

The initial conditions for obtaining the flow solution are free-stream conditions ev-
erywhere in the flow domain. For the purpose of obtaining a suitable initial guess for
Newton’s method, first a fixed number of 5000 multistage Runge-Kutta iterations is per-
formed, with a local time-step to speed-up convergence. The resulting nonconverged
intermediate flow solution is then used as the initial guess for Newton’s method. The
system of linear equations involved in Newton’s method is solved by means of a GMRES
method, which is made to converge 15 orders of magnitude, to make sure that the under-

133

6. Sensitivity analysis

iteration

0 2 4 6 8 10

lo
g
1
0

(
||R

ρ
u
|| 2
)

-15

-13

-11

-9

-7

-5

-3
iteration ||Rρu||

2

0 1.278 · 10−3

1 2.243 · 10−3

2 4.524 · 10−4

3 1.912 · 10−5

4 1.711 · 10−7

5 1.026 · 10−8

6 1.175 · 10−10

7 2.099 · 10−14

8 1.925 · 10−15

9 1.947 · 10−15

10 1.945 · 10−15

Figure 6.7: Graph showing the convergence history of the ℓ2-norm of the residual of the x-
component of the equation for conservation of momentum — scaled by the value of
the ℓ2-norm of the residual computed for free-stream conditions everywhere in the
domain. Geometry: ONERA M6 wing; conditions: M∞ = 0.8395 and α = 3.06

◦.
The solid line represents the actual convergence history and the dashed line shows
the trend for a quadratic convergence.

lying iterative method does not affect the results. The corresponding convergence history
for Newton’s method is depicted in figure 6.7. This graph shows the convergence history
of the ℓ2-norm of the residual of the x-component of the equation for conservation of
momentum. This convergence behaviour is also typical for the other components of the
residual vector, which are, however, not shown here. Together with the convergence
history a line has also been plotted that represents a quadratic convergence. Considering
the close agreement between this trend line and a part of the convergence history of
Newton’s method, it can be concluded that quadratic convergence is indeed observed.
The deviations from quadratic convergence are either due to (i) not yet being within the
domain of attraction of the method for which convergence is quadratic, this property ap-
plies for the first few iterations; or (ii) reaching the machine accuracy for double-precision
arithmetic, which is true for the last couple of iterations.

Since quadratic convergence of Newton’s method has been observed, non of the
reasons mentioned, that would prevent such behaviour, apply. Therefore, the imple-
mentation of the method for determination of the Jacobian matrix is considered to be
correct.

6.5 Grid sensitivity of flow residual
(

i.e.
∂R

∂X

)

To compute the sensitivity of the residual of the flow equations with respect to the vertex
coordinates of the grid, i.e. ∂R

∂X
, the functions for computing the residual of the flow

equations can also be reused. Because the dependency of the residual on the vertex

134

6.5 Grid sensitivity of flow residual

10

3
11

4
36

29

6

37

30

23

7

0

31

24

1

32
25

18

33

26

19

12

34

27

20

13

28

21
15

8
16

9

2

0
3

16

4
7

5

j

ik

Figure 6.8: Stencil for the dependency of the residual computation of the Euler equations with
respect to the vertices of the grid. Stencil depends on method used for computing
convective flux. Left schematic applies to Roe’s approximate Riemann solver with
linear reconstruction around the centre of mass of the control volume. Right
schematic applies to a central discretization by means of the JST scheme. Note,
that here the cubes represent vertices instead of control volumes. Figure adapted
from Lyu [112].

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637
7
14
21
28
35

j

i

Figure 6.9: Cross-section of the colouring — defined by equation (6.14) — of the vertices
used for computing ∂R

∂X
. Each integer number represents a different colour. Figure

adapted from Lyu [112].

coordinates differs from the dependency of the residual on the control-volume-averaged
flow variables, a different graph colouring has to be used. Moreover, this graph colouring
also depends on which approach is taken for computing the convective flux. For Roe’s
scheme with linear reconstruction about the centre of mass of the control volume, the
following function for computing the colour number is used [112]

c = (i + 7j + 27k) mod 38. (6.14)

This approach requires a total of 38 colours to create independent sets. If on the other
hand the JST scheme is used, or if the linear reconstruction is performed assuming a
uniform Cartesian grid, then

c = (i + 2j + 4k) mod 8, (6.15)

135

6. Sensitivity analysis

can be used to construct independent sets. For this colouring scheme, as few as 8
different colours is sufficient. A schematic representation of both colouring strategies is
shown in figure 6.8. Moreover, a cross-section of the three-dimensional packing for the
colouring given by equation (6.14) is depicted in figure 6.9.

To compute the sensitivity, a dual number with a non-real part of dimension 3 is used.
In this way, a non-real disturbance is applied to all three components of the coordinate of
a vertex simultaneously. After applying the disturbance, the metrics are recomputed for
the control volumes and faces affected; such as surface normal vectors and cell volumes.
Then, the appropriate fluxes are evaluated and the residual of the flow equations is
computed. The entries of the matrix are subsequently determined, by considering the
residual of each control volume that is affected by a certain vertex being disturbed.

Different blocks of a multiblock discretization of the domain can be handled indepen-
dently, provided that point matching boundary vertices — i.e. different vertices that rep-
resent the same physical location — are treated as a single entity. For vertices belonging
to a boundary for which different boundary conditions apply than the internal-matching
boundary conditions, the boundary conditions must be applied, after that the metrics
have been computed.

Extension to composite overset discretizations

When a composite overset discretization is used, the sensitivity of the residual of the flow
equations with respect to the vertex coordinates of the grid requires handling the grid
sensitivity of the fringe control volumes. Considering the approach taken for determining
the interpolation stencil of the fringe control volumes, presented in section 4.5, explicitly
determining the dependency of the residual on the coordinate of the vertices involved is a
very complicated and tedious task. Therefore, this step is circumvented by not explicitly
computing the matrix ∂R

∂X
, but only computing the product

∂R

∂X

dX

dα
, (6.16)

i.e. the product of the residual grid sensitivity matrix with the vector that represents the
sensitivity of the grid with respect to a geometric design variable. For this purpose, the
grid must be computed using dual numbers, with the design variable considered being
assigned a non-real part of unit magnitude. Thereafter, the interpolation coefficients
for fringe control volumes must be recomputed. Once the grid has been generated,
the interpolation coefficients have been determined and the metrics of the grid have
been computed, the result of equation (6.16) can be obtained by simply performing a
residual evaluation on that grid. Modification to the grid generation method, required
to handle dual numbers is discussed in section 6.9. Moreover, note that computing the
interpolation coefficients of the fringe control volumes for the dual number grid requires
that the holecutting procedure is carried out with dual numbers as well.

6.6 Flow sensitivity of objective function
(

i.e.
∂I
∂U

)

In the present research, objective functions considered involve integrals of the pressure
over the surface of the object present in the flow field. For the solid wall boundary

136

6.7 Grid sensitivity of objective function

condition, discussed in section 5.5.1 on page 85, the pressure in the halo control volume
is determined by linear extrapolation of the pressure inside the domain. Therefore, only
two control volumes — i.e. the two control volumes closest to the wall — affect the
pressure on a single face situated on the surface of the body. Straightforward reuse of
the function that computes the objective function, for computing the flow sensitivity of
the objective function by means of the dual number method, requires the surface integral
to be evaluated a number of times proportional to the number of faces that are used for
the discretization of the surface geometry. Note, that this number cannot be reduced
through the application of colouring, because all control volumes involved affect the final
result. In an effort to limit the amount of computational work, a separate function is
created, which computes the pressure at the face and subsequently the contribution of
that face to the objective function, based on the control-volume-averaged conserved flow
variables of the two control volumes that determine the result. This function can then
be used to compute the contribution of a control volume near the surface to ∂I

∂U
, using

the dual number method.

Extension to composite overset discretizations

For a composite overset discretization of the domain, overlap of the surface grid can
occur, which results in requiring the use of zipper grids to achieve a non-overlapping
non-open discretization of the surface. Section 4.3.3 describes the approach taken for
the evaluation of surface grids in these cases, i.e. the flow solution for the triangular
faces of the zipper grid is obtained by means of interpolation of the flow solution of the
non-blanked quadrilateral faces of the surface grid. Therefore, when a quadrilateral face,
that is used for this interpolation, has a non-zero non-real part, the resulting flow solution
for the triangle will have a non-zero non-real component as well. The contribution of the
triangle to the surface integral — and therefore also its contribution to the sensitivity —
is simply accounted for by considering the flow solution of the quadrilateral face and its
corresponding interpolation weight.

6.7 Grid sensitivity of objective function
(

i.e.
∂I
∂X

)

To determine the sensitivity of the objective function with respect to the vertices of the
grid used for the discretization of the flow domain, using the dual number method, the
coordinate of the vertex must be disturbed and the objective function must be evaluated.
Based on the observations made in the preceding section, it suffices to evaluate only a
limited part of the surface integral in order to compute the required sensitivity.

A single vertex affects the value of the pressure in the halo control volume of at most
four halo control volumes for a single level. Therefore, for the evaluation of the surface
integral, only four faces of the surface grid need to be considered. For this purpose,
a function is created which computes the effect of disturbing the three components of
the coordinate of a vertex on the pressure at the four faces affected16. This procedure
involves: (i) recomputing the centre of mass of the control volumes, (ii) recomputing
the coordinates of the vertices of the halo control volumes, (iii) performing the linear
extrapolation of the pressure to obtain the pressure in the halo control volumes and

16Or fewer, when for instance a corner vertex is considered.

137

6. Sensitivity analysis

(iv) recomputing the surface normal vector at the face over which the pressure integral is
to be performed. Then, the pressure integral is evaluated only for the faces affected. The
sensitivity with respect to the coordinate of the vertex considered is subsequently found
by considering the three components of the non-real part of the dual-number-valued
result.

Extension to composite overset discretizations

As discussed in the preceding section, overlap of the surface grids can occur, when
composite overset grids are used for the discretization of the flow domain. The zipper
grids that have been used to facilitate the accurate evaluation of the surface integrals
in these situations, depend on the grid used for the discretization of the flow domain.
Therefore, when the sensitivity of the objective function with respect to the coordinate
of a vertex on the surface of the geometry must be determined, the zipper grid must be
taken into account as well.

The surface area of a triangle of the zipper grid, as well as its surface unit normal
vector are only affected by the three vertices of the original surface grid to which the
edges of the triangle are connected. The interpolation weight is however also affected by
other vertices of the surface grid, since the interpolation weights are determined using
the centres of four quadrilateral faces of the surface grid, as shown in picture 4.11 on
page 65. Consequently, this influence also needs to be taken into account. Based on
this observation, the approach taken to determine the effect of the zipper grid on the
grid sensitivity of the objective function is therefore to reconstruct the zipper grid for
each vertex that affects either the interpolation weight or the metric information of at
least one triangular face. For this purpose, first all vertices are collected, that satisfy
this requirement. Subsequently, for one of the collected vertices, the non-real component
of the dual number that is an element of D

3

is assigned the value 1.0 for each of
the coordinate directions — using a different component of the dual number for each
coordinate direction. Then, the zipper grid is generated and the non-real components of
the resulting interpolation weights and metric data are considered. For non-zero results,
the information of the vertex for which a disturbance has been applied is stored, together
with the information of the triangle for which the non-zero result was observed and the
computed sensitivity information. This procedure is then repeated, until all vertices that
were collected have been handled.

Finally, to take into account the contribution of the zipper grid to the grid sensitivity
of the objective function, the pressure — with zero valued non-real components — of
the quadrilateral faces that are used in the interpolation stencil of a triangular face are
multiplied with the sensitivity data that has previously been computed and stored. This
result is then added to the sensitivity that was already computed for the vertex that is
being considered.

6.8 Design variable sensitivity of objective

function
(

i.e.
∂I
∂α

)

Some design variables directly affect the value of the objective function for an aerody-
namic shape optimization problem. An example of such a design variable is the angle

138

6.9 Design variable sensitivity of grid

of attack — for instance, when a 2D aerofoil shape optimization problem is considered,
with the drag coefficient acting as the objective function. To compute the sensitivity
of the objective function with respect to design variables like these, first a dual number
copy of the converged flow solution is made, with the non-real part initialized as zero.
Subsequently, the non-real part of the design variable considered is assigned the value 1.0.
Then, the control volumes for which the flow solution is directly affected by the design
variable are recomputed. This situation is usually only applicable to halo control volumes.
Finally, the objective function is evaluated. The non-real part of the result gives the
sensitivity of the objective function with respect to the design variable considered.

Note, that computing this sensitivity does not require any extension or modification in
the case that a composite overset discretization is used instead, apart from the method
used for computing the objective function. This modification, however, must also be
made, even when computing this sensitivity is not considered.

6.9 Design variable sensitivity of grid
(

i.e.
dX
dα

)

The approach taken to compute dX
dα is to just construct a new grid for a geometric

design variable with a non-real part of the dual number equal to one. Construction
of a dual number hyperbolic field grid requires modification of the method used for
solving the system of linear equations involved in the hyperbolic grid generation algorithm.
The external software library PETSc is used for solving this system of linear equations.
Although there is a possibility to use PETSc for solving systems of linear equations
involving complex numbers, there is no such capability for dual numbers. To address this
issue, the following approach is taken. Consider the dual-number-valued system of linear
equations

Ax = b, (6.17)

with A ∈ Dn×n, x, b ∈ Dn and n ∈ N1. By denoting

A = A1 + εA2, with A1, A2 ∈ Rn×n,

b = b1 + εb2, with b1, b2 ∈ Rn,

x = x1 + εx2, with x1, x2 ∈ Rn,

this system of equations can also be written as a larger coupled system of the real and
non-real part, which now involves only real-valued numbers

[
A1 0

A2 A1

](
x1

x2

)

=

(
b1
b2

)

·
(6.18)

Note, as observed before, that there is no influence of the non-real part x2 on the
real-valued result x1. Moreover, observe that x1 is just the solution of the real-valued
grid generation procedure and therefore already available, the equation can therefore be
rewritten to

A1x2 = b2 − A2x1. (6.19)

The result of this strategy is that the dimension of the system of equations that must
be solved to obtain the dual number result, does not increase with respect to the real-
valued grid generation procedure. Instead, an additional system of linear equations, of the

139

6. Sensitivity analysis

same dimension as the original one, must be solved. However, since the computational
effort required to solve a matrix equation is typically quoted as being on the order of
the size of the matrix raised to some power q̄ ∈ R with (q̄ > 1) — where the value of
the exponent q̄ depends on the algorithm used [60, 62] — solving the additional system
of linear equations is more efficient than solving the larger system of equation (6.18).
Moreover, because matrix A1 appears both times in the left hand side of the equations,
parts of the solution procedure can be reused. When the solution is, for instance, obtained
using a preconditioned GMRES iterative procedure, the preconditioner matrix can be
reused. Using a direct method instead, by means of LU decomposition, can be even more
efficient, since the decomposition needs to be performed only once. Then, the solution
of the non-real part is obtained by performing a forward and a backward substitution
for respectively the lower and upper triangular matrix. By the application of a dual
number with a non-real part consisting of multiple components, as in equation (6.2),
this procedure can be repeated for a number of times equal to the dimension of the
non-real part, resulting in an even more efficient algorithm. Since this approach involves
only real-valued systems of linear equations, existing algorithms for solving real-valued
systems can be used.

Once the complete dual number grid has been computed, using the procedure de-
scribed above, the sensitivity of the grid with respect to the design variable that was
given a non-real value of 1.0 is determined by considering the non-real part of the vertex
coordinates of the resulting grid.

Extension to composite overset discretizations

The use of a composite overset discretization of the flow domain does not require addi-
tional work for the computation of the sensitivity of the grid with respect to a geometrical
design variable. In the present approach, however, the product of ∂R

∂X
and dX

dα is com-
puted by the evaluation of the residual of the flow equations on a dual number grid —
i.e. only when a composite overset discretization of the flow domain is used. Therefore,
the implicit holecutting method must be carried out with dual numbers as well. Realizing
this requirement is straightforward, using the template functions of C++. However, when
the solution of a linear system of equations is required for determining the interpolation
coefficients of the fringe cells, as discussed in subsection 4.5.4, some additional work
must be performed. For this purpose, the same approach is used as for the generation of
the dual number grid.

6.10 Solution method for the adjoint equations

The adjoint equations consist of a system of linear equations. The matrix involved in this
system of linear equations is the transposed Jacobian matrix. Since transposing a square
matrix does not alter its eigenvalues — because the transposed matrix shares the same
characteristic polynomial as the untransposed one — the properties of the linear system
of equations are the same as for the system of equations involved in Newton’s method,
used to obtain the flow solution. Therefore, a similar solution strategy can be used for
solving the adjoint equations.

For the purpose of solving the adjoint equations, the transpose of the Jacobian matrix
based on the first-order discretization of the convective flux is computed as well as

140

6.11 Verification of adjoint implementation

the transpose of the Jacobian matrix based on the second-order discretization of the
convective flux. The first-order matrix is used for the construction of the preconditioning
matrix, for which an ILU decomposition is employed. Subsequently, the adjoint vector is
obtained by solving the linear system of equations by means of a preconditioned GMRES
method. This procedure is analogous to the method used to compute the increment of
the flow solution in Newton’s method. However, when the increment of the flow solution
is computed, the iterative solution method is usually converged only a few orders of
magnitude, while for the adjoint equations a more accurate solution is required, in order
to obtain accurate gradients.

For constraint functions that also require the solution of the adjoint equations, the
preconditioner matrix — constructed for computing the adjoint vector for the objective
function — can simply be reused, since the left hand side matrix in both adjoint equations
is exactly the same.

6.11 Verification of adjoint implementation

The accuracy of the implementation of the adjoint equation method is verified by using
a different method to compute the gradients and comparing the result with the result
obtained by means of the adjoint equation method. For the alternative approach, the flow
solution method is treated as a function that has design variables as input parameters
and the result of the objective function as output parameter. Subsequently, the dual
number method is used to directly compute the derivatives of the objective function with
respect to the design variables.

6.11.1 Approach

The approach taken is as follows. First, a fully converged real-valued flow solution is
computed, denoted U

∗ ∈ Rncons·nc . Then, one of the design variables is assigned a non-
real value of unit magnitude. Subsequently, a new grid is generated and preprocessing
of the grid is performed, including determining the overset block connectivity. For the
initialization of the flow field for this dual-number-valued grid, the converged real-valued
flow solution is used. Then, the residual vector R ∈ Dncons·nc of the governing equations
is computed. As a converged flow solution is used for the initialization, the real-valued
elements of the residual vector will have a magnitude close to that of machine precision.
The non-real part of the solution is now obtained by employing the same approach as
used for determining the design variable sensitivity of the grid, discussed in section 6.9.
Since the real-valued solution has been fully converged, the system of linear equations
does not need to be solved for the real part any more, which also means that the non-real
part of the Jacobian matrix is not required. The non-real part of the flow solution —
i.e. U2 ≡ D (U), U ∈ Dncons·nc — is obtained by solving

A1 (U∗) U2 = −D (R (U∗)) , (6.20)

where A1 ∈ Rncons·nc×ncons·nc is the real-valued Jacobian matrix, i.e. the non-real part
is a linear problem even though the real part is non-linear. This approach means that
both the real-valued Jacobian matrix as well as the preconditioner matrix — required
for solving the system of linear equations — only need to be computed once and that

141

6. Sensitivity analysis

y

z
x

Figure 6.10: Control point mesh and corresponding surface geometry of the ONERA M6 wing,
consisting of 11 control points per chordwise section. The wing is defined by 4
chordwise sections and an additional series of 3 × 11 control points is used to
specify the tip-cap.

they can be reused for obtaining the non-real part of the flow solution for the subsequent
design variables.

Once the flow solution has been obtained, the total derivative of the objective function,
with respect to the design variable considered, is determined by evaluating the objective
function for the dual-number-valued flow solution on the dual-number-valued grid and
considering the non-real part of the result.

For the computation of the derivatives by means of the adjoint equation method,
the residual of the iterative method used to solve the adjoint equations was required to
converge 15 orders of magnitude with respect to its initial value.

6.11.2 Geometry and flow configuration

For the verification of the derivatives, the flow around the ONERA M6 wing, with a
sharp trailing edge, is considered. The geometry is parametrized by means of a NURBS
surface, using 11 control points per chordwise section and 4 control points in the spanwise
direction of the wing, see figure 6.10. The z-component of the coordinate of every
control point is used as an independent design variable, except for the final chordwise
cross-section at the tip of the wing for which the z-component is the same for all control
points. Moreover, the final cross-section remains symmetric, which means that only six
control points are used for the design parameters. The two control points at the trailing
edge of the wing coincide. The control point for the trailing edge of the root section
remains at a fixed position. For the other control points, the x and y-component of
the coordinate of the control point are independent. Apart from the design parameters
describing the geometry of the wing, an additional parameter is used to specify the inflow
angle of the free-stream with respect to the x-axis. Using the parametrization specified
above, the number of design parameters amounts to 128, including the weights associated
with the control points.

The flow conditions chosen for the verification are: a free-stream Mach number

142

6.12 Summary

Table 6.2: The number of cells used for the discretization of the flow domain around the
ONERA M6 wing, used for the verification of the implementation of the adjoint
equation method. For the body-fitted grid n1 is in the circumferential direction, n2

is in the spanwise direction and n3 is in the direction normal to the surface of the
wing. For the background grid n3 is in the spanwise direction. For the single block
results, only the body-fitted grid is used.

block n1 n2 n3

body-fitted 64 40 44
Cartesian background grid 50 50 20

of M∞ = 0.30 at an inflow angle of α = 3.00 with respect to the x-axis.
Verification is performed for both a single block grid and for a composite overset grid,

consisting of a body-fitted grid and a Cartesian background grid. The verification of
consistency of the implementation does not require the same spatial resolution as required
to accurately resolve the flow physics [132]. Therefore, coarser grids are used, to alleviate
the computational requirements for this verification, since the dual number method is
not very efficient for determining such a considerable number of total derivatives. The
number of cells used for the discretization is listed in table 6.2.

6.11.3 Results

Functions considered for this verification are the lift and drag coefficient for the wing.
The results are presented in table 6.3, by means of two different norms and the quadratic
mean of the vector that represents the difference between the result obtained by means
of the adjoint equation method and the result obtained by means of the dual number
method. These norms are computed for both the absolute as well as for the normalized
difference.

