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Summary

In the past decades computational fluid dynamics (CFD) has become a crucial analysis tool in
engineering fluid mechanics. Detailed information about the flow and relevant flow parameters
can be obtained, thereby reducing the need for often expensive and time consuming experiments.
CFD computations involve solving a set of partial differential equations (i.e. the Euler or Navier-
Stokes equations) on grids which can be very dense (up to 100 millions cells). To represent the
governing equation on the grid they have to be discretized. The resulting problem to be solved
using a computer is usually solving a large, sparse system of (non-linear) algebraic equations.
Standard algorithms (i.e. Gauss-Seidel or Jacobi iteration) for solving these systems iteratively
are computationally very expensive, due to their slow convergence, especially when meshes with
many grid points are used.

Multi-level techniques have the prospect of greatly improving the performance of iterative
techniques. These methods make use of coarser grids to accelerate convergence on the target
grid, thereby reducing the calculation time required to get a converged result within the desired
accuracy. For these methods it is required that error components, that are slow to converge
on the target grid, can accurately be represented and reduced on a coarser grid and transferred
between these grids. Multi-level methods have shown huge reductions in the required amount of
computational time for many problems.

Convection dominated flow problems, amongst others, cannot be solved efficiently, when stan-
dard multi-grid techniques are used. For this type of problems, some error components cannot be
removed by simple relaxations, neither can they be accurately represented on a coarser grid. In
this research two approaches are investigated to restore multi-grid efficiency for convection domi-
nated flow problems. In the first approach, using the standard geometrical setting, the coarse grid
operator is changed. Both improved and Galerkin based coarse grid operators are able to accu-
rately represent the problematic components on the coarse grid and thereby achieving multi-grid
efficiency. In the second approach algebraic multi-grid techniques (AMG) are used. These tech-
niques no longer use standard coarse grids, but rather operator-dependent grids. The coarse grids
are chosen such that all components that are slow to converge on the target grid can be accurately
represented on the coarser grid. Both approaches are incorporated in a multi-level algorithm for
solving the convection-diffusion equation. Detailed results for a scalar model convection-diffusion
problem are presented, showing a major increase in performance in comparison with standard iter-
ative and multi-level techniques. The next step is to extend the algorithm to systems of equations.
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Chapter 1

Introduction

In the past decades computational fluid dynamics (CFD) has become a crucial analysis tool in
engineering fluid mechanics. Detailed information about the flow and relevant flow parameters
can be obtained, thereby reducing the need for often expensive and time consuming experiments.
CFD computations involve solving a set of partial differential equations (i.e. the Euler or Navier-
Stokes equations) on grids which can be very dense (up to 100 millions of cells). To represent the
governing equations on the grid they have to be discretized. The resulting problem to be solved
using a computer is usually solving a large, sparse system of (non-linear) algebraic equations.
Standard algorithms (i.e. Gauß-Seidel or Jacobi iteration) for solving these systems iteratively
are computationally very expensive due to their slow convergence, especially when meshes with
many grid points are used. Multi-level techniques have the prospect of greatly increasing the
performance of iterative techniques.

1.1 Multi-grid

Multi-Level or Multi-Grid techniques have been developed for efficiently solving large systems of
algebraic equations, for example resulting from the discretization of systems of partial differential
equations in scientific computing. These methods make use of coarser grids to accelerate conver-
gence on a target grid, thereby reducing the calculation time needed to get a converged result.
In this section, the basic elements of a multi-grid algorithm for the fast solution of a discretized
partial differential equation are described.

Consider the discretized problem described by:

Lh
〈
uh
〉

= fh (1.1)

with Lh 〈〉 the operator (a discrete approximation of a differential equation), uh the unknown
solution vector and fh the known right hand side. Assume some iterative method (e.g. Gauß-Seidel
or Jacobi-relaxation) is used to solve the system of equations. These methods are usually perfectly
capable of reducing high-frequency error components, but low-frequency error components are
reduced much slower (see section 2.1.3). Therefore these relaxations are referred to as smoothers,
because they make the error smooth by reducing high-frequency components. After a small number
of these relaxation sweeps (called pre-relaxations) on the target grid, an approximation ũh to the
exact solution uh is obtained. Now the (smooth) error (vh) and residual (r̃h) are defined as:

vh = uh − ũh (1.2)
r̃h = fh − Lh

〈
ũh
〉

(1.3)

Combining equation (1.1) and (1.3) gives:

r̃h = Lh
〈
uh
〉
− Lh

〈
ũh
〉

(1.4)
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For a system of linear algebraic equations, this can be rewritten into:

r̃h = Lh
〈
uh − ũh

〉
= Lh

〈
vh
〉

(1.5)

If this equation can be solved exactly for vh, the previous solution (ũh) can be updated using the
definition of the error (equation 1.2). However, it is equally difficult to solve the new equation as
it is to solve equation (1.1). Therefore equation (1.5) is solved approximately using a reduced set
of equations. This set is obtained using a ’transfer’ to a coarser grid. This transfer is allowed,
because the error is smooth on the fine grid (due to the initial relaxations) and can accurately be
represented on a coarser grid. The restricted set of equations to be solved is:

LH
〈
ṽH
〉

= IHh
〈
fh − Lh

〈
ũh
〉〉

= IHh
〈
r̃h
〉

(1.6)

Here IHh 〈〉 is an operator to restrict the fine grid residual to the coarser grid and LH 〈〉 a coarse
grid approximation of the fine grid operator. After this reduced set of equations is solved, the new
approximation to the original set of equations can be calculated using:

ûh = ũh + IhH
〈
v̂H
〉

(1.7)

with IhH 〈〉 an operator to interpolate the coarse grid correction to the fine grid. This method
of using the residual as the right-hand side for a coarse grid correction is called the Correction
Scheme. From this description, one immediately obtains the two-grid correction operator (KH

h ),
which give the corrections for the fine grid solution using the coarse grid:

KH
h = Ih − IhH

(
LH
)−1

IHh L
h (1.8)

When also ν1 pre- and ν2 post-relaxations are included, the two-grid iteration operator is obtained:

MH
h =

(
Sh
)ν2

KH
h

(
Sh
)ν1 (1.9)

with Sh 〈〉 the relaxation operator. When the coarse grid still contains many points, it can still
be time consuming to solve the new restricted set of equations. Therefore the approach can be
used recursively, yielding a Multi-Level cycle. As an example a graphical representation of the
data flow in a three level cycle is shown in figure 1.1. First pre-relaxation are applied, then the
residuals are transferred to a coarser grid. When a better coarse grid solution is obtain they are
interpolated to the fine grid and used to correct the fine grid solution.

When performing Multi-Level cycles it can be advantageous to perform additional cycles on
coarser grids. Therefore the cycle parameter γ is introduced. This parameter determines how
accurately each coarse grid problem is solved before returning to the fine grid. γ = 1 cycles are
usually referred to as V-cycles, whereas γ = 2 cycles are referred to as W-cycles. A flow diagram
of V(ν1,ν2) and W(ν1,ν2) cycles for a case of four grids is shown in figure 1.2.

When the initial problem is defined, the following individual components still needs to be
specified.

• γ cycle parameter

• ΩH the coarse grid

• IHh 〈〉 the fine-to-coarse restriction operator

• IhH 〈〉 the coarse-to-fine interpolation operator

• LH 〈〉 the coarse grid operator

• Sh 〈〉 the relaxation operator including the number of pre- and post-relaxations

The choice of these components may have a strong influence on the efficiency of the resulting
multi-grid solver. There exist some standard components which usually give good results, but
also a number of further analysis tools can be used to estimate the convergence properties of the
algorithm and to help choose the proper multi-grid components.
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ûH
〉

Lh
〈
uh
〉

= fh

LH
〈
uH
〉

= fH

L2H
〈
u2H

〉
= f2H

Figure 1.1: Flow diagram for a three level Multi-Level Cycle using the Correction Scheme
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Figure 1.2: Flow diagrams for the case of 4 grids
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1.2 Objective

For some elliptic problems, like the ones governed by Laplaces equation, multi-grid implementation
is straightforward and optimal efficiency is relatively easy to obtain. However, for systems of equa-
tions resulting from the discretization of the equations governing fluid flows, i.e. the Navier Stokes
or Euler equations, the standard methodology is often not very efficient, especially for convection-
dominated flows. Several problems need to be tackled before textbook multi-grid efficiency can
be achieved for these equations: [12]

• The flow equations are a system of nonlinear PDE’s

• Boundary layers may require the use of extremely fine and highly anisotropic grids near
zero-slip boundaries of the computational domain.

• For high-Reynolds-number flows, dominance of convection results in a nearly singular per-
tubated problem

• Second-order accuracy is usually needed to obtain sufficiently accurate approximations.

In this thesis research is focused on the problem of dominating convection. For high Reynolds
number flows (Re → ∞), the flow equations are no longer elliptic like, but become hyperbolic
like. A model problem for this type of problem is the steady convection-diffusion equation in two
dimensions [12]:

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂au

∂x
+
∂bu

∂y
= f (x, y) (1.10)

This equation is also singular perturbated, because for ε = 0 it is no longer elliptic, but hyperbolic.
The combination of advection and diffusion is a model problem for the momentum equations. The
objective of this research is to produce an efficient and robust solver for the convection-diffusion
equation as a step to ultimately solving the full Navier Stokes equation for high-Reynolds-number
flows.

The main problem in solving the convection-diffusion equation efficiently is the coarse grid
operator. For the convection-diffusion equation, some error components cannot be solved by
simple relaxations, neither can they be accurately represented on a coarser grid by standard coarse
grid operators. In this research two approaches are investigated to achieve textbook multi-grid
efficiency. In the first approach, using the standard geometrical setting, the coarse grid operator is
modified. Both improved and Galerkin based coarse grid operators are able to accurately represent
the problematic error components on the coarse grid and thereby resulting in textbook multi-grid
efficiency. In the second approach algebraic multi-grid techniques (AMG) are employed. These
techniques no longer use standard coarse grids, but rather operator-dependent grids. The coarse
grids are chosen such that all error components that are slow to converge on the target grid can
accurately be represented on the coarser grid.

Steps taken to provide methods with good multi-grid performance for the convection-diffusion
equation are:

• Develop a 2D multi-grid Poisson problem solver, in order to become more familiar with the
multi-level approach. Show and predict the performance of the algorithm for different test
cases.

• Illustrate problems associated with dominating convection when standard multi-grid com-
ponents are used.

• Develop a 2D multi-grid convection-diffusion equation solver with possibilities for improved
and Galerkin based coarse grid operators, so that good performance is achieved for problems
associated with dominant convection. Show and predict performance for different test cases.

• Become familiar with AMG by applying some (standard) test cases. Show performance and
coarsening for different test cases.
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• Further develop an AMG method, currently tested for elliptic problems, such that it is also
capable of efficiently solving convection dominated problems. Show performance and the
coarsening for different cases.

1.3 Thesis outline

In chapter 2 the basics of geometric multi-grid will be discussed. Several components of the multi-
grid cycle are explained and some tools to predict the convergence of the algorithm are given.
Also extensions to full multi-grid (FMG) and the full approximation scheme (FAS), for non linear
problems, are given.

For algebraic multi-grid (AMG) the choice of coarse grids and interpolations is based on the
problem itself. In order to split the grid variables into coarse and fine grid variables, the concepts
of algebraic smoothness and strong influence and dependence are crucial. These concepts are
discussed in chapter 3, along with the algorithms for determining the splitting, interpolation and
restriction operators.

In chapter 4 geometric multi-grid techniques will be applied to the Poisson problem. Con-
ventional Poisson problems can be solved relatively easily, but the anisotropic-Poisson problem
already requires a renewed analysis. Converge rates for both problems are estimated and compared
to the rates of convergence actually achieved.

In chapter 5 geometric multi-grid techniques will be applied to the convection-diffusion prob-
lem. Both the improved and Galerkin based coarse grid operators are discussed and applied to
a convection dominated problem. Convergence rates are estimated and compared to the rates of
convergence actually achieved.

AMG methods applied to the Poisson problem are discussed in chapter 6. Different types of
coarsening are obtained for different discretizations of the Poisson problem. Anisotropic problems
automatically are handled well by coarsening in only one direction. Convergence rates for several
problems are presented.

In chapter 7 AMG methods will be applied to convection dominated problems. The coars-
ening process is shown for different flow patterns and convergence rates for several problems are
presented.

Finally in chapter 8 concluding remarks will be presented for both the geometric and algebraic
multi-grid approach. Some recommendations will be given for aspects that need to be investigated
further in order to produce an efficient solver for the scalar convection-diffusion equation and later
for the Navier-Stokes or Euler equations.
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Chapter 2

Geometric multi-grid

In this chapter different aspects of geometric multi-grid algorithms are described. Geometric
multi-grid has originally been developed for solving elliptic partial differential equations. For this
kind of equations smooth error components generally show slow convergence on the target grid.
Therefore these components need to be accurately represented and solved on the coarse grid.
Standard coarsening allows for an accurate representation of these smooth functions. Standard
coarsening doubles the mesh-size h in each direction, at each coarser level and thus reduces the
number of grid points by a factor four for two dimensional problems. Methods like this, in which a
fixed coarse grid is used, are referred to as geometric multi-grid approaches, as opposed to algebraic
multi-grid approaches, in which the fine grid operator is used to determine the coarse grid points
and the interpolation and restriction operators (see chapter 3).

2.1 Geometric multi-grid components

In this section, some examples of the different multi-grid components are introduced. These
examples are certainly not the only choices, but are the ones used most frequently and which
in many cases lead to an efficient algorithm, i.e. rapid convergence and solution to the level of
discretization accuracy in O (n) operations, with n the number of grid points.

2.1.1 Coarse grid choices and inter-grid operators

The order of interpolation is equal to k+1 if an interpolation is exact for all polynomials of degree
k. In general a restriction operator can be defined as the transpose of an interpolation operator.
In that case the order of a restriction operator is equal to the order of the interpolation operator.
If m is the discretization order of the operator Lh and mi and mj are the order of interpolation
and restriction, respectively, then the orders of the transfer operators should (at least) fulfill: [12]

mi +mj ≥ m (2.1)

Interpolation and restriction operators are closely related to the choice of the coarse grid. In
this section only transfer operators for standard coarsening are considered, for which all coarse
grid points coincide with fine grid points. This kind of grid usually results from a cell-vertex
centered discretization.

Interpolation

The purpose of interpolation is to obtain a fine grid representation uh of a given coarse grid
variable uH :

uh = IhH
〈
uH
〉

(2.2)
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For interpolation of the corrections in the correction scheme a simple linear interpolation scheme
is usually sufficient, because the error is supposed to be smooth. For the !D case this interpolation
on a uniform grid is shown in figure 2.1. It can be represented using the following stencil:

IhH =
1
2
]

1 2 1
[

(2.3)

In this notation, the stencil entries correspond to weights in a distribution process, therefore the
brackets are reversed. r r r

r r r r r r r
�
�
�
�
��� ?

A
A
A
A
AAU

�
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A
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�
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�
��� ?
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A
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1
2 1 1

2
1
2 1 1

2
1
2 1 1

2

Figure 2.1: Linear interpolation

This means that a quantity at a coarse grid point fully contributes to a coinciding point on the
fine grid and contributes half of its value to the direct neighbors. On the boundary the operator
will be similar except that there is only one direct neighbor on the fine grid. The error associated
with this linear interpolation is O

(
h2
)

and it is referred to as second-order. Interpolation in more
dimensions can usually be carried out one dimension at the time, using the 1D operators. The
resulting stencil is the dyadic product of the 1D operators. For two dimension this becomes:

IhH =
1
4

 1 2 1
2 4 2
1 2 1

 (2.4)

For the interpolation of the coarse grid error in the coarse grid correction cycle, the use of
a second-order interpolation operator is usually sufficient, because of smoothness of the compo-
nents. However, for the interpolation of a coarse grid solution to the finer grid to serve as a first
approximation, see section 2.4, a second-order scheme is insufficient. Higher-order schemes can be
derived using e.g. Lagrange interpolation formula. For example cubic interpolation is shown in
figure 2.2, which can be represented using the following stencil:

IhH =
1
16
]
−1 0 9 16 9 0 −1

[
(2.5)

For points next to the boundary different stencils are required. These stencils can be obtainedr r r

r r r r r r r
�
�

�
�
�

�
�
��+

�
�
�
�
��� ?

A
A
A
A
AAU

Q
Q
Q
Q
Q
Q
Q
QQs

− 1
16

9
16 1 9

16 − 1
16

Figure 2.2: Cubic interpolation

using Lagranges interpolation formula. Interpolation in more dimensions can most efficiently be
carried out by applying the 1D operators consecutively.

Restriction

The purpose of restriction is to obtain a coarse grid representation rH of a given fine grid variable
rh:

rH = IHh
〈
rh
〉

(2.6)
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A simple way of restricting is by injecting the fine grid quantity into the coarse grid. This type
of restricting is called injection and can be described with the following stencil for 1D cases (see
figure 2.3):

IHh =
[

0 1 0
]

(2.7)

A more general case of defining the restriction follows directly from the definition of interpolation:

r r r

r r r r r r r

? ? ?

1 1 1

Figure 2.3: Injection

IHh =
(
h

H

)d (
IHh
)T

(2.8)

For example the operator for the 1D case resulting from linear interpolation becomes (see figure
2.4):

IHh =
1
4
[

1 2 1
]

(2.9)

r r r

r r r r r r r
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�
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���

1
4
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4

1
4

1
2

1
4

1
4

1
2

1
4

Figure 2.4: Full weighting

This restriction operator is referred to as full weighting, because it weights the values (of the
coinciding fine grid point and its two neighbors) on the fine grid to obtain a coarse grid value.

Injection and full weighting differ in the accuracy in which they represent specific aspects of
the fine grid vector in the coarse grid result. For example, injection does not preserve the integral
over the function, whereas full weighting does. Restriction in two or more dimension is, just as
for interpolation, the dyadic product of the 1D operators. For 2D this becomes:

IHh =
1
16

 1 2 1
2 4 2
1 2 1

 (2.10)

In practice restriction can be carried out by applying restricting one dimension at the time. A
more efficient method for restriction, is by scanning all fine grid points and distributing the fine
grid value, multiplied with the interpolation weight, to all coarse grid points involved in the
interpolation to this fine grid point.

2.1.2 Coarse grid operator

An important aspect of the multi-grid cycle is the coarse grid operator. The coarse grid serves to
approximate and solve the low-frequency components that were slow to converge on the fine grid.
Therefore, the coarse grid operator has to be a good approximation to the fine grid operator for
those low-frequency components. A natural choice is to use the direct analog of Lh on the grid
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ΩH . However, for some problems (i.e. problems with characteristic directions) this approach is
insufficient. In such cases the coarse grid operator can be formed by a restriction of equation (1.5):

IHh
(
Lhvh

)
= IHh

(
r̃h
)

(2.11)

Substitution of vh = IhHv
H yields:

IHh
(
LhIhHv

H
)

= IHh
(
r̃h
)

(2.12)

Rearranging the brackets yields:
LH = IHh L

hIhH (2.13)

This coarse grid operator is referred to as the Galerkin coarse grid operator. Interpolation and
restriction operators required for the calculation of the Galerkin coarse grid operator are not nec-
essarily the same as used for interpolation and restriction of the residuals, nor are they necessarily
the transpose of each other.

2.1.3 Relaxation

Relaxation processes are defined as computing a new approximation to the exact solution given
a current approximation. This process is repeated until a desired accuracy is obtained. The
corrections for single point schemes can usually be written as:

ûhi,j = ũhi,j + ωδhi,j (2.14)

with ũhi,j the current approximation, ûhi,j the new approximation, ω the relaxation parameter and
δhi,j the correction. For simple one-point smoothers, this correction is obtained by dividing the
residual by the weight of the central point in the discretization.

δhi,j =

(
∂Lh 〈〉
∂uh

∣∣∣∣
uhi,j

)−1

r̄hi,j (2.15)

where the residual is calculated using:

r̄hi,j = fhi,j − Lh
〈
ūh
〉
i,j

(2.16)

The relaxation factor ω can be used for under- or over-relaxation. For linear equations with ω = 1
the new approximation to uhi,j is such that the discrete equation at point (i, j) is satisfied. For
ω < 1 it is referred to as damped or under relaxation.

Depending on the definition of r̄hi,j in equation (2.15) one can distinguish simultaneous and
successive displacement schemes. In the first case r̄hi,j is computed using ’old’ values only. These
are simultaneous displacement schemes and are generally referred to as Jacobi or Picard iteration.
Alternatively successive displacement can be used, in which already updated values at points
previously relaxed can be used to calculate new corrections. This is referred to as Gauss-Seidel
relaxation. For this method the order in which points are relaxed (i.e. lexicographic or checker-
board ordering) can be important for the performance. The choice of relaxation technique for a
particular problem depends on data capacity and convergence speed. Simultaneous displacement
schemes generally require more memory storage space than successive displacement schemes, as
both the new and the old approximation need to be stored. However, simultaneous displacement
schemes can be fully parallelized, whereas this is not always the case with successive displacement
schemes.

