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Abstract

The Kinetic Equation can be used to predict the droplet size distribution in
condensing flows. Each of the kinetic equations describes the number density
of an n-cluster as a function of time. The n-cluster, i.e. a droplet consisting of
n monomers, can either grow towards an (n+ 1)-cluster or decay towards an
(n− 1)-cluster, changing the droplet size distribution accordingly.

Solution of the Kinetic Equation requires a considerable computational ef-
fort, since typically cluster sizes up to a hundred million monomers have to
be included in a numerical simulation. In the past decades in many fields in
science it has been shown that multi-level concepts can lead to very efficient
algorithms to solve (systems of) partial differential equations numerically.

As a first step a multi-level solver is developed for single-component con-
densing flows described by the Kinetic Equation. The target is to identify and
solve complications before the more complex multi-component condensation
problems are considered. Performance, accuracy and stability of the solver is
analyzed, and results are compared with results of common numerical solution
techniques.





Samenvatting

De Kinetische Vergelijking kan worden toegepast om een druppelgrootteverdel-
ing te bepalen in condenserende stromingen. Elke kinetische vergelijking be-
schrijft de volumedichtheid van een n-cluster als een functie van de tijd. Een
n-cluster, d.w.z. een druppel bestaande uit n monomeren, kan ofwel groeien
naar een (n+1)-cluster of afnemen naar een (n−1)-cluster, zodat de druppel-
grootteverdeling verandert.

Het oplossen van de Kinetische Vergelijking vergt een aanzienlijke hoeveel-
heid rekenkracht, aangezien in het algemeen clustergroottes tot wel een hon-
derd miljoen monomeren moeten worden beschouwd in een numerieke sim-
ulatie. In veel takken van de wetenschap is in de afgelopen decennia aange-
toond dat multi-level concepten kunnen leiden tot efficiënte algoritmes voor
het oplossen van (stelsels van) partiële differentiaal vergelijkingen.

Als eerste stap is een multi-level solver ontwikkeld voor enkel-components
condenserende stromingen, beschreven door de Kinetische Vergelijking. Het
doel is om moeilijkheden te identificeren en op te lossen voordat complexere
multi-components condensatie problemen worden beschouwd. De prestatie,
nauwkeurigheid en stabiliteit van de solver wordt geanalyseerd, en resultaten
worden vergeleken met de resultaten van gangbare numerieke oplosmethoden.





PREFACE





CONTENTS

1 Introduction 1
1.1 Condensing flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Kinetic Equation 5
2.1 General form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Nucleation pulse . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Nozzle flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Evaluation of the Kinetic Equation in condensing flow 9
3.1 Nucleation pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Nozzle flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Mixture thermodynamics . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Time & space marching methods . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Grouping of droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Zero-th order interpolation . . . . . . . . . . . . . . . . . . . 17
3.4.2 First order interpolation . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Multigrid 21
4.1 Gauss Seidel relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Interior relaxation . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Boundary relaxation . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



VI CONTENTS

4.2.1 Correction Scheme . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Full Approximation Scheme . . . . . . . . . . . . . . . . . . 25
4.2.3 Multi-level cycle . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Inter-grid operators . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Coarse grid operator . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Implementation verification . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Two level cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Global constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.1 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Multi-level cycle extensions . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.1 Full Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.2 F-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.3 Application to the KE . . . . . . . . . . . . . . . . . . . . . . 43

5 Results: Nucleation pulse experiment 47
5.1 Fixed monomer density . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 FAS and the KE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Results: Nozzle flow 59
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusions & recommendations 65

A Diagonal dominance 75
A.1 Supercritical n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2 Subcritical n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Stability analysis 79

C Interpolation error 81
C.1 Zero-th order interpolation . . . . . . . . . . . . . . . . . . . . . . . 82
C.2 First order interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS VII

D Local Mode analysis 85
D.1 Target grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.2 Coarse grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.2.1 Vertex centered coarsening . . . . . . . . . . . . . . . . . . . 88
D.2.2 Cell centered coarsening . . . . . . . . . . . . . . . . . . . . 88

E Operator asymmetry 91
E.1 Lexicographic ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 91
E.2 Downstream residual transfer . . . . . . . . . . . . . . . . . . . . . 92

F Convergence analysis 95
F.1 Nucleation pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

F.1.1 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . 96
F.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

F.2 Nozzle flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
F.2.1 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . 99
F.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99





CHAPTER 1

INTRODUCTION

1.1 Condensing flows

Everywhere in nature we encounter condensation. It is the phenomena we see
as the wet dew on grasslands early in the morning, clouds in the sky above us,
or the mist of our breath leaves behind on a cold glass. It is the process of a
fluid transforming from its gaseous phase to its liquid phase. When we step into
our cars on a cold humid morning, the water vapor in the atmosphere comes
into contact with the cold windshield, turning into liquid droplets which we
see as a fine mist. However, merely describing condensation as the transition
of a fluid from its gaseous to its fluid phase does not do justice to the complex
physics that take place during this process.

Condensation is often used for the combined processes of nucleation and
growth (though this is not an exact definition). For nucleation we can be dis-
tinguish two cases: (a) homogeneous nucleation, where the supersaturation
of a vapor is such that stable clusters of vapor molecules (or droplets) can be
formed from the vapor, and (b) heterogeneous nucleation, where the nucle-
ation process is set off by small aerosols in the vapor to which vapor molecules
attach and grow to a cluster. Although condensation can take place in any
vapor, it can only be guaranteed that droplets in the vapor will grow when
it is supersaturated. The probability of nucleation in an undersaturated va-
por is very small. Characteristic therefore to the condensation process is the
supersaturation defined as:

S =
ρv

ρs(T )
(1.1)

where ρv is the vapor density, and ρs is the saturated vapor density which is
a function of the temperature. For S > 1 a vapor is said to be supersaturated.
The minimum cluster size for clusters to be stable is referred to as the critical
cluster size. Smaller and larger clusters are referred to as sub- and supercritical,
respectively. A cluster must cross a thermodynamic energy barrier to become
supercritical and grow further into a droplet.
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The most common form of condensation is heterogenous nucleation where
foreign particles act as condensation nuclei. Homogeneous nucleation is mostly
encountered in industrial applications with high levels of supersaturation, where
foreign particles are absent so that nuclei are formed from the vapor phase it-
self. Typically low levels of supersaturation are encountered in nature, for
which the energy barrier of the former is much lower than that of the latter.

Finally, if multiple substances are present in the vapor, clusters can be
formed from molecules from each substance. For a single substance the process
is referred to as single-component condensation, whereas for multiple sub-
stances it is referred to as multi-component condensation. In nature and in
industrial applications both are encountered where the physics of the latter are
considerably more complex compared to the former.

1.2 Models

When modeling condensation the liquid phase can be described using a droplet
size distribution or DSD. Such a distribution describes the total amount of each
separate cluster consisting of n vapor molecules, i.e. an n-cluster, present in
the liquid phase. If multiple condensable components exist, the DSD is a multi-
dimensional distribution consisting of all possible molecule combinations. The
formulation of the master equation for condensation to obtain the DSD, is
based on work of, amongst others, Becker & Döring [1], and the Szilard model
of condensation [2]. In there the growth and evaporation of droplets is based
on the interaction with single molecules (monomers). As this is a kinetically
driven process, the master equation is referred to as the Kinetic Equation (KE).

For single-component condensation, approximations to the KE are the Gen-
eral Dynamic equation (GDE) and the Fokker-Planck equation (FPE), which are
first and second order approximations respectively. These have been investi-
gated and compared to the KE by Holten & van Dongen [3] and Sidin [4].
Also a stationary diffusion flux model (SDF) model based on the Fokker-Planck
equation was developed by van Putten & Kalikmanov [5]. These models aim
to be computationally less expensive than the formally exact KE, however, at
the expense of accuracy. Especially for small clusters the approximations lead
to inaccurate results, rendering the solution of the KE in certain cases indis-
pensable.

1.3 Motivation and objective

Aside from model assumptions, the solution of the Kinetic Equation is consid-
ered to be an accurate description of the condensation process. However, the
model requires large computation times for relatively simple condensation pro-
cesses. The Kinetic Equations for multi-component flows require even larger
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computational effort, making simulation of practical applications of such flows
not feasible at present.

Therefore, in this thesis the numerical solution process is investigated. To
improve the numerical solution process, the potential of Multigrid techniques is
investigated which in many applications in science have substantially enhanced
the performance of numerical solvers. A great deal of literature on the concepts
and analysis of Multigrid is available from writers such as, Brandt [6], Venner &
Lubrecht [7] and Briggs et al. [8]. It will be investigated if Multigrid techniques
can be applied to the Kinetic Equation and if their application is promising or
not. For this purpose single-component condensation is considered initially, as
a fundamental basis for the solution of multi-component condensing flows.

1.4 Outline

The outline of this thesis is as follows:

− In chapter 2, the Kinetic Equation for single-component condensation is
introduced. It is presented as a transient form used for the solution of a
nucleation pulse experiment, and an advected form used to compute the
condensation in a nozzle.

− In chapter 3, the evaluation of the KE is treated, and a discrete set of
equations is derived that is to be solved by the Multigrid solver.

− In chapter 4, the concepts of Multigrid are introduced and applied to the
equations of the KE.

− In chapter 5, the results of the nucleation pulse experiment are pre-
sented.

− In chapter 6, the results of the nozzle flow are presented.

− Finally, in chapter 7, this work is concluded by a discussion of the results
followed by recommendations for future research.





CHAPTER 2

THE KINETIC EQUATION

The Kinetic Equation (KE) is based on the description of condensation as a
kinetically driven process. It relies on the Szilard approach which assumes
that a droplet may grow or decay by gaining or shedding one vapor molecule
(monomer) at a time. The solution of the KE is a Droplet Size Distribution
(DSD) of the number densities of each separate droplet of a specific composi-
tion. In this first investigation of the potential of using multilevel techniques
for the solution of the KE, single-component condensation is considered. This
is a fundamental first step to identify and solve complications before the more
complex multi-component condensation problems are considered.

In this chapter the general KE for single-component condensation will be
treated first. Then two specific forms of the KE will be discussed for the appli-
cation to a nucleation pulse experiment, and a nozzle flow experiment.

2.1 General form

The KE essentially is a mass conservation law for droplets consisting of a in-
teger number of vapor molecules, where the dimer is the smallest possible
droplet. With single-component condensation the droplets consist of a single
condensable component, characterizing droplets by the amount of monomers
n they consist of.

For the flows considered in this work, the concentration of vapor molecules
is assumed to be much higher than that of the droplets. This justifies the
assumption of the KE that the droplets only interact with monomers. This
Szilard approach in condensation is depicted schematically in figure 2.1.

Assuming a no-slip condition, which requires the vapor molecules and
droplets to assume the flow velocity u, the KE for an advected vapor is given
by:

∂ cn

∂ t
+
∂

∂ x j
(u jcn) = Jn−1− Jn for n= 2, 3, . . . (2.1)
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b cn n

f cn – 1 n – 1

b cn + 1 n + 1

f cn n

Jn – 1 Jn

n – 1 n n + 1

Figure 2.1: Schematic representation of the Szilard model for a single compo-
nent condensing flow

where cn is the volumetric number density of droplets consisting of n monomers
(n-mers). The condensation flux Jn contains the combined effect of a forward
condensation rate fn and a backward evaporation rate bn+1:

Jn = fncn− bn+1cn+1. (2.2)

The net flux for cluster n therefore yields:

Jn−1− Jn = fn−1cn−1− (bn+ fn)cn+ bn+1cn+1. (2.3)

The forward rate is the product of the sticking probability αn, the collision
frequency per unit area, and the cluster surface area:

fn = αn · c1

È

kB T

2πm1
· a1

r

n+ 1

n
(n1/3+ 1)2 (2.4)

where m1 and a1 denote the mass and effective surface area of a single molecule.
For simplicity the value of αn will be set to unity, although it has been shown
that for small droplets, αn varies strongly with n (see Sidin [4]). For sufficiently
large droplets the forward rate behaves as fn ∼ n2/3.

The backward rate bn is obtained from the detailed balance equation: at
equilibrium (S = 1, denoted by superscript ‘eq’) all Jn equal zero, so equation
(2.3) becomes:

bn+1 = fn
ceq

n

ceq
n+1

. (2.5)

The Courtney corrected form of the equilibrium number density is given by:

ceq
n = cs

1 exp
�

− g(n)
�

(2.6)

where instead of c1 the the monomer number density at saturation cs
1 defined

as c1/S is used. The function g(n) is the dimensionless Gibbs free energy of
formation for a droplet of size n defined as:

− g(n) =
∆Gn

kB Tn
(2.7)
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The Courtney model [9] for the Gibbs free energy is applied here:

− g(n) = n ln S−Θn2/3 for n> 1, (2.8)

where Θ is the dimensionless surface energy defined as:

Θ≡
a1σ

kB Tn
, (2.9)

with σ the surface tension. This results in the following relation for the back-
ward evaporation rate:

bn+1 =
fn

S
exp{−Θ[n2/3− (n+ 1)2/3]} (2.10)

Furthermore, the flows in this work are considered to be isothermal, i.e.
the droplet temperature is assumed to be equal to the mixture temperature.

g(n)

nncr

0

Figure 2.2: Dimensionless Gibbs free energy g(n) as a function of droplet size
n. For n= 0, g(n) is nonzero.

The function g(n) has a maximum at the critical cluster size ncr =
� 2Θ

3 ln S

�3,
depicted in figure 2.2. However, this model for ∆Gn was originally obtained
for spherical droplets, so that it becomes inaccurate for small clusters. This can
be seen from the figure as a discrepancy at n = 0, where g(n) is nonzero, so
that ceq

1 = c1 exp(−Θ).
The Classical Nucleation Theory [4] utilizes ceq

1 as the value of the bound-
ary condition c1, where Courtney uses cs

1. Therefore, when comparing results
the boundary value has to be corrected by a factor exp(−Θ).

2.2 Experiments

2.2.1 Nucleation pulse

The first model problem that will be treated is the nucleation pulse experiment.
The experiment is similar to the one carried out by van Putten & Kalikmanov
[5]. The problem consists of a stepwise constant pressure-temperature profile
comprising a region with high supersaturation, followed by a region with low
supersaturation. In this case there is no advection.
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The nucleation pulse will be modeled here with a one-way coupling be-
tween the thermodynamic variables and the n-mer concentrations. To close
the problem formulation an initial solution and two boundary conditions for
the monomer number density and the largest droplet number density are re-
quired.

2.2.2 Nozzle flow

As a practical application of the KE, the flow through a Laval nozzle will be
considered. In this case advection cannot be neglected, and the general KE
has to be considered. However, the flow in the nozzle can be considered to
be of a quasi-one dimensional nature, for which the KE can be brought to
a Lagrangian form similar to the form obtained for the zero advection case.
This will be treated in chapter 3. Numerical treatment is then similar to the
nucleation pulse experiment.

Furthermore, this experiment will also be one-way coupled, for which the
flow variables u, p and T will be extracted from the results of a flow solver.
Latent heat release and the effects on the mixture density by condensation will
be neglected.



CHAPTER 3

EVALUATION OF THE KINETIC
EQUATION IN CONDENSING FLOW

In this chapter the numerical evaluation procedures for the KE will be derived
for the two numerical experiments treated in chapter 2. A closed set of equa-
tions is derived for the KE for which a multi-level algoritm will be developed
in chapter 4. This set of equations will also be subjected to a thorough analysis
to get a full understanding of the system’s behavior.

3.1 Nucleation pulse

3.1.1 Kinetic Equation

For the nucleation pulse experiment the transient KE without advection is con-
sidered:

∂ cn

∂ t
= fn−1cn−1− (bn+ fn)cn+ bn+1cn+1 for n= 2, 3, . . . (3.1)

With the state vector c= (c2, . . . , cN−1)T , (3.1) can be written as:

dc

d t
= S+Ac (3.2)

where the matrix A is defined as:

A=















−( f2+ b2) b3 0 · 0 0 0
f2 −( f3+ b3) b4 · 0 0 0
· · · · · · ·
0 0 0 · fN−3 −( fN−2+ bN−2) bN−1
0 0 0 · 0 fN−2 −( fN−1+ bN−1)















.

(3.3)
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The vector S contains the contributions from the monomers (n = 1) and the
largest droplets (n= N), and is given by:

S= ( f1c1, 0, . . . , 0, fN cN )
T . (3.4)

The matrix A is a tridiagonal matrix, for which many efficient solution
methods exist. In view of our objective to develop a multi-level method a re-
laxation based solver is required. Simple and effective relaxation methods are
Jacobi and Gauss-Seidel relaxation. Both methods require a diagonally domi-
nant system of equations in order to converge. This property is investigated in
appendix A, where it is shown that a diagonally dominant system is obtained
in most situations.