Considering the very small differences between the results computed with the two
different methods used, it can be concluded that the gradients computed by means of
the adjoint equation method are consistent; both for the single block as well as for the
composite overset discretization of the domain. Moreover, it should be noted that the
results appeared to be dependent on the optimization settings used for the compiler,
indicating that the differences observed are probably a reflection of machine precision —
for the double-precision floating-point arithmetic used — affecting the results.

6.12 Summary

In this chapter, the method used to efficiently compute the gradient of the objective
function has been presented. Efficiency of the method is achieved by:

(i) using the discrete adjoint equation method, which limits the number of flow solu-
tions that must be obtained to only one;

(ii) applying graph vertex colouring, which is used to compile independent sets, such
that multiple partial derivatives can be computed simultaneously;

143

6. Sensitivity analysis

Table 6.3: Norms and the quadratic mean of the difference between the gradient of the force
coefficients CD and CL, computed using the discrete adjoint equation method and
the dual number method. Normalization has been performed using the results of the
adjoint equation method.

CD

discretization || · ||∞ || · ||
2

(·)rms

absolute difference 9.221 · 10−14
2.146 · 10−13

1.897 · 10−14

single block
normalized difference 2.749 · 10−10

2.982 · 10−10
2.635 · 10−11

absolute difference 8.824 · 10−14
2.166 · 10−13

1.914 · 10−14

overset
normalized difference 2.399 · 10−10

3.160 · 10−10
2.793 · 10−11

CL

discretization || · ||∞ || · ||
2

(·)rms

absolute difference 3.206 · 10−13
6.506 · 10−13

5.750 · 10−14

single block
normalized difference 6.982 · 10−11

9.533 · 10−11
8.426 · 10−12

absolute difference 3.704 · 10−13
6.922 · 10−13

6.118 · 10−14

overset
normalized difference 3.039 · 10−11

4.764 · 10−11
4.211 · 10−12

(iii) using the dual number method in vector mode to compute the partial derivatives,
which reduces the number of arithmetical operations that must be performed to
obtain the result.

Note, that although a single flow solution is sufficient, the use of the adjoint equations
does require the solution of an additional system of linear equations for the objective
function. Moreover, some of the constraint functions also require the solution of a similar
system of linear equations. The computational cost of solving the additional system of
linear equations is comparable to performing a single Newton iteration, used for obtaining
the flow solution. Therefore, when a significant17 number of design variables is used —
which is typically the case for aerodynamic shape optimization problems — the adjoint
equation method is far more efficient than a method requiring a number of flow solutions
proportional to the number of design parameters.

The discrete adjoint equation method has been chosen, because it provides derivatives
that are consistent with the solution of the discretized governing equations and because
of the relatively simple implementation, compared to the continuous approach for the
adjoint equation method.

To be able to use the dual number method for computing the partial derivatives, the
flow solution method has been implemented using the concept of function templates.
Function templates are a concept in C++ — the programming language used — that

17i.e. the number of design parameters is considerably larger than the number of constraint functions
requiring the solution of the adjoint equations.

144

6.12 Summary

allows for a function to be used with different data types. Therefore, these functions can
be used with both ordinary floating-point numbers and with dual numbers.

For checking the correctness of the implementation of the discrete adjoint equation
method, the derivatives have also been computed by the direct application of the dual
number method, to compute the total derivatives. The results show that the gradients
obtained by means of the adjoint equation method are consistent with those obtained
by means of the dual number method. Based on this observation, the discrete adjoint
equation method is considered to be correctly implemented in the flow solution method.

145

7
Optimization method and results

“Evolution has ensured that our brains just aren’t equipped to visualise 11 dimensions
directly. However, from a purely mathematical point of view it’s just as easy to think
in 11 dimensions, as it is to think in three or four.”

— Stephen W. Hawking (1942 – present)

I
n the preceding chapters, the development of the different components of the optimiza-
tion framework has been described. Moreover, the verification of the implementation

of these components has been performed and the corresponding results have been pre-
sented. This chapter shows how these different parts are combined to a method that
can be used for solving aerodynamic shape optimization problems. The capabilities of
the optimization method are subsequently demonstrated by solving two different shape
optimization problems. Thereafter, a discussion on solving an aerodynamic shape opti-
mization problem involving a rotor blade is presented.

7.1 Introduction

A gradient-based approach is used in the present research for solving aerodynamic shape
optimization problems. The computational costs associated with obtaining a discrete
approximation to the solution of the partial differential equations that govern the flow,
combined with the observation that a considerable number of design parameters is re-
quired to accurately describe a 3D geometry, resulted in the choice of using the discrete
adjoint equation method to compute the gradients of the objective function and con-
straint functions. Figure 7.1 presents a flow chart of the optimization procedure that
corresponds to the approach taken in the present research.

The optimization procedure starts with the definition of the optimization problem.
This definition involves the specification of the objective function and the constraints
that the design must satisfy. Moreover, since a gradient-based approach is employed,
the choice of the initial design is important. This initial design provides the value of the
design parameters that are fed into the optimization loop. Also the flow conditions for
which the design is considered need to be specified.

A grid is generated based on the design parameters provided and the flow domain
specified. This discrete representation of the flow domain is subsequently used to obtain
a flow solution. Once the flow solution has been obtained, the objective function and
constraint functions can be evaluated. Moreover, the partial derivatives, that are required
to assemble the adjoint equations and the expression for the gradient involving the adjoint

147

7. Optimization method and results

define

optimization

problem

design parame-
ters initial design

χ generate grid X

compute
flow solution

U

evaluate objective
and constraint

function(s)

I, C

compute partial
derivatives

∂R

∂U
, ∂I

∂U
, ∂C

∂U

∂R

∂χ
, ∂I

∂χ
, ∂R

∂X

∂I

∂X
, dX

dχ
solve adjoint
equation(s)

ψ
I
, ψC

compute total
derivatives

dI

dχ
, dC

dχ

compute new
design parameters

optimal

optimizer

done

update design
parameters

yes

no

Figure 7.1: Flow chart of an adjoint-based aerodynamic shape optimization method. A square
box with rounded corners represents a process or task, while a rhomboid-shaped
box represents an input or output.

148

7.2 General aspects

vector — i.e. equation (6.9) and (6.8), respectively — can now be computed. Once the
adjoint equation for the objective function has been assembled, its solution is obtained
iteratively using a GMRES method. The same applies for additional adjoint equations
associated with each of the non-linear constraint functions that also depend on the flow
solution. With the adjoint vector or vectors determined, the total derivative of the
objective function can be computed.

The values computed for the objective function and for the constraint functions are
then provided to the optimizer, together with the total derivatives. This information is
subsequently used by the optimizer to calculate a new value for the design parameters
and to determine if the optimization procedure has converged. In case the convergence
criteria have not been met, the design parameters are updated and the whole procedure
is repeated.

The optimization algorithm employed in the present research has been developed at
Stanford University and is called SNOPT, which is an acronym for Sparse Nonlinear
Optimizer [71]. This optimizer is a sequential quadratic programming (SQP) method
that uses a smooth augmented Lagrangian merit function [70] to solve large-scale non-
linear optimization problems. For the approximation of the Hessian matrix, required for
performing the line search in the quadratic programming method, a BFGS quasi-Newton
method is used [24,25,49,64,73,163]. Although SNOPT is used in the present research
as a ‘black-box’ with the objective function and constraint functions as input, together
with their corresponding gradients, some details of the method are discussed here. This
is necessary to explain the convergence histories of the optimization problems considered
later on in this chapter.

The convergence of the optimization is measured by a quantity denoted as optimality ,
which represents the ratio between the largest component of the gradient of the La-
grangian merit function and the ℓ2-norm of the vector of Lagrange multipliers. Moreover,
the level of compliance to the constraints is denoted as feasibility . The feasibility is
represented by the ratio of the largest violation of one of the non-linear constraints and
the ℓ2-norm of the vector of design variables. For details on the exact formulation of
these two quantities, the original description of the algorithm can be consulted [71].

7.2 General aspects

This chapter first presents two different optimization problems, which have been solved
to demonstrate the capabilities of the optimization method that has been developed in
the present research. In the first optimization problem considered, the drag of a swept
wing, subject to transonic flow conditions, is minimized for a fixed lift coefficient. In the
second optimization problem, the wing span efficiency of a swept wing is maximized, also
for a fixed lift coefficient. For both optimization problems, the initial geometry used is
the same, being the ONERA M6 wing, which is a geometry that has been utilized before
in this thesis. Because common aspects exist for both optimization problems considered,
these general aspects are treated first.

7.2.1 Initial geometry and parametrization

For the initial geometry, a NURBS surface is used that approximates the ONERA M6 wing.
The NURBS surface is the same as the one used for the verification of the implementation

149

7. Optimization method and results

Table 7.1: The number of cells used for the discretization of the flow domain around the swept
wing, used in the optimization. For the body-fitted grid n1 is the number of cells
around a chordwise section, n2 is the number of cells in the spanwise direction and
n3 is the number of cells in the direction normal to the surface of the wing. For
the background grids n1 is in the chordwise direction, n3 is in the spanwise direction
and n2 is in the third direction, perpendicular to both the chordwise and spanwise
direction. The bottom row lists the total number of control volumes used for the
discretization.

block n1 n2 n3

body-fitted 192 80 44
uniform Cartesian 50 50 50
refined Cartesian 60 60 30
total 908 840

of the adjoint equation method, which is depicted in figure 6.10 on page 142. Therefore,
the wing geometry is represented by 4 different chordwise sections, each defined by 11
control points. The control points of each section have the same z-component. To close
the wing at the tip, a tip-cap is added. Since the geometry of the wing changes during
the optimization procedure, the geometry of the tip-cap must also adapt accordingly, in
order to have the tip-cap fit properly to the wing. For that purpose, the geometry of the
tip-cap is also represented by the same NURBS surface that represents the wing geometry,
by adding additional sections of control points to the NURBS surface definition. The
locations of the control points that represent the tip-cap are determined based on the
geometry of the wing, in particular the geometry of the last section that specifies the
wing geometry. Since the control points specifying the tip-cap directly depend on the
rest of the control points of the NURBS surface, the coordinates of the control points of
the tip-cap are not actual design variables. Consequently, when a non-real disturbance is
applied to one of the control points of the wing — in order to compute the sensitivity with
respect to that control point — which affects the geometry of the tip-cap, the method
used for determining the location of the control points that specify the tip-cap must also
be applied; in order to obtain the correct value of the sensitivity.

7.2.2 Flow domain and discretization

For the discretization of the flow domain, a composite overset grid is used, similar to
the one used for the validation of the flow solution method, discussed in section 5.9.1
on page 114. The discretization of the flow domain consists of a body-fitted grid, which
extends to 4 times the mean aerodynamic chord length from the wing surface and two
Cartesian background grids. The far-field boundaries of the second Cartesian background
grid are situated at about 5 times the wing span from the tip of the wing and 100 times the
mean aerodynamic chord upstream and downstream of the wing. The block dimensions,
in terms of the number of cells, for the different blocks, are listed in table 7.1.

150

7.2 General aspects

7.2.3 Geometrical constraints

In order to obtain a feasible result from the optimization, a number of constraints are
imposed. These constraints concern the geometry itself, but also constraints have been
imposed on the control points. The latter have been used to prevent the occurrence
of extreme, unrealistic geometries, which might result in the optimization procedure to
terminate; either because the grid generation method fails to construct a valid body-fitted
grid or because the flow solution method fails to obtain a converged flow solution. For
this purpose, the distance between the control points must be larger than or equal to a
certain minimum value. Moreover, the angle between two consecutive line segments of
the control polygon — see figure 2.2 on page 24 — of the chordwise sections that define
the wing shape, should be smaller than or equal to a certain value, for every control
point.

Concerning the further geometrical constraints, the planform area of the wing is forced
to be between an upper and a lower bound. The internal volume of the wing is constrained
to be larger than or equal to the volume of the initial wing. The maximum curvature
occurring somewhere on the geometry is constrained to be smaller than a specified value.
This constraint has been imposed to prevent the leading edge from becoming too sharp.
Moreover, the trailing edge angle is constrained to be larger than or equal to a specified
value. This constraint function is evaluated for each section used in the parametrization
of the geometry and has been imposed to prevent the geometry from becoming too thin
towards the trailing edge.

Volume constraint

For the computation of the volume constraint, the surface definition of the wing geometry
by a NURBS surface is exploited. Gauss’ divergence theorem states that

∫

V

∇ · F (x) dV =

∫

∂V

F (x) · ndS, (7.1)

where n is the outward pointing unit normal vector and F (x) an arbitrary continuously
differentiable vector field defined on a neighbourhood of V . Note, that the NURBS
surface representing the wing is open at the symmetry plane. Since the only non-zero
component of the normal vector of the symmetry plane is in the z-direction, F (x) is
chosen to be (x, y, 0)

T so that ∇ ·F = 2. This choice for F (x) warrants that the open
part of the NURBS surface has no contribution to the surface integral and does therefore
not need to be taken into account. Using the divergence theorem and the present choice
for F (x), the volume of the wing can be expressed as

Vwing =
1

2

∫

∂V

(xnx + yny) dS. (7.2)

Transformation of this surface integral to the parametric variables of the NURBS surface,
yields

Vwing =
1

2

1∫

v=0

1∫

u=0

(xnx + yny)

∣
∣
∣
∣

∣
∣
∣
∣

∂Spq

∂u
× ∂Spq

∂v

∣
∣
∣
∣

∣
∣
∣
∣

du dv. (7.3)

151

7. Optimization method and results

This expression is evaluated by means of numerical integration. For this purpose, the pa-
rameter space is uniformly discretized in both directions with 200 elements. Subsequently,
a four-point Gauss-Legendre quadrature rule [2] is used, to compute the contribution of
the integral for each discrete surface element.

7.3 Drag minimization in transonic flow

This optimization problem considers the transonic flow around a swept wing. For the
initial design — for which the ONERA M6 wing is used — shock waves are present
at the suction side of the wing, which have a significant contribution to the total drag
experienced by the wing. The aim of the present optimization is therefore to reduce
the drag. The drag minimization of a swept wing with the ONERA M6 wing as initial
geometry is widely used for testing aerodynamic optimization methods [31, 112, 179].
Although the transonic flow regime encountered in this situation is not representative for
the flow around a wind turbine rotor, it perfectly serves the purpose of demonstrating the
capabilities of the present method for solving aerodynamic shape optimization problems.

7.3.1 Definition of optimization problem

For the present optimization problem transonic flow conditions are considered, with a free-
stream Mach number of M∞ = 0.84. The flow is at an initial inflow angle of α = 3.00

◦.
These conditions are close to the conditions used for the validation case, presented in
chapter 5.

The objective function considered concerns the minimization of the drag coefficient,
defined by equation (5.80). Furthermore, an equality constraint is imposed on the lift
coefficient, defined by equation (5.79), also on page 117. For this constraint the value
of the lift coefficient is the value obtained for the initial design at the specified flow
conditions and the discretization used, i.e. CL = 2.8297 · 10−1. The latter is done,
because the grid used for solving the optimization problem is coarser than required for
obtaining a grid-converged result.

The design variables used are the x and y-component of the coordinates of the control
points. To prevent the optimization method from failing — for reasons previously men-
tioned — bounds have been imposed on these design variables. The x-component of the
coordinate of each control point has been limited to take a value between (x0 − 0.05 c̄loc)
and (x0 + 0.05 c̄loc), where c̄loc is the chord length of the section considered and x0 is
the initial value at the start of the optimization. Similarly, the y-component of the coor-
dinate of each control point has been limited to take a value between (y0 − 0.015 c̄loc)
and (y0 + 0.015 c̄loc). For the angle of attack the constraint is that it stays within the
range −4

◦ ≤ α ≤ 4
◦. The number of design parameters used in this optimization

amounts to 71.
The default settings for obtaining the flow solution are to first perform 16 000 Runge-

Kutta iterations. Subsequently, Newton’s method is used to obtain the fully converged
flow solution, for which a default of 12 iterations is used. The system of linear equations
for a Newton iteration is converged two orders of magnitude.

For the optimization the convergence criteria have been set to 10
−5 for the optimality

tolerance and 10
−6 for the feasibility tolerance.

152

7.3 Drag minimization in transonic flow

optimality

feasibility

function evaluations

0 10 20 30 40 50

1
0
4

×
(I

≡
C

D
)

65

70

75

80

85

90

95

function evaluations

0 10 20 30 40 50

lo
g
1
0

(f
)

−7

−6

−5

−4

−3

−2

−1

0

Figure 7.2: Convergence history for the minimum drag coefficient optimization problem. Left
plot shows the evolution of the objective function. Right plot depicts both the
optimality and feasibility of the design. Only major iterations are represented by a
marker.

Table 7.2: Breakdown of an optimization iteration in different tasks with the corresponding
timing. Calculation performed on two Intel Xeon X5650 processors, with each 6
cores, running at 2.67 [GHz]. The presented wall clock time has been averaged over
10 optimization iterations.

component absolute time [s] fraction

grid 57.96 0.0040
flow solution 9 721.38 0.6681 1.000

Runge-Kutta 8 984.13 0.924

Newton 737.25 0.076

Jacobian matrix 15.11 0.0010
adjoint vectors 803.08 0.0552
geometrical constraint sensitivity 15.22 0.0010
∂I/∂X and ∂C/∂X 1.40 0.0001
(∂R/∂X) (dX/dχ) (design variable sensitivity of residual) 3 919.82 0.2694
miscellaneous 17.10 0.0012
total 14 551.07 1.0000

153

7. Optimization method and results

initial design optimal design

x

zz

Figure 7.3: Iso-Cp contours on the surface of the wing. Free-stream Mach number
of M∞ = 0.84, CL = 2.8297 · 10−1.

7.3.2 Results and discussion

Figure 7.2 shows the convergence behaviour of the optimization problem. The left plot
shows the convergence history for the objective function. The abscissa represents the
number of evaluations of the objective function, which means that the flow solution must
be recomputed. Although the optimizer does not require the gradients to be computed
for every new evaluation of the objective function, usually the gradients are required
to be recomputed as well. When the gradients are required, two adjoint equations are
solved, one for the objective function itself and an additional adjoint equation for the lift
coefficient, which acts as an equality constraint. The optimization algorithm sometimes
requires the objective function to be evaluated for the so-called minor iterations as well.
However, for these minor iterations the value of the objective function is not plotted in
the graph; only the value of the objective function for the major iterations is depicted.
The convergence history shows that in the first major iteration a large improvement in
the value of the objective function is achieved. Subsequently, in the remaining 22 major
iterations, a more gradual reduction is observed. In the optimization the drag coefficient
reduces from its initial value of 9.703 ·10−3 to 6.393 ·10−3 for the optimal solution, which
is a reduction of 34.1%. The right plot in figure 7.2 shows the convergence history for
both the optimality and the feasibility. The convergence of the feasibility indicates that
some difficulties are encountered in satisfying the constraints. Investigation revealed that
the curvature constraint is the cause for this behaviour.

Figure 7.3 compares the planform shape and the iso-contour lines of the pressure
coefficient for the suction side of the wing, for the initial design and for the geometry
corresponding to the optimal design. These results show that the strong shocks present
for the initial design have nearly vanished for the optimal result. Only a weak shock
halfway the chord close to the tip of the wing remains. Moreover, close to the trailing
edge a weak shock is present, that ranges from the root of the wing to about 60 %
of the span. A more detailed view of the pressure coefficient distribution can be found
in figure 7.4, which compares the pressure coefficient distribution for different spanwise
locations. These graphs also clearly show the significant reduction of the shock on the

154

7.3 Drag minimization in transonic flow

initial design

optimal design

(a) 2z/b = 0.20

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(b) 2z/b = 0.44

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(c) 2z/b = 0.65

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(d) 2z/b = 0.80

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(e) 2z/b = 0.90

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

(f) 2z/b = 0.95

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

C
p

0.5

0.0

−0.5

−1.0

Figure 7.4: Comparison between the numerical results for the flow around a swept
wing subject to a free-stream Mach number of M∞ = 0.84 and lift constraint
of CL = 2.8297 · 10−1, for the initial design and for the result of solving the opti-
mization problem of minimizing the drag coefficient.

155

7. Optimization method and results

suction side of the wing.
Table 7.2 on page 153 lists a breakdown in different tasks of an optimization iteration

and the corresponding timing for each of the tasks. The results have been obtained
by averaging over 10 separate optimization iterations, that required both the objective
function and the gradient to be computed. These results show that computing the flow
solution has a major contribution in the overall time required for a single optimization
iteration. In particular performing the explicit Runge-Kutta pseudo-time-steps takes a
long time. Therefore, it might be more suitable to use a different globalization strategy,
i.e. the method used to determine a suitable initial guess for Newton’s method, that
is more efficient in terms of computation time required. Moreover, the computation of
the grid sensitivity has also an important contribution in the computing time. Solving
the two adjoint equations, on the other hand, has only a minor contribution to the
total computing time, which indicates that it has been a good choice to use the adjoint
equation method for the gradient computation.

7.4 Wing span efficiency maximization

In order to also consider an optimization problem for which the flow conditions are
more representative for the flow around a wind turbine rotor, the following optimization
problem for subcritical flow conditions is considered. The optimization problem concerns
the subcritical flow around a swept wing and the objective is to maximize the wing span
efficiency e.

7.4.1 Definition of optimization problem

The wing span efficiency, used in this optimization to be maximized, is defined as [7]

e :=
C2

LS

πb2CD
, (7.4)

where b denotes the full wing span and S represents the planform area of the full wing.
The subcritical flow conditions used are a free-stream Mach number of M∞ = 0.30 and
the initial inflow angle is α = 3.00

◦. For the maximization of the wing span efficiency,
an equality constraint is imposed on the lift coefficient. As in the preceding optimization
problem, for this constraint the value is taken equal to the value of the lift coefficient
obtained for the initial design at the specified flow conditions and the discretization used,
i.e. CL = 2.0200 · 10−1.

The design variables used are the y-component of the coordinates of the control
points and the z-component for the 11 control points of each section, resulting in a
total of 39 design parameters, including the angle of attack. To prevent the optimization
method from failing — for reasons previously mentioned — bounds have been imposed
on these design variables. The y-component has been limited to take a value between
(y0 − 0.05 c̄loc) and (y0 + 0.05 c̄loc). Similarly, the z-component has been limited to take
a value between (z0 − 0.25 b) and (z0 + 0.25 b), where b is the wing span for the initial
design. Since the z-component is a design variable, an additional geometrical constraint
is imposed on the wing span, for which the value of the semi-span should be between
1.00 [m] and 1.30 [m]. For the angle of attack the permitted range is −5

◦ ≤ α ≤ 5
◦.