2.2 Analysis tools

Several tools exist to predict the performance of multi-level algorithms. Local mode analysis,
two-grid analysis, simplified two-grid analysis and first difference approximation are explained in
more detail below.
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2.2.1 Local Mode Analysis

The performance of a relaxation scheme can be measured in terms of the reduction of the error
after each relaxation sweep. Let the error of a given approximation be:

ṽhi,j = uhi,j − ũhi,j (2.17)

A relation between the error before and after relaxation is obtained by combining equation (2.17),
(2.14) and (2.15):

v̂hi,j = ṽhi,j − ω

(
∂Lh 〈〉
∂uh

∣∣∣∣
uhi,j

)−1 (
fhi,j − Lh

〈
uh − v̄h

〉
i,j

)
(2.18)

If the operator Lh 〈〉 is linear, as is the case for the Poisson equation, the solution and the error
can be separated so that fhi,j and uhi,j can be eliminated. The resulting equation is:

v̂hi,j = ṽhi,j − ω

(
∂Lh 〈〉
∂uh

∣∣∣∣
uhi,j

)−1

Lh
〈
v̄h
〉
i,j

(2.19)

Different approaches exist to analyze the convergence behavior of iterative methods. One of them
is the so called Local Mode Analysis (LMA). This method disregards the effect of the boundary
conditions, which for elliptic problems is justified as the influence of the boundary only extends a
limited distance into the domain. It is assumed that the error can be written as a sum of Fourier
components:

ṽhi,j =
∑
θ1

∑
θ2

Ã
(
~θ
)
eθ1i+θ2i

v̂hi,j =
∑
θ1

∑
θ2

Â
(
~θ
)
eθ1i+θ2i

~θ = (θ1, θ2)T (2.20)

Substituting the Fourier components for the errors (equation 2.20 and 2.20) into this equation
and assuming that relaxation only maps Fourier components onto itself (i.e. when they are the
eigenvectors of the relaxation matrix), makes it possible to determine the error amplification factor
(the new error divided by the current error for each Fourier component):

µ
(
~θ
)

=

∣∣∣∣∣∣
Â
(
~θ
)

Ã
(
~θ
)
∣∣∣∣∣∣ (2.21)

Convergence of an iterative method requires µ < 1 for all Fourier frequency components ~θ ∈ T all
where T all = [−π, π]2 \ (−h, h)2 (i.e. all frequency components except for |θ1| < h and |θ2| < h),
with h the mesh-size in the corresponding direction. The asymptotic convergence speed of a basic
iterative scheme can be determined by:

max (µ) for ~θ ∈ T all (2.22)

An estimate of the asymptotic convergence speed of multi-grid cycles can be found by considering
the convergence of high-frequency components only. These components need to be reduced by the
relaxation, so that the residual becomes smooth and can accurately be represented on a coarse
grid. The smoothing factor (µloc) takes only the smoothing of higher frequencies into account and
is given by:

µloc = max (µ) for ~θ ∈ Thigh (2.23)

where Thigh = [−π, π]2 \ [−π/2, π/2]2 (i.e. all frequency components except for |θ1| ≤ π/2 and
|θ2| ≤ π/2). [12]
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2.2.2 Two-grid analysis

The two-grid analysis, developed by Brandt [4], is used to gain insight into the convergence
properties of a multi-grid algorithm. This analysis (just as the LMA) is based on writing the
solution and the error as a Fourier series. The two-grid analysis takes into account the effects of
all operators (especially the two-grid operator, equation 1.9) on the set of Fourier functions (or
grid functions):

φh
(
~θ, ~x
)

= ei
~θ·~x/h = e

i
h (θ1x1+θ2x2) (2.24)

with θ1, θ2 ∈ [−π, π], and its coarse grid equivalent:

φH
(
~θ, ~x
)

= ei
~θ·~x/H = e

i
H (θ1x1+θ2x2) (2.25)

These grid functions are separated in high and low-frequency components on grid ΩH with re-
spect to Ωh. The distinction is based on the phenomenon that only those functions, with fre-
quencies θ1, θ2 ∈ [−π/2, π/2] are distinguishable on ΩH . For each low-frequency component
θ1, θ2 ∈ [−π/2, π/2] three other (high) frequency components alias on ΩH with φh(~θ′, ~x) and are
not distinguishable on ΩH . These four linearly independent grid functions are called harmonics.
The influence of the operators on these four harmonics at once is considered:

~θ(0,0) = (θ1, θ2) ~θ(1,1) =
(
θ̄1, θ̄2

)
~θ(1,0) =

(
θ̄1, θ2

)
~θ(0,1) =

(
θ1, θ̄2

)
where

θ̄i =

{
θi + π if θi < 0
θi − π if θi ≥ 0

(2.26)

These four grid function are combined in one grid functionvector:

~φh
(
~θ, ~x
)

=


φh
(
~θ(0,0), ~x

)
φh
(
~θ(1,1), ~x

)
φh
(
~θ(1,0), ~x

)
φh
(
~θ(0,1), ~x

)

 (2.27)

Now each grid variable can be written as a sum over the Fourier functions:

uh =
∑
~θ

~Ah
(
~θ
)
· ~φh

(
~θ, ~x
)

uH =
∑
~θ

AH
(
~θ
)
φH
(
~θ, ~x
)

(2.28)

With the help of trigonometric identities special relations for the four grid functions can be derived:

φh
(
~θ(0,0), ~x

)
= φh

(
~θ(1,1), ~x

)
= φh

(
~θ(1,0), ~x

)
= φh

(
~θ(0,1), ~x

)
if x1/h and x2/h even

φh
(
~θ(0,0), ~x

)
= φh

(
~θ(1,1), ~x

)
=−φh

(
~θ(1,0), ~x

)
=−φh

(
~θ(0,1), ~x

)
if x1/h and x2/h odd

φh
(
~θ(0,0), ~x

)
=−φh

(
~θ(1,1), ~x

)
=−φh

(
~θ(1,0), ~x

)
= φh

(
~θ(0,1), ~x

)
if x1/h odd, x2/h even

φh
(
~θ(0,0), ~x

)
=−φh

(
~θ(1,1), ~x

)
= φh

(
~θ(1,0), ~x

)
=−φh

(
~θ(0,1), ~x

)
if x1/h even, x2/h odd

(2.29)

The influence of the smoothing, fine grid and coarse grid operators on the grid function vector
is problem specific and will not be treated in this section, but later in the relevant chapters.
For restriction and interpolation standard stencils are usually employed. The influence of these
operators on the grid functions is discussed in the two following sections.
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Restriction

In this section the influence of the restriction operator on the grid function vector (equation 2.27)
is studied for full weighting (2.9) and injection (2.7). All four components of the grid function
are mapped onto its low-frequency harmonic. The amplitude of the resulting low-frequency are
calculated by the yet to be calculated Fourier symbol ĨHh

(
~2θ
)

:

IHh

〈
~Ah
(
~θ
)
· ~φh

(
~θ, ~x
)〉

= ĨHh

(
~θ
)
~Ah
(
~θ
)
φH
(

2~θ, ~x
)

(2.30)

Injection First consider the injection operator (equation 2.7) acting on a low-frequency grid
function at coarse grid point ~x = (x1, x2).

IHh

〈
φh
(
~θ(0,0), ~x

)〉
= e

i
h (θ1x1+θ2x2)

= e
i
H (2θ1x1+2θ2x2)

= φH
(

2~θ, ~x
)

(2.31)

Now consider the injection operator acting on a high-frequency grid function in one direction at
coarse gridpoint ~x = (x1, x2).

IHh

〈
φh
(
~θ(1,0), ~x

)〉
= e

i
h ((θ1±π)x1+θ2x2)

= e
i
H (2θ1x1+2θ2x2)e±

iπx1
h

= φH
(

2~θ, ~x
)

(2.32)

Here the last step is allowed because x1/h is even for coarse grid points. This can be carried out
in a similar way for the other two high-frequency grid functions, resulting in the Fourier symbol
for injection of:

ĨHh

(
~θ
)

=
[

1 1 1 1
]

(2.33)

Thus all Fourier components are mapped onto its low-frequency harmonic without a change in
amplitude. For low-frequency components this is exactly what is needed. Because these low-
frequency residuals are accurately described on the coarse grid, and thus accurate corrections for
the fine grid can be calculated. However, the fact that all high-frequency components are mapped
onto its low-frequency harmonic is unwanted, since the coarse grid will give unwanted corrections
for the low-frequency harmonics. This may not harm convergence as pre-relaxations have already
reduced the amplitude of high-frequency grid functions, before the residual is restricted to the
coarse grid. However, in general full weighting is safer to use.

Full weighting Now consider the full weighting operator (equation 2.9) acting on a low-frequency
grid function at coarse grid point ~x = (x1, x2).

IHh

〈
φh
(
~θ(0,0), ~x

)〉
= e

i
h (θ1x1+θ2x2) 1

16

 e−i(θ1+θ2) + 2eiθ2 + ei(θ1+θ2)

+ 2e−iθ1 + 4 + 2eiθ1
+ e−i(θ1−θ2) + 2e−iθ2 + ei(θ1−θ2)


=

1
4
e
i
H (2θ1x1+2θ2x2) (1 + cos θ1 + cos θ2 + cos θ1 cos θ2)

= φH
(

2~θ, ~x
) 1

4
(1 + cos θ1) (1 + cos θ2) (2.34)
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Now consider the full weighting operator acting on a high-frequency grid function at coarse grid
point ~x = (x1, x2).

IHh

〈
φh
(
~θ(1,0), ~x

)〉
= e

i
h (θ1x1+θ2x2) 1

16

 e−i(θ1±π+θ2) + 2eiθ2 + ei(θ1±π+θ2)

+ 2e−i(θ1±π) + 4 + 2ei(θ1±π)

+ e−i(θ1±π−θ2) + 2e−iθ2 + ei(θ1±π−θ2)


=

1
4
e
i
H (2θ1x1+2θ2x2) (1 + cos (θ1 ± π) + cos θ2 + cos (θ1 ± π) cos θ2)

=
1
4
e
i
H (2θ1x1+2θ2x2) (1− cos θ1 + cos θ2 − cos θ1 cos θ2)

= φH
(

2~θ, ~x
) 1

4
(1− cos θ1) (1 + cos θ2) (2.35)

The same analysis can be performed for the other two high-frequency grid functions, resulting
in the Fourier symbol for full weighting of:

ĨHh

(
~θ
)

=
1
4


(1 + cos θ1) (1 + cos θ2)
(1− cos θ1) (1− cos θ2)
(1− cos θ1) (1 + cos θ2)
(1 + cos θ1) (1− cos θ2)


T

(2.36)

Thus each grid function is mapped onto its low-frequency harmonic, but with a smaller amplitude.
The decrease in amplitude depends on the original frequency, where low-frequency modes are
transferred correctly, whereas high-frequency modes are nearly damped out. For most cases full
weighting gives better performance than injection, because high-frequency errors are reduced by
pre-relaxations and not carried along by restriction. Therefore they do not alias to the coarse grid
and thus do not give any spurious corrections.

Interpolation

In this section the influence of the interpolation operator on the coarse grid functions (equation
2.25) is studied for bi-linear interpolation (equation 2.3). This interpolation maps one coarse grid
function onto the four grid functions in the grid functionvector:

IhH

〈
~AH
(
~2θ
)
φH
(

2~θ, ~x
)〉

= ĨhH

(
~θ
)
~AH
(
~2θ
)
~φh
(
~θ, ~x
)

(2.37)

with ĨhH

(
~θ
)

the Fourier symbol for interpolation yet to be calculated.
Four different cases need to be studied: x1/h is even or odd and x2/h is even or odd. First

consider the result at point (x1, x2) of the bi-linear interpolation operator acting on a coarse grid
function, where both x1/h and x2/h are even (i.e. a coarse grid point).

IhH

〈
φH
(

2~θ, ~x
)〉

= e
i
H (2θ1x1+2θ2x2)

= e
i
h (θ1x1+θ2x2)

= φh
(
~θ(0,0), ~x

)
(2.38)

Now consider the result at point (x1, x2) of the bi-linear interpolation operator acting on a coarse
grid function, where both x1/h and x2/h are odd.

IhH

〈
φH
(

2~θ, ~x
)〉

= e
i
H (2θ1x1+2θ2x2) 1

4

(
e−iθ1eiθ2 + eiθ1eiθ2

+ e−iθ1e−iθ2 + eiθ1e−iθ2

)
= e

i
h (θ1x1+θ2x2) cos θ1 cos θ2

= φh
(
~θ(0,0), ~x

)
cos θ1 cos θ2 (2.39)
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The same analysis can be performed for the other cases (i.e. one odd and one even ratio), resulting
in:

IhH

〈
φH
(

2~θ, ~x
)〉

= φh
(
~θ(0,0), ~x

)
1 if x1/h and x2/h even
cos θ1 cos θ2 if x1/h and x2/h odd
cos θ1 if x1/h odd, x2/h even
cos θ2 if x1/h even, x2/h odd

(2.40)

which can be transformed, with the help of relations (2.29) into the Fourier symbol for bi-linear
interpolation:

ĨhH

(
~θ
)

=
1
4


(1 + cos θ1) (1 + cos θ2)
(1− cos θ1) (1− cos θ2)
(1− cos θ1) (1 + cos θ2)
(1 + cos θ1) (1− cos θ2)

 (2.41)

which is exactly the transpose of the full weighting operator. Thus a coarse grid function is not
only mapped onto its fine grid equivalent, but also on the three high-frequency harmonics.

Conclusion

The influence of the smoothing and fine and coarse grid operators on the grid function vector is
problem specific and cannot be treated in this section. But when also their influence is known,
the two-grid convergence factor (ρloc) is given by the largest eigenvalue of the two-level iteration
matrix (for |θ1| ≤ π/2 and |θ2| ≤ π/2):

M̂H
h

(
~θ
)

=
(
Ŝh
)ν2 (

I − ĨhH
(
L̃H
)−1

ĨHh L̂
h

)(
Ŝh
)ν1

(2.42)

2.2.3 Simplified two-grid analysis

The two-grid analysis may become rather involved, in particular for 3D problems, where there will
be three directions and thus 8 different Fourier components. Therefore, it is sometimes useful to
analyze the smoothing procedure and the coarse grid correction separately. Instead of a complete
two-grid analysis, a simplified two-grid analysis can be performed. The goal is to obtain some
insight into the quality of the approximation of the fine grid operator (Lh) by the coarse grid
operator (LH), for very low frequencies. This analysis neglects high frequencies and the coupling
of harmonics. For (very) low frequencies, the transfer operators almost act like identity operators
and smoothing has nearly no effect. Therefore, the behavior of the two-level iteration matrix
(equation 2.42) can be approximated by:

I −
(
L̃H
)−1

L̃h (2.43)

This term gives some insight into the quality of the coarse grid correction for very low frequencies,
especially for problems with characteristic directions. If a low-frequency ~θ = (θ1, θ2) along a
characteristic direction with θ2 = cθ1 is considered, equation:

lim
θ1→0

1−
L̃h
(
~θ
)

L̃H
(

2~θ
)
 (2.44)

should give a very small number, otherwise multi-grid performance will be negatively influenced by
a bad coarse grid correction for very low frequencies. See section 5.3 for an example for problems
with characteristic directions.

As an alternative to obtaining insight into the quality of the approximation of the fine grid
operator (Lh) by the coarse grid operator (LH), a finite difference approximation can be used. In
this method a Taylor series expansion of both the fine and the coarse grid operator are performed.
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For good multi-grid performance it is required that the leading terms of the Taylor series expansion
for both operators should be equal in each direction. See section 5.3 for an example, where this
requirement is not fullfilled.

2.3 Performance

Multi-grid techniques are aimed at efficiently solving systems of algebraic equations. Therefore the
question arises how much is gained in terms of efficiency, or how much faster can the discretized
problem be solved using multi-grid compared to single-grid relaxations or alternative methods.
Two questions arise: How many cycles are required to solve the problem, and, what is the cost of
each cycle?

2.3.1 Number of cycles

The required number of cycles depends on the error reduction per cycle and the total error re-
duction required. For a small number of pre- and post-relaxations the error reduction per cycle
follows from the smoothing factor (µloc, see section 2.2.1) or in general the two-grid convergence
factor (ρloc, see section 2.2.2). The required error reduction depends on the order of the discretiza-
tion. Generally, the task is not to solve the discretized problem exactly, but to solve the partial
differential equation. By definition the exact solution of the discretized problem is still only an
approximation to the solution of partial differential equation with an discretization error of O (hm)
(with m the order of the fine grid operator). Any approximate solution to the system with the
same accuracy is as good an approximation to the continuous solution as the exact discrete so-
lution. Therefore it is sufficient to solve the discretized problem up to an accuracy of O (hm).
Assuming an initial error of O (1), an estimate of the number of single grid iterations Ms required
to reduce the error to the level of the discretization error can be obtained from:

µMs = O (hm) (2.45)

which gives:

Ms = O
(
m ln (1/h)
ln (1/µ)

)
(2.46)

Substituting µ = 1 − O
(
n−2

)
(for single-grid relaxations), and h = 1/n (with n the number of

points in one direction):
Ms = O

(
n2 ln (n)

)
(2.47)

and with N = nd, where d is the dimension of the problem (N is the total number of points)

Ms = O

(
N

2
d

d
ln (N)

)
(2.48)

When multi-grid techniques are used µ is independent of the mesh-size and one obtains:

Ms = O (ln (n))

= O
(

1
d

ln (N)
)

(2.49)

Thus for large grids (i.e. larger values of n) multi-grid techniques require far less cycles than
single-grid relaxations.

2.3.2 Work

As shown previously, to solve the problem up to the accuracy of the discretization error O (ln (n))
multi-grid cycles are required. Next the amount of work involved in a single cycle is estimated.
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Therefore it is useful to introduce the concept of a Work Unit (WU). One WU is the equivalent of
the amount of work of one relaxation on the finest grid. Assuming the fine grid contains N points,
one WU is usually O (N) operations. The required work for a multi-grid cycle will be (neglecting
the required work for intergrid routines):

Wcycle = WU (ν1 + ν2)

(
1 + γ

(
h

H

)d
+ γ2

(
h

H

)2d

+ γ3

(
h

H

)3d

+ ...

)

= WU (ν1 + ν2)
∞∑
i=0

(
γi
(
h

H

)id)
(2.50)

with h the fine grid spacing, H the coarse grid spacing γ the cycle parameter and d the dimension
of the problem. For γ (H/h)d < 1 this series is convergent with a maximum of

Wcycle ≤WU
ν1 + ν2

1− γ
(
h
H

)d (2.51)

When γ (H/h)d ≥ 1 the infinite series is diverging, but only a limited number of levels (O (ln (N)))
is required to produce a coarse grid with O (1) points. In this case the work for a multi-level cycle
will be O (N) times that of a single-grid cycle.

In this report only 2D problems are considered with standard coarsening (H = 2h), giving:

Wcycle ≤
4
3
WU (ν1 + ν2) (2.52)

for γ = 1 and for γ = 2:
Wcycle ≤ 2WU (ν1 + ν2) (2.53)

So the work required to perform one multi-grid cycle is of the same order as the work required
for a few relaxations on the finest grid. The total work required to solve the discretized problem
up to discretization accuracy is now the required work for one cycle multiplied with the required
number of cycles:

Wcycles = O
(
N

d
ln (N)

)
(2.54)

whereas the total work required for single-grid relaxation is:

Wsingle−grid = O

(
N

2
d+1

d
ln (N)

)
(2.55)

For large grids (i.e. large N) a huge reduction in computational time will thus be obtained.
However, the required work to solve the problem to the order of the discretization error, is not yet
independent of the number of points. It still contains a factor ln (N). Although this factor grows
very slowly with increasing N a more elegant approach is possible. [13]

2.4 Full multi-grid

The factor ln (N) in the required work to solve a discretized problem up to discretization accuracy
(equation 2.54) stems from the required number of cycles MS (see equation 2.49). In this analysis
it was assumed that the initial error is O (1). However, if the converged solution on a coarser grid
ΩH is used as the starting solution on the fine grid, the error of the initial approximation will no
longer be O (1), but be equal to the discretization error on the coarser grid (i.e. O (Hm) with m
the order of the discretization). In that case the number of cycles required to reach a converged
solution on the fine grid follows from:

µMsHm < hm (2.56)
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giving:

Ms >
m ln (H/h)

ln (1/µ)
=
m ln (2)
ln (1/µ)

(2.57)

which clearly is independent of the mesh-size. So to ensure that a constant number of cycles is
sufficient to reach an accuracy of the order of the discretization error, the solution from a coarser
grid has to be used as a starting solution. This principle can then be applied recursively leading
to the so-called Full Multi-Grid (FMG) algorithm. A FMG algorithm is depicted in figure 2.5.
A new parameter M is introduced which gives the number of cycles performed at each level to
obtain a converged solution. The amount of work required in a FMG algorithm with M cycles
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Figure 2.5: Flow diagram for FMG using 4 grids

per level can now be estimated by:

WFMG = WcycleM

(
1 +

(
h

H

)d
+
(
h

H

)2d

+
(
h

H

)3d

+ ...

)

= WcycleM

∞∑
i=0

(
h

H

)id
≤ WcycleM

1−
(
h
H

)d (2.58)

As only O (N) operations are needed for one multi-grid cycle and since the problem can be solved
in O (1) multi-grid cycles per level, the total work to solve the problem is O (N).

A point of special attention is the interpolation of the converged coarse grid solution to serve as
an initial estimate for the solution on the finer grid. As the object here is to accurately approach
the solution on the fine grid, a higher-order interpolation operators is required. The order of the
FMG interpolation needs to be larger than the order of discretization error [15]. Also FMG may
not work in cases for which the coarse grid operator does not resemble the fine grid operator
accurately, i.e. problems with characteristic directions (see chapter 5).

FMG has the additional advantage of yielding accurate solutions to the problem on coarser
grids. This allows for the calculation of the approximate error in the solution (ehapp):

ehapp =
∣∣ũH − IhH ũh∣∣2 (2.59)

Expanding this relation and neglecting the effect of restriction:

ehapp =
∣∣ũH − ũh∣∣

2

=
∣∣uH − vH − uh + vh

∣∣
2

=
∣∣u+ τH − vH − u− τh + vh

∣∣
2

=
∣∣τH − vH − τh + vh

∣∣
2

(2.60)

with τH and τh the discretization errors (the difference between the solution of the partial differ-
ential equation (u∗) and the discrete solution (uH and uh)) and vH and vh the difference between
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the exact discrete solution and the current approximation (ũH and ũh). When using an additional
cycle per level, both vH and vh should decrease significantly. However, when in that case the
approximate error does not change, τH and τh already dominate the error and thus the accuracy
of ũh is equal to the discretization accuracy. In general, when the order of the discretization, m is
known and enough cycles per level are used (vH � τH and vh � τh), a quantitative estimate of
the discretization error can be made: [13]

ehapp =
∣∣τH − vH − τh + vh

∣∣
2

≈
∣∣τH − τh∣∣

2

≈
∣∣∣∣(Hh

)m
τh − τh

∣∣∣∣
2∣∣τh∣∣

2
≈ 1(

H
h

)m − 1
ehapp (2.61)

2.5 Full Approximation scheme

When the equations are non-linear, the step from equation (1.4) to (1.5) is not allowed. In such
cases not only the residual, but also the solution itself needs to be represented on the coarse grid.
The equations for such schemes are obtained by substituting the error equation (1.2) into equation
(1.4):

r̃h = Lh
〈
ũh + vh

〉
− Lh

〈
ũh
〉

= fh − Lh
〈
ũh
〉

(2.62)

This leads to a new set of coarse grid equations:

LH
〈
ũH + vH

〉
− LH

〈
ũH
〉

= r̃H

LH
〈
IHh
〈
ũh
〉

+ vH
〉
− LH

〈
IHh
〈
ũh
〉〉

= IHh
〈
r̃h
〉

LH
〈
IHh
〈
ũh
〉

+ vH
〉

= IHh
〈
fh − Lh

〈
ũh
〉〉

+ LH
〈
IHh
〈
ũh
〉〉

(2.63)

This equation can be approximated (with IHh
〈
ũh
〉

as a first approximation) to obtain vH and
equation (1.7) can be used to update the solution on the fine level. This approach is called the
Full Approximation Scheme (FAS). For linear problems, the FAS and the CS give identical results
up to machine accuracy. Note that with FAS it is possible to solve non-linear problems with the
same efficiency as linear problems.

2.5.1 τ-Extrapolation

A variety of more sophisticated multi-grid techniques is based on the FAS method. One example
is τ -Extrapolation, in which a more accurate approximation of the differential equations obtained
using a low-order discretization. Consider a discretized problem:

Lh
〈
uh
〉

= fh (2.64)

using the FAS scheme the coarse grid problem becomes:

LH
〈
uH
〉

= LH
〈
IHh
〈
ũh
〉〉

+ IHh
〈
fh − Lh

〈
ũh
〉〉

= IHh
〈
fh
〉

+ τHh
〈
ũh
〉

(2.65)

where
τHh
〈
uh
〉

= LH
〈
IHh
〈
uh
〉〉
− IHh

〈
Lh
〈
uh
〉〉

(2.66)

τHh
〈
uh
〉

is called the (h,H)-relative truncation error. τHh
〈
uh
〉

plays a role similar to the truncation
error of the continuous solution u with respect to the grids Ωh and ΩH . τHh

〈
uh
〉

is the required
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correction for the coarse grid equation, so that the solution of this coarse grid equation becomes
the fine grid solution:

LH
〈
uH
〉

= IHh
〈
fh
〉

+ τHh
〈
uh
〉

= IHh
〈
fh
〉

+ LH
〈
IHh
〈
ūh
〉〉
− IHh

〈
Lh
〈
uh
〉〉

= IHh
〈
fh − Lh

〈
uh
〉〉

+ LH
〈
IHh
〈
uh
〉〉

= LH
〈
IHh
〈
uh
〉〉

(2.67)

And thus
uH = IHh

〈
uh
〉

(2.68)

The next step is to realize that τHh
〈
uh
〉

is related to to τH
〈
uh
〉

(the truncation error) and thus
one can also directly use the coarse grid equation to correct the fine grid solution to the exact
solution by adding the relative truncation error multiplied with a constant factor:

LH
〈
uHτ
〉

= IHh
〈
fh
〉

+
2m

2m − 1
τHh
〈
ũh
〉

(2.69)

with m the order of the discretization operator. This operator will produce an approximation uHτ ,
which will have a better accuracy than that of uh. This can be proven with some expansions of
the fine and coarse grid operators (with q the order of the second term in the truncation error
(m < q)):

Lh 〈u〉 − L 〈u∗〉 = e1h
m +O (hq)

LH 〈u〉 − L 〈u∗〉 = e12mhm +O (hq)
uh − u∗ = e2h

m +O (hq) (2.70)

Substituting these relations into (2.69) and neglecting the effect of the restriction, which is justified
because it mainly concerns smooth components, result in:

LH
〈
uHτ
〉

= fh +
2m

2m − 1
(
LH

〈
uh
〉
− Lh

〈
uh
〉)

= f +
2m

2m − 1
(
LH 〈u∗〉 − Lh 〈u∗〉

)
+

2mhm

2m − 1
(
LH 〈e2〉 − Lh 〈e2〉

)
+O (hq)

= f +
2m

2m − 1
(e12mhm − e1h

p) +O
(
h2m

)
+O (hq)

= L 〈u∗〉+ e12mhn +O
(
h2m

)
+O (hq)

= LH 〈u∗〉+O
(
h2m

)
+O (hq) (2.71)

Thus the order of accuracy of uHτ is the minimum of 2m and q. The only required adjustment for
τ -extrapolation is to use equation (2.69) as the coarse grid problem on the second finest level of
the last cycle. In all other cases the regular coarse grid problem has to be used. The additional
amount of work compared to standard multi-grid is only one additional multiplication per coarse
grid point.