3.1.2 Boundary conditions

The number densities at the edges of the domain c1 and cN are boundary con-
ditions. Firstly it is assumed that the formation of droplets does not affect the
monomer density, i.e. c1 is constant and the number density of the largest
droplet is set to zero, i.e. cN = 0. The monomer number density is obtained
from the partial vapor density by c1 = ρ1/m1.

Secondly, when the monomer number density is not sufficiently large com-
pared to the droplet number density the assumption of a fixed c1 no longer
holds. It is then more realistic to account for the depletion of monomers when
droplets grow. Especially for nucleation pulses of long duration effects of de-
pletion cannot be neglected and have to be accounted for. Therefore the total
amount of monomers γ has to be preserved:

dγ

d t
(3.5)

with

γ≡
N
∑

n=1

ncn. (3.6)

The saturation S is defined as:

S =
p1

psat(T )
(3.7)

with psat is the saturated vapor pressure, which is a function of the tempera-
ture. Using p1 = c1kbT equation (3.6) can be written as:

csatS+
N
∑

n=2

ncn = γ (3.8)

with csat the saturated monomer number density. This relation replaces the
Dirichlet boundary condition for c1.
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3.2 Nozzle flow

3.2.1 Conservation of mass

Consider the moving volume V (t) inside the nozzle, depicted in figure 3.1. The
volume is advected with the flow, hence the mass contained in that volume
does not change:

d

d t

∫∫∫

V (t)
ρdV = 0. (3.9)

In this case ρ is the mixture density. Applying the Leibniz-Reynolds transport
theorem yields:

∫∫∫

V (t)

∂ ρ

∂ t
dV +

∫∫

∂ V (t)
ρu jn jdS = 0 (3.10)

where ∂ V is the boundary of V , and n the outward normal.
In the nozzle, V (t) is the space enclosed by the nozzle wall and the areas

A(x , t) and A(x +∆x , t), where ∆x is a arbitrarily small positive increment
along the nozzle axis x .

The first integral in equation (3.10) can be approximated as:
∫∫∫

V (t)

∂ ρ

∂ t
dV ≈

∂ ρ

∂ t

∫∫∫

V (t)
dV =

∂ ρ

∂ t
V ≈

∂ ρ

∂ t
A∆x (3.11)

where higher order terms in ∆x have been neglected. The second integral can
be written as:

∫∫

∂ V (t)
ρu jn jdS =

∫∫

A(x+∆x)
ρudS−

∫∫

A(x)
ρudS =∆(ρuA) (3.12)

with:
∆(ρuA)≡ (ρuA)x+∆x − (ρuA)x . (3.13)

Substitution into (3.10), division by ∆x and taking the limit of ∆x → 0,
yields the quasi-one dimensional mass conservation law applicable to nozzle
flow:

A
∂ ρ

∂ t
+
∂ (ρuA)
∂ x

= 0. (3.14)

A (x +Äx,t )
A (x,t )

V (t )

x

Figure 3.1: Moving volume V (t) inside a Laval nozzle
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3.2.2 Kinetic Equation

The advected KE for three dimensional flow is defined as:

∂ cn

∂ t
+
∂ (cnu j)

∂ x j
= Jn−1− Jn for n= 2, 3, . . . (3.15)

where it is assumed that a no-slip condition applies, which requires the vapor
molecules and droplets to move with the flow velocity u. Integration over the
advected volume V (t) yields:

∫∫∫

V (t)

�

∂ cn

∂ t
+
∂ (cnu j)

∂ x j
− (Jn−1− Jn)

�

dV = 0. (3.16)

Separation of the advection term and application of the divergence theorem
yields:

∫∫∫

V (t)

�

∂ cn

∂ t
− (Jn−1− Jn)

�

dV +

∫∫

∂ V (t)
cnu jn jdS = 0. (3.17)

The volume and surface integral can be approximated in the limit of ∆x → 0,
yielding a quasi-one dimensional form of the KE for nozzle flow:

A
∂ cn

∂ t
+
∂ (cnuA)
∂ x

= A(Jn−1− Jn). (3.18)

At this point the specific number density ĉn is introduced, i.e. the number
of n-mers per unit mass:

ĉn =
cn

ρ
(3.19)

Substituting this new variable into (3.18), the KE can be rewritten as:

A
∂ ρ ĉn

∂ t
+
∂ (ρ ĉnuA)
∂ x

= A(Jn−1− Jn). (3.20)

Application of the product rule yields:

ĉn

h

A
∂ ρ

∂ t
+
∂ (ρuA)
∂ x

i

+ρA
h∂ ĉn

∂ t
+ u
∂ ĉn

∂ x

i

= A(Jn−1− Jn). (3.21)

The first bracketed term is recognized as the mass conservation law for the
mixture and equals zero. Division by ρA finally yields:

Dĉn

Dt
=

Jn−1

ρ
−

Jn

ρ

= fn−1 ĉn−1− (bn+ fn)ĉn+ bn+1 ĉn+1

(3.22)

It was noted that (3.22) is very similar to the transient KE, equation (3.1).
It can be brought to a similar matrix form as the transient KE . Inter-droplet
fluxes can also be computed in the same fashion. Note that with advection, the
forward and backward rates, which are functions of p(x(t)) and T (x(t)), are
influenced by the location in the nozzle, hence the flow velocity u(x(t)).
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3.2.3 Mixture thermodynamics

The pressures in the nozzle are assumed to be moderate, so that the vapor and
inert carrier gas can be treated as perfect gases, governed by the ideal gas law:

pi = ρiRi T (3.23)

where the subscript i will be replaced by ‘c’ for the carrier gas and by ‘v’ for the
vapor.

The amount of liquid in the mixture is characterized by the liquid mass
fraction g, defined as:

g ≡
ml

mc +mv +ml
0≤ g ≤ gmax (3.24)

where gmax is the total mass fraction of the condensable component:

gmax ≡
ml +mv

mc +mv +ml
. (3.25)

The liquid mass fraction and total mass fraction are obtained from the spe-
cific number densities by:

g = m1

N
∑

n=2

nĉn (3.26a)

gmax = m1

N
∑

n=1

nĉn (3.26b)

where only droplets of n≥ 2 are counted in the liquid phase.
As slip with respect to the flow is neglected for all mixture components, and

diffusion of vapor is neglected, the composition is constant along streamlines,
and therefore, the material derivative of gmax is zero:

D

Dt
(gmax) = 0. (3.27)

Therefore, when uniformly specified at the inflow boundaries, gmax is a global
constant in the flow domain. At each point in the nozzle, when g and ρ are
known, the partial densities can be approximated by:

ρc = (1− gmax)ρ (3.28a)

ρv = (gmax − g)ρ. (3.28b)

The mean density of the liquid then follows from:

ρl = gρ. (3.29)
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Assuming g << 1, the liquid density ρl becomes negligible so that the
mixture density can be approximated by:

ρ ≈ ρc +ρv , (3.30)

Then, application of the ideal gas law to the remaining gas mixture yields:

p = ρRT (3.31)

where R is the specific gas constant for the gas mixture defined as:

R= (1− gmax)Rc + (gmax − g)Rv . (3.32)

3.2.4 Depletion

When the monomer specific number density is assumed to be constant, the
supersaturation S of the mixture will remain unchanged. In case of nozzle
flow effects of depletion cannot be neglected.

As was mentioned above, the total mass fraction of the condensable com-
ponent gmax is constant throughout the flow. From this an extra condition
arises for the monomer specific number density ĉ1. Equation (3.26b) can be
written as:

ĉ1+
N
∑

n=2

nĉn =
gmax

m1
(3.33)

where the right hand side is a constant. Using p1 = c1kbT and (3.19), equation
(3.7) can be written as:

S =
ρkbT

psat(T )
ĉ1, (3.34)

so with depletion of the vapor, the supersaturation is changed and the forward
and backward rates in the KE are affected.

3.3 Time & space marching methods

Both the transient KE without advection and the Lagrangian form of the quasi
one dimensional KE, are first order ordinary differential equations (ODE). The
time-marching schemes considered in this work are:

− 4th order Runge Kutta (RK4), which is an explicit time integration method
with fourth order accuracy. It is very fast since it does not require matrix
inversion to solve the discrete set of equations. However, for stiff equa-
tions a relatively restrictive strong CFL condition applies, requiring very
small time integration steps for stable time integration.
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− Backward Euler, which is a fully-implicit time integration method with
first order accuracy. It is not bounded by a CFL condition and is therefore
stable for arbitrary time integration steps. However, because of the first
order accuracy, large time steps will produce inaccurate results.

− Trapezoidal method, which is a semi-implicit time integration method
that achieves second order accuracy by averaging forward and backward
Euler time integration. It is bounded by a CFL condition, but due to
its implicit nature it is much less severe than encountered with RK4. A
downside is that it can produce numerical oscillations in the solution.

Multigrid is based on relaxation, and is therefore designed to efficiently
solve implicit systems of equations. Furthermore, implicit methods are favored
for the solution of the KE because larger time integration steps are allowed
compared to explicit methods. The majority of the simulations is carried out
using the trapezoidal method, because of its second order accuracy. The other
methods are used to verify the results and act as benchmarks.

3.3.1 Discretization

As was mentioned above the trapezoidal method averages the forward and
backward Euler methods, achieving second order accuracy. It does however
suffer from numerical oscillations which can be very persistent for large time
steps. These oscillations are carefully monitored to ensure correct results. Be-
low the discretization is carried out for the transient KE without advection con-
sidered for the nucleation pulse experiment. Discretization for the Lagrangian
form for nozzle flow is analogous to this form.

With the state vector c = (cm+1
2 , . . . , cm+1

N−1)
T , the trapezoidal method com-

putes the solution at the next time step as follows:

cm+1 = cm+
∆t

2

h

(Amcm+ Sm) + (Am+1cm+1+ Sm+1)
i

. (3.35)

The next time step is obtained from known present time variables and unknown
next time variables. The matrix A is known at all times since it only depends
on time-dependent quantities as the monomer number density, temperature1

and saturation2, which are specified for the experiment sans depletion.
Writing equation (3.35) as

�

I− 1
2
Am+1∆t

�

cm+1 = g, (3.36)

the right hand side g becomes:

g=
�

g2+
f1
2
∆t cm+1

1 , g3 , . . . , gN−2 , gN−1+
bN
2
∆t cm+1

N

�T (3.37)

1For nozzle flow the temperature is extracted from the results of a flow solver.
2With depletion the saturation is computed with the monomer number density c1 which is

an additional variable.



16 CHAPTER 3. EVALUATION OF THE KINETIC EQUATION IN CONDENSING FLOW

with

gn = cm
n +
∆t

2

h

f m
n−1cm

n−1− (b
m
n + f m

n )c
m
n + bm

n+1cm
n+1

i

. (3.38)

Here, cm+1
1 is either fixed, or a variable governed by the auxiliary depletion

equation. In all cases a Dirichlet boundary condition is used for the largest
droplet: cm+1

N = 0.
With respect to the continuous system of equations (3.2), two changes are

brought about by discretization. Firstly, the system matrix A is multiplied by
a factor ∆t/2. Secondly, implicit integration adds the identity matrix I. The
combination of both changes constitute an improvement of the diagonal dom-
inance of the system. This extends the range of applicability for Gauss Seidel
relaxation, which requires this property for stability.

In contrast to fully implicit schemes, the trapezoidal method is not uncon-
ditionally stable. In appendix B the CFL condition of this scheme is investigated
for the KE. It turns out that, for stable time integration, the following condition
must be obeyed:

fn+ bn ≥ fn−1+ bn+1, (3.39)

which is equivalent to the diagonal dominance condition discussed in appendix
A.

3.4 Grouping of droplets

In order to reduce the computational effort required for solving the KE, it is
common to reduce the number of kinetic equations by grouping ranges of
droplets into bins. The way droplets are grouped into bins is presented in
figure 3.2.

bin k – 1 bin k bin k + 1

n (k)r n (k + 1)l 

JkJk – 1

Figure 3.2: Grouping of droplets into bins

Because of the similarities between the nucleation pulse and nozzle exper-
iment, the KE for bins is only derived for the former. The KE without advection
for droplet bins is given by:

dc̄k

d t
=

1

wk
(J̄k−1− J̄k) (3.40)
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where c̄k is the mean number density in bin k and wk is number of different
droplet sizes in bin k, i.e. the bin size. The fluxes are defined similar to the
original KE where:

J̄k = Jnr (k) = fnr (k)cnr (k)− bnl (k+1)cnl (k+1). (3.41)

This formulation requires the number densities at the neighboring droplet sizes
of nr(k) and nl(k+ 1), with the latter being the smallest droplet in bin k+ 1.
These can be obtained by interpolation from the mean number densities, which
is depicted in figure 3.3.

bin k

(a) Zero-th order interpolation

bin k bin k+1

(b) First order interpolation

Figure 3.3: Using interpolation to obtain edge number densities. Dotted lines
are mean number densities in bin, red line is the interpolation and red dots are
the interpolated edge number densities.

The KE for bins will produce interpolation errors compared to the general
KE. In appendix C a thorough analysis of this error is performed. This analysis
shows that the error of interpolation is 1 order higher than that of the inter-
polation used. Especially high order error components contribute much to the
interpolation error. Therefore a low order interpolation can only be used when
the DSD is smooth.

The bin distribution used in this work is an exponentially increasing bin
size, for bin totals ranging 2000 to 100000. This distribution yields unit bin
widths for small droplets where the DSD is very rough, and very large bins for
large droplets where the DSD is relatively smooth.

3.4.1 Zero-th order interpolation

With a zero-th order interpolation, the number densities of the neighboring
droplets are directly obtained from their mean bin values, i.e.:

cnr (k) = c̄k and cnl (k+1) = c̄k+1. (3.42)

The total flux into bin k then becomes:

J̄k−1− J̄k = fnr (k−1) c̄k−1− (bnl (k)+ fnr (k))c̄k + bnl (k+1) c̄k+1. (3.43)
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With the statevector c̄= (c̄2, . . . , c̄N−1)T the matrix A of the KE becomes:

A=



















− f2+b2

w2

b3

w2
0 · 0 0 0

f2
w3

− f3+b3

w3

b4

w3
· 0 0 0

· · · · · · ·
0 0 0 · fN−3

wN−2
− fN−2+bN−2

wN−2

bN−1

wN−2

0 0 0 · 0 fN−2

wN−1
− fN−1+bN−1

wN−1



















(3.44)

where

fk = fnr (k) and bk = bnl (k). (3.45)

3.4.2 First order interpolation

A 1st order interpolation uses two neighboring bins to produce an estimate for
the number densities in the middle. The number densities of the droplets at
the inner bin edges are a function of the 2 adjacent bins. The number densities
at the inner edges become:

cnr (k) =
c̄k(wk+1+ 1) + c̄k+1(wk − 1)

wk +wk+1
(3.46a)

cnl (k+1) =
c̄k(wk+1− 1) + c̄k+1(wk + 1)

wk +wk+1
. (3.46b)

Then the total flux into bin k becomes:

J̄k−1− J̄k =
(wk + 1) fnr (k−1)− (wk − 1)bnl (k)

wk−1+wk
c̄k−1

+
(wk−1− 1) fnr (k−1)− (wk−1+ 1)bnl (k)

wk−1+wk
c̄k

+
(wk+1− 1)bnl (k+1)− (wk+1+ 1) fnr (k)

wk +wk+1
c̄k

+
(wk + 1)bnl (k+1)− (wk − 1) fnr (k)

wk +wk+1
c̄k+1.

(3.47)

However, application of 1st order interpolation causes instability with the
KE. For supercritical clusters the KE behaves as an advection equation, whereas
for subcritical clusters the KE behaves more as a advection-diffusion equation.
The current method lacks ‘upwinding’ and a limiter for interpolation, which in
other advection schemes is the case. This causes instabilities for supercritical
clusters.
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3.4.3 Depletion

As was mentioned above, the assumption that the monomer number density is
constant is not valid when very large droplets are formed, which is the case for
a nucleation pulse of long enough duration and in nozzle flow.

For grouped droplets, equation (3.6) is only valid for the first bins in the
domain which have unit bin size. Larger bins have to account for the total
amount of monomers contained within all droplets in those bins.

Therefore the following sum can be used:

K
∑

k=1

wk n̄k c̄k = γ (3.48)

where n̄k is the average monomer count per droplet in bin k defined as:

n̄k =
nr (k)
∑

n=nl (k)

n

wk
=

nl(k) + nr(k)
2

. (3.49)

This basically is a zero-th order interpolation using the average number den-
sities in the bin centers. However, for very large bins the approximation error
will be considerable.

Now, consider the k-space continuous. Then a more accurate description
of the amount of monomers contained in the droplets can be obtained by nu-
merical integration of the continuous function n̄k c̄k, with the average number
densities c̄k and the average droplet sizes n̄k given in each bin k.

