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INTRODUCTION

Acoustics is defined as the science of sound, including its production, transmission and ef-
fects [51]. Sound can be described as a succession of compressions and rarefactions prop-
agating through a medium (solid or fluid) induced by a certain source. Sound is generally
characterized by its frequency (in Herz) and its intensity (in dB).

Audible sound is the sound that humans are able to perceive such as the voice during
speech, a car passing on the street, the ringing of (mobile) phones, and music. The frequency
range of audible sound is between 20 Hz and 20 kHz. Sound with a frequency below 20 Hz
is referred to as infrasound. It can not be detected by the human ear. Typical examples of
infrasound are found in nature; the sound produced by earthquakes or sea waves. Infrasound
can also be produced by devices used in daily life such woofers, vehicle structures, and fans.
Research has indicated that prolonged exposure to infrasound forms a serious health risk
[65]. On the other side of the spectrum, ultrasound encompasses all sound with a frequency
larger than the upper limit of the human hearing (20 KHz). In nature, some animals like
dogs, dolphins and bats, have an upper limit higher than the human ear and thus can hear
ultrasound and even use it for navigation and communication. In our society ultrasound
is often used as a diagnostic tool in industry and medicine. For example; ultrasonography
enables visualization of muscles and soft tissues, making it a useful way to scan a human
body and diagnose specific health problems. Probably the most well-known application of
ultrasound is in obstetrics to monitor the foetal development and growth during pregnancy.

The field of acoustics ranges from fundamental physics to engineering, earth sciences, life
sciences, and arts. Pierce [51] gives an overview chart indicating the scope and ramifications
of acoustics. Clearly acoustics affects many aspects of our daily lives.

In engineering in the past decade the attention for acoustics has increased enormously. The
main reason is the need to reduce unwanted sound, or noise. In our society the noise level
to which people are exposed has increased so much that a quiet living and working environ-
ment is almost a luxury. The rapidly intensifying use of the urban environment including
the intertwining of infrastructure, housing, and industry leads to increasingly restrictive de-
mands on noise performance of installations, vehicles, and appliances. A low noise level is an
essential quality and marketing advantage for products ranging from transport vehicles (air-
planes, high-speed trains, trucks, cars) to personal appliances (air conditioners, computers,
hair dryers, vacuum cleaners, shavers). For guidance in the design of silent products there
is an urgent need for computational tools to help localize, identify, and accurately predict
sources of noise.
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1.1 Sources of sound
Sound is the result of a disturbance in a medium. Depending on the source of the disturbance,
in acoustical studies in engineering the following classification can be made [74]:

1. Structure induced sound: Sound caused by mechanical vibrations; typical examples
are the vibration of engine casing or the string-body of a piano.

2. Flow induced sound: Sound generated by a disturbed flow such as vortex shedding
(von Karman vortex street) or gas jet.

3. Thermally induced sound: Sound caused by local high variations of temperature of the
fluid. A typical example is the sound produced by the lightning during storms which is
associated with an electric discharge causing a sudden local expansion of the medium.

A common way to study sound propagation is by considering the idealized situation of
an harmonic sinusoidal acoustic disturbance produced by a device vibrating. Such a de-
vice spreads spherically symmetric acoustic waves outward from the source with a frequency
f into an unbounded fluid medium with a speed c which depends on the physical proper-
ties of the medium (see Figure 1.1). Due to the vibration of the device, the fluid particles
in the medium show small local displacements in a positive and negative direction relative
to the propagation direction. This generates zones of compression and rarefaction with a
wavelength λ which depends on the speed of propagation and the frequency of the vibra-
tion (λ = c/f ). Since the net displacement of the fluid particles is zero, the disturbance
may propagate over large distances, but the fluid particles themselves remain at all time close
to their original position. Owing to the fact that the wave is propagated in radial direction
from the acoustic source with an average power Pav , the acoustic intensity only has a radial
component and its time average depends only on the radial distance r from the source. So,
considering the acoustic-energy-principle with S taken as the spherical surface with radius r,
the acoustic intensity is proportional to r−2 which is known as the spherical spreading law
[51].

Sound generated by a disturbance in the medium travels as a wave through the medium
away from the source with a speed c that depends of the physical characteristics of the
medium (unlike electromagnetic and optical waves, sound needs a medium in order to be
transmitted), for example; in air at 20oC the speed of sound is 343 m/s, and for water at 20oC
(and atmospheric pressure) the value of the speed of sound is 1481 m/s. In a more general
case the speed of sound can be estimated from thermodynamical relations [7].

1.2 Measurement of sound
A sound wave propagating in a medium causes pressure variations and particle velocity vari-
ations at each location it passes. The common way to measure sound is based on measuring
the pressure variations, which is the principle on which a microphone is based. Microphones
nowadays have an excellent amplitude response coupled to a wide dynamic range of fre-
quencies in which accurate measurements can be done. However, recently a novel sensor
was introduced [29] named microflown which measures the sound particle velocity. The sen-
sor consists of two, extremely thin, heated wires. The principle is that a particle velocity
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FIGURE 1.1: Graphical representation of the sound wave propagation in a fluid.
The dots represent the fluid particles with small local displacements in the direction
indicated by the arrows below which produce a rarefaction and compression when
the disturbance is propagated out of the source with a wevelength λ.

variation in the direction perpendicular to the wires changes the temperature distribution in-
stantaneously, because the upstream wire is cooled more by the airflow than the downstream
wire. The resulting resistance difference provides a broadband signal that is proportional to
the particle velocity, which is related to a particular sound level [29]. The sensor is illustrated
in Figure (1.2).

At present the possible advantages of a particle velocity measurement over a pressure mea-
surement are a subject of active research. The studies range from confirmation that it is really
particle velocity that is measured to detailed studies of the properties of the sensor, its be-
havior in different situations, and possibilities for further improvement, see [57]. As sound
particle velocity, by definition, is a vector quantity. In principle its measurement implies that
more information becomes available than through a pressure measurement. This could be ad-
vantageous for source identification and reconstruction. For example, [73, 74] illustrate how
the use of the sound particle velocity as input in an inverse numerical calculation to compute
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FIGURE 1.2: Examples of 3D particle velocity sensor (microflown) combined with
a pressure sensor (microphone). (Pictures reproduced with the permission of
µicroflown Technologies)

the source field at the surface generating the sound, leads to a more accurate reconstruction
than the use of the measured pressure as input. Finally, a combination of sound pressure and
particle velocity in a single sensor can give direct information about the acoustic intensity,
which again can be useful in source reconstruction [74].

1.3 Problem Classification
In Figure 1.3 a classification of the types of acoustical problems appearing in engineering is
given. The problems can be grouped using different criteria based on problem characteristics
such as the domain of interest and/or information available or required. These characteristics
strongly determine which method is most suited to study the problem and the phenomena that
play a role. In the case of interior acoustics the domain is bounded by solid surfaces which
play an important role in the reflection of acoustical waves (reverberant sound). Typical
applications are the acoustic design of rooms, theaters, or aircraft cabins.

Characteristic for Exterior acoustics is that the the domain of interest is unbounded and the
sound waves are propagated to the infinity or until they reach an object as in scattering cases.

Acoustical problems can also be classified by the type of input used and the information
to be obtained using this input. Forward acoustics is refers to problems in which the source
(e.g. vibration of a body) is known and the resulting sound field is unknown that can be
measured or evaluated. This is important in the prediction of sound generated by machines or
devices, as well as in the prediction of noise pollution. Inverse acoustical problems relate to
the case that the disturbance of the field is known from e.g. measurements and the question
to be answered is which (part of) a structure or machine is the major source of the noise.
Both types of problems appear in vibro, aero, and thermal acoustics and generally numerical
simulations based on a mathematical model are used. Of the two types of problems the
inverse problem is the most difficult one to solve. Yet, when the objective is to use the models
and computational algorithms as tools for quiet design or as diagnostic tools it is exactly the
solution of the inverse problem that is most needed, namely given a product or device, identify
the source of the noise. Examples of the development and use of computational algorithms
in vibro acoustics are [74] and [63].

In many practical situations vibro- and aero-acoustics problems appear together, see [51],
[7] and [58]. These coupled problems are generally very demanding to solve.
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FIGURE 1.3: A possible clasification of acoustical problems found in engineering
applications.

1.4 Numerical methods

In this thesis we restrict ourselves to vibro-acoustic problems and it is assumed that a model is
used based on the Helmholtz equation with the associated boundary conditions, see chapter
2. Even then, only in much simplified cases the problem can be solved analytically. In
general a numerical approach is necessary. During past decades different approaches have
been proposed (see e.g. [22], [30], [41], [42], [46], [51] and [76]). Two approaches have
become very common:

Firstly, the so-called Finite Element Method (FEM). In this approach the domain is cov-
ered with a mesh of volume elements. On each element of the mesh the field variables are
approximated by interpolation polynomials using shape functions with a local basis. Subse-
quently using an equivalent (volume) integral formulation (weighted residual or variational)
of the partial differential equation, an algebraic system of equation is constructed in terms
of the values of the field variables at the nodal points of the mesh. This algebraic system of
equations (usually a band matrix) is then solved using standard numerical procedures. The
accuracy of the approximation depends on the order of the polynomials used and the volume
element size in relation to the length and time scales of the acoustical field. Accurate approx-
imation requires small elements. This applies particularly for cases in which the frequency
is high, i.e. the wavelength of the phenomena to be resolved is small. Because of the use of
volume elements, the Finite Element Method is most suited for the solution of problems in
bounded domains, i.e. interior problems, see Figure 1.4.

The second approach widely used for the simulation and analysis of acoustic problems is
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FIGURE 1.4: Schematic representation of the discretization for a volumen and
boundary domain.

the Boundary Element Method (BEM), e.g. [22], [48], [43], and [44]). The method is based
on the (direct or indirect) boundary integral formulation of the problem. Using elementary
solutions of the governing partial differential equation and the boundary conditions the prob-
lem of solving the field variables in the domain is replaced by the solving an integral equation
for the strength of the distribution of elementary solutions on the boundary of the domain,
e.g. see [22]. Once this distribution is known, using the form of the elementary solution, the
value of the field variables in any point in the domain can be obtained from an integral over
the distribution on the boundary. Since the elementary solutions satisfy the boundary condi-
tion of infinity the boundary element method is very well suited for exterior problems. In the
numerical approach, similar to the finite element method, in the boundary element method
the problem of solving the continuous integral equation is replaced by a discrete formulation
leading to an algebraic system that can be solved by computer. The way this is done is es-
sentially the same as in the finite element method, i.e. the boundary is covered with a grid,
see Figure 1.4. On each of the elements of the grid the boundary variable is approximated by
an interpolation polynomial using shape functions with local support and using a variational
or collocation formulation an algebraic system of equations is obtained that can be solved by
standard numerical routines.

The Boundary Element Method is very well suited for problems on a large domain, i.e.
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radiated sound problems. Instead of the need to cover the full domain with a mesh, only
the boundary of the domain needs to be covered with a mesh. However, it also has some
disadvantages. One difficulty is that it requires approximation of an integral equation with
a singular kernel (Green’s function). The second is that the resulting system of algebraic
equations is generally a fully populated complex system which is very expensive to solve
numerically. Typically the computing time will be O(n3), with n the number of unknowns
(boundary elements). Finally, on top of that, to obtain the value of a field variable at point
of the exterior domain a (discrete) integral transform has to be evaluated which requires a
summation over all the boundary elements and thus O(n) operations for each point at which
the field is to be determined. This may lead to excessive computing times for large n or in
case the field is to be computed at a large number of points. Often in practical problems
indeed large n is required to have a sufficiently accurate approximation, particularly so for
high frequencies.

At present impressive results can be obtained with both the Finite Element method as well
as the Boundary Element method for acoustic problems. An illustration is given in Figure
1.5, Visser [74] used an inverse procedure for the determination of the source of annoying
noise produced by a hairdryer. First, measurements were conducted in a range of 110-1100
Hz with a resolution of 5 Hz using microphone and microflown sensors. The data was used
to determine the spectrum of sound pressure level (SPL) and particle velocity level (PVL).
Subsequently, the measured data was supplied to a BEM program in order to reconstruct the
source of the noise. From the results found it could be concluded that the sound radiation
was produced by three different mechanisms clearly identified by the ranges of frequencies:
air inlet of the hairdryer (low frequency), the structural vibration of the casing (medium
frequency) and air outlet of the hairdryer (high frequency).

However, the computing time needed to solve the problem is often a serious bottleneck
limiting the extent to which practical problems can be treated. Besides, often the problem
must be solved multiple times for a range of frequencies. A fast turn-around time of the
numerical computations is crucial in design processes. The continuous improvement in terms
of hardware (faster computers) can only partly alleviate the computing time problems. Major
steps forward can be made using more efficient computational algorithms.

1.5 Fast matrix multiplication

The need to numerically solve an integral equation or to evaluate an integral transform with
a singular potential type or oscillatory Green’s function arises in many fields in science. Its
discrete version is also referred to as a multi-summation, discrete multi-integration, or eval-
uation of a discrete integral transform. The discrete task in fact is the multiplication of a
full n × n matrix by a vector of n elements, which requires O(n2) operations. In this form
the problem also appears in many body interaction problems in physics, e.g., to compute the
long range Coulombic molecular interaction forces. If the matrix has arbitrary entries there
is no fast way to carry out the multiplication. However, in many cases the matrix entries rep-
resent potential type influence coefficients with a value that decreases logarithmically or as
1/r with increasing distance r from the diagonal. Several methods have been proposed that,
using different properties of the influence coefficients, enable a faster evaluation, e.g. Fast
Fourier Transform (FFT)[24], the Fast Multipole Method (FMM)[36], and the Multi-Level
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FIGURE 1.5: Example of source sound reconstruction from an hairdryer reported by Visser
[74]. (Graph and pictures reproduced with the permission of the author)

Multi-Integration (MLMI) algorithm [16]. In most cases the fast evaluation is achieved at the
expense of a certain controllable error. This is no restriction as in general since there is no
need to exactly evaluate the transform as the matrix-vector multiplication by itself is an ap-
proximation to the continuous analytical result upto an error determined by the discretization.
Any approximation to the discrete summation obtained with an error small compared to this
discretization error is as good an approximation as the “exact” discrete transform itself.

Each of the algorithms has its own merits and uses a different approach to reduce the
number of operations needed in the evaluation of the discrete transform or matrix-vector
multiplication. For example; The Fast Fourier Transform uses the algebraic properties of the
Fourier transform to construct a sparse factorization of the elements of the discrete Fourier
transform which is ordered in a convenient way such that the number of operations in the
matrix multiplication can be reduced from O(n2) to O(n log n) operations. Without doubt it
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is one of the simplest and most efficient algorithms. However, its application is also limited
to uniform non-curvilinear (Cartesian) grids.

The Fast Multipole Method uses a tree type of scheme and a set of polynomial expansions
to represent the far-field and intermediate influence of the elements or particles. The central
strategy used is that of clustering at various spatial lenghts and the compution of the inter-
action with other clusters which are sufficiently far away by means of multipole expansions.
For elements in the near field, this assumption is no longer valid, so that, a direct computation
is performed only in a small region. Using the Fast Multipole Method at the expense of an
error controlled by the accuracy of the expansions and the size of the near field the computing
time needed can be reduced from O(n2) to O(n log n) operations.

Multilevel Multi-Integration was introduced by Brandt and Lubrecht [16]. In this algorithm
the smoothness properties of the Green’s functions are exploited, this also determine the prop-
erties of the dense matrix. The key is that in regions where the (discrete) Green’s function is
smooth it can be represented accurately by interpolation from a reduced data set of the values
of the Green’s functions at a limited number of points. As a result the matrix-vector evalua-
tion can be replaced by an equivalent matrix-vector multiplication involving the reduced data
set and some transfer operators from the original to the reduced data set and back from the
reduced problem to the full problem. For smooth Green’s functions it allows a computing
time reduction from O(n2) to O(n). For singular smooth Green’s functions computing time
is reduced from O(n2) to O(n log n). An advantage of Multilevel Multi-Integration is that in
its basic form it is straightforward to implement. Besides, it can be applied to any dense ma-
trix vector multiplication without the need to make any assumption about its behavior. Also
it can be applied to curved surfaces and extended to non-uniform grids. Besides, any error
made in the fast evaluation can be corrected employing an a posteriori correction.