Only the uHτ is higher-order accurate, uh itself not, therefore post-relaxations on the finest grid
tend to reduce the accuracy of the approximation back to order m. The easiest way to counter
act this effect is by not performing any post-smoothing steps on the finest level. A more subtle
approach is by also correcting the right-hand side of the fine grid equation after the pre-relaxations
have been performed:

f̃h = fh +
1

2m − 1
IhH
〈
τHh
〈
uh
〉〉

(2.72)

For more detailed description and optimal approaches see [2] and [1].
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Chapter 3

Algebraic multi-grid

This chapter discusses different aspects of algebraic multi-grid (AMG). AMG is based on the same
principles as geometric multi-grid:

• Simple relaxations

• Identification the slowly converging components

• Accurately representing these problematic components on a restricted set of variables

• Solving the matrix of reduced size by either applying the steps above recursively or by using
a direct solver

In contrast to geometrically based multi-grid, AMG does not require a given problem to be defined
on a grid; it operates directly on a system of linear, algebraic equations:

A~u = ~f (3.1)

As AMG does not depend on physical grids, some components of geometric multi-grid need to
be replaced by their AMG equivalent: grids become sets of variables, subgrids become subsets of
variables and grid points become single variables. Coarse-grid discretizations used in geometric
multi-grid to reduce low-frequency error components now correspond to certain matrix equations
of reduced dimension to represent components that are slow to convergence. However, no grid
hierarchy needs to be known a priori. In fact the construction of a hierarchy, including the
coarsening process and the transfer operators, is part of the AMG algorithm. The only element
of the procedure that is determined in advance is the choice of the relaxation scheme. Usually
simple relaxation schemes like Gauß-Seidel or Kaczmarz relaxation are used. For historical reasons
most of the times throughout this thesis the geometrical multi-grid terms are used even though
no actual grid needs to be present.

In AMG the coarse-grid operator is always constructed using the Galerkin condition:

AH = IHh A
hIhH (3.2)

with the restriction operator, defined as the transpose of the interpolation operator, i.e.:

IHh =
(
IhH
)T

(3.3)

The remaining choice of coarse grids and interpolation operators is guided by two principles:
Algebraic smoothness and strong influence and dependence. In this chapter a basic description of
AMG is given, for a more detailed explanation see [5, 12].
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Notation

For ease of notation first some sets of variables are defined:

C Set of coarse grid points
F Set of fine grid points
U Set of yet undecided grid points
Ni Set of neighboring points {j ∈ Ω : j 6= i, Ai,j 6= 0}
Si Set of strongly connected neighboring points (see equation 3.5)
STi Set of points strongly influenced by i (see equation 3.6)
Wi Set of weakly connected neighboring points (Wi = Ni \ Si)
Csi Set of strongly connected neighboring coarse grid points (Csi = C ∪ Si)
F si Set of strongly connected neighboring fine grid points (F si = F ∪ Si)
Ω Set of all points

3.1 Influence and Dependence

The first concept used in AMG is that of strong dependence and strong influence. Because of
the usual dominance of diagonal entries, the ith equation is associated with the ith unknown; the
purpose of the ith equation is to determine the value of ui. Of course, it usually takes all of the
equations to determine any given variable precisely, but certainly contributions due to some uj ’s
are more important in the ith equation to determine ui than others.

When the coefficient Ai,j , which multiplies uj in the ith equation, is large relative to the other
coefficients in the ith equation, then a small change in the value of uj has more effect on the value
of ui than a small change in any other variable appearing in the ith equation. If a variable is
important for determining the value ui, it would be a good variable to use in the interpolation of
ui. To determine if a variable uj is important for the ith equation, the following definition is used:

Definition Given a threshold value 0 < εstr ≤ 1, the variable ui is strongly negatively dependent
on the variable uj if

−Ai,j ≥ εstr max
k 6=i

(−Ai,k) (3.4)

This states that variable ui has strong negative dependence on variable uj if the coefficient Ai,j is
comparable in magnitude to the largest off-diagonal coefficient in the ith equation. All variables j
which are important for the ith equation are stored in the set Si.

Si =
{
j ∈ Ni : −Ai,j ≥ εstr max

k 6=i
(−Ai,k)

}
(3.5)

This definition can also be stated from another perspective:

Definition If the variable ui strongly depends on the variable uj , then the variable uj strongly
influences the variable ui.

All variables j which are strongly influenced by the ith variable are stored in the set STi :

STi =
{
j ∈ Ni : −Aj,i ≥ εstr max

k 6=i
(−Aj,k)

}
(3.6)

3.2 Algebraic smoothness

The crux of the AMG algorithm is to determine which components are slow to converge on the
fine grid (i.e. what is meant by a smooth error) and how to describe these components on coarse
grids. In geometric multi-grid Fourier modes are used to examine which components are slow to
converge. In AMG the true location of the grid points is usually unknown, so it is impossible to
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examine the Fourier modes of the error. Instead we define smooth errors loosely to be errors that
are not reduced effectively by relaxation:

S~e ≈ ~e (3.7)

Here S is a relaxation operator and ~e the error defined as:

~e = ~u− ~u∗ (3.8)

with ~u the current approximation and ~u∗ the exact solution to the system of equations. Several
authors [6, 12] already proved that for symmetric positive definite matrices A, a smooth error
implies:

D−1A~e ·A~e� A~e · ~e (3.9)

with D the diagonal part of A. In terms of the residual (~r = A~e) this becomes:

D−1~r · ~r � ~r · ~e (3.10)

This indicates that, on average, algebraically smooth errors are characterized by (scaled) residuals
which are much smaller than the error itself. This can also be seen more directly. For instance,
consider Jacobi relaxation at point i. This corresponds to replacing ui by ūi, where:

ūi =
1
Ai,i

fi −∑
j 6=i

Ai,juj

 =
1
Ai,i

Ai,iui + fi −
∑
j

Ai,juj

 = ui −
ri
Ai,i

(3.11)

with ri the residual at point i before relaxation. In terms of the error this becomes:

ēi = ei −
ri
Ai,i

(3.12)

with ei the error before and ēi the error after relaxation. For an algebraically smooth error the
error before and after relaxation are roughly equal (ei ≈ ēi), leading to:

|ri| � Ai,i |ei| (3.13)

That is, although the error may still be quite large globally, locally we can approximate ei as a
function of its neighboring error values ej by evaluating:

(ri =)
∑
j

Ai,jej = Ai,iei +
∑
j∈Ni

Ai,jej = 0 (3.14)

3.2.1 Interpretation of algebraically smooth error

In this section a more intuitive interpretation of an algebraically smooth error is given for symmet-
ric positive matrices. These are matrices with positive diagonal and negative off-diagonal terms.
Such matrices often result from the discretization of scalar elliptic PDE’s. Consider an error that
satisfies equation 3.9 and thus is algebraically smooth. With the help of the Schwarz’ inequality
it can be proven that this error also satisfies: [12]

A~e · ~e� D~e · ~e (3.15)

Or equivalently: ∑
i,j

Ai,jeiej �
∑
i

Ai,ie
2
i (3.16)

For the type of matrices considered this can be rewritten into:

1
2

∑
i,j

|Ai,j | (ei − ej)2 +
∑
i

sie
2
i �

∑
i

Ai,ie
2
i (3.17)
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with si =
∑
j Ai,j the i-th row sum of A. This means, that in the most important case of si ≈ 0,

on average for each i: ∑
j 6=i

|Ai,j |
Ai,i

(ei − ej)2

e2
i

� 1 (3.18)

That is, an algebraically smooth error varies slowly in the direction of large negative connections.
Or in other words, relaxation schemes smooth the error along strong negative connections. It can
be proven that this conclusion also holds for matrices which are essentially positive-type [3], which
are defined by the fact that there exists a constant c > 0 such that, for all ~e.

−
∑
i,j

Ai,j (ei − ej)2 ≤ −c
∑
i,j

A−i,j (ei − ej)2 (3.19)

with A−i,j the negative off-diagonal parts of A. Essentially positive-type matrices often result
from the discretization of higher-order difference approximations to second-order elliptic PDE’s or
PDE’s involving mixed derivatives. Such matrices have the property that for each Ai,j > 0 (i 6= j)
there exists a path of length two from i to j corresponding to relatively large negative connections.
I.e. for each i 6= j with Ai,j > 0 we can find another variable k, such that both −Ai,k > αAi,j
and −Ak,j > βAi,j , where α > 1, β > 1 and (α− 1) (β − 1) = 1. Then we can write:

Ai,j (ei − ej)2 = Ai,j

(
α (ei − ek)2 + β (ek − ej)2 −

(
ᾱei + β̄ej −

(
ᾱ+ β̄

)
ek
)2) (3.20)

where ᾱ =
√

(α− 1) and β̄ =
√

(β − 1). The first two terms will still give a negative contribution
to the left hand side of equation 3.19. But these negative contribution are in absolute sense smaller
than −Ai,k (ei − ek)2 for the first term and −Ak,j (ej − ek)2 for the second term, so always a c > 0
can be found to satisfy equation 3.19.

Example essentially positive-type

A simple example of an essentially positive-type matrix results from the higher-order discretization
of the 1D Poisson equation. A fourth-order accurate discretization leads to the stencil:

−∂
2u

∂x2
=

1
12h2

[
1 −16 30 −16 1

]
(3.21)

Ignoring boundary conditions, the matrix becomes (with the number 30 on the diagonal):

A =
1

12h2



. . . . . . . . . . . . . . .
1 −16 30 −16 1

1 −16 30 −16 1
1 −16 30 −16 1

1 −16 30 −16 1
1 −16 30 −16 1

. . . . . . . . . . . . . . .


(3.22)

Positive off diagonal weight arise for example for i = 6 and j = i − 2 = 4, indicated by the
bold number in equation 3.22. Equation 3.20 can now be used to prove equation 3.19. Choosing
k = i− 1 and α = β = 2 satisfies all required conditions:

16 = −Ai,i−1 > αAi,i−2 = 2
16 = −Ai−1,i−2 > βAi,i−2 = 2

(α− 1) (β − 1) = 1

Equation 3.20 now becomes:

Ai,i−2 (ei − ei−2)2 = Ai,i−2

(
2 (ei − ei−1)2 + 2 (ei−1 − ei−2)2 − (ei + ei−2 − 2ei−1)2

)
(3.23)
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So that the left-hand side of equation 3.19 can be rewritten into:

−
∑
i,j

A∗i,j (ei − ej)2 +A6,4 (e6 + e4 − 2e5)2 (3.24)

with:

A∗ =
1

12h2



. . . . . . . . . . . . . . .
1 −16 0 −16 1

1 −14 0 −16 1
0 −14 0 −16 1

1 −16 0 −16 1
1 −16 0 −16 1

. . . . . . . . . . . . . . .


(3.25)

where the diagonal terms are set to zero because they are always multiplied by 0. The negative
contribution of Ai,i−2 is now eliminated from the left-hand side. Applying this technique for all
positive off diagonal terms yields the equation:

−
∑
i,j

A∗i,j (ei − ej)2 +
∑
i

Ai,i−2 (ei + ei−2 − 2ei−1)2 +
∑
i

Ai,i+2 (ei + ei+2 − 2ei+1)2 (3.26)

with:

A∗ =
1

12h2



. . . . . . . . . . . . . . .
0 −12 0 −12 0

0 −12 0 −12 0
0 −12 0 −12 0

0 −12 0 −12 0
0 −12 0 −12 0

. . . . . . . . . . . . . . .


(3.27)

Now all terms will give positive contributions, so that equation 3.19 is easily satisfied with c = 3/4.

3.3 Interpolation and restriction

Before considering the splitting between fine and coarse grid points, consider first the interpolation
operator. For geometric multi-grid linear interpolation between the coarse grid points is used, but
with an unstructured or perhaps non-existent grid, it is not so obvious how to define interpolation.
Assume that the grid is already split into coarse (C) and fine grid points (F ). The goal is to define
interpolation weights wi,j , such that the interpolation operator:

(
IhH~e

)
i

=

{
ei if i ∈ C∑
j∈Si wi,jej if i ∈ F

(3.28)

yields a reasonable approximation for any algebraically smooth error which satisfies: (see equation
3.14)

Ai,iei ≈
∑
i∈Ni

Ai,jej (3.29)
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3.3.1 Direct interpolation

In section 3.2.1 it has been shown that for symmetric positive matrices, an algebraically smooth
error varies slowly in the direction of strong coupling. That is, the error at point i is essentially
determined by a weighted average of the error at its strong neighbors. Consequently:

1∑
k∈Csi

Ai,k

∑
k∈Csi

Ai,kek ≈
1∑

k∈Ni Ai,k

∑
k∈Ni

Ai,kek (3.30)

is a good approximation when most of the strong negative connections of any F -variable i are
contained in Csi . This suggests approximating equation 3.29 by:

Ai,iei ≈ −αi
∑
k∈Csi

Ai,kek with αi =

∑
k∈Ni Ai,k∑
k∈Csi

Ai,k
(3.31)

Or equivalently:

wi,j = −Ai,j
Ai,i

∑
k∈Ni Ai,k∑
k∈Csi

Ai,k
with j ∈ Csi (3.32)

Note that:

Ai,i

(
1−

∑
i∈Si

wi,k

)
=
∑
j

Ai,j (3.33)

Consequently, in the limiting case of zero row sum matrices (i.e.
∑
j Ai,j = 0), constants are

interpolated exactly (i.e. IhH1H = 1h). For other matrices, however, IhH1H equals the result of one
Jacobi step with the vector e = 1h as the starting vector. (Here 1H and 1h denote a vector with
all components having the value of 1).

3.3.2 Standard interpolation

Direct interpolation requires ∅ 6= Csi ⊂ C ∩Ni to work. So each fine grid point is required to have
at least one strong negative connection to a coarse grid point. In some splittings this is not always
enforced. Also direct interpolation may give inaccurate results if not enough of the strong negative
connections are represented in the interpolation. To obtain a more robust interpolation operator
a small modification can be made: for each i ∈ F its strong F -connections are also included in
the interpolation. This is done by eliminating all ej (j ∈ F si ) by means of the corresponding jth

equation before approximating equation 3.29.

ej → −

∑
k∈Csj

Aj,kek

Aj,j

∑
m∈Nj Aj,m∑
m∈Csj

Aj,m
(3.34)

This leads to the interpolation weights:

wi,j = −
∑
k∈Ni Ai,k

Ai,i

(
Ai,j −

∑
l∈F si

Ai,lAl,j
Al,l

P
m∈Nl

Al,mP
m∈Cs

l
Al,m

)
∑
k∈Pi

(
Ai,k −

∑
l∈F si

Ai,lAl,k
Al,l

P
m∈Nl

Al,mP
m∈Cs

l
Al,m

) with j ∈ Pi (3.35)

with Pi the union of Csi and all Csj (j ∈ FSi ). This interpolation guarantees 0 ≤ wi,j ≤ 1 for
matrices with positive diagonal terms and negative off-diagonal terms.

3.3.3 Truncation of interpolation

For interpolation, the sets Pi of interpolatory variables may become quite large. Consequently the
resulting Galerkin operators will substantially increase for coarser levels. This process without
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reasonable truncation, will generally be much too costly. However, interpolation weights corre-
sponding to variables “far away” from variable i, will usually be much smaller than the largest
weights. Therefore, before computing the coarser-level Galerkin operator, the full interpolation
operator is always truncated by ignoring all interpolatory connections which are smaller than the
largest one by a factor of εtr and rescaling the remaining weights so that the total sum remains
unchanged.

3.4 Coloring

The last required component in the AMG process is the splitting of the variables between fine
and coarse grid variables. The most common concept for this splitting is the so called standard
coarsening. This process starts with defining for each point a measure (λi) of its potential quality
as a C-point. There are several ways to make this initial assessment, but the simplest one is
to count the number of other points strongly influenced by i (i.e.

∣∣STi ∣∣). Once the measure has
been made, the point with maximum λi is selected to become a C-variable. This point influences
several of the other points and should appear in the interpolation formula for each of them. This
implies that all variables j, which are strongly dependent on i and have not yet been decided (i.e.
j ∈

(
U ∩ STi

)
), become F-variables. This is permissible, because they already have a C-point that

strongly influences them. Further more it is logical to look at other points that strongly influence
these new F -points as potential C-points. Therefore, for each new F -point j in STi the measure
λk of each unassigned point k that strongly influences j is incremented by 1. Also points which
have a strong influence on point i are not important anymore for point i to become a C-variable
(since i is already a C-variable). Therefore the measure of these points is decreased by 1. Now
again the point with maximum λi is selected to become a C-variables and the process is repeated
until all points have been treated.

From this description the definition of λi becomes:

λi =
∣∣STi ∩ U ∣∣+ 2

∣∣STi ∩ F ∣∣ (3.36)

Initially, variables which are important for many other variables become C-variables. Later, the
tendency is to pick C-variables as those variables on which many F -variables depend. An outline of
the algorithm is given in algorithm 1. In should be noted that the measure λi has to be computed
globally only at the beginning of the algorithm. At later stages, it just needs to be updated locally.
Therefore it is not necessary to loop over the entire list of unassigned points to search for the point
with maximum λi to become the next C-variable. In the actual code, the points are stored in a
linked list, allowing fast updating, by simply removing the points and inserting them again at the
new location (see appendix B). Looping over all points to search for the point with maximum λi
would have resulted in a coloring algorithm which requires O

(
n2
)

operations (with n the number
of grid points). Such a slow coloring algorithm would render the use of multi-grid useless.

Before the coloring algorithm starts, variables which have no connection at all (e.g. resulting
from Dirichlet boundary points which have not been eliminated from the system) are filtered out
and become F-variables. Such variables do not require interpolation.

After the algorithm is terminated all F -variables have (at least) one strong coupling to a C-
variable (except for the ones taken out at the beginning). However, there may be a few U -variables
left. Such variables do not depend strongly on any of the C-variables (otherwise they would have
been assigned as F -variables earlier on). Moreover, no other variables strongly depend on these
U -variables (otherwise their measure λi would be nonzero). However, each of these U -variables
depends on at least one of the F -variables. Therefore all remaining U -variables are declared to
become F -variables.

It is useful to observe that the coarsening determined by this method depends on several factors.
Among the most influential ones is the order in which the grid points are scanned (and thus also
the order in which they are stored) when seeking the next point with maximal λi. Because many,
if not most, of the grid points will have the same value at the start, any of them could have been
selected as the first coarse point. Once the first point is selected, the rest proceeds as described
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Algorithm 1 Basic coloring algorithm
C = {}
F = {}
get i ∈ U with λi maximal
while λi > 0 do
C = C ∪ {i}
U = U \ {i}
for j ∈

(
U ∩ STi

)
do

F = F ∪ {j}
U = U \ {j}
for l ∈ (U ∩ Sj) do
λl = λl + 1

end for
end for
for l ∈ U ∩ Si do
λl = λl − 1

end for
get i ∈ U with λi maximal

end while

above. Again, any time there is more than one point with the maximal value, there are many
allowable coarsenings, but for the resulting performance of the algorithm this is not crucial.
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Chapter 4

Geometric multi-grid applied to
the Poisson problem

In this chapter the performance of multi-grid algorithms for the Poisson problem is shown. The
Poisson problem is a classical test case for comparison of the performance of numerical methods
and serves well for demonstrating the basics of multi-level algorithms and the effect of different
choices made in the algorithm. In two dimensions the Poisson problem is given by:

∂2u
∂x2 + ∂2u

∂y2 = f (x, y) (x, y) ∈ Ω
u = 0 (x, y) ∈ ∂Ω

(4.1)

Some analytic solutions of the Poisson problem are available and can be used as a comparison for
performance evaluation. Full weighting, bi-linear interpolation and a simple coarse grid operator
are used as the multi-grid components.

4.1 Discretization

The first step in numerical solutions is to replace the partial differential equations by a system
of algebraic equations which approximates the partial differential equation in a finite number of
discrete points or volumes. This process is referred to as discretization and can be done in various
ways (e.g. finite difference, finite element and finite volume). This approximation of the PDE
introduces an error with respect to the solution of the PDE. This error is called the discretization
error and depends solely on the discretization. The discretization error for a specific problem can
be studied when the exact solution is known, or can be estimated using Taylor series.

The finite difference method uses Taylor series of the unknown function to approximate the
derivatives that appear in the partial differential equation. A second-order accurate approximation
of the 2D Poisson equation in gridpoint (xi, yj) is:

uhi−1,j − 2uhi,j + uhi+1,j

h2
x

+
uhi,j−1 − 2uhi,j + uhi,j+1

h2
y

= fhi,j (4.2)

with hx and hy the constant mesh-size in x- and y-direction, respectively, uhi,j the discrete ap-
proximation of the unknown u (xi, yj) to be solved for and fhi,j the discrete representation of the
continuous function f (xi, yj). For efficiency of notation a stencil notation is often used. The
operator acting on uh, referred to as Lh, is then written as:

Lh
〈
uh
〉
i,j

= fhi,j (4.3)

with :

Lh =
1
h2

 1
1 −4 1

1

 (4.4)
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where the gridsize is assumed to be equal in each direction (hx = hy = h). The coarse grid
operator for this problem can be chosen as the same discretization of the equation on the coarse
grid:

LH =
1
H2

 1
1 −4 1

1

 (4.5)

As an alternative Galerkin coarsening can be used. When full weighting and bi-linear interpolation
are chosen as the restriction and interpolation operators, the stencil of the coarse grid operator
becomes:

LH =
1

4H2

 1 2 1
2 −12 2
1 2 1

 (4.6)

This operator is also a second-order accurate approximation to the Laplace operator. It gives about
the same performance as the direct discretization, however, it has two disadvantages. Firstly,
the coarse grid operator becomes different on each grid. For special cases it even needs to be
calculated at each level (i.e. for problems with varying coefficients). Secondly, the Galerkin coarse
grid operator corresponds to a 9 point stencil (instead of a 5-point one), thus increasing the time
to evaluate the operator by a factor of 1.8. When more Galerkin coarsening steps are performed
the coarse grid operator will converge towards the following 9-point differential operator:

LH =
1

3H2

 1 1 1
1 −8 1
1 1 1

 (4.7)

4.2 Performance

The performance of multi-grid cycles for the Poisson problem is compared with predictions ob-
tained by LMA and two-grid convergence analysis.

4.2.1 Smoothing analysis

Standard one-point Gauß-Seidel or damped Jacobi relaxation have good smoothing properties for
the Poisson problem. This follows from the LMA: (for a more general overview of LMA, see section
2.2.1)

Jacobi relaxation

For point-Jacobi relaxation the previous values are used for the approximation of all new values
(i.e. ūhi,j = ũhi,j) in equation (2.19). With the standard 5-point differential operator defined in
equation (4.4) on a uniform grid (hx = hy = h), the relation between the error before and after
relaxation can be expressed as:

v̂hi,j = ṽhi,j + ω
ṽhi−1,j + ṽhi+1,j − 4ṽhi,j + ṽhi,j−1 + ṽhi,j+1

4
(4.8)

Substitution of the Fourier series (equation 2.20 and 2.20) and considering only one Fourier com-
ponent, yields:

Â
(
~θ
)

= Ã
(
~θ
)(

(1− ω) + ω

(
e−iθ1 + eiθ1 + e−iθ2 + eiθ2

)
4

)
(4.9)

so the error amplification factor (equation 2.21) is:

µ
(
~θ
)

=

∣∣∣∣∣∣
Â
(
~θ
)

Ã
(
~θ
)
∣∣∣∣∣∣ =

∣∣∣∣∣(1− ω) + ω

(
e−iθ1 + eiθ1 + e−iθ2 + eiθ2

)
4

∣∣∣∣∣ (4.10)
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This can be rewritten as:

µ
(
~θ
)

=
∣∣∣∣1− ω(sin2

(
θ1

2

)
+ sin2

(
θ2

2

))∣∣∣∣ (4.11)

Equation (4.11) is plotted in figure 4.1(a) for ω = 4/5 (the optimal value for the smoothing factor
[6,12]). The smoothing factor for multi-grid, defined in equation (2.23), is 0.6 for θ1 = ±θ2 = ±π.
This implies that a (ν1, ν2) cycle has the potential of reducing the error by a factor of 0.6ν1+ν2 .
When no multi-grid techniques are used convergence can be approximated by equation (2.22) and
is 1−O

(
ωh2

)
.
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Figure 4.1: Poisson problem: LMA analysis for point Jacobi and point Gauß-Seidel relaxation

Gauß-Seidel relaxation

Gauß-Seidel relaxation can be analyzed in the same way. The only difference is that. instead
of using only previous values, already updated values are used (i.e. ūhi,j = ûhi,j) in equation
(2.19). With the standard 5-point differential operator defined in equation (4.4) on a uniform grid
(hx = hy = h), the relation between the error before and after relaxation can be expressed as:

v̂hi,j = ṽhi,j +
v̂hi−1,j + v̂hi+1,j − 4ṽhi,j + ṽhi,j−1 + ṽhi,j+1

4
(4.12)

Substitution of the Fourier series (equation 2.20 and 2.20) and assuming that each component is
mapped onto itself, yields for the error amplification factor (equation 2.21):

µ
(
~θ
)

=
∣∣∣∣ eiθ1 + eiθ2

4− e−iθ1 − e−iθ2

∣∣∣∣ (4.13)

A graph of the absolute local error amplification factor is presented in figure 4.1(b). The smoothing
factor as defined in equation (2.23) is 0.5 for e.g. θ1 = π/2 and θ2 = cos−1(4/5). Here overre-
laxation cannot provide better convergence. This implies that a (ν1, ν2) cycle has the potential of
reducing the error by a factor of 0.5ν1+ν2 . Hence a cycle with ν1 = 2 and ν2 = 1, can potentially
reduce the error by an order of magnitude.