Using the trapezoidal rule for the numerical integration, the area under a
function f (k) is approximated as:

∫ b

a

f (k)dk = (b− a)
f (a) + f (b)

2
, (3.50)

with:
f (k) = n̄k c̄k. (3.51)

Then the integration over the entire domain can be written as the sum of all
local integrals:

K−1
∑

k=1

∫ n̄k+1

n̄k

f (k)dk =
K−1
∑

k=1

(n̄k+1− n̄k)
n̄k c̄k + n̄k+1 c̄k+1

2
. (3.52)

Then, a correction is made as the function values at the lower and upper
boundaries of the domain of integration are only taken into account partially.
This requires addition of the missing parts of the lower and upper boundaries,
yielding:

(n̄2−n̄1)
n̄1 c̄1

2
+

K−1
∑

k=1

(n̄k+1−n̄k)
n̄k c̄k + n̄k+1 c̄k+1

2
+(n̄K−n̄K−1)

n̄K c̄K

2
= γ, (3.53)
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with γ the total amount of monomers to be preserved. For the limit of unit bin
sizes, i.e. (n̄k+1− n̄k)→ 1, equation (3.53) is equivalent to (3.6).



CHAPTER 4

MULTIGRID

The potential of Multigrid methods is best experessed by the following concep-
tual statement:

"The amount of computational work to obtain a solution should be proportional
to the amount of real physical information in the computed system."

Often a lot of computational work is done for marginal improvement or to
follow changing effects. In such cases there must be a better way to achieve
the same goal. Examples are iterative processes necessary for the solution
of equations arising from various physical problems. These have rapid initial
convergence, but tend to stall when the error in the solution changes very little
from one iteration to the next.

Multigrid can be used to improve the convergence speed of such processes
by using multiple grids on which the problem is represented. These different
grids serve to represent the different scales of the error. By treating the error
components on an appropriate grid the fast initial convergence of the underly-
ing iterative process can be preserved.

In this chapter a Multigrid solver will be constructed for the Kinetic Equa-
tion. The KE without advection, discretized with the trapezoidal rule, will be
used for its development, but the approach will also be applicable to the other
problems due to the similarities. At the basis of the solver lies a relaxation
process which will be treated first. Next the different grids necessary to effec-
tively reduce the error will be investigated. It is shown how depletion can be
accounted for in a global way by means of a global constraint. Finally, when
all components of the Multigrid solver for the KE are ready the solver can be
constructed, which is thoroughly analyzed to ensure that the numerical process
is optimal.
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4.1 Gauss Seidel relaxation

Relaxation is the process of considering each individual equation in a system
separately, and solving it for a particular unknown. In the description one
need not consider the full system matrix A, only the separate equations. For
this purpose the problem is written in the following way:

Lc= g (4.1)

where, in case of the KE, L is a linear operator which acts on c, the vector of
unknowns.

All equations for unknowns cn are scanned in a prescribed order. Given an
approximation to the solution, the local unknown cn is changed (relaxed), so
that it satisfies the local equation. Relaxation of all unknowns is called a relax-
ation sweep. With Gauss Seidel relaxation, the new values of local unknowns
cn are directly used when relaxing subsequent equations. It therefore matters
in which order the equations are scanned. Often the equations are relaxed in
order of increasing index, which is referred to as lexicographic ordering.

In the case of the KE, the treatment of the interior points is different from
relaxation of the boundary points. When depletion is neglected there are two
Dirichlet boundary conditions. When depletion is considered, the auxiliary
depletion equation must be solved as well. Both will therefore be discussed
separately.

4.1.1 Interior relaxation

After discretization using the trapezoidal rule equation (3.36) was obtained.
Then, interior equations of can be written as:

Lnc= gn for 2≤ n≤ N − 1 (4.2)

where Ln is nth row vector of L.
Gauss Seidel relaxation is performed as follows. Let c̃n denote the current

approximation to cm+1
n . For each droplet size n a new approximation to cm+1

n
is computed according to:

cn := c̃n+ωδn, (4.3)

whereω is the relaxation factor and δn is such that forω= 1 the local equation
is exactly solved:

δn =
�

∂ Lnc

∂ cn

�−1

rn, (4.4)

and where rn is the local residual. For the KE, δn is:

δn =
h

1+
∆t

2

�

bm+1
n + f m+1

n

�

i−1
rn, (4.5)
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and rn, for lexicographic ordering, is defined as:

rn = gn−
n

c̃n−
∆t

2

h

f m+1
n−1 cn−1−

�

bm+1
n + f m+1

n

�

c̃n+ bm+1
n+1 c̃n+1

io

. (4.6)

Note the updated value cn−1 in the computation of the residual.
Given the neighboring values cn−1 and c̃n+1, for ω = 1 the nth equation is

the discrete equation:

− f m+1
n−1 cn−1+

h

1+
∆t

2

�

bm+1
n + f m+1

n

�

i

cn− bm+1
n+1 c̃n+1 = gn. (4.7)

Forω< 1 the relaxation process is called damped, and effectively underrelaxes
the local equation.

The solution of the iterative method is considered to be converged when
the residual is reduced to machine accuracy.

In appendix D the performance of interior relaxation is analyzed by means
of a Local Mode analysis. It is determined how each separate error compo-
nent is reduced by a single relaxation sweep. From the analysis insight in the
effectiveness and stability of the relaxation process is obtained.

4.1.2 Boundary relaxation

When depletion is taken into account, the Dirichlet boundary condition is re-
placed by equation (3.8). This equation is completely different from the inte-
rior equations. It is a large scale equation and a change in S and thereby c1
will result in a change of all coefficients of the interior equations. An equa-
tion which has such a global effect is called a ‘global constraint’, and must be
treated separately from the interior relaxation.

Similar to the interior equations, this equation can be relaxed as follows:

S = S̃+ωδ (4.8)

where δ is given by:

δ =
r

csat
(4.9)

and the residual is defined as:

r = γ−
�

csat S̃+
N
∑

n=2

nc̃n
�

. (4.10)

However, relaxation of a global equation may frustrate the convergence of
the interior relaxation process, and must therefore be applied with caution.
Underrelaxation with ω< 1 may be required to successfully account for deple-
tion.
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4.2 Multigrid

The Local Mode analysis in appendix D, shows that for Gauss Seidel relaxation
the maximum of the graphs is located at θ = 0. This means that the low
frequency error components in the residual are reduced the least effective.
On the other hand, high frequency components are reduced very effectively,
especially for large n. Therefore, after a few relaxation sweeps the error is
relatively smooth, and can be represented accurately on a coarser grid. This is
the concept of Multigrid methods, which aim to accelerate error reduction on
the target grid, by using coarser grids.

4.2.1 Correction Scheme

Starting with the discretized full KE on the target grid h, which is represented
in the following manner:

Lhch = gh (4.11)

with Lh the linear operator that acts on the number density vector ch. For a
given approximation c̃h, the exact solution is defined as:

ch ≡ c̃h+ vh (4.12)

where vh is the numerical error which is related to the residual in the following
way:

Lhvh = rh. (4.13)

The residual can be computed for a given c̃h, so the right hand side of equation
(4.13) is a known quantity. In fact, it is the same equation as for the original
problem for a different right hand side.

After the error vh is smoothed enough by a few relaxation sweeps, the
error can be represented on the coarse grid H, i.e. vH . To solve this error a
representation of equation (4.13) on the coarse grid is defined:

LHvH = IH
h rh (4.14)

where LH is the coarse grid operator (discussed in section 4.3.2), IH
h is a re-

striction operator from the fine to the coarse grid (discussed in section 4.3.1)
and vH is a coarse grid approximation to the fine error vh.

Equation (4.14) can be solved by the same iterative process as used on the
target grid. Assuming vH is obtained, it can be used to correct the current
approximation c̃h by:

ch := c̃h+ IH
h vH (4.15)

where IH
h is a interpolation operator from the coarse to the fine grid.
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4.2.2 Full Approximation Scheme

The Correction Scheme discussed above assumes a linear operator. When the
problem is non-linear, the Correction Scheme must be replaced by the more
general Full Approximation Scheme. The non-linear problem can be written
as:

Lh〈ch〉= gh (4.16)

where the notation Lh〈ch〉 is used to indicate that the operator Lh depends on
the solution ch and works on ch. The smoothing properties are the same.

After a few relaxation sweeps an approximate solution c̃h is obtained, with
a residual defined as:

rh = gh− Lh〈c̃h〉. (4.17)

Substitution of the error definition (4.12) in (4.17) yields:

rh ≡ gh− Lh〈ch− vh〉. (4.18)

In contrast to the Correction Scheme, now the error cannot be treated sep-
arately from the solution. Therefore the full equation must be used to approx-
imate the error on the coarse grid. The problem that is treated on the coarse
grid is obtained when substituting (4.12) and (4.17) in (4.16):

Lh〈c̃h+ vh〉= Lh〈c̃h〉+ rh. (4.19)

This equation can be represented on the coarse grid as:

LH〈ĉH〉= ĝH (4.20)

with

ĉH = IH
h (c̃

h+ vh) (4.21)

and

ĝH = LH〈IH
h c̃h〉+ IH

h rh. (4.22)

After a good approximation to ĉH is found on the coarse grid, the target
grid problem is corrected by:

ch := c̃h+ Ih
H(c̃

H − IH
h c̃h) (4.23)

The difference from CS to FAS is that where for CS the error vh appears
explicitly in the equations, for FAS it is defined as (c̃H − IH

h c̃h).
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4.2.3 Multi-level cycle

The coarse grid corrections discussed above, can be used recursively so that
each subsequent grid is corrected by its next coarser grid. When enough grids
are used, the coarsest grid becomes small enough to solve equation (4.14) or
(4.20) up to the level of machine accuracy with little effort.

This application leads to a flow diagram of relaxation, coarsening and re-
fining, traversing the grids (levels) referred to as a V-cycle, depicted in figure
4.1. Here ν0, ν1 and ν2 are the number of relaxation sweeps performed at each
point in the multilevel cycle:

− In the downward leg of the cycle, ν1 relaxation sweeps are performed on
each level to smooth the error such that it can sufficiently accurately be
represented on the next coarser level.

− At the coarsest level, ν0 relaxations are performed to exactly solve the
coarse grid problem. Another possibility is to use a direct solver at this
point.

− In the upward leg, ν2 relaxations are performed after correction at each
level to remove possible high frequency errors introduced by the inter-
polation.

max – 1

max

Level

2

1

í1

í1

í2í1

í2

í0

í2Target grid

Coarsest grid

Figure 4.1: Recursive use of coarse grid correction in a V(ν1,ν2)-cycle. The
coarsest grid is at level 1.

The generalization of the V-cycle is the γ-cycle, where the coarsest level
is visited γ times before refining to ensure that the coarsest level is solved
accurately enough. γ = 2 is referred to as a W-cycle. The limit for large γ is
the two level cycle.

4.3 Coarsening

Consider the variable rh, on grid h. This vector contains n residual values rh
n .

A coarse grid vector can be defined rH , containing only half the number of
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variables, say only the fine grid variables rh
n with odd indices n. It then has

to be determined how the fine grid is restricted to the coarse grid, i.e. how
the coarse grid values are related to the fine grid values. This is done in a
restriction operator IH

h .
When the coarse grid problem is solved the solution must be used to cor-

rect the fine grid solution. However, the coarse grid solution is only defined in
coarse grid points. So, to obtain values in each of the fine grid points an inter-
polation must be defined, with an interpolation operator Ih

H , which is related
to the restriction operator.

In general there are 2 types of coarsening:

− Vertex centered coarsening; coarse grid points are chosen to coincide
with fine grid points.

− Cell centered coarsening; coarse grid cells are defined as a combination
of fine grid cells.

The choice of the coarsening must represent the nature of the problem at
hand in order to obtain coarse grid equations similar to the target grid equa-
tions. When badly chosen, the coarse grid equations will not be similar and
possibly more complex, preventing the use of the same iterative process for the
coarse grid as for the target grid. The subsequent subsections will discuss the
coarsening of the KE.

4.3.1 Inter-grid operators

Vertex centered coarsening

With vertex coarsening, fine grid vertices and coarse grid vertices coincide.
The value of a coarse grid variable is a combination of the values of fine grid
variables, depending on the order of interpolation. An often used restriction
method is full weighting, displayed in figure 4.2 for 1D. Each interior coarse
grid point is assigned half the value of its coinciding fine grid point, and one
quarter of the neighbors of that fine grid point. The corresponding linear in-
terpolation, gives each coinciding fine grid point the full value of the coarse
grid, and gives the intermediate fine grid points half the value of the adjacent
coarse grid points.

− The restriction operator IH
h can be expressed in a stencil:

IH
h =

1

4

�

1 2 1
�

(4.24)

and results in the following relation for the interior coarse grid points
rH = IH

h rh:
rH

N =
�

1 · rh
2N−1+ 2 · rh

2N + 1 · rh
2N+1

�

/4. (4.25)
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Figure 4.2: Vertex centered coarsening for the interior grid points. Restriction
(left) and interpolation (right).

− The interpolation operator Ih
H is expressed in a similar manner:

Ih
H =

1

2

�

1 2 1
�

(4.26)

which gives the following relations for the fine grid points rh = Ih
HrH :

rh
2N = rH

N 0≤ N ≤ n/2 (4.27a)

rh
2N+1 =

�

rH
N + rH

N+1

�

/2 0≤ N < n/2. (4.27b)

Equation (4.25) cannot be used at the boundaries, since for those points
rh
2N−1 and rh

2N+1 are not defined. When boundary values are really needed,
injection could be used or the stencil from (4.25) without the contributions of
the points that lie outside the domain.

Cell centered coarsening

With cell centered coarsening the target grid is coarsened in 2 ways:

− For the interior grid cells each pair of fine grid cells is combined into a
single coarse grid cell.

− For the boundary cells no coarsening is applied, so that the coarse grid
variables are equal to the target grid variables.

The coarse grid variable is situated in the center of a coarse grid cell consist-
ing of a combination of fine grid cells. The case of a coarse grid cell consisting
of 2 fine grid cells is depicted in figure 4.3. Note how the cell boundaries
coincide on fine and coarse grid.

In the restriction of the interior cells, each coarse grid cell variable is the
average of its coinciding fine grid cell variables. In the interpolation the coarse
cell variables are injected to coinciding fine grid cell variables.

− The restriction operator IH
h in this case becomes:

IH
h =

1

2

�

1 1
�

. (4.28)
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Figure 4.3: Restriction and interpolation using cell centered coarsening.

This results in the following equation relating the coarse grid cell values
to the fine grid values:

rH
N =

�

1 · rh
2(N−1)+ 1 · rh

2(N−1)+1

�

/2. (4.29)

− The interpolation operator Ih
H is:

Ih
H =

�

1 1
�

, (4.30)

which gives the following relations for the fine grid cell values obtained
from coarse grid values:

rh
2(N−1) = rH

N 2≤ N ≤ n/2 (4.31a)

rh
2(N−1)+1 = rH

N 2≤ N ≤ n/2. (4.31b)

The boundary cells maintain a fixed unit size. Injection is used in both
cases, so that:

rh
1 = rH

1 (4.32a)

rh
N = rH

(N+2)/2. (4.32b)

4.3.2 Coarse grid operator

The KE on the target grid was defined in the following way:

Lhch = gh. (4.33)

The coarse grid problem can be derived by means of the restriction operator
IH
h :

IH
h

�

Lhch
�

= IH
h gh (4.34)

Substitution of ch = Ih
HcH yields:

IH
h

�

LhIh
HcH

�

= IH
h gh⇒

�

IH
h LhIh

H

�

cH = gH (4.35)
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Therefore the coarse grid operator LH can be defined as:

LH = IH
h LhIh

H (4.36)

This kind of coarsening is called Galerkin coarsening. In practice the coarse
grid operator can be obtained very easily from what looks like a complicated
matrix multiplication. Like the target grid operator, the coarse grid operator
essentially gives weights to each coarse grid variable to define the coarse grid
problem. These weights can be obtained by setting a single coarse grid variable
to 1, and setting the others to zero. Then, using the restriction of the fine grid
operators working on the interpolation of the coarse grid variables, the weight
for the 1 on the coarse grid is readily obtained.

The coarse grid operators for each coarsening type are derived below.

Vertex centered coarsening

Consider figure 4.4, which depicts the contributions to the coarse grid operator
in the coarse grid point N . The fine grid operators at fine grid points 2N − 1,

½

½

½

½½

¼ ¼

1 1

1

2N + 12N – 12(N – 1) 2(N + 1)2N

N N + 1N – 1

Figure 4.4: Contributions to the coarse grid operator through restriction and
interpolation for vertex centered coarsening.