These methods have been applied successfully for particle interactions and for integral
transforms related to problems governed by the Laplace equations for which Green’s func-
tions are asymptotically smooth (e.g. log |r|, 1/r). Computing time reductions have been
reported up to orders of magnitude, see [36], [16], [50], [60], [70] and [13]. As a result of the
reduced computing times larger and more practical problems could be considered leading to
significant advances in the fields.

Numerical studies of boundary integral problems based on the Helmholtz equation can
also significantly benefit from faster and more efficient algorithms. The implementation of
more efficient techniques for such problems, for which the Green’s function appearing in the
transform is oscillatory, has indeed begun. In [50] has used the panel method for the dis-
cretization of the body surfaces and developed an approach based on the idea to represent the
long-range part of the potential by point charges located on an uniform grid, which then al-
lows fast evaluation using FFT, whereas the short-range interaction is still computed directly.
The approach consists of two steps. First a transform is carried out of the boundary variable
from the non-uniform curved boundary to a uniform non-curved grid. The second step is FFT
to compute the integral transform represented on the grid. The final step is to interpolate the
computed values of the discrete integral transform on the grid back to the non-uniform curved
boundary followed by a local correction. Compared to simple direct summation to obtain the
result large computing time reductions have been achieved.

The fast multipole method developed by Rokhlin and co-workers [60] has been applied
to a variety of problems, including cases with oscillatory kernels [23], [27], [43] and [66].
Recently Drave [28] has given a set of guidelines for the numerical implementation of the
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multipole method based on a physical interpretation of the method, which can be seen as a
superposition of plane waves. In the method it is asssumed that a simple radiating source point
R(P ) is located at the origin, and an observation point P is located in the field. When P is far
enough from the origin R can locally be approximated by a single plane wave, with direction
of propagation P/|P |. As P gets closer to the origin R(P ) will no longer be approximated
well by a single plane wave but rather by a superposition of plane waves. Depending on the
accuracy desired, the number of terms in the expansion needs to be increased, and the method
can evaluate problems in O(n3/2), O(n4/3) or even O(n log n) operations.

The multilevel multi-integration method has not extensively been used for Helmholtz re-
lated boundary integral problems yet. Recently Grigoriev and Dargush [37] presented results
for a two-dimensional boundary element method program based on the direct formulation.
For the fast evaluation of the integral transforms related with the distributions on the bound-
ary surface (contour in 2D) they used the standard multilevel multi-integration algorithm of
[16]. Moreover, they implemented a conjugate gradient scheme for solving the discretized
integral equation. The results confirmed the expectation that a significant speed up was attain-
able using the multilevel algorithm. However, their algorithm was only limited to moderate
wave numbers. As mentioned above the Multilevel Multi-Integration algorithm exploits the
smoothness properties of the Green’s function. For high wavenumbers the oscillatory Green’s
function appearing in acoustic problems is obviously not smooth and when using the stan-
dard MLMI algorithm the attainable improvement in efficiency will strongly depend on the
frequency. The generalization of the Multilevel Multi-Integration algorithm to the case of
oscillatory kernels was already described in 1991 by Brandt [14]. It is claimed that indepen-
dent of the frequency the computational effort of the discrete evaluation can be reduced from
O(n2) to O(npd log n) operations with p the order of polynomial and d the dimension of the
problem (e.g. d = 3 for 3D). However, as far as known to the author no evidence that the
algorithm really works has been published so far 2D.

1.6 Objective
The objective of the research presented in this thesis is the development and implementa-
tion of a Multilevel Multi-Integration algorithm along the lines suggested by Brandt in [14]
for the fast evaluation of discrete integral transforms with oscillatory kernels as they appear
in Boundary Element formulations of acoustic radiation problems. Eventually the algorithm
should be combined with the Boundary Element Method proposed by [74] for source identifi-
cation to alleviate the computing time problems and enable larger and more realistic problems
to be solved. The project has been part of a larger project with the aim to develop efficient
numerical and experimental tools for the determination of radiated noise and acoustic source
identification.

1.7 Outline
In the chapter 2 a brief overview of relevant theory is given. This includes the derivation of
the Helmholtz equation. It is tranformed in its integral version using the Green theorem. The
more common boundary conditions are described and the fundamental solutions for acous-
tical problems are presented. Furthermore the chapter briefly describes the type of integral
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transforms to be evaluated.
In chapter 3 the Multilevel Multi-Integration algorithm is explained taking a generic form

of the integral transform as model problem. First the basic algorithm for smooth and asymp-
totically smooth algorithms is described. Subsequently the generalization of the algorithm to
the case of oscillatory kernels is outlined.

In chapter 4 numerical results are presented for a number of representative one and two
dimensional problems. It is illustrated that the generalized Multilevel Multi-Integration algo-
rithm as proposed by Brandt in [14] really works and for large n yields substantial computing
time reductions. For reference a comparison with results obtained using Fast Fourier Trans-
form is given. Further improvement is even possible by further optimization

In chapter 5 results of the implementation of the algorithm for some acoustic problems
analysed with a Boundary Element Method are given.

The thesis is concluded with concluding remarks and recommendations for further re-
search.
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In this chapter a brief description is given of the theory related to acoustics. It starts with
the linearization of the conservation equations of mass, momentum and energy. A general
representation of the wave equation for acoustics is shown. Further, the more fundamental
solutions (Green’s function) of the wave equation is described and the integral formulation
suitable for acoustic radiation problems is given. Attention is given to the treatment of the
fundamental solutions for infinite domains and the conditions which have to be satisfied.
Finally, the complications arising from the need to evaluate the resulting integrals in practical
applications are discussed.

2.1 Conservation equations

In the continuum theory of fluids, a fluid (liquid or gas) is regarded as a continuous rela-
tively dense distribution of particles, with uniform properties. Conservation laws are derived
which describe the changes in space and time of the field variables: velocity, pressure, den-
sity, temperature, etc., of the fluid. The physical principles of mass, momentum and energy
conservation are the starting point in the derivation of equations that describe acoustic phe-
nomena. Their derivation can be found in standard text books, see [4] and [6]. A specific
differential formulation of the basic conservation laws is:

• Mass conservation.
Dρ

Dt
+ ρ∇ · v = 0, (2.1)

• Momentum conservation, for constant µ and λ and neglecting any external force filed.

ρ
Dv

Dt
+ ∇p = (λ + 2µ)∇(∇ · v) − µ∇× (∇× v), (2.2)

• Energy conservation, neglecting volumetric heat sources (adiabatic) and employing
Fourier’s low of heat conduction (q = −k∇T .

ρ
De

Dt
+ p∇ · v = Φvisc + κ∇2T, (2.3)
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where D
Dt represents the material derivative∗, and the field variables of the fluid the velocity

(v), density (ρ), pressure (p), temperature (T ) and internal energy (e). The term Φvisc is
defined as the three-dimensional viscous energy dissipation function (a nonlinear quantity) †.
Alternatively the energy can be expressed as:

ρ
Ds

Dt
=

1

T

[

Φvisc + κ∇2T
]

(2.4)

The equations of conservation of mass, momentum and energy and the used relations for
the viscous stress terms and the heat flux are not a completely closed system of equations.
Additional relationships are required. These additional relations are the equations of state
between thermodynamic variables. They follow from the law of thermodynamics an the
thermodynamics state principle: if the chemical composition of a fluid is fixed then the local
thermodynamic state is fixed completely by two independent variables. So one could choose
the density ρ and the specific entropy.

T = T (s, ρ) (2.5)

p = p(s, ρ) (2.6)

Depending of the specific application the equations, (2.1)-(2.3), and (2.6), can be simplified
[7]:

1. Incompressible flow. Dρ
Dt = 0. In this case the equation of continuity reduces to ∇·v =

0, which means that also several terms in the other equations vanish. (Incompressible
flows are of interest in fields as hydraulics, civil engineering, low-speed aerodynamics,
etc.)

2. Time-independent or steady state flow. Here a considerable simplification occurs be-
cause the time derivative terms vanish. (Steady flows are of interest in aerodynamics,
hydraulics, pipe flow, etc.)

3. Lossless flow. When effects of viscosity and heat conduction can be neglected (λ,
µ, κ = 0), also many terms vanish. Important fluid flow problems, including sound
propagation, can be approximated as lossless flow.

4. Small-perturbation flow. Linearization of the equations is helpful to deal with many
kind of problems. Most sound waves are considered as small disturbances onto a main
flow field.

As has been mentioned under 3) and 4), lossless and small perturbation flow are the main
assumptions applied in the study of acoustics. Of course, effects of viscosity and heat conduc-
tion on acoustic waves can be taken into account for small perturbations in the conservation
laws. However, this is beyond the scope of this thesis.

∗The material derivative operator is defined by: D
Dt

= ∂
∂t

+ v · ∇
†Φvisc has been defined by some authors in tensor form as: Φvisc = 2µdijdji + λdkkdii, where the rate

of deformation is dij = 1
2
(vi,j + vj,i), µ is the dynamic viscosity of the fluid, and λ the viscosity dilatation

coefficient.
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2.2 Acoustic wave equation
Acoustic disturbances can often be regarded as small-amplitude perturbations to an ambient
state [51]. In that case the perturbations can be solved from a linearization of the conser-
vation equations. The justification is that most acoustic disturbances are so small that the
nonlinear terms in the conservation equations are not important [7]. Nonetheless, the exact
form of the resulting wave equation depends on the assumptions made about the nature of
the wave motion and the medium. Blackstock [7] and Pierce [51] give a linearization for
the case a viscous and thermally conducting fluid is considered. Here the simplest and most
common acoustic linearization is dicussed which applies for problems for which the medium
may be characterized as inviscid and thermally nonconducting. In that case the continuity,
momentum and energy equations can be written as:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.7)

ρ

[

Dv

Dt

]

+ ∇p = 0 (2.8)

ρ
Ds

Dt
= 0 (2.9)

where (2.8) is known as Euler’s equation of inviscid motion. Note that the energy equation
indicates that for adiabatic flow of a inviscid non-heat-conducting fluid the entropy remains
constant when moving with a fluid element.

2.2.1 The equation of state
For any fluid the equation of state relates physical quantities describing the thermodynamic
behaviour of the fluid. For an adiabatic and reversible process (nearly isentropic) it is prefer-
able to determine experimentally the relationship between pressure and density fluctuations.
The relationship can be represented by a Taylor series expansion

p − p0 =

(

∂p

∂ρ

)

0

(ρ − ρ0) +
1

2

(

∂2p

∂ρ2

)

0

(ρ − ρ0)
2 + ... (2.10)

with the partial derivatives determined for isentropic compression and expansion of the fluid
about its equilibrium density. If the fluctuations are small (assumption for linear acoustics)
only the lowest order terms in (ρ − ρ0) need be retained, which gives a linear relationship
between the pressure fluctuations and the change in the density.

p − p0 ≈ β
(ρ − ρ0)

ρ0
(2.11)

where β = ρ0(
∂p
∂ρ )s is the so-called adiabatic bulk modulus‡ and (ρ − ρ0)/ρ0 is known as

the condensation term [41].

‡The adiabatic bulk modulus is defined as the change of the pressure as a function of the volume at constant
entropy

“

β = ρ
“

∂p
∂ρ

”

s

”

, and it has a direct relation with the speed of sound c.
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2.2.2 The linear wave equation
A fluid is considered at rest when the field variables; pressure (p = p0), density (ρ = ρ0)
and velocity (v = 0) are absent of any perturbation. Furthermore, a medium is considered
homogeneous when all ambient quantities are independent of the position, and when the
medium is quiescent, they are independent of the time. In many cases, the idealization of
a homogeneous quiesent medium is satisfactory for the description of acoustic phenomena
[51].

The field variables of a fluid at rest satisfy the fluid dynamics equations (or conservation
laws). However, when the fluid is disturbed for an acoustical perturbation, these variables
can be represented by,

p(x, t) = p0 + p′(x, t), ρ(x, t) = ρ0 + ρ′(x, t), v(x, t) = v′(x, t), (2.12)

where p′, ρ′ and v′, all a function of space and time represent the acoustic perturbation of the
fluid.

The mass conservation equation (2.7), the Euler equation (2.8), and the state equation with
constant entropy (p = p(ρ, s) and s = s0) can be written in terms of the acoustic disturbances.
Here v = v′; p0 and ρ0 are constants related by p0 = p(ρ0, s0).

∂

∂t
(ρ0 + ρ′) + ∇ · [(ρ0 + ρ′)v′] = 0 (2.13)

(ρ0 + ρ′)

(

∂

∂t
+ v′ · ∇

)

v′ = −∇(p0 + p′) (2.14)

p0 + p′ = p(ρ0 + ρ′, s0) (2.15)

The terms in the equations (2.13)-(2.15) can be grouped into zero, first, and higher-order
terms. In Equation (2.15), the grouping resulting from a Taylor-series expansion for small ρ′

is,

p′ =

(

∂p

∂ρ

)

ρ0,s0

ρ′ +
1

2

(

∂2p

∂ρ2

)

ρ0,s0

(ρ′)2 + ... (2.16)

Neglecting all terms of second order and higher results in the equations of linear acoustics in
the case of a quiesent medium:

∂ρ′

∂t
+ ρ0∇ · v′ = 0 (2.17)

ρ0
∂v′

∂t
= −∇p′ (2.18)

p′ = c2ρ′, with c2 =

(

∂p

∂ρ

)

s0

(2.19)

Thermodynamic considerations require that c2 always be positive. Here c is defined as the
speed of sound in the medium. Of course, in general c can be a function of position and
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of time. This variation can depend on the specific properties of the fluid (e.g. when the
thermodynamic properties are not constant in the domain, the speed of sound will also not
be constant). When equations (2.17) and (2.18) are combined to eliminate the dependency of
the velocity from (2.17), the resulting equation is:

∂2ρ′

∂t2
−∇2p′ = 0 (2.20)

Substitution of (2.19) in (2.20) leads to the wave equation for the acoustic pressure:

∇2p′ − 1

c2

∂2p′

∂t2
= 0 (2.21)

This is the most fundamental equation in acoustics. It describes the properties of a sound
field in space and time.

From (2.17)-(2.19) we can also derive that p′(x, t) and v′(x, t) also satisfy the wave equa-
tion.

If the solution of (2.21) is assumed to be time harmonic; e.g.,

p′(x, t) = p̂(x)eı̇ωt (2.22)

with ω the angular frequency (ω = 2πf ) and p the amplitude, equation (2.21) can be trans-
formed from the time domain to the frequency domain. The resulting equation is known as
the Helmholtz partial differential equation.

∇2p̂ + k2p̂ = 0 (2.23)

where k = ω/c, is known as the wave number. Assuming that v′ and ρ′ are also time
harmonic, with the same frequency, also results in a Helmholtz equation for v̂(x) and ρ̂(x).
Furthermore, it follows directly from (2.18) that

v̂(x) =
i

ρ0ω
∇p̂ (2.24)

and from (2.19): ρ̂(x) = 1
c2 p̂(x). In the successive we drop the (ˆ ) on the variables.

2.2.3 Boundary conditions

To determine the pressure field solving Helmholtz’s equation (2.23) for domain ΩV (see
Figure 2.1), boundary conditions ΓS must be specified at each position on the boundary
S = ∂ΩV of the domain. Depending on the type of fluid domain (bounded or unbounded),
the following boundary conditions may occur.
Interior acoustic problem. The fluid domain is bounded by the surface S, and boundary
conditions of the following three types may occur on the closed boundary surface ΓS =
Γp ∪ Γvn

∪ ΓZ :

• Dirichlet condition (imposed pressure)

p = pS on Γp (2.25)
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Γ
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FIGURE 2.1: Sketch of the type of boundary conditions that appear in a)
interior and b) exterior acoustical problems.