156

7.4 Wing span efficiency maximization

optimality

feasibility

function evaluations

0 5 10 15 20 25 30

I
≡

e

1.20

1.25

1.30

1.35

1.40

1.45

1.50

function evaluations

0 5 10 15 20 25 30

lo
g
1
0

(f
)

−7

−6

−5

−4

−3

−2

Figure 7.5: Convergence history for the maximum wing span efficiency optimization problem.
Left plot shows the evolution of the objective function. Right plot depicts the
optimality and feasibility of the design. Only major iterations are represented by a
marker.

The default settings for obtaining the flow solution are to first perform 16 000 Runge-
Kutta iterations. Subsequently, Newton’s method is used to fully converge the steady
flow solution, for which a default of 16 iterations is used. Again, the system of linear
equations for a Newton iteration is converged two orders of magnitude.

For solving the optimization problem, the same convergence criteria have been used
as for the previous optimization problem, i.e. optimality tolerance of 10−5 and feasibility
tolerance of 10−6.

7.4.2 Results and discussion

The convergence behaviour for the present optimization problem is presented in figure 7.5.
Considering the left plot, similar behaviour as for the transonic drag-minimization problem
is observed. In the first few iterations a large change in the value of the objective function
is realized, while towards the end only very minor improvements are observed. Regarding
the convergence history of the feasibility, no problems in satisfying the constraints are
observed for this optimization problem.

As with the transonic drag optimization problem, two adjoint equations are solved
for computing the gradients. One adjoint vector is required for efficiently computing the
gradient of the lift coefficient. The gradient for the objective function is, however, not
computed using an efficiency factor specific adjoint vector. Instead, the gradient of the
drag coefficient is computed by means of the adjoint equation method. The product rule
and chain rule of differentiation are subsequently used to compute the gradient of the
wing span efficiency. With this approach, the already implemented and verified methods
for computing the gradient of CD could be reused, which saved time required for the
implementation and verification of the method.

A striking result of the solution of this optimization problem is that the final value
of the objective function considerably exceeds 1.0. Based on lifting line theory for a
high-aspect-ratio low-sweep thin wing, the value of 1.0 is considered optimal. However,
some assumptions in lifting line theory, such as the wake being planar, do not apply to

157

7. Optimization method and results

initial design

optimal design

(a) 2z/b = 0.05

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

(b) 2z/b = 0.20

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

(c) 2z/b = 0.40

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

6

(d) 2z/b = 0.60

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

6

(e) 2z/b = 0.80

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

6

(f) 2z/b = 0.95

x/̄cloc

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0

y
/̄c

lo
c

−8

−6

−4

−2

0

2

4

6

Figure 7.6: Comparison of the geometry of the initial design and the geometry resulting
from solving the optimization problem. For the maximization of the wing span
efficiency at a free-stream Mach number of M∞ = 0.30 and lift constraint
of CL = 2.0200 · 10−1. Note, that for b the value of the initial design is used.

158

7.4 Wing span efficiency maximization

elliptical lift distribution, e = 1.000

lift distribution optimal design, e = 1.494

2z/b

0.0 0.2 0.4 0.6 0.8 1.0

c l

0.00

0.05

0.10

0.15

0.20

0.25

Figure 7.7: Lift distribution of optimal design for the wing span efficiency maximization prob-
lem, M∞ = 0.30 and CL = 2.0200 · 10−1. Shown is also the elliptical lift distribu-
tion with identical lift coefficient.

the present design. Therefore, obtaining a value exceeding 1.0 is possible, although the
present value is still considered quite large. A possible cause for this result may be the
location of the formation of the tip vortex not matching the one that will appear in true
viscous flow, as suggested by Hicken [83].

When the spanwise lift distribution is considered, depicted in figure 7.7, it is clear
that the lift does not show an elliptical distribution; which was already clear from the
wing span efficiency not being equal to 1.0. More lift is produced towards the tip, while
near the root the lift is lower than for an elliptical loading. Therefore, the root bending
moment is larger for the present optimal design, which is not a desirable property from
a structural point of view. To prevent such behaviour, it is recommended to include a
constraint on the root bending moment in the optimization.

Figure 7.6 compares the aerofoil sections of the initial design and the ones from
the final shape of the wing at different spanwise locations. This figure shows that the
geometry has been changed considerably. Twist of the wing has been introduced in the
root section. Moreover, halfway the span of the wing, the aerofoil sections have become
thicker towards the leading edge, while thickness towards the trailing edge has decreased.
A further decrease in thickness was limited by the constraints on the design variables, in
particular the y-component of the coordinates of the control points. Although, a number
of geometrical constraints have been imposed to enforce a certain thickness, such as the
trailing edge angle constraint and the volume constraint, they did allow for the wing to
be locally very thin. Therefore, instead of limiting the design variables, it might be more
direct to employ constraints on the chordwise thickness distribution that can also locally
enforce sufficient thickness of the wing at all locations.

Figure 7.8 compares the planform shape and the iso-contour lines of the pressure
coefficient for the suction side of the wing, for the initial design and for the geometry
corresponding to the optimal design. These results show that the wing span has increased;
to the value specified by the constraint. Moreover, the leading edge and trailing edge
are no longer straight lines. One more remark on the feasibility of the current optimal
design concerns the considerable amount of twist introduced. A strongly twisted wing
has a limited applicability for a real airplane, because the twist unloads the wing near

159

7. Optimization method and results

initial design optimal design

x

zz

b b

Figure 7.8: Iso-Cp contours on the surface of the wing. Free-stream Mach number
of M∞ = 0.30, CL = 2.0200 · 10−1. Note, that the optimal design has a larger
span than the initial design.

the root while it undesirably increases the loading near the tip. This effect might lead to
premature tip stall [168].

7.5 On solving a rotor blade optimization problem

The results presented in the two preceding sections demonstrate the capabilities of the
optimization method developed in the present research. They show that the method
can be used successfully for solving aerodynamic shape optimization problems for 3D
geometries, using composite overset grids for the discretization of the flow domain. The
next step is to apply the method for solving an aerodynamic shape optimization problem
involving a blade of a rotating wind turbine rotor.

7.5.1 Geometry and parametrization

For this optimization problem, an isolated rotor is considered. The geometry used is
based on the blade of the NREL phase VI rotor [68]. This rotor has been tested in the
24.4 [m] ×36.6 [m] NASA Ames wind tunnel. The rotor is part of a 10.06 [m] diameter
stall regulated wind turbine, for which amongst others, blade surface pressures and local
angles were measured at five spanwise locations. The actual geometry of the rotor used
in the wind tunnel tests is quite complex; especially in the hub region, because of the
instruments and control mechanisms used. These detailed features have been discarded
and an ellipsoidal spinner is introduced instead. This approach prevents requiring the
discretization of an unnecessarily complex domain. Moreover, the configuration with
an ellipsoidal spinner more accurately resembles the geometry of a modern commercial
horizontal axis wind turbine rotor.

The rotor blade has linear taper and is twisted. The cross-section for the blade is
from root to tip defined by the NREL S809 aerofoil [181]. At the hub, the blade has a

160

7.5 On solving a rotor blade optimization problem

y

z
x

Figure 7.9: Control points and corresponding surface geometry of the NREL Phase VI rotor
blade, consisting of 13 control points per chordwise section. The blade is defined
using 13 sections. An additional series of 3 × 13 control points is used to specify
the tip-cap.

circular cross-section, which extends to a radius of 0.724 [m]. Then, there is a linear
transition from the circular cross-section to the NREL S809 aerofoil from 0.724 [m] to
a radius of 1.257 [m]. The blade has a finite chord length at the tip. A rounded tip-cap
is added to the tip.

For this blade geometry, a NURBS surface representation has been obtained, using
the NURBS surface fitting method discussed in chapter 2. The NURBS surface uses
13 control points per cross-section. The blade is defined by 13 different cross-sections.
The coordinates of the control points of a single section have the same z-component.
Moreover, for the definition of the tip-cap an additional 3 sets of control points are
used. The NURBS surface with the corresponding grid of control points is presented
in figure 7.9. There are four sections used to represent the circular section near the
hub. The control points of these four sections are not used as design variables in the
optimization. These four sections are required to make sure that the geometry remains
circular in the region where the blade intersects with the spinner when the location of
the control points of the fifth cross-section is modified during the optimization process.
For the construction of the surface grid on the blade and on the spinner, the intersection
between the blade and the spinner is determined. The curve representing this intersection
is used as one of the boundary curves for the surface grid.

7.5.2 Flow conditions

The flow conditions used for the present optimization correspond to standard sea level
conditions. The inflow velocity is 10

[
ms−1

]
and the rotor plane is perpendicular to the

uniform inflow. The rotor blade has a pitch angle of 0◦ and rotates at an angular velocity
of 7.5

[
rads−1

]
, which corresponds to approximately 72 [rpm]. At this angular velocity

the tip speed is 37.7
[
ms−1

]
.

161

7. Optimization method and results

y

z, x

Figure 7.10: Surface grids on the rotor blade and the spinner. The blade surface grid consists
of 128×130 cells. The spinner surface grid consists of 176×40 cells. Only every
other grid line is shown.

7.5.3 Flow domain and discretization

The flow conditions specified in the preceding subsection, will result in a rotationally
periodic flow solution. It is therefore permitted to compute the flow solution for a sec-
tor containing a single rotor blade with rotationally periodic boundary conditions at its
sides. For this single blade, a body-fitted grid is constructed, that extends to approxi-
mately 0.80 [m] from the surface of the blade. The surface grid consists of 128 cells
around each chordwise section and 130 cells in spanwise direction. For the spinner a
body-fitted grid is constructed, which extends to 2.00 [m] from the surface of the spin-
ner. The surface grid on the blade and the spinner are shown in figure 7.10. In the
direction upstream of the spinner, a rhombus-shaped grid is used, that extends all the
way to the inflow boundary, which is situated at approximately 20 times the rotor ra-
dius away from the centre of the blade. Downstream of the spinner is a point-matching
cylindrical grid, that extends to approximately 20 rotor radii, to the location where the
downstream boundary is situated. A so-called collar grid [136] is used to accurately rep-
resent the flow domain in the region of the intersection of the blade with the spinner.
Additional cylindrical background grids are used in radial direction for the discretization
of the domain towards the far-field boundary, which is situated at 9 rotor radii from the
tip of the blade. Including the body-fitted grids, the total number of blocks used for the
discretization of the domain amounts to 11, which have a combined number of 2 736 260
cells. To accommodate the evaluation of surface integrals and for the ray-casting, two
zipper grids are constructed. These zipper grids connect the surface grid for the collar
grid to the surface grid on the rotor blade and to the surface grid on the spinner, similar
as in figure 4.10 on page 63.

162

7.5 On solving a rotor blade optimization problem

Figure 7.11: Detail of the grid on the periodic boundary. Note the higher grid resolution used
to accurately resolve the helical vortex.

Subsonic outflow boundary conditions have been imposed for the outer boundary
downstream of the rotor and the outer boundary in the radial direction. For the boundaries
on the sides of the sector of the circular cylinder, periodic boundary conditions have been
imposed. Upstream of the rotor, far-field boundary conditions are used, to represent the
uniform incoming wind. A schematic representation of the flow domain is depicted in
figure 7.13.

7.5.4 Objective function and constraints

One of the most important aspects of the optimization problem is the objective function
for which the optimization is performed. The objective function defines — together with
the parametrization employed — the design space in which the optimum is searched for.
Moreover, the objective function used largely dictates the properties of the final design
that is obtained by solving the optimization problem.

Considering the purpose of a wind turbine, i.e. extracting energy from the wind, it
has been chosen to optimize for the power extracted from the wind. This power can
be represented in non-dimensional form by the power coefficient, which is defined as the

163

7. Optimization method and results

y
x

z

Figure 7.12: Detail of the block topology of the grid used for the discretization of the flow
domain around the rotor blade. Surface of the blade and the spinner are depicted
in cyan. Edges of: the body-fitted grid of the blade are in pink; the body-fitted
grid of the spinner in red; rhombus-shaped background grid in green; collar grid
in blue; cylindrical background grid for resolving helical vortex in orange; other
cylindrical background grids in black.

ratio of the power extracted by the rotor and the power present in the wind, i.e.

Cpower :=
P̄

1

2
πρR2V 3

wind

, (7.5)

where P̄ is the power extracted by the rotor, Vwind the wind speed and R is the radius of
the rotor. From an aerodynamic point of view, using the power coefficient as objective
function might be a good option. However, using it without considering the implications
of the resulting design on the costs for production and maintenance of the wind turbine
most likely results in a design that is not economically feasible. Actually, the key factor
in the design of a wind turbine is not the aerodynamic performance of the rotor, but
the minimum cost of energy [66]. Therefore, this factor should be properly taken into
account, either implicitly via the formulation of constraints or by a direct representation
in the objective function itself.

To determine the cost of wind energy a number of aspects must be considered. These
aspects include the costs for the construction of a wind turbine, but also the costs for

164

7.5 On solving a rotor blade optimization problem

�
��✒

0

�
��✠

1

✑
✑✑✸

2 ◗
◗◗❦

3

❄

4

boundary boundary condition

0 free-stream
1 subsonic outflow
2 rotational periodic
3 rotational periodic
4 subsonic outflow

z

y
x

Figure 7.13: The NREL Phase VI rotor blade together with an elliptical spinner and a schematic
representation of the flow domain with the imposed boundary conditions indi-
cated. Note, that the dimensions of the flow domain are not to scale and that
rhombus-shaped part upstream of the spinner is not shown.

its operation and maintenance. Another prominent aspect to consider is the amount of
energy that is produced. Because of the large number of factors involved in determining
the actual cost of energy and its multidisciplinary character — which involves not only
technical disciplines, but also, for instance, finance and politics — it is not easy to
formulate an objective function that is suited for a gradient-based optimization method.
It is, however, possible to discuss some of these factors and their implications for the
cost of energy. For that purpose, a number of possible objective functions are discussed
in the context of employing them for the optimization method that has been developed
in the present research.

Blade mass

For the capital costs associated with a wind turbine, the rotor blades have an important
contribution. A large part of the costs for a blade is proportional to its mass, since the
mass is related to the amount of material used. The mass of the blade can be estimated,
using for example the analytical model developed by Ashuri et al. [9]. Such a model has,
however, not been implemented yet in the present optimization method. On the other
hand, the blade mass is heavily correlated to the root bending moment [63] experienced
by the rotor blade. An objective function based on the root bending moment might
therefore be used instead. Since the root bending moment can be computed based on
the aerodynamic forces on the blade, which follow from the flow solution, it is feasible to
use the root bending moment in the present optimization method as objective function
in a minimization problem.

165

7. Optimization method and results

Rotor thrust

Also the tower has a significant contribution in the total costs of a wind turbine. At
rated conditions, the most prominent contribution of the loads exerted on the tower is
associated with the thrust exerted by the rotor [166]. A lower rotor thrust therefore
allows for a lighter tower construction, which in turn reduces the capital costs associated
with the tower. Since the rotor thrust can be directly determined from the solution of the
flow around the rotor, it can be used in the objective function in a minimization problem,
in the present optimization framework. However, to prevent obtaining an optimal result
that does not extract energy from the wind, a constraint should be imposed on the power
coefficient.

Annual energy production

The annual energy production can be used, together with the expected lifetime of the
wind turbine, to estimate the total amount of energy that will be produced by the wind
turbine. To determine the annual energy production of a wind turbine, the performance of
the rotor needs to be considered for the range of wind conditions the turbine will operate
in. Therefore taking into account the probability density distribution for the wind speed
at the site considered — represented by for instance a Weibull distribution [201] — and
the capacity factor, an estimate can be made of the total amount of energy that can be
produced in one year.

Considering this approach, it is observed that in order to determine the annual energy
production, multiple flow solutions for different flow conditions are required. Moreover,
each flow solution requires a solution of the adjoint equations for the power coefficient.
The resulting adjoint vector can subsequently be used to efficiently determine the total
derivative of the power coefficient with respect to the design variables, for the wind
speed considered. When these total derivatives have been determined, the gradient of
the objective function can be computed by means of either the dual number method or by
using the product rule and chain rule of differentiation. Because the number of flow and
adjoint solutions is proportional to the number of different wind conditions considered,
using the annual energy production as objective function in a maximization problem will
be very time consuming employing the flow model used in the present research. However,
smart use of a large parallel computer can bring a solution, since the different flow
solutions required can be carried out in parallel.

Power coefficient

One of the cost of energy related objective functions would be the most relevant choice
to be used in the optimization problem. However, for testing the implementation of the
present method, the economically less relevant power coefficient appears to be a better
choice. For the power coefficient the optimal value for an unshrouded wind turbine is
known — known as the Betz limit [17]18. By using the power coefficient as objective
function, the effectiveness of the optimization method can be assessed. Therefore, the
power coefficient will be used as objective function.

18It appears that the limit has independently been derived by three different leading aerodynamic
researchers. It has therefore been proposed to recognize their contribution as well and rename the limit
as the Lanchester–Betz–Joukowsky limit [191].

166

7.5 On solving a rotor blade optimization problem

0.044

0.041

0.038

0.035

0.032

0.029

0.026

0.023

0.02

0.017

0.014

0.011

u
[
ms−1

]

14.97

11.91

9.87

6.81

3.75

x

y

z

Figure 7.14: Iso-density surface for the flow around an isolated rotor rotating at 7.5
[
rads−1

]

for a wind speed of 10
[
ms−1

]
. Iso-contours on a cross-section of the flow

domain show the x-component of the velocity vector. The blades and spinner
have been given a red colour.

Design variables and constraints

The design variables used in the present optimization are the x and y-components of the
coordinates of the control points. The same regularity constraints have been imposed on
the control points as in the wing optimization problems considered earlier. Moreover, no
constraints have been imposed on, for instance, the root bending moment or the axial
force exerted on the rotor. The pitch angle, which is also used as design variable, is
limited to be in the range from −10

◦ to 10
◦.

7.5.5 Approach and discussion

Figure 7.14 presents the solution for the flow around the rotor for the initial design, for
the flow conditions specified in subsection 7.5.2 and the discretization that has been
described in subsection 7.5.3. In this figure the helical vortex is visualized using an iso-
density surface of 0.999886 of the free-stream density. Moreover, a cross-section of the
flow domain is depicted, showing the iso-lines for the x-component of the velocity vector.

167

7. Optimization method and results

Considering the result, it is clear that the helical vortex generated by the rotor is preserved
well over quite some distance downstream of the rotor. The helical vortex being no longer
resolved at little over one rotor diameter from the rotor plane is due to the fine cylindrical
background grid ending at that location, as can be observed in figure 7.11 on page 163.
In the coarser cylindrical background grid used for the discretization further downstream,
the vorticity is quickly dissipated.

The corresponding convergence history, is presented in figure 7.15. From this figure
it is clear that a convergence of about 14 orders of magnitude is achieved. First, 40 · 103
Runge-Kutta iterations are performed to obtain the initial solution for Newton’s method.
To be able to obtain a solution for the system of linear equations — by means of the
preconditioned GMRES method — involved in Newton’s method, the application of
damping was required. Damping has been applied by adding an additional term to the
diagonal part of the Jacobian matrix. This additional term was chosen to be proportional
to the inverse of the local time-step, based on a specified CFL number. To prevent
divergence of the solution procedure, even intermediate altering of the CFL number
was required. Eventually, after a considerable number of Newton iterations have been
performed, convergence of the flow solution has been achieved, as can be observed in the
convergence history. It is, however, not clear whether the resulting solution is truly steady,
because the troublesome convergence might be caused by the flow solution exhibiting
pseudo-unsteady behaviour. That a steady state solution is still found, can be caused by
a number of factors. For instance due to the occurrence of artificial dissipation, caused
by the discretization of the governing equations, that damps the unsteadiness. Another
factor is the pseudo-time-integration by means of Newton’s method, which can also have
a strong damping effect. A likely source of the suggested unsteadiness is flow separation
occurring at the tip of the rotor blade.

Subsequently using the flow solution for assembling the adjoint equations for the
power coefficient and solving this system of linear equations did not lead to a result.
Trying to use a so-called defect-correction approach [101, 173] for solving the adjoint
equations did not give any solace either. An option might be to use the recursive projec-
tion method [28,126,165] instead. In this method, the dominant eigenvalues are identified
and a separate solution method is applied for the corresponding eigenspace, resulting in a
better overall convergence of the solution. However, in the present research, no attempt
has been made in implementing such a method.

Moreover, if the troublesome convergence behaviour is really caused by the flow solu-
tion exhibiting unsteady flow effects, a solution of the adjoint equations would not provide
accurate gradients. Krakos investigated the effect of small-scale output unsteadiness on
the adjoint based sensitivity [103, 104]. Results of that investigation showed that even
when a stationary-point solution is obtained, computing the sensitivity by means of the
steady adjoint equations does not provide an accurate result, compared to the result of us-
ing the unsteady adjoint equations for a time-accurate flow solution. Therefore, it might
be necessary to consider using an approach based on the unsteady adjoint equations.

Due to the challenges that emerged in attempting to solve the present optimization
problem, unfortunately, no optimization results could be obtained for the rotor blade
optimization problem presently considered. Apart from the suggestions already made,
the introduction of viscous flow effects in the flow model might already prevent part of
the problems from occurring, because these viscous flow effects could effectively damp
the unsteady flow behaviour that is not damped in the inviscid flow model. Moreover, the

168

7.6 Concluding remarks

Rρ

Rρu

10
4 × iterations

0 1 2 3 4

lo
g
1
0

(
||

R
||
2

)

−14

−12

−10

− 8

− 6

− 4

− 2

0

iterations − 4 · 104

0 500 1000 1500 2000 2500

lo
g
1
0

(
||

R
||
2

)

−14

−12

−10

− 8

− 6

− 4

− 2

Figure 7.15: Convergence history for the flow around the NREL Phase VI rotor. Left plot
shows full convergence history. Right plot shows the part of the convergence
history corresponding to the use of Newton’s method.

introduction of a viscous flow model can also serve the purpose of increasing the validity
of the flow model. This increased accuracy with which flow physics is represented might,
however, introduce a new source of unsteadiness by means of vortex shedding from the
cylindrical part of the blade near the hub of the rotor. Furthermore, it should be noted,
that either handling viscous flow effects — for instance by using a RANS model — or
computing a time-accurate flow solution, combined with an unsteady adjoint equation
method, both incur a significant increase in the computational requirements for the
optimization method.