2N and 2N + 1 are defined as:

Lh
2N−1 = Lh

�

ch
2(N−1), ch

2N−1, ch
2N

�

(4.37a)

Lh
2N = Lh

�

ch
2N−1, ch

2N , ch
2N+1

�

(4.37b)

Lh
2N+1 = Lh

�

ch
2N , ch

2N+1, ch
2(N+1)

�

(4.37c)

where:

Lh
n = ch

n −
∆t

2

h

fn−1ch
n−1−

�

bn+ fn
�

ch
n + bn+1ch

n+1

i

(4.38)
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Then, applying the interpolation operator Ih
H yields:

Lh
2N−1 = Lh

�

cH
N−1,

cH
N−1+cH

N

2
, cH

N

�

(4.39a)

Lh
2N = Lh

�

cH
N−1+cH

N

2
, cH

N ,
cH
N+cH

N+1

2

�

(4.39b)

Lh
2N+1 = Lh

�

cH
N ,

cH
N+cH

N+1

2
, cH

N+1

�

(4.39c)

Finally, restricting these 3 fine grid operators to the coarse grid, the coarse grid
operator becomes:

LH
N =

1

4
Lh

2N−1+
1

2
Lh

2N +
1

4
Lh

2N+1 (4.40)

This formulation can easily be implemented in a Multigrid solver by means
of a recurrence relation, constructing the operator on each grid. However,
the forward and backward rates in the Kinetic Equation, which are defined in
between grid points on the target grid, now get a different physical meaning
on the coarse grid. Hence the coarse grid operator is in fact not similar to
the target grid operator, and it may behave differently. Beneficial properties of
the fine grid operator for relaxation, such as diagonal dominance, may not be
inherited by the coarse grid equations. It may therefore be complicated to find
a suitable and stable relaxation process on the coarse grid.

In appendix D coarse grid relaxation is analyzed through Local Mode anal-
ysis. Analysis points out that Gauss Seidel fails at the coarser grids, due to a
changed coarse grid operator. Therefore to solve the coarse grid problem ob-
tained via vertex centered coarsening, a different solution procedure should be
used. A possibility is to use Kaczmarz relaxation which alters to system so that
it becomes diagonally dominant, and subsequently applies Gauss Seidel relax-
ation. Convergence of Kaczmarz however, is a lot slower than Gauss Seidel
and is therefore not preferred.

Cell centered coarsening

For vertex centered coarsening, the coarse grid operator can also be constructed
using Galerkin coarsening. Figure 4.5 displays the locations that are involved
in the definition of the coarse grid operator in point N .

The fine grid operators in points 2(N − 1) and 2(N − 1) + 1 are:

Lh
2(N−1) = Lh

�

ch
2(N−2)+1, ch

2(N−1), ch
2(N−1)+1

�

(4.41a)

Lh
2(N−1)+1 = Lh

�

ch
2(N−1), ch

2(N−1)+1, ch
2N

�

(4.41b)

where as before:

Lh
n = ch

n −
∆t

2

h

fn−1ch
n−1−

�

bn+ fn
�

ch
n + bn+1ch

n+1

i

(4.42)
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Figure 4.5: Contributions to the coarse grid operator through restriction and
interpolation for binning.

Applying the interpolation operator Ih
H yields:

Lh
2(N−1) = Lh

�

cH
N−1, cH

N , cH
N

�

(4.43a)

Lh
2(N−1)+1 = Lh

�

cH
N , cH

N , cH
N+1

�

(4.43b)

Restriction to the coarse grid gives:

LH
N =

�

Lh
2(N−1)+ Lh

2(N−1)+1

�

/2 (4.44)

As with vertex centered coarsening, the operator can be easily implemented
numerically through recurrence.

Also, upon substitution of (4.42) in (4.44) one obtains:

LH
N = cH

N −
1

2

∆t

2

h

f2(N−2)+1cH
N−1−

�

b2(N−1)+ f2(N−1)+1
�

cH
N + b2N cH

N+1

i

(4.45)

Recognizing the prefactor 1
2

as reflecting inter-grid ratio of cell sizes 1
w

, this
operator looks very similar to the KE for bins:

Lbin
N = c̄N−

1

wN

∆t

2

h

fnr (N−1) c̄N−1−
�

bnl (N)+ fnr (N)
�

c̄N+ bnl (N+1) c̄N+1

i

(4.46)

where c̄N is the average bin density, and nl(N) and nr(N) are the indices of the
left and right droplets in the N th bin.

In essence, Galerkin coarsening applied to the KE with the restriction and
interpolation operators considered here, results in the KE for bins on the coarse
grid. Further coarsening will result in bin sizes equal to a power of the base bin
size, and a similar coarse grid operator. This is interesting since the coarse grid
operator now is a representation of the formulation of the original KE, thereby
preserving beneficial properties for numerical solving.

The Local Mode analysis performed in appendix D confirms that the coarse
grid equations are similar to the target grid equations. Gauss Seidel relaxation
performance is similar on the coarse grid compared to the target grid. This
enables the use of Gauss Seidel relaxation on all grids in the multi-level cycle.
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4.4 Implementation verification

The Local Mode analysis used to analyze the relaxation process, is not only
useful to determine convergence behavior. The error amplification factors ob-
tained, actually are a good measure to which the numerical performance can
be verified. In fact, the results should not only be a guideline, but rather a goal
for the numerical performance. Often when numerical performance is worse
than the results predicted by the Local Mode analysis, there is an error in the
implementation.

In this section the performance of the Multigrid program is verified against
predictions of the Local Mode analysis. It is that Local Mode analysis only con-
siders error reduction on each independent grid. Interpolation effects are not
considered, and can be taken into account by performing a two-level analysis.
However, for low ν1, nu2 Multigrid cycles, effects of interpolation are minimal
and the convergence rate predicted by Local Mode analysis is a good estimate
for the cycle performance.

4.4.1 Relaxation

When Local Mode analysis is not performed the performance can be analyzed
using the results from the solver. To analyze multi-level performance, first
some insight in relaxation performance is required. For this purpose a number
of iterations is performed on the system, with a Fourier mode serving as an
initial guess:

vn = sin
�

kπ(n− 1)
N

�

, 1≤ n≤ N + 1, 1≤ k ≤ N − 1 (4.47)

Here k is the wave number, which specifies the number of half wavelengths on
the grid.

As each grid point represents a droplet size n, relaxing the Kinetic Equa-
tion is not possible in the sense of different droplet size differences (different
∆n). This is because inter-droplet fluxes are defined for ∆n = 1. Compar-
ing the full KE to a coarser bin form of the KE is not an option, as a uniform
transition from the single droplets to droplets bins does not scale the inter-
droplet fluxes accordingly (especially for small n) . Therefore, the only option
of exploring relaxation on different grids is to extend the domain. This is done
on 3 grids with 102, 103 and 104 points (maximum droplet size). The initial
guesses on the different domains should be comparable. Therefore wave num-
bers used for the initial guesses are fractions of the maximum droplet size N ,
i.e. k = 1

100
N , 1

4
N , 1

2
N , 99

100
N .

The logarithm of the maximum norm of the residual is plotted as a function
of the number of iterations for different wave numbers in figure 4.6. Clearly,
high frequency errors are reduced more efficiently than low frequency errors.
This conclusion was already obtained from the Local Mode analysis.
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Figure 4.6: Maximum norm of residual (||r||∞) vs. number of iterations for
different domain sizes: N = 102 (solid), N = 103 (dashed) and N = 104

(dash-dot). High frequency errors are reduced more efficiently.

Also, on the smaller domains, after some iterations the residual steadily
decreases to machine accuracy. This is due to the asymmetry of the opera-
tor, discussed in appendix E. It transfers residuals downstream for n > ncr ,
i.e. supercritical clusters. What essentially happens is that, when the resid-
uals reach the end of the domain, they disappear. In this investigation only
1000 iterations have been performed, which was enough for the information
to travel form the left to the right boundary for the smaller domains, but not
for N = 104. If relaxation where continued, this would also have been the case
for the largest domain.

An arbitrary initial guess consists of many Fourier modes. Relaxation in that
case will have a high initial convergence rate, because of the efficient reduction
of the high frequent modes. However, the low frequency components will not
be reduced as effectively and will dominate convergence after a few iterations.
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Figure 4.7: Relaxation all 4 modes (black) and the single lowest mode (red).
Initial convergence is rapid because of efficient reduction of high frequency
modes, but eventually slows down to the speed of the remaining low frequency
mode.
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In figure 4.7 residual reduction for the low wave number k1 =
1

100
N is

compared to residual reduction for an initial guess that combines all 4 wave
numbers, i.e.:

v0
n =

1

4

�

sin
�

k1π(n− 1)
N

�

+ sin
�

k2π(n− 1)
N

�

+ sin
�

k3π(n− 1)
N

�

+ sin
�

k4π(n− 1)
N

��

(4.48)

From the figure it is clear that initial convergence is faster for the combined
modes, but after a few iterations it slows down to the same speed as for the
lowest frequency mode. In other words, after the a few relaxations the error is
smooth as only the low frequent component remains.

The residual reduction for each mode can be described in the following man-
ner:

||r(i)(θ)||∞ = µi(θ)||r(0)(θ)||∞ (4.49)

where µ(θ) is a mode dependent convergence factor. This is the numerical
equivalent of the error amplification factor obtained by the Local Mode analy-
sis. Figure 4.8 shows the values for different wave numbers k.
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Figure 4.8: Error amplification factors µ(θ) obtained from Local Mode analysis
for different domain sizes N = 102 (dashed black), N = 103 (solid red) and
N = 104 (solid black). Error reduction is similar for different domain sizes
except for low frequency modes, which converge slower on large domains.

The size of the domain has virtually no effect on the error reduction. Most
error components have their maximum error amplification factor situated at
the beginning of the domain. However, for low frequency components this
is not the case. These components have 2 maxima in the n direction, 1 at
the beginning of the domain and one at n = N . For a small domain, the first
maximum is the largest. For a large N the second maximum is larger, appearing
as a "bump" in the graph. Increasing the domain size will cause this maximum
to approach 1, worsening error reduction for low frequency components.



36 CHAPTER 4. MULTIGRID

The error amplification factor µ(θ) can be compared to the measured resid-
ual reduction, defined as:

µ̃=
||r(i+1)||∞
||r(i)||∞

(4.50)

Both are displayed in figure 4.9 for the modes k2 =
1
4
N and k3 =

1
2
N . For

the first iterations the measured reduction factor is very oscillatory. However,
its mean shows good correlation with the predicted error amplification factor
from the Local Mode analysis.
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Figure 4.9: Measured residual reduction µ̃ vs. predicted error amplification
factor µ (dotted).

Summarizing, as for any relaxation process applied to more or less elliptic
problems, the convergence of the solution is impeded by an ineffective re-
duction of low frequency modes present in the error. This is when multilevel
algorithms are effective.

4.4.2 Two level cycle

To test the effectiveness of the coarse grid correction a two level cycle is is
considered. The two level cycle consists of:

− ν1 relaxations on the target grid h.

− Restriction of residuals to coarse grid H, and construction of coarse grid
operator LH .

− Solve coarse grid problem exactly, using a direct solver.

− Correction of the target grid solution with the coarse grid result by inter-
polation.

− ν2 relaxations on the target grid.



4.4. IMPLEMENTATION VERIFICATION 37

The coarse grid problem needs to be solved exactly to ensure that the coarse
grid correction will be optimal. To measure the computational work, a Work
Unit is defined as the equivalent 1 relaxation sweep on the target grid. Solving
the coarse grid problem approximately costs 3 WUs.
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Figure 4.10: Performance of multilevel cycling (black) vs. relaxation (red).
Performance is measured in WUs (1 WU = 1 relaxation sweep on the finest
grid). Results for domain sizes N = 102 (solid), N = 103 (dashed) and N = 104

(dash-dot).

The two level cycle is executed using ν1 = 2 and ν2 = 1, so a total of 6 WUs
is required for a single correction cycle, where solving the coarse grid exactly
is assumed to require 3WUs. The initial guess consists of Fourier modes with
wave numbers k = 1

100
N , 1

4
N , 1

2
N and 99

100
N .

Figure 4.10 shows the performance of two level cycles vs. single grid relax-
ations. With relaxation the residual reduction is slowed down by the ineffective
reduction of low frequency modes. With the two level cycle, these error com-
ponents are transferred to the coarse grid where they can be reduced more
efficiently. The only components that are to be resolved on the target grid are
the high frequent components with π/2≤ |θ | ≤ π.

The residual reduction of 1 cycle can be estimated using the results from
the Local Mode analysis. Similar to single grid relaxation, the maximum error
amplification factor dictates the residual reduction rate. With only the high fre-
quent components to be resolved on the target grid, the asymptotic smoothing
rate is defined as:

µ̄= max
π/2≤|θ |≤π

µ(θ) (4.51)

In the coarse grid correction cycle a total of ν1+ν2 relaxations are preformed on
the fine grid, therefore the total residual reduction of a coarse grid correction
is the amplification factor µc , defined as:

µc = µ̄
ν1+ν2 (4.52)

Figure 4.11 displays the reduction of the residual per cycle. The measured
amplification factor µ̃ is even lower than the predicted amplification factor µc .
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This can be explained by the asymmetry in the operator that enhances error
reduction by moving residuals downstream , off the grid. This effect is stronger
on coarser grids and for smaller domains.
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Figure 4.11: Residual reduction using a two level cycle. The measured ampli-
fication factors are even better than the predicted value.

4.5 Global constraint

The depletion equation is a global conservation law, which affects all interior
equations equally. Because of its nature as a global constraint, it is relaxed
separately.

Global conditions need not be treated at all on the target grid, see [6]. In
the multiscale approach it is important to realize that there can be no error-
smoothing related to such single conditions. All that has to be done is to
transfer the residual of the condition to the next coarser grid. For a nonlin-
ear condition FAS should be used, whereas linear conditions can be treated
with CS if the constraint is defined in terms of the error. As the coarsest grid is
much smaller than the target grid, information of its application is propagated
through the grid much faster.

4.5.1 Coarsening

With cell centered coarsening only the interior grid is coarsened, whereas the
boundary is not coarsened at all. The restriction and interpolation in between
grids is carried out through injection, i.e.:

IH
h = Ih

H = 1 ⇒ rH
1 = rh

1 (4.53)

Using Galerkin coarsening, the coarse grid operator is defined as:

LH
1 = Ih

H Lh
1 IH

h = Lh
1 (4.54)
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with:

Lh
1 = csatS

h+
N
∑

n=2

nch
n (4.55)

The saturation is injected so that SH = Sh. The droplet number densities are
averaged however so that cH

n = (c
h
2(n−1)+ch

2(n−1)+1)/2. The coarse grid operator
then yields:

L2h
1 = csatS

2h+
N
∑

n=2

[2(n− 1) + 2(n− 1) + 1]c2h
n

= csatS
2h+

N
∑

n=2

[4(n− 1) + 1]c2h
n

(4.56)

The prefactor n in the target grid operator sum represents the amount of
monomers in a droplet ch

n. Coarsening automatically yields a prefactor which
corresponds to the total amount of monomers in droplet bin cH

n .
Consider a droplet on level k− l, with target level k. The total amount of

droplets in a bin is:

nbin(n) = (nl(n)+ nr(n))
w

2
(4.57)

where nl(n) and nr(n) are the amounts of monomers in the leftmost and right-
most droplet in bin n with size w = 2k−l . These amounts correspond to the
location of these droplets on the target grids, which in turn can be specified in
terms of the bin location n:

nl(n) = w(n− 1)− (w− 2) (4.58)

nr(n) = w(n− 1) + 1 (4.59)

The total amount of monomers in each bin then becomes:

nbin(n) = (n−
3
2
)w2+ 3

2
w (4.60)

yielding the coarse grid operator:

Lk−l
1 = csatS

k−l +
N
∑

n=2

�

(n− 3
2
)w2+ 3

2
w
�

ck−l
n (4.61)

As explained above the global constraint is only applied on the coarse grid.
Implementation can be done conveniently using FAS. The coarse grid problem
with FAS is:

Lk−1
1 (ck−1) = Lk−1

1 (I k−1
k ck) + rk (4.62)

with c= (S, c2, . . . , cN )T .
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4.5.2 Application

With the global constraint is defined for each grid level, its application can be
investigated. In contrast to interior relaxation, which smoothes the error in the
interior of the domain, relaxation of the global constraint is treated separately.

A global change to the error, e.g. a change in magnitude, will not affect the
error smoothing process and thus is allowed. In case relaxation of the global
constraint introduces a local change, the interior relaxation process could be
frustrated. This can however be counterbalanced by applying a certain amount
of underrelaxation to the application of the global constraint, so that interior
relaxation remains convergent.