• Neumann condition (imposed normal velocity)

v · n = vn on Γvn
= vn (2.26)

which with (2.24) can be expressed as: ı̇
ρ0ω

∂p
∂n

• Robin condition (imposed normal impedance)

p = Zvn on ΓZ (2.27)

Exterior acoustic problem. The fluid domain ΩV is unbounded and the same type of bound-
ary conditions may apply as have been defined in (2.25)-(2.27) at the closed surface ΓS of
a vibrating body (In radiation problems a Neumann boundary condition is commonly used
because data associated with the vibration is specified on the surface S)[63]. However, in
addition to these boundary conditions a Sommerfeld radiation condition must be satisfied at
the boundary surface Γ∞ located at infinity, which ensures that the acoustic waves are prop-
agated freely towards infinity and reflections at the far field boundary can not occur. In terms
of the time-harmonic pressure perturbation, this can be expressed

lim
|r−rS |→∞

|r − rS |
(

∂p

∂|r − rS |
+ ı̇kp

)

= 0 (2.28)

where r is the position of any point in the space of the domain ΩV , and rS is the position of
any point on the surface S of the body (see Figure 2.2).
In practice a combination of these conditions can be used to solve different problems that
appear in applications; for example, in the case of cavities (open boundary surface) or a com-
bination of interior/exterior problems. However, the physical meaning of these conditions is
always the same.
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FIGURE 2.2: Graphical representation of the point position in the radia-
tion acoustical problems.

2.3 The Helmholtz integral representation

A surface integral version of the Helmholtz equation (2.23) can be derived using Green’s
theorem (second identity)§. Consider a domain bounded by the surfaces S of a vibrating
body and Γ∞ being the border of the domain at infinity (see Figure 2.2). Now assume that
G(r, rS) is a function that satisfies the homogeneous Helmholtz equation (2.23) for any point
in the domain V and which is non-singular since the position r of the point P is located at
different positions than rS , then applying the second identity of the Green theorem yields
[51]:

c(p)p(r) =

∫

S

(

p(rS)
∂G(r, rS)

∂nS
− G(r, rS)

∂p(rS)

∂nS

)

dS (2.29)

In order to solve the Helmholtz integral equation (2.29) boundary conditions on S must
be included. For this propose (2.26) can be used, which relate the pressure gradient and the
normal velocity on the surface. Generally, in practical applications the normal velocity is
known as it is associated with the vibration of the surface S. This formulation is the direct
integral formulation due to the direct relation between the normal velocity and the acoustical
pressure. Furthermore, since pressure and normal velocity are not independent, both can not

§For two functions ϕ and ψ, which are sufficiently smooth and non-singular in the domain V en-
closed by a surface S = ∂V , Green’s theorem (second identity) states that:

R

S

“

ϕ
∂ψ
∂n

− ψ
∂ϕ
∂n

”

dS =
R

V

`

ϕ∇2ψ − ψ∇2ϕ
´

dV . The normal n to the surface S has positive orientation away from the domain V .
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be prescribed on the surface S; this means that a prescribed normal velocity on the surface S
causes a certain pressure on S, and vice versa [63].

The contribution from the far field boundary (Γ∞) of the acoustic domain has been re-
moved analytically by invoking the Sommerfeld radiation condition (2.28) which is automat-
ically satisfied in the sense that the surface normal vector always points out of the domain. In
this way, the characteristic impedance (p/vn = −ρc, when |r− rs| → ∞) is negative, which
ensures that no reflecting waves occur. Equation (2.29) can be written as:

c(p)p(r) =

∫

S

(

p(rS)
∂G(r, rS)

∂nS
+ ı̇ρ0ωG(r, rS)vnS

)

dS (2.30)

In (2.29) and (2.30) c(p) is known as the geometry coefficient, which can be represented by
the integral form [74]:

• When the normal vector on ΓS is uniquely defined.

c(p) =

{

1 for x ∈ ΩV
1
2 for x ∈ ΓS

0 for x /∈ ΩV

(2.31)

• When the normal vector on ΓS is not uniquely defined: e.g at corners and edges.

– Interior problems:

c(p) =
1

4π

∫

∂

∂n

1

r
dS (2.32)

– Exterior problems:

c(p) = 1 +
1

4π

∫

∂

∂n

1

r
dS (2.33)

2.3.1 The fundamental solution for acoustics
The kernel G(r, rS) in Green’s identity is defined as the fundamental solution that satifies the
inhomogeneous Helmholtz equation.

(∇2 + k2)G(|r− rS |) = −δ(r − rS) (2.34)

and the Sommerfeld condition (2.25). Here δ(r − rS) is the Dirac delta function defined by
the value of its integral when it is integrated over a volume V . The Green function represents
the free-field acoustic pressure at a point r in the domain due the acoustic point source at rS .

The Green’s function can be represented by:
Two-dimensional problem¶.

G(r, rS) = − i

4
H

(2)
0 (k|r − rS|) (2.35)

Three-dimensional problem

G(r, rS) =
e−ı̇k|r−rS |

4π|r − rS|
(2.36)

¶The Hankel function of order zero and of the second kind of a variable φ is defined by: H (2)
0 (φ) = J0(φ) −

ı̇Y0(φ). Here J0(φ) and Y0(φ) are the zero-order Bessel functions of first and second kind, respectively[1].
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Note that the Green’s function is a complex valued function, which becomes singular when
the distance |r − rS| between the field position and the source position becomes zero.

2.4 Evaluation of the Helmholtz Integral Equation
Inlcuding the Neumann boundary conditions in the Equation (2.30) and reordering in terms
of known and unknown quantities. The integral equation that represents the pressure on the
surface of an vibrating body is given by:

c(p)p(r)−
∫

S

p(rS)
∂G(r, rS)

∂nS
dS = ı̇ρ0ω

∫

S

G(r, rS)vnS
dS (2.37)

The evaluation of the direct Helmholtz integral equation (2.37) is generally performed in
two steps [22][51][74]:

1. The pressure on the surface S must be evaluated solving (2.37) in order to introduce
the boundary condition.

2. Once that the pressure is evaluated on the surface, the pressure in any point of the
domain V is obtained be evaluationg (2.29).

In real applications it is generally not possible to obtain an exact solution of the integral
equation for p (2.37), nor an exact evaluation of the integral in 2.29 and a numerical approx-
imation has to be done.

The natural method for the numerical evaluation of the direct formulation of the Helmholtz
integral equation is so-called Boundary Element Method (BEM) [63], which consists of the
discretization of the integrals that appear in both steps above, and subsequently solving the
system of equations by computer.
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MULTI-LEVEL MULTI-INTEGRATION

In this chapter Multilevel Multi-Integration (MLMI) is explained. This is an algorithm for
the fast numerical evaluation of integral transforms as they appear in many fields in science,
such as vision image analysis, contact mechanics, electromagnetics, and acoustics, etc. The
complexity of the algorithm depends of the type of Green’s function (kernel) in the transform.

First a description of the algorithm for integrals with smooth kernel is given. This case
serves well to explain the basic principle of how to use the smoothness of the kernel to obtain
a fast evaluation. In many real applications the kernel is asymptotically smooth. The exten-
sion of the algorithm to such cases only requires minor modifications and is explained next.
Finally, the case of oscillatory kernels as they appear in acoustic and electromagnetic prob-
lems is discussed. Such kernels are by definition non-smooth. However, by introducing the
concept of separation of directions, the task of evaluating a transform with oscillatory kernel
can be rewritten as the task to evaluate a series of subtransforms each with an asymptotically
smooth kernel which then facilitates fast evaluation.

3.1 Generic form of the task
The generic form of integral transforms appearing in problems as for example described by
the Laplace or the Helmholtz equation is:

v(x) =

∫

Ω

G(x, y)u(y) dy x ∈ Ω̄ (3.1)

with,

G(x, y) =







Gsmo(x, y) Smooth
Gasy(x, y) Laplace
Gosc(x, y) Helmholtz

(3.2)

where v(x) is the unknown function to be determined for each location of x (x ∈ IRd; e.g.
x1, x2, ..., xd), where d is the dimension of the problem), u(y) is a source function located
at y (y ∈ IRd; e.g. y1, y2, ..., yd) which is generally related to the boundary conditions
of the particular problem. G(x, y) is the so-called kernel (Green’s function) which is the
fundamental solution of the governing equation. The kernel can be smooth, asymptotically
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FIGURE 3.1: Behaviour of the Green’s function for the case of a smooth kernel
(Gsmo) and for problems governed by Laplace (Gasy) or Helmholtz (Gosc) equa-
tion.

smooth or oscillatory as is illustrated in Figure 3.1. The evaluation of (3.1) can be part of the
task to solve an integral equation such (2.37) in acoustical problems or it can be a task for
itself as in the calculation of paticles interactions.
In practical problems it is generally not possible to analytically evaluate (3.1), so a numerical
approximation has to be developed. Assume that xi = x0 + ih are equidistant grid points
of an evaluation grid defined on the domain Ω̄ where xd ∈ IR and i = (i1, i2, ..., id), and h
is the mesh size. In the same way an integration grid of points yj is defined on the domain
Ω. It is assumed that the value of u at the points yj is given as uh(yj). The domain Ω
is subdivided in integration intervals. On each of these integration intervals the function
u is approximated by a polynomial function ûh of degree s − 1. The coefficients of the
polynomial are obtained from requiring ûh(yj) = uh(yj) at a set of points in or near the
integration interval. The contribution of each integration interval to the integral transform
at a point x is now approximated by the integration of the product G(x, y)ûh(y) over the
interval. Summing up the contributions of all intervals yields a discrete approximation vh(x)
to v(x) to be evaluated for each point of the evaluation grid xi:

vh(xi) ≡
∫

Ω

G(x, y)ûh(y)dy =
∑

j

Ghh(xi, yj)u
h(yj) (3.3)

In some cases the coefficients Ghh(x, y) can be calculated analytically (for example; for
the logarithmic kernel in problems of potential theory [16]). This is especially important for
points near kernel singularities. Alternatively a numerical integration can be used, e.g. based
on an adaptive quadrature rule [13]. The discretization error (τ ) is O(hs||u(s)||), where
||u(s)|| is an upper bound for the s-order derivative of u.

Note that (3.3) is the equivalent to the multiplication of a vector by a dense matrix. So,
when there are n points xi and n̄ points yj the evaluation of (3.3) for all xi requires O(nn̄)
operations. Assuming (n = n̄) this will lead to O(n2) operations. Since in practical problems
often large n may be required for accuracy, this can lead to prohibitive computing times for
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the evaluation of (3.3).
In [16] Brandt and Lubrecht have described Multilevel Multi-Integration as an alterna-

tive method for the fast evaluation of integral transforms and demonstrated its efficiency for
smooth and asymptotically smooth kernels. They showed that the computational effort of
the evaluation of the discretized integral transforms can be reduced from O(n2) to O(n) for
smooth kernels and to O(n log n) for asymptotically smooth kernels. The algorithm exploits
the smoothness properties of the kernel and is explained below.

The integral transforms that appear in problems described by the Helmholtz equation are
numerically more demanding to evaluate due to the oscillatory behaviour of the kernel (see
Figure 3.2). For accuracy of representation the number of gridpoints per wavelength should
be sufficiently large. Visser [74] and Schubmacher [63] state that at least 7 points per wave-
lenght (nλ) are required to ensure that the phenomena can be adequately represented. So,
with increasing wavenumber an increasing number of nodes is needed aggravating the prob-
lem of excessive computing times.

Due to the oscillatory behaviour the standard MLMI algorithm can only be used with full
efficiency for cases with low and medium wave numbers. The general principle of a Mul-
tilevel Multi-Integration algorithm for the case of oscillatory kernels has been described by
Brandt in [14]. It is claimed that the complexity of the numerical evaluation can be reduced
from O(n2) to (O(npd log n) operations, where p is the order of interpolation used in the
method and d is the dimension of the problem (see below). In [14] no actual results were pre-
sented. Implementation and performance test of this algorithm has been one of the challenges
of the research reported in this thesis.

3.2 Multilevel Multi-Integration: Basic Algorithm
In this section a short description is given of the multilevel multi-integration algorithm for
the evaluation of integral transforms with smooth or asymptotically smooth kernels. For
further details the reader is referred to [16]. The algorithm can also be used for the evaluation
of integral transforms with oscillatory kernels as long as the wave number k is sufficiently
small.

3.2.1 Notation
In the final algorithm to obtain the transform on a target grid with mesh size h a series of
coarser grids is used recursively. However, for simplicity, the algorithm is explained using
only two grids; i.e. a fine grid with mesh size h and an auxiliary coarse grid with mesh size
H . For simplicity it can be assumed that H = 2h. The variables and indices on the fine grid
will be represented by lower case characters, subscripts and superscripts; so that uh

j = uh(yj)
stands for the value of u in grid point j on the fine grid h, at location yj = y0 + jh. The
variables and the indices on the coarse grid will be represented by upper case letters such as
V , U , I , J , etc; so that UH

J = UH(YJ ) is the value of the function U at a coarse grid point J
with location YJ = Y0 + JH . In some cases the dependence on the mesh size of variables is
explicitly indicated for example when it concerns values of a variable at the same location at
different grids. (i.e. V H

I = vh
2I , Y H

J = yh
2J , etc.).

In the algorithm operations occur between the grids h and H . For example to obtain the
value of a variable at a location of the fine grid xh

i from its values at coarse grid locations XH
I
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FIGURE 3.2: Graphical representation of the behaviour of the Green functions for
acoustical radiation problems (Eqs.(2.34) and 2.35).

interpolation will be used. The interpolation coefficients are denoted by ωhH
iI . In the same

way ωhH
jJ denotes the interpolation weight for the value of a variable in the point Y H

J when
interpolating to the fine grid location yh

j . The order of the interpolation will be denoted as p.
In this work only even orders of interpolation will be considered. (A formula to obtain these
interpolation coefficients to different orders is given in Appendix A)

3.2.2 Smooth kernels
When G(x, y) is by definition smooth as a function of y on the scale H its value at any point
yj can be obtained with O(ε) error using a p = O(log(1/ε)) order interpolation from its
values at points YJ of a (coarse) grid, with mesh size H . In particular for any point yj :

Ghh(xi, yj) =
∑

J

ωhH
jJ GhH(xi, YJ ) + O(ε) (3.4)

where ε is the interpolation error (ε = (γ1H)p|G(p)|). Here γ1 is a constant in the range
1/2 ≤ γ1 ≤ 1 and depends on the kind of interpolation used (γ1 = 1/2 for central interpola-
tion), |G(p)| is the maximum of a pth derivative of G. The summation over J in (3.4) usually
extends over only p points around point yj , so it is a local summation.
Substitution of (3.4) in (3.3) gives:

vh(xi) =
∑

j

∑

J

ωhH
jJ GhH(xi, YJ )uh(yj) + O(ε) (3.5)
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Changing the order of summation yields:

vh(xi) =
∑

J

GhH(xi, YJ )UH(YJ ) + O(ε) (3.6)

where

UH(YJ ) =
∑

j

ωhH
jJ uh(yj) (3.7)

As the summation over j (for each J) in (3.5) is a local summation over O(p) points also
the summation over J for each j in (3.7) is also a local summation over O(2p) points when
H = 2h.

The change of order of summation going from (3.5) to (3.6) is the first crucial step in the
algorithm. Its effect is that a fine grid summation over index j is replaced by a coarse grid
summation over index J .

Summarizing, when Ghh(x, y) is smooth as a function of y the computation of vh(xi)
by summation over all yj at the expense of an O(ε) error can be replaced by a coarse grid
summation (3.6) over all YJ of “injected” values Ghh(xi, yj) (GhH(xi, YJ ) ≡ Ghh(xi, y2J ))
multiplied with collected charges UH(YJ ) defined by (3.7). This latter operation is referred
to as anterpolation of uh(yj), since it is the adjoint of the interpolation of (3.4) [14].

Next, assume that Ghh(x, y) is also a smooth function of x on the scale H . In that case
for any xi up to O(ε) error Ghh(xi, y) can be obtained by interpolation from its values on a
coarse grid XI with mesh size H .