4.2.2 Two-grid analysis

In section 2.2.2 the two-grid analysis has been described, along with the Fourier symbols for
interpolation and restriction. To complete the two-grid analysis also the Fourier symbol for the
operator, the coarse grid operator and the smoothing are required. These symbols are discussed
below.
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Operator

First the Fourier symbol of the operator is calculated. This can be done by applying the operator
(equation 4.4) to the grid functions (equation: 2.24)

Lh
〈
φh
(
~θ, ~x
)〉

= eiθ1
x1
h eiθ2

x2
h

1
h2

(
−eiθ2 − e−iθ1 + 4− eiθ1 − e−iθ2

)
= φh

(
~θ, ~x
) 2
h2

(2− cos θ1 − cos θ2) (4.14)

So the Fourier symbol is:

L̃h
(
~θα
)

=
2
h2

(2− cos θ1 − cos θ2) (4.15)

And the transformation matrix:

L̂h
(
~θ
)

=


L̃h
(
~θ(0,0)

)
L̃h
(
~θ(1,1)

)
L̃h
(
~θ(1,0)

)
L̃h
(
~θ(0,1)

)

 (4.16)

Coarse grid operator

The Fourier symbol of the coarse grid operator is calculated by applying the coarse grid operator
(equation 4.5) to the grid functions (equation: 2.24)

LH
〈
φh
(

2~θ, ~x
)〉

= e2iθ1
x1
H e2iθ2

x2
H

1
H2

(
−e2iθ2 − e−2iθ1 + 4− e2iθ1 − e−2iθ2

)
= φH

(
~2θ, ~x

) 2
H2

(2− cos 2θ1 − cos 2θ2) (4.17)

giving:

L̃H
(
~2θ
)

=
2
H2

(2− cos 2θ1 − cos 2θ2) (4.18)

For the inverse of the operator the Fourier symbol is:

L̃H
(
~2θ
)−1

=
H2

2 (2− cos 2θ1 − cos 2θ2)
(4.19)

Smoothing operator

For lexicographic Gauß-Seidel and Jacobi relaxation the Fourier symbol of the smoothing operator
can be represented by the diagonal matrix.

Ŝh
(
~θ
)

=


µ
(
~θ(0,0)

)
µ
(
~θ(1,1)

)
µ
(
~θ(1,0)

)
µ
(
~θ(0,1)

)

 (4.20)

with µ
(
~θ
)

defined by 4.11 for Jacobi relaxation and by 4.13 for Gauß-Seidel relaxation.
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Results

The predicted two-level convergence follows from the largest eigenvalues of the Fourier symbol of
the two-grid iteration operator:

MH
h =

(
Ŝh
)ν2 (

Ĩh − IhH
(
L̃H
)−1

ĨHh L̂
h

)(
Ŝh
)ν1

(4.21)

Results are shown in table 4.1 and compared to the smoothing factors. For a small number
of smoothing steps (ν) results of both analysis are quite similar. For larger ν the smoothing
factors become too optimistic (especially for Gauß-Seidel relaxation), because the coarse grid
approximation can no longer reduce low-frequency components as fast as the relaxation removes
high-frequency components. Table 4.1 also compares the influence of the restriction operator
(full weighting (FW) and injection (INJ) on the convergence factors. The results show that
both types are satisfactory restriction operators for the Poisson equation. Injection requires less
computational work than FW, so it appears to be the better restriction operator. However, the
injection operator has the disadvantage that the spectral norm (i.e. the square root of the largest
eigenvalue of MMT , which gives insight into the error reduction in one iteration step) of the
corresponding two-grid operators is not bounded. One thus needs to be careful with this operator,
in particular if it is used in FMG or more generally, if only a small number of cycles is used.

Jacobi Gauß-Seidel-LEX
ν1 + ν2 µν1+ν2

loc ρlocFW ρlocINJ µν1+ν2
loc ρlocFW ρlocINJ

1 0.600 0.600 0.600 0.500 0.400 0.447
2 0.360 0.360 0.360 0.250 0.193 0.200
3 0.216 0.216 0.216 0.125 0.119 0.089
4 0.130 0.137 0.130 0.063 0.083 0.042
5 0.078 0.133 0.078 0.031 0.064 0.028

Table 4.1: Poisson problem: Smoothing factors and two-grid convergence factors for point Jacobi
and Point Gauß-Seidel relaxation

4.3 Results

In this paragraph results for the two dimensional Poisson equation will be shown. First results
for the single-grid relaxation sweeps are presentend. Next the relaxation is used in combination
with the Multi Level scheme. Finally results of the Full Multi Grid scheme are shown. Al results
are obtained using a right-hand side, for which the analytical solution is known. This allows
performance to be evaluated not only by means of residual reduction but also by the reduction of
the error in the solution itself.

f (x, y) = −8π2 sin (2πx) sin (2πy)
u (x, y) = sin (2πx) sin (2πy) (4.22)

Residuals and errors will be measured using the L2 or Euclidean norm, defined as:

∣∣uh∣∣
2

=

√
1

NyNx

Nx∑
i=0

Ny∑
j=0

(
uhi,ju

h
i,j

)
(4.23)

4.3.1 Relaxation

For the case of single-grid Gauß-Seidel relaxation sweeps on a uniform grid with mesh-size h
in both directions the asymptotic error reduction is 1 − O

(
h2
)

as predicted by the LMA in
paragraph 4.2.1. This is illustrated in figure 4.2, where the L2 norm of the residual (

∣∣rh∣∣
2
) and of
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the error (
∣∣uh − u∗∣∣

2
) are plotted as a function of the number of sweeps for different mesh-sizes.

Actually the curves show three different types of behaviors. In the first part the convergence rate
is high. Initially all frequencies are present in the residual. Due to the nature of the Gauß-Seidel
relaxation the high-frequency components are reduced very effectively, leading to a good initial
convergence rate. After a few sweeps, however, the convergence rate reduces to the asymptotic
convergence speed, because only the troubling frequency components remain. After many sweeps
the residual becomes so small that the machine accuracy limits further reduction of the residual.
The error mimics the behavior of the residual. However, it converges to a value which represents
the accuracy of discretization scheme and decreases to zero only with decreasing mesh-size. The
chosen discretization scheme is O

(
h2
)

accurate (see section 4.1) so the lower limit of the error
reduces quadratically as the number of grid points increases, which is indeed observed in figure
4.2(b).

4.3.2 Multi-Level

For Multi-Level cycles using Gauß-Seidel relaxation the expected error reduction per cycle is 0.12
for V(2,1) multi-grid cycles. This is illustrated in figure 4.3, where the L2 norm of the residual
and the error are plotted as a function of the number of cycles for different mesh-sizes. In the
graphs a constant (independent of the mesh-size) reduction of the residual and the error can be
seen up to machine accuracy for the residual and discretization accuracy for the error. In table
4.2 the convergence rates for V- and W-cycles on a mesh-size h = 1/256 are compared with the
smoothing and two-grid convergence factors for different numbers of relaxation. Good agreement
is achieved for small ν. For higher ν the smoothing factors for V-cycles tend to be too optimistic,
whereas two-grid convergence factors are still accurate. Also for high ν, convergence for W-cycles
is slightly better than for V-cycles, but the increased computational cost of W-cycles (see section
2.3.2) makes V-cycles more efficient overall. Whether post- or pre-relaxation are used turned out
to have little effect as long as the total number of relaxation sweeps used on each level remains
constant. This is consistent with the results of the two-grid analysis.

Jacobi Gauß-Seidel-LEX
ν1 + ν2 µν1+ν2

loc ρloc V-cycle W-cycle µν1+ν2
loc ρloc V-cycle W-cycle

1 0.600 0.600 0.593 0.593 0.500 0.400 0.390 0.390
2 0.360 0.360 0.361 0.356 0.250 0.193 0.186 0.191
3 0.216 0.216 0.240 0.213 0.125 0.119 0.127 0.117
4 0.130 0.137 0.184 0.134 0.063 0.083 0.096 0.083

Table 4.2: Poisson problem: Computed theoretical smoothing factors and two-grid convergence
factors, compared to V- and W-cycle performance on a target 256x256 grid using point Gauß-Seidel
relaxation

4.3.3 Full-Multi-Grid

FMG results for the Poisson equation are shown in figure 4.4. Here the L2-norm of the residual
and the error are plotted as a function of the number of grid points for 1 and 2 V(2,1) cycles and
for a W(2,1) cycle per level. As the difference in error between the test cases is small, it becomes
clear that one FMG V-cycle is sufficient to obtain solutions with a numerical error that is small
compared to the discretization error.

4.3.4 τ-Extrapolation

An easy way to obtain higher-order accurate results facilitated by multi-grid is τ -extrapolation.
This technique has been applied in combination with FMG for the Poisson equation. However,
for τ -extrapolation it is not useful to analyze the residual, because with τ -extrapolation the cycle
corrects to an accurate solution of the PDE and not to an accurate solution of the discretized
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Figure 4.2: Poisson problem: L2-norm of the residual (
∣∣rh∣∣

2
) and the error (

∣∣uh − u∗∣∣
2
) as a

function of the number of single grid relaxation sweeps for different grid sizes using point Gauß-
Seidel relaxation (the mesh-size for a grid identified by n x n is h = 1/n)
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Figure 4.3: Poisson problem: L2-norm of the residual (
∣∣rh∣∣

2
) and the error (

∣∣uh − u∗∣∣
2
) as a

function of the number of V(2,1) multi-grid cycles for different grid sizes using point Gauß-Seidel
relaxation
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Figure 4.4: Poisson problem: L2-norm of the residual (
∣∣rh∣∣

2
) and error (

∣∣uh − u∗∣∣
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) on different

grids for the FMG cycle using point Gauß-Seidel relaxation
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equations. Therefore only the errors are plotted in figure 4.5 as a function of the number of grid
points for FMG with 1 and 2 V(2,1) cycles and for a W(2,1) cycle per level. From this figure two
observations can be made. Firstly, the τ -extrapolation makes the discretization more accurate
(compare with figure 4.4(b)). In the present case the τ -extrapolation produces a fourth-order
accurate solution (see setion 2.5.1). Halving the mesh-size will decrease the error by a factor of 16.
Secondly, either two V(2,1) cycles or one W(2,1)-cycle per mesh are required to reach the desired
accuracy. This is what is expected. Assume the initial approximation on a level to have an error
small compared to the discretization error of the coarser grid (O(H4) with H = 2h). To obtain
an error which is small compared to the discretization error of the current grid (O(h4)), the error
needs to be reduced by a factor of H4/h4 = 24 = 16. One cycle reduces the error by a factor of 8,
hence 2 cycles are required.
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Figure 4.5: Poisson problem: L2-norm of the error (
∣∣uh − u∣∣

2
) on different grids for the FMG

cycle using τ -extrapolation and point Gauß-Seidel relaxation

4.4 Anisotropic Poisson equation

The preceding section showed that the isotropic Poisson equation can be solved very efficiently
using standard multi-grid techniques. Often this efficiency does not extend automatically to other
problems even when they appear very similar. Again a detailed analysis is required to ensure
satisfactory performance. For example, consider the anisotropic Poisson equation on a uniform
mesh (with mesh-size hx = hy = h):

∂2u
∂x2 + ∂

∂y

(
ε (x, y) ∂u∂y

)
= f (x, y) (x, y) ∈ Ω

u = 0 (x, y) ∈ ∂Ω
(4.24)

This problem can be discretized using central differences, yielding the standard second-order stencil
for the x-direction. For the y-direction the stencil becomes:

∂

∂y

(
ε (x, y)

∂u

∂y

)∣∣∣∣
i,j

=
−εi,j− 1

2

∂u
∂y

∣∣∣
i,j− 1

2

+ εi,j+ 1
2

∂u
∂y

∣∣∣
i,j+ 1

2

h

εi,j− 1
2

∂u

∂y

∣∣∣∣
i,j− 1

2

= εi,j− 1
2

−uhi,j−1 + uhi,j
h

εi,j+ 1
2

∂u

∂y

∣∣∣∣
i,j+ 1

2

= εi,j+ 1
2

−uhi,j + uhi,j+1

h

∂

∂y

(
ε (x, y)

∂u

∂y

)∣∣∣∣
i,j

=
εi,j− 1

2
uhi,j−1 −

(
εi,j− 1

2
+ εi,j+ 1

2

)
uhi,j + εi,j+ 1

2
uhi,j+1

h2
(4.25)
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This leads to the following 5-point stencil:

Lhi,j =
1
h2

 εi,j+ 1
2

1 −2−
(
εi,j− 1

2
+ εi,j+ 1

2

)
1

εi,j− 1
2

 (4.26)

For simplicity it is assumed that ε is an analytic function and its values can be calculated in each
point. When ε is only known in grid points the value in the “half” points can be obtained by
using the average of its two neighbors:

Lhi,j =
1
h2

 1
2

(
εhi,j+1 + εhi,j

)
1 −2− 1

2

(
εhi,j−1 + 2εhi,j + εhi,j+1

)
1

1
2

(
εhi,j + εhi,j−1

)
 (4.27)

For the case of constant ε one obtains:

Lhi,j =
1
h2

 ε
1 −2− 2ε 1

ε

 (4.28)

which is the equivalent of the isotropic Poisson equation, discretized on a non uniform mesh with
mesh-sizes hx = h in x-direction and hy = h√

ε
in y-direction.

As a result of the anisotropy there is a weak connection in the y-direction for ε � 1. This
small difference from the conventional Poisson equation already leads to trouble when the standard
multi-grid approach would be applied indiscriminately: multi-grid convergence factors degenerate
as ε tends to zero or to infinity. This can be seen for example by a LMA analysis using Gauß-Seidel
iterations for constant ε.

v̂i,j = v̂i−1,j+ṽi+1,j+ε(v̂i,j−1+ṽi,j+1)−h2fi,j
2+2ε

µ
(
~θ, ε
)

=
∣∣∣ eθ1i+εeθ2i

e−θ1i+εe−θ2i−2−2ε

∣∣∣
µloc = max

~θ∈Thigh
µ
(
~θ, ε
)

= 1 (4.29)

The asymptotic error reduction for small ε deteriorates, as can be seen in equation 4.29 and in
figure 4.6. For example for ε = 0 and θ1 = 0 the convergence rate becomes G (0, θ2, 0) = 1. This
means that components, which are oscillatory in the y-direction and smooth in the x-direction,
are not affected by the relaxation at all. In figure 4.6 this effect can be seen from the values along
the line θ1 = 0 for small ε.

4.4.1 Semi-coarsening

A solution to this problem is to realize that the error after a few relaxations is only smooth in
the x-direction. Such errors can be well approximated on a grid that is coarser in the direction of
strong coupling only, i.e. a semi-coarsened grid.

To predict the convergence of a cycle with semi-coarsening LMA can still be used, but the
range of high frequencies, that the fine grid should reduce, is now changed to either |θ1| ≥ π/2 or
|θ2| ≥ π/2, depending on the direction of coarsening. Smoothing factors for semi-coarsening for
the anisotropic Poisson problem vary from µloc = 0.5 for ε = 1 to µloc =

√
5/5 for ε = 0.

For semi-coarsening with small ε the coarse grid operator becomes (by directly discretizing the
continuous function on the coarse grid):

LHi,j =
1
H2

 4ε
1 −2− 8ε 1

4ε

 (4.30)

Compared to the fine grid operator (4.28), the anisotropy has decreased. When the semi-coarsening
process is continued, the anisotropy will decrease further. When a grid is reached for which the
isotropy is restored, full coarsening can be applied to solve the coarse grid problem.
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Figure 4.6: Anisotropic Poisson problem: LMA analysis for point Gauß-Seidel relaxation

4.4.2 X-Line relaxation

A second possibility to overcome the problems associated with anisotropy is to use line relaxation.
Line relaxation implies that in the relaxations, instead of applying single point changes, systems of
equations for an entire line of unknowns in the strongly coupled direction are solved simultaneously.
The effect in the LMA can be determined easily. The errors before (ṽ) and after relaxation (v̂)
will satisfy:

v̂i−1,j − (2 + 2ε) v̂i,j + v̂i+1,j = −ε (v̂i,j−1 + ṽi,j+1) + h2fi,j (4.31)

So that:

µ
(
~θ, ε
)

=
∣∣∣∣ εeθ2I

2 cos (θ1) + εe−θ2I − 2− 2ε

∣∣∣∣
µloc = max

~θ∈Thigh
µ
(
~θ, ε
)

=

{√
5

5 ≈ 0.45, if ε ≤ 2
√

5
5−
√

5
≈ 1.62

ε
2+ε , if ε ≥ 2

√
5

5−
√

5
≈ 1.62

(4.32)

ε 0.001 0.01 0.1 1 10 100 100
µ 0.447 0.447 0.447 0.447 0.833 0.980 0.998

Table 4.3: Anisotropic Poisson problem: asymptotic convergence rates for line Gauß-Seidel relax-
ation for different values of ε

One sweep of the line Gauß-Seidel relaxation method for the Poisson equation, means solving
a tri-diagonal system for each line of constant y. This can be performed efficiently with Gaussian
elimination (Thomas algorithm) or a 1D multi-level solver. In particular a multi-level solver is
interesting, as there is no need to solve the system exactly. A single V- or W- cycle is sufficient
to obtain the full line relaxation efficiency. Both approaches require the same computational time
of O (n) operations for one sweep. The work required for line relaxation is only a slightly larger
than for point relaxations, so the cost of the whole cycle does not change drastically. The LMA
analysis predicts good convergence rates for ε ≤ 1 for x-line relation (equation 4.32, table 4.3 and
figure 4.7).

To illustrate the above method consider the numerical results obtained using a random initial
condition and a right hand side corresponding to a known analytical solution.

f (x, y) = −4 (1 + ε)π2sin (2πx) sin (2πy)
u (x, y) = sin (2πx) sin (2πy) (4.33)
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Figure 4.7: Anisotropic Poisson problem: LMA analysis for line Gauß-Seidel relaxation

In figure 4.8(a) residuals are plotted for multi-level cycles with ε = 0.01 on different mesh-sizes.
The grid-independent convergence rates expected from the LMA are easily obtained for all grids.
In figure 4.8(b) residuals are plotted for multi-level cycles on a 1024x1024 grid for different values
of ε. Good convergence rates are obtained for all values of ε ≤ 1.
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Figure 4.8: Anisotropic Poisson problem: L2-norm of the residual (
∣∣rh∣∣

2
) as a function of the

number of V(2,1) multi-grid cycles on different grids (with constant ε = 0.01) and for different
values of ε (on a constant 1024x1024 grid) using line Gauß-Seidel relaxation

4.4.3 Alternating line relaxation

The single-line relaxation only performs well when the direction of weak coupling is known. How-
ever, often this direction is unknown or changing within the domain (i.e. Poisson’s equation on a
stretched grid with stretching towards the boundaries). To solve this problem one could use line
relaxation in both directions. This process is known as alternating line relaxation. This makes the
solver more robust and applicable to a larger range of Poisson-like problems, but it also doubles
the computational cost. Alternating line relaxations works well, because line relaxation in the
wrong direction does not adversely affect convergence. The LMA analysis is easily obtained by
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multiplying the asymptotic convergence rate of x-line and y-line smoothers:

µ
(
~θ, ε
)

=
∣∣∣∣ εeθ2i

2 cos (θ1) + εe−θ2i − 2− 2ε

∣∣∣∣ ∣∣∣∣ eθ1i

2ε cos (θ2) + e−θ1i − 2− 2ε

∣∣∣∣
µloc = max

~θ∈Thigh
µ
(
~θ, ε
)

=

{√
5

5
1

1+2ε , if ε ≤ 1
√

5
5

ε
2+ε , if ε ≥ 1

(4.34)
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Figure 4.9: Anisotropic Poisson problem: LMA analysis for alternating line Gauß-Seidel relaxation

The effect of alternating line relaxation on the convergence of a cycle is presented in figure 4.9,
showing a graph of µ

(
~θ, ε
)

for ε = 0.01 and 100
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Figure 4.10: Anisotropic Poisson problem with varying ε (x, y)

To illustrate the performance of alternating line relaxation in a cycle, numerical results have
been obtained using a random initial condition and varying ε. A right-hand side corresponding to
a known analytical solution is prescribed (see equation 4.35 and figure 4.10(a)).

ε (x, y) = 103cos(2πx)cos(2πy)

f (x, y) = −4π2u (x, y) (1 + ε (x, y) (1 + 3cos (2πx) cos (2πy) ln (10)))
u (x, y) = sin (2πx) sin (2πy) (4.35)
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In figure 4.10(b) residuals are plotted for multi-level cycles on different mesh-sizes. The grid-
independent convergence rates expected from the LMA are obtained for all grids. Results are
also comparable to those of the single-line smoother in figure 4.8(a) for constant ε < 1, but the
computational cost is twice that of a single line relaxation. So when the direction of weak coupling
is known it is faster to use the one-directional line relaxation.

4.5 Boundary conditions

So far Dirichlet boundary conditions have been imposed at the boundary of the domain. In
practice, however, often boundary conditions like Neumann or periodic boundary conditions want
to be imposed. In principle the convergence rate of a multi-grid solver is determined by the
equations applied in the interior of the domain. But some boundary conditions may lead to
locally non smooth errors near the boundary. In that case special measures are necessary to
preserve the efficiency of the algorithm.

4.5.1 General treatment of boundary conditions

Consider the general 2D problem:

LΩu = fΩ (Ω)
LΓu = fΓ (Γ = ∂Ω) (4.36)

with a discretization

LhΩu = fhΩ
(
Ωh
)

LhΓu = fhΓ
(
Γh = ∂Ωh

)
(4.37)

The general approach of treating boundary conditions can be summarized as follows:

• Relax both the equations in the interior of the domain and the equation on the boundary
on the fine grid. This can be done one at a time, or by grouping some equations together
and solving them.

• Transfer the residual from the fine grid to the coarse grids separately for boundary conditions
and interior equations. This separation is important since the discretized boundary condi-
tions and the discretized interior equations have different operators, typically with different
powers of h.

• Relax both the coarse grid representation of the boundary conditions and the interior equa-
tions

• Interpolate the coarse grid correction to the fine grid including its boundary points.

Two examples of this approach for the case of the Poisson problem are explained below.

4.5.2 Neumann boundary conditions

Consider the Poisson equation on the unit square, with a Neumann boundary condition at one of
the sides, for instance at the x = 0 boundary, and Dirichlet boundary conditions otherwise:

LΩu = −∆u = fΩ Ω = (0, 1)2

LΓNu = un = fΓN ΓN = {(x, y) : x = 0, 0 < y < 1}
LΓDu = u = fΓD ΓD = ∂Ω\ΓN (4.38)
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where un is the derivative of u in the direction of the outward normal. For the discretization of
the Neumann boundary condition a central second-order approximation is used:

LhΓNu
h
0,j =

1
2h
(
uh−1,j − uh1,j

)
(4.39)

which is implemented assuming an extended grid with ghost points outside Ω. Because new points
are introduced with this discretization, one also needs to add extra equations. It is assumed that
the Laplace operator will hold on ΓN too:

LhΩu
h = fhΩ

(
Ωh ∪ ΓhN

)
LhΓNu

h = fhΓN
(
ΓhN
)

uh = fhΓD (ΓD) (4.40)

So the discretized Poisson equation is used to provide new approximations for the boundary points,
whereas the discretized Neumann boundary condition is used to update the unknowns at the ghost
points. In principle, these relaxations can be done one after the other or simultaneously. The latter
means that a 2x2 system is solved per pair of grid points. The residuals of the boundary condition
and the interior equations are restricted separately. The 1D full weighting operator (2.3) can be
used to restrict the boundary conditions. For the restriction of the discretized interior equation
at the Neumann boundary points also the residual at the ghost points is required. Equation 4.39
suggests using the residual at the interior points, leading to the so-called modified full weighting
operator:

IhH =
1
16

 2 2
4 4
2 2

 (4.41)

It is also possible to eliminate the unknowns at the ghost points. This can be done by substituting
the equation for the Neumann boundary points in the discretized Poisson equation at the boundary
points. This leads to the following equations for the Neumann boundary:

fhΓN = fhΩ +
2
h
fhΓN

Lh =
1
h2

 −1
4 −2
−1

 (4.42)

The relaxation of the eliminated boundary conditions is equivalent to the collective relaxation of
both equations located on the boundary in the non-eliminated case described above. The use of the
modified full weighting operator (equation 4.41) for the eliminated Neumann boundary conditions
is equivalent to the non-eliminated approach (where 1D full weighting is used for the discretized
Neumann boundary condition and the modified full weighting for the discretized Poisson equation
at boundary points).