In figure 4.12 residual reduction for the interior of the domain and for
the global constraint are displayed. With the KE the global constraint can
be applied without underrelaxation after each relaxation sweep. This does
not disrupt the error smoothing process, implying that local changes are small
enough not to upset interior relaxation.
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(b) Global residual

Figure 4.12: Residual reduction during computation of 15th to 25th time step
(∆t = 10−7 s, N = 8194). 180 sweeps per time step, ω = 1. Global constraint
is applied after each interior relaxation sweep.

In a multi-level cycle, the global constraint should only be relaxed on the
target grid or on the coarsest grid. Applying the global constraint on an in-
termediate level will interfere with the correction tot the finer level. Figure
4.13 shows the residual reduction with a global constraint either applied at the
target level, or at the coarsest level.

Apparently, application of the global constraint at the target grid yields the
best performance. As with relaxation the global constraint can be applied after
each cycle without the need for underrelaxation. The reason that its applica-
tion is more effective on the target level than on the coarsest level is because
the constraint requires an integral quantity to be preserved. This integral quan-
tity is best represented on the target grid. Uniform coarsening of the KE results
in a poor approximation on the coarsest grid, especially for small n where the



4.6. MULTI-LEVEL CYCLE EXTENSIONS 41

0 60 120 180
10

0

10
4

10
8

10
12

10
16

10
20

re
si

du
al

 L
1 

no
rm

WU

(a) Interior residual

0 60 120 180
10

6

10
10

10
14

10
18

10
22

10
26

re
si

du
al

 L
1 

no
rm

WU

(b) Global residual

Figure 4.13: Residual reduction during computation of 15th to 25th time step
(∆t = 10−7 s, N = 8194). 30 cycles per time step,ω= 1. The global constraint
either applied at the coarsest level (black), or at the target level (red).

DSD typically has very steep gradients.
The theoretical benefit of fast information propagation on coarser, smaller

grids, doe not play a role with the KE. The changes in the supersaturation S
and therefore c1 are relatively small, so that the solution in the rest of the
domain is unaffected. Larger time-steps would perhaps induce larger changes,
for which the speed of information propagation becomes more significant.

4.6 Multi-level cycle extensions

A single multi-level cycle requires O(N) operations. In his work Venner [7]
describes that the amount of cycles required to converge to the level of the
discretization error is O(ln N), so the total amount of work equals O(N ln N)
operations. However, this estimate is based on the assumption that the initial
error is O(1). If this initial error is reduced, so would the amount of required
operations. Two extensions to a coarse grid correction cycle program, which
aim to produce this improved initial guess, are Full Multigrid (FMG) and the
F-cycle. Both concepts and the application to the KE are treated below.

4.6.1 Full Multigrid

With Full Multigrid, or FMG, the solution on coarse grid H is used as a starting
solution on the fine grid with h = H/2. Then, the initial error equals the
discretization error on grid H instead of O(1). For a discretization error of
order p, the initial error is O(H p), so that the number of cycles M required for
convergence is:

µM H p ≤ hp (4.63)
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and so

M ≥
p ln(2)
ln(1/µ)

(4.64)

where µ is the error reduction per cycle. Since µ is independent of the number
of grid points N the required amount of cycles is also independent of N , in-
stead of O(ln N) as before. Therefore the total amount of work becomes O(N)
operations.

The process of using a coarse grid solution as a starting solution for the fine
grid is applied recursively with FMG, which is displayed in figure 4.14. Since
the coarse grids already are initialized for the multi-level cycle, FMG can be
implemented very easily. Starting from the coarsest grid, a starting solution
is supplied to the successive finer grid. Then a multi-level cycle is performed
to obtain a solution converged to the level of the discretization error, which is
represented by the double circles.

Attention has to be paid to the interpolation of a coarse grid solution to a
fine grid starting solution, since in most cases a higher order of interpolation is
required than used in the multi-level cycle.

4.6.2 F-cycle

For time dependent problems, instead of computing each time step separately,
the solution of the previous time step can act as a basis to which only the
changes in time are considered. Consider the following transient problem,
where Lh,m is a differential operator defined on grid h at time m, with ch,m the
solution to be computed and gh,m a right-hand side function:

Lh,mch,m = gh,m. (4.65)

Using the solution from the previous time m− 1 as an approximation for the
solution at the current time, the residual can be defined as:

rh,m = gh,m− Lh,mch,m−1 (4.66)
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Figure 4.14: FMG algorithm, 1 V(ν1,ν2)-cycle per refinement
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Defining:
δh,m = ch,m− ch,m−1 (4.67)

equation (4.65) can be written as:

Lh,m(ch,m−1+δh,m) = Lh,mch,m−1+ rh,m. (4.68)

In this way the information of the previous time step is used for the calculation
for the current time step. Solution of the problem can be done using standard
CS or FAS cycles. However as with FMG, the F-cycle aims to produce an initial
error on the target grid equal to the discretization error on the coarse grid.

Therefore equation (4.68) is solved on the coarsest grid first. Hence solving
ĉH,m from:

LH,m(ĉH,m) = LH,m(IH
h ch,m−1) + IH

h rh,m (4.69)

an approximation ĉh,m is calculated according to:

ĉh,m = ch,m−1+ Ih
H(ĉ

H,m− ch,m−1). (4.70)

Then a normal CS or FAS cycle can be used to reduce the error up to the
level of the discretization error. As with FMG, the process described above
can be applied recursively as depicted in figure 4.15. Note the first downward
leg where zero relaxations are performed, as the target grid solution on the
previous time step is purely restricted to the coarsest grid.

4.6.3 Application to the KE

With an initial guess having an error equal to the truncation error on the coarse
grid, O(1) cycles should be required to converge the solution on the target grid.
However, it is sometimes required to perform additional correction cycles after
the FMG or F-cycle algorithm are performed. Therefore, performance is only
improved if the work of FMG or an F-cycle plus the additional work of using
coarse grid correction cycles to converge the solution on the target grid, is less
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Figure 4.15: F − V (ν1,ν2) cycle algorithm
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than the work of O(ln N) coarse grid correction cycles ordinarily required to
obtain a converged solution.

However, for the current multilevel implementation of the KE performance
does not seem to improve. Figure 4.16 shows the performance of the solver for
starting solutions obtained from (a) the previous time step, (b) FMG and (c)
an F-cycle.
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(a) Residual reduction of the 10th time step
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Figure 4.16: Residual as a function of work for different starting solutions:
previous time step (black), FMG (solid red), F-cycle (dashed red). FMG and
the F-cycle require approximately 6 WU, and provide a worse starting solution
than the previous time step.

Looking at the initial residual norms, it is clear that the previous time step
produces a more accurate starting solution than obtained from FMG or the
F-cycle. Also FMG and the F-cycle require extra work to obtain the starting
solution, causing the residual reduction to be delayed. To explain this behavior
the starting solution and its initial error are investigated.

As is explained above, a performance gain from FMG and the F-cycle re-
lies on the assumption that the initial error on the fine grid is equal to the
discretization error on the coarse grid. First, as the KE is not a continuous
problem, there is no discretization error on the target grid. Its solution is the
exact solution. Therefore the error on the coarse grids should not be defined
as a discretization error, but rather an approximation error with respect to the
target grid.

The current multi-level implementation coarsens the grid in a uniform fash-
ion, for all n. The coarsening corresponds to a zero-th order interpolation used
for bins. In appendix C it was already pointed out that the approximation er-
ror is minimal when the DSD is smooth. However, especially for small n, the
DSD has very steep gradients, resulting in large approximation errors when
coarsening is applied in that region. Therefore, both FMG and F-cycles will
always produce a significant error in the starting solution on the target grid
when using uniform coarsening.

This approximation error could perhaps be reduced to some extend by us-
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ing a higher order of interpolation between different grid levels. However,
even when the coarse grid solution can yield an accurate approximation to the
fine grid solution, the grid cells at the beginning of the domain should not be
coarsened at all. Grid coarsening is only allowed for large n where the DSD
becomes relatively smooth.

The conclusion is that with the current coarsening, the most efficient ap-
proach is to use the solution from the previous time step as a starting solution
for the current time step and use simple cycling to improve it to the required
accuracy level. Since for nucleation experiments the solution only seems to
change at the nucleation front, the previous time step already is accurate for a
large part of the domain.





CHAPTER 5

RESULTS: NUCLEATION PULSE
EXPERIMENT

In this chapter the results for the nucleation pulse experiment are discussed,
both for a fixed monomer number and depletion. The case consists of a step-
wise constant pressure-temperature profile comprising a region with high su-
persaturation (region I), followed by a region with low supersaturation (region
II). The experiment settings are equal to the experiment carried out by van
Putten et al. [5], for which the test case conditions are given in table 5.1.
Properties of water are as obtained by Wölk & Strey [10]. The time step sizes
for accurate time integration are 1 · 10−8 s, which is determined from a con-
vergence analysis treated in appendix F.

Table 5.1: Nucleation pulse test case conditions for water with nonequilibrium
vapor molar fraction yw = 7 · 10−3.

Parameter Region I (t ≤ 50µs) Region II (50µs< t ≤ 300µs)

p(kPa) 77.0 115.5

T(K) 240.0 270.0

S 14.34 1.67

ncr 23 1885

To compare his results to the Classical Nucleation Theory, van Putten used
the equilibrium number density ceq

1 = cS
1 exp(−Θ) as a boundary condition.

However, for the computation of the forward rates he did not apply this cor-
rection so there is an inconsistency between the two. Furthermore, van Putten
uses a slightly different definition for the forward rate in the limit of n → 1.
The inconsistency and forward rates as applied in his experiment were also
applied here to validate the results.
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5.1 Fixed monomer density

5.1.1 Results

The experiment is carried out using the KE for grouped droplets, as described
in section 3.4. The largest droplet size is fixed at N = 5 · 108, for which a
total of 2050, 16386 or 131074 bins are used. This corresponds to 12, 15 or
18 levels in the multi-level cycle respectively, with in all cases a minimum of 3
bins on the coarsest grid in.

In section 3.4.2 it was noted that the 1st order interpolation can be unstable
due to the lack of upwinding and a limiter. However, a stable simulation was
achieved for 2050 bins. The results of this simulation is presented here next to
the results obtained by zero-th order interpolation.

ncr

(a) 131074 (black) and 16386 bins (red) (b) 2050 bins using first (solid) and zero-th or-
der interpolation (dash-dot)

Figure 5.1: Multi-level results for nucleation pulse in region I at t1 = 10 µs,
t2 = 20 µs, t3 = 30 µs, t4 = 40 µs and t5 = 50 µs. CS V(2,1)-cycles.

Figure 5.1 shows the results in region I of the nucleation pulse, computed
with 5 CS V(2,1)-cycles per time step. All simulations produce similar droplet
size distributions, except at the nucleation front. There it seems that the ap-
proximation of the full KE with the grouping of droplets results in an overesti-
mation of the nucleation front. When more bins are used, the overestimation
is reduced.

Also, from the simulations with 2050 bins, the higher 1st order interpo-
lation shows to be much more accurate than the zero-th order interpolation.
2050 bins with 1st order interpolation is as accurate as 16386 bins with zero-th
order interpolation, a significant increase in accuracy. However, small oscilla-
tions around the front indicate that instabilities are present.

The analysis of the approximation error in appendix C showed that a zero-
th order interpolation can only be used when the gradients in the DSD are close
to zero. At the nucleation front this clearly is not the case, resulting in a large
approximation error in this area.
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ncr

(a) 131074 (black) and 16386 bins (red)

ncr

(b) 2050 bins using 1st (solid) and zero-th or-
der interpolation (dash-dot)

Figure 5.2: Multi-level results for nucleation pulse in region II at t6 = 100 µs,
t7 = 150 µs, t8 = 200 µs, t9 = 250 µs and t10 = 300 µs. FAS V(2,1)-cycles.

In figure 5.2 the results are plotted for region II of the nucleation pulse.
Again, the approximation by bins tends to overestimate the nucleation front.
Also, the 1st order interpolation results in more significant errors for t8 to t10.
The instabilities only occur in the supercritical region of the DSD. However, the
prediction of the growth appears not to suffer from these instabilities.

5.1.2 Performance

In this section the performance of the multilevel solver is analyzed. For this the
nucleation pulse experiment is considered for the first 10 µs. The performance
of the multi-level solver is compared to the performance of relaxation and a
direct solver using RK4.

The multi-level and relaxation based solvers require ∆t = 1 · 10−8 s for
accurate computation, as derived in appendix F. The direct solver is bounded
by a CFL condition requiring ∆t = 5 · 10−11 s. This CFL condition becomes
stronger when the nucleation front advances and the droplet growth speed
increases.

For an implicit solver to have an advantage over a direct solver, the amount
of work per time step should not exceed the amount of work of an equivalent
amount of direct time steps. In this case, each implicit time step is equal to 200
direct time steps. Considering a single relaxation sweep on the target grid and
computation of a single direct time step as O(N) operations, or 1 Work Unit
(WU), then computation of an implicit time step should not exceed 200 WUs.

Full KE

Figure 5.3 displays the residual reduction of the implicit solver using relaxation
and V-cycles for the full KE. It is clear that both methods are well within the
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limit of 200 WUs, resulting in a performance increase compared to the direct
solver.
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Figure 5.3: Interior residual reduction by implicit trapezoidal solver (∆t =
10−8) for the full KE.

Relaxation is surprisingly effective. Instead of the characteristic initially
large but eventually stagnating convergence speeds, residuals are reduced in
O(N ln(N)) operations, especially for initial droplet growth. In fact, at the ini-
tial stages of condensation, relaxation outperforms the multi-level solver. This
steady convergence behavior with relaxation indicates that the error consists
of a few error components which are of high frequency, so that relaxation is
effective.
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Figure 5.4: Initial errors at t = 1, 2, . . . , 10 µs for full KE. Initial errors exist at
the front of the DSD and become of lower frequency as the front advances.

To confirm this suspicion, the initial errors at times t = 1,2, . . . , 10 µs are
plotted in figure 5.4. This reveals that the error only exists at the front of
the DSD, which for small ∆t is a small portion of the domain, i.e. a high
frequent error component. When the DSD advances, droplet growth speed
increases and therefore the error is present on a larger portion of the domain.
This reduces the error component frequency, resulting in a slower convergence
speed observed with relaxation for large t.
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Only in the case that the DSD is advanced far enough, the multi-level solver
gives a performance improvement. The low frequent errors are reduced as ef-
fective as the high frequent errors. For a larger time step size, the performance
improvement of the multi-level solver will become better due to the lower error
component frequency, and increased error complexity.

KE for grouped droplets

In case bins are use to group the droplets, the above argument that the fre-
quency of the initial error components decreases for large t does not hold. The
bin size is increased exponentially with n which is suited to the exponential
advancement of the nucleation front. Therefore, the front advancement per
time step is more or less constant in the bin-space.
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Figure 5.5: Initial errors at t = 1, 2, . . . , 10 µs for binned KE. Initial errors exist
at the front of the DSD but remain of high frequency as the increasing bin size
matches the exponential growth rate.

This is confirmed by figure 5.5, for which the same simulation is repeated
for 2050 bins. In this case the initial error at the front of the DSD remains of
high frequency as the increasing bin size matches the increasing growth rate.
In fact, frequency of the initial error component seems to increase due to the
very large bins for larger droplets.

Because of the high frequency nature of the initial error component, re-
laxation remains effective when the simulation progresses. This is confirmed
by figure 5.6. Also the observation that the frequency of the error component
increases over time, is confirmed by the increased effectiveness of relaxation.

The multi-level solver also benefits from the high frequency as relaxation
lies at its basis. The advantage of the correction cycle however is lost, as most
of the residual is reduced in the first few relaxation sweeps.
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5.2 Depletion

5.2.1 Results

The assumption that the monomer number density is unaffected, is only valid
for a very short nucleation pulse. When the duration of the pulse is increased
more droplets are able to cross the critical droplet size, allowing more large
droplets to be formed. To analyze the impact with depletion the nucleation
pulse experiment is repeated. In this case however, only region I of the pulse
is considered for a duration of 100 µs.

Furthermore, depletion must be accounted for by the additional depletion
equation (3.8). This equation is considered as a global constraint and is treated
separately from interior relaxation, as explained in section 4.5. In the multi-
level program the global constraint is only treated on the target grid.

Figure 5.7 displays the results for the 100 µs nucleation pulse. This ex-
periment is performed using 15 levels with 3 bins on the coarsest level, corre-
sponding to 16386 bins.

Clearly depletion cannot be neglected for a pulse of long duration. Immedi-
ately the supersaturation S drops from 14.34 to 13.83. This however is caused
by the DSD changing from the starting solution containing only monomers, to a
solution containing monomers and small droplets. Should a saturated equilib-
rium distribution have been used this drop would not have been as significant.