Ghh(xi, yj) =
∑

I

ωhH
iI GHh(XI , yj) + O(ε̄) (3.8)

For a p̄-order interpolation the error is defined by ε̄ = (γ1H)p̄|G(p̄)|. Often p̄ = p can be
used and ε̄ = ε. For each i the summation over I is a local summation involving only p̄
terms. This is the second crucial step in the algorithm. This second step implies that it is
not necessary to compute the transform in all points of the fine grid xi. Permitting a certain
error that can be controlled by the order of interpolation it is sufficient to only compute the
summations in coarse grid points, and then obtain the value in all points of a finer grid by
means of interpolation.

The result of both steps is that, up to O(ε) error, the computation of vh(xi) in all evaluation
grid points xi involving a summation over all integration grid points yj can be replaced by:

(i) Anterpolation:
UH(YJ ) =

∑

j

ωjJuh(yj) (3.9)

(ii) Injection of the kernel:

GHH(XI , YJ ) = Ghh(x2I , y2J ) (3.10)

(iii) Coarse grid summation:

V H(XI) =
∑

J

GHH(XI , YJ )UH(YJ ) (3.11)
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FIGURE 3.3: Schematic representation of the Multilevel Multi-Integration algorithm
for smooth kernels. Anterpolation (left): recursive operations are carried out until
N = O(

√
n) is reached. Interpolation (right): recursive operations are carried out

until n is reached.

(iv) Interpolation:

vh(xi) =
∑

I

ωiIV
H(XI) (3.12)

When the kernel is sufficiently smooth, the coarsening step from grid yj to YJ and xi to XI

can be such that the evaluation of the coarse grid summation requires O(n) operations. As the
anterpolation and interpolation also require at most O(n) operations, the total work needed
to obtain the direct transform is reduced from O(n2) to O(n) operations at the expense of
an error O(ε). This error can be made small by the choice of the order p of interpolation,
where p = O(log(1/ε)) is generally needed [70]. However, in practice it is only needed to
ensure that the additional error introduced by the fast evaluation is small compared to the
discretization error (τ ) that is made anyway.

For convenience the algorithm can be programmed recursively using a sequence of grids
with mesh size increasing by a factor 2 each coarsening. The grids are then referred to as
levels and numbered. In that case the coarsening is repeated until a grid is reached with
N = O(

√
n) points. A flow diagram of the algorithm is given in Figure 3.3. In the left

side of the figure are represented the recursive operations of anterpolation for uh(yj) and the
injection of the kernel until the coarsest grid with N = O(

√
n) points is reached. In the right

side of the figure is represented the recursive operation of interpolation for V H(XI) from the
coarsest grid to the target (finest) grid.
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FIGURE 3.4: A discrete representation of an asymptotically smooth kernel and the
error introduced by interpolation. (Given as example: G(x, y) = − log(|x − y|))

3.2.3 Asymptotically smooth kernels

In many practical problems the kernel is asymptotically smooth (or singularly smooth), i.e. it
has a singularity at x = y. Obviously in such cases it is not possible to obtain the value of
G(x, y) at a given location xi, yj in the vicinity of the singularity from its values at coarse
grid points XI , YJ by interpolation with sufficient accuracy (see Figure 3.1). However,
with increasing distance from the singularity the smoothness increases and at a sufficient
distance from the singularity again Equations (3.4) and (3.8) hold for an interpolation of
p = O(log(1/ε)). The Multilevel Multi-Integration algorithm as described above can be
adapted to the case of singular smooth kernels by introducing posteriori local corrections for
the error made by the interpolation near the singularity. The effect of the interpolation on the
result of the algorithm can be written explicitly as follows:

v
h(xi) = v̄

h(xi) +
X

j

"

G
hh(xi, yj) −

X

I

X

J

ω
hH
iI ω

hH
jJ G

HH(XI , YJ)

#

u
h(yj) (3.13)

where v̄h(xi) is defined by

v̄h(xi) =
∑

I

ωhH
iI V H(XI) (3.14)

and the summation terms in (3.13) represent the error introduced in (3.12) by (3.5) and (3.8).
This error satisfies,
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G
hh(xi, yj) −

X

I

X

J

ω
hH
iI ω

hH
jJ G

HH(XI , YJ ) =



0 xh = XH and yh = Y H

O(ε) |xh − yh| ≥ mh
(3.15)

Choosing m sufficiently large the error due to the interpolation of the kernel (in both x and
y) can be made small compared to the discretization error. The error introduced in the region
|x − y| ≤ mh can be computed and added as a local correction, i.e. the summation over j in
(3.13) extending over the range |x − y| ≤ mh.

Summarizing, (3.12) up to an error O(ε) can be written as,

vh(xi) = v̄h(xi) + ṽh(xi) (3.16)

where the correction term ṽh(xi) is defined by:

ṽh(xi) =
∑

|i−j|≤m

[

Ghh(xi, yj) −
∑

I

∑

J

ωhH
iI ωhH

jJ GHH(XI , YJ )

]

uh(yj) (3.17)

For a given interpolation the correction kernel coefficients needed, see (3.15), can be pre-
computed and stored. The total work of the algorithm now depends on m. The value of m
can be determined from a work-accuracy optimization: Setting the permissible error equal to
the discretization error τ find m such that the total work is minimized. An example of such
an analysis and details for the logarithm kernel G(x, y) = log |x − y| are given in [16] and
[17].

The Multilevel Multi-Integration algorithm for an asymptotically smooth kernel is thus
given by (3.9)-(3.12) steps (i) to (iv) followed by:

(v) Correction (3.16):
vh(xi) = v̄h(xi) + ṽh(xi)

with ṽh(xi) given by (3.17).
Figure 3.5 shows a schematic of the algorithm for the evaluation of integral transforms

with asymptotically smooth kernel. Note that when the algorithm is used with a series of
grids the corrections are applied between each set of a coarser and a finer grid.

3.3 MLMI algorithm for Oscillatory kernels
As was shown above the standard MLMI approach exploits the smoothness properties of
the kernel of (3.3) to reduce the complexity of its numerical evaluation. However, for in-
tegrals with oscillatory kernel, as they appear in the solution of problems governed by the
Helmholtz equation, the smoothness depends on the value of the wavenumber. The algorithm
as explained above can still be used but the degree to which the coarsening can be repeated
and thereby the attainable reduction in complexity depends on the wavenumber. When the
wavenumber is small full efficiency can be obtained. However, with increasing wavenumber
the gain in computing time will be smaller as the coarsening cannot be repeated to a grid with
O(

√
n) points. To efficiently evaluate integral transforms with an oscillatory kernel requires



§3.3. MLMI ALGORITHM FOR OSCILLATORY KERNELS 31

2J
Σ k−1

2J
k

I JJG    (X   ,Y  )
J
Σ 1 1

J

2I 2J
kkG     (X    ,Y    )J

U   (Y   )ωJU      (Y  ) =k−1 k
2J

U   (Y  )

V   (X  )
~ k

2I
ΣI

I

k−2 (2H)

k−1 (H)

k (h)

+

Level

V   (X  ) = V      (X    )k−1

IV   (Y  ) =1 1

2I
k ω I

k−1
2I

k

I
k−1k−1G           (X  ,Y  ) =

FIGURE 3.5: Schematic of the Standard Multilevel Multi-Integration (MLMI) algo-
rithm for the evaluation of integral transforms with asymptotically smooth kernels.

a generalization of the algorithm. Assume the following generic form of the transform to be
evaluated:

v(x) =

∫

Ω

Gasy(x, y)eik|x−y|u(y)dy x ∈ Ω̄ (3.18)

In this generic form the oscillatory kernel is represented as the product of a smooth or an
asymptotically smooth function Gasy(x, y) and a complex exponential (oscillatory) function
eik|x−y|.

The advantage of the representation (3.18) is that the oscillatory behaviour appears explic-
itly. In applied problems the oscillation may be implicit in the kernel, for example when it
is the Hankel function. However, in such cases it can always be rewritten in the form (3.18).
So assuming (3.18) does not imply any loss of generality. The generic form of the discrete
integral transform (3.18) can now be written as:

vh(xi) =
∑

j

Ghh(xi, yj)e
ik|xi−yj |uh(yj) (3.19)

to be evaluated for all points xi of an evaluation grid, given the value of uh at points of an
integration grid yj . Note that the i preceding the wave number k always denotes the imaginary
constant (

√
−1). It is not related to the grid index that appears elsewhere as a subscript.
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Obviously for the case of an oscillatory kernel, the total kernel itself is not smooth. How-
ever, the argument of the oscillatory part is a smooth function of x and y. Using this smooth-
ness is the key idea in the generalization of the Multilevel Multi-Integration algorithm to the
case of oscillatory kernels.

Using the concept separation of directions the discrete transform is written as a series of
discrete subtransforms for a number of predefined directions. These subtransforms can be
rewritten in such a way that a kernel which is asymptotically smooth as a function of x and y
appears. Its smoothness can then be used to obtain a fast evaluation.

3.3.1 Separation of directions
Equation (3.19) can be seen as a special case of a more general problem. This observation
will lead to the fast evaluation algorithm. Let xi be a point of the evaluation grid and a yj a
point of the integration grid where uh is given. The direction “vector” between xi and yj is
now determined by eij = (yj − xi)/|yj − xi|. Here |xi − yj |eij denotes the vector from the
sender point yj to the receiver point xi. Let θij denote the angle of this vector, for example;
in two dimensional problems eij = {cos θij , sin θij}. In (3.19) obviously the contribution of
a point yj to the transform at xi no depends on the direction between xi and yj . However
assume now that there were such an angular dependence and that it could be represented by
defining an angular radiation filter U(θ) and an angular reception filter G(θ), such that the
generalized version of (3.19) is:

vh(x) =
∑

j

G(xi, yj)G(θij)e
ik|xi−yj |U(θij)u

h(yj) (3.20)

The original task of evaluating (3.19) is exactly the same as equation (3.20) with U(θ) ≡ 1
and G(θ) ≡ 1. We now define a grid of directions eβ ∈ σd = {e ∈ IRd : |e| = 1} with σd

the unit sphere (circle), and eβ the associated base vectors, e.g. eβ = {cos θβ , sin θβ} for the
two dimensional case (see Figure 3.6). It is assumed that the number of directions on the grid
of directions is λ and the mesh size on this grid δθ = 2π/λ.

Now assume that U and G are smooth as a function of θ. This is obviously true for our
problem. For any function that is smooth on the scale of the mesh size on the grid of directions
its value for a given direction θ can be obtained accurately by a pth-order interpolation from
its value at the directions on the grid. In particular,

U(θ) =
∑

m∈s(e)

ws(e)
m (e)U(θm) + O(ε) (3.21)

G(θ) =
∑

l∈s(e)

w
s(e)
l (e)U(θl) + O(ε) (3.22)

where w
s(e)
l (e) and w

s(e)
m (e) represent the interpolation weights of the value at a given base

vector l and m, respectively, into the result for a given e (see Appendix A). s(e) denotes the
set of p base directions involved in the pth-order interpolation to the direction e. Preferably
it should be chosen such that e is central to the set. Because of periodicity the interpolation
is well defined even if the number of directions is smaller than p. Even for the case λ = 1 of
a single direction it is well-defined as then w

s(e)
λ (e) ≡ 1. Finally, the error ε is clearly zero

for the case of a constant function.
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FIGURE 3.6: Schematic representation of the grid of directions for um(yj) and vl(xi).

Substitution of (3.21) and (3.22) to determine the value of G(θij) and U(θij) in Equa-
tion (3.20) gives:

vh(xi) =
∑

j

G(xi, yj)
∑

l∈sij

w
sij

l (eij)G(θl)e
ik|xi−yj |

∑

m∈sij

wsij
m (eij)U(θm)uh(yj) (3.23)

By defining

uh
m(yj) = U(θm)uh(yj) (3.24)

and defining that w
s(e)
l (e) = 0 for l /∈ s(e) the original task of evaluation of (3.19) can now

be written as the evaluation of:

vh(xi) =
∑

l

G(θl)v
h
l (xi) (3.25)

with

vh
l (xi) =

∑

j

Ghh(xi, yj)e
ik|xi−yj |w

sij

l (eij)
∑

m∈sij

wsij
m (eij)u

h
m(yj) (3.26)

for 1 ≤ λ. So the generalized task is now to the evaluate (3.26) for l = 1, ..., λ. Note that the
original task (3.19) corresponds to the special case λ = 1.

3.3.2 One-dimensional scheme

To illustrate how the separation of directions introduced above can lead to a fast evaluation
algorithm, first consider a one-dimensional case. The general representation (3.26) can now
be written in the form of only two directions (positive and negative) from xi.
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eij =

{

+1 yj ≥ xi

−1 yj < xi
(3.27)

The set of directions sij used in the interpolation to eij by definition consists of only one
direction and the interpolation weights are given by:

w
sij

l (eij) =

{

1 eij = sij

0 eij 6= sij
and wsij

m (eij) =

{

1 eij = sij

0 eij 6= sij
(3.28)

Substituting (3.27) and (3.28) into (3.26), the generalization of the integral transform for one
dimensional problems can be rewritten as:

vh
l (xi) =

{

∑

j

Ghh(xi, yj)e
ik|xi−yj |uh

m(yj) l = m

0 otherwise
(3.29)

Because (3.29) is defined for only two directions, we can introduce a simplified notation
(+) and (-) to denote the directions that l and m can take: when x − y ≥ 0 the direction is
defined (+) when x − y < 0 it is defined (-). The function eik|x−y| in (3.29) can be split in
terms of x and y. The task (3.19) can now be rewritten as the computation of:

vh(xi) = e−ikxivh
+(xi) + eikxivh

−(xi) (3.30)

where,

vh
+(xi) =

∑

j

Ghh
+ (xi, yj)u

h
+(yj) (3.31)

vh
−(xi) =

∑

j

Ghh
− (xi, yj)u

h
−(yj), (3.32)

with

G+(x, y) =

{

G(x, y) y ≥ x,
0 y < x,

(3.33)

G−(x, y) =

{

0 y > x,
G(x, y) y ≤ x, (3.34)

and,

uh
+(yj) = eikyj uh(yj) (3.35)

uh
−(yj) = e−ikyj uh(yj) (3.36)

The result is that the evaluation of the discrete transform with oscillatory kernel is now
rewritten into the task of evaluating two subtransforms, the summations (3.31) and (3.32),
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with each an asymptotically smooth kernel. Each of these summations can be evaluated
separately using the algorithm described in Section 3.2.3, so that the evaluation of (3.19) can
be carried out by the following steps:

(i) Separate uh in (+) and (-) directions: (3.35) and (3.36)

(ii) Perform the MLMI algorithm for (+) and (-) directions: (3.31) and (3.32)

(iii) Combine vh
+ and vh

− to vh: (3.30)

So, for a one dimensional problem the oscillatory part of the kernel can be fully incorpo-
rated in the function v and u and no special algorithm is needed for the fast evaluation. The
total work involved in the fast evaluation for the oscillatory kernels is now twice the total
work involved in the fast evaluation with a singular smooth kernel. So, for n points xi and n
points yj the total work is O(n log n).

3.3.3 Two and Three-dimensional scheme
The one-dimensional case illustrated the principle of separation of directions very clearly.
The separation of directions leads to 2 subtransforms which each have a smooth or singular
smooth kernel. The principle for higher dimensional cases is the same. A series of subtran-
forms appears. However, the separation of directions cannot be made so explicit that the
oscillatory behaviour in x can be taken outside the summation. As a result the higher dimen-
sional algorithm appears much more complex. In this case for each combination of directions
l, m a singular smooth kernel is obtained from the original kernel by multiplying it with an
oscillatory function. The principle is as follows: Consider the function eik|x−y| in the one-
dimensional case and assume x − y > 0. When multiplied by e−ikxeiky, it can be written as
eik(|x−y|−x+y)eikye−ikx. Obviously the function eik(|x−y|−x+y) for the region (x − y) > 0
is smooth in terms of x and y.