7.6 Concluding remarks

This chapter presented the optimization method that has been developed by coupling
the different parts of the method realized in the present research to a gradient-based
optimizer. Two different aerodynamic shape optimization problems have been solved and
the results have been presented. These results show that the optimization method can
be used successfully for solving aerodynamic shape optimization problems for different
flow conditions and objective functions considered.

For the minimization of the drag for a swept wing in transonic flow, a reduction
of 34.1% in drag coefficient was achieved for a fixed value of the lift coefficient. A
breakdown of the time required for the different tasks in the optimization showed that
the computing of the flow solution, in particular the explicit pseudo-time-integration,
takes the largest portion of the computing time, while solving the adjoint equations only
has a minor contribution to the overall time required for a single optimization iteration.

Solving the wing span efficiency maximization problem resulted in a design with
a wing span efficiency significantly exceeding 1.0. The reason for such a large value
requires further investigation. Moreover, in both optimizations, a number of geometrical
constraints have been imposed to enforce a feasible result of the optimization problem.
However, it was found that these constraints still allow geometries that can present
challenges for the structural integrity of the design. It is therefore recommended to add

169

7. Optimization method and results

additional geometrical constraints to the optimization to prevent this behaviour. An even
better alternative would be to use structural constraints instead, which take the influence
of the local thickness of the wing on its structural properties into account.

In attempting to solve an aerodynamic shape optimization problem involving a rotor
blade, a number of challenges arose that are yet to be addressed. One of the challenges
concerns the convergence behaviour for the flow solution. Application of damping and
a considerable number of implicit time-iterations was required to obtain a converged
result. Subsequently trying to solve the adjoint equations was not successful. A number
of solutions have been proposed, to face the challenges encountered.

170

8
Concluding remarks and recommendations

“In summary, the idea is to try to give all the information to help others to judge the
value of your contribution; not just the information that leads to judgment in one
particular direction or another.” [59]

— Richard P. Feynman (1918 – 1988)

T
he design of a wind turbine comprises a multidisciplinary challenge, of which the
aerodynamic design of the rotor blades forms an important aspect. The research

presented in this thesis focussed on the development of a method for the aerodynamic
design of a rotor blade for a horizontal axis wind turbine. For the choices made in this
process, the multidisciplinary character of the task has been anticipated. The conclusions
drawn from the present research are listed below. This chapter concludes with recom-
mendations for directions of further research and further development of the optimization
method.

8.1 Concluding remarks

Based on research presented in this thesis, the following conclusions can be drawn for
the different aspects of the aerodynamic shape optimization method considered.

Shape parametrization

A NURBS surface is considered a good choice for the parametrization of the wind turbine
blade geometry used in solving an aerodynamic shape optimization problem, because:

◦ it requires a limited number of design parameters to:

• accurately represent a typical wind turbine rotor blade geometry;

• cover the design space sufficiently in order to find an optimal solution for the
aerodynamic shape optimization problem.

◦ it is compatible with computer aided design methods, which facilitates the incor-
poration of the aerodynamic shape optimization method in the multidisciplinary
design process of a wind turbine rotor blade;

◦ it can conveniently be used for the surface grid generation method as well.

Moreover, it has been found that:

171

8. Concluding remarks and recommendations

◦ for a typical wind turbine rotor blade geometry 13 × 13 control points is adequate
for achieving a sufficiently accurate fit;

◦ a smaller number of control points — than required for an accurate fit — is still
sufficient for the optimization method to reach an optimum, for the 2D model
optimization problem considered.

Flow domain discretization

For the discretization of the flow domain, a hyperbolic grid generation method has been
implemented, which was found to:

◦ be an efficient means for providing a high quality discretization of the flow domain;

◦ be robust enough to be used for solving aerodynamic shape optimization problems;

◦ provide good grid quality throughout the optimization procedure.

Moreover, it has been found that surface grid generation:

◦ by means of linear transfinite interpolation provides a good grid quality in most
situations;

◦ by solving equations for elliptical grid generation can be used when linear transfinite
interpolation does not provide satisfactory grid quality.

Overset block connectivity

Methods have been implemented that can handle composite overset grids. The use of
composite overset grids allows for:

◦ using a complex topology of the flow domain, without further complicating the grid
generation;

◦ locally increasing grid resolution by introduction of additional blocks.

Moreover, a method for the generation of so-called zipper grids has been implemented
to realize a closed non-overlapping surface grid, which can subsequently be used for

◦ the accurate evaluation of surface integrals;

◦ elimination of control volumes that are outside the physical flow domain, by means
of a ray-casting method.

Flow model and solution method

The flow model used is the one based on the Euler equations. The partial differential
equations have been discretized by means of a cell-centred finite volume method with a
second-order spatial accuracy of the flux discretization.

◦ implicit time integration by means of Newton’s method provides an efficient means
for computing a steady-state solution;

172

8.1 Concluding remarks

• construction of the ILU(k) preconditioning matrix based on the first-order Ja-
cobian matrix results in better convergence properties of the Krylov subspace
method — used for computing the update of the flow solution;

◦ verification of the implementation of the method by considering the steady 2D flow
around a NACA 0012 aerofoil, showed that:

• the observed spatial order of convergence corresponds with the expected order,
although different parameters can have a strong effect on this result, such as
the method used for:

– the extrapolation of the pressure to halo control volumes representing a
solid wall boundary condition;

– the discretization of the convective flux discretization;

and

– the far-field of the flow domain.

• the order of convergence observed for a composite overset grid discretization
is consistent with the observed order of convergence using a single block
discretization.

◦ validation of the method has been performed by considering the flow around an
ONERA M6 wing at transonic flow conditions, for which there are well documented
experimental results available. The good agreement of the computational results
with the results from these experiments, showed that the method can be used to
accurately predict high Reynolds number attached flows.

Sensitivity analysis

The adjoint equations have been used to efficiently compute the derivatives of the ob-
jective function with respect to a large number of design variables. A discrete adjoint
equation method has been implemented for this purpose. With respect to this method,
the following conclusions can be drawn:

◦ the use of template functions in conjunction with the dual number method:

• allows for reusing already implemented functions, which saves development
time;

• makes the method used for computing derivatives fully consistent with the
underlying function, which renders derivatives accurate to machine accuracy.

◦ derivatives computed using the discrete adjoint equation method have been shown
to be consistent with derivatives computed using an equally accurate but less effi-
cient method.

Optimization method

An optimization framework has been developed by coupling the different components
implemented in the present research to a gradient-based optimizer. Subsequently, differ-
ent optimization problems have been considered to demonstrate the capabilities of this
method. Solving the test problems showed that:

173

8. Concluding remarks and recommendations

◦ the optimization method can be used successfully for solving aerodynamic shape
optimization problems for a range of flow conditions and objective functions;

◦ computing the flow solution is the most time consuming part of performing an
optimization iteration, in particular the explicit pseudo-time-integration part;

◦ solving the adjoint equations has only a minor contribution to the overall time
required for an optimization iteration, which shows that using the adjoint equations
is a good choice for efficiently computing gradients, specifically for the case of a
large number of design variables;

◦ in the definition of a constrained aerodynamic shape optimization problem, a thor-
ough consideration of the constraints to be used and their corresponding formula-
tion is important.

An optimization problem involving a rotor blade has been considered. In the process of
performing an optimization iteration, the following has been noted:

◦ a fully converged flow solution has been obtained, however:

• application of damping was required to be able to obtain a converged solution
using the iterative solution method for solving the system of linear equations
that is part of Newton’s method;

• a solution to the adjoint equations could not be obtained.

◦ the suggestion has been made that unsteady flow behaviour might be the cause for
the troublesome convergence of the flow solution.

8.2 Recommendations

It is demonstrated that the optimization method developed in the present research is
able to successfully solve aerodynamic shape optimization problems. There is however
still room for improvement of the method. Moreover, the insights gained during its
development have also given rise to new ideas for extending the optimization method.
Therefore, this section is dedicated to recommend extensions and further improvement
of the method.

Parametrization

In the present research a NURBS surface has been used for the direct parametrization of
the aerodynamic shape. This approach helps to incorporate the aerodynamic shape opti-
mization method in the multidisciplinary design of a wind turbine rotor blade. Moreover,
the parametrization by means of a NURBS surface facilitates the surface grid generation.
The aerodynamic shape optimization problems solved show that the current parametriza-
tion method is adequate for this purpose. However, other researches indicate that a
different approach of the parametrization method can result in a better convergence of
the optimization procedure [114]. Therefore, it is recommended to investigate whether
or not this claim also holds for the optimization method used in the present research.
This goal can be accomplished by considering the effect of using such an alternative

174

8.2 Recommendations

parametrization method; for instance, using the decomposed approach, as discussed in
section 2.1.3. This investigation can be performed by simply trying such an alternative
parametrization method and comparing the performance of the optimization procedure
with the performance of using the present parametrization method.

However, an alternative approach, is to first perform a so-called epistasis analysis [135],
to identify the interaction between design parameters and their mutual influence on the
objective function. The results of such an analysis can give insight in the suitability of a
certain set of design parameters to be used for the optimization.

Flow domain discretization

In the present implementation, a single processor core is used for the construction of a sin-
gle block of the grid. This strategy does in general not provide an optimal distribution of
the computational effort required for the generation of the grid. Moreover, the difference
in effort required for computing a body-fitted grid, compared to creating a background
grid, is not taken into account. It is therefore recommended, to take the required effort
into account, when the distribution of the blocks over the available processor cores is
performed. Moreover, multiple cores should be used — if available — for the generation
of the body-fitted grids.

As an alternative for using structured hyperbolic field grids in conjunction with an
overset block connectivity method, similar geometrical flexibility could be achieved using
unstructured grids. Unstructured grids have the additional advantage that less additional
work is involved when a different topology is considered, compared to using composite
overset grids. Although the advantages of using structured grids, mentioned in chapter 1,
are still valid.

Flow model and solution method

The results of the inviscid flow model, used in the present research, showed good agree-
ment with experimental results. However, it has also been observed, that some discrep-
ancies between results from the experiment and the numerical results can be attributed
to leaving out viscous flow effects. Therefore, to further increase the accuracy of the
flow model, it is recommended to include these effects of viscosity. Moreover, since
high Reynolds number flows are considered, it also means that the modelling of turbu-
lence must be taken into account. For this purpose, the use of a Reynolds-averaged
Navier-Stokes eddy viscosity model [142,203] is recommended.

For the numerical simulation of the flow about a horizontal axis wind turbine, it is
important to accurately capture the helical vortex, formed at the blade tips, because of
its inductive effect on the flow in the rotor plane. For the standard second-order spatial
accuracy, this vortical motion quickly dissipates. To preserve the helical vortex further
downstream of the rotor, without using excessive grid refinement, it is recommended to
use reconstruction methods that can realize a higher than second-order spatial accuracy.
The use of a so-called WENO scheme [110] might be a good option for this purpose,
as well as a high-order finite-difference scheme [30] or a discontinuous Galerkin finite
element method [13,134].

As obtaining an initial guess for Newton’s method by means of explicit Runge-Kutta
pseudo-time-integration proved to consume the largest portion of the time required to

175

8. Concluding remarks and recommendations

compute the flow solution, considering the use of a different globalization strategy is
recommended. Based on the investigation presented by Pawlowski et al. [137] an inexact
Newton backtracking method [56] might be a promising option.

A compressible flow model has been used to represent the flow. For a full-scale wind
turbine, the flow velocities in the tip region of the blade are such that compressible flow
effects are not negligible. However, there are also regions in the flow domain for which
compressible flow effects are negligible. These regions can cause convergence problems
for the solution method, when a compressible flow model is used. This effect might be
another reason for the troublesome convergence for the wind turbine case considered. A
possible remedy is using low Mach number preconditioning [190], that might increase the
convergence speed.

Overset block connectivity

When viscous flow effects are included in the flow model, accurately resolving the flow
in the boundary layer regions becomes important. Having block overlap in the boundary
layer region near curved surfaces can result in using incorrect donor information for the
interpolation of the flow solution. This issue can be dealt with by application of a
curvature correction when determining the interpolation coefficients. Using the curvature
correction method presented by Schwarz [160,161] would be a good choice.

If higher than second-order spatial accuracy is considered, the use of linear interpola-
tion to obtain the solution for fringe control volumes is no longer sufficient to maintain
the higher-order spatial accuracy throughout the domain. The use of a higher-order in-
terpolation would be required. Based on the work of Lee on the simulation of rotorcraft
aerodynamics [107], the use of Hermitian cubic interpolation is recommended.

Sensitivity analysis

The method used for the calculation of the sensitivities with respect to the grid by means
of the construction of a grid with dual number arithmetic, has a computational effort
proportional to the number of design variables. For a large number of design variables,
the computation of the grid sensitivities provides a considerable contribution to the total
time required for performing a single optimization iteration. It is therefore recommended
to use a method that is independent of the number of design variables. As suggested by
Carpentieri [31] and Dwight [53] and demonstrated, among others, by Hicken [82], an
adjoint equation method can be used for this purpose as well.

To limit the memory requirements for solving the adjoint equations, it might be an
option to apply a Jacobian-free adjoint approach. Especially, when higher-order methods
would be used, the Jacobian matrix becomes less sparse, increasing the memory require-
ments of the method. In the present approach, the computation of the Jacobian matrix
is still required for the construction of the preconditioning matrix. This preconditioning
matrix is, however, generally based on a low-order discretization, which is more sparse.
To apply a Jacobian-free adjoint approach, products ATq must be computed for the
Krylov-subspace method. Evaluation of these products requires the reverse mode of al-
gorithmic differentiation, applied to the function that computes the residual of the flow
equations. Although dual numbers cannot be used for this purpose, it still is possible
to exploit the template implementation of that function by using a different data type,

176

8.2 Recommendations

which can provide the reverse mode of algorithmic differentiation. An example of such a
data type has been presented by Hogan [85].

To alleviate the restriction of requiring a steady flow solution to compute the gradient,
it might be worthwhile to pursue an unsteady adjoint approach. Such an approach does
incur a considerable increase in computational requirements, for solving an aerodynamic
shape optimization problem, because of the time-accurate flow solution required. After
a time-accurate solution is obtained, subsequently, the unsteady adjoint equation must
be solved for every time-step, in reverse order.

Computational resources

The use of the adjoint equation method provides an efficient means for computing the
gradients, leaving computing the flow solution as the most time consuming part of the
gradient-based optimization procedure. The time required for obtaining the flow solution
can be reduced, for instance by using convergence acceleration techniques, like grid
sequencing or a multigrid [91] method. However, an alternative approach is to use
different hardware than CPUs for computing the flow solution.

One option is to use a graphical processing unit (GPU) for this purpose. Because
of their original application, GPUs are designed to handle floating-point data in a mas-
sively parallel fashion. This capability makes them well suited for performing general
purpose computations involving floating-point data as well — for instance, computing
flow solutions. Examples of using GPUs for obtaining flow solutions [34, 99] show that
a significant speed-up can be achieved. However, in order to use a GPU for obtaining
the flow solution, large parts of the implementation of the flow solution method must be
rewritten, to take advantage of the different hardware.

A different alternative is to use reconfigurable hardware to further reduce the com-
putational time required for obtaining the flow solution. With reconfigurable hardware,
by means of a so-called field programmable gate array (FPGA), the hardware can be
configured such that it is specialized for performing a specific task. This specialization
has the advantage that the task at hand can be performed faster than when a combi-
nation of general operations is performed to realize the same task. The latter approach
is customary for non-reconfigurable hardware, like a CPU or a GPU. Although, the use
of reconfigurable hardware for performing CFD calculations is not very common yet, a
significant speed-up is expected from this approach, some estimates state a speed-up of
up to two orders of magnitude [8]. One of the disadvantages of using reconfigurable hard-
ware is that the configurations must be specified using a so-called hardware description
language. Such a language is inherently different from the programming languages CFD
methods are commonly implemented in. However, a recent development among major
FPGA vendors is the embracement of high level languages, such as OpenCL [6], which
can significantly reduce the effort required for the implementation of a CFD method for
reconfigurable hardware [148]. An additional advantage of using reconfigurable hardware
is the significantly lower power consumption compared to power consumption by CPUs
and GPUs [6,8].

177

8. Concluding remarks and recommendations

Optimization method

It is common knowledge that a gradient-based optimization method in general returns
a local optimum as the result of an optimization problem. However, as pointed out,
for the number of design variables considered and costs for a single evaluation of the
objective function, a gradient-based method is the only feasible option. Nevertheless,
a zeroth-order method and a low-fidelity flow model could still be used to obtain an
initial guess in the neighbourhood of the global optimum. Subsequently, the gradient-
based method developed in the present research can be used to quickly converge to
the actual global optimum. Note, that this approach requires that the design space
represented by the low-fidelity flow model sufficiently accurately resembles the design
space represented by the high-fidelity flow model. For the purpose of increasing the
accuracy of the result from the low-fidelity model, a response surface method can be
employed, that represents the difference between the results of the high and low-fidelity
model [42]. Moreover, the zeroth-order method must be able to find the neighbourhood
of the global optimum, which can still be quite challenging if a considerable number of
design variables is considered.

Apart from including more of the physics in the model for the flow, it is also worthwhile
to consider other physical aspects in the optimization method as well. For instance
the weight of the rotor blade or the elastic deformation of the rotor blade due to the
aerodynamic loads.

Moreover, since a wind turbine generally does not operate at only a single wind condi-
tion, it is recommended to perform multipoint optimizations, such that the performance
at off-design conditions is still reasonable. Another subject to consider is the discrepancy
that inherently exists between the numerical representation of a geometry and its actual
physical realization. These discrepancies can for instance be caused by manufacturing
tolerances [77] or approximations in the numerical model. The existence of these discrep-
ancies can be taken into account by applying an optimization under uncertainty [87,149]
approach. By using such an approach, the result of solving an optimization problem is
more likely to show optimal performance in reality as well.

178

Bibliography

T
he page numbers between the square brackets at the end of each entry indicate the
pages where reference occurs.

[1] Abbott, I. and Von Doenhoff, A. (1959) Theory of Wing Sections. Dover
Books on Aeronautical Engineering Series, Dover Publications. [Page 203].

[2] Abramowitz, M. and Stegun, I. A. (1965) Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc.,
New York. [Page 152].

[3] Aftosmis, M. J. (1997) Solution adaptive Cartesian grid methods for aerody-
namic flows with complex geometries. Von Karman Institute for Fluid Dynamics,
Rhode-Saint-Genése, Belgium, lecture Series 1997-02. [Page 66].

[4] Al-Mohy, A. H. and Higham, N. J. (2010) The complex step approximation
to the Fréchet derivative of a matrix function. Numerical Algorithms, 53, pp. 133–
148. [Page 95].

[5] Van Albada, G. D., Van Leer, B. and Roberts Jr, W. W. (1982) A
comparative study of computational methods in cosmic gas dynamics. Astronomy
and Astrophysics, 108, pp. 76–84. [Pages 27 and 84].

[6] Altera Corporation (2013), Implementing FPGA Design with the OpenCL
Standard. [Page 177].

[7] Anderson, J. D. (2001) Fundamentals of Aerodynamics. McGraw-Hill, New
York, 3 edn. [Page 156].

[8] Andrés, E., Carreras, C., Caffarena, G., del Carmen Molina, M.,
Nieto-Taladriz, O. and Palacios, F. (2008) A Methodology for CFD Accel-
eration Through Reconfigurable Hardware. 46th AIAA Aerospace Science Meeting
and Exhibit, Reno, NV, no. AIAA 2008–481. [Page 177].

[9] Ashuri, T., van Bussel, G. J. W., Zaayer, M. B. and van Kuik, G.
A. M. (2010) An Analytical Model to Extract Wind Turbine Blade Structural
Properties for Optimization and Up-scaling Studies. Torque 2010 . [Page 165].

[10] Atta, E. H. and Vadyak, J. (1981) Component-adaptive grid interfacing.
AIAA 19th Aerospace Science Meeting , St. Louis, MO, no. AIAA 81–0382.
[Page 53].

179

Bibliography

[11] Atta, E. H. and Vadyak, J. (1982) A grid interfacing zonal algorithm for
three-dimensional transonic flows about aircraft configurations. AIAA/ASME 3rd
Joint Thermophysics Fluids, Plasma and Heat Transfer Conference, St. Louis, MO,
no. AIAA 82–1017. [Page 53].

[12] Balay, S. et al. (2012) PETSc Users Manual . Tech. Rep. ANL-95/11 - Revision
3.3, Argonne National Laboratory. [Page 92].

[13] Bassi, F. and Rebay, S. (1997) A High-Order Accurate Discontinuous Finite
Element Method for the Numerical Solution of the Compressible Navier-Stokes
Equations. Journal of Computational Physics, 131, pp. 267 – 279. [Page 175].

[14] Baumslag, B. (2000) Fundamentals of Teaching Mathematics at University
Level . Imperial College Press. [Page 121].

[15] Becker, G., Schäfer, M. and Jameson, A. (2011) An advanced NURBS
fitting procedure for post-processing of grid-based shape optimizations. 49th AIAA
Aerospace Sciences Meeting , Orlando, FL, no. AIAA 2011–891. [Page 30].

[16] Benek, J. A., Steger, J. L. and Dougherty, F. C. (1983) A Flexible Grid
Embedding Technique with Application to the Euler Equations. AIAA 6th Compu-
tational Fluid Dynamics Conference, Danvers, MA, no. AIAA 83–1944. [Page 53].

[17] Betz, A. (1920) Das maximum der theoretisch möglichen ausnützung des windes
durch windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26, pp. 307–309.
[Page 166].

[18] Biedron, R. T. and Thomas, J. L. (2009) Recent Enhancements to the
FUN3D Flow Solver for Moving-Mesh Applications. 47th AIAA Aerospace Sciences
Meeting & Exhibit, Orlando, FL, no. AIAA 2009–1360. [Page 54].

[19] Biedron, R. T., Vatsa, V. N. and Atkins, H. L. (2005) Simulation of
Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving and Sta-
tionary Grids. 17th AIAA Computational Fluid Dynamics Conference, Toronoto,
ON, no. AIAA 2005–5093. [Page 54].

[20] Blazek, J. (2005) Computational Fluid Dynamics: Principles and Applications.
Elsevier, Oxford. [Pages 35, 81 and 87].

[21] Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory With Applications.
Elsevier Science Publishing, New York, U.S.A. [Page 128].

[22] Bonet (1991) An alternating digital tree (ADT) algorithm for 3D geometric
searching and intersection problems. International Journal for Numerical Methods
in Engineering , 31, pp. 1–17. [Page 55].

[23] Bracewell, R. N. (1999) The Fourier transform and its applications. McGraw-
Hill, New York, 3rd edn. [Page 22].