After the initial drop the supersaturation is constant up to about 20 µs.
From that point on, the effect of formation of large droplets on the vapor den-
sity can be noticed. Corresponding to the drop in the supersaturation the criti-
cal cluster size ncr increases, reducing the probability of a droplet crossing this
thermodynamic barrier. At 100 µs the supersaturation has dropped to 7.86 so
that very few supercritical droplets are formed.

Next the case of total depletion is considered. For this purpose a nucleation
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Figure 5.6: Interior residual reduction by implicit trapezoidal solver (∆t =
10−8) for the binned KE.
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Figure 5.7: Multi-level results for depletion in region I at t1 = 20 µs, t2 = 40
µs, t3 = 60 µs, t4 = 80 µs and t5 = 100 µs. CS V(2,1)-cycles.

(a) Droplet size distribution (b) Supersaturation S

Figure 5.8: Nucleation pulse of 1ms. The vapor is depleted until an equilibrium
at S = 1 is reached.

pulse in region I is considered for a duration of 1 ms. The largest droplet
considered is N = 109, for which 16386 bins are used on the target level.
Results are displayed in figure 5.8.

The results show that after 0.2 ms an equilibrium situation S = 1 is reached.
At this time the critical cluster size ncr is large enough to prevent the formation
of new supercritical clusters. The growth of existing supercritical droplets is
stopped because at equilibrium Jn = Jn+1.

5.2.2 Performance

For the nucleation pulse experiment with depletion, only the performance of
relaxation and CS V(2,1)-cycles are compared. Since the depletion equation is
an implicit equation, a direct solver is not considered. However, it was shown
above that the trapezoidal rule solver using relaxation or V-cycles already out-
performs a direct RK4 solver. The binned KE using 16386 bins on the target
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grid was used, with a time step size of ∆t = 10−8 s. The nucleation pulse sans
depletion showed that relaxation is quite effective in this case. This could be
contributed to the high frequent initial errors on the grid.

With depletion however, the initial errors do not merely exist at the front
of the distribution. Because the formation of droplets reduces the monomer
density, the lower boundary value and the supersaturation S are affected. The
latter also affects the critical droplet size ncr , so that the amount of droplets
that become supercritical is altered. All these effects contribute to a more com-
plex difference between subsequent solutions of the KE, creating more complex
initial errors.
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Figure 5.9: Initial errors at t = 20,40, . . . , 100 µs for binned KE with deple-
tion. Initial errors are more complex compared to fixed monomer density ex-
periment.

In figure 5.9 the initial errors are plotted at t = 20, 40, 60, 80 and 100
µs. The high frequent errors that are present at the front of the DSD are still
visible. However, there also is a more complex error visible, spanning a large
portion of the domain. It is to be expected that V-cycles are better suited than
relaxation to reduce these types of errors due to the low frequent components
the errors contain.

Figure 5.10 displays the interior residual reduction of relaxation and V-
cycles, where relaxation seems to be most effective. However, the more com-
plex initial error does impact the relaxation speed when compared to figure
5.10. The fast initial reduction is still apparent, but the slower reduction of
low frequencies is seen as a ‘belly’ in the surface plot. V-cycles converge to
machine accuracy with a steady convergence rate µ̄c .

Furthermore, the interior relaxation is influenced by the application of the
global constraint. This becomes clear when looking at figure 5.11, which de-
picts the residual reduction of the depletion equation. There is a clear resem-
blance between interior residual reduction and depletion residual reduction
because both processes are intertwined.

The global constraint was applied before each relaxation sweep at the tar-
get grid. For the V-cycle this constitutes 3 applications of the global constraint
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Figure 5.10: Interior residual reduction by implicit trapezoidal solver (∆t =
10−8) for the binned KE with depletion.
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Figure 5.11: Depletion residual reduction by implicit trapezoidal solver (∆t =
10−8) for the binned KE with depletion.

per cycle. Each relaxation sweep or V-cycle is designed to reduce the overall
residual in the interior of the domain. When the solution c1 is altered after this,
the interior residual changes accordingly. This behavior is even more severe for
the KE. Here the residuals for the first equations contribute more to the total
residual than the other equations, since the solutions there are several orders
higher than in the rest of the domain.

Vice versa, interior relaxation influences the residual at the boundary. Re-
laxation of the interior equations alters the total amount of monomers in the
domain, affecting the residual of the depletion equation. However, it is most
affected by the first few equations where droplet number densities are high
enough, and in occasions where a lot of large droplets are formed.

As long as the depletion equation can be solved more accurately the interior
residual reduction cannot complete. From 5.11 it can be seen that it takes 5
cycles to reduce the depletion equation, so the depletion equation is solved 15
times. This is equal to the amount relaxation sweeps needed to resolve the



56 CHAPTER 5. RESULTS: NUCLEATION PULSE EXPERIMENT

global constraint, which apply the global constraint with each sweep. with
relaxation. Therefore the global constraint is applied much more often per WU
with relaxation compared to V-cycles, indicating that the multi-level process is
stalled by the global constraint.

The combination of small time steps and a limited number of applications
of the global constraint per cycle, results in an inferior performance compared
to relaxation. The latter is difficult to change, but a more sophisticated time
integration scheme would allow larger time steps for which initial errors pre-
sumably would contain more low frequent components for which relaxation is
ineffective.

5.3 FAS and the KE

The discrete KE is has a linear operator L. Therefore, the CS and FAS correction
to an approximation c̃ should be equal. However, with the KE some subtleties
appear in certain scenarios, so that the solutions obtained by FAS differ from
the solution obtained by CS and relaxation. This is investigated here for the
nucleation pulse experiment sans depletion.

(a) Region I (b) Region II

Figure 5.12: Comparison of DSDs: relaxation (black), CS (blue, c · 10) and
FAS (red, c · 100). Absolute value of c is taken. Simulations of 2050 bins with
zero-th order interpolation.

In figure 5.12 the results are displayed for (a) relaxation, (b) CS and (c)
FAS. Here the CS and FAS results are multiplied with a factor 10 and 100
respectively for clarity. CS produces the same result as relaxation, but FAS
differs in region II of the pulse. Apparently the correction given by the FAS
cycle differs from the correction by the CS cycle, which formally should be
equal. In figures 5.13 and 5.14 the corrections to the target grid from its
next coarser grid are displayed for region I and region II of the experiment,
respectively.

In region I the solutions of CS and FAS are similar, as are the corrections.
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(a) CS (b) FAS

Figure 5.13: Region I: Absolute corrections of first cycle per time step. CS and
FAS corrections are different, resulting in different solutions for small n.

(a) CS (b) FAS

Figure 5.14: Region II: Absolute corrections of first cycle per time step. CS and
FAS corrections are different, resulting in different solutions for small n.

With FAS only at the lower boundary it can be seen that some of the boundary
correction seems to be transferred into the grid, whereas this is not the case
with CS. In region II the differences in the solutions appear for t > 150µs.
From this point on the boundary correction seems to be transferred further
into the grid over time. This causes the differences between CS and FAS.

As was explained, for a linear operator, CS and FAS should produce the
same correction. The difference however lies the variable that is solved on the
coarse grid. CS directly solves the coarse grid error vH , whereas FAS solves the
course grid unknown IH

h c̃h+ vH . For a known boundary condition the error on
the boundary is zero, hence the coarse grid boundary value is zero. In numerics
this is much more accurate compared to the boundary value with FAS, which
is the boundary condition itself. Therefore digits can be lost with FAS, which
for the KE apparently happens when the solution near the boundary is much
smaller than the boundary value itself.





CHAPTER 6

RESULTS: NOZZLE FLOW

In this chapter the condensation in a Laval nozzle is investigated. The flow
data from the two-way coupled nozzle flow experiment for single-component
condensation performed by Sidin [4] is used for the present one-way coupled
experiment. Since the flow in the nozzle can be considered steady-state, the
Langrangian form of the advected KE, equation (3.22), is simplified for the
steady-state case:

dĉn

d x
=

1

u

h

fn−1 ĉn−1− (bn+ fn)ĉn+ bn+1 ĉn+1

i

(6.1)

This equation is marched in space along the nozzle axis using Euler backward
integration. For the trapezoidal method stable space integration was not ob-
tained.

For his experiment Sidin considers a mixture of nitrogen (N2) and methane
(CH4) as the carrier gas, and heavy water (D2O) as the condensing component.
The mole fraction of methane in the mixture is approximately 4%, and that of
D2O approximately 2.5%, which corresponds with a total D2O mass fraction
of gmax = 0.018. The material properties of N2, CH4 and D2O are taken from
[11]. The velocity, pressure and temperature profiles are displayed in figure
6.1.
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Figure 6.1: Flow variables from condensation experiment in Laval nozzle
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Sidin’s experiment utilizes the same inconsistency in the monomer density
for the computation of the forward rates and the boundary condition as was
applied by van Putten (see chapter 5). It was not possible to reproduce this
inconsistency for the one-way coupled case. Therefore, the results that are
obtained here are different from the results obtained by Sidin. However, the
analysis of the multi-level performance is not affected by this.

6.1 Results

For the simulations the largest droplet is taken as N = 106. The droplet space is
approximated using 2050 bins, using zero-th order interpolation. In appendix
F a space increment of ∆x = 2.8 · 10−6 m was deemed sufficient for accurate
computation for the Euler backward integration. Results are obtained using
∆x = 1.0 · 10−6 m and ∆x = 2.7 · 10−6 m. An equilibrium distribution is used
at the nozzle inlet.

The condensation in the nozzle is computed using CS V(2,1)-cycles. The
global constraint accounting for depletion (3.33) was applied before each tar-
get grid relaxation sweep, which constitutes three applications per V-cycle.
With relaxation the supersaturation S, the specific gas constant R and the mix-
ture density ρ are updated after each application of the global constraint. For
the V-cycles this is done only once after each cycle.
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(b) ∆x = 2.7 · 10−6 m

Figure 6.2: Droplet size distributions at x1 = −0.014 m, x2 = 0.003 m, x3 =
0.011 m, x4 = 0.021 m and x5 = 0.041 m. CS V(2,1)-cycles.

Figure 6.2 displays the DSD at different stages in the nozzle obtained using
different space increments. The solution using the larger space step slightly
overestimates the location of the nucleation front, however the difference is
negligible. More bins would probably produce more accurate results as was
concluded in chapter 5.

The DSD obtained using ∆x = 2.7 · 10−6 m is displayed as a function of x
and n in figure 6.3. The contours of the DSD at nozzle locations x1 to x5 are
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Figure 6.3: Droplet size distribution for ∆x = 2.7 · 10−6 m using CS V(2,1)-
cycles. Contours are plotted for x1, . . . , x5.

(a) Supersaturation S (b) Massfractions g1 (solid) and g (dashed)

Figure 6.4: Supersaturation and mass fractions of condensable component D2O
in nozzle. Results for ∆x = 1 · 10−5 m and ∆x = 2.7 · 10−6 m are equal.

marked for clarity. Figure 6.4 displays the supersaturation S, and the monomer
and liquid massfractions g1 and g along the nozzle axis.

From the figures it can be seen that condensation starts just before the noz-
zle throat, around x1 =−0.014 m. The supersaturation achieves its maximum
value of 28.6 at x = 0.01 m. The vapor is almost entirely depleted at the end
of the nozzle. The results for ∆x = 1.0 ·10−6 m and ∆x = 2.7 ·10−6 m are the
same since they solely depend on the monomer density ĉ1.

6.2 Performance

The performance of the multi-level algorithm is compared to the performance
of relaxation. It was already concluded in section 5.1.2 that reduction of the in-
tegration step yields initial error components with a higher frequency, making
solution by relaxation more effective.
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(b) ∆x = 2.7 · 10−6 m

Figure 6.5: Interior residual reduction using relaxation. Initial errors com-
ponents are of higher frequency for smaller ∆x , resulting in a faster residual
reduction.

For the nozzle flow experiment this is confirmed by figure 6.5. The ob-
served convergence rates are higher for ∆x = 2.7 · 10−6 m compared to ∆x =
1 · 10−5 m. Furthermore, relaxation becomes less effective when the DSD
changes significantly. This is caused by the more complex initial errors which
contain more low frequency components.

In figure 6.6 the residual reduction using CS V(2,1)-cycles is displayed.
There is no significant performance improvement of the V-cycles compared to
relaxations.

Looking at figure 6.7 it can be seen that the interior residual reduction is
stalled by the reduction of the depletion residual. Especially where the DSD
changes very little, relaxation outperforms V-cycles because it is able to apply
the global constraint more often per WU. Combined with a very small space
increment required for accuracy, relaxation is very effective in those parts of
the nozzle.

When the DSD changes drastically in the nozzle, where the supersaturation
reaches its peak, the performance of V-cycles becomes comparable to relax-
ation. The initial errors contain significantly more low frequent components,
significantly reducing the performance of relaxation but hardly affecting V-
cycle performance. If a more accurate space integration scheme is used, larger
steps can be made, reducing the number of steps, and increasing the effective-
ness of Multigrid.
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Figure 6.6: Interior residual reduction using CS V(2,1)-cycles. Initial errors
components are of higher frequency for smaller ∆x , resulting in a faster resid-
ual reduction.
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(a) Relaxation
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Figure 6.7: Depletion residual reduction for ∆x = 1 · 10−5 m.





CHAPTER 7

CONCLUSIONS &
RECOMMENDATIONS

The solution of the Kinetic Equation is a computationally expensive task. Es-
pecially multi-component condensation simulations based on the KE are not
feasible when computing condensing flows. Therefore multi-level techniques,
which are proven to enhance the numerical solution process in many physi-
cal simulations, are investigated for the application to the KE. As a first step,
a working multi-level solver has been developed for one-way coupled single-
component condensation experiments. The results and performance were thor-
oughly analyzed.

Due to their iterative nature, multi-level techniques aim to efficiently solve
implicit problems. The KE can much better be solved by implicit methods
compared to explicit methods due to very fast propagation of information, i.e.
high growth rates, in the droplet space. This puts a relatively restrictive CFL
condition on explicit methods requiring very small integration steps. Implicit
methods are stable and accurate for much larger steps, compensating the extra
work needed to advance from one integration step to the next. Furthermore,
monomer depletion introduces an extra implicit condition which can only be
resolved by an implicit solver.

However, at first glance the multi-level solver does not improve upon the
performance of the Gauss Seidel relaxation that lies at its base. When consid-
ering a nucleation pulse without depletion it can be seen that the initial errors
at each integration step are only present at the nucleation front. The use of a
second order integration scheme limits the allowable integration step for accu-
racy, which in this case was so small that the advancement of the front is very
small. The initial error therefore was only present at a small part of the grid,
which is a high frequency error. Multigrid becomes effective when the initial
error contains low frequencies, whereas high frequencies can be resolved very
effectively by relaxation.

When depletion is included in the simulation, the solution does not merely
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change at the nucleation front but everywhere on the grid. However, despite
of a more complex initial error, containing more low frequency components,
relaxation remains the most effective. This is caused by the application of a
global constraint which accounts for the depletion of monomers when droplets
grow. Interior residual reduction is stalled when the global constraint remains
active. Only when the depletion condition is completely satisfied the interior
solution can fully converge. The global constraint is applied on the target
grid before each relaxation sweep. Compared to relaxation the multi-level
solver triggers the global constraint less often per unit of computational work.
Therefore the depletion condition is resolved earlier with relaxation compared
to the multi-level solver, and the interior residual reduction.

These combined effects resulted in that the nozzle experiment, where envi-
ronment parameters change at each integration step, did not benefit from the
multi-level approach. The first order implicit scheme applied there required too
small integration steps to render relaxation ineffective in large parts of the noz-
zle. In parts of the nozzle with high supersaturation and large droplet growth
the multi-level solver was stalled by the depletion condition which required
several cycles to be resolved.

Furthermore, a brief look has been given to Full Multigrid (FMG) and F-
cycles which aim to improve the performance of a multi-level cycle by provid-
ing improved initial guesses. However, these methods succumb to the fact that
the solution of the KE itself is badly represented on coarse grids due to the
uniform coarsening used in this work. Especially for smaller clusters the KE is
badly represented, so a non-uniform coarsening would better suit the solution
of the KE.

Finally, it was noticed that numerical treatment of the KE is prone to trun-
cation errors. This was observed with the computation of residual norms and
the application of FAS. In the droplet size distribution (DSD), number densities
can differ several orders of magnitude. So much even that using 32-bit dou-
bles it was found that the number densities in the DSD cannot be compared
to the monomer number density. With FAS this resulted in a loss of digits
within the correction, yielding inaccurate results. A brief look has been given
to a change of coordinate which scales the solution, but to no avail. If such
a transformation can be made it would greatly benefit the numerical process.
Another option is use long doubles, preferably on a 64-bit compiler, for which
the accuracy is a lot better.