Now consider the two-dimensional case. The oscillatory term is written as:

eik|x−y| = eik(|x−y|+elx−emy)e−ikelxeikemy (3.37)

where em and el are a set of base vectors from the grid of directions. Substitution of (3.37)
in (3.26) gives:

vh
l (xi) =

∑

j

∑

m∈sij

Ghh
ijlm(xi, yj)e

ik(emyj−elxi)uh
m(yj) (3.38)

with:

Gijlm(x, y) = G(x, y)eik(|x−y|+elx−emy) × w
sij

l (x, y)wsij
m (x, y) (3.39)

Now, for any combination of l and m, (3.39) is an asymptotically smooth function in
terms of x and y. Here, the interpolation weights plays a crucial role too. For given direc-
tions m and l the exponential function is smooth in a region of the domain. The smooth-
ness in the remaining part of the domain turns from the product of the interpolation weights
w

sij

l (x, y)w
sij
m (x, y) vanishing.

In the Figure 3.7 an illustration is given of the behaviour of the discrete function (3.39) for
the two-dimensional case, fixed index l = 0 (θl = 0) and m = 0 (θm = 0), the variable xi
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a) IRe(Gijlm(x, y)) b) IIm(Gijlm(x, y))
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FIGURE 3.7: Representation of the real and imaginary part of the discrete function
Ghh

ijlm(xi, yj) with G(xi, yj) = 1/|xi − yj |, k = 2π, and second order for w
sij
m (xi, yj)

and w
sij

l (xi, yj).

is fixed at position (0, 0) and yj runs over the domain. Notice that locally near x = y the
function is not smooth but outside this region the smoothness increases rapidly. So, except
for the region around the singularity the values of the function at a given grid point can be
obtained accurately by an interpolation of order p = O(log(1/ε)) from its values on a coarser
grid (the order of angular (pth

θ ) and spatial (pth
xy) interpolation can be chosen independent).

Coarsening

Having introduced the auxillary kernel Ghh
ijlm the next step is now to show how using its

smoothness the original task of evaluation of (3.26) for 1 ≤ l ≤ λ can be replaced by a
similar task but defined on a coarser scale. For simplicity again two grids will be assumed. A
fine uniform grid with mesh size h further the variables and the indices are denoted by lower-
case letters (e.g. v, u, x, y, i and j) and directions 0 ≤ l ≤ λ and 0 ≤ m ≤ λ. Quantities
defined on the coarse grid will all be defined by upper-case characters and superscripts.

Since a set of directions has been included to generalize (3.19), it is also required that the
distance between directions (δ) be included in the criteria of discretization of (3.26), such
as was shown in [14]. This criteria must be fulfilled to ensure that the discretization at least
satisfy p = O(log(1/ε)). Furthermore, this requirement also must be satisfied for each coarse
level, which implies that when the mesh size increases then the distance between directions
must be reduced proportionately. Commonly the number of points for the coarse level is
given by the ratio 1 : 2d of the fine level (d is the dimension of the problem), so that, in order
to mantain the criteria of the discretization fullfilled, the number of directions for the coarse
level must be increased in proportion 2d−1 : 1 relative to the fine level, see section 3.3.3.

Let the kernel (3.39) be suitable smooth on the scale of a coarse grid with mesh size H .
Its value for any given x and y a fine grid with mesh size h can be obtained by interpolation
from the values on the coarse grid with O(ε) error. In that case (3.38) can be approximated
up to O(ε) error by:
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ṽh
l (xi) =

∑

j

∑

m∈sij

∑

I∈σ̄i

∑

J∈σj

ωhH
iI ωhH

jJ GHH
ijlm(XI , YJ )eik(emyj−elxi)uh

m(yj) (3.40)

where σ̄i and σj are the sets of points in the neighbourhood of xi and yj used by the in-
terpolation. This equation will now be re-written into a coarse grid representation. For the
case of a smooth or asymptotically smooth kernel, this was quite straightforward since it only
involved a change in the order of the summations (see Equation (3.6)). In this case it is a little
more complex because exponential terms appear as well as their relation with the directions
m and l. Using (3.39) and re-arranging terms, (3.40) can be written as:

ṽh
l (xi) =

∑

I∈σ̄i

ωhH
iI eikel(XI−xi)

∑

j

∑

J∈σj

ωhH
jJ GHH(XI , YJ )eik|XI−YJ |w

sij

l (XI , YJ )

∑

m∈sij

w
sij
m (XI , YJ )eikem(yj−YJ )uh

m(yj) (3.41)

Taking a close look at this equation it can be seen that the last summation
∑

m∈sij
involv-

ing the weights w
sij
m (XI , YJ ) is in fact an interpolation taking place from the fine grid of

directions to the direction EIJ of the product of the functions uh
m(yj) and eikem(yj−YJ ). As

shown in Brandt [14], both uh
m(yj) and eikem(yj−YJ ) are smooth on the grid of directions (i.e.

as a function of m). As a result their interpolation from {em}m∈sij
can be replaced, to O(ε)

accuracy, by an interpolation from any other close subset of {em}, so that in (3.41) the sum-
mation

∑

m∈sij
w

sij
m (XI , YJ ) could for example be replaced by the

∑

m∈sEij
w

s(Eij)
m (EIJ).

So as well the interpolation could be replaced by an interpolation from the set {EM}M∈SIJ
,

provided uh
m(yj) were defined on {EM} instead of on {em}. However, using the fact that

uh
m(yj) is suitably smooth on {em} it can be interpolated to the coarse grid of directions

{EM} by defining ũh
M (yj),

ũh
M (yj) =

∑

m∈sEM

ws(EM )
m (EM)uh

m(yj) (3.42)

As a reminder, the number of directions on the coarse grid is 2d−1 as large as on the fine grid,
so this is indeed interpolation. As a result (3.41) can now be replaced by

ṽh
l (xi) =

∑

I∈σ̄i

ωhH
iI eikel(XI−xi)

∑

j

∑

J∈σj

ωhH
jJ GHH(XI , YJ )eik|XI−YJ |w

sij

l (EIJ)

∑

M∈SIJ

WSIJ

M (EIJ)eikem(yj−YJ )ũh
M (yj) (3.43)

In a similar way (see Brandt [14]), the final result of the algorithm should, up to a per-
missible O(ε) error, not change when the interpolation coefficients w

sij

l (EIJ) in (3.43) are
replaced by pth-order interpolation coefficients to the same EIJ from any (other) close
set. In particular they can be replaced by coefficients of pth-order interpolation using the
set {EL}; i.e. a pth-order interpolation from {el} to {EL} followed by a pth-order in-
terpolation from {EL} to EIJ . This implies that the term w

sij

l (EIJ) in (3.43) can be re-
placed by

∑

L w
s(EL)
l (EL)W

S(EIJ )
L (EIJ), where the summation is over all L such that(s.t.)

l ∈ s(EL). Introducing this replacement one obtains:
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ṽh
l (xi) =

∑

I∈σ̃

ωhH
iI eikel(XI−xi)Ṽ H

l (XI) (3.44)

where

Ṽ H
l (XI) =

∑

L s.t.

l ∈ s(EL)

w
s(EL)
l (EL)V H

L (XI) (3.45)

V H
L (XI) =

∑

J

GHH(XI , YJ )eik|XI−YJ |WSIJ

L (EIJ)
∑

M∈SIJ

WSIJ

M (EIJ)UH
M (YJ ) (3.46)

UH
M (YJ ) =

∑

j s.t.

J ∈ σj

eikEM (yj−YJ )ũh
M (yj) (3.47)

(3.46) is exactly a coarse-grid version of (3.26). So, the coarsening process is complete. The
task of the evaluation of (3.26) on the target grid h can thus be replaced by the evaluation of
the coarse grid problem (3.46) and a number of intergrid operations in space and directions.
The different steps are described below and the entire process is summarized in Figure 3.8
for a two-dimensional problems.

(i) Angular density interpolation:

Calculate ũh
M (yj) in all points yj for all coarse grid directions M = 1, ..., Λ using

Eq. (3.47).

(ii) Density oscillatory anterpolation:

Calculate UH
M (YJ) in all coarse grid points for all coarse grid directions M = 1, ..., Λ,

using Eq. (3.42).

(iii) Coarse grid summation:

Compute V H
L (XI) defined by (3.46) for all coarse grid points XI for all coarse grid

directions L = 1, ..., Λ.

(iv) Angular field anterpolation:

Calculate V H
l (XI) for each fine grid direction l = 1, ..., λ by anterpolation on the grid

of directions as defined by Eq. (3.45).

(v) Field oscillatory interpolation:

Calculate ṽh
l (xi) for l = 1, ..., λ in all fine grid points xi using Eq. (3.44)

Notice, that as the number of directions on the coarser grid is 2d−1 as large, but the number
of nodes 2d times smaller, when applied recursively, the algorithm will certainly lead to
a reduction of the total amount of work when the number of points on the finest grid is
sufficiently large.
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FIGURE 3.8: Schematic representatition of the process for the evaluation of integral
transforms with an oscillatory kernel using the MLMIO algorithm.

3.3.4 Error Control

Since the function G(x, y) was assumed to be asymptotically smooth in terms of x and y
in (3.18), it implies that Gijlm(x, y) must also be asymptotically smooth. However, the
function Gijlm(x, y) vanishes outside the region defined by sij . Unlike the cases described
in Section 3.2, the kernel Gijlm(x, y) for each of the sub-summations vh

l (xi) has smooth
but not symmetrical properties. In this case, the error introduced by the interpolation of
Gijlm(x, y) in (3.40) needs to be corrected considering this issue.

From the assumption that Gijlm(x, y) is asymptotically smooth in the angular region
bounded by sij , and taking in to account that the smoothness of it increases as a function
of the distance |x− y|, the largest errors introduced by the interpolation of Gijlm(x, y) from
the coarse grid in (3.40) are located in the region close of x = y. In the same way as for
asymptotically smooth kernels a local correction is needed to be able to ensure that the error
can be kept small compared to the discretization error that is made anyway. Assuming that a
correction is computed for all points within a distance rc from from the singular point x = y
and that this distance is chosen such that the contribution of the remaining terms to the error
is at most comparable to the discretization error, (3.38) can be written as:
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vh
l (xi) = ṽh

l (xi) + vh
l (xi)corr (3.48)

where the correction term is given by:

vh
l (xi)corr =

∑

j≤rc

∑

m∈sij



Ghh
ijlm(xi, yj) −

∑

J∈σj

∑

I∈σ̄i

ωiIωjJGhh
ijlm(XI , YJ )



×

eik(emyj−elxi)uh
m(yj) (3.49)

Equation (3.49) in general can be seen as the exact definition of the task of corrections.
However, the term of the error Ghh

ijlm(xi, yj)−
∑

J∈σj

∑

I∈σ̄i

ωiIωjJGhh
ijlm(XI , YJ )eik(emyj−elxi)

is not suited for simple evaluation as an a posteriori correction. Therefore, an alternative and
very robust approach is proposed to obtain the corrections. Venner [71], namely, computed
correction tables by using the algorithm itself. For each combination of directions l and m
and grids h and H the correction matrix to be used can be obtained by applying the algorithm
to the case of uh

m(yj) = δ(yj) where δ(yj) is the delta function taking value 1 at y = yj

and zero otherwise. Subsequently the result obtained with the algorithm (Ghh
mlmi(xi, δ)) is

substracted from the contribution that this point has in (3.38) (indicated by Ghh
ds (xi, δ)). In

this way automatically all possible sources of error in the algorithm are taken into account
in the correction. The alternative for the evaluation of the term of correction can now be
represented by:

vh
l (xi)corr =

∑

j≤rc

∑

m∈sij

G̃hh
ε (xi, δ)u

h
m(yj) (3.50)

where,

G̃hh
ε (xi, δ) = Ghh

ds (xi, δ) − Ghh
mlmi(xi, δ) (3.51)

Finally,

(vi) Field corrections: For each xi correct the contribution to ṽh
l (xi) from uh

m(yj) for all
yj into the region bounded by rch

The resulting algorithm has the prospect of evaluation of (3.38) much faster with a control-
lable error O(ε) that can be kept small comparable with the discretization error O(τ) by the
choice of the appropriate correction region and order of interpolation in space and in angle.
Since the Ghh

ε (xi, δ) vanish out of the region defined by the relation between directions l and
m as a function of the order of the angular interpolation pθ, an alternative way to perform
the corrections faster could be ordering the data in a convenient way to only consider the no
vanish values of Ghh

ε (xi, δ) as a function of the directions l and m in teh correction. The total
work will depend on the orders of the different interpolations and the radius of the correction
region. Below some details of the effects of the different parameters on the total work are
discussed. In the following chapter the algorithm is put to the test and numerical results are
presented.
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3.4 Estimation of complexity
Since that the algorithm for oscillatory kernels above was derived using two kinds of auxiliary
grids (spatial and angular), it is possible to take independent p the order of interpolation on
each grid such that they can be represented as pθ for the angular and ps for the spatial order
of interpolation. So an estimation of the computational work can be done as a function of
these two parameters and the correction parameter rc.

Considering that one operation is defined as one addition and one multiplication, then the
work done by the algorithm can be determined by:

1. Angular interpolation and anterpolation (steps i and iv): O(λnpθ)

2. Spatial anterpolation and interpolation (steps ii and v): O(λnps) when the anterpola-
tion/interpolation can be done one dimension at a time, and O(λnpd

s) otherwise.

3. Summation at the coarsest level (step iii): This work can be neglected due to the eval-
uation of (3.46) on the coarsest level is performed in only O(2

√
npθ) operations.

4. Correction (step vi): A estimation of the work for the corrections is given by O(λnrd
cpθ)

since that for each i and l involves pθ directions of m and a region bounded by rc in
the vicinity of the singularity (x = y).

Notice that the most expensive computational task above is related with the operation of
correction due to the error introduced by the interpolation close to the singularity. In order
to minimize this work an optimization as a function of the parameters pθ, pxy and rc is
desirable. Examples of optimization can be found in [16] and [17]. It should be an item for
further research.
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NUMERICAL RESULTS MLMIO

In this chapter results obtained with the Multilevel Multi-Integration algorithm are presented
for a number of one- and two-dimensional model problems of integral transforms with os-
cillatory kernel. The performance of the algorithm is measured by means of comparing the
approximation to the discrete transform that is obtained with the exact analytical solution and
with the result obtained using single grid simple matrix multiplication. In various ways it
is shown that the generalization of the MLMI algorithm using separation of directions in-
deed works and enables fast evaluation of discrete integral transform with oscillatory kernel
with performance independent of the wavenumber. Finally for reference the performance of
the algorithm for some of the model problems is compared with the performance of an FFT
algorithm.

4.1 One dimension (G(x, y) smooth)
The first model problem is the evaluation of the integral transform (3.18) for one a dimen-
sional case with G(x, y) a smooth function of x and y:

v(x) =

∫ 1

−1

G(x, y)eik|x−y|u(y)dy, x ∈ [−1, 1] (4.1)

where,

G(x, y) = cos(y − x) and u(y) = 1 − y2, (4.2)

for different values of the wave number (k).
For this case the analytical solution is known, see Appendix B, and will be used to evaluate

the accuracy of the numerical results obtained.