[24] Broyden, C. G. (1969) A new double-rank minimization algorithm. Notices
American Mathematical Society , 16, pp. p. 670. [Page 149].

[25] Broyden, C. G. (1970) The Convergence of Single-Rank Quasi-Newton Methods.
Mathematics of Computation, 24, pp. pp. 365–382. [Page 149].

180

Bibliography

[26] Buckley, H. P., Zhou, B. Y. and Zingg, D. W. (2009) Airfoil Optimization
Using Practical Aerodynamic Design Requirements. 27th AIAA Applied Aerody-
namics Conference, San Antonio, TX, no. AIAA 2009–3516. [Page 19].

[27] Cambier, L., Gazaix, M., S. Heib, S., Plot, M. P., Veuillot, J.-
P., Boussuge, J.-F. and Montagnac, M. (2011) CFD Platforms and Cou-
pling: An Overview of the Multi-Purpose elsA Flow Solver. Aerospace Lab, Issue 2.
[Page 54].

[28] Campobasso, M. S. (2004) Effects of Flow Instabilities on the Linear Harmonic
Analysis of Unsteady Flow in Turbomachinery . PhD thesis, University of Oxford.
[Page 168].

[29] Carey, G. F. (1997) Computational Grids: Generation, Adaptation and Solution
Strategies. Series in Computational and Physical Processes in Mechanics, Taylor &
Francis. [Pages 4, 33 and 98].

[30] Carpenter, M. H., Gottlieb, D. and Abarbanel, S. (1994) Time-
stable boundary conditions for finite-difference schemes solving hyperbolic systems:
methodology and application to high-order compact schemes. Journal of Compu-
tational Physics, 111, pp. 220–236. [Page 175].

[31] Carpentieri, G. (2009) An Adjoint-Based Shape-Optimization Method for Aero-
dynamic Design. PhD thesis, Technische Universiteit Delft. [Pages 7, 15, 18, 19,
114, 152 and 176].

[32] Casella, G. and Berger, R. (2002) Statistical inference. Duxbury advanced
series in statistics and decision sciences, Thomson Learning. [Page 214].

[33] Castonguay, P. and Nadarajah, S. (2007) Effect of Shape Parameterization
on Aerodynamic Shape Optimization. 45th AIAA Aerospace Sciences Meeting &
Exhibit, Reno, NV, no. AIAA 2007–0059. [Page 20].

[34] Castonguay, P., Williams, D. M., Vincent, P. E., Lopez, M. and
Jameson, A. (2011) On the Development of a High-Order, Multi-GPU En-
abled, Compressible Viscous Flow Solver for Mixed Unstructured Grids. 20th AIAA
Computational Fluid Dynamics Conference, Honolulu, HI, no. AIAA 2011–3229.
[Page 177].

[35] Chan, M. K. (2003) Supersonic Aircraft Optimization for Minimizing Drag and
Sonic Boom. PhD thesis, Stanford University. [Page 6].

[36] Chan, W. M. (1999) Hyperbolic Methods for Surface and Field Grid Generation.
Handbook of Grid Generation [185], chap. 5, CRC Press. [Pages 16, 36, 45 and 46].

[37] Chan, W. M. (2009) Enhancements to the Hybrid Mesh Approach to Surface
Loads Integration on Overset Structured Grids. 19th AIAA Computational Fluid
Dynamics Conference, San Antonio, TX, no. AIAA 2009–3990. [Pages 16 and 58].

[38] Chan, W. M. (2009) Overset Grid Technology Development at NASA Ames
Research Center. Computers & Fluids, 39, pp. 496–503. [Page 53].

[39] Chan, W. M. and Steger, J. L. (1992) Enhancement of a Three-dimensional
hyperbolic Grid Generation Scheme. Applied Mathematics and Computation, 51,
pp. 181–205. [Pages 16, 45, 47 and 199].

181

Bibliography

[40] Chisholm, T. T. (2006) A Fully Coupled Newton-Krylov Solver with a One-
Equation Turbulence Model . PhD thesis, University of Toronoto. [Page 93].

[41] Chiu, I. T. and Meakin, R. L. (1995) On automating domain connectivity for
overset grids. 33rd Aerospace Sciences Meeting & Exhibit, Reno, NV, no. AIAA
95–0854. [Page 65].

[42] Choi, S., Alonso, J. J., Kroo, I. M. and Wintzer, M. (2008) Multifidelity
Design Optimization of Low-Boom Supersonic Jets. Journal of Aircraft, 45, pp.
106–118. [Page 178].

[43] Chung, H.-S., Choi, S. and Alonso, J. J. (2003) Supersonic Business Jet
Design using a Knowledge-Based Genetic Algorithm with an Adaptive, Unstruc-
tured Grid Methodology. AIAA 21st Applied Aerodynamics Conference, Orlando,
FL, no. AIAA 2003–3791. [Page 6].

[44] Cnossen, J. M. (2007) Goal-oriented modelling-error estimation for hierarchical
models of a different type. PhD thesis, Technische Universiteit Delft. [Page 126].

[45] Corliss, G. and Griewank, A. (1993) Operator Overloading as an Enabling
Technology for Automatic Differentiation. Proceedings of the First Annual Object-
Oriented Numerics Conference, Sunriver, OR. [Page 124].

[46] Courant, R., Friedrichs, K. and Lewy, H. (1928) Über die partiellen
Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100,
pp. 32–74. [Page 90].

[47] Davis, B. (2008) IEEE Standard for Floating-Point Arithmetic. Standard 754-
2008, Microprocessor Standards Committee of the IEEE Computer Society, 3 Park
Avenue, New York, NY 10016-5997, USA. [Page 9].

[48] Davoudzadeh, F., McDonald, H. and Thompson, B. (1995) Accuracy
evaluation of unsteady CFD numerical schemes by vortex preservation. Comput-
ers & Fluids, 24, pp. 883–895. [Page 213].

[49] Dennis, J. E. and Moré, J. J. (1977) Quasi-Newton Methods, Motivation
and Theory. SIAM Review , 19, pp. 46–89. [Page 149].

[50] Derksen, R. W. and Rogalsky, T. (2010) Bezier-PARSEC: An optimized
aerofoil parametrization for design. Advances in Engineering Software, 41, pp. 923–
930. [Page 19].

[51] Destarac, D. (2011) Investigating Negative Drag in Grid Convergence for Two-
Dimensional Euler Solutions. Journal of Aircraft, 48, pp. 1468–1470. [Pages 104
and 105].

[52] Durand, W. F. (1935) Aerodynamic Theory . Springer, Berlin, Germany.
[Page 184].

[53] Dwight, R. P. (2006) Efficiency improvements of RANS-based analysis and
optimization using implicit and adjoint methods on unstructured grids. PhD thesis,
University of Manchester. [Pages 3, 15 and 176].

[54] Eastham, M. S. P. (1961) On the Definition of Dual Numbers. The Mathemat-
ical Gazette, 45, pp. 232–233. [Page 10].

182

Bibliography

[55] Einstein, A. (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt
abhängig? Annalen der Physik, 323, pp. 639–641. [Page 76].

[56] Eisenstat, S. C. and Walker, H. F. (1994) Choosing the Forcing Terms in
an Inexact Newton Method. SIAM Journal on Scientific Computing , 17, pp. 16–32.
[Pages 95 and 176].

[57] Feng, Y. T. and Owen, D. R. J. (2002) An augmented spatial digital tree
algorithm for contact detection in compuational mechanics. International Journal
for Numerical Methods in Engineering , 55, pp. 159–176. [Page 55].

[58] Ferdman, M., Wenisch, T. F., Ailamaki, A., Falsafi, B. and
Moshovos, A. (2008) Temporal instruction fetch streaming. 41st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–10.
[Page 123].

[59] Feynman, R. P. and Robbins, J. (1999) The Pleasure of Finding Things Out:
The Best Short Works of Richard P.Feynman. Art of Mentoring Series, Perseus
Books. [Page 171].

[60] Fike, J. A. (2012) Multi-Objective Optimization Using Hyper-Dual Numbers.
PhD thesis, Stanford University. [Pages 10, 92 and 140].

[61] Fike, J. A. and Alonso, J. J. (2011) The Development of Hyper-Dual Num-
bers for Exact Second-Derivative Calculations. 49th AIAA Aerospace Sciences
Meeting , Orlando, FL, no. AIAA 2011–886. [Pages 10 and 92].

[62] Fike, J. A., Jongsma, S. H., Alonso, J. J. and van der Weide, E.
T. A. (2011) Optimization with Gradient and Hessian Information Calculated Us-
ing Hyper-Dual Numbers. AIAA 29th Applied Aerodynamics Conference, Honolulu,
HI, no. AIAA 2011–3807. [Page 140].

[63] Fischer, G. R., Kipouros, T. and Savill, A. M. (2014) Multi-objective
optimisation of horizontal axis wind turbine structure and energy production using
aerofoil and blade properties as design variables. Renewable Energy , 62, pp. 506 –
515. [Page 165].

[64] Fletcher, R. (1970) A New Approach to Variable Metric Algorithms. Com-
pututer Journal , 13, pp. 317–322. [Page 149].

[65] Fudge, D., Zingg, D. and Haimes, R. (2005) A CAD-Free and a CAD-
Based Geometry Control System for Aerodynamic Shape Optimization. 43rd AIAA
Aerospace Sciences Meeting & Exhibit, Reno, NV, no. AIAA 2005–0451. [Page 17].

[66] Fuglsang, P. and Madsen, H. (1999) Optimization method for wind turbine
rotors. Journal of Wind Engineering and Industrial Aerodynamics, 80, pp. 191 –
206. [Page 164].

[67] Gauger, N., Walther, A., Moldenhauer, C. and Widhalm, M. (2008)
Automatic differentiation of an entire design chain for aerodynamic shape opti-
mization. Tropea, C., Jakirlic, S., Heinemann, H.-J., Henke, R. and Hönlinger, H.
(eds.), New Results in Numerical and Experimental Fluid Mechanics VI, vol. 96 of
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 454–461,
Springer Berlin / Heidelberg. [Page 19].

183

Bibliography

[68] Giguère, P. and Selig, M. S. (1999) Design of a Tapered and Twisted Blade
for the NREL Combined Experiment Rotor . Technical Report NREL/SR-500-26173,
National Renewable Energy Laboratory. [Page 160].

[69] Giles, M. B. and Pierce, N. A. (2000) An Introduction to the Adjoint Ap-
proach to Design. Flow, Turbulence and Combustion, 65, pp. 393–415. [Page 126].

[70] Gill, P. E., Murray, W. and Saunders, M. A. (1986) Some Theoretical
Properties of an Augmented Lagrangian Merit Function. Technical Report SOL
86-6R, Stanford University. [Page 149].

[71] Gill, P. E., Murray, W. and Saunders, M. A. (2005) SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. SIAM Review , 47, pp. 99–131.
[Pages 18, 26 and 149].

[72] Glauert, H. (1935) Airplane propellers. Aerodynamic Theory [52], chap. L,
Springer. [Page 2].

[73] Goldfarb, D. (1970) A Family of Variable-Metric Methods Derived by Varia-
tional Means. Mathematics of Computation, 24, pp. 23–26. [Page 149].

[74] Goldfarb, D. (1984) Optimal Estimation of Jacobian and Hessian Matrices
That Arise in Finite Difference Calculations. Mathematics of Computation, 43, pp.
69–88. [Page 129].

[75] Griewank, A. (2000) Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Society for Industrial and Applied Mathematics, Philadel-
phia, Pennsylvania. [Pages 10 and 123].

[76] Grimaldi, R. P. (2003) Discrete and Combinatorial Mathematics: An Applied
Introduction. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[Page 55].

[77] Gumbert, C. R., Newman, P. A. and Hou, G. J.-W. (2002) Effect of
Random Geometric Uncertainty on the Computational Design of a 3-D Flexible
Wing. 20th AIAA Applied Aerodynamics Conference, St. Louis, MO, no. AIAA
2002–2806. [Page 178].

[78] Harten, A. (1997) High Resolution Schemes for Hyperbolic Conservation Laws.
Journal of Computational Physics, 135, pp. 260–278. [Page 82].

[79] Hartkamp, R. M. (2009) Optimization of Airfoils in Inviscid Transonic Flow
using Discrete Adjoints. Master’s thesis, Universiteit Twente. [Pages 26 and 27].

[80] Hascoët, L. (2007) Automatic Differentiation by Program Transformation. Tech-
nical report, INRIA Sophia-Antipolis. [Page 11].

[81] Henshaw, W. D. (1996) Automatic Grid Generation. Acta Numerica, 5, pp.
121–148. [Pages 4, 34 and 35].

[82] Hicken, J. E. (2009) Efficient algorithms for future aircraft design: contributions
to aerodynamic shape optimization. PhD thesis, University of Toronoto. [Pages
15, 51, 95, 114 and 176].

[83] Hicken, J. E. and Zingg, D. W. (2010) Induced-drag minimization of nonpla-
nar geometries based on the Euler equations. AIAA Journal , 48, pp. 2564–2575.
[Page 159].

184

Bibliography

[84] Hicks, R. M. and Henne, P. A. (1978) Wing Design by Numerical Optimiza-
tion. Journal of Aircraft, 15, pp. 407–412. [Page 19].

[85] Hogan, R. J. (2014) Fast reverse-mode automatic differentiation using expres-
sion templates in C++, ACM Transactions on Mathematical Software, in press.
[Page 177].

[86] Hua, Y., Shen, W. Z., Sørensen, J. N. and Zhu, W. J. (2010) Determina-
tion fo the Angle of Attack on the Mexico Rotor using Experimental Data. Torque
2010 . [Page 2].

[87] Huyse, L., Padula, S. L., Lewis, M. and Li, W. (2002) Probabilistic Ap-
proach to Free-Form Airfoil Shape Optimization Under Uncertainty. AIAA Journal ,
40, pp. 1764–1772. [Page 178].

[88] Intel Corporation (2013) Intel ® 64 and IA-32 Architectures Optimization
Reference Manual . No. 248966-028. [Page 215].

[89] Jameson, A. (1985) Transonic flow calculations. Brezzi, F. (ed.), Numerical
Methods in Fluid Dynamics, vol. 1127 of Lecture Notes in Mathematics, pp. 156–
242, Springer-Verlag, Wien. [Page 90].

[90] Jameson, A. (1988) Aerodynamic design via control theory. Journal of Scientific
Computing , 3, pp. 233–260. [Pages 14, 19 and 26].

[91] Jameson, A. and Baker, T. (1984) Multigrid Solution of the Euler Equations
for Aircraft Configurations. AIAA 22nd Aerospace Sciences Meeting , no. AIAA
84–0093. [Page 177].

[92] Jameson, A., Schmidt, W. and Turkel, E. (1981) Numerical solutions of
the Euler equation by finite volume methods using Runge-Kutta time stepping
schemes. AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, CA, no.
AIAA 1981–1259. [Pages 3 and 80].

[93] Jameson, A. and Vassberg, J. C. (2000) Studies of Alternative Numerical
Optimization Methods Applied to the Brachistochrone Problem. CFD Journal , pp.
281–296. [Pages 7 and 18].

[94] Jameson, A. and Vassberg, J. C. (2001) Computation Fluid Dynamics for
Aerodynamic Design: Its Current and Future Impact. 39th AIAA Aerospace Sci-
ences Meeting & Exhibit, Reno, NV, no. AIAA 2001–0538. [Page 6].

[95] Kelleners, P. (2007) An Edge-based Finite Volume Method for Inviscid Com-
pressible Flow with Condensation. PhD thesis, Universiteit Twente. [Pages 82, 83,
86 and 105].

[96] Khamayseh, A. and Kuprat, A. (1999) Surface Grid Generation Systems.
Handbook of Grid Generation [185], chap. 9, CRC Press. [Pages 39, 40 and 41].

[97] Kim, S., Alonso, J. J. and Jameson, A. (2000) Two-dimensional High-
Lift Aerodynamic Optimization Using the Continuous Adjoint Method. 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, Long Beach, CA, no. AIAA 2000–4741. [Page 19].

185

Bibliography

[98] Kinsey, D. W. and Barth, T. J. (1984) Description of a hyperbolic grid
generation procedure for arbitrary two dimensional bodies. Technical Report TM
84-191-FIMM, AFWAL. [Page 45].

[99] Klöckner, A. (2010) High-Performance High-Order Simulation of Wave and
Plasma Phenomena. PhD thesis, Brown University. [Page 177].

[100] Koop, A. H. (2008) Numerical simulation of Unsteady Three-Dimensional Sheet
Cavitation. PhD thesis, Universiteit Twente. [Page 78].

[101] Koren, B. (1989) Multigrid and Defect Correction for the Steady Navier-Stokes
Equations. PhD thesis, Technische Universiteit Delft. [Page 168].

[102] Koren, B. (1995) Upwind discretization of the steady Navier-Stokes equations.
International Journal for Numerical Methods in Fluids, 11, pp. 99–117. [Page 83].

[103] Krakos, J. A. and Darmofal, D. L. (2009) Effect of Small-Scale Unsteadi-
ness on Adjoint-Based Output Sensitivity. 19th AIAA Computational Fluid Dynam-
ics, San Antonio, TX, no. AIAA 2009–4274. [Page 168].

[104] Krakos, J. A. and Darmofal, D. L. (2010) Effect of Small-Scale Out-
put Unsteadiness on Adjoint-Based Sensitivity. AIAA Journal , 48, pp. 2611–2623.
[Page 168].

[105] Kulfan, B. M. (2008) Universal Parametric Geometry Representation Method.
Journal of Aircraft, 45, pp. 142–158. [Page 20].

[106] Kundu, P. K. and Cohen, I. M. (2004) Fluid Mechanics. Elsevier Academic
Press, San Diego. [Page 76].

[107] Lee, Y. (2008) On Overset Grids Connectivity and Vortex Tracking in Rotorcraft
CFD. PhD thesis, University of Maryland. [Pages 16, 53, 68 and 176].

[108] Lépine, J. (1999) Optimisation de la représentation de profils d’ailes pour appli-
cation au design aérodynamique. Master’s thesis, École Polytechnique de Montréal.
[Page 26].

[109] Lépine, J., Guibault, F., Trépanier, J.-Y. and Pépin, F. (2001) Opti-
mized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic
Design of Wings. AIAA Journal , 39, pp. 2033–2041. [Pages 19 and 26].

[110] Liu, X.-D., Osher, S. and Chan, T. (1994) Weighted Essentially Non-
oscillatory Schemes. Journal of Computational Physics, 115, pp. 200–212.
[Page 175].

[111] Lyness, J. N. (1967) Numerical Algorithms based on the theory of complex
variable. Proceedings of the 1967 22nd national conference. [Page 9].

[112] Lyu, Z., Kenway, G., Paige, C. and Martins, J. R. R. A. (2013) Au-
tomatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations
with a Turbulence Model. 43rd AIAA Fluid Dynamics Conference and Exhibit, San
Diego, CA, no. AIAA 2013–2581. [Pages 128, 135 and 152].

[113] Lyu, Z. and Martins, J. R. R. A. (2013) Aerodynamic Shape Optimization of
a Blended-Wing-Body Aircraft. 51st AIAA Aerospace Sciences Meeting , Grapevine,
TX, no. AIAA 2013–0283. [Pages 6 and 120].

186

Bibliography

[114] Marinus, B. G. (2010) Influence of parametrization and optimization method
on the optimum airfoil. ICAS 2010 . [Pages 17, 20, 21 and 174].

[115] Marta, A. C. (2007) Rapid development of discrete adjoint solvers with ap-
plications to magnetohydrodynamic flow control . PhD thesis, Stanford University.
[Pages 3, 7, 10, 11, 13 and 15].

[116] Martins, J. R. R. A. (2002) A Coupled-Adjoint Method for High-fidelity Aero-
Structural Optimization. PhD thesis, Stanford University. [Pages 6, 12, 15 and 124].

[117] Martins, J. R. R. A., Sturdza, P. and Alonso, J. J. (2001) The Con-
nection Between The Complex-Step Derivative Approximation And Algorithmic
Differentiation. 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, no.
AIAA 2001–0921. [Page 124].

[118] Martins, J. R. R. A., Sturdza, P. and Alonso, J. J. (2003) The Complex-
Step Derivative Approximation. ACM Transactions on Mathematical Software, 23,
pp. 245–262. [Page 9].

[119] McHugh, P., Knoll, D. and Keyes, D. (1998) Application of Newton-
Krylov-Schwarz Algorithm to Low-Mach-Number Compressible Combustion. AIAA
Journal , 36, pp. 290–292. [Page 94].

[120] Meakin, R. L. (1999) Composite Overset Structured Grids. Handbook of Grid
Generation [185], chap. 11, CRC Press. [Page 5].

[121] Meakin, R. L. (2001) Object X-Rays for Cutting Holes in Composite Overset
Structured Grids. 15th AIAA Computational Fluid Dynamics Conference, Anaheim,
CA, no. AIAA 2001–2537. [Page 65].

[122] Milne-Thomson, L. M. (1973) Theoretical aerodynamics. Dover Publications,
New York. [Pages 99 and 204].

[123] Von Mises, R. (1959) Theory of Flight. Dover Books on Aeronautical Engineer-
ing Series, Dover Publications, New York. [Page 204].

[124] Möbius, A. F. (1827) Der barycentrische Calcul: Ein Neues Hülfsmittel zur An-
alytischen Behandlung der Geometrie. Johann Ambrosius Barth, Leipzig, Germany.
[Page 67].

[125] Mohammadi, B. (1997) A New Optimal Shape Design Procedure for Inviscid and
Viscous Turbulent Flows. International Journal for Numerical Methods in Fluids,
25, pp. 183–203. [Page 19].

[126] Möller, J. (2005) Aspects of The Recursive Projection Method applied to Flow
Calculations. PhD thesis, Kungliga Tekniska högskolan. [Page 168].

[127] Morton, K. W. and Mayers, D. F. (2005) Numerical Solution of Partial
Differential Equations. Cambrige University Press, Cambridge, United Kingdom,
2nd edn. [Pages 47 and 78].

[128] Mousavi, A., Castonguay, P. and Nadarajah, S. (2007) Survey of Shape
Parameterization Techniques and its Effect on Three-Dimensional Aerodynamic
Shape Optimization. 18th AIAA Computational Fluid Dynamics Conference, Mi-
ami, FL, no. AIAA 2007–3837. [Page 20].

187

Bibliography

[129] Nichols, R. H., Tramel, R. W. and Buning, P. G. (2006) Solver and
Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Ap-
plications. 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, no.
AIAA 2006–2824. [Page 54].