Numerical solution of the KE with Multigrid has potential. However, when
the KE is discretized using the integration schemes discussed in this work, re-
laxation is too effective. The multi-level solver is able to show its potential in
some cases, but it mostly loses from relaxation in terms of effectiveness.

It is recommended to investigate discretization using higher order implicit
integration schemes which would allow for larger integration steps. Result-
ing in more low frequent error components, this would seriously impact the
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performance of relaxation, so that Multigrid may show its real potential. The
depletion condition may then also be resolved much quicker relative to the in-
terior error reduction. Also, there are multi-level techniques available which
are specifically designed for time-dependent problems. These could be success-
ful in simulations where changes in the DSD are very small over time.

Furthermore, the uniform predefined coarsening used here may not be op-
timally suited to the KE. Especially when the underlying target grid is non-
uniform, as is the case when grouping droplets, a more suitable coarsening
could be devised. This could be provided by Algebraic Multigrid (AMG) which
constructs the coarse grid by analyzing the coupling between clusters. Stronger
couplings are preserved on the coarse grid, whereas weaker couplings can be
approximated by coarsening. It recommended to investigate this option.

Finally it is noted that Multigrid is better suited to multi-dimensional prob-
lems, where the amount of computational effort is significantly increased with
each dimension. The tools developed in this work can serve as a basis for
the application of Multigrid to multi-component condensation simulations, for
which it is expected that a significant gain in the performance can be achieved.
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NOMENCLATURE

Roman

Symbol Units Description
A [-] System matrix of the KE
A [m2] Nozzle cross-sectional area
a1 [m3] Effective surface area of monomer
bn [s-1] Backward evaporation rate of n-mer
c [# m-3] Volumetric number density vector
ĉ [# kg-1] Specific number density vector
cS
1 [# m-3] Volumetric monomer number density at saturation

ceq
n [# m-3] Volumetric equilibrium number density

csat [# m-3] Volumetric monomer number density at saturation
ch [-] Fine grid solution
c̃h [-] Given approximation to ch

ch [-] Corrected approximation to ch

cH [-] Coarse grid solution
fn [s-1] Forward condensation rate n-mer
gh [-] Fine grid right hand side of discrete KE
g [-] Liquid mass fraction
g1 [-] Condensable vapor mass fraction
gmax [-] Total mass fraction of condensable component
∆Gn [m2 kg s-2] Gibbs free energy of formation
−g(n) [-] Dimensionless Gibbs free energy of formation
IH
h [-] Restriction operator from fine grid h to coarse grid H

Ih
H [-] Interpolation operator from coarse grid H to fine grid h

Jn [# m-3 s-1] Volumetric condensation flux from cluster n to n+ 1
kb [m2 kg s-2 K-1] Boltzmann constant
Lh [-] Discretized operator
LH [-] Coarse grid operator
M [-] Number of multi-level cycles required for convergence
m1 [kg] Mass of monomer
mc [kg] Mass of carrier gas
ml [kg] Mass of liquid
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mv [kg] Mass of condensable vapor
ncr [-] Critical cluster size
n̄k [#} Average monomer count in bin k for the binned KE
nl(k) Leftmost droplet in bin k
nr(k) Rightmost droplet in bin k
p [Pa] Mixture pressure
p1 [Pa] Partial vapor pressure
psat [Pa] Saturated vapor pressure
R [J kg-1 K-1] Specific gas constant of mixture
Rc [J kg-1 K-1] Specific gas constant of carries gas
Rv [J kg-1 K-1] Specific gas constant of condensable vapor
r [-] Residual vector
S [-] Supersaturation, or saturation ratio
T [K] Mixture temperature
t [s] Time
∆t [s] Discrete time step size
u [m s-1] Flow velocity vector
vh [-] Fine grid numerical error
wk [-] Size of bin k for the binned KE
x [m] Position along nozzle axis
∆x [m] Discrete space step size
yw [-] Vapor molar fraction
u [m s-1] Flow velocity in nozzle

Greek

Symbol Units Description
αn [-] Sticking probability of n-mer
γ [#] Total monomer count
δn [-] Correction to a given value of c̃n
Θ [-] Dimensionless surface energy
µ(θ) [-] Error amplification factor of angular component θ

for relaxations
µ̄ [-] Asymptotic smoothing rate
µ̃ [-] Measured residual reduction
µc [-] Total error amplification factor for multi-level cycle
ρ [kg m-3] Mixture density
ρ1 [kg m-3] Partial density of condensable vapor
ρc [kg m-3] Partial density of carrier gas
ρl [kg m-3] Liquid density
ρv [kg m-3] Partial density of condensable vapor
σ [N m-1] Surface tension
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ω [-] Relaxation factor





APPENDIX A

DIAGONAL DOMINANCE

A very convenient property of the system matrix of an equation set to be solved
by numerical methods, is diagonal dominance. A matrix A is defined diagonally
dominant if it satisfies the following inequality:

|Aii| ≥
∑

j 6=i

�

�Ai j

�

� i ∈ N, i ≥ 1. (A.1)

In fact many iterative procedures, such as Gauss Seidel relaxation, rely on this
property for the solution to converge. Here it will be investigated if the system
matrix of the KE also has this property.

Applying equation (A.1) to matrix A of the KE (chapter 3, equation (3.2.2))
results in the following inequality:

| fn+ bn| ≥ | − fn−1|+ | − bn+1| for n= 2, 3, . . . (A.2)

These forward and backward rates are defined as:

fn = C(p, T )

r

n+ 1

n
(n1/3+ 1)2 for n= 1, 2, . . . (A.3a)

bn =
fn−1

S
exp{Θ[n2/3− (n− 1)2/3]} for n= 2,3, . . . (A.3b)

where C is a function of the pressure and temperature. Since both fn and bn
are positive functions, (A.2) can be written as:

fn+ bn ≥ fn−1+ bn+1 for n= 2,3, . . . (A.4)

The forward rate function fn is a monotonic increasing function in n which
helps to support (A.4). However, it is not clear if this is also true for bn.
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A.1 Supercritical n

To get a better insight in inequality (A.4), it is rewritten to the following form:

h

1−
1

S
exp{Θ[(n+ 1)2/3− n2/3]}

i

fn ≥
h

1−
1

S
exp{Θ[n2/3− (n− 1)2/3]}

i

fn−1, (A.5)

which can written as:
an fn ≥ an−1 fn−1, (A.6)

with:

an = 1−
1

S
exp{Θ[(n+ 1)2/3− n2/3]}. (A.7)

The argument of the exponent in (A.7) is a monotonic decreasing function for
n≥ 1, which goes to 0 for n→∞. Ergo, an is a monotonic increasing function
in n.

However, unlike fn, an is not a strictly positive function. Depending on the
values of S and Θ, an is smaller than zero for small n. Therefore, (A.6) is only
satisfied if:

an ≥ 0. (A.8)

This is a sufficient but not a necessary condition. Still, it is interesting to inves-
tigate the scenarios for which this is true.

For n¦ 5 equation (A.7) can be approximated as:

an = 1−
1

S
exp

2Θ

3(n+ 1)1/3
. (A.9)

Then, inequality (A.8) always holds for

n+ 1≥ ncr =
� 2Θ

3 ln S

�3
. (A.10)

This is a very interesting find, because now it is evident that the system ma-
trix is always diagonally dominant for n ¦ ncr . Therefore, only for subcritical
clusters there is a risk of losing diagonal dominance.

A.2 Subcritical n

For subcritical cluster sizes inequality (A.8) does not hold. However, the system
can still be diagonally dominant for subcritical clusters if the full inequality is
obeyed:

U = an fn− an−1 fn−1 ≥ 0. (A.11)

This is the absolute condition for diagonal dominance.
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(a) Volume U(Θ, S, n) (b) Limiting surface Umin

Figure A.1: Left: Blank portions represent combinations of the 3 parameters
where the system is not diagonally dominant (U < 0). Right: Lower bounding
surface for diagonal dominance.

Ideally, this condition should be met for all n ≥ 2. This would require
the product an fn to be a positive, monotonic increasing function, which fully
written is:

an fn =

r

n+ 1

n
(n1/3+ 1)2

h

1−
1

S
exp{Θ[(n+ 1)2/3− n2/3]}

i

. (A.12)

This is a highly nonlinear function for which it is complicated to verify if it is
monotonically increasing.

Therefore (A.11) is investigated by evaluation. Figure A.1(a) shows the
volume U = U(Θ, S, n) sliced at different values of n. Portions of the volume
where U < 0 are blank. Figure A.1(b) shows the limiting surface Umin, which
is the lower bound for diagonal dominance. In this region, combinations of Θ,
S and n result in a non diagonally dominant system.

Figure A.2: Curves of Umin for different n. Combinations of Θ and S below
these curves result in a non diagonally dominant system for specific n
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For a constant n the limiting surface Umin becomes a curve in theΘ-S plane.
This is depicted in figure A.2. From the figure it can be seen that for a certainΘ
and S combination, the system may be diagonally dominant for n. For higher
values of n diagonal dominance is lost. The system is diagonally dominant for
the lower boundary n= 2 under almost all conditions, but never completely.

(a) Limiting surfaces an ≥ 0 (green) and U ≥ 0
(red)

(b) Limiting curves in Θ-S plane

Figure A.3: Space of diagonal dominance. Green is the conservative condition
an ≥ 0. Red is the absolute condition U ≥ 0. Diagonal dominance is not
achieved on this side of the red surface.

Next the absolute condition for diagonal dominance (A.11), is compared to
the sufficient condition an ≥ 0. In figure A.3 this is plotted for all 3 parameters,
similar to surface Umin. Indeed, an ≥ 0 is a sufficient condition, as it leaves
room for other parameter combinations compared to the necessary condition
U ≥ 0. This is the space between the green and red surface.

Both surfaces intersect at (Θ, S, n) = (0,1, n), which indicates that this is a
key situation. In reality typical values of Θ are O(10), which gives a diagonally
dominant system for all n for S ¦ 1.3.



APPENDIX B

STABILITY ANALYSIS

The trapezoidal method, being an implicit method, will always have favor-
able stability to explicit methods. However, where fully implicit methods are
unconditionally stable, this is not the case for this semi-implicit method. To
determine the conditions for stable time integration, a von Neumann analysis
is performed.

For this purpose the spatial part of the solution is decomposed in its Fourier
components:

c(n, t) = ĉ(t)eιθn (B.1)

Substituting this in equation (??) of chapter 3 gives:
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(B.2)

The amplification factor is defined as A = ĉm+1

ĉm . For stability the absolute am-
plification factor should be smaller than 1:
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So the trapezoidal method is only stable if ℜ(zm) and ℜ(zm+1) are smaller
than 0. Both cases are analogous so they will be considered simultaneously
with their superscripts dropped:

ℜ(z) =ℜ
h

fn−1e−ιθ −
�

fn+ bn
�

+ bn+1eιθ
i

=
�

fn−1+ bn+1
�

cosθ −
�

fn+ bn
�

≤ 0
(B.4)
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Since | cosθ | ≤ 1 the inequality becomes:

fn+ bn ≥ fn−1+ bn+1 (B.5)

If the above requirement is met for the current and the future time step, time
integration is stable. It was already shown in appendix A that this is the case
for the majority of the situations.



APPENDIX C

INTERPOLATION ERROR

When bins are used, the calculated state variable is the mean number density
of all the droplets inside the bin. A prerequisite for accuracy is an accurate
description of the inter-bin fluxes. This requires the number densities of the
edge droplets to be accurate. Since these are unknown, they must be obtained
from the mean number densities. Figure C.1 illustrates how this can be done
by interpolation from the mean bin values.

bin 1 bin 1 bin 1bin 2 bin 2 bin 3

Figure C.1: Derivation of the bin-edge values from the mean bin values using
zero-th, 1st and 2nd order interpolation.

The simplest is the zero-th order interpolation. In this case the edge values
are determined from the mean bin value of the same bin. With a 1st order
interpolation, a 1st order polynomial is fitted through the mean number den-
sities of 2 neighboring bins. The number densities of the neighboring droplets
in between the bins are then calculated. The 2nd order interpolation requires 3
bins to fit a 2nd order polynomial. From this polynomial the number densities
of the droplets between the bins can then be determined.

The accuracy of the calculated number densities at the edges of bins can be
increased when smaller bins and higher orders of interpolation are used. The
first is obvious since in the limit of a bin size of 1, the mean number density
in the bin is the number density of the single droplet it contains. The latter is
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true since higher order interpolation polynomials are able to represent a more
complex DSD. In the subsequent sections the error made by interpolation is
estimated for a zero-th and 1st order interpolation.

C.1 Zero-th order interpolation

Assuming all number densities in bin k of size wk are known. Then a poly-
nomial of order wk − 1 can be fitted through these data points, as depicted in
figure C.2. Let ∆n be a continuous variable along the bin, with the origin at
the first droplet.

el

Än
0

er

Pw – 1k ck

w – 1k  

wk

Figure C.2: Error estimation through comparison with a fitted polynomial of
order wk − 1.

The droplet number density as a function of ∆n can be obtained from the
polynomial Pwk−1 according to:

c̃(∆n) =
wk−1
∑

j=0

a j(∆n) j (C.1)

The mean number density in the bin is then calculated by:

c̄k =
1

wk

wk−1
∑

l=0

c̃(l) (C.2)

From these relations the error can be defined as:

e(∆n) = |c̄k − c̃(∆n)| (C.3)

Substituting (C.1) and (C.2) in (C.3), and evaluating at 0 and wk−1, gives the
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error on the left and on the right:
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For a bin size of wk = 1 the errors are zero, which is as expected since for a
unit bin size the mean number density is equal to the droplet number density.
For larger bins the error takes on the following form:

e = 0 · a0+ c1a1+ . . .+ cwk−1awk−1 (C.5)

In essence, the error contains the polynomial coefficients that are of higher
order than the zero-th interpolation. Furthermore, the higher order polynomial
coefficients contribute more to the error than the lower order coefficients. For
instance, er for a 3 and 4 droplet bin is:

wk = 3 : er = | − a1− 21
3
a2| (C.6a)

wk = 4 : er = | − 11
2
a1− 51

2
a2− 18a3| (C.6b)

In order to keep the error small, the higher order polynomial coefficients should
be small, as they contribute the most. In other words, larger bins will only have
small interpolation errors if the DSD in the bin is smooth. Smooth distributions
can be represented by polynomials of low order, resulting in small high order
coefficients.

C.2 First order interpolation

With 1st order interpolation 2 bins are used to estimate the number densities
of the neighboring droplets in between the bins, as depicted in figure C.3. The
bins k and k+ 1 contain wk and wk+1 droplets respectively.

Analogous to the zero-th order interpolation, a polynomial is fitted through
the individual droplet number densities, which are assumed to be known. This
is a PW−1 polynomial:

c̃(∆n) =
W−1
∑

j=0

a j(∆n) j (C.7)

where W = wk +wk+1. Also the mean number densities in the bins are:
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c̃(l) (C.8a)

c̄k+1 =
1

wk+1

W−1
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c̃(l) (C.8b)
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Figure C.3: Error estimation through comparison with a fitted polynomial of
order W − 1.

Now a 1st order polynomial is fitted through the mean number densities,
from which the number densities of the inner edge droplets are determined:

cr(k) =
c̄k(wk+1+ 1) + c̄k+1(wk − 1)

wk +wk+1
(C.9a)

cl(k+1) =
c̄k(wk+1− 1) + c̄k+1(wk + 1)

wk +wk+1
(C.9b)

Substitution of equations (C.7), (C.8) and (C.9) in the error definition (C.3)
gives the errors at the internal edges:
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Again, when the bin sizes are 1, the errors are zero. Larger bins produce
the following error:

e = 0 · a0+ 0 · a1+ c2a2+ . . .+ cwk−1awk−1 (C.11)

Similar to the zero-th order interpolation, the error consists only of polynomial
coefficients that are of higher order than the interpolation. Higher orders of
interpolation will most likely produce the same results, eliminating even more
terms from the error. Also, the higher order polynomial coefficients contribute
more to the error than the lower order coefficients, as with the zero-th order
case. So it is again concluded that for the error to remain small, the DSD in the
bin should be smooth.



APPENDIX D

LOCAL MODE ANALYSIS

D.1 Target grid

To predict the error reduction by relaxation, one can use a Local Mode analysis.
First Gauss Seidel relaxation applied to the KE on the target grid, i.e. the
original grid is considered. For this purpose the experimental settings for the
nucleation pulse as used by van Putten [5] were chosen.