4.1.1 Discretization

The integral transform (4.1) was discretized as descibed in section 3.3. Here a constant
meshsize h is assumed. uh(yj) and vh(xi) are the discrete approximations to u and v on the
grid. The numerical approximation of (4.1) was done in two ways:



44 CHAPTER 4. NUMERICAL RESULTS MLMIO

i) Single Matrix Multiplication
In this case, the integral transform (4.1) was discretized as follows: In each interval [yj −
h
2 , yj + h

2 ] the function is approximated by a piecewise constant function with the value
uh(yj). Subsequently, the contribution of the interval to vh(x) is defined as:

δjv
h(x) =

[

∫ yj+
h
2

yj−
h
2

G(x, y)eik|x−y|dy

]

uh(yj). (4.3)

Summing up the contributions of all integration intervals one obtains a discrete approximation
to v given by the following single matrix multiplication:

vh(xi) =
∑

j

Ghh
osc(xi, yj) uh(yj) (4.4)

where the coefficients of the matrix (discrete kernel) Ghh
osc are given by:

Ghh
osc(xi, yj) =

∫ yj+
h
2

yj−
h
2

G(xi, y)eik|xi−y|dy (4.5)

These coefficients were computed numerically using a Gauss adaptive quadrature approach
with predefined accuracy ε = O(10−8). The discretization is of second order and the error
should be insensitive to the wave number k.

ii) Separation of Directions (MLMIO)
The second approach uses the separation of directions in MLMIO algorithm as described in
the previous chapter. The discrete representation of v is:

vh(xi) = e−ikxivh
+(xi) + eikxivh

−(xi) (4.6)

where

vh
+(xi) =

∑

j

Ghh
+ (xi, yj)u

h
+(yj) (4.7)

vh
−(xi) =

∑

j

Ghh
− (xi, yj)u

h
−(yj) (4.8)

with,

Ghh
+ (xi, yj) =







(A+ + B+)Ghh(xi, yj) j > i,
A+ Ghh(xi, yj) j = i,
0 j < i,

(4.9)

Ghh
− (xi, yj) =







0 j > i,
B− Ghh(xi, yj) j = i,
(A− + B−)Ghh(xi, yj) j < i,

(4.10)
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and

uh
+(yj) = eikyj uh(yj) and uh

−(yj) = e−ikyj uh(yj) (4.11)

The coefficients Ghh
+ and Ghh

− depend on the specifics of the discretization. Here a sec-
ond order discretization was used based on a piecewise linear approximation of uh(yj) at
integration intervals [yj , yj+1]. The coefficients were computed analytically as illustrated in
appendix B where also the constants A+, A−, B+ and B− are given.

4.1.2 Performance
Hereafter the target grid with meshsize h satisfies the constraint h = λ/nλ, where nλ is the
number of points per wavelength (λ), in this case nλ was fixed to at least in 8 points. Notice
that using the MLMIO algorithm this constraint is not needed in the coarsening procedure
since that using the discretization of separation of directions smoothness of the kernel for
each subtransform is introduced.

Results for (4.4) with (4.5) and for (4.6)-(4.11) on a series of grids with decreasing mesh-
size were computed. The grids are numbered with a grid index fl and each next grid has a
meshsize that is two times smaller. The number of intervals on the grid is n. Results for
(4.6)-(4.11) were obtained in two ways. Firstly, using single grid multisummation to obtain
the two discrete subtransforms. Secondly using a MLMI algorithm for the fast evaluation of
these discrete subtransforms.

The error of the approximations and its dependence on the wavenumber (k) are compared.
The accuracy of the discrete approximations was measured using the Euclidean norm of the
absolute error in vh(x):

||ε||2 =
1

n + 1

n
∑

i=0

|v(xi) − vh(xi)| (4.12)

where v(x) is the exact analytical solution (see Appendix B) and (n + 1) the number of
discrete grid points. Notice that the v(xi) and vh(xi) are complex.

k = 64π
Single Matrix Multiplication Separation of directions

No. Mesh ||ε|| cpu time [sec.] ||ε|| cpu time [sec.]
8 512 1.12e-06 <1.00e-02 3.90e-08 <1.00e-02
9 1024 2.78e-07 1.00e-02 9.68e-09 1.00e-02
10 2048 6.93e-08 3.00e-02 2.42e-09 3.00e-02
11 4096 1.73e-08 1.30e-01 6.03e-10 1.40e-01
12 8192 4.33e-09 5.30e-01 1.51e-10 5.40e-01
13 16384 1.08e-09 2.13e+00 3.77e-11 3.00e+00
14 32768 2.71e-10 1.09e+01 9.42e-12 1.61e+01
15 65536 6.76e-11 4.83e+01 2.35e-12 6.42e+01
16 131072 1.69e-11 1.99e+02 6.14e-13 2.57e+02
17 262144 4.23e-12 8.12e+02 1.10e-13 1.02e+03

TABLE 4.1: Average norm of the error and cpu time for both discretizations Single Matrix
Multiplication and Separation of Directions)(k = 64π).
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The evaluation was done for three values of k that represent a low, medium and a high
wave number: (k = 8π, 32π and k = 64π). In this section the results for k = 64π are
shown. The other results can be found in Appendix B.

In table 4.1 the results are shown for single grid evaluation. The first column gives a grid
index. The second column gives the number of intervals n on the grid. In the third and fourth
column the error (4.12) and the computing time needed for the summation (4.4) are shown.
In the fifth and sixth column similar results are shown for the summation (4.6).

It can seen that the evolution of the error follows the expected second order behaviour
when the number of intervals is doubled, the norm of the error reduces by a factor 4.

From table 4.1 and additional results in Appendix B (tables B.1 and B.2), it can be seen
that for both schemes the error is independent of the wavenumber k. This is due to the fact
that in the single matrix scheme a Gauss quadrature is used for the kernel coefficients with a
predefined accuracy and in the second scheme they were obtained analytically.

Finally the computing time used for the evaluation increases by a factor 4 each time the
mesh size is halved which clearly shows the O(n2) work involved in the direct summation.

||ε||, k = 64π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
8 512 3.90e-08 3.90e-08 3.90e-08 3.90e-08 3.90e-08 3.90e-08
9 1024 9.68e-09 9.68e-09 9.68e-09 9.68e-09 9.68e-09 9.68e-09*

10 2048 2.42e-09 2.42e-09 2.42e-09 2.42e-09 2.42e-09 2.42e-09
11 4096 6.03e-10 6.03e-10 6.03e-10 6.03e-10 6.03e-10 6.03e-10
12 8192 1.51e-10 1.51e-10 1.51e-10 1.51e-10 1.51e-10 1.51e-10
13 16384 3.77e-11 3.77e-11 3.77e-11 3.77e-11 3.77e-11 3.77e-11
14 32768 9.42e-12 9.42e-12 9.42e-12 9.42e-12 9.42e-12 9.42e-12
15 65536 2.35e-12 2.35e-12 2.35e-12 2.35e-12 2.35e-12 2.35e-12
16 131072 6.14e-13 6.14e-13 6.14e-13 6.14e-13 6.14e-13 6.14e-13
17 262144 1.10e-13 1.10e-13 1.10e-13 1.10e-13 1.10e-13 1.10e-13

TABLE 4.2: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers. (k = 64π)

||ε||, k = 64π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10 cl=fl-11
8 512 3.90e-08 3.90e-08
9 1024 9.68e-09 9.68e-09 9.68e-09
10 2048 2.42e-09 2.41e-09 2.41e-09 2.42e-09
11 4096 6.03e-10* 6.03e-10 6.03e-10 6.03e-10 6.04e-10
12 8192 1.51e-10 1.51e-10 1.51e-10 1.50e-10 1.50e-10 1.51e-10
13 16384 3.77e-11 3.77e-11* 3.77e-11 3.76e-11 3.71e-11 3.72e-11
14 32768 9.42e-12 9.42e-12 9.42e-12 9.41e-12 9.34e-12 8.84e-12
15 65536 2.35e-12 2.35e-12 2.35e-12* 2.35e-12 2.34e-12 2.30e-12
16 131072 6.14e-13 6.14e-13 6.14e-13 6.14e-13 6.14e-13 6.18e-13
17 262144 1.10e-13 1.10e-13 1.10e-13 1.10e-13* 1.11e-13 1.15e-13

TABLE 4.3: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 transfers. (k = 64π) (Continue)

Tables 4.2 and 4.3 show the norm of the error (4.12) when (4.6) is evaluated with the
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MLMIO algorithm, i.e. using a MLMI algorithm to evaluate each of the discrete subtrans-
forms in (4.6). Note that due to discontinuity created in G+(x, y) and G−(x, y) to carry
out the fast evaluation at the expense of an error that is small compared to the discretization
error, a correction is needed for the contribution of p points around the discontinuity. The
correction is applied posteriori, see section 3.2.3.

The tables are organized as follows; the first column (fl) indicates the index of the target
grid on which the evaluation is needed. The second column (mesh) shows the number of
intervals on this grid (n = 2fl+1). The other columns give the error defined as (4.12) in the
final result on the target grid fl when the MLMIO algorithm is used with the actual coarse
grid summation carried out on the grid with index cl. So, the column with cl = cf displays
the results of single grid summation as shows in table 4.1. The column cl = fl − 1 gives the
error in the final results when one coarse grid is used, and so on. The results marked with an
asterisk (*) indicate results obtained using a coarsest grid with N =

√
n points. This is the

maximum useful degree of coarsening.
As can be seen from the tables in all the cases the norm of the error is comparable to

the result obtained with single grid summation. This implies that even when coarsening is
continued to O(

√
n) intervals the additional error in the result obtained on the target grid is

small compared to the discretization error.
In the graphs on the left side of the Figures 4.1, 4.2 and 4.3 the behaviour of the norm

of the error for single matrix multiplication (SMM), for the discretization by separation of
directions using single grid summation, and for the MLMIO algorithm is shown graphically
for the three wave numbers considered. The results again show that for all cases the accuracy
of the result is second order. Moreover, one can not see a significative difference between the
single grid separation of direction results and the MLMIO results, which again shows that the
error resulting from the fast evaluation is negligable compared to the discretization error.

On the right side of the Figures 4.1, 4.2 and 4.3 the overall performance of the single grid
summation and MLMIO algorithm is shown by means of the error in the result as a function
of the cpu time invested to obtain the result. The efficiency gain is clear from the fact that
using the MLMIO algorithm the cpu time invested to obtain a given accuracy is several orders
of magnitude smaller.

This is further detailed in the tables 4.4 and 4.5 where the computing times used in the eval-
uation of the simple matrix multiplication (4.4) and separation of directions (4.6) using both,
single matrix multiplication (cl = fl) and the MLMIO algorithm are shown. The results
were obtained in a Pentium IV PC. It can clearly be seen that the evaluation of (4.6) using the
MLMIO algorithm gives significant reductions in the cpu time compared to the evaluation
using single matrix multiplication. These reductions should be computer intependent. More-
over, it can be seen from the results marked with an asterisk (*) that the computing time is
really reduced from O(n2) to O(n) operations. This is further illustred in the Figure 4.4.

From comparing the results given here with the auxiliary results in tables B.2-B.6 in ap-
pendix B, it is clear that the algorithms performance is independent of the wavenumber.
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FIGURE 4.1: Left: Norm of the error from the numerical evaluation of (4.1) using single
matrix multiplication, discretization by separation of directions and the MLMIO algo-
rithm. Right: Overall performance for both single matrix multiplication and the MLMIO
algorithm. (k = 8π and p = 8)
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cpu time [sec.], k = 64π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
8 512 <1.0e-02 ∼ ∼ ∼ ∼ ∼
9 1024 1.00e-02 <1.0e-02 ∼ ∼ ∼ ∼*
10 2048 3.00e-02 1.00e-02 <1.0e-02 ∼ ∼ ∼
11 4096 1.40e-01 3.00e-02 1.00e-02 <1.0e-02 ∼ ∼
12 8192 5.40e-01 1.40e-01 4.00e-02 1.00e-02 1.00e-02 1.00e-02
13 16384 3.00e+00 5.40e-01 1.40e-01 5.00e-02 2.00e-02 2.00e-02
14 32768 1.61e+01 2.57e+00 5.60e-01 1.50e-01 6.00e-02 3.00e-02
15 65536 6.42e+01 1.56e+01 2.62e+00 5.80e-01 1.90e-01 8.00e-02
16 131072 2.57e+02 6.46e+01 1.59e+01 2.69e+00 6.40e-01 2.30e-01
17 262144 1.02e+03 2.56e+02 6.44e+01 1.64e+01 2.77e+00 7.30e-01

TABLE 4.4: Cpu time (sec.) invested in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers.

cpu time [sec.], k = 64π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
8 512 ∼ ∼
9 1024 ∼ ∼ ∼
10 2048 ∼ ∼ ∼ ∼
11 4096 ∼* ∼ ∼ ∼ ∼
12 8192 <1.0e-02 ∼ ∼ ∼ ∼
13 16384 1.00e-02 <1.0e-02* ∼ ∼ ∼
14 32768 3.00e-02 2.00e-02 2.00e-02 2.00e-02 2.00e-02
15 65536 6.00e-02 5.00e-02 5.00e-02* 5.00e-02 5.00e-02
16 131072 1.30e-01 1.10e-01 1.00e-01 1.00e-01 1.00e-01
17 262144 3.30e-01 2.40e-01 2.20e-01 2.00e-01* 2.00e-01

TABLE 4.5: Cpu time (sec.) invested in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers.(Continue)
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FIGURE 4.4: Cpu time (sec.) invested in the numerical evaluation of (4.1) using direct
matrix multiplication and the MLMIO algorithm with p = 8 order transferes.

4.2 One dimension (G(x, y) asymptotically smooth)
In the second example considered G(x, y) is taken as an asymptotically smooth function,
which is more realistic in view of real applications. In this case, G(x, y) often has a singular-
ity at the location x = y.

In the description of the MLMIO algorithm it was explained that larger errors are intro-
duced by the interpolation of the kernel in the region close to the singularity (see Sec. 3.3.2),
which need to be corrected to ensure that the fast evaluation at most introduces an error com-
parable to the discretization error. The correction factors for a local region near the singularity
can be computed easily and the corrections applied a posteriori, see [70].

Consider the evaluation of the integral transform defined by:

v(xi) =

∫ 1

−1

G(x, y)eik|x−y|u(y)dy, x ∈ [−1, 1] (4.13)

where,

G(x, y) = ln |x − y| and u(y) = 1 − y2 (4.14)

for different (k). As for the previous problem the analytical solution can be obtained and
used for performance check. It is given in Appendix B.

4.2.1 Discretization
The discrete approximation of u and v on a grid with mesh size h is defined by uh(yj) and
vh(xi) respectively.

i) Single Matrix Multiplication
The integral transform is discretized as follows. On each integration interval [yj−h

2 , yj+
h
2 ]

the product eik|x−y| u is approximated by a piecewise constant with the value eik|xi−yj | uh(yj).
Subsequently the contribution of the integration interval to the value of the transform at a
point x is approximated by:
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δjv
h(x) =

[

∫ yj+
h
2

yj−
h
2

G(x, y)dy

]

eik|x−yj |uh(yj). (4.15)

The integral in 4.15 can be computed analytically. Summing up the contributions of all
intervals yields the second order approximation:

vh(xi) =
∑

j

Ghh
osc(xi, yj) uh(yj) (4.16)

where

Ghh
osc(xi, yj) = Ghh(xi, yj)e

ik|xi−yj | (4.17)

with,

Ghh(xi, yj) = (xi − yj +
h

2
) ln |xi − yj +

h

2
| − h (4.18)

−(xi − yj −
h

2
) ln |xi − yj −

h

2
| − h

ii) Separation of Directions (MLMIO)
First the transform is split into two directions. Subsequently each subtransform is dis-

cretized by approximating uh(y) by a piecewise constant function on each interval [yj −
h/2, yj +h/2]. In the end, the contribution of all intervals are added up giving a second order
approximation to the continuous transform:

vh(xi) = e−ikxivh
+(xi) + eikxivh

−(xi) (4.19)

where

vh
+(xi) =

∑

j

Ghh
+ (xi, yj)u

h
+(yj) (4.20)

vh
−(xi) =

∑

j

Ghh
− (xi, yj)u

h
−(yj) (4.21)

with,

Ghh
+ (xi, yj) =

{

Ghh
p (xi, yj) j ≥ i,

0 j < i,
(4.22)

Ghh
− (xi, yj) =

{

0 j > i,
Ghh

n (xi, yj) j ≤ i, (4.23)

and

uh
+(yj) = eikyj uh(yj) and uh

−(yj) = e−ikyj uh(yj) (4.24)

The coefficients Ghh
p and Ghh

n can be computed analytically, see Appendix B.
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4.2.2 Performance
The results for this model problem will be presented in a same way as for the previous prob-
lem. First the dependence of the accuracy on the mesh size and the wave number (k = 64π
for this case) is given in the third column (cl = fl) of the table 4.6, which actually is the
discretization error. Next, the results for the MLMIO algorithm are presented in the tables
4.6 and 4.7 and Figures 4.5, 4.6 and 4.7. Additional results are given in the Appendix B.