[130] Nielsen, E. J. (1998) Aerodynamic Design Sensitivities on an Unstructured Mesh
using the Navier-Stokes equations and a discrete adjoint formulation. PhD thesis,
Virginia State University. [Pages 3 and 15].

[131] Nielsen, E. J. (2009) Discrete Adjoint-Based Design Optimization of Unsteady
Turbulent Flows on Dynamic Unstructured Grids. 19th AIAA Computational Fluid
Dynamics, San Antonio, TX, no. AIAA 2009-3802. [Page 15].

[132] Nielsen, E. J. and Diskin, B. (2009) Discrete Adjoint-Based Design for
Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids. 50th AIAA
Aerospace Sciences Meeting , Nashville, TN, no. AIAA 2012–0554. [Pages 15
and 143].

[133] Oberkampf, W. L. and Trucano, T. G. (2002) Verification and validation
in computational fluid dynamics. Progress in Aerospace Sciences, 38, pp. 209–272.
[Pages 102, 107 and 114].

[134] Oliver, T. A. (2008) A High-Order, Adaptive, Discontinuous Galerkin Finite
Element Method for the Reynolds-Averaged Navier-Stokes Equations. PhD thesis,
Massachusetts Institute of Technology. [Page 175].

[135] Oyama, A., Obayashi, S. and Nakahashi, K. (1999) Fractional Factorial
Design of Genetic Coding for Aerodynamic Optimization. 14th Computational Fluid
Dynamics Conference, Norfolk, VA, no. AIAA 99–3298. [Pages 19, 20 and 175].

[136] Parks, S. J., Buning, P. G., Steger, J. L. and Chan, W. M. (1991)
Collar grids for intersecting geometric components within the Chimera overlapped
grid scheme. 10th AIAA Computational Fluid Dynamics, Honolulu, HI, no. AIAA
91–1587-CP. [Page 162].

[137] Pawlowski, R. P., Shadid, J. N., Simonis, J. P. and Walker, H. F.
(2004) Globalization techniques for Newton-Krylov methods and apllications to the
fully-coupled solution of the Navier-Stokes equations. Technical Report SAND2004-
1777, Sandia National Laboratories. [Page 176].

[138] Petrini, E., Efraimsson, G. and Nordström, J. (1998) A Numerical
Study of the Introduction and Propagation of a 2-D Vortex . Technical Report FFA
TN 1998-66, The Aeronautical Research Institute of Sweden, Bromma, Sweden.
[Page 213].

[139] Piegl, L. and Tiller, W. (1997) The NURBS book (2nd ed.). Springer-Verlag
New York, Inc., New York, NY, USA. [Page 22].

[140] Pironneau, O. (1973) On optimum profiles in Stokes flow. Journal of Fluid
Mechanics, 59, pp. 117–128. [Page 14].

[141] Pironneau, O. (1974) On optimum design in fluid mechanics. Journal of Fluid
Mechanics, 64, pp. 97–110. [Page 14].

[142] Pope, S. B. (2005) Turbulent Flows. Cambridge University Press, Cambridge.
[Page 175].

188

Bibliography

[143] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery,
B. P. (1992) Numerical recipes in C (2nd ed.): the art of scientific computing .
Cambridge University Press, New York, NY, USA. [Page 26].

[144] Pryce, J. D. and Reid, J. K. (1998) AD01, a Fortran 90 code for automatic
differentiation. Technical Report RAL-TR-1998-057, Rutherford Appleton Labora-
tory. [Page 12].

[145] Richardson, L. F. (1911) The Approximate Arithmetical Solution by Finite Dif-
ferences of Physical Problems Involving Differential Equations, with an Application
to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society
of London, 210, pp. pp. 307–357. [Page 98].

[146] Rizzi, A. (1978) Numerical implementations of solid-body boundary conditions
for the euler equations. Zeitschrift für angewandte Mathematik und Mechanik, 58,
pp. 301–304. [Page 86].

[147] Roe, P. L. (1981) Approximate Riemann solvers, parameter vectors, and differ-
ence schemes. Journal of Computational Physics, 135, pp. 250–258. [Pages 3, 27
and 80].

[148] Román, D. S. (2011) An Assessment of Aeronautical CFD Acceleration on Re-
configurable Computers using High Level Languages and Floating Point Arithmetic .
Master’s thesis, Universidad Autónoma de Madrid. [Page 177].

[149] Rumpfkeil, M. P. (2013) Optimizations Under Uncertainty Using Gradients,
Hessians, and Surrogate Models. AIAA Journal , 51, pp. 444 – 451. [Page 178].

[150] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2nd edn. [Pages 42, 91
and 93].

[151] Saad, Y. and Schultz, M. H. (1986) GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing , 7, pp. 856–869. [Page 91].

[152] Sacher, P. (1985) Numerical solutions for three-dimensional cases — Swept
wings. AGARD Advisory Report No. 211, Test Cases for Inviscid Flow Field Meth-
ods, chap. 7. [Page 114].

[153] Saff, E. B. and Snider, A. D. (2003) Fundamentals of complex analysis with
applications to Engineering and Science. Prentice-Hall Englewood Cliffs, NJ, Upper
Saddle River, New Jersey, 3rd edn. [Page 9].

[154] Salas, M. D. (2006) Some observations on grid convergence. Computers & Flu-
ids, 35, pp. 688–692. [Page 98].

[155] Samareh, J. A. (2001) Survey of Shape Parameterization Techniques for High-
Fidelity Multidisciplinary Shape Optimization. AIAA Journal , 39, pp. 877–884.
[Page 20].

[156] Samet, H. (1990) The Design and Analysis of Spatial Data Structures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA. [Page 55].

[157] Schepers, J. G. (2012) Engineering models in wind energy aerodynamics. PhD
thesis, Technische Universiteit Delft. [Page 2].

189

Bibliography

[158] Schmitt, V. and Charpin, F. (1979) Pressure Distributions on the ONERA-
M6-Wing at Transonic Mach Numbers. AGARD Advisory Report No. 138, Ex-
perimental data base for computer program assessment, chap. B1. [Pages 114
and 119].

[159] Schwamborn, D., Gerhold, T. and Heinrich, R. (2006) The DLR TAU-
Code: Recent Applications in Research and Industry. Proceedings of European
Conference on Computational Fluid Dynamics ECCOMAS CFD. [Page 54].

[160] Schwarz, T. (2005) Ein blockstrukturiertes Verfahren zur Simulation der Um-
strömung komplexer Konfigurationen. PhD thesis, Technischen Universität Carolo-
Wilhelmina. [Pages 16, 54 and 176].

[161] Schwarz, T. (2009) An Interpolation Method Maintaining the Wall Distance for
Structured and Unstructured Overset Grids. CEAS 2009 . [Page 176].

[162] Schwarz, T., Spiering, F. and Kroll, N. (2010) Grid coupling by means
of Chimera interpolation techniques. Second Symposium: Simulation of Wing and
Nacelle Stall . [Page 54].

[163] Shanno, D. F. (1970) Conditioning of Quasi-Newton Methods for Function Min-
imization. Mathematics of Computation, 24, pp. 647–656. [Page 149].

[164] Sherman, J. and Morrison, W. J. (1950) Adjustment of an Inverse Matrix
Corresponding to a Change in One Element of a Given Matrix. The Annals of
Mathematical Statistics, 21, pp. 124–127. [Page 48].

[165] Shroff, G. M. and Keller, H. B. (1993) Stabilization of Unstable Proce-
dures: The Recursive Projection Method. SIAM Journal on Numerical Analysis,
30, pp. 1099–1120. [Page 168].

[166] Sieros, G., Chaviaropoulos, P., Sørensen, J. D., Bulder, B. H. and
Jamieson, P. (2012) Upscaling wind turbines: theoretical and practical aspects
and their impact on the cost of energy. Wind Energy , 15, pp. 3–17. [Page 166].

[167] Smagorinsky, J. (1963) General Circulation Experiments with the Primitive
Equations. Monthly Weather Review , 91, pp. 99–164. [Page 3].

[168] Smith, S. C. (1996) A Computational and Experimental Study of Nonlinear As-
pects of Induced Drag . Technical Report 3598, NASA. [Page 160].

[169] Sobieczky, H. (1998) Parametric airfoils and wings. Fuji, K. and Dulikravich,
G. S. (eds.), Notes on Numerical Fluid Mechanics, vol. 68, pp. 71–88, Vieweg
Verlag Wiesbaden. [Page 19].

[170] Sohn, M. and Lee, K. (2000) Bézier Curve Application in the Shape Optimiza-
tion of Transonic Airfoils. 18th Applied Aerodynamics Conference, Denver, CO, no.
AIAA 2000–4523. [Page 19].

[171] Song, W. and Keane, A. J. (2004) A study of shape parameterisation meth-
ods for airfoils optimisation. 10th AIAA/ISSMO Multidisciplinary Analysis and Op-
timization Conference, Albany, NY, no. AIAA 2004–4482. [Page 20].

[172] Sonneveld, P. and Van Leer, B. (1984) A Minimax Problem Along the Imag-
inary Axis. Department of Mathematics and Informatics, University of Technology.
[Page 90].

190

Bibliography

[173] Spekreijse, S. P. (1987) Multigrid Solution of the Steady Euler Equations. PhD
thesis, Technische Universiteit Delft. [Page 168].

[174] Spekreijse, S. P. (1995) Elliptic Grid Generation Based on Laplace Equations
and Algebraic Transformations. Journal of Computational Physics, 118, pp. 38–61.
[Pages 34 and 41].

[175] Squire, W. and Trapp, G. (1998) Using Complex Variables to Estimate Deriva-
tives of Real Functions. SIAM Review , 40, pp. 110–112. [Page 9].

[176] Steger, J. L. (1989) Generation of Three-dimensional Body-Fitted Grids by
Solving Hyperbolic Partial Differential Equations. Technical Report 101069, NASA.
[Pages 16 and 43].

[177] Steger, J. L. and Chaussee, D. S. (1980) Generation of Body-Fitted Coordi-
nates using Hyperbolic Partial Differential Equations. SIAM Journal on Scientific
and Statistical Computing , 1, pp. 431–437. [Pages 16 and 34].

[178] Steger, J. L., Dougherty, F. C. and Benek, J. A. (1983) A Chimera grid
scheme. Advances in grid generation. [Page 53].

[179] Straathof, M. H. (2012) Shape Parametrization in Aircraft Design: A Novel
Method, Based on B-Splines. PhD thesis, Technische Universiteit Delft. [Pages 20,
114 and 152].

[180] Stroustrup, B. (2013) The C++ Programming Language. Addison-Wesley Pro-
fessional, Boston, MA, USA, 4th edn. [Page 122].

[181] Tangler, J. L. and Somers, D. M. (1995) NREL Airfoil families for HAWTs.
Technical Report NREL/TP-442-7109, National Renewable Energy Laboratory.
[Page 160].

[182] The MPI Forum (1993), MPI: A Message Passing Interface. [Page 14].

[183] Thomas, L. H. (1949) Elliptic Problems in Linear Differential Equations over a
Network. Tech. rep., Columbia University. [Page 47].

[184] Thomas, P. D. and Lombard, C. K. (1979) Geometric conservation law and
its application to flow computations on moving grids. AIAA Journal , 17, pp. 1030–
1037. [Page 97].

[185] Thompson, J., Soni, B. and Weatherill, N. (1999) Handbook of Grid
Generation. CRC Press, Boca Raton, FL, USA. [Pages 181, 185 and 187].

[186] Tiller, W. (1983) Rational B-Splines for Curve and Surface Representation. IEEE
Computer Graphics and Applications, 3, pp. 61–69. [Pages 19 and 22].

[187] Toro, E. F. (2009) Riemann Solvers and Numerical Methods for Fluid Dynamics:
A Practical Introduction. Springer, Berlin, 3rd edn. [Pages 78, 82 and 88].

[188] Trépanier, J.-Y., Lépine, J. L. and Pépin, F. (2000) An Optimized Geo-
metric Representation for Wing Profiles Using NURBS. Canadian Aeronautics and
Space Journal , 46, pp. 12–19. [Pages 26 and 28].

[189] Turing, A. M. (1950) Computing machinery and intelligence. Mind , 59, pp.
433–460. [Page 1].

191

Bibliography

[190] Turkel, E. (1987) Preconditioned methods for solving the incompressible and
low speed compressible equations. Journal of Computational Physics, 72, pp. 277
– 298. [Page 176].

[191] van Kuik, G. A. (2007) The Lanchester–Betz–Joukowsky limit. Wind Energy ,
10, pp. 289–291. [Page 166].

[192] Vanderplaats, G. N., Hicks, R. N. and Murman, E. M. (1975) Applica-
tion of Numerical Optimization Techniques to Airfoil Design. NASA Conference on
Aerodynamic Analysis Requiring Advanced Computers, NASA SP-347 . [Page 14].

[193] Van Leer, B. (1979) Towards the Ultimate Conservative Difference Scheme, V.
A Second-Order Sequel to Godunov’s Method. Journal of Computational Physics,
32, pp. 101–136. [Pages 27, 79 and 84].

[194] Vassberg, J. C. and Jameson, A. (2009) In Pursuit of Grid Convergence,
Part 1: Two-Dimensional Euler Solutions. 27th AIAA Applied Aerodynamics Con-
ference, San Antonio, TX, no. AIAA 2009–4114. [Page 98].

[195] Vassberg, J. C. and Jameson, A. (2010) In Pursuit of Grid Convergence for
Two-Dimensional Euler Solutions. Journal of Aircraft, 47, pp. 1152–1166. [Pages
28, 98, 102, 112, 113, 203 and 204].

[196] Venner, C. and Lubrecht, A. (2000) Multilevel Methods in Lubrication. Tri-
bology Series, Elsevier. [Page 42].

[197] Verhoeff, A. J. J. (2005) Aerodynamics of wind turbine rotors. PhD thesis,
Universiteit Twente. [Page 96].

[198] Vinokur, M. (1983) On One-Dimensional Stretching Functions for Finite-
Difference Calculations. Journal of Computational Physics, 50, pp. 215–234. [Pages
36 and 38].

[199] De Vries, H. (2013) On Synthetic Jet Actuation for Aerodynamic Load Control .
PhD thesis, Universiteit Twente. [Pages 81, 88 and 96].

[200] Waggoner, E. G., Burt, M., Lekoudis, S., Kaynak, U., Hirschel, E. H.
and Körner, H. (1994) CFD Requirements for Code Validation. AGARD-AR-
303 A Selection of Experimental Test Cases for the Validation of CFD Codes,
chap. 2. [Page 33].

[201] Weibull, W. (1951) A statistical distribution function of wide applicability. Jour-
nal of Applied Mechanics, 18, pp. 293–297. [Page 166].

[202] Van der Weide, E. T. A. (1998) Compressible Flow Simulation on Unstruc-
tured Grids using Multi-dimensional Upwind Schemes. PhD thesis, Technische Uni-
versiteit Delft. [Pages 88 and 114].

[203] Wilcox, D. C. (1993) Turbulence Modeling for CFD. DCW Industries, Inc., La
Cañada. [Page 175].

[204] Wu, H. Y., Yang, S., Lui, F. and Tsai, H. M. (2003) Comparison of
three geometric representations of airfoils for aerodynamic optimization. 16th AIAA
Computational Fluid Dynamics Conference, Orlando, FL, no. AIAA 2003–4095.
[Page 20].

192

Bibliography

[205] Yee, H., Sandham, N. and Djomehri, M. (1999) Low-Dissipative High-Order
Shock-Capturing Methods Using Characteristic-Based Filters. Journal of Compu-
tational Physics, 150, pp. 199 – 238. [Page 213].

[206] Zahle, F. (2007) Wind Turbine Aerodynamics Using an Incompressible Overset
Grid Method . PhD thesis, Imperial College London. [Pages 16, 46 and 54].

[207] Zhang, H., Reggio, M., Trépanier, J. and Camarero, R. (1993) Dis-
crete form of the GCL for moving meshes and its implementation in CFD schemes.
Computers & Fluids, 22, pp. 9 – 23. [Page 97].

193

Index

A
A Brief History of Time . . see Hawking, Stephen
Abbott, Edwin

quote . 33
adjoint equation method 12–13, 125–127

discrete . 26, 125–126
grid . 176
Jacobian-free . 176–177
unsteady .168, 169, 177
verification .141–143

adjoint equations . 126
solution method .140–141

adjoint vector . 126
ADT see alternating binary tree
algorithmic differentiation 10–12

forward mode . 11
operator overloading 11–12, 124
reverse mode 11, 176–177
source code transformation 11

alternating binary tree 55–58
generation . 55–56
search procedure . 56
terminal leaf . 56

alternating digital tree see alternating binary tree
analytical differentiation . 7
annual energy production 166
anti-dissipative effect 104, 105
Argand diagram . 93
automatic differentiation see algorithmic

differentiation

B
background grids . 49–50

Cartesian . 49–50
cylindrical . 50
rhombus . 50

barycentric coordinate . 67
basis spline curve . 21–24

knot vector . 21–23
order . 21

BEM see blade element momentum theory
Bessel function . 8
Betz limit . 166
blade element momentum theory 2

blade mass . 165
bounding box

Cartesian . 55
transformed . 69, 70

boxcar function . 22

C
C++ . 122, 140, 144
cache miss .123
CAD see computer aided design
calorically perfect gas . 77
cancellation of errors 102, 107
capacity factor . 166
Cauchy-Riemann equations 9
ceiling operation . 214
central-difference approximation8
centrifugal force .96
chromatic number .128, 129
co-rating frame of reference see non-inertial

frame of reference
colour . 127
colouring

∂R/∂X . 135
Jacobian matrix .128, 129

complex-step finite-difference method 9, 15
composite overset grid see overset grid
computational coordinate 39
compute block . 14, 55
computer aided design 7, 171
condition number . 93
conformal mapping . 99, 203
conservation laws . 76
conserved variabe

vector . 77
constraint

curvature .151
internal volume . 151–152
planform area .151
trailing edge angle . 151

continuum hypothesis . 76
control point .21
control polygon . 24
control volume . 76, 77

centre of mass . 79

195

Index

volume . 79
control-volume-averaged value 77
convective flux discretization

JST scheme see Jameson-Schmidt-Turkel
scheme

Roe scheme . see Roe’s approximate Riemann
solver

convective flux tensor . 77
convergence acceleration method

grid sequencing . 177
multigrid . 177

Coriolis force .96
covariance . 214
Cox-de Boor recursion formula 22
curvature correction . 176
curvature-weighted arc length 37
curve

arc length . 36
curvature . 36

Cynegetica . see Oppian

D
defect-correction . 168
direct numerical simulation 3
discontinuous Galerkin method 175
discrete adjoint equations . . see adjoint equation

method
DNS see direct numerical simulation
domain connectivity .68–74
donor cell . 54, 69
double-precision arithmetic9
drag coefficient

aerofoil .100
wing . 117

dual number . 121–125
definition . 10
method . 10

approach .124–125
vector mode 123–125, 213–216

non-real part . 10

E
epistasis analysis . 175
Euler equations . 77

hyperbolic nature . 34, 76
rotational invariance property 78
stencil . 128

Euler’s identity .122
Euler, Leonhard

quote . 121

F
feasibility . 149

Feynman, Richard
quote . 171

field cell . 54
field grid generation . 43–49

boundary conditions 48–49
periodic . 48–49

splay . 49
symmetry . 48

dissipation coefficient 45–47
finite-difference operators 45
grid spacing . 46
hyperbolic equations . 43

discretization . 43–45
implicit weighting factor45
orthogonality measure . 51
solution method . 47–48

Field programmable gate array see

reconfigurable hardware
finite volume method 77–79

boundary conditions 85–89
far-field . 87
overset grids .88–89
periodicity . 86
solid wall . 85–86
subsonic outflow . 88
symmetry . 87

finite-difference approximation 7–8
first-order optimization methodsee

gradient-based optimization method
Flatland . see Abbott, Edwin
floor operation . 129
force coefficient

drag .100, 117
lift . 100, 117

FPGA see reconfigurable hardware
Fréchet derivative . 95
fringe cell . 54, 68

incomplete see incomplete fringe cell
function template see template function

G
Galerkin-Petrov condition 91
Gauss’ divergence theorem151
Gauss-Legendre quadrature 152
GCLsee geometric conservation law
generalized complex number . . .see dual number
geometric conservation law 97
ghost control volume . . .see halo control volume
global optimization method see zeroth-order

optimization method
GMRES method . 91–92

matrix-free . 95–96
restarted . 94

GPU see graphical processing unit
gradient-based optimization method 6, 178
graph vertex colouring 127–129

proper . 127

graphical processing unit 177
grid generation

considerations . 34–35
elliptic . 34
field grid see field grid generation
hyperbolic . 34–35
requirements .34
surface grid see surface grid generation

196

Index

volume grid see field grid generation
Gulliver’s Travels see Swift, Jonthan

H
halo control volume . 85
Hawking, Stephen

quote .75, 147
helical vortex . 167, 168, 175
Hermitian cubic interpolation 176
Hessenberg matrix . 92
Hessian matrix . 149
hole cell . 54

I
ILU decomposition . .see incomplete lower-upper

decomposition
imaginary part . 9
incomplete fringe cell . 72
incomplete lower-upper decomposition93
inexact Newton backtracking method 176
interpolation coefficients 70–71

J
Jacobian matrix92, 129–134

first-order . 92

verification .133–134
Jameson-Schmidt-Turkel scheme80–81

background dissipation term 80
dissipation coefficients 81
pressure sensor .81
shock capturing term . 80

JST schemesee Jameson-Schmidt-Turkel
scheme

K
Kármán-Trefftz conformal transformation . . . 99,

204
knot multiplicity . 22–23
knot vector . 21–23
Krylov subspace methods 91–92

L
Lagrange multiplier . 12, 149
large-eddy simulation . 3
lift coefficient

aerofoil .100
wing . 117

low Mach number preconditioning 176

M
Maclaurin series .122
magnetohydrodynamics .15
maximum principle . 83, 84

Message Passing Interface 14
MHD see magnetohydrodynamics
midpoint quadrature rule 99, 100
moment coefficient

aerofoil .100
MPIsee Message Passing Interface

MUSCL-type reconstruction . see reconstruction

N
NACA 0012 . . .27, 28, 75, 98, 99, 101, 204, 207
NACA 4-digit series . 203
Navier-Stokes equations . 76

dimensional analysis 76–77
Newtonian fluid . 76
non-inertial frame of reference 96–97
non-uniform rational basis spline

surface . 7, 21–25
NREL phase VI rotor . 160
NREL S809 . 160, 161
numerical flux . 78, 80–82
NURBS . . . see non-uniform rational basis spline