To illustrate the method, multi-grid cycles are performed with a right hand side, corrseponding
to a known analytical solution:

fΩ (x, y) = −8π2 sin (2πx) sin (2πy)
fΓN (x, y) = 2π sin (2πy)
fΓD (x, y) = 0
u (x, y) = sin (2πx) sin (2πy) (4.43)

Performance is illustrated in figure 4.11, where the L2 norm of the residual and the error are
plotted as a function of the number of V(2,1) cycles for different grid sizes for a Poisson problem
with a Neumann boundary condition. Convergence is just as good as for the Poisson problem with
only Dirichlet boundary conditions (see figure 4.3).
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Figure 4.11: Poisson problem with Neumann boundary: L2-norm of the residual (
∣∣rh∣∣

2
) and error

(
∣∣uh − u∗∣∣

2
) as a function of the number of V(2,1) multi-grid cycles, for different grid sizes, using

point Gauß-Seidel relaxation

4.5.3 Mixed boundary conditions

Consider the Poisson equation on the unit square, with a Neumann boundary condition imposed
on half of one of the sides and Dirichlet boundary conditions on the other boundaries:

LΩu = −∆u = fΩ Ω = (0, 1)2

LΓNu = un = fΓN ΓN = {(x, y) : x = 0, 0 < y < 0.5}
LΓDu = u = fΓD ΓD = ∂Ω \ ΓN (4.44)

When the resulting the system is solved in the same way as equation 4.38, some convergence
difficulties exist. These difficulties are shown in 4.12(a), where the L2-norm of the residual is
shown for V(2,1) cycles on different grids. Initial convergence is good, but after a few cycles
convergence deteriorates and even becomes grid-size dependent. The cause of this deteriorated
convergence is shown in figure 4.12(b), where the residual near the discontinuity in the boundary
condition is plotted after six V(2,1) cycles on a 512x512 grid. Residuals are low everywhere except
around the discontinuity in the boundary condition. Additional work in the neighborhood of the
discontinuity is required for optimal performance. The extra work required for these relaxations
is relatively small compared tot the total work, so the total required computational work still is
O (N).

First additional point relaxations are performed on lines parallel to the y-axis. The number
of lines and relaxations per point have been varied to study their optimal values. Results are
shown in figure 4.13(a) for different cases. Two additional relaxations on four lines (including the
boundary line) are required to restore performance (blue line), additional work does not further
increase convergence.

As an alternative, additional point relaxations can be performed on points in a square box
around the discontinuity in the boundary condition. The length, width and number of additional
relaxations have been varied to study optimal performance. Results are shown in figure 4.13(b)
for different cases. Two additional relaxations for the points in a box with depth of four points
(including the boundary line) and a width of seven points are required to preserve the performance
(cyan line). Additional work does not further increase the convergence. The performance proved
to be independent of the starting corner for the additional relaxations. The second method is
computationally less expensive than the first method (i.e. 56 versus 4096 additional point relax-
ations for a 512x512 grid), but has the same performance. Therefore this method is optimal for
this problem.
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Figure 4.12: Poisson problem with a discontinuity in the boundary condition
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4.6 Conclusions

In this chapter is has been shown that multi-grid methods are able to solve the Poisson problem
and Poisson-like problems very efficiently. Convergence rates of 0.12 per cycle are possible and
solutions which are accurate up to discretization accuracy are obtained in O (N) operations.
However, often this efficiency does not extend automatically to other problems which appear as
very similar. A new detailed analysis is required to detect slowly converging components on the
fine grid and for a way to represent and solve these components on the coarse grid. Also boundary
conditions do not need to cause any problems for multi-grid methods. Additional local relaxation
work in the neighborhood of the boundary is usually sufficient to maintain optimal performance.
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Chapter 5

Geometric multi-grid applied to
the convection-diffusion equation

In this chapter the convection-diffusion equation in 2 dimensions is considered:

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂au

∂x
+
∂bu

∂y
= f (x, y) (x, y) ∈ Ω (5.1)

on a domain Ω with Dirichlet conditions on inflow boundaries and Neumann conditions on outflow
boundaries. This is an important equation in CFD, since the combination of diffusion and convec-
tion is often found in nature, e.g. the momentum and energy equations describing fluid flows. a
and b are the dimensionless convective speeds in x and y direction, respectively and the parameter
ε [m] determines the ratio between diffusion and convection. Obviously, the convection-diffusion
equation is a singularly pertubated equation: in the limit case ε → 0 it is no longer elliptic,
but hyperbolic. The convection-diffusion equation is a linear model problem for the momentum
equations in the Navier-Stokes equations and for the energy equation.

5.1 Discretization

The first complications for the convection-diffusion equation already show in the discretization
of the convective terms. In this section three possible discretizations (central differencing, first-
order upwind and κ-schemes) are discussed together with possible relaxation techniques. All
discretizations are given for the case of constant coefficients (i.e. constant ε, a and b):

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+ a

∂u

∂x
+ b

∂u

∂y
= f (x, y) (5.2)

In appendix A, the derivation of the discretizations for non constant coefficient cases is discussed.

5.1.1 Central differencing

A second-order accurate approximation on a uniform grid with gridsize h to the convective terms
can be obtained using central differencing:

a
∂u

∂x central
=

a

2h
[
−1 0 1

]
(5.3)

However, this discretization is only stable for a Péclet-number of:

Pe =
h

ε
max (|a| , |b|) ≤ 2 (5.4)
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where Pe is the so-called mesh Péclet-number. This can easily be illustrated by solving the one di-
mensional, constant coefficient, convection-diffusion equation with Dirichlet boundary conditions:

−ε∂
2u

∂x2
+ a

∂u

∂x
= 0 x ∈ (0, L)

u (0) = 0
u (L) = 1 (5.5)

The analytic solution is:

u (x) =
1− e axε
1− e aLε

(5.6)

For a central discretization of the convective and diffusive terms, the discrete equations become:

uo = 0
−
(
ε+ ah

2

)
ui−1 + 2εui −

(
ε− ah

2

)
ui+1 = 0 i ∈ [1..n− 1]

un = 1

with n + 1 the number of points and h = L/n the gridsize. Substituting the general solution
uhi = Cqi, into the equation for all interior points yields:

−
(
ε+

ah

2

)
q−1 + 2ε−

(
ε− ah

2

)
q = 0

Solving for q gives:

q1 = 1

q2 =
2ε+ ah

2ε− ah
(5.7)

So the general solution becomes:

uhi = C1q
i
1 + C2q

i
2 = C1 + C2q

i
2 (5.8)

The constants C1 and C2 can be determined by applying the boundary conditions which gives the
discrete solution (see also figure 5.1):

uhi =
1− qi2
1− qn2

(5.9)

When q2 < 0 (or equivalently n < |a|L
2ε ), the numerical solution is highly oscillatory. This

indicates that on such a grid the truncation error is too large for the discretized operator to mimic
the physical behavior of the partial differential equation. Researchers have been able to solve this
problem for central differencing by using special techniques at boundaries (i.e. Summation By
Parts (SBP) and Simultaneous Approximation Term (SAT)), but these techniques fall beyond the
scope of this thesis. [7, 12,14]

5.1.2 First-order upwind discretization

A simple and stable discretization is the first-order upwind discretization. In this discretization,
the first derivatives (convection terms) are approximated by one-sided differences such that only
upstream grid points are used in the discretization of the convection terms. Depending on the
sign of a, an O (h) accurate discretized of aux is given by:

a
∂u

∂xupwind
=

a
h [ 0 −1 1 ] if a < 0
a
h [ −1 1 0 ] if a ≥ 0

=
1
h

[
− 1

2 (a+ |a|) |a| 1
2 (a− |a|)

]
(5.10)
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Figure 5.1: Convection-diffusion problem: 1D solutions with Dirichlet boundary conditions for
different Péclet-numbers (by varying the number of grid points) using a second order central
differencing discretization of the convective term, with a > 0

For a > 0 the discretized equations for the one-dimensional convection-diffusion equation (equation
5.5) become:

uo = 0
− (ε+ ah)ui−1 + (2ε+ ah)ui − εui+1 = 0 i ∈ [1..n− 1]

un = 1

with the discrete solution:

uhi =
1− qi

1− qn
with q = 1 +

ah

ε
(5.11)

Since for q > 0 independent of h, the first-order upwind discretization does not exhibit any spurious
oscillating behavior, for any mesh-size. The upwind discretization of the 2D convection-diffusion
equation becomes:

Lh =
1
h2

 −ε+ h
2 (|b| − b)

−ε− h
2 (|a|+ a) 4ε+ h (|a|+ |b|) −ε+ h

2 (|a| − a)
−ε− h

2 (|b|+ b)

 (5.12)

Relaxation for first-order upwind discretization

To illustrate the behavior of relaxations for the first-order upwind discretization, a local mode
analysis on the special case a ≥ 0 and b ≥ 0 is considered. For this case the stencil of the operator
simplifies to:

Lh =
1
h2

 −ε
−ε− ah 4ε+ h (a+ b) −ε

−ε− bh

 (5.13)

It is immediately clear that pointwise Gauß-Seidel relaxation in the direction of the flow (down-
stream relaxation) will be an exact solver for ε→ 0. For small ε only a few iterations are needed
to solve the problem. This is also reflected in the LMA analysis:

µ (θ1, θ2) =
∣∣∣∣ −εeθ1i − εeθ2i

− (ε+ ah) eθ1i + 4ε+ ah+ bh− (ε+ bh) eθ2i

∣∣∣∣ (5.14)

For ε = 0 m the numerator becomes zero and the relaxation is an exact solver. The worst behavior
is obtained for a = b = 0, when only the diffusion part remains (the Poisson equation) which has
an asymptotic convergence factor of 0.5.
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Downstream Gauß-Seidel relaxation is a good smoother, but for most cases the direction of the
flow is not known in advance or varies throughout the domain. Therefore four-directional Gauß-
Seidel relaxation can be used. This involves four Gauß-Seidel iteration sweeps, each starting at a
different corner of the domain. This is allowed because Gauß-Seidel relaxation does not diverge
when applied in the wrong direction, although it does not converge either. This can be shown by
computing the smoothing factor of the relaxation in upstream direction:

µ (θ1, θ2) =
∣∣∣∣− (ε+ ah) eθ1i − (ε+ bh) eθ2i

−εeθ1i + 4ε+ ah+ bh− εeθ2i

∣∣∣∣ (5.15)

The worst performance is obtained for the case ε = 0 m:

µ (θ1, θ2) =
∣∣∣∣aeθ1i + beθ2i

a+ b

∣∣∣∣ (5.16)

However, for this case the numerator is always smaller than or equal to the denominator, so the
relaxation scheme does indeed not diverge.

Similar results can be obtained for alternating symmetric line Gauß-Seidel relaxation. This
relaxation consist of four steps: a forward and a backward line relaxation step in each direction.
The advantage of line relaxation over point relaxation is that excellent smoothing factors are also
obtained for anisotropic diffusion problems, so problems involving a combination of anisotropy
and dominating convection are handled well by these smoothers.

Need for higher-order

A major drawback of the first-order discretization is its low order of accuracy. A Taylor series
expansion of the operator, shows that the error in the discretization is |a|h2 uxx. The derivative
associated with the error of the first-order upwind schemes is the same as the derivative associated
with the diffusion terms. Therefore the error is also referred to as artificial viscosity. For small ε the
artificial viscosity dominates the physical viscosity unless an extremely fine grid is used (h→ 0).
In realistic flow applications ε/aL = O

(
Re−1

)
, so ah < ε implies that a grid with h/L < 1/Re

is required. This accuracy condition is very similar to the mesh requirement for stability of the
central scheme. Therefore first-order upwind schemes are not suitable for high Reynolds number
flow problems and higher-order upwind-biased schemes have to be used.

5.1.3 κ-schemes

A special class of upwind biased higher-order discretization approximation schemes are the so
called κ-schemes proposed by van Leer [8]. For the convective term aux, the scheme is defined as:

a
∂u

∂xκ
=
{

a
2h [ −1 0 1 ] − a

4h (1− κ) [ 0 −1 3 −3 1 ] if a < 0
a
2h [ −1 0 1 ] − a

4h (1− κ) [ −1 3 −3 1 0 ] if a ≥ 0 (5.17)

The stencil is the sum of the central difference scheme and a second-order dissipation term, which
can be interpreted as an (upwind) approximation of ah2

4 (κ− 1)uxxx. For specific values of κ,
some well-known schemes are obtained:

• κ = −1 Fully upwind scheme, which is O(h2)

• κ = 0 Fromm’s scheme, which is O(h2) (always used in this research)

• κ = 1
3 CUI scheme “cubic upwind interpolation”, which is O(h3)

• κ = 1
2 QUICK scheme “quadratic upwind interpolation for convective kinematics”, which is

O(h2)

• κ = 1 the central difference scheme, which is O(h2)



5.1. DISCRETIZATION 51

The κ-schemes can be stable for a wider range of problems than the central discretization schemes.
However, they still produce unphysical oscillations near sharp gradients in the solution or discon-
tinuities in boundary condition. In order to suppress such spurious oscillations so-called limiters
have been introduced. These limiters are based on the total variation diminishing (TVD) concept.

Limiters

In this section a brief overview of the concept of total variation and limiters is given. For a more
detailed explanation see van Leer [8] or Leveque [9]. The concept finds its origin in the scalar
conservation law:

∂u

∂t
+
∂au

∂x
= 0 (5.18)

The total variation, which is defined as

TV =
∫ ∣∣∣∣∂u∂x

∣∣∣∣ dx (5.19)

of any physically admissible solution to equation 5.18 does not increase in time:

∂

∂t
TV ≤ 0 (5.20)

When a numerical scheme for equation 5.18 is considered, it is important that such a scheme also
has the non-increasing TV property. Such schemes are called Total Variation Diminishing, or
TVD, schemes. To check if a scheme is TVD, first a discretized analog of equation 5.19 must be
defined. Therefore consider a 1D grid with coordinates xi = ih and corresponding solutions ui.
The total variation of the grid function uhi is then defined as:

TV (u) =
∑
i

|ui − ui−1| (5.21)

A discrete scheme is now called TVD if for the state at the new time level (un+1), the total
variation is less than or equal to the total variation of the current level (un), i.e.

TV
(
un+1

)
≤ TV (un) (5.22)

It can be proven that a scheme that obeys equation 5.22 is monotonic [8], where monotonicity is
defined as:

min (ui−1, ui+1) ≤ ui ≤ max (ui−1, ui+1) , ∀i (5.23)

Now consider the semi-discretization (i.e. only the spatial part is discretized) of equation 5.18 at
grid point i:

∂ui
∂t

=
∑
k

ck (ui+k − ui) (5.24)

where the coefficients ck are a function of the equation to be solved and the discretization. For a
scheme to be monotonic, and thus TVD, the coefficients ck must obey the following condition: [14]

ck ≥ 0 (5.25)

Consider for example the first-order upwind discretization (equation 5.10). For a constant positive
convection speed a, the semi-discretization of equation 5.18 in point i becomes:

∂u

∂t
+ a

ui − ui−1

h
= 0 =⇒ ∂u

∂t
= a

ui−1 − ui
h

(5.26)

So the coefficients in equation 5.24 become:

ck =

{
a
h if k = −1
0 otherwise

(5.27)
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This clearly satisfies equation 5.25 so the first-order upwind discretization is total variation dimin-
ishing.

Now consider the κ-scheme discretization (equation 5.17). For constant positive convection
speeds the semi-discretization of equation 5.18 becomes:

∂u

∂t
+

a

4h
((1− κ)ui−2 − (5− 3κ)ui−1 + (3− 3κ)ui + (1 + κ)ui+1) = 0

∂u

∂t
=

a

4h
((κ− 1) (ui−2 − ui) + (5− 3κ) (ui−1 − ui) + (−κ− 1) (ui+1 − ui)) (5.28)

So the coefficients in equation 5.24 become:

ck =


a
4h (κ− 1) if k = −2
a
4h (5− 3κ) if k = −1
a
4h (−κ− 1) if k = 1
0 otherwise

(5.29)

This leads to the following requirements for a monotonic scheme:

κ ≥ 1 κ ≤ 5
3

κ ≤ −1 (5.30)

These requirements are clearly conflicting and hence none of the linear κ-schemes is monotonic and
thus TVD. This turns out to be a general result, leading to the conclusion that a linear monotonic
scheme for the discretization of a hyperbolic system can only be first-order accurate. This is known
as Godunov’s order barrier theorem. Many scientific papers have already been written about this
topic, e.g. [8]. Most often solutions are found by using a nonlinear reconstruction on the interfaces
(i± 1/2). The partial derivative is then approximated as:

a
∂u

∂x
=
a

h

(
−ui− 1

2
+ ui+ 1

2

)
(5.31)

with

ui− 1
2

=

{
ui−1 +Ri−1

(
1+κ

4 (ui − ui−1) + 1−κ
4 (ui−1 − ui−2)

)
, if ai− 1

2
≥ 0

ui −Ri
(

1+κ
4 (ui − ui−1)− 1−κ

4 (ui+1 − ui)
)
, if ai− 1

2
< 0

ui+ 1
2

=

{
ui +Ri

(
1+κ

4 (ui+1 − ui) + 1−κ
4 (ui − ui−1)

)
, if ai+ 1

2
≥ 0

ui+1 −Ri+1

(
1+κ

4 (ui+1 − ui)− 1−κ
4 (ui+2 − ui+1)

)
, if ai+ 1

2
< 0 (5.32)

where Ri is a limiter function. In the literature several possibilities for these limiter functions are
given. However, describing them is beyond the scope of this thesis. All of them have the property
that the resulting discretization is second-order accurate and total variation diminishing. In this
research the Van Albada limiter is used (whenever limiters are used), for which Ri can be written
as:

Ri =
2 (ui − ui−1) (ui+1 − ui) + 2d2

(ui − ui−1)2 + (ui+1 − ui)2 + 2d2
(5.33)

with d some arbitrary small number to make sure that Ri = 1 for constant u.

Smoothing for κ-scheme discretizations

To illustrate the smoothing behavior for the discretization of the convection-diffusion equation
based on the κ-schemes, LMA analysis for the special case a ≥ 0 and b ≥ 0 is considered. For this
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case the discretization (without limiters) becomes:

Lh =
1

4h


0

b (1 + κ)− 4ε
h

a (1− κ) a (3κ− 5)− 4ε
h a (3− 3κ) + b (3− 3κ) + 16ε

h a (1 + κ)− 4ε
h 0

b (3κ− 5)− 4ε
h

b (1− κ)


(5.34)

Straightforward application of smoothers discussed so far (i.e. Jacobi and Gauß-Seidel in both
point and line form) is not suitable for the κ-schemes. Smoothing factors for a convection domi-
nated problem (i.e. ε→ 0) often turn out to be larger than 1.0. [10, 12]

One possibility is to use smoothers, in which the operator is split into three parts:

Lh = Lh+ + Lh0 + Lh− (5.35)

where Lh+ corresponds to the weights of already updated variables, Lh0 to the weights of all variables
to be solved for in the current relaxation step and Lh− the remaining weights. One relaxation step
now consists of solving ūh from:

Lh0 ū
h = fh − Lh−uh − Lh+ūh (5.36)

For relaxations able to smooth the discretization of κ-schemes, the splitting is motivated by the
defect-correction approach. This technique is used to obtain high-order accuracy by employing
low-order accurate schemes. Consider the problem:

Lhuh = fh (5.37)

where Lh is a higher-order accurate discretization of L. A general defect correction iteration can
be performed by solving:

L̂hūh = f̂h with f̂h = fh − Lhuh − L̂huh (5.38)

for ūh, where L̂h is a lower-order accurate discretization of L.
Now let Lh be a κ-scheme based discrete operator. For lexicographical x-line κ-smoothing the

operator Lh is split according to equation 5.36 with Lh0 based on a lower-accuracy operator (at
least in x-direction):

Lh+ =
1

4h


0
0

0 0 0 0 0
b (3κ− 5)− 4ε

h
b (1− κ)

 (5.39)

Lh0 =
1

4h


0
0

0 −4a− 4ε
h 4a+ 4b+ 16ε

h − 4ε
h 0

0
0

 (5.40)

Lh− =
1

4h


0

b (1 + κ)− 4ε
h

a (1− κ) a (3κ− 1) a (−1− 3κ) + b (−1− 3κ) a (1 + κ) 0
0
0

 (5.41)

Smoothers based on this splitting are referred to as κ-smoothers. Local mode analysis shows ac-
ceptable convergence when applied in the downstream direction (see figure 5.2(a)). Relaxations
in upstream direction (figure 5.2(b)) show divergence for certain grid functions. However, down-
stream relaxation is able to counteract the diverging behavior, making a four directional symmetric
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κ-smoother a robust solver for discretizations of the convection-diffusion equation (see figure 5.2(c)
and table 5.1).

Whenever limiters are used the same smoother can be employed. In the line solver the weights
of the variables to be solved for (Lh0 ) are those of the first-order upwind discretization and therefore
they do not depend on the limiters. Only the right hand side (i.e. Lh+ and Lh−) depends on the
choice of limiters and can easily be calculated using the currently available approximations.
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Figure 5.2: Convection-diffusion problem: LMA analysis for κ-smoothers applied to the κ-scheme
discretization of the convective terms (κ = 0, a = cos π4 , b = cos π4 , ε = 1e− 5 m and h = 1

256

ε = 0 m ε =∞
0 π 1

8 π 1
4 π 3

8 π 1
2

0.079 0.233 0.176 0.233 0.079 0.022

Table 5.1: Convection-diffusion problem: Smoothing factors for four directional symmetric κ-
smoother applied to the κ-scheme discretization of the convective terms, in the hyperbolic limit
for different angles (a = cosα, b = sinα) and in the elliptic limit

5.2 Smith-Hutton Problem

In this section the results of suitable types of discretizations (first-order upwind and κ-schemes)
applied to a convection-diffusion equation with discontinuous boundary conditions are presented.
Such a contact discontinuity results in large gradients in the solution, which is similar to problems
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occurring for boundary layer solutions. A well known example is the Smith-Hutton problem [11]:

−ε
(
∂2u
∂x2 + ∂2u

∂y2

)
+ ∂au

∂x + ∂bu
∂y = f (x, y) on Ω = [−1, 1]X [0, 1]

a = 2y
(
1− x2

)
b = −2x

(
1− y2

)
ε = 10−5 m (5.42)

and boundary conditions

u = 2, if −1
2
≤ x ≤ 0 and y = 0

∂u

∂y
= 0, if 0 < x ≤ 1 and y = 0

u = 0, elsewhere (5.43)

5.2.1 First-order upwind

Obtaining solutions for the Smith-Hutton problem using the first-order upwind discretization of
the convection terms is relatively easy. Because of the small viscosity, downstream Gauß-Seidel
relaxation itself already acts as an exact solver and only a few multi-grid cycles are necessary to
reduce the residual by several orders of magnitude. Solutions are shown in figure 5.3. In the left
figure contours of the solution are shown on a grid consisting of 64x128 cells and in the right figure
solutions on the line y = 0.25 for different grid sizes. From these figures the artificial diffusion is
clearly visible. The slopes on the coarse grids are much to smooth. The width of the region where
uh drops from two to zero should be O (ε) and independent of the grid size, which is certainly not
the case. For coarse grids the solutions smear out too much and unphysical solutions are obtained.
This is exactly why higher-order discretizations of the convection terms are necessary.
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(b) Solutions along y = 0.25 for different mesh-sizes

Figure 5.3: Smith-Hutton problem: Solutions for first-order upwind discretization of the
convection-diffusion equation

5.2.2 κ-schemes

Solutions for the Smith-Hutton problem for a κ-scheme discretization (κ = 0, Van Albada limiter)
of the convection terms are shown in figure 5.4. Compared to figure 5.3 the reduction in artificial
viscosity is immediately clear and solutions are much more accurate even for coarse grids.