Since in both cases, single matrix multiplication and separation of directions, the function
u is approximated by a piecewise constant and the coefficients G, G+ and G− are evaluated
analytically, there is no difference between the results obtained on a single grid with the two
approaches.

In table 4.6 and B.7 and B.10 the discretization error (column cl = fl) is defined as:

||ε||2 =
1

n + 1

n
∑

i=0

|v(xi) − ṽh(xi)| (4.25)

which is given as a function of the mesh size for the cases with k = 8π, 32π and 64π
respectively. From the results it can be seen that the discretization error is indeed O(h2) as
expected.

||ε||, k = 64π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
8 512 2.36e-03 2.36e-03 2.36e-03 2.36e-03 2.36e-03 2.36e-03
9 1024 6.18e-04 6.18e-04 6.18e-04 6.18e-04 6.18e-04 6.18e-04*

10 2048 1.62e-04 1.62e-04 1.62e-04 1.62e-04 1.62e-04 1.62e-04
11 4096 4.23e-05 4.23e-05 4.23e-05 4.23e-05 4.22e-05 4.23e-05
12 8192 1.10e-05 1.10e-05 1.10e-05 1.10e-05 1.10e-05 1.10e-05
13 16384 2.87e-06 2.87e-06 2.87e-06 2.88e-06 2.88e-06 2.87e-06
14 32768 7.47e-07 7.47e-07 7.47e-07 7.48e-07 7.49e-07 7.49e-07
15 65536 1.94e-07 1.94e-07 1.94e-07 1.94e-07 1.95e-07 1.96e-07
16 131072 5.03e-08 5.03e-08 5.03e-08 5.03e-08 5.05e-08 5.10e-08
17 262144 1.30e-08 1.30e-08 1.30e-08 1.30e-08 1.31e-08 1.31e-08

TABLE 4.6: Average norm of the error in the numerical evaluation of (4.13) using the MLMIO
algorithm with p = 8 order transfers. (k = 64π)

To illustrate the performance of the MLMIO algorithm the fast evaluation error will be
used which is defined as:

||FEε||2 =
1

n + 1

n
∑

i=0

|vh(xi)
fl − vh(xi)

cl| (4.26)

i.e. the difference between the result obtained on the target grid using no coarse grids at all
and the results obtained on the target grid using the MLMIO algorithm in which the actual
summation take place on grid cl.

In the fast evaluation, as a result of the singularity a local correction is needed for the error
made by the interpolation near the singularity, see section 3.2.3. In this case a correction was
introduced for the contribution of m = 3 + ln(n) points around (xi = yj).
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||ε||, k = 64π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
8 512 2.36e-03
9 1024 6.18e-04
10 2048 1.62e-04 1.62e-04
11 4096 4.23e-05* 4.23e-05
12 8192 1.10e-05 1.10e-05 1.10e-05
13 16384 2.85e-06 2.87e-06* 2.87e-06
14 32768 7.49e-07 7.44e-07 7.37e-07 7.38e-07
15 65536 1.96e-07 1.96e-07 1.95e-07* 1.89e-07
16 131072 5.24e-08 5.20e-08 5.24e-08 5.15e-08 4.65e-08
17 262144 1.34e-08 1.40e-08 1.35e-08 1.48e-08* 1.70e-08

TABLE 4.7: Average norm of the error in the numerical evaluation of (4.13) using the MLMIO
algorithm with p = 8 order transfers. (k = 64π) (Continue)

||FEε||, k = 64π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
8 512 2.36e-03 1.65e-07 2.35e-07 1.79e-07 1.79e-07 1.79e-07
9 1024 6.18e-04 1.03e-07 1.36e-07 2.78e-07 2.23e-07 2.23e-07*
10 2048 1.62e-04 3.60e-08 4.95e-08 1.25e-07 1.38e-07 1.55e-07
11 4096 4.23e-05 6.20e-09 1.45e-08 6.33e-09 3.44e-08 5.34e-09
12 8192 1.10e-05 2.23e-09 6.21e-09 1.01e-08 4.74e-09 2.25e-08
13 16384 2.87e-06 1.12e-09 3.27e-09 6.98e-09 9.96e-09 5.58e-09
14 32768 7.47e-07 2.32e-10 6.86e-10 1.55e-09 2.95e-09 3.46e-09
15 65536 1.94e-07 8.76e-11 2.61e-10 6.02e-10 1.25e-09 2.25e-09
16 131072 5.03e-08 4.38e-11 1.30e-10 3.03e-10 6.43e-10 1.28e-09
17 262144 1.30e-08 1.04e-11 3.10e-11 7.20e-11 1.54e-10 3.14e-10

TABLE 4.8: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 64π)
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In table 4.8 and B.11-B.14 the fast evaluation error is given as a function of the number of
nodes (mesh size) on the target grid and the coarsest grid used in the MLMIO algorithm. For
reference in the third column the discretization error is given. The MLMIO algorithm was
used with 8th order transfers. Note that in the tables only results are presented for target grids
on which the mesh size is sufficiently small to resolve the oscillation with at least nλ = 8
points. The results shown in the tables 4.8 and B.11-B.14 show that in all cases the error
made by the fast evaluation is smaller or at most comparable than the discretization error,
independently of the wavenumber k. The results marked with (*) indicate that the coarsening
can be carried out until a grid is reached with

√
n points where the actual summation can

be carried out in O(n) operations. In many cases this implies that the coarsening is carried
out until a grid at which the kernel itself is not longer smooth. The fact that it can be clearly
illustrated the real value of the MLMIO algorithm. Unsing the standard algorithm would not
be possible.

||FEε||, k = 64π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
8 512 1.79e-07
9 1024 2.23e-07
10 2048 1.55e-07 1.55e-07
11 4096 1.09e-08* 1.09e-08
12 8192 9.68e-09 1.40e-08 1.40e-08
13 16384 2.20e-08 8.62e-09* 1.29e-08
14 32768 3.81e-09 1.01e-08 1.05e-08 1.15e-08
15 65536 2.40e-09 3.29e-09 8.48e-09* 1.16e-08
16 131072 2.27e-09 2.38e-09 3.32e-09 8.52e-09 1.17e-08
17 262144 6.12e-10 1.04e-09 7.98e-10 1.84e-09* 4.43e-09

TABLE 4.9: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 64π) (Continue)

This is illustrated graphically on left side of the Figure 4.5. In this figure the development
of the evaluation error with increasing coarsening is shown for k = 8π and the target grids,
fl = 9 and fl = 15 respectively. The level of the discretization error is indicated by the
circles. It can be seen that each additional coarser grid used in the fast evaluation adds to
the fast evaluation error but the total accumulated error is still at most comparable to the
discretization error.

Finally, in table 4.8 and 4.9 the computing time needed to obtain the results presented in
tables 4.6 and 4.7 are shown. Note that the cpu time should be O(n log n) because of the
work invested in the corrections. However as can be seen from comparing the results marked
with (*) that the logarithmic factor is hardly noticeable.

The overall performance of the MLMIO algorithm for each value of k is illustrated in the
right side of the Figures 4.5, 4.6 and 4.7 where the error in the final results is shown as a func-
tion of the work invested. For reference also the results for the single matrix multiplication
are shown. The MLMIO algorithm reduces the amount of work to be invested for a given
accuracy significantly. In fact the product of work times accuracy WE = O(1) for single
grid summation and WE = O(1/h) for MLMIO.
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FIGURE 4.5: Left: Norm of the fast evaluation error using the MLMIO in the evalua-
tion of (4.13) Right: Overall performance for both single matrix multiplication and the
MLMIO algorithm.(k = 8π and p = 8)
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tion of (4.13) Right: Overall performance for both single matrix multiplication and the
MLMIO algorithm.(k = 64π and p = 8)

4.3 Two dimensional problem: G(x, y) explicit oscillatory
In the one dimensional case the separation of directions isolates the effect of the oscillatory
behaviour of the kernel into functions of x and y that can be taken outside the integral and
incorporated in the u(y) respectively. As a result the algorithm for oscillatory kernels differs
only little from the regular algorithm. The required computational effort for the fast evalua-
tion of a discrete integral transform with an oscillatory kernel is only twice the effort needed
that is needed for an asymptotically smooth kernel. The real test is off course the two di-
mensional case where the algorithm is much more involved as the separation of directions is
implicit, and the number of directions increases each additional coarsening step.

The first two dimensional model problem considered is the evaluation of an integral trans-
form with asymptotically smooth explicit oscillatory kernel. The total kernel is exactly of the
form assumed in the generic problem used to describe the algorithm in chapter 3.

The general notation introduced in section 3.1 is used with d = 2 and d̄ = d, x and
y ∈ IR2, so that x = (x1, x2) and y = (y1, y2) with |x − y| = [(x1 − y1)2 + (x2 − y2)2]

1

2 .
The model problem is defined as the evaluation of:

v(x) =

∫

Ω

G(x, y) eik|x−y| u(y) dy, x ∈ Ω (4.27)

with Ω ∈ [−1, 1] × [−1, 1], where

G(x, y) =
1

|x − y| (4.28)

and

u(y) ≡ u(y1, y2) = sin(ky1) sin(ky2), y ∈ Ω (4.29)

for different values of k. Note that for this problem the wavenumber k is introduced also in
the function u(y) with the aim to represent modal behaviour as is often the case in practical
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applications. However, note that the behaviour or u(y) plays no role at all in the algorithm. In
fact, a more oscillatory u(y) makes fast evaluation easier. This is because the discretization
error for an oscillatory u(y) is larger so the permissible error in the fast evaluation algorithm
is larger and lower order transfers are already sufficient to achieve the result.

4.3.1 Discretization
As for the one dimensional model problems the performance of the MLMIO algorithm is
illustrated by comparing results for two cases.

The notation below is as defined in section 3.1, so that yj ∈ IR2 (i.e. yj = (y1
j , y2

j )) is a
point of the integration grid and at this location the value of u(yj) is assumed to be given.
The integral transform v(x) is to be evaluated in all points xi ∈ IR2 (i.e. xi = (x1

i , x
2
i )) of

an evaluation grid is the location of a receiver point v(xi). The distance between two points
xi and yj is |xi − yj | = [(x1

i − y1
j )2 + (x2

i − y2
j )2]

1

2 .

i) Single Matrix Multiplication
The product eik|x−y|u(y) is approximated by a piecewise constant function on each inte-

gration interval of size h×h centered around of the point yj . Subsequently the contribution of
each interval is computed. Summing up over all integration intervals then yields the following
second order approximation to (4.27):

vh(xi) =
∑

j

Ghh
osc(xi, yj) uh(yj) (4.30)

where

Ghh
osc(xi, yj) = Ghh(xi, yj) eik|xi−yj | (4.31)

with

Ghh(xi, yj) ≡ Ghh(x1
i , x

2
i , y

1
j , y2

j ) =

∫ y1

j + h
2

y1

j
−h

2

∫ y2

j + h
2

y2

j
−h

2

dy1dy2

[(x1
i − y1)2 + (x2

i − y2)2]
1

2

(4.32)

and

uh(yj) ≡ uh(y1
j , y2

j ) = sin(ky1
j ) sin(ky2

j ) (4.33)

The integrals in (4.32) can be evaluated analytically, see Appendix B. Note that for an uniform
grid these coefficients only depend on the distance between the point xi and yj and can be
precomputed and stored in O(n) operations.

ii) Separation of Directions (MLMIO)
The second formulation is obtained using the description given in Section 3.3 in terms of

separation of directions. The approximation to (4.27) is:
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vh(xi) =
∑

l

vh
l (xi) (4.34)

where

vh
l (xi) =

∑

j

Ghh(xi, yj) eik|xi−yj | w
sij

l (eij)
∑

m∈sij

wsij
m (eij) uh

m(yj) (4.35)

with

uh
m(yj) = uh(yj) (4.36)

where vh
l (xi) represents a discrete subtransforms as defined by (3.26). Each discrete sub-

transform has been obtained from the continuous problem using the same procedure. The
evaluation of the coefficients Ghh(xi, yj) was done using (4.32) as well. This implies that
using a single target grids both results should be exactly the same.

4.3.2 Performance
The objective is to show that with the MLMIO algorithm the discrete transform can be eval-
uated faster at the expense of an error that is at most comparable to the discretization error.
However, for this problem, as for most problems in practical applications the exact analytical
solution is not known. An estimate of the discretization error (Eε) can be obtained from
comparing the results obtained on two grids with different mesh size h, and H = 2h:

||Eε||2 =
1

N + 1

N
∑

i=0

|vh(xi) − vH(xi)| (4.37)

where N is the the number of nodes on the coarsest of the two grids and xi its grid points
which also appear on the fine grid. The error made by the fast evaluation is measured by
(4.26), i.e. the difference between the result obtained on the target grid (fl) using simple
summation and the result obtained using the MLMIO algorithm with the coarsening carried
out until a coarser grid with index cl.

In the tables 4.10, 4.11 and 4.12 is presented the fast evaluation error as an function of fl
and cl for the cases k = 2π, 8π and 32π. The MLMIO algorithm was used with angular
transfers (pθ = 2) and spatial transfers (pxy = 6). To compensate for the error introduced
by interpolations near the singularity a correction was applied over a distance of rc = 3 +
ln(1/h) points near x = y. The correction factors involved can be precomputed and stored.
However, unlike the one dimensional algorithm now this is not a trivial task as matrices for
each combination of directions are needed for each combination of a fine and coarse grid
appearing in the algorithm. This implies that the corrections will be the computationally
most expensive part of the fast evaluation algorithm as will be shown later.

The results presented in tables 4.10, 4.11 and 4.12 show that in all the cases the evaluation
can be done at expense of an error that is at most comparable to the discretization error. The
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||FEε||, k = 2π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
4 32 3.21e-02 2.69e-04 1.09e-03 1.09e-03
5 64 7.87e-03 1.65e-05 1.21e-04 2.60e-04*
6 128 1.81e-03 1.64e-06 1.32e-05 4.01e-05 7.77e-05
7 256 4.07e-04 2.51e-06 2.50e-06 6.52e-06 1.96e-05*
8 512 9.22e-05 5.12e-06 5.06e-06 5.07e-06 5.77e-06 1.07e-05
9 1024 2.20e-05 — — 5.18e-06 5.21e-06 6.41e-06*
10 2048 5.80e-06 — — 5.29e-06 5.30e-06 6.30e-06

TABLE 4.10: Norm of the fast summation error for the numerical evaluation of (4.27) for
k = 2π using the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. The total
number of points in the finest grid is determined by (2fl+1 + 1)2. (k = 2π)

||FEε||2 , k = 8π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
5 64 2.38e-02 1.29e-03 1.76e-03 1.71e-03*
6 128 7.09e-03 1.29e-04 1.30e-03 1.57e-03 1.52e-03
7 256 1.66e-03 5.28e-06 7.14e-05 5.86e-04 6.14e-04*
8 512 3.67e-04 1.02e-06 2.82e-06 2.19e-05 1.19e-04 8.27e-05
9 1024 7.96e-05 — — 1.76e-06 5.67e-06 2.41e-05*
10 2048 1.76e-05 — — 1.45e-06 1.54e-06 2.07e-06

TABLE 4.11: Norm of the fast summation error for the numerical evaluation of (4.27) for
k = 8π using the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. The total
number of points in the finest grid is determined by (2fl+1 + 1)2. (k = 8π)

||FEε||2, k = 32π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
7 256 5.511e-03 4.14e-04 2.23e-04 3.36e-04 4.39e-04*
8 512 1.669e-03 3.11e-05 3.59e-04 2.57e-04 2.52e-04 2.58e-04
9 1024 3.899e-04 — — 2.07e-04 1.83e-04 1.81e-04*
10 2048 8.488e-05 — — 7.29e-06 6.41e-05 3.30e-05

TABLE 4.12: Norm of the fast summation error for the numerical evaluation of (4.27) for
k = 32π using the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. The total
number of points in the finest grid is determined by (2fl+1 + 1)2. (k = 32π)
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Cpu time, k = 2π
fl Mesh Dir. Summ. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
4 32 2.00e-02 2.80e-01 2.10e-01 2.30e-01
5 64 1.50e-01 1.84e+00 9.40e-01 9.60e-01*
6 128 2.32e+00 1.51e+01 4.21e+00 3.71e+00 3.84e+00
7 256 5.19e+01 1.76e+02 2.90e+01 1.85e+01 1.89e+01*
8 512 8.65e+02 2.38e+03 2.44e+02 1.10e+02 9.58e+01 9.94e+01
9 1024 1.61e+04 — — 5.13e+02 3.88e+02 3.88e+02*

10 2048 2.54e+05 — — 4.01e+03 2.09e+03 2.00e+03

TABLE 4.13: Cpu time for the numerical evaluation of (4.27) using the MLMIO algorithm
with pθ = 2 and pxy = 6 order transfers. The total number of points in the finest grid is
determined by (2fl+1 + 1)2.
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FIGURE 4.8: Left: Fast summation error as a function of the number of auxiliary levels
used in MLMIO algorithm for the evaluation of (4.27). Right: Cpu time invested in the
numerical evaluation. (k = 2π)
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FIGURE 4.9: Left: Fast summation error as a function of the number of auxiliary levels
used in MLMIO algorithm for the evaluation of (4.27). Right: Cpu time invested in the
numerical evaluation. (k = 8π)
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FIGURE 4.10: Left: Fast summation error as a function of the number of auxiliary levels
used in MLMIO algorithm for the evaluation of (4.27). Right: Cpu time invested in the
numerical evaluation. (k = 32π)

results marked with (*) indicate the cases where the coarsening is continued to a coarse grid
with

√
n points.