O
odd-even decoupling . 80
ONERA D . 114
ONERA M6 15, 75, 114–119, 142, 143, 149, 152
operator overloading . 11–12
Oppian

quote . 53
optimality . 149

optimization see shape optimization
overset block connectivity see domain

connectivity
overset grid . 4–5, 35

P
parallel implementation . 14
parametrization method see shape

parametrization
perfect gas law .77
Petersen graph .128
PETSc . 92, 139
pitching moment .100
power coefficient . 164
preconditioning . 93–94
pseudo-time-integration 89–96

Newton’s method . 90–96
quadratic convergence 133–134
solution strategy . 94–96

Runge-Kutta method 89–90

Q
quote

Abbott, Edwin (Flatland) 33
Euler, Leonard . 121
Feynman, Richard . 171
Hawking, Stephen 75, 147
Oppian (Cynegetica) . 53
Swift, Jonathan (Gulliver’s Travels) 17
Turing, Alan . 1
Whitehead, Alfred . 217

R
RANS see Reynolds-averaged Navier-Stokes

equations

197

Index

ratio of specific heats .77
rational basis spline curve24
ray-casting . 65–67

approach .65–66
concept . 65

reconfigurable hardware 177
reconstruction . 83–85

about centre of mass .83
Cartesian grid assumption 84
MUSCL-type . 27, 84–85

recursive projection method 168
Reynolds-averaged Navier-Stokes equations . . . 3
Richardson extrapolation 98
Riemann-invariant .88
Roe’s approximate Riemann solver . . . 27, 81–82

entropy fix . 82
Roe-averaged variable . 82
root bending moment159, 165, 167
rotor thrust . 166

S
sensitivity analysis . 7–13
shape optimization . 5–7

aerofoil . 25–28
flow chart

adjoint based . 148
general . 6

multipoint . 178
under uncertainty . 178

shape parametrization . 6–7
Chebychev polynomials 19
Class function/ Shape function Transformation

20
CST see Class function/ Shape function

Transformation
direct parametrization . 21
Hicks-Henne bump functions 19
indirect parametrization 21
mesh points . 19
PARSEC . 19–20
splines . 19
wind turbine rotor blade 29–30

signed-volume check . 66–67
SNOPT .26, 149
spatial order of convergence 98
spurious oscillations . 84
stochastic variable . 214

subtractive cancellation error8
surface grid generation 35–42

elliptical . 40–42
control function . 41
solution procedure 41–42

transfinite interpolation 38–40
Swift, Jonathan

quote . 17

T
Taylor series expansion

complex-valued analytical function 9
dual-number-valued analytical function 10
real-valued analytical function 7

template function 122–123, 144
time-integration see pseudo-time-integration
tip-cap . 150
tree . 55
tri-linear transformation 69–70, 71

Turing, Alan
quote . 1

V
Van Albada limiter . 27
variance . 215
vertex distribution . 35–38

curvature based . 36–37
Vinokur’s stretching function 38

volume grid generation . see field grid generation
vortex shedding . 169
vortex-correction boundary condition . . 102, 112,

113

W
Weibull distribution . 166
WENO scheme . 175
Whitehead, Alfred

quote . 217
wind energy . 1
wing span efficiency . 156

Z
zeroth-order optimization method 5–6, 178
zipper grid . 58–64

generation . 58–62
use . 63–64
verification . 62–63

198

Appendix A
Method for computing grid generation

dissipation coefficient

T
he dissipation coefficient — given by equation (3.37) and equation (3.38) on page 47
— is used as a smoothing mechanism in the hyperbolic field grid generation method.

Moreover, its application improves the numerical stability of the solution method. The
amount of smoothing required for this purpose is dependent on the local properties of
the grid. Therefore, this observation is taken into account, by making the dissipation
coefficient spatially varying, with the value dependent on these properties. This appendix
presents the method that is used to determine the value of the dissipation coefficient. The
content of this appendix is based on the original description of the method to determine
the dissipation coefficient, presented by Chan and Steger [39].

Apart from the user-definable smoothing parameter ǫi, the dissipation coefficient
depends on four properties of the grid:

(i) local grid spacing;

(ii) occurrence of converging grid lines;

(iii) normal distance from the body surface;

(iv) occurrence of concave corners.

How each of these properties is accounted for in the computation of the dissipation
coefficient is explained in the following sections.

Local grid spacing

The local grid spacing is represented by the approximation of the local matrix norms
of
∣
∣
∣
∣C−1A

∣
∣
∣
∣ and

∣
∣
∣
∣C−1B

∣
∣
∣
∣, denoted by Nξ and Nη, respectively. These approximations

yield

Nξ =

√

x2

ζ + y2

ζ + z2

ζ

x2

ξ + y2

ξ + z2

ξ

, Nη =

√

x2

ζ + y2

ζ + z2

ζ

x2
η + y2

η + z2
η

. (A.1)

For the derivatives involved in this equation, a finite-difference approximation can be
employed.

199

A. Method for computing grid generation dissipation coefficient

Converging grid lines

In regions of converging grid lines, additional dissipation is required to prevent grid lines
from crossing. Converging grid lines are detected with the grid point distribution sensor
functions d̃ξ

i,j,k and d̃η
i,j,k, which read

d̃ξ
i,j,k = max

{(

dξ
i,j,k

)2/Sk

, 0.1

}

, (A.2)

d̃η
i,j,k = max

{(

dη
i,j,k

)2/Sk

, 0.1

}

, (A.3)

where

dξ
i,j,k =

|ri+1,j,k−1 − ri,j,k−1| + |ri−1,j,k−1 − ri,j,k−1|
|ri+1,j,k − ri,j,k| + |ri−1,j,k − ri,j,k| , (A.4)

dη
i,j,k =

|ri,j+1,k−1 − ri,j,k−1| + |ri,j−1,k−1 − ri,j,k−1|
|ri,j+1,k − ri,j,k| + |ri,j−1,k − ri,j,k| . (A.5)

i.e. the ratio of the distance between grid vertices from two subsequent grid layers,
i.e. layer (k − 1) and layer k. This ratio is higher in concave regions, resulting in the
application of more dissipation in these regions. In equation (A.2) and equation (A.3)
Sk denotes the scaling function, which scales for the normal distance to the wall.

Normal distance

The normal distance to the wall is accounted for by means of scaling function Sk, which
is expressed as

Sk =

√
k

n3−1
if 1 ≤ k ≤ ktrans,

√
ktrans

n3−1
if ktrans + 1 ≤ k < n3,

(A.6)

where n3 is the number of vertices in the third direction. Parameter ktrans is restricted to
the range [3/4, 1] × (n3 − 1) and is determined based on the local properties of the grid.
The value of ktrans is set to the value of the current grid layer, if one of the following
conditions is true:

max
i,j

dξ
i,j,k − max

i,j
dξ

i,j,k−1
< 0, (A.7)

max
i,j

dη
i,j,k − max

i,j
dη

i,j,k−1
< 0, (A.8)

which is a measure for a sufficient decrease in the convergence of the grid lines. Once
ktrans is assigned a value, it remains unchanged. Application of the scaling function makes
sure that the dissipation close to the body surface is small, such that orthogonality of
the grid lines is maintained in that region.

200

Concave corners

The grid angle functions ãξ
i,j,k and ãη

i,j,k are used to detect the occurrence of a concave
corner in the grid. For that purpose, define the vectors pointing in the positive and
negative ξ-direction, respectively, as:

r+
i := ri+1,j,k − ri,j,k, r−

i := ri−1,j,k − ri,j,k. (A.9)

The vectors pointing in the positive and negative η-direction are defined in a similar
fashion and the corresponding unit vectors are denoted by a hat. Then, the local unit
normal vector is computed by the following cross product

n̂i,j,k =

(
r+

i − r−
i

)
×
(
r+

j − r−
j

)

∣
∣
(
r+

i − r−
i

)
×
(
r+

j − r−
j

)∣
∣
. (A.10)

The dot product of r̂+
i with this unit normal vector equals the cosine of the angle between

both vectors, i.e.
cos (αi,j,k) = n̂i,j,k · r̂+

i ≡ n̂i,j,k · r̂−
i . (A.11)

The resulting value for αijk is subsequently used to compute the grid angle function,
according to

ãξ
i,j,k =

{[
1 − cos2 (αi,j,k)

]−1
if 0 ≤ αi,j,k ≤ π

2
,

1 if π
2

< αi,j,k ≤ π.
(A.12)

Following the same procedure for r̂+
j and r̂−

j , the value for grid angle function ãη
i,j,k is

obtained.

Dissipation coefficient function

Each of the aforementioned properties of the grid has been accounted for. Next, the
expression for the local grid property dependent dissipation coefficient for smoothing of
the implicit part of the hyperbolic field grid generation equations is obtained by taking
the product of the functions presented above, resulting in

(ǫξ)i,j,k = ǫiNξSkd̃ξ
i,j,kãξ

i,j,k, (A.13)

(ǫη)i,j,k = ǫiNηSkd̃η
i,j,kãη

i,j,k. (A.14)

201

Appendix B
Kármán-Trefftz O-grid generation

F
or the verification of the spatial order of convergence of the numerical flow solution
method, an algebraic grid generation method has been used, which is based on the

concept of conformal mapping. The grid resulting from using this method is of high
quality, both in terms of orthogonality of the grid lines, as well as the aspect ratio of
the cells. The method presented in this appendix is based on the method described by
Vassberg and Jameson [195].

NACA 0012 aerofoil geometry

The geometry used for the verification of the numerical method is based on the symmetric
NACA 4-digit series of aerofoils. The shape of the upper surface of these aerofoils is
defined by

y (x)

c̄
=

t̄

0.2

[

0.2969

√
x

c̄
− 0.1260

(x

c̄

)

−0.3516

(x

c̄

)2

+ 0.2843

(x

c̄

)3

− 0.1015

(x

c̄

)4
]

, (B.1)

for x/̄c ∈ [0, 1] and where c̄ is the chord length of the aerofoil and t̄ is the relative
maximum thickness. Since the aerofoil is symmetric, the lower surface is obtained by
mirroring the geometry with respect to the x-axis. This geometry definition yields a
non-zero value for y at x ≡ c̄. However, for the purpose of having a sharp trailing edge,
the geometry is extended to the point where the curve crosses the x-axis. Following this
approach, the trailing edge of the aerofoil is now situated at

(xte − 1)

c̄
= 8.930411365142709 · 10−3

.

Properties required for performing the conformal transformation, which is discussed in
the next section, are the leading edge radius and the trailing edge angle. The leading
edge radius is given by [1]:

rle

c̄
= 1.1019

(
t̄

c̄

)2

. (B.2)

203

B. Kármán-Trefftz O-grid generation

x/̄c

y
/̄c

z2 z1

ξ

η

ζle

ζ2 ζc

ζ1

Figure B.1: The NACA 0012 aerofoil, defined by equation (B.1), is transformed to a quasi-
circle, using the conformal transformation, defined by equation (5.73). The sin-
gular points corresponding to this transformation are ζ1 and ζ2 corresponding
to z1 and z2 respectively, together with two points used in the grid generation
procedure ζle ≡ ζ(0) and ζle.

The trailing edge angle, for the extended aerofoil, is computed with

τte = 2 arctan

(∣
∣
∣
∣
∣

1

c̄

dy

dx

∣
∣
∣
∣
xte

∣
∣
∣
∣
∣

)

= 2.81872535015023 · 10−1[rad] ≈ 16.15
◦
. (B.3)

Kármán-Trefftz conformal transformation

The Kármán-Trefftz conformal transformation C → C is used to map the NACA 0012
aerofoil to a quasi-circle, such that the discretization can be performed in the ζ-plane.
Subsequently, the obtained grid is transformed back to the physical space, resulting in a
high quality discretization of the flow domain. The Kármán-Trefftz conformal transfor-
mation reads [122,123]

ζ − ζ1
ζ − ζ2

=

(
z − z1
z − z2

)P

, P =
π

2π − τte
, (5.73)

where z = x + iy and ζ = ξ + iη. For mapping the NACA 0012 aerofoil, the following
singular points in the physical space are placed on the sharp trailing edge location and
at half the leading edge radius from the leading edge [195], i.e.

z1 = xte, z2 =
1

2
rle.

To map the aerofoil to a quasi-circle, the singular points in the mapped space correspond
to [195]:

ζ1 = 0.77043505, ζ2 = 0.24642903.

Figure B.1 shows both the NACA 0012 geometry and its shape in the mapped space,
after performing the conformal transformation.

204

(a) (b)
ξ

η

0.0 0.5 1.0

−0.5

0.0

0.5

x/̄c

y
/̄c

0.0 0.5 1.0

−0.5

0.0

0.5

Figure B.2: Flow domain used for studying spatial convergence characteristics of flow solution
method. Grid depicted consists of 128 × 128 control volumes. Subfigure (a)
shows detail of the grid in the mapped space, (b) shows detail of the grid in
physical space after inverse transformation.

Grid generation

For the generation of the grid, the centre of the circle in the mapped space is taken to
be at the middle of the line connecting leading edge to trailing edge, i.e.

ζc =
ζ (0) + ζ (xte)

2
= 4.85915653521317 · 10−1

.

Subsequently, the upper half of the quasi-circle is discretized, by placing
(
1

2
Nc + 1

)

vertices in the quasi-circle, with a constant angular spacing of

∆θ =
2π

Nc
.

Here Nc denotes the number of control volumes used for the discretization of the whole
aerofoil geometry. For the discretization of the domain with cells that have an aspect ratio
of approximately one, the spacing in the radial direction is taken equal to r∆θ, where r
is the local radius, with respect to ζc. This goal is achieved by creating concentric circles
with radius

Rj = R0e
2πj
Nc , 0 ≤ j ≤ Nc (B.4)

around the centre point. In this equation R0 is the approximate radius of the quasi-circle
that represents the aerofoil. It is computed by dividing the perimeter of the quasi-circle
by 2π. To account for the fact that the quasi-circle is not perfectly circular, the actual
radius on which each vertex is placed is computed according to

rij =
ri0 (RNc

− R0) + RNc
(Rj − R0)

RNc
− R0

, 0 ≤ i ≤ 1

2
Nc, 0 ≤ j ≤ Nc. (B.5)

The value of ri0 can be computed from the discretized upper half of the quasi-circle.
For the purpose of creating a grid that is symmetric, the method described above only
constructs the upper half of the grid. Subsequently, the lower half of the grid is obtained

205

B. Kármán-Trefftz O-grid generation

by mirroring the upper half with respect to the ξ-axis. Figure B.2 (a) shows a part
of the grid, in the mapped plane, near the quasi-circle for Nc = 128. Performing the
transformation of this grid from the mapped plane back to the physical plane results in
the grid depicted in figure B.2 (b).

A family of grids is obtained by creating a grid for the finest discretization to be
considered. Subsequent other grids are obtained by removing every other vertex in both
directions. This family of grids can then be used for the investigation of the spatial
convergence characteristics of the method. Such an investigation has been performed for
the flow solution method employed in the present research. The approach and results of
this investigation are discussed in section 5.8 starting on page 97.

206

Appendix C
Results spatial order of convergence study

I
n section 5.8 the method used for verifying the spatial order of convergence of the
flow model has been discussed and a summary of the results of this investigation has

been presented. This appendix provides a survey of all results. The flow configuration
involves an extended NACA 0012 aerofoil subject to a subcritical flow with a free-stream
Mach number of 0.5 and an angle of attack of 1.25

◦. Several parameters have been
varied in the investigation; the parameters used to obtain the results presented are listed
in the caption of the corresponding table. A discussion of the results has been given in
section 5.8 starting at page 97.

The first column of each table lists the grid resolution, represented by the number of
control volumes Nc used for the discretization of the flow domain in the circumferential
direction of the aerofoil. The same number of control volumes is also used for discretiza-
tion in the radial direction, for the far-field at approximately 150 chord lengths, c̄. For
the large domain, with a radius of approximately 80 ·103 c̄, double that number of control
volumes is used in the radial direction. The subsequent columns list the lift coefficient cl,
the drag coefficient cd and the moment coefficient cm. The bottom two rows of each
table list the extrapolated value φ∗ and corresponding order of convergence p̄. These
estimates are usually obtained using the three finest grid resolutions. However, in the
cases indicated by a dagger, non-monotonic convergence behaviour is observed when the
result of the finest grid is included. Therefore, in these situations, the finest grid solution
is not considered and the result of the grid containing 512 control volumes in one direc-
tion was used for computing the estimate for h = 0. The decimal places that have been
underlined, correspond to the value estimated for infinite grid resolution.

207

C. Results spatial order of convergence study

Table C.1: Results for the single block discretization of the domain, obtained with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 1/3; far-field at 150 c̄.

grid resolution cl cd cm

Nc

32 1.69881209 · 10−1
4.11298649 · 10−3

3.44522046 · 10−3

64 1.75339576 · 10−1
5.93413424 · 10−4

2.17870475 · 10−3

128 1.78563843 · 10−1
3.05472095 · 10−5

2.17687754 · 10−3

256 1.79526247 · 10−1 −8.82167828 · 10−6
2.24151706 · 10−3

512 1.79735881 · 10−1
2.90705235 · 10−6

2.25920254 · 10−3

1024 1.79774289 · 10−1
9.34057594 · 10−6

2.26213760 · 10−3

2048 1.79779950 · 10−1
1.14818243 · 10−5

2.26235858 · 10−3

4096 1.79780313 · 10−1
1.21035183 · 10−5

2.26229847 · 10−3

φ∗
1.79780338 · 10−1

1.23578715 · 10−5
2.26237657 · 10−3

p̄ 3.961 1.784 3.731
†

Table C.2: Results for the single block discretization of the domain, obtained with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 1/3; far-field at 150 c̄; modified
pressure boundary condition used.

grid resolution cl cd cm

Nc

32 1.71225365 · 10−1
3.55901040 · 10−3

3.35618754 · 10−3

64 1.75813493 · 10−1
3.21773867 · 10−4

2.19042437 · 10−3

128 1.78699265 · 10−1 −5.88352224 · 10−5
2.18598167 · 10−3

256 1.79558697 · 10−1 −3.43448668 · 10−5
2.24412609 · 10−3

512 1.79743102 · 10−1 −3.90881356 · 10−6
2.25976891 · 10−3

1024 1.79775848 · 10−1
7.57986239 · 10−6

2.26224080 · 10−3

2048 1.79780283 · 10−1
1.10345247 · 10−5

2.26237412 · 10−3

4096 1.79780385 · 10−1
1.19908439 · 10−5

2.26230003 · 10−3

φ∗
1.79780387 · 10−1

1.23569050 · 10−5
2.26238171 · 10−3

p̄ 5.449 1.853 4.213
†

208

Table C.3: Results for the single block discretization of the domain, obtained with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 0; far-field at 150 c̄; modified
pressure boundary condition used.

grid resolution cl cd cm

Nc

32 1.68990591 · 10−1
7.05997590 · 10−3

3.09464283 · 10−3

64 1.74743791 · 10−1
1.24850520 · 10−3

2.05712685 · 10−3

128 1.78280146 · 10−1
1.77926448 · 10−4

2.12465754 · 10−3

256 1.79425738 · 10−1
2.71727681 · 10−5

2.22246115 · 10−3

512 1.79702249 · 10−1
1.20028986 · 10−5

2.25266869 · 10−3

1024 1.79763492 · 10−1
1.16340609 · 10−5

2.26003639 · 10−3

2048 1.79776578 · 10−1
1.20558493 · 10−5

2.26171927 · 10−3

4096 1.79779257 · 10−1
1.22470654 · 10−5

2.26211023 · 10−3

φ∗
1.79779947 · 10−1

1.24056429 · 10−5
2.26222855 · 10−3

p̄ 2.288 1.141 2.106

Table C.4: Results for the single block discretization of the domain, obtained with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, assuming uniform Cartesian grid; linear
reconstruction weighting factor κ̂ = 0; far-field at 150 c̄; modified pressure boundary
condition used.

grid resolution cl cd cm

Nc

32 1.65532737 · 10−1 −1.57766643 · 10−3
2.13255906 · 10−3

64 1.72232634 · 10−1 −6.49164204 · 10−3
1.73581819 · 10−3

128 1.76743642 · 10−1 −4.76257699 · 10−3
2.02229488 · 10−3

256 1.78558083 · 10−1 −2.74755812 · 10−3
2.17647191 · 10−3

512 1.79248721 · 10−1 −1.45803866 · 10−3
2.23046829 · 10−3

1024 1.79535005 · 10−1 −7.45009630 · 10−4
2.24953016 · 10−3

2048 1.79663081 · 10−1 −3.71797592 · 10−4
2.25683221 · 10−3

4096 1.79723088 · 10−1 −1.81079366 · 10−4
2.25984132 · 10−3

φ∗
1.79775988 · 10−1

1.82339234 · 10−5
2.26195053 · 10−3

p̄ 1.094 0.969 1.279

209

C. Results spatial order of convergence study

Table C.5: Results for the single block discretization of the domain, obtained with follow-
ing settings: JST scheme to compute convective flux; dissipation coefficients
used: k2 = 0.25, k4 = 0.015625; far-field at 150 c̄; modified pressure boundary
condition at solid wall. No estimate could be obtained for the spatial convergence
order for cm.

grid resolution cl cd cm

Nc

32 1.76309093 · 10−1 −2.74721388 · 10−3
3.87334592 · 10−3

64 1.78507728 · 10−1 −1.78304347 · 10−4
2.58382219 · 10−3

128 1.79400636 · 10−1 −7.03071555 · 10−4
2.33722082 · 10−3

256 1.79609601 · 10−1 −2.10428847 · 10−4
2.27502484 · 10−3

512 1.79662119 · 10−1 −4.72503043 · 10−5
2.25935564 · 10−3

1024 1.79685217 · 10−1 −1.39285941 · 10−6
2.25727058 · 10−3

2048 1.79698923 · 10−1
1.02730972 · 10−5

2.25834029 · 10−3

4096 1.79707007 · 10−1
1.30144502 · 10−5

2.25959865 · 10−3

φ∗
1.79718633 · 10−1

1.38565062 · 10−5 —
p̄ 0.762 2.089 —

Table C.6: Results for the single block discretization of the domain, obtained with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 1/3; far-field at 80 kc̄.

grid resolution cl cd cm

Nc

32 1.70289358 · 10−1
4.10728641 · 10−3

3.45350522 · 10−3

64 1.75823878 · 10−1
5.84468249 · 10−4

2.18424316 · 10−3

128 1.79093619 · 10−1
1.94497523 · 10−5

2.18291842 · 10−3

256 1.80075911 · 10−1 −2.06930203 · 10−5
2.24799830 · 10−3

512 1.80294049 · 10−1 −9.22571045 · 10−6
2.26584719 · 10−3

1024 1.80336340 · 10−1 −2.89396662 · 10−6
2.26883841 · 10−3

2048 1.80343874 · 10−1 − 7.974599 · 10−7
2.26908260 · 10−3

4096 1.80345162 · 10−1 − 1.968521 · 10−7
2.26903326 · 10−3

φ∗
1.80345428 · 10−1

4.42929 · 10−8
2.26910430 · 10−3

p̄ 2.548 1.803 3.615
†

210

Table C.7: Results obtained for composite overset discretization of the domain with following
settings: Roe’s approximate Riemann solver to compute convective flux; linear re-
construction of the state at the interface, about the centre of mass of the control
volume; linear reconstruction weighting factor κ̂ = 1/3; far-field at 150 c̄.

grid resolution cl cd cm

Nc

32 1.71594805 · 10−1
4.06551234 · 10−3

3.44918052 · 10−3

64 1.75363561 · 10−1
5.81904160 · 10−4

2.17323563 · 10−3

128 1.78552136 · 10−1
3.00330172 · 10−5

2.17580020 · 10−3

256 1.79529489 · 10−1 −9.06903892 · 10−6
2.24157180 · 10−3

512 1.79740459 · 10−1
2.75543775 · 10−6

2.25931637 · 10−3

1024 1.79778184 · 10−1
9.25195908 · 10−6

2.26219100 · 10−3

2048 1.79783864 · 10−1
1.13978406 · 10−5

2.26240533 · 10−3

4096 1.79784361 · 10−1
1.20153169 · 10−5

2.26234616 · 10−3

φ∗
1.79784408 · 10−1

1.22647777 · 10−5
2.26242260 · 10−3

p̄ 3.516 1.797 3.745
†

211

Appendix D
Measuring the efficiency of the dual number

method in vector mode

T
o determine the efficiency of the dual number method for computing sensitivities,
depending on the dimension of the non-real component of the dual number, a

representative model problem has been considered. This appendix presents the details of
the model problem considered, as well as the method used to determine the efficiency.
Moreover, the approach taken to determine an estimate for the number of operations
that is required to fully populate the Jacobian matrix, for a dual number with a certain
dimension of the non-real part, is also discussed.