For the analysis the errors before and after relaxation are defined as:

ẽn = cn− c̃n (D.1a)

ēn = cn− c̄n (D.1b)

where cn is the discrete solution of the problem. Relaxation was defined as:

c̄n = c̃n+ωδn (D.2)

and substitution of the error definition eventually yields:

ēn = ẽn(1−ω) +
ω∆t

2+ (bn+ fn)∆t
�

fn−1 ēn−1+ bn+1 ẽn+1
�

(D.3)

The relaxation is a local process, i.e. points several meshsizes away af-
fect each other exponentially little. Therefore, in order to analyze relaxation
behavior, the error is decomposed into a Fourier series:

ẽn =
∑

0<|θ |<π

Ã(θ)eιθn (D.4a)

ēn =
∑

0<|θ |<π

Ā(θ)eιθn (D.4b)

where θ is the angular frequency, and A the amplitude of the component with
frequency θ . Only components of |θ | ≤ π are considered, which are the com-
ponents that the grid can represent uniquely. Due to the local nature of the
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error the effect of the boundaries may be disregarded, however, their effect is
often felt only a few meshsizes into the domain. If this is not the case a sepa-
rate analysis can be done for relaxation near the boundary, which will not be
treated here.

Assuming that each error component maps onto itself, one can suffice with
the analysis of a single component. Substitution of (D.4) in (D.3) then yields:

Ā(θ) = Ã(θ)(1−ω) +
ω
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2

h
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which for ω= 1 gives:
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The error amplification factor defined as µ(θ) = |Ā(θ)/Ã(θ)| then becomes:
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i
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(D.7)
Since the forward and backward rates depend on n, the amplification factor

is different for each equation. Also, the backward rates bn depend on the
environment variables S and Θ. Thus for each environment and each equation
the error reduction will be different.
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Figure D.1: Local mode analysis for expansion stage (left) and compression
stage (right). Error amplification factors are a function of n. Amplification
factors stabilize for increasing n.

Figure D.1 displays the error amplification factor as a function of the equa-
tion number n for −π ≤ θ ≤ π during a nucleation pulse. Left the expansion
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stage, and right the compression stage. The figure shows that high frequency
components are reduced more efficiently than low frequency components.

Low frequency components, and component θ = 0 in particular, are re-
duced the least. For θ = 0 and n → ∞ the amplification factor approaches
unity in both cases. However, since the problem has Dirichlet boundary condi-
tions, this component cannot be represented on the grid.

High frequency components are reduced the least around n ≈ 5 for the
expansion stage and n ≈ 8 for the compression stage. Around these n ampli-
fication factors show minima of 0.61 and 0.81 respectively. Certainly in the
latter case this is poor. For n→∞ the minimal amplification factors stabilize
to 0.03 and 0.23 for the expansion and compression stage respectively.

D.2 Coarse grids

Similar to the relaxation on the target grid, a Local Mode analysis can be per-
formed for the coarse grid operator LH . This operator operates on three points
in the number density vector cH , and can therefore be separated into three
parts:
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Gauss Seidel relaxation can then be written as:
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Defining the errors before and after relaxation as:

ẽH
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N (D.10a)

ēH
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where cN is the exact solution, and decomposing them in their Fourier compo-
nents:
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For ω= 1:
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and:
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D.2.1 Vertex centered coarsening

The results for vertex centered coarsening are presented in figure D.2 for the
expansion stage of the nucleation pulse experiment. The Local Mode analysis
for the target grid h is the same as obtained earlier and is stable. The error
amplification factors for low frequency components and n→∞ approach unity,
since equation (D.14) for θ = 0 yields:
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Gauss Seidel relaxations proves to be unstable at coarser grids. At grid level
2h high frequent components are amplified rather than reduced, for small n.
Also, there is an amplification zone around θ = 0 for small n on all coarse
grids.

It should be noted that decreasing the time step ∆t has a positive impact
on the performance of Gauss Seidel relaxation. Overall error amplification
factors are lower for smaller time steps. This supports the earlier finding that
a smaller ∆t enhances diagonal dominance of the operator, due to the use of
an implicit time integration method. This improves the performance of Gauss
Seidel relaxation.

D.2.2 Cell centered coarsening

The results for cell centered coarsening are presented in figure D.3. In contrast
to the coarse grid operator obtained by vertex centered coarsening, the coarse
grid operators obtained in this way are similar to the target grid operator.

As expected, because the coarse and fine grid operators are similar, the
error amplification factors are also similar on different grids. This is a desirable
property of the coarse grid operator, since Gauss Seidel relaxation remains
stable for coarse grids. Cell centered coarsening is therefore used as the basis
for the Multigrid algorithm.
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(a) Target grid h (b) Coarse grid 2h

(c) Coarse grid 4h (d) Coarse grid 8h

Figure D.2: Error amplification factors µ(θ , n) for different grid levels using
vertex centered coarsening. Low frequency components are transparent. Ex-
pansion stage of nucleation pulse: ∆t = 10−7 s, S = 14.34, Θ= 11.40.
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(a) Target grid h (b) Coarse grid 2h

(c) Coarse grid 4h (d) Coarse grid 8h

Figure D.3: Error amplification factors µ(θ , n) for different grid levels using
cell centered coarsening. Low frequency components are transparent. Expan-
sion stage of nucleation pulse: ∆t = 10−7 s, S = 14.34, Θ= 11.40.



APPENDIX E

OPERATOR ASYMMETRY

In chapter 3 it was established that the operator is diagonally dominant, which
is essential for Gauss Seidel relaxation to converge. The order of relaxation
was assumed to be lexicographic from the first to the last equation. The effect
of this choice is analyzed below for the full KE.

E.1 Lexicographic ordering

First, relaxation performance is tested with the downstream relaxation order.
On a grid with n = 16386 relaxation is continued up to machine accuracy for
different sizes of time steps. The results for the first time step are displayed in
figure E.1
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(b) solution after 1 time step

Figure E.1: Residuals and solutions after 1 time step. The solution converges
rapidly initially, but then slows down to a steady decay for large time steps.

Looking at the residuals, a rapid initial decay is observed, which then slowly
stalls. After a while the residual suddenly further diminishes to machine ac-
curacy. This is clearly visible for the large ∆t, but not so clear for the smaller
time step.
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To find the cause of this behavior, the local residuals are examined. Figure
E.2 shows the local residuals after 1, 750, 1500, 2250 and 3000 sweeps. The
rapid initial decay can be contributed to the rapid reduction of the residuals of
the first equation, which has the largest residual. However, with the relaxation
of a single equation, part of the residual seems to be transferred downstream to
the next equation. This transferred residual than travels across the entire grid
until it eventually vanishes at the end. This explains the more or less steady
decay after the rapid initial convergence, and the sudden drop for the large
time steps. For large time steps the maximum of the residual ‘lump’ is larger
than the remaining residual of the first equation, and contributes more to the
residual L1 norm.

E.2 Downstream residual transfer

Consider sweep s at some point in the relaxation process. The residual in the
equation currently being relaxed is:

rs
n = gn−
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L l
n c̄s
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, (E.1)

where the left, center and right operators in point n are given by:
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The previously relaxed variable c̄s
n−1 can be expressed as:
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Also, the variables to be relaxed can be written as:
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Substituting (E.3) and (E.4) in (E.1) yields:

rs
n =gn−

�

L l
n c̄s−1

n−1+ Lc
n c̃s−1

n + Lr
n+1 c̃s−1

n+1

�

−
� L l

n

Lc
n−1

rs
n−1+

Lc
n

Lc
n

rs−1
n +

Lr
n+1

Lc
n+1

rs−1
n+1

�

.
(E.5)



E.2. DOWNSTREAM RESIDUAL TRANSFER 93

Recognizing the first part as the residual in equation n from the previous sweep
rs−1

n , equation (E.5) reduces to:

rs
n =−

L l
n

Lc
n−1

rs
n−1−

Lr
n+1

Lc
n+1

rs−1
n+1. (E.6)

Fully expressing the left, center and right operators then finally yields:
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fn−1
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2

1+ (bn−1+ fn−1)
∆t
2

rs
n−1+

bn+1
∆t
2

1+ (bn+1+ fn+1)
∆t
2

rs−1
n+1. (E.7)

This is an important relation, expressing the residual in the current equa-
tion as a function of the residuals in the neighboring points. In case of a sym-
metric operator, the residual in the current equation would receive equal con-
tributions from the neighboring equations. For an asymmetric operator this is
not the case. Then the residual is transferred in a specific direction.

For large n, with the KE the contribution of the left neighbor is larger than
that of the right neighbor. However, there is a point at which this behavior is
reversed. This happens at the critical cluster size ncr for which there is a min-
imum in the Gibbs potential. This means that residuals tend move upstream
below ncr , and downstream above ncr .
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(a) local residuals, ∆t = 5 · 10−7 s
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(b) local residuals, ∆t = 10−6 s
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Figure E.2: Local residuals during computation of first time step. Relaxation
of an equation transfers part of the residual to the next equation, creating a
residual ’lump’ which travels across the grid from left to right.



APPENDIX F

CONVERGENCE ANALYSIS

In this appendix the time-accurate time step size is determined for the nucle-
ation pulse experiment and for the nozzle flow experiment. For discretization
methods, a sequence fn is said to converge to ξ with order p if there exists a
constant C such that:

| fn− ξ|< Cn−p for all n (F.1)

where n is the amount of gridpoints. The order p, the exact solution ξ and
the constant C can be determined from three numerical solutions on different
mesh sizes, as is explained by Roy [12].

However, this is only true is all three solutions fall within the asymptotic
range of convergence. Therefore four simulations are performed for both ex-
periments, so that the convergence results can be verified.

To measure time-accuracy, the nucleation front where new droplets are
formed is examined. The location of the front is derived from a first order
interpolation of the data, by determining the largest formed droplet n f from
cn f
= 1.

F.1 Nucleation pulse

The nucleation pulse experiment is as investigated by van Putten [5]. The
Multigrid solver for the full KE is considered, with the largest droplet in the
domain N = 131074, which equates to 18 levels with 3 bins on the coarsest
level in the solver.

Accuracy tests are performed for implicit time integration using (a) 2nd

order the trapezoidal method and (b) the 1st order backward Euler method. A
pulse of 10 µs duration is considered, using time steps of ∆t = 10−7, 10−8,
10−9 and 10−10 s.

For this experiment also an explicit RK4 solver was considered. A time step
size of 5 · 10−11 s was required to obtain a stable solution. This is a severe CFL
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condition for the RK4 solver and it should be noted that it becomes even more
restraining for larger droplets were the droplet growth rate increases.

F.1.1 Convergence tests

In figure F.1 the droplet size distribution after 10 µs is displayed for different
time step sizes. The solution from ∆t = 10−10 is not shown but here, but it
almost perfectly coincides with the solution from ∆t = 10−9. The solution
from the RK4 solver is plotted in red for comparison.
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Figure F.1: DSD after 10 µs computed with implicit methods for ∆t = 10−7

(solid), ∆t = 10−8 (dashed) and ∆t = 10−9 (dash-dot). A solution from a
direct RK4 solver with ∆t = 5 · 10−11 (red) is plotted for comparison. Large
time steps overestimate droplet growth.

Clearly, the risk of an inaccurate solution exists. Large ∆t result in an
overestimation of droplet growth, causing the front of the distribution to be
advanced to far. The solution seems to be accurate for ∆t = 10−8with the
trapezoidal method, and for ∆t = 10−9 for Euler backward. This confirms the
higher order of the trapezoidal method.

Furthermore for small droplets, computation with the trapezoidal method
introduces spurious oscillations inherent to the numerical algorithm. This is
displayed in figure F.2, which shows the time histories for droplets n = 2 and
6. The oscillations are most significant for the smallest droplets for which, with
large enough∆t, the transition from the initial solution cn = 0 to the next time
solutions is very drastic. For values of ∆t = 10−8 the spurious oscillations are
small enough so that they are dampened in a few time steps.

F.1.2 Analysis

In this case the sequence will be constructed from the advancement of the
front of the DSD, measured as n f , since this is the area that is most prone to
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(b) ∆t = 10−8 s

Figure F.2: Numerical oscillations occurring for small droplets with the trape-
zoidal method. Oscillations are larger and more persistent for large ∆t.

inaccuracy. Also, the number of gridpoints in this case is the inverse of the time
steps so:

|n f (∆t)− n∗f |< C(∆t)p for all ∆t (F.2)

where n∗f is the exact solution of the problem for ∆t → 0. The convergence
analysis requires three simulations with different amounts of time steps to de-
termine all three parameters. When the parameters are determined, a required
∆tα can be determined for which n f = αn∗f and α is the required accuracy.

The convergence analysis is performed with two data sets of 3 simulations:
∆t = 10−7, 10−8, 10−9 and ∆t = 10−8, 10−9, 10−10. This is required to ensure
that the parameters are obtained from simulation that are within the range of
convergence of the discretization method. If this is not the case, solutions will
not behave according the laws above and will give different results.

Table F.1 shows the results from the simulations and the convergence anal-
ysis. It seems that the simulation with ∆t = 10−7 is not quite within the
range of convergence, yielding different results between data sets. However,
the orders predicted with the second data set approach the theoretical orders,
indicating results obtained from the second analysis are accurate. The results
show that to obtain a 95% accurate solution, the trapezoidal method requires
∆t = 2.0 ·10−8 and Euler backward requires ∆t = 1.5 ·10−9. Indeed, an accu-
rate solution is achieved with O(10−8) and O(10−9) size time steps respectively,
which are considerably larger that the stability limit of RK4.

It is noted that the monitored front n f , is a value obtained from a 1st or-
der interpolation of the data. This influences the convergence analysis, leading
to some inaccuracy in the determined order of the method. However, as the
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Table F.1: Convergence analysis for the implicit methods
(a) Largest formed droplet n f

∆t[s] Trapezoidal Euler back

10−7 45653 90899
10−8 35163 43303
10−9 34746 35882

10−8 35163 43303
10−9 34746 35882
10−10 34741 34863

(b) Convergence analysis

Trapezoidal Euler back

p 1.4008 0.8072
n∗f 34729 34512
∆t0.95 2.7 · 10−8 1.3 · 10−9

p 1.9461 0.8623
n∗f 34741 34701
∆t0.95 2.0 · 10−8 1.5 · 10−9

orders are quite close to their predicted theoretical values, the impact of inter-
polation is considered minimal.

F.2 Nozzle flow

The nozzle flow experiment is carried out using the Multgrid solver for grouped
droplets. The part of the nozzle considered here is a high saturation region
from x = 0.002 m to x = 0.012 m. The solutions are obtained on grids with
∆x = 10−4, 10−5, 10−6 and 10−7 m. The largest droplet in the simulation is
set to N = 1 · 108, which is collected in 2050 bins using 0order interpolation.
Only the trapezoidal and Euler backward methods are considered for time in-
tegration.
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Figure F.3: DSD at x = 0.012m - Solutions for ∆x = 10−4 m (solid black),
10−5 m (solid red), 10−6 m (dashed black) and 10−7 m (dashed red).
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F.2.1 Convergence tests

Figure F.3 displays the DSDs at x = 0.012 m for the different simulations.
For the trapezoidal method only the simulation with ∆x = 10−4 m can be
clearly distinguished, as the other simulations produce almost the same solu-
tion. Backward Euler shows more deviation in the solution for different space
step sizes.

With the trapezoidal method, the solutions for ∆t = 10−4 and 10−5 m
seem to suffer from the earlier encountered numerical oscillations. This can
be seen when looking more closely to the specific monomer density ĉ1 and
the supersaturation S. For ∆x = 10−4 m the oscillations are very persistent,
whereas for ∆x = 10−5 m the oscillations are damped after a few steps.
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Figure F.4: Numerical oscillations occurring in the solutions for larger space
steps: ∆x = 10−4 m (black) and 10−5 m (red).

F.2.2 Analysis

Table F.2 shows the results from the simulations and the convergence analy-
sis. As with the nucleation pulse experiment the order of the method p, the
exact location of the front n∗f and the required space integration step for 95%
accuracy ∆x0.95 are obtained from two data sets.

For both time integration methods there is a good agreement between both
data sets, which indicates that all solutions are within the asymptotic range
of convergence. The predicted orders of convergence approach the theoretical
values of two and one for the trapezoidal and the Euler backward method
respectively. For a 95% accurate solution a space step size of ∆x = 3.8 · 10−5

m is required for the former, and ∆x = 2.8 · 10−6 m for the latter.
The numerical oscillations encountered for the trapezoidal method should

be small enough to be damped within a few space steps, and should therfore
not affect the accuracy of the predicted DSD.
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Table F.2: Convergence analysis for the implicit methods
(a) Largest formed droplet n f

∆t[s] Trapezoidal Euler back

10−4 263870 542128
10−5 211103 244008
10−6 210347 211346

10−5 211103 244008
10−6 210347 211346
10−7 210340 207940

(b) Convergence analysis

Trapezoidal Euler back

p 1.8442 0.9603
n∗f 210337 207327
∆x0.95 4.1 · 10−5 2.7 · 10−6

p 1.9710 0.9819
n∗f 210340 207543
∆x0.95 3.8 · 10−5 2.8 · 10−6
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