The improved accuracy, however, comes at a cost, namely obtaining converged solutions is much
more difficult than for the first-order scheme. After a few multi-level cycles the residual consists
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Figure 5.4: Smith-Hutton problem: Solutions for the κ-scheme discretization of the convection-
diffusion equation with Van Albada limiter (κ = 0)

mainly of some highly oscillating components perpendicular to the flow. These components cannot
be represented accurately on coarser grids and thus have to be eliminated by relaxations on the
finest level. However, local relaxations fail to reduce these error components efficiently, because
the operator has nearly no coupling in this direction (because of the low viscosity). The only
way to reduce these residuals is by improving the upstream solution and convecting this solution.
For higher-order schemes this process is mesh-size dependent, so it is impossible to obtain grid-
independent convergence rates. This is reflected in figure 5.5 where the residuals for the Smith-
Hutton problem are plotted as a function of the number of cycles for several grid sizes. In figure
5.5(a) V(2,1) cycles are used, while in figure 5.5(b) only single-grid relaxation is used (3 relaxations
per sweep to obtain comparable results). At first the multi-grid cycles converge faster than the
single-grid sweeps, but after a few cycles both approaches show equal performance. Theoretically
the same problems should occur for the first-order upwind scheme. However, for this discretization
the upstream solution is convected with the flow in just one relaxation sweep (for all mesh-sizes)
and thus good performance is achieved.
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Figure 5.5: Smith-Hutton problem: L2-norm of the residual (
∣∣rh∣∣

2
) for the κ-scheme discretization

of the convective terms with Van Albada limiter and κ = 0
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5.3 Coarse grid correction problem

Although multi-grid convergence for the first-order discretization of the Smith-Hutton problem
seems convincing, difficulties may arise for certain convection-diffusion problems with very small
ε. The true difficulty of convection dominated problems is not the smoother, but the coarse grid
correction. With standard coarsening and standard coarse grid operators the two-grid convergence
factor is limited by 0.5 for first-order schemes. For higher-order schemes this problem is even more
severe. The factor of 0.5 is due to the fact that first-order upwind differencing for the coarse grid
produces an artificial viscosity on the coarse grid, which is twice as large as on the fine grid.

This factor can already be seen from the simplified two-grid analysis (see section 2.2.3). For
the first-order upwind scheme without diffusion:

1− L̃h(θ)

L̃H(2θ)
= 1− a(1−e−iθ1)+b(1−e−iθ2)

a(1−e−2iθ1)+b(1−e−2iθ2)
H
h

lim
θ→0

(
1− L̃h(θ)

L̃2h(θ)

)
=
{

H
4h , if aθ1 = −bθ2

0, otherwise (5.44)

For higher-order schemes the simplified two-grid analysis even gives a maximum convergence rate
of 0.75 (or 0.83 for |a| = |b| see equation 5.59).

The coarse grid correction problem can also be shown by a simple analysis. Consider the
Taylor series expansion of the first-order upwind discretization of the pure convection equation for
a > 0, b > 0.

Lh 〈u〉 = a
∂u

∂x
+ b

∂u

∂y
− h

2

(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
+O

〈
h2
〉

(5.45)

The third term on the right-hand side is the main error associated with the first-order upwind
scheme. Introducing a rotated (ξ, η) axis system, with ξ in streamwise direction and η perpendic-
ular to the flow, yields: (for ε = 0 m)

Lh 〈u〉 =
√
a2 + b2

∂u

∂ξ
− h

2

(
a3 + b3

a2 + b2
∂2u

∂ξ2
− 2ab

a− b
a2 + b2

∂2u

∂ξη
+ ab

a+ b

a2 + b2
∂2u

∂η2
+O

〈
h2
〉)

(5.46)

Perpendicular to the flow, there is no convection, so the main term in this direction is an error
term. For small viscosity (ε → 0 m), the solution in the η direction is therefore dominated by
an error term. This term depends on the grid size h, so solutions will be different on different
grids. This is shown more clearly in figure 5.6, where the results are shown for the case a = 1
and b = 1 in combination with a sinusoidal inlet condition. The exact numerical solution can
be obtained by using Gauß-Seidel relaxation and is shown on a grid with 64x64 cells in figure
5.6(a). In figure 5.6(b) the solution on the line x = y is shown for different grid sizes. From these
graphs it becomes immediately clear that the sinusoidal in let condition decays much faster on
coarser grids, due to the higher artificial viscosity. This is exactly the coarse grid problem: there
exist some low-frequency components (the so-called characteristic Fourier components) which are
damped more on coarser grids than on the fine grid. These components are not “correctly”
approximated on the coarse grid and therefore they do not give the required correction to the
fine grid. A two-level factor of 0.5 caused by the coarse grid correction leads to an even worse
multi-grid convergence. The convergence factor of a multi-grid cycle can be estimated from the
two-grid factor. If it is assumed that high-frequency components are correctly smoothed, that the
low-frequency components remain unchanged under smoothing, and that the two-level factor is
determined by the coarse grid approximation of low frequency components, a prediction of the
convergence factor for multi-grid cycles with l levels can be given by:

ρl = 1− (1− ρ)
(
1− ργl−1

)
(5.47)

with ρ the simplified two-grid convergence factor, ρl the convergence factor for level l (ρ0 = 0)
and γ the grid parameter (i.e. γ = 1 for V-cycles and 2 for W-cycles).
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The two-grid factor of 0.5 is not always observed in practice, e.g. in flow simulations for
so-called entering flows, i.e. flows that enter the domain through a boundary, see the example
discussed above. Characteristic components responsible for the low two-grid factor, that meet
upstream Dirichlet boundaries (with zero errors at these boundaries) are automatically reduced
by the downstream smoothers. An example for which the 0.5 factor is observed is the convection
dominated recirculating flow problem. This is the normal convection-diffusion equation with
Dirichlet boundary conditions, but with a special flow pattern:

ε = 10−5 m
a (x, y) = −sin (πx) cos (πy)
b (x, y) = sin (πy) cos (πx) (5.48)

For this case the characteristics form closed loops and thus never meet upstream Dirichlet
boundaries (see figure 5.7). Convergence results of applying W(2,1) cycles are shown in figure
5.8. In the left figure multi-grid results for the first-order upwind discretization of the convection-
diffusion equation are shown. When more levels are used the convergence rate deteriorates, because
of inaccurate corrections from the coarser grids. In the right figure results are shown for which
multi-grid is applied to the higher-order upwind discretization of the convection-diffusion equation.
For coarse target meshes (up to 64 by 64 grid cells) the performance is unsatisfactory because of
the bad coarse grid correction. When finer target grids are used, the physical diffusion plays a more
important role in the discretization and performance becomes somewhat better. For even larger
mesh-sizes (i.e. ε� max (a, b)h2) the physical diffusion will dominate over the error terms coming
from the convective terms and corrections coming from the second finest grid will be accurate.
Accurate solutions on the second finest grid are achieved because a W-cycle is used.

5.4 Solution 1: Improved coarse grid operator

Obtaining good coarse-grid corrections when the coarse grid stencil is the direct discretization
of the equations on the coarse grid is impossible, because the smooth characteristic components
receive only a fraction of the necessary correction from the coarse grid. This fraction is caused by
the fact that for characteristic components the first truncation term perpendicular to the flow is
different for each grid and dominates the operator (since the main term vanishes). The simplest
solution would therefore be to construct an operator whose first truncation term approximates
the first truncation term of the fine grid operator [16]. For the first-order upwind scheme this can
be done by combining the first-order upwind scheme and the κ-schemes on coarser grids. The
improved coarse-grid operator than becomes:

LHimproved = αLHupwind + (1− α)LHκ (5.49)

with

α =
(
h

H

)
(5.50)

For the special case a > 0, b > 0 and κ = 0 the stencil becomes:

LHimproved =
1

4h


0

b (1− α)− 4ε
h

a (1− α) −a (5− α)− 4ε
h (a+ b) (3 + α) + 16ε

h a (1− α)− 4ε
h 0

−b (5− α)− 4ε
h

b (1− α)


(5.51)

Evidently, since the weights sum up to 1.0, LHimproved is a consistent discretization. The leading
truncation term of LHupwind isO (H), so the leading truncation term of αLHupwind isO (αH) = O (h).
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The leading truncation term of LHκ is O
(
H2
)
. Therefore, the total leading truncation term of

LHimproved is equal to O (h) +O
(
H2
)
. This is equal to the leading truncation term of Lhupwind as

long as:
H2 < h (5.52)

Applying the simplified two-grid analysis (similar to 5.44) to the improved coarse grid operator
yields:

1− L̃h(θ)

L̃H(2θ)
= 1− a(1−e−iθ1)+b(1−e−iθ2)

a
8 (e−4iθ1−9e−2iθ1+7+e2iθ1)+ b

8 (e−4iθ2−9e−2iθ2+7+e2iθ2)
H
h

lim
θ→0

(
1− L̃h(θ)

L̃2h(θ)

)
= 0 (5.53)

A simplified two-grid convergence factor of zero implies that at least the very low frequencies are
approximated correctly by the coarse grid operator. The same result can be obtain by performing
a Taylor series expansion of the inviscid improved operator for a > 0 and b > 0:

LHimproved 〈u〉 = a
∂u

∂x
+ b

∂u

∂y
− αH

2

(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
+O

〈
H2
〉

= a
∂u

∂x
+ b

∂u

∂y
− h

2

(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
+O

〈
H2
〉

(5.54)

This is exactly the same as for the fine grid operator (equation 5.45). Thus the improved opera-
tor overcomes the problems associated with direct coarsening of the first-order upwind operator.
Smoothing the improved discretization can be done by applying the κ-smoother discussed in sec-
tion 5.1.3.

5.4.1 Results

Convergence results of applying W(2,1) cycles with improved coarse grid operators for the re-
circulating convection-diffusion problem are shown in figure 5.9(a). Convergence is good for all
target grid sizes (compare to figure 5.8(a)). For dense target grids (i.e. 256x256 and 512x512)
the convergence is even better than for coarser grids. This is due to diffusion terms (ε/h2), that
become dominant over the convective terms (a/h and b/h) on coarser grids (or smaller grid spac-
ing). Therefore the two-grid convergence increases towards convergence rates usually observed for
Poisson problems (0.13 for V(2,1) cycles). Convergence on coarser grids is somewhat slower, but
due to the W-cycles the corrections calculated on coarser grid are good enough to provide fast
convergence. This observation is also verified by results obtained for the calculations using differ-
ent values for ε on a target grid of 512x512 (see figure 5.9(b)). For higher diffusion coefficients,
the convergence rate increases to that of the Poisson problem.

5.5 Solution 2: Galerkin coarsening

Another method to obtain accurate coarse grid operators is by using Galerkin coarsening (see
section 2.1.2). However, Galerkin coarsening introduces some additional problems:

• The operator is not diagonally dominant (nor symmetric positive definite) on coarser grids,
so standard relaxation methods (i.e. Gauß-Seidel and Jacobi) may not converge anymore.
Smoothers which work for a larger class of problems, i.e. Kaczmarz relaxation (see appendix
C), can help to overcome this problem.

• Standard numerical Galerkin coarsening can only be applied to linear operators. Extending
this technique to non-linear operators is beyond the scope of this research. Therefore only
discretizations of the κ-schemes without limiters are considered in this section.
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Figure 5.9: Recirculating convection-diffusion problem: L2-norm of the residual (
∣∣rh∣∣

2
) as a func-

tion of the number of W(2,1) multi-grid cycles for the first-order upwind discretization of the
convective terms using improved coarse grid operators (with Van Albada limiter and κ = 0)

• It is possible that the coarse grid operator is not TVD and thus can introduce unwanted
oscillations. This can be overcome by using smoothers which are able to efficiently smooth
these (high-frequency) oscillations on finer grids, such as Gauß-Seidel relaxation for the
first-order discretization and κ-smoothers for higher-order discretizations.

5.5.1 First-order

When full weighting and bi-linear interpolation are used as restriction and interpolation opera-
tors, respectively, the coarse grid operator of the standard first-order upwind discretization (5.13)
becomes:

LH =
1

32H

 −3a+ b 2a+ 6b a+ b
−18a+ 2b 12a+ 12b 6a+ 2b
−3a− 3b 2a− 18b a− 3b

+
ε

4H2

 −1 −2 −1
−2 4 −2
−1 −2 −1

 (5.55)

Simplified two-grid analysis (similar to 5.44) to the Galerkin coarse grid operator, yields a conver-
gence factor of zero. This implies that at least the very low frequency components are correctly
approximated by the coarse grid operator. The same result can be obtain by performing a Taylor
series expansion of the improved inviscid coarse grid operator for a > 0 and b > 0:

LH 〈u〉 = a
∂u

∂x
+ b

∂u

∂y
− H

4

(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
+O

〈
H2
〉

= a
∂u

∂x
+ b

∂u

∂y
− h

2

(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
+O

〈
H2
〉

(5.56)

This is exactly the same as for the fine grid operator (equation 5.45). Thus also Galerkin coarsening
is able to solve the problems associated with direct coarsening of the first-order upwind operator.

Smoothing for Galerkin coarsening of first-order upwind schemes

Local mode analysis for symmetric Kaczmarz line relaxation applied to the Galerkin coarsening of
the first-order upwind discretization of the convection-diffusion equation is shown in figure 5.5.1,
for a = cosπ/8, b = sinπ/8 and ε = 0 m. Due to the Galerkin coarsening, the operators, and thus
also the LMA analysis vary between different grid levels. For coarser grids the performance of
Kaczmarz relaxation deteriorates (see table 5.2 for smoothing factors for more cases). Therefore
simple V-cycles will not be sufficient to obtain mesh-independent convergence rates.
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Figure 5.10: Convection-diffusion equation: LMA analysis for symmetric line Kaczmarz relaxation
applied to the Galerkin coarsened, first-order upwind discretization of the convective terms in the
hyperbolic limit (a = cos π8 , b = sin π

8 and ε = 0 m)

Grid ε = 0 m ε =∞
level α = 0 α = π 1

8 α = π 1
4 α = π 3

8 α = π 1
2

1 0 0.497 0.314 0.497 0 0.410
2 0.407 0.548 0.287 0.548 0.407 0.262
3 0.575 0.821 0.617 0.821 0.575 0.209
4 0.621 0.950 0.871 0.950 0.621 0.194
5 0.633 0.987 0.966 0.987 0.633 0.191

Table 5.2: Convection-diffusion equation: Smoothing factors for symmetric line Kaczmarz re-
laxation applied to the Galerkin coarsened first-order upwind discretization discretization of the
convective terms in the hyperbolic limit for different flow angles (a = cosα, b = sinα) and different
grid levels and in the elliptic limit for different grid levels
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Figure 5.11: Recirculating convection-diffusion problem: L2-norm of the residual (
∣∣rh∣∣

2
) as a

function of the number of W(2,1) multi-grid cycles for the first-order upwind discretization of the
convective terms using Galerkin coarsening
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Results

Results by applying W(2,1)-cycles to the first-order upwind discretization of the recirculating
convection-diffusion problem with Galerkin coarsening are shown in figure 5.11. Convergence is
satisfactory when not too many grid levels are used (compare to figure 5.8(a)). This is because
the performance of the Kaczmarz relaxation deteriorates on coarser grids. Either using a smaller
number of grids or an even higher grid parameter (γ) will restore performance. This is shown in
figure 5.11(b) where residuals are plotted for different number of levels with a 1024x1024 as the
target grid. Convergence increases when a smaller number of levels are used, but this increase
comes at the cost of a larger coarsest grid problem. This problem is solved exactly by a direct solver,
which requires roughly O

(
n4
)

operations (with n the number of grid points in one direction). So
there is always a trade-off between the number of levels used and the required work to solve the
problem on the coarsest grid.

5.5.2 Higher-order

Higher-order discretizations of the convection-diffusion problem require an even more sophisticated
approach. When full weighting and bi-linear interpolation are used as restriction and interpolation
operators, the coarse grid operator of the κ-scheme discretization of the convective terms in the
convection-diffusion equation (equation 5.34) becomes: (for κ = 0, a > 0 and b > 0)

LH =
1

128H


0 0 0 0 0
a −11a+ 7b 3a+ 42b 7a+ 7b 0
6a −66a+ 3b 18a+ 18b 42a+ 3b 0
a −11a− 11b 3a− 66b 7a− 11b 0
0 b 6b b 0

+
ε

4H2


0 0 0 0 0
0 −1 −2 −1 0
0 −2 4 −2 0
0 −1 −2 −1 0
0 0 0 0 0


(5.57)

Simplified two-grid analysis of the (inviscid) Galerkin coarse grid operator now yields a convergence
factor of zero, except for the case a = b, for which a factor of 0.5 is obtained. This can also be
seen by considering at a Taylor series expansion and rotating the result to the (ξ, η) axis system,
with ξ in streamwise direction and η perpendicular to the flow. Now considering only the terms
involving derivatives in the η direction yields:

−ε∂
2u

∂η2
− H2

48
ab

a2 − b2

(a2 + b2)
3
2

∂3u

∂η3
+

(
H3

32
ab

a3 + b3

(a2 + b2)2 −
H2ε

12
a4 + 3a2b2 + b4

(a2 + b2)2

)
∂4u

∂η4
+ . . . (5.58)

while on the fine grid it yields:

−ε∂
2u

∂η2
− h2

12
ab

a2 − b2

(a2 + b2)
3
2

∂3u

∂η3
+

(
h3

8
ab

a3 + b3

(a2 + b2)2 −
h2ε

12
a4 + b4

(a2 + b2)2

)
∂4u

∂η4
+ . . . (5.59)

For small ε,the second terms will dominate the flow. These terms are equal (for H = 2h),
so the coarse grid discretization satisfies the requirements. But for the case a = b the second
term will be zero so the third term dominates. However, the third term for both Taylor series
expansions differs by a factor of 2, so for these types of flow the convergence is limited by a factor
of 0.5. Using a restriction operator with a higher high-frequency order will solve this problem [16].
An example of such a restriction is:

IHh =
1
16
[

1 4 6 4 1
]

(5.60)
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Using this restriction operator for the Galerkin coarsening yields:

LH =
1

1024H


0 3b 10b 3b 0
3a −108a+ 84b 18a+ 280b 84a+ 84b 3a
10a −360a+ 18b 60a+ 60b 280a+ 18b 10a
3a −108a− 108b 18a− 360b 84a− 108b 3a
0 3b 10b 3b 0

+

ε

128H2


0 −3 −10 −3 0
−3 −24 −10 −24 −3
−10 −10 200 −10 −10
−3 −24 −10 −24 −3

0 −3 −10 −3 0

 (5.61)

Again applying a Taylor series expansion in the (ξ, η) coordinate system yields: (for terms involving
derivatives in the η-direction only)

−ε∂
2u

∂η2
− H2

48
ab

a2 − b2

(a2 + b2)
3
2

∂3u

∂η3
+

(
H3

64
ab

a3 + b3

(a2 + b2)2 −
H2ε

24
5a4 + 9a2b2 + 5b4

(a2 + b2)2

)
∂4u

∂η4
+ . . . (5.62)

For this coarse grid operator also the third term is equal to that of the fine grid operator, so it
is an accurate representation of the fine grid problem. This can also be seen by the simplified
two-grid convergence, which gives a factor of zero for all a and b.

Smoothing for Galerkin coarsening of κ-schemes

Smoothing of Galerkin coarsened κ-schemes can be performed by applying Kaczmarz line relax-
ation. LMA results are shown in figure 5.5.2 and table 5.3 for different levels and flow directions.
Kaczmarz relaxation is not a good smoother for these types of discretization. High-frequency error
components cannot be removed efficiently, especially when dealing with coarser grids.
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Figure 5.12: Convection-diffusion problem: LMA analysis for symmetric line Kaczmarz relaxation
applied to the Galerkin coarsened κ-scheme discretization of the convective terms in the hyperbolic
limit (a = cos π8 ,b = sin π

8 and ε = 0 m)

Results

Results of applying W(2,1)-cycles to the κ-scheme based discretization of the recirculating convection-
diffusion problem with Galerkin coarsening are shown in figure 5.13. When only a few levels are
employed convergence is reasonable, but when more levels are used convergence deteriorates. When
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Grid ε = 0 m ε =∞
level α = 0 α = π 1

8 α = π 1
4 α = π 3

8 α = π 1
2

1 0 0.862 0.649 0.862 0 0.410
2 0.761 0.974 0.900 0.974 0.761 0.193
3 0.888 0.998 0.992 0.998 0.888 0.466
4 0.908 1.000 1.000 1.000 0.908 0.535
5 0.913 1.000 1.000 1.000 0.913 0.552

Table 5.3: Convection-diffusion problem: Smoothing factors for symmetric line Kaczmarz relax-
ation applied to the Galerkin coarsened κ-scheme discretization of the convective terms in the
hyperbolic limit for different angles (a = cosα, b = sinα) and different grid levels and in the
elliptic limit for different grid levels

more than 5 levels are used even divergence is observed (not plotted in the figures). Geometric
multi-grid fails for these cases because the coarse grid operators, that accurately represent the
flow problem on the target grid, cannot be smoothed with the smoothing operators considered in
this thesis.

5.6 Conclusion

In this chapter it has been shown that geometric multi-grid can be used in certain cases for the
convection-diffusion equation. The first and most simple case is for problems in which diffusion is
dominant over the convection. Then coarse grid operators originating from the direct discretization
of the partial differential equation on the coarse grid can accurately describe the fine grid problem
and excellent multi-grid performance is achieved.

For convection dominated flow standard coarse grid operators lead to difficulties. Smoothers
for discretizations of this kind of flows are not always capable of reducing error components which
are smooth in the direction of the flow, but oscillatory perpendicular to the flow. Standard
coarse grid operators are not able to accurately represent these components on the coarse grid,
since they show different behavior in the direction perpendicular to the flow than the fine grid
operator. For the first-order discretization a higher artificial viscosity is observed, while for the
higher-order discretizations higher-order terms can have different factors on different grids. The
solution therefore is to construct coarse grid operators which represent the fine grid operator more
accurately. This can be achieved either by using a combination of the conventional discretization
and a higher-order discretization, or by using Galerkin coarsening.

When the first-order upwind discretization on the target grid is used, a combination of the first-
order upwind and a κ-scheme based discretization can be used on coarser grids. This combination
can lead to the same artificial viscosity as observed on the fine grid. However, now a smoother
is required which is able to smooth both the high and low-order discretizations, such as the κ-
smoother. Good grid-independent convergence is observed for all values of ε when using W(2,1)-
cycles.

The other possibility is to use Galerkin based coarsening. In this case operators on each grid
are calculated based on the fine grid operator and the restriction and interpolation operators.
The order of restriction and interpolation needs to be high enough to accurately represent the
problematic components. Operators on each grid become different, so more generally applicable
smoothers are required. Kaczmarz smoothers are guaranteed to have some smoothing capabilities,
but are usually quite slow to converge. For convection dominated flow these smoothers are espe-
cially slow when more coarser grids are used. Therefore a higher cycle parameter (γ) is required
to achieve good performance. For the first-order discretizations good convergence is observed with
W(2,1)-cycles if not too many grid levels are used (up to 7 levels). For higher-order discretization
smoothing on the coarse grid becomes more difficult and good convergence is only observed when
using up to four grid levels.
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Figure 5.13: Recirculating convection-diffusion problem: L2-norm of the residuals (
∣∣rh∣∣

2
) as a

function of the number of W(2,1) multi-grid cycles for the κ-scheme discretization of the convective
terms using Galerkin coarsening
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Chapter 6

AMG applied to the Poisson
equation

In this chapter different variants of Poisson-like equations with Dirichlet boundary conditions
(equation 4.1) will be solved using AMG. Geometric multi-grid techniques, with correct smoothers,
show better performance for most Poisson types of equations due to the expensive start-up phase
of AMG. However, these types of problems serve as a good example to demonstrate the main
principles of the AMG method.

In all examples discussed below Gauß-Seidel relaxation is performed, for which first all coarse
grid points and then all fine grid points are relaxed. This relaxation is also referred to as CF-
Gauß-Seidel relaxation.