Model problem

The model problem considers the calculation of the residual vector of the 2D Euler
equations for unsteady inviscid compressible flow. The partial differential equations have
been discretized using a finite-difference method and the convective flux is computed
using Roe’s approximate Riemann solver. A rectangular flow domain has been used, for
which the horizontal dimension is two times the vertical dimension. The domain has been
discretized using a Cartesian grid that is uniform in both directions. The flow field is
initialized with the superposition of an isentropic vortex [48,138,205] and a uniform flow
field with a free-steam Mach number of M∞ = 0.50, as

u (x) =
√

γ M∞

(

1 − Γ

2πRc
e

1

2

[

1− (x−x0)2+(y−y0)2

R2
c

]

(y − y0)

)

,

v (x) =
√

γ M∞
Γ

2πRc
e

1

2

[

1− (x−x0)2+(y−y0)2

R2
c

]

(x − x0) ,

ρ (x) =

(

1 − [γ − 1] Γ2 M2

∞
8π2

e
1− (x−x0)2+(y−y0)2

R2
c

) 1

γ−1

,

p (x) =

(

1 − [γ − 1] Γ2 M2

∞
8π2

e
1− (x−x0)2+(y−y0)2

R2
c

) γ
γ−1

,

with initial position (x0, y0) = (−0.5, 0), radius of the vortex core Rc = 0.1, strength
of the vortex Γ = 1.0 and the ratio of specific heats is taken as γ = 1.4. Note, that

213

D. Measuring the efficiency of the dual number method

non-dimensional variables are used for both the flow variables — non-dimensionalized
using the free-stream conditions — and the coordinates — non-dimensionalized using
the dimension of the domain in vertical direction. Boundary conditions are enforced by
prescribing the exact solution for the vertices at the boundary.

Timing

As a measure for determining the relative efficiency of the method, an estimate for the
time required to fully populate the Jacobian matrix is used. Note, that the possibility
of using colouring to construct the Jacobian matrix more efficiently is not considered
for this purpose. Considering that (i) the horizontal dimension of the domain is twice
the vertical dimension; (ii) the grid is uniform in both directions; (iii) for the 2D Euler
equations there are four conserved flow variables and (iv) assuming that an odd number
of vertices is used for the discretization of the domain, the number of derivatives that
must be computed to populate the Jacobian matrix is given by

nder = 2ni (ni + 1) , (D.1)

where ni is the number of vertices used for the discretization of the domain in the
x-direction. Using this result, the estimate for the time required to populate the Jacobian
matrix is defined by

t̄jac :=

⌈
nder

nd

⌉
∆tres

tref
, (D.2)

with ⌈·⌉ the ceiling operation, defined for x ∈ R as: ⌈x⌉ := min {m ∈ Z : m ≥ x}, nd

the dimension of the non-real component of the dual number. Moreover, ∆tres is the
time required for a single computation of the complete residual vector and tref a reference
time. For a reference time, the time required to fully populate the Jacobian matrix by
means of a central-difference finite-difference approximation is used.

To determine ∆tres, the time required to perform nres residual evaluations is recorded.
This procedure is then repeated for nrun times and subsequently, the mean of this result is
computed by averaging over the number of runs. The time for a single residual evaluation
is finally obtained by dividing the previous result by nres.

The value of tref is determined in the same manner, using real-valued floating-point
numbers instead of the dual numbers. Note, that the method used to determine both tref

and ∆tres means that both are actually stochastic variables. Therefore, the mean — or
expected value — of t̄jac is not necessarily strictly proportional to the quotient of the
mean of tref and ∆tres. To get a more accurate estimate for the expected value of t̄jac, a
Taylor series expansion of the expected value can be used [32], for which the second-order
series expansion reads

E
[
t̄jac

]
≈
⌈

nder

nd

⌉(
E [∆tres]

E [tref]
− Cov [∆tres, tref]

E2 [tref]
+

Var [tref] E [∆tres]

E3 [tref]

)

, (D.3)

where E [·] denotes the expected value and Var [·] the variance of a stochastic variable.
Furthermore, Cov [·, ·] denotes the covariance of two stochastic variables. Therefore,
figure 6.1 on page 124 shows E

[
t̄jac

]
computed according to equation (D.3) instead of

the result obtained by evaluating equation (D.2). The error-bars depicted in the graph

214

Table D.1: Sum of addition and multiplication floating-point operations that are required to
carry out the mathematical operations listed. Variables µadd and µmul denote the
average value for the number of addition and multiplication operations, respectively.
The corresponding variance of both quantities are denoted by σ2

add and σ2

mul. The
results have been obtained using 1 million pseudo-random input values.

mathematical operation µadd µmul σ2

add σ2

mul

x/y 9 9.955 0 4.391 · 10−2

√
x 14.030 13.016 4.442 · 10−1

1.263 · 10−1

ex 17 13.297 0 9.257 · 10−1

xy 54.282 29.550 2.631 · 10−1
1.754

represent the standard deviation, which has been computed by taking the square root of
the variance. The variance is also computed by means of a second-order Taylor series
expansion, which reads

Var
[
t̄jac

]
≈
⌈

nder

nd

⌉2
E2 [∆tres]

E2 [tref]

(
Var [∆tres]

E2 [∆tres]
− 2

Cov [∆tres, tref]

E [∆tres] E [tref]
+

Var [tref]

E2 [tref]

)

. (D.4)

Number of operations required

To determine an estimate for the number of operations that is required to fully populate
the Jacobian matrix, for a dual number with a certain dimension of the non-real part,
two assumptions have been made:

(i) all mathematical operations for floating-point numbers can be represented by a
combination of floating-point addition and floating-point multiplication operations;

(ii) performing a floating-point multiplication is equally expensive as a floating-point
addition, i.e. takes the same number of clock-cycles to be performed.

The first assumption is a reasonable assumption, because some processors have a
floating-point unit — which takes care of handling the floating-point operations, in a
modern processor core — with a hardware implementation for only the most trivial math-
ematical operations. Therefore, in such a situation, the result of a mathematical function
not implemented in hardware must be obtained in an alternative way. For this purpose,
mathematical libraries exist — which usually are implemented together with the operat-
ing system. The mathematical functions in the library are implemented as a combination
of additions, multiplications and bit shifts.

The second assumption is based on numerical experiments, which indicated this one to
one ratio. Moreover, the hardware documentation [88] of a leading microprocessor vendor
shows that the latency and throughput for floating-point additions and multiplications
do not differ much for modern hardware.

Using these assumptions, an estimate for the number of operations can be obtained.
For this purpose, the mathematical operations that are used for the computation of the

215

D. Measuring the efficiency of the dual number method

flow residual have been represented as a combination of additions and multiplications. All
operations involved are listed in table D.1, together with the average number of additions
and multiplications required to compute the result. These results have been computed
using pseudo-random input variables. For variables that allow for using negative values,
the input ranges from −1 to 1. Input variables that must be positive, range from 0 to 1.
The results presented have been obtained using 1 million pseudo-random input values.

Subsequently, the mathematical operations that have been represented are used to
replace the original mathematical operations in the computation of the residual of the flow
equations. Then, the total number of addition and multiplication operations required for
the evaluation of the residual of the flow equations can be determined. This task can also
be performed using dual numbers, instead of real-valued floating-point numbers. The
non-real part of the flow solution is initialized to 1.0, for a number of pseudo-randomly
selected flow variables equal to the dimension of the non-real part. The total number of
operations that is required to fully populate the Jacobian matrix is then computed using

nfp := (nadd + nmul)

⌈
nder

nd

⌉

, (D.5)

where nadd denotes the number of floating-point additions that were counted and nmul

denotes the number of floating-point multiplications. Note, that the ceiling operation is
again used to make sure that all entries of the Jacobian matrix can be computed. Taking
the ratio of this result with the total number of operations required to compute the
Jacobian matrix by means of a central-difference finite-difference approximation, provides
a measure for the number of operations saved by using a dual number with a non-real
part containing multiple entries.

216

Acknowledgements

“No one who achieves success does so without acknowledging the help of others. The
wise and confident acknowledge this help with gratitude.”

— Alfred N. Whitehead (1861 – 1947)

R
eaching this part of the thesis either means that the reader has shown a great deal
of perseverance by getting this far, or that reading the most interesting part — the

main body of this work — was skipped. No matter which approach was taken in reaching
this page, the reader must be interested in who — else than the person who’s name is
on the cover of this thesis — contributed to this work. Since the work presented in this
dissertation could not have reached its current state without the unconditional help of a
number of people.

First of all, I would like to express my sincere gratitude towards Edwin van der Weide.
Apart from always being prepared to provide me with good advice, he also has been a great
help in solving the many problems I encountered during the project. Moreover, I think I
developed a great deal of object-oriented programming skills thanks to carefully examining
the C++ source code he wrote. A profound thanks also goes to Harry Hoeijmakers, who
tirelessly tried to keep me focused, during the short conversations we had on the start
of his working day, on a nearly daily basis. I also thank him for providing inspiration and
guidance during the course of the project and for accepting me to pursue a PhD degree.

The people who helped me proof-reading the manuscript of this thesis deserve my
gratitude as well, their effort resulted in a significant reduction of the number of ty-
pographical errors, inconsistencies and lack of clarity in the text, the figures and the
formulas. The people who were prepared to spend their spare time for improving my
thesis are: Geert Campmans, Kay Jongsma, Tom Jongsma, Tineke Jongsma and espe-
cially Natalie Ameloot who was very thorough in performing this task. I am also grateful
to Harry, Edwin and Arie Verhoeff for carefully reading of and providing comments on
the manuscript of this thesis. Furthermore, Arie — who works for the Suzlon Blade
Technology in Hengelo, the company that financially supported this project — deserves
my thanks for the nice cooperation we had.

I am Kay and Tom also thankful for accepting a role as paranymphs, at my thesis
defence. Moreover, Kay deserves the credits for designing the cover of this thesis, which
would not have been as nice as it is now if I had tried to do it myself.

For those readers who skipped to this page to see if their name was mentioned here
and who turn out to be greatly disappointed because it is not, those people I would also
like to thank. Although, your contribution to this result apparently did not qualify you
for being mentioned explicitly by name, or unfortunately just slipped my attention —

217

Acknowledgements

which would be a terrible shame on me — I really am grateful for your contribution too,
whatever it is you considered being worth acknowledging.

I like to think that I could have finished this thesis successfully without the moral
support of my family and all the other people around me. This idea of mine might,
however, not be particularly true. I am therefore very grateful that I did not need to
find out how working on my PhD research would have been without receiving these
unprompted words of encouragement.

Finally, I would like to thank the students and PhD students that have been prac-
tising judo with me at Arashi for all those years. Of those people I would particularly
like to thank Andries Aarden, Bram Dil, Stefan Hartman, Ward Hendriks, Wilco Tax and
Wouter Klein Wolterink. Although, they did not strictly contribute to the final result
itself, they did help keeping me motivated. Especially, in the occasions that things did
not work out in the way I did suppose they would. Them allowing me to throw them
around, proved to be a very effective way to get rid of all the accumulated frustrations.

Enschede, June 2014,

Sietse Jongsma

218

Curriculum Vitae

O
n the rainy Monday afternoon of the 15th of April 1985, Sietse Jongsma was born,
as the first of a twin, in a hospital in Doetinchem — a city in de Achterhoek, close

to the border with Germany. In less than a year after he was born, his parents moved to
Friesland, where they both originally came from. Sietse grew up in the small village of
Baard, where he received his primary education.

For receiving his secondary education, which he started in 1997, he had to cycle to
Leeuwarden — the capital of Friesland. There he first went to Slauerhoff college — which
was later renamed to Piter Jelles Haydenstraat — for three years. The final three years
of his secondary education he did at Piter Jelles Montessori.

After finishing his secondary education in 2003, Sietse chose to continue his educa-
tional career at the University of Twente. With his habit of destroying things, doing
a Bachelor in Mechanical Engineering was the obvious choice. As part of his Bachelor
education Sietse did a minor in Applied Physics, studying the subjects of Linear analysis,
Electrodynamics and Quantum mechanics.

After successfully obtaining his Bachelor degree in 2006, he stayed in Twente19 and
continued his university education by doing his Master in Mechanical Engineering. Be-
cause of his fascination for flow phenomena — which occur everywhere in everyday life —
he chose to specialize in the subject of fluid dynamics in the Engineering Fluid Dynamics
group of prof. dr. ir. Harry Hoeijmakers. As a part of his Master education he did an
internship, from July to September of the year 2007, at the National Research Council
in Ottawa, Canada, under the supervision of dr. Hongyi Xu. Upon returning to The
Netherlands, Sietse started his Master graduation assignment on the implementation of
a turbulence model in an unstructured finite volume method, that was being developed
by ir. Hein de Vries as a part of his PhD research. Hein was also his daily supervisor for
that project. After successfully completing his Master assignment at the end of August
2008, Sietse decided to stay in Twente, to pursue a PhD degree.

In September of that same year he started on the PhD project that was focussed on
the development of a gradient-based optimization method for the aerodynamic design
of wind turbine rotor blades. Dr. ir. Edwin van der Weide became his daily supervisor
for this project. During the research project Sietse took a number of courses to further
develop his skills, to obtain more in-depth knowledge and to broaden his horizon. The
most notable courses were “Introduction to Optimization Methods and Tools for Multi-
disciplinary Design in Aeronautics and Turbomachinery” and “Uncertainty Quantification
in Computational Fluid Dynamics” both at the Von Karman Institute for Fluid Dynamics.

19Twente is the name of the university but also the name of a region.

219

Curriculum Vitae

He also took a course on “Turbulence and Turbulence Modeling” at the J. M. Burgerscen-
trum. Furthermore, Sietse assisted in the education provided by the Engineering Fluid
Dynamics group, helping students doing their classroom assignments for the Bachelor
course on Fluid Dynamics and Heat Transfer. The result of his PhD research has been
presented in this thesis.

220

Stellingen

behorend bij het proefschrift:

“On a Method for Simulation-Based

Wind Turbine Blade Design”

S. H. Jongsma

11 juli 2014

1. Newton iteratie is een effectieve methode voor het oplossen van niet-lineaire verge-
lijkingen, mits een goede beginschatting kan worden verkregen en mits de afgelei-
den nauwkeurig en efficiënt kunnen worden berekend.

(hoofdstuk 6 en 7 van dit proefschrift)

2. De ontwikkeling van een robuust algoritme voor het verkrijgen van de verbindings-
informatie voor overset rekenroosters is geen sinecure.

(hoofdstuk 4 van dit proefschrift)

3. Valideren van een rekenmethode voor het numeriek simuleren van stromingen
vereist ook dat uiterste zorg wordt besteed aan het overeen laten komen van de
geometrie die wordt gebruikt in de numerieke simulatie met de geometrie die werd
gebruikt in het overeenkomstige experiment.

(hoofdstuk 5 van dit proefschrift)

4. Onjuist gebruik van het woord gewicht voor de natuurkundige grootheid massa is
hardnekkig.

(Comptes Rendus de la 3e CGPM (1901), 1901, 70)

5. Een globaal optimum is een mooi wiskundig concept, maar in een ontwerpproces
zou voor een ingenieur het vinden ervan geen primair doel moeten zijn.

(A. Jameson en J. C. Vassberg, AIAA Paper 2001-0538 (2001))

6. Vooruitgang in de numerieke stromingsleer is sterk gekoppeld aan ontwikkelingen
op het gebied van de computer hardware.

(AGARD AR-303 (1994))

7. Het baseren van een optimalisatiemethode op het principe van de evolutie is —
indien middelen en tijd beperkt zijn — geen goed idee voor het oplossen van een
optimalisatievraagstuk van enige complexiteit.

8. De publieke weerzin tegen het toepassen van kernenergie voor het opwekken van
elektrische energie lijkt in belangrijke mate gestoeld op gebrek aan kennis van
technische ontwikkelingen op dit gebied en van de mogelijkheden van kernenergie.

9. Meer dan eens is een zogenaamde klantenservice niet gericht op het verlenen van
een dienst aan de klant, zoals het woord impliceert, maar op het zo efficiënt
mogelijk afschepen van de klant.

10. Het privégebruik van een tablet-PC is interessant voor bijvoorbeeld treinforensen
en mensen die een ‘bankhangend’ bestaan leiden.

	Cover page
	Summary
	Samenvatting
	Contents
	Nomenclature and notation
	Introduction
	Objectives
	Wind turbine blade design
	Flow model
	Discretization method

	Flow domain discretization
	Overset grids

	Optimization
	Optimization methods
	Parametrization method

	Sensitivity analysis
	Analytical differentiation
	Finite-difference approximation
	Complex-step finite-difference method
	Dual number method
	Algorithmic differentiation
	Adjoint equation method
	Approach

	Implementation on parallel computers
	Related work
	Thesis outline

	Shape parametrization
	Introduction
	Requirements
	Methods employed in aerodynamic shape optimization
	Considerations

	Non-uniform rational basis spline surface
	Basis spline curve
	Rational basis spline curve
	NURBS surface

	Aerofoil parametrization with NURBS curve
	Aerofoil optimization

	Parametrization of the wind turbine rotor blade
	Summary

	Flow domain discretization
	Introduction
	Requirements
	Considerations

	Surface grid generation
	Vertex distribution on boundary curves
	Transfinite interpolation
	Elliptical surface grid generation

	Field grid generation
	Hyperbolic field grid equations
	Spatial discretization
	Implementation details
	Boundary conditions

	Background grids
	Cartesian
	Cylindrical
	Rhombus

	Summary and results

	Overset block connectivity
	Introduction
	Concept and terminology

	Alternating binary tree search
	Tree generation
	Search procedure
	Other entities

	Evaluation of surface integrals
	Zipper grid generation method
	Verification
	Use of zipper grid

	Elimination of cells outside physical flow domain
	Ray-casting method

	Domain connectivity
	Concept
	In cell qualification
	Interpolation coefficients
	Explicit expression in terms of field cells

	Summary

	Flow model and solution method
	Governing equations
	Spatial discretization
	Finite volume method
	Computation of metrics

	Numerical fluxes
	Jameson-Schmidt-Turkel scheme
	Roe's approximate Riemann solver

	Reconstruction of state at interface
	Reconstruction about centre of mass
	Reconstruction considering grid as uniform Cartesian
	MUSCL-type reconstruction

	Boundary conditions
	Solid wall
	Periodicity
	Symmetry
	Far-field
	Subsonic outflow
	Overset grids

	Pseudo-time-integration to steady state
	Runge-Kutta time-integration
	Newton's method

	Non-inertial frame of reference
	Geometric conservation law

	Verification
	Spatial order of convergence
	Flow configuration
	Results for single block grid
	Results for composite overset discretization
	Summary of the results and concluding remarks

	Validation
	Numerical set-up
	Results

	Sensitivity analysis
	Dual numbers
	Implementation
	Approach

	Discrete adjoint equation method
	Derivation
	Discrete versus continuous

	Efficient application of dual number method
	Graph vertex colouring

	Jacobian matrix
	Verification

	Grid sensitivity of flow residual
	Flow sensitivity of objective function
	Grid sensitivity of objective function
	Design variable sensitivity of objective function
	Design variable sensitivity of grid
	Solution method for the adjoint equations
	Verification of adjoint implementation
	Approach
	Geometry and flow configuration
	Results

	Summary

	Optimization method and results
	Introduction
	General aspects
	Initial geometry and parametrization
	Flow domain and discretization
	Geometrical constraints

	Drag minimization in transonic flow
	Definition of optimization problem
	Results and discussion

	Wing span efficiency maximization
	Definition of optimization problem
	Results and discussion

	On solving a rotor blade optimization problem
	Geometry and parametrization
	Flow conditions
	Flow domain and discretization
	Objective function and constraints
	Approach and discussion

	Concluding remarks

	Concluding remarks and recommendations
	Concluding remarks
	Recommendations

	Bibliography
	Index
	Method for computing grid generation dissipation coefficient
	Kármán-Trefftz O-grid generation
	Results spatial order of convergence study
	Measuring the efficiency of the dual number method in vector mode
	Acknowledgements
	Curriculum Vitae
	Propositions