6.1 5-point discretization of the Poisson problem

In this section AMG is used to solve the standard Poisson equation:

∂2u
∂x2 + ∂2u

∂y2 = f (x, y) (x, y) ∈ Ω
u = 0 (x, y) ∈ ∂Ω

(6.1)

with a standard 5-point discretization:

Lh =
1
h2

 1
1 −4 1

1

 (6.2)

Eliminating the Dirichlet boundaries, leads to the systems of equations:

Ahuh = fh (6.3)

with:

A =
1
h2



D I 0 . . . 0

I D I
. . .

...

0
. . . . . . . . . 0

...
. . . I D I

0 . . . 0 I D


(6.4)
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,D the matrix corresponding to a single row of points:

D =



−4 1 0 . . . 0

1 −4 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −4 1

0 . . . 0 1 −4


(6.5)

and I the identity matrix.

6.1.1 Grid hierarchy

The first step in the AMG process is to determine the coarse grids. Therefore the coloring al-
gorithm described in section 3.4 is applied to the system of equations resulting from the 5-point
discretization of the Poisson equation (equation 6.3). For this example the choice of εstr is imma-
terial, since all points are strongly connected to and dependent on all of their four neighbors for
any value of εstr. Initially the value of λ (see equation 3.36) is 4 at interior points, 3 at boundary
points and 2 at corner points (see figure 6.1(a)). The maximum value λ = 4 is found at several
locations and one of them, i.e. the most bottom left point, is selected as a starting point (a differ-
ent starting point can lead to a different grid). This point becomes a coarse grid point (indicated
by a solid circle in figure 6.1(b)). Now each point that is strongly influenced by this point and has
not yet been decided as a coarse or fine grid point (i.e. STi ∩ U), is turned into a fine grid point
(indicated by an open circle). Before a new point can be chosen as a coarse grid point, the values
of λ need to be reevaluated (see figure 6.1(b)). However, there is no need to reevaluate λ at each
point, since only local changes are applied. Again the point with maximum value of λ is turned
into a coarse grid point as can be seen in figure 6.1(c). This process is repeated until all points are
defined as either fine or coarse. The final result is visible in figure 6.1(i). It is noteworthy that the
obtained coarse grid is the same as the red-black coarsening variant used in geometric multi-grid.
Also it should be noted that at several occasions in the process there is no unique point with the
maximum value of λ. Different coloring can be created when choosing different points as the new
coarse grid points.

After all points have been decided as either coarse or fine grid points, the interpolation operator
for each fine grid point i has to be calculated. For the coloring depicted in figure 6.1 there is no
difference between direct (see section 3.3.1) and standard interpolation (see section 3.3.2), since
there are no fine grid points that have strong influence on gridpoint i (i.e. F si = ∅). The weights
for points not close to boundaries become:

wi,j = −Ai,j
Ai,i

∑
k∈Ni Ai,k∑
k∈Csi

Ai,k
=
Ai,j
Ai,i

with j ∈ Csi (6.6)

Or in stencil notation:

IhH =
1
4

 1
1 4 1

1

 (6.7)

Thus a fine grid point is interpolated as the average of its four neighbors. The last step in the
coarsening process is the calculation of the coarse grid matrix using the Galerkin principle. For
interior points the stencil becomes:

LH =
1

8h2


−1

−2 −2
−1 12 −1

−2 −2
−1

 (6.8)
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Figure 6.1: Poisson problem: AMG coloring for the 5-point discretization, solid circle=coarse grid
points, open circle=fine grid points, number=λ-value of undecided points
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Using Taylor series expansion it can be shown that this stencil is indeed a second-order accurate
discretization of the Poisson equation:

LH 〈u〉 = −∂
2u

∂x2
− ∂2u

∂y2
+O

(
h2
)

(6.9)

After the coarse grid matrix has been calculated additional coarsening steps can be performed. In
figure 6.2 the first two-levels of coarsening are shown for the 5-point Laplacian on a 33x33 grid. The
first coarsening step corresponds to red-black coarsening just as explained above. On the second
level operators correspond to 9-point operators and a different coarsening to the third level is
observed, because each point is now strongly influenced by and dependant on its eight neighbors
(at least for εstr < 0.5). The second coarsening step corresponds to the standard geometrical
multi-grid coarsening, but now at an angle of 45 degrees.

6.1.2 Results

To illustrate the performance of the algorithm V(1,1) AMG cycles are applied to the 5-point
discretization of the Poisson problem, with a right hand side corresponding to a known analytical
solution:

f (x, y) = −8π2 sin (2πx) sin (2πy)
u (x, y) = sin (2πx) sin (2πy) (6.10)

Convergence results are shown in figure 6.3. For each target grid size coarsening has been per-
formed until only maximal 20 grid points remain. On the coarsest level the system of equations is
solved directly by Gaussian elimination. Extremely fast convergence is observed when only a few
levels are used. This is because on the first few levels, the coarsening algorithm produces regular
grids. These regular grids have the special property that CF-Gauß-Seidel relaxation has superb
smoothing properties. When using more grid levels, the coloring algorithm produces grids which
are not regular anymore, leading to a slightly lower convergence rate.

6.2 9-point discretization of the Poisson problem

A disadvantage of using AMG to solve the Poisson problem using a 5-point Laplacian is in the first
coarsening process, the number of unknowns is only halved (compared to one fourth for geometric
multi-grid). Even worse, the number of nonzero matrix indices is only multiplied with a factor of
0.9 (from 5 point stencils to 9 points stencils), compared to 0.25 for geometric multi-grid. One
possible modification is not to use the 5-point Laplacian, but the 9-point Laplacian:

1
3h2

 −1 −1 −1
−1 8 −1
−1 −1 −1

 (6.11)

For this operator the system of equations with eliminated Dirichlet boundaries becomes:

Ahuh = fh (6.12)

with

A =
1

3h2



D O 0 . . . 0

O D O
. . .

...

0
. . . . . . . . . 0

...
. . . O D O

0 . . . 0 O D


(6.13)
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Figure 6.2: Poisson problem: AMG, two-levels of coloring for the 5-point discretization on a 34x34
grid, solid circle=coarse grid points, cross=fine grid points
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Figure 6.3: Poisson problem: AMG, L2-norm of the residual (
∣∣rh∣∣

2
) and the error (

∣∣uh − u∗∣∣
2
)

as a function of the number of V(1,1) AMG cycles for different grid sizes, using CF-Gauß-Seidel
relaxation on the 5-point discretization

D the matrix corresponding to a single row of points:

D =



−8 1 0 . . . 0

1 −8 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −8 1

0 . . . 0 1 −8


(6.14)

and

O =



1 1 0 . . . 0

1 1 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 1 1

0 . . . 0 1 1


(6.15)

6.2.1 Coloring

The first steps of the coloring process together with two possible final colorings for this discretiza-
tion of the Poisson problem are presented in figure 6.4. After the second step there are three
points with the maximum value of λ. Anyone of them could be used as the next fine grid point.
When either the top or the bottom point is selected as the next point, the final coloring will be as
illustrated in 6.4(d). When the center point is selected as the next point, the final coloring results
is as shown in 6.4(e). Both colorings are valid as a coarse grid, but may give different convergence
behavior. With this operator, even after the first coarsening step, the number of unknowns has
been reduced by a factor of 4 (when large target grids are used). Actually for the first coloring
step, the coarse grid produced is exactly the standard full coarsening that one would use in a
geometric multi-grid approach. This is also illustrated in figure 6.5 where the first two-levels of
coloring for the 9-point Laplacian on a target 32x32 grid are shown. Here both coloring steps
produce the same coarsening as used in geometric multi-grid.
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Figure 6.4: Poisson problem: AMG coloring for the 9-point discretization, solid circle=coarse grid
points, open circle=fine grid points, number=λ-value of undecided points

6.2.2 Results

AMG cycles have been applied to the 9-point discretization of the Poisson problem with the
right hand side as defined in equation 6.10. Convergence results are shown in figure 6.6. Good
convergence is observed for all target grid sizes.

Information about the different grids for a target 256x256 grid are shown in table 6.1 for both
the 5- and the 9-point discretizations. The reduction of the number of unknowns by only a factor of
2 for the first coarsening process of the 5-point Laplacian is clearly visible as well as the reduction
in the number of non zero matrix indices by a factor of 0.9. Further coarsening steps do reduce the
number of unknowns by a factor of 4. Coloring for the 9-point Laplacian immediately reduces the
number of unknowns by a factor 4. A good estimate of the total work required for one multi-grid
cycle can be obtained by multiplying the number of non zero matrix indices on each grid with the
number of relaxations performed on that grid level and summing over all grid levels. For V(1,1)
cycles this is 90 · 103 for the 5-point stencil and 112 · 103 for the 9-point stencil, so multi-grid
cycles for the 5-point discretization are somewhat faster. Therefore the 5-point discretization is
used throughout the rest of this thesis.

Level 5-Point 9-Point
unknowns Nonzero indices unknowns Nonzero indices

7 65536 326656 65536 586756
6 32768 292866 16384 380870
5 8192 184082 4096 126366
4 2239 77455 672 18536
3 824 12888 103 2563
2 67 1473 15 185
1 14 156

Table 6.1: Poisson problem: AMG grid information for the 5- and 9-point discretization on a
initial 256x256 grid
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Figure 6.5: Poisson problem: AMG, two-levels of coloring for the 9-point discretization on a 32x32
grid, solid circle=coarse grid points, cross=fine grid points
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Figure 6.6: Poisson problem: L2-norm of the residual (
∣∣rh∣∣

2
) and the error (

∣∣uh − u∗∣∣
2
) as a func-

tion of the number of V(1,1) AMG cycles for different grid sizes, using CF-Gauß-Seidel relaxation
on the 9-point discretization

6.3 Anisotropic Poisson equation

In this section AMG is used to solve the anisotropic Poisson equation:

∂2u
∂x2 + ∂

∂y

(
ε (x, y) ∂u∂y

)
= f (x, y) (x, y) ∈ Ω

u = 0 (x, y) ∈ ∂Ω
(6.16)

with a standard 5-point discretization:

Lhi,j =
1
h2

 ε
(
x, y − h

2

)
1 −2−

(
ε
(
x, y − h

2

)
+ ε
(
x, y + h

2

))
1

ε
(
x, y + h

2

)
 (6.17)

Eliminating the Dirichlet boundary conditions, leads to the systems of equations:

Ahuh = fh (6.18)

with:

A =
1
h2



D I 0 . . . 0

I D I
. . .

...

0
. . . . . . . . . 0

...
. . . I D I

0 . . . 0 I D


(6.19)
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Here D corresponds to the matrix of a single row of points:

D =



−2− ε− − ε+ ε+ 0 . . . 0

ε− −2− ε− − ε+ ε+
. . .

...

0
. . . . . . . . . 0

...
. . . ε− −2− ε− − ε+ ε+

0 . . . 0 ε− −2− ε− − ε+


ε− = ε

(
x, y − h

2

)
ε+ = ε

(
x, y +

h

2

)
(6.20)

and I the identity operator.

6.3.1 Coloring

In geometric multi-grid semi-coarsening in the direction of strong coupling could be used to handle
anisotropic Poisson problems. This is the same technique as used by AMG solvers. The first two
steps of the coloring process along with two possible final colorings for a constant ε = 0.01 are
shown in figure 6.7. There is not always just one point with the maximum value of λ, so just as
for the 9-point Laplacian multiple allowable coarsenings exist.
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Figure 6.7: Anisotropic Poisson equation: AMG coloring for the 5-point discretization with ε =
10−2, solid circle=coarse grid points, open circle=fine grid points, number=λ-value of undecided
points

The first two-levels of coarsening of the anisotropic Poisson problem with ε = 0.01 on a target
31x31 grid are shown in figure 6.8. The second step in the coarsening is just as the first step a
semi-coarsening step. Semi-coarsening decreases the anisotropy of the operator and is continued
until isotropy is regained.

In figure 6.9 the second coloring step is shown for the anisotropic Poisson problem on a target
64x64 grid with varying ε:

ε (x, y) = 103cos(2πx)cos(2πy) (6.21)
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Figure 6.8: Anisotropic Poisson equation: AMG two-levels of coloring for the 5-point discretization
on a target 31x31 grid with ε = 10−2, solid circle=coarse grid points, cross=fine grid points
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Figure 6.9: Anisotropic Poisson equation: AMG coloring on the second level for the 5-point
discretization on a target 64x64 grid with varying ε, solid circle=coarse grid points, cross=fine
grid points

In zones where ε � 1 (i.e. in the corners and in the center) coupling in the y-direction is strong
and the grid is coarsened in y-direction only. In zones where ε� 1 coupling in the x-direction is
strong so the grid is only coarsened in the x-direction.

6.3.2 Results

Convergence results by applying V(1,1) AMG cycles to the anisotropic Poisson problem are shown
in figure 6.10. Good grid-independent convergence is observed in figure 6.10(a), where the L2-
norm of the residual is plotted as a function of the number of V(1,1) cycles for different target
grids with constant ε = 0.01. In figure 6.10(b) residuals are plotted as a function of the number
of V(1,1) cycles on a target 256x256 grid for different values of ε. For low values of ε convergence
is better, but more grids are required to obtain a coarsest grid with less than 20 points. This
is because the lower ε is, the longer semi-coarsening is used (which only reduces the number of
unknowns by a factor of 2 per coarsening instead of a factor of 4). Convergence for high values of
ε is identical to convergence for low values of ε. In figure 6.10(c) the L2-norm of the residual is
plotted for varying ε for different target grids. Also for this case good convergence is observed for
all grids.

6.4 Conclusion

In this chapter it has been shown that algebraic multi-grid techniques are able to solve Poisson and
Poisson-like problems very efficiently. In all cases convergence rates of roughly 0.1 are obtained
for all problems considered. As far as convergence rate is concerned AMG techniques work just
as good as geometric multi-grid techniques. AMG, however, has the advantage that it is able to
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Figure 6.10: Anisotropic Poisson equation: L2-norm of the residual (
∣∣rh∣∣

2
) as a function of the

number of V(1,1) AMG cycles for the 5-point discretization on different grids (with constant
ε = 0.01), for different values of ε (on a constant 256x256 grid) and for varying ε on different grids
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adapt itself to different problems. Therefore no adjustments to the solver are required to solve
other partial differential equations. This flexibility, however, comes at the disadvantage of a higher
computational cost. This increased cost comes from two factors. Firstly for AMG an initialization
process is required where the different grids and operators are determined. Secondly for AMG
the reduction in the number of unknowns from one grid level to the next varies for different
partial differential equations and discretizations, while the reduction in the number of unknowns
for geometric multi-grid is always a factor of four. Therefore it is advantageous to use geometric
multi-grid techniques whenever possible and use AMG as a black box solver for a wider class of
problems.
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Chapter 7

AMG applied to the
convection-diffusion equation

In this chapter the 2D convection-diffusion equation with different flow characteristics (equation
7.1) will be solved using AMG.

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂au

∂x
+
∂bu

∂y
= f (x, y) (7.1)

In all examples discussed below four-directional relaxation is performed. This relaxation con-
sists of four relaxation sweeps, each starting at a different corner of the domain. Therefore it is
necessary to store a list of all points sorted by position.

7.1 Theoretical overview first-order schemes

In this section it is shown how AMG operates on the first-order upwind discretization of the 2D
convection-diffusion equation with small diffusion terms (ε � 1) and constant convection speeds
(a and b) on a domain Ω with Dirichlet boundary conditions on inflow boundaries and Neumann
boundary conditions on outflow boundaries.

−ε
(
∂2u
∂x2 + ∂2u

∂y2

)
+ a∂u∂x + b∂u∂y = f (x, y) (x, y) ∈ Ω

u = u0 (x, y) ∈ ∂Ωinflow
∂u
∂n = 0 (x, y) ∈ ∂Ωoutflow

(7.2)

The equation at interior points is discretized as:

Lh =
1
h2

 −ε+ h
2 (|b| − b)

−ε− h
2 (|a|+ a) 4ε+ h (|a|+ |b|) −ε+ h

2 (|a| − a)
−ε− h

2 (|b|+ b)

 (7.3)

Boundary conditions are eliminated using the strategy described in section 4.5. Further more
positive a and b are assumed, so that the stencil for the discretization becomes:

Lh =
1
h2

 −ε
−ε− ah 4ε+ h (a+ b) −ε

−ε− bh

 (7.4)

This leads to the system of equations:
Ahuh = fh (7.5)



82 CHAPTER 7. AMG APPLIED TO THE CONVECTION-DIFFUSION EQUATION

with:

A =
1
h2



D B 0 . . . 0

O D B
. . .

...

0
. . . . . . . . . 0

...
. . . O D B

0 . . . 0 O +B D


(7.6)

D =



4ε+ h (a+ b) −ε 0 . . . 0

−ε+ bh 4ε+ h (a+ b) −ε
. . .

...

0
. . . . . . . . . 0

...
. . . −ε+ bh 4ε+ h (a+ b) −ε

0 . . . 0 −2ε+ bh 4ε+ h (a+ b)


(7.7)

O = (−ε− ah) I (7.8)
B = −εI (7.9)

Based on the values of a, b, h and ε four different categories of flow can be defined for positive
a and b. These different regions are shown in figure 7.1 and described in table 7.1. In the last
column of the table the condition is written in a non-dimensional form using the transformation:

a = c cosα
b = c sinα
ε = ε∗hc (7.10)

Here α is the angle of the flow with respect to the positive x-axis, c the velocity magnitude and
ε∗ the non-dimensional diffusion coefficient. In each region different colorings may be obtained.
Therefore the coarsening steps, including the coloring and construction of interpolation and coarse
grid operators, are described separately for each region.

Region Description Condition Non-dimensional condition
I a dominant (ah+ ε) εstr > bh+ ε (cosα+ ε∗) εstr > sinα+ ε∗
II b dominant (bh+ ε) εstr > bh+ ε (sinα+ ε∗) εstr > cosα+ ε∗
III ε dominant (max (a, b)h+ ε) εstr < ε (max (cosα, sinα) + ε∗) εstr < ε∗
IV a and b dominant Otherwise

Table 7.1: Convection-diffusion equation: The four different regions in the (α, ε∗)-plane for the
first-order upwind discretization of the convective terms, with εstr = 0.2

7.1.1 Region I and II

The coarsening of region I and II is in principal the same. The only difference is that they are
eachothers image with respect to the line x = y. Therefore only region I is described in full detail,
which is defined by:

(ah+ ε) εstr > bh+ ε (7.11)

Or equivalently:
(cosα+ ε∗) εstr > sinα+ ε∗ (7.12)

The first step in the AMG process is to determine the coarse grids. Therefore the coloring
algorithm described in section 3.4 is applied to the system of equations resulting from the first-
order upwind discretization of the convection-diffusion equation (7.5). In figure 7.2(a) initial values
of λ are plotted. In region I interior points are only influenced by a single upstream point. On
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Figure 7.1: Convection-diffusion equation: The four different regions in the (α, ε∗)-plane for the
first-order upwind discretization of the convective terms, with εstr = 0.2

inflow boundary points influence all neighbors and points on outflow boundaries do not influence
other points at all.

The first few steps of the coloring process are the same as for the Poisson problem, however,
after step 5 (figure 7.2(f)) most points have the same value of λ and anyone of them could be
chosen as the next coarse grid point. When points with lower x-coordinates are chosen as the next
coarse grid points the final coloring will be as depicted in figure 7.2(g), however, when points with
high values of the x-coordinate are preferred the final coloring will be as shown in figure 7.2(h).
In both cases points remain with a λ value of zero. These points are chosen as fine grid points.

Two possible coarsenings exist for the interior part of the domain: the red-black coarsening
(figure 7.2(g)) which is the same as the first coloring for the isotropic Poisson equation (see
section 6.1) and the semi-coarsening (figure 7.2(h)) which is the same as the first coloring for the
anisotropic Poisson equation (see section 6.2). Interpolation for both colorings is simple, since
points depend on just one upstream point:

IhH =

 0
1 1 0

0

 (7.13)

7.1.2 Red black coarsening

Using the Galerkin principle, the coarse grid operator on a red-black coarsened grid can be calcu-
lated as:

LH =
ε

2h2


0

−1 −1
−1 6 −1

−1 −1
0

+
1

2h


0

0 0
−a a+ 2b

−b −b
0

 (7.14)

To check if this discretization is indeed a good approximation to the fine grid operator, a Taylor
series expansion can be used, which yields:

LH = a
∂u

∂x
+ b

∂u

∂y
+ Second order derivatives (7.15)

The convective terms are correctly approximated by the coarse grid operator, however, for good
convergence also the diffusion in cross-stream direction has to be correctly approximated. To
check this, the Taylor series expansion is rotated to the (ξ, η)-axis system, with ξ in streamwise
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Figure 7.2: Convection-diffusion equation: Coloring for the first-order upwind discretization of
the convective terms with a = 1 and b = 0, solid circle=coarse grid points, open circle=fine grid
points, number=λ-value of undecided points
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direction and η perpendicular to the flow. Now considering at terms involving derivatives in the
η-direction only, yields:

− 1
a2 + b2

(
bh

2
(a+ b)2 + ε

(
a2 + 3b2

)) ∂2u

∂η2
+O

(
h2
)

(7.16)

While for the fine grid operator it yields:

− 1
a2 + b2

(
abh

2
(a+ b) + ε

(
a2 + b2

)) ∂2u

∂η2
+O

(
h2
)

(7.17)

So operator 7.14 is a good coarse grid discretization as long as:

bh

2
(a+ b)2 + ε

(
a2 + 3b2

)
≈ h

2
(a+ b) ab+ ε

(
a2 + b2

)
(7.18)

A convergence factor similar to the simplified two-grid convergence factor described in section
2.2.3 can be calculated as:

ρ = 1− Old diffusion
New diffusion

= 1−
abh (a+ b) + 2ε

(
a2 + b2

)
bh (a+ b)2 + 2ε (a2 + 3b2)

=
b2h (a+ b) + 4εb2

bh (a+ b)2 + 2ε (a2 + 3b2)
(7.19)

Or in terms of non-dimensional parameters:

ρ =
sin2 α (cosα+ sinα) + 4ε∗ sin2 α

sinα (cosα+ sinα)2 + 2ε∗ (1 + 2 cos2 α)
(7.20)

A contour plot of this convergence factor is shown in figure 7.3(a). Estimated two-grid convergence
is quite good for all allowable α and ε∗. Worst performance is obtained for ε∗ = 0 and α =
arctan (εstr):

ρ =
sin2 α (cosα+ sinα)
sinα (cosα+ sinα)2 =

εstr
1 + εstr

(7.21)

7.1.3 Semi-coarsening

Using the Galerkin principle, the coarse grid operator on a semi-coarsened grid can be calculated:

LH =
ε

2h2


0 0 0
0 −2 0
−1 6 −1
0 −2 0
0 0 0

+
1

2h


0 0 0
0 0 0
−a a+ 2b 0
0 −2b 0
0 0 0

 (7.22)

To check if this discretization is indeed a good approximation to the fine grid operator a Taylor
series expansion can again be used:

LH = a
∂u

∂x
+ b

∂u

∂y
+ Second order derivatives (7.23)

Like in the previous paragraph special care has to be taken for terms involving derivatives in
η-direction only. Rotating the Taylor series expansion to the (ξ, η)-axis and considering terms
involving derivatives in the η-direction only, yields:

− 1
a2 + b2

(
h

2
(a+ 2b) ab+ ε

(
a2 + 2b2

)) ∂2u

∂η2
+O

(
h2
)

(7.24)
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Figure 7.3: Convection-diffusion equation: Two-grid convergence factor in region I and II for the
first-order upwind discretization of the convective terms as a function of α and ε∗ for εstr = 0.2

For the fine grid operator the equivalent term is given by equation 7.17, hence operator 7.22 is a
good coarse grid discretization as long as:

abh

2
(a+ 2b) + ε

(
a2 + 2b2

)
≈ abh

2
(a+ b) + ε

(
a2 + b2

)
(7.25)

A convergence factor similar to the simplified two-grid convergence factor now yields:

ρ = 1− Old diffusion
New diffusion

= 1−
h (a+ b) ab+ 2ε

(
a2 + b2

)
h (a+ 2b) ab+ 2ε (a2 + 2b2)

=
hab2 + 2εb2

h (a+ 2b) ab+ 2ε (a2 + 2b2)
(7.26)

Or equivalently:

ρ =
cosα sin2 α+ 2ε∗ sin2 α

(cosα+ 2 sinα) cosα sinα+ 2ε∗ (1 + cos2 α)
(7.27)

A contourplot of the two-grid convergence factor is shown in figure 7.3(b). Estimated convergence
is satisfactory for all possible combinations of α and ε∗ in region I. The largest error is obtained
for ε∗ = 0 and α = arctan εstr:

ρ =
cosα sin2 α

(cosα+ 2 sinα) cosα sinα
=

εstr
1 + 2εstr

(7.28)

7.1.4 Region III

In region III diffusion is dominant over convection, so all points are strongly influenced by their four
neighboring points. This is exactly the same situation as for the standard 5-point discretization of
the isotropic Poisson problem. Therefore the coloring is performed in the same manor as depicted
is figure 6.1. Interpolation and restriction, however, become different from that used for the
Poisson problem:

IhH =
1

ah+ bh+ 4ε

 ε
ah+ ε ah+ bh+ 4ε ε

bh+ ε

 (7.29)
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Using the Galerkin principle, the coarse grid operator becomes:

LH =
1

2h (ah+ bh+ 4ε)

ε
2

h


0 −1 0
−2 −2

−1 12 −1
−2 −2

0 −1 0

+


0 0 0

−2aε 0
−a (ah+ 2ε) (a+ b) (ah+ bh+ 6ε) 0

−2aε− 2bε− 2abh −2bε
0 −b (bh+ 2ε) 0


 (7.30)

As in previous sections a Taylor series expandion can be used, which results in the following
dissipation term in cross stream direction:

− 1
a2 + b2

(
abh

2
(a+ b) + ε

(
a2 + b2

)) ∂2u

∂η2
+O

(
h2
)

(7.31)

This is exactly the same as for the fine grid operator, so operator 7.30 is a good coarse grid
representation of operator 7.4.

7.1.5 Region IV

In the last region not just one single variable is dominant, but both a and b are important for
the discretization. Therefore points are strongly influenced by both of their downstream points.
The coloring process is shown in figure 7.1.5. The final coloring is just the red-black coloring as
also observed in the other regions. Interpolation, however, is in this case performed by using both
upstream points:

IhH =

 0
a∗ 1 0

b∗

 (7.32)

with

a∗ =
ah+ ε

(a+ b)h+ 2ε
(7.33)

b∗ =
bh+ ε

(a+ b)h+ 2ε
(7.34)

Using the Galerkin principle, the coarse grid operator becomes:

LH =
ε

2h2


−b∗

−1 + 4a∗b∗ −1
−a∗ 2 + 4

(
a2
∗ + b2∗

)
−a∗

−1 −1 + 4a∗b∗
−b∗



+
1

2h


0

−ab∗ + a∗b∗ (a+ b) 0
−aa∗

(
1 + a2

∗ + b2∗
)

(a+ b)− aa∗ − bb∗ 0
−ab∗ − ba∗ −ba∗ + a∗b∗ (a+ b)

−bb∗


(7.35)
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Figure 7.4: Convection-diffusion equation: Coloring for the first-order upwind discretization of the
convective terms with a =

√
2

2 and b =
√

2
2 , solid circle=coarse grid points, open circle=fine grid

points, number=λ-value of undecided points
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Figure 7.5: Convection-diffusion equation: Two-grid convergence factor in region IV for the first-
order upwind discretization of the convective terms as a function of α and ε∗ for εstr = 0.2

In this case a Taylor series expansion lead to the following diffusion term in cross stream direction:

− 1
a2 + b2

(
h

2
(a+ b) ab+ ε

(
a2 + b2

)
+
(
h

2
(a+ b) + 2ε

)
ε2 (a− b)2

(ah+ bh+ 2ε)2

)
∂2u

∂η2
+O

(
h2
)

(7.36)

Comparison with the fine grid operator (equation 7.17), shows that operator 7.35 is a good coarse
grid discretization as long as:

h

2
(a+ b) ab+ ε

(
a2 + b2

)
+
(
h

2
(a+ b) + 2ε

)
ε2 (a− b)2

(ah+ bh+ 2ε)2 ≈
h

2
(a+ b) ab+ ε

(
a2 + b2

)
(7.37)

A convergence factor similar to the simplified two-grid convergence factor described in section
2.2.3 can be calculated as:

ρ = 1− Old diffusion
New diffusion

= 1−
h (a+ b) ab+ 2ε

(
a2 + b2

)
h (a+ b) ab+ 2ε (a2 + b2) + (ah+ bh+ 4ε) e2(a−b)2

(ah+bh+2ε)2

=
(ah+ bh+ 4ε) e2(a−b)2

(ah+bh+2ε)2

h (a+ b) ab+ 2ε (a2 + b2) + (ah+ bh+ 4ε) e2(a−b)2
(ah+bh+2ε)2

(7.38)

Or equivalently:

ρ =
(cosα+ sinα+ 4ε∗)

ε2∗(cosα−sinα)2

(cosα+sinα+2ε∗)
2

(cosα+ sinα) cosα sinα+ 2ε∗ + (cosα+ sinα+ 4ε∗)
ε2∗(cosα−sinα)2

(cosα+sinα+2ε∗)
2

(7.39)

A contourplot of this equation is shown in figure 7.5. The convergence factors are quite small for
all possible combinations of α and ε∗ in region IV. Worst performance is when α = 0 or π/2 and
ε∗ = εstr

1−εstr :

ρ =
(1 + 4ε∗) ε∗

2 + 9ε∗ + 12ε2∗
=

(3εstr + 1) εstr
5ε2str + 5εstr + 2

= 0.1 for εstr = 0.2 (7.40)

7.1.6 Conclusion

In the preceding sections it has been shown that the current AMG method is able to produce accu-
rate coarse grid discretizations for the first-order upwind discretization of the convection-diffusion
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equation. For small ε the resulting discretizations for the convective terms on coarser grids are also
upwind. Four-directional Gauß-Seidel relaxation is a good smoother for these discretizations. The
simplified two-grid convergence factors, however, are not zero. Therefore according to equation
5.47, at least W-cycles are required for convergence rates independent of the number of levels.

7.2 First-order discretization, recirculation test case

In this section AMG is applied to the testcase of recirculation. This is the conventional convection-
diffusion equation on the unit square domain with Dirichlet boundary conditions:

−ε
(
∂2u
∂x2 + ∂2u

∂y2

)
+ ∂a(x,y)u

∂x + ∂b(x,y)u
∂y = f (x, y) (x, y) ∈ Ω

u = u0 (x, y) ∈ ∂Ω
(7.41)

with:

ε = 10−5 m2

s

a (x, y) = −sin (πx) cos (πy) m
s

b (x, y) = sin (πy) cos (πx) m
s

f (x, y) = 0 1
s (7.42)
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Figure 7.6: Convection-diffusion equation: Streamlines for the recirculation test case

For this case characteristics form closed loops and thus never meet upstream Dirichlet bound-
aries (see figure 7.6). The first two-levels of coloring for an initial 32x32 grid are shown in figure
7.8. The first step of coarsening is the red-black coarsening, which is a good strategy in all regions.
In the second step the algorithm coarsens the grid only in the direction of the flow. This can be
seen at the corners of the domain, where the flow is diagonal. More details about the different
grid sizes can be found in table 7.2, where information about the different grids is provided for
an initial 256x256 grid. An estimate of the total work required for a cycle can be obtained by
multiplying the nonzero matrix entries with the number of relaxations performed on that level
and summing these values over all levels. For an initial 256x256 grid one W(1,1)-cycle requires
approximately as many operations as 56 relaxation sweeps on the finest level. Convergence results
of applying W(1,1) AMG cycles to the first-order upwind discretization of this problem are shown
in figure 7.7. In all cases coarsening is performed until at most 20 points remain on the coarsest
grid. Good performance is achieved for all target grid sizes considered.
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Level Unknowns Nonzero entries Percentage Times relaxed
10 65536 326656 7.61e-3 2
9 32207 264351 2.55e-02 4
8 15568 186168 7.68e-02 8
7 7245 135811 2.59e-01 16
6 3179 92351 9.14e-01 32
5 1322 56490 3.23e+0 64
4 498 26750 1.08e+01 128
3 163 8327 3.13e+01 256
2 44 1260 6.51e+01 512
1 8 62 9.69e+01

Table 7.2: Convection-diffusion equation: AMG grid information for the recirculating test case
with first-order upwind discretization of the convective terms on a target 256x256 grid
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Figure 7.7: Convection-diffusion equation: L2-norm of the residual (
∣∣rh∣∣

2
) and the error

(
∣∣uh − u∗∣∣

2
) as a function of the number of W(1,1) AMG cycles for the test case of recircu-

lation for different gridsizes, using symmetric Gauß-Seidel relaxation with a first-order upwind
discretization of the convective terms
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Figure 7.8: Convection-diffusion equation: Two-levels of coloring for the the recirculation test case
with first-order upwind discretization of the convective terms and εstr = 0.2, solid circle=coarse
grid points, cross=fine grid points
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7.3 Higher-order discretization, recirculating test case

In this section some preliminary results of AMG applied to higher-order upwind biased discretiza-
tions of the convection-diffusion equation without limiters are shown. These results are provided
without a good theoretical overview of the effect of algebraic coarsening on the solution of the
problem. Further research is required for better performance over a greater range of test cases.

Two important changes have been made to the AMG algorithm with respect to the one used
so far:

• Truncation of interpolation operators is omitted (i.e. εtr = 0)

• Points with λ value of 0 after the coloring algorithm has been performed are turned into
coarse grid points instead of fine grid points.

Both changes considerably increase the computational effort required for one cycle. The first one,
because the size of the coarse grid operators increases significantly as the size of the interpolation
operators increases. The second one, simply because the number of coarse grid points increases.
These two effects become more clear from table 7.3, where information is given about the different
grid levels for a target 256x256 grid. The first few coarsening steps reduce the number of unknowns
by a factor of approximately 2 only, while the number of Nonzero matrix entries is only reduced
by a factor of 1.3-1.5. An estimate of the total work required for a cycle can be obtained by
multiplying the number of nonzero entries with the number of relaxations on that level and over
summing all levels. For an initial 256x256 grid a W(1,1)-cycle requires approximately as many
operations as 91 relaxation sweeps on the finest level.

The convergence histories for applying W(1,1) cycles for different target grids is presented in
figure 7.9. For large target grid sizes (from 128 cells on) convergence is acceptable, but for small
target grids performance is unacceptable. This is because ε∗ on dense target grids is higher and
the problem tends to behave more like Poisson type of problems. This is also illustrated in figure
7.10 where convergence histories of the residual and error are plotted for a constant 256x256 grid
for different ε. For hε > 1 convergence is similar to that found for the Poisson problem (see figure
6.3), while for smaller ε convergence deteriorates.

Level Unknowns Nonzero entries Percentage Times relaxed
11 65536 586752 1.37e-02 2
10 33461 432435 3.86e-02 4
9 17326 330018 1.10e-01 8
8 9103 239167 2.89e-01 16
7 4219 153955 8.65e-01 32
6 1865 102103 2.94e+00 64
5 822 65812 9.74e+00 128
4 353 41377 3.32e+01 256
3 143 18993 9.29e+01 512
2 54 2916 1.00e+02 1024
1 19 361 1.00e+02

Table 7.3: Convection-diffusion equation: AMG grid information for the test case of recirculation
with κ-scheme discretization of the convective terms on a 256x256 grid (κ = 0)

7.4 Conclusion

In this chapter is has been shown that algebraic multi-grid techniques are able to efficiently solve
first-order upwind discretizations of the convection-diffusion equation. In all cases convergence
rates of about 0.1 are obtained for the problems considered. For higher-order upwind biased
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Figure 7.9: Convection-diffusion equation: L2-norm of the residual (
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) and the error
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) as a function of the number of W(1,1) AMG cycles for the test case of recircula-

tion for different gridsizes, using symmetric Kaczmarz relaxation on the κ-scheme discretization
of convective terms
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the κ-scheme discretization of convective terms
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discretizations, however, the method does not yet give good convergence for problems with ex-
tremely low diffusion. Also the limiters required for smooth solutions with the higher upwind
biased discretizations have not yet been included. These limiters could on the one hand increase
performance of the algorithm since they reduce (non-physical) oscillations in the flow, while on the
other hand they decrease the performance since the problem becomes nonlinear. Further research
of AMG methods for this kind of discretizations is required.
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Chapter 8

Conclusions and
Recommendations

Multi-level techniques have the potential of substantially enhancing the performance of iterative
methods used to obtain solutions of the convection diffusion equation end for partial differential
equations in general. Standard Multi-Level schemes already are capable of solving the Poisson-
like problems very efficiently. However, this efficiency does not automatically extend to other
partial differential equations that appear very similar. A new detailed analysis is required to
identify slowly converging components on the fine grid and for a way to represent and solve these
components on a coarser grid.

This conclusion is even more true for convection-dominated flows. Smoothers for this kind
of flow problems are not capable of reducing error components that are smooth in the direction
of the flow, but oscillatory in the direction perpendicular to the flow. Standard coarse grid
operators are not able to accurately represent these components on the coarse grid, because they
show different behavior in the direction perpendicular to the flow than the fine grid operator.
Therefore more accurate discretizations are required on coarser levels. In a geometrical multi-
grid setting this can be achieved by employing higher-order discretizations or by using Galerkin
coarsening. Both approaches require a more sophisticated smoothing procedure on coarser grids.
The developed multi-level method shows good, mesh-size independent convergence for first-order
upwind based discretizations of the convection-diffusion equation, if not too many grid levels (up
to 8) are employed. For higher-order upwind biased discretizations the smoothing becomes even
more troublesome and good convergence is only observed when using at most four grid levels.

Another way to cope with the problems associated with inadequate coarse grid representation
of the fine grid operator is to use algebraic multi-grid (AMG). In AMG the choice of coarse grids
is not determined beforehand, but rather based on the actual problem itself. Interpolation and
restriction operators are then determined based on the chosen grid and the problem. The coarse
grid operator follows from the Galerkin principle.

For Poisson and Poisson-like problems AMG and geometric multi-grid show comparable per-
formance. AMG, however, has the advantage of being more flexible and robust. There is no need
to adjust the solver for different partial differential equations. This, however, comes with the
disadvantage of a higher computational cost. Therefore it is preferred use geometric multi-grid
techniques whenever possible. AMG methods can efficiently be used as a black box solver for a
wider class of problems.

AMG can be used directly for the first-order upwind discretization of the convection-diffusion
problem. Extremely fast, mesh-size independent, convergence is observed for all problems consid-
ered. For higher-order discretizations promising results have been obtained whenever the interpo-
lation operators are not truncated. Not truncating the interpolation operator, however, leads to
large stencils for coarse grid levels, increasing the computational time required to solve the prob-
lem. Therefore it is recommended to further study the effect of AMG coarsening for higher-order
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discretizations of convective terms. Higher-order discretizations also have the drawback of being
non-linear, if monotonicity is required. This non-linearity has not yet been implemented in the
presented algorithm.

When also higher-order discretizations of convection-diffusion equation can be solved efficiently
a good step has been made in the direction of the ultimated goal of solving the Navier-Stokes or
Euler equations efficiently. However, before these problems can be solved it is also required that
systems of equations and non-linear equations can be solved efficiently.



99

Appendix A

Discretization convective terms

In this appendix different conservative discretizations (central, first-order upwind and κ-schemes)
are considered for convective terms with non constant convective speeds:

∂au

∂x
(A.1)

All discretization are based on a finite volume method, where volume-averaged values are stored
in the memory and boundary values are reconstructed by interpolation or extrapolation of the cell
averages. The derivatives can then be approximated as:

∂au

∂x
=

1
h

(
− (au)i− 1

2
+ (au)i+ 1

2

)
(A.2)

With ai± 1
2

the convective speed at the cell interfaces (which are known when an analytic function
for the convective speed is specified, otherwise they have to be reconstructed as well) and ui± 1

2
the

reconstructed value at the cell interfaces. Different methods use different reconstruction methods
for the values at the interfaces.

A.1 Central differencing

For central differencing the values at the interfaces are obtained by using the average of the two
neighbors.

ui− 1
2

=
1
2

(ui−1 + ui)

ui+ 1
2

=
1
2

(ui + ui+1) (A.3)

Now the derivative becomes:

∂au

∂x
=

1
h

(
− (au)i− 1

2
+ (au)i+ 1

2

)
=

1
2h

(
−ai− 1

2
(ui−1 + ui) + ai+ 1

2
(ui + ui+1)

)
=

1
2h

(
−ui−1ai− 1

2
+ ui

(
−ai− 1

2
+ ai+ 1

2

)
+ ui+1ai+ 1

2

)
(A.4)

Or in stencil notation:

∂au

∂x
=

1
2h
[
−ai− 1

2
−ai− 1

2
+ ai+ 1

2
ai+ 1

2

]
(A.5)
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A.2 First-order upwind

For first-order upwind schemes the values at the interfaces are obtained by using either the left or
the right value depending on the sign of the convection velocity:

ui− 1
2

=
{
ui−1, if ai− 1

2
≥ 0

ui, if ai− 1
2
< 0

ui+ 1
2

=
{

ui, if ai+ 1
2
≥ 0

ui+1, if ai+ 1
2
< 0 (A.6)

Now the derivative becomes:

∂au

∂x
=

1
h

(
− (au)i− 1

2
+ (au)i+ 1

2

)

=



1
h

(
−ui−1ai− 1

2
+ uiai+ 1

2

)
, if ai− 1

2
≥ 0 and ai+ 1

2
≥ 0

1
h

(
−ui−1ai− 1

2
+ ui+1ai+ 1

2

)
, if ai− 1

2
≥ 0 and ai+ 1

2
< 0

1
h

(
−uiai− 1

2
+ uiai+ 1

2

)
, if ai− 1

2
< 0 and ai+ 1

2
≥ 0

1
h

(
−uiai− 1

2
+ ui+1ai+ 1

2

)
, if ai− 1

2
< 0 and ai+ 1

2
< 0

(A.7)

Or in stencil notation:

∂au

∂x
=


1
h [ −ai− 1

2
ai+ 1

2
0 ] , if ai− 1

2
≥ 0 and ai+ 1

2
≥ 0

1
h [ −ai− 1

2
0 ai+ 1

2
] , if ai− 1

2
≥ 0 and ai+ 1

2
< 0

1
h [ 0 −ai− 1

2
+ ai+ 1

2
0 ] , if ai− 1

2
< 0 and ai+ 1

2
≥ 0

1
h [ 0 −ai− 1

2
ai+ 1

2
] , if ai− 1

2
< 0 and ai+ 1

2
< 0

(A.8)

A.3 Kappa-schemes

For the kappa-schemes the values at the interface are calculated by a more accurate (upwind
biased) interpolation:

ui− 1
2

=

{
ui−1 + 1+κ

4 (ui − ui−1) + 1−κ
4 (ui−1 − ui−2) , if ai− 1

2
≥ 0

ui − 1+κ
4 (ui − ui−1)− 1−κ

4 (ui+1 − ui) , if ai− 1
2
< 0

ui+ 1
2

=

{
ui + 1+κ

4 (ui+1 − ui) + 1−κ
4 (ui − ui−1) , if ai+ 1

2
≥ 0

ui+1 − 1+κ
4 (ui+1 − ui)− 1−κ

4 (ui+2 − ui+1) , if ai+ 1
2
< 0 (A.9)
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Now the derivatives become (directly in stencil notation):

∂au

∂x
=

1
4h
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(A.10)
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Appendix B

Linked List

In this appendix the linked list used in the coloring algorithm for AMG is described. The list is
used to determine the point with maximum λ without looping over the entire set of undecided
points. The linked List consist of 3 Arrays:

Prev[i] A pointer to the previous element with the same value of λ or −1 if no such element exist

Next[i] A pointer to the next element with the same value of λ or −1 if no such element exist

First[i] A pointer to the first element with λ = i or −1 if no such element exist

When the linked list is initialized, no elements are in it, so all First[i] should be −1. Therafter
all variables are added to the list.

Algorithm 2 Initializing the linked list
for i ∈ λpos do
First[i] = −1

end for
for i ∈ U do

Add point i
end for

Adding a point i to the list is also quite easy (algorithm 3). A new element is always added as
the first element of the list with that value of λ. When already an element with the same value
of λ is present in the list, pointers for that element and for the new element have to be adjusted
accordingly.

Algorithm 3 Adding point i with λ = λ[i] to the linked list
Prev[i] = −1
Next[i] = First[λ[i]]
if Next[i] 6= −1 then
Prev[Next[i]] = i;

end if
First[λ[i]] = i

Removing a point i from the list is also quit easy (algorithm 4). The reference of the previous
element, indicating the next element (Next[Prev[i]]) and the reference of the next element, indi-
cating the previous element (Prev[Next[i]]) have to be adjusted (if they exist). Also if element i
is the first element with λ = λi, the reference of First[λ[i]] has to point to the next element with
the same value of λ. An example of removing a point is shown in figure B.1. Here point i = 7
is removed from the list. From the previous point (point 3), the next pointer value (it was 7), is
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changed to point to the next point (point 1). Also from the next point (point 1), the previous
pointer value (it was 7), is changed to point to the previous point (point 3).

Figure B.1: Removing point i = 7 from the linked list

Algorithm 4 Removing point i from the linked list
if Prev[i] 6= −1 then
Next[Prev[i]] = Next[i]

else
First[λ[i]] = Next[i]

end if
if Next[i] 6= −1 then
Prev[Next[i]] = Prev[i]

end if

Last but not least, a routine for determining the point with maximum λ has to be made
(algorithm 5). This can be done by looping over all possible values of λ (starting from the
maximum) and checking if First[i] points to an element.

Algorithm 5 Search for the point i with maximum λ[i]
for i ∈ λpos descending do

if First[i] 6= −1 then
return First[i]

end if
end for
First[λ[i]] = i
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Kaczmarz relaxation

In this appendix Kaczmarz relaxation is described. Kaczmarz relaxation is conventional Gauß-
Seidel relaxation, but applied to a transformed system of equations. This set of equations is
obtained by defining a new grid variable yh as:

uh = AT yh (C.1)

with A the matrix corresponding to the discretization stencil. The transformed set of equations
is now obtained by substituting C.1 into the original equation:

Auh = fh

A
(
AT yh

)
= fh(

AAT
)
yh = fh (C.2)

Matrix Akm = AAT is called the Kaczmarz-matrix and has several interesting properties. First,
it is symmetric:

ATkm =
(
AAT

)T
=
(
AAT

)
= Akm (C.3)

Secondly it is positive definite (~uTAkm~u > 0 for all ~u ∈ Rn):

~uTAkm~u = ~uTAAT~u =
(
~uTA

) (
AT~u

)
=
(
AT~u

)T (
AT~u

)
= AT~u ·AT~u =

∣∣AT~u∣∣2 (C.4)

Therefore it can be proven that both Gauß-Seidel and ω-Jacobi relaxation on the new grid variable
do not diverge [12].

For point Kaczmarz relaxation the required correction (for yh) for point i can be calculated
as:

δi =
fhi −

(
AAT yh

)
i

(AAT )i,i

=
fhi −

(
Auh

)
i

(AAT )i,i
(C.5)

Now the required correction for points uj is:

ūj = uj +ATj,iδi

= uj +Ai,jδi (C.6)

A further extension of point Kaczmarz relaxation is the line Kaczmarz relaxation. In this
relaxation process (just as with line Gauß-Seidel) the required correction for lines of constant x
or y are calculated simultaneously. To illustrate this, the matrix A and vectors u and f can be
rewritten:

Au =
[
All Alo
Aol Aoo

] [
ul
uo

]
=
[
fl
fo

]
= f (C.7)
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where the subscript l denotes points which lie on the line x = xt (i.e. l = {i ∈ Ω : xi = xt}), and
subscript o for all other points (o = Ω \ l). Using this splitting, the Kaczmarz-matrix can be
calculated:

AAT =
[
AllA

T
ll +AloA

T
lo AllA

T
ol +AloA

T
oo

AolA
T
ll +AooA

T
lo AolA

T
ol +AooA

T
oo

]
(C.8)

One step of Kaczmarz line relaxation now consists of calculating the required correction yl from:(
AllA

T
ll +AloA

T
lo

)
yl = fl − (Allul +Alouo) ; (C.9)

And updating all points u:

ū = u+
[
ATll
ATlo

]
yl (C.10)

The most computationally expensive step is solving equation C.9. Here an nxn-matrix needs
to be inverted, with n the number of grid points on a single line. However, for standard 9-point
stencils both All and Aol are tri-diagonal matrices and thus the matrix that needs to be inverted
is at most a 5-diagonal matrix. The system can be solved (just as for line Gauß-Seidel) by using
a Thomas algorithm or by applying 1D multi-grid techniques.

Local mode analysis of the Kaczmarz relaxation can be performed by considering the effect of
the relaxation on the new grid variable (yh).
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