In table 4.13 the computing time needed to obtain the results is shown. From the first
column of this table it can be seen that with direct summation each mesh refinement leads to
a 16 times larger cpu time. Using the MLMIO algorithm a cpu time reduction by more than 2
orders of magnitude is obtained for the finest grids. From comparing the results for different
wavenumbers it is clear that the computing time reductions obtained are independent of the
wavenumber.

From comparing the results marked with an (*) it can be seen that the invested cpu time is
not yet linear in the number of nodes. In [14] it is estimated that an O(npd log n) complexity
should be obtainable. This may indeed be the limit for very fine grids but the cpu time is
strongly influenced by the corrections that have to be applied. This is an expensive task as
each additional coarsening the number of directions increases by a factor 2 and corrections
have to be computed for each combination of directions and coarse and fine grid. For effi-
ciency it is crucial that only those correction coefficients are computed that are actually used,
and that coefficients for directions that do not contribute are not computed.

As mentioned in chapter 3 in the algorithm three parameters are appear, the order of angular
interpolation, the order of interpolation in space and the number of correction points. In table
4.14 the computing time of used by the algorithm when no corrections are applied is given.
From comparing these computing time results with the results presented in table 4.13 it is
clear that to further reduce the cpu time it is most profitable to invest in a less robust but
equally accurate correction procedure.

Nevertheless, from the results presented here it is clear that these are the first results show-
ing that the generalized Multilevel Multi-Integration algorithm using the concept of separa-
tion of directions as proposed by Brandt [14] indeed works for a two dimensional problem.
The discrete integral transform can be obtained much faster at the expense of a controllable
error. Moreover, the efficiency gain is independent of the wavenumber. In the following sec-
tion results of its application to a model problem in which the oscillatory behaviour appears
implicitly in the kernel will be presented.
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Cpu time, k = 2π
fl Mesh Dir. Summ. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
4 32 2.00e-02 1.80e-01 3.00e-02 2.00e-02
5 64 1.50e-01 1.33e+00 2.60e-01 5.00e-02*
6 128 2.32e+00 1.33e+01 1.35e+00 2.30e-01 1.10e-01
7 256 5.19e+01 1.67e+02 1.34e+01 1.52e+00 4.30e-01*
8 512 8.65e+02 2.33e+03 1.70e+02 1.42e+01 2.30e-01 1.34e+00
9 1024 1.61e+04 — — 1.65e+02 1.66e+01 4.95e+00*
10 2048 2.54e+05 — — 2.25e+03 1.85e+02 3.36e+01

TABLE 4.14: Cpu time for the numerical evaluation of (4.27) using the MLMIO algorithm
with pθ = 2 and pxy = 6 order transfers with the time invested for the corrections subtracted.
The total number of points in the finest grid is determined by (2fl+1 + 1)2.

4.4 Implicit Asymptotically-oscillatory 2D problem
In problems of practical interest (e.g. acoustics and electromagnetics) integral transforms
with kernels in which the asymptotically smooth and oscillatory behaviour are implicit, i.e.
the function can not straightforwardly be written as the product of two functions each repre-
senting one aspect of the behaviour. However, the MLMIO algorithm can easily be made to
work for such cases too as will be shown below.

The model problem is defined as the evaluation of:

v(x) =

∫

Ω

H2
0 (k|x − y|) u(y) dy, x ∈ Ω (4.38)

with Ω ∈ [−1, 1] × [−1, 1], and

u(y) ≡ u(y1, y2) = sin(2π y1) sin(2π y2), y ∈ Ω (4.39)

where H2
0 (k|x − y|) represents the Hankel function of the second kind and order zero.

The Hankel function (4.38) is an implicit combination of an oscillatory and asymptotically
smooth function. The problem (4.38) can be written in the generic form (3.28) by multiplying
the original kernel with eik|x−y| e−ik|x−y| such that,

v(x) =

∫

Ω

[

H2
0 (k|x − y|) eik|x−y|

]

e−ik|x−y| u(y) dy (4.40)

where the meaning of the original integral transform (4.38) does not change. The original
task can now be replaced by:

v(x) =

∫

Ω

G(x, y)e−ik|x−y| u(y) dy (4.41)

with

G(x, y) = H2
0 (k|x − y|) eik|x−y| (4.42)
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and u(y) represented by (4.39), for different values of k.
Like the previous example, in the results presented below, values of k = 2π, 8π and 32π

were used for the evaluation of the model problem.

4.4.1 Discretization

i) Single Matrix Multiplication
Assuming the product e−ik|x−y|u(y) be constant on each integration interval of the mesh size
h × h centered around of the point yj one obtains a discrete second order approximation to
(4.41) given as:

vh(xi) =
∑

j

Ghh(xi, yj) e−ik|xi−yj | uh(yj) (4.43)

where

Ghh(xi, yj) ≡ Ghh(x1
i , x

2
i , y

1
j , y2

j ) =

∫ y1

j + h
2

y1

j−
h
2

∫ y2

j + h
2

y2

j−
h
2

H2
0

(

k[(x1
i − y1)2 + (x2

i − y2)2]
1

2

)

×eik[(x1

i−y1)2+(x2

i−y2)2]
1

2 dy1dy2 (4.44)

and

u(yj) ≡ u(y1
j , y2

j ) = sin(2π y1
j ) sin(2π y2

j ) (4.45)

The coefficients Ghh(xi, yj) were computed using a Gauss adapative quadrature with prede-
fined accuracy ε = O(10−8).

ii) Separation of Directions (MLMIO)
Using the description from the Section 3.3, the second discrete formulation of (4.41) is

obtained in terms of separation of directions and it is represented by:

vh(xi) =
∑

l

vh
l (xi) (4.46)

where

vh
l (xi) =

∑

j

Ghh(xi, yj) e−ik|xi−yj | w
sij

l (eij)
∑

m∈sij

wsij
m (eij) uh

m(yj) (4.47)

with

uh
m(yj) = uh(yj) (4.48)
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where vh
l (xi) represents each of the subtransforms defined by (3.37). Note that because the

kernel of the original integral transform (4.38) was replaced by an explicit product of the both
asymptotically smooth and oscillatory functions the evaluation of the coefficients Ghh(xi, yj)
can now be done using (4.44).

4.4.2 Performance
The performance is illustrated in the same way as for the previous example. As the exact
analytical solution is not known the fast evaluation error defined by (4.26) is compared with
the estimate of the discretization error as defined by (4.37). As a reminder, the fast evaluation
error is the difference between the result obtained on the target grid (fl) using simple sum-
mation and the result obtained on this grid using the MLMIO algorithm with the coarsening
carried out until a coarser grid with index cl.

In the tables 4.15, 4.16 and 4.17 the fast evaluation error is presented as a function of fl
and cl for the case k = 2π, 8π and 32π. The MLMIO algorithm was used with angular
transfers (pθ = 2) and spatial transfers (pxy = 6). The correction was carried out over a
region of rc = 3 + ln(1/h) points around the singularity at x = y.

Tables 4.15, 4.16 and 4.17 show the fast evaluation error ontained with the MLMIO algo-
rithm, where for all the cases the error is at most comparable to the discretization error. The
results marked with (*) indicate the cases where the coarsest auxiliary grid reached has

√
n

points.

||FEε||2 , k = 2π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
4 32 3.085e-03 8.70e-05 4.16e-04 4.16e-04
5 64 7.017e-04 3.87e-06 3.94e-05 9.96e-05*
6 128 1.658e-04 2.54e-07 2.69e-06 1.14e-05 2.76e-05
7 256 4.053e-05 4.19e-07 4.11e-07 1.27e-06 5.24e-06*
8 512 1.009e-05 8.95e-07 8.56e-07 8.56e-07 1.05e-06 2.74e-06
9 1024 2.669e-06 — — 8.57e-07 8.61e-07 1.05e-06*
10 2048 7.276e-07 — — — 8.94e-07 9.01e-07

TABLE 4.15: Norm of the fast summation error for 2D problem with Hankel function as
kernel. The total number of points on the finest grid is determined by (2fl+1 +1)2. (MLMIO,
k = 2π)

||FEε||2 , k = 8π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
5 64 5.906e-04 2.60e-05 6.88e-05 9.55e-05*
6 128 9.683e-05 7.12e-07 5.90e-06 3.91e-05 6.77e-05
7 256 1.692e-05 5.67e-08 1.05e-07 4.21e-06 1.11e-05*
8 512 3.512e-06 4.05e-08 6.86e-08 9.77e-08 5.47e-07 1.12e-05
9 1024 8.434e-07 — — 4.67e-08 7.15e-08 7.40e-07*
10 2048 2.156e-07 — — — 2.64e-08 5.26e-08

TABLE 4.16: Norm of the fast summation error for 2D problem with Hankel function as
kernel. The total number of points on the finest grid is determined by (2fl+1 +1)2. (MLMIO,
k = 8π)
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||FEε||2, k = 32π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
7 256 3.813e-05 2.45e-06 3.54e-06 8.08e-06 8.301e-06*
8 512 6.014e-06 8.78e-08 5.67e-07 9.96e-07 3.483e-06 3.680e-06
9 1024 9.695e-07 — — 1.91e-07 7.324e-07 3.670e-06*
10 2048 1.752e-07 — — — 9.362e-08 3.347e-07

TABLE 4.17: Norm of the fast summation error for 2D problem with Hankel function as
kernel. The total number of points on the finest grid is determined by (2fl+1 +1)2. (MLMIO,
k = 32π)
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FIGURE 4.11: Left: Fast summation error in the numerical evalaution of (4.41) using
the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. Right: Cpu time for the
numerical evaluation of the 2D problem with Hankel functionas kernel. (k = 2π)
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FIGURE 4.12: Left: Fast summation error in the numerical evalaution of (4.41) using
the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. Right: Cpu time for the
numerical evaluation of the 2D problem with Hankel functionas kernel. (k = 8π)
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FIGURE 4.13: Left: Fast summation error in the numerical evalaution of (4.41) using
the MLMIO algorithm with pθ = 2 and pxy = 6 order transfers. Right: Cpu time for the
numerical evaluation of the 2D problem with Hankel functionas kernel. (k = 32π)

The computing time needed for the single matrix multiplication and the MLMIO algo-
rithm in the numerical evaluation of (4.41) is the same as shown in the table 4.13, and it is
graphically illustrated by the graphs on the right side of the Figures 4.11, 4.12 and 4.13.

From the graphs one can see that the MLMIO yields significant cpu time reductions for
large n. However, as was mentioned above, it is not immediately clear if it follows a linear
tendency as a function of the number of nodes. As it was mentioned in [14] and shown in
section 3.4, the most computationally expensive stage in the algorithm is to perform the cor-
rections. Since the corrections are a function of: the number of directions on each coarsening
level, the pθ (order of the angular transfers), and the pxy (order of the spatial transfers), an
optimal combination of them should be found in order to use most efficiently the cpu time
needed in the numerical evaluation. This issue is a topic of ongoing and future research.

4.5 FFT and MLMIO

As explained in chapter 1 several methods are in use for the fast evalutation of integral trans-
forms. In particular FFT due to its simplicity and the availability of actual codes [55] is very
popular. A commonly cited disadvantage of FFT in relation with boundary element methods
and integral transforms is that it can only be used on flat domains covered with a uniform
grid. Multilevel Multi-Integration is more generally applicable. Nevertheless it is interesting
to see how its performance compares with the performance of FFT for a uniform grid. For
a model problem from contact mechanics described by an integral transform with an asymp-
totically smooth kernel results were presented by Lubrecht et al. [25]. In this section some
results for the case of an oscillatory kernel will be presented. The FFT code used was taken
from [55].

Results are presented for each of the problems presented in this chapter, e.g. (4.1) and
(4.13) for the one dimensional case, and (4.27) and (4.38) for the two dimensional case re-
spectively. For each problem results for a set of values of the wavenumber are shown in the
tables 4.18-4.21.

In each table in the first column the wave number is shown. In the second column of
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the tables 4.18 and 4.19 the discretization error for the case of single matrix multiplication
is shown. In the third and fourth column are presented the norm of the error in the result
obtained using the FFT and MLMIO algorithm respectively. In the bottom row of each table
is given the computing time invested to obtain the results.

For tables 4.20 and 4.21 the second column shows the estimate of the discretization error
defined by (4.37). The third column represents the estimate of the error obtained in the
evaluation using the FFT and the fourth column the error of the fast summation when MLMIO
is used. Finally, in the bottom of the tables 4.20 and 4.21 is given the computing time invested
in the evaluation of each case using the three methods.

From the tables described above one can see that in all cases using the FFT gives exactly
the same result as the single matrix multiplication. This is due to the fact that FFT uses
the algebraic properties of the Fourier transform to construct a sparse factorization of the
elements of the discrete Fourier transform so there is no loss of information compared to
the original entries (matrix elements). For the one dimensional case the fast evaluation error
in the MLMIO result (tables 4.18 and 4.19) is also almost identical to the single matrix
multiplication result, which shows that the fast evaluation error is small compared to the
discretization error. From the last line of the tables it can be seen that both algorithms are
equally efficient. In both cases the computing time is O(n log(n)) [20])[25].

The results for the two dimensional cases (tables 4.20 and 4.21) show the same behaviour
as for the one dimensional problem. The FFT algorithm exactly yields the single grid direct
summation result, and using the MLMIO algorithm the discrete transform is obtained at the
expense of a fast evaluation error (see section 4.2) that can be kept small compared to the
discretization error. Again the performance is independent of the wavenumber. However, in
this case clearly the FFT algorithm is faster, e.g. roughly by a factor three. One difference
between the two algorithms is that the FFT scales O(n log(n)) independently of the dimen-
sion of the problem. For the MLMI algorithm this is not entirely so due to the corrections
that are applied, see [25]. However, when a more optimized correction procedure is used it is
anticipated that the computing time can be further reduced to the same level of FFT (see table
4.14). Finally, as was explained before, the results of the comparison should not be given too
much weight as the MLMIO algorithm is potentially more generally applicable than FFT.

||ε||2
k SMM FFT MLMIO
2π 1.182e-09 1.182e-09 1.36e-09
4π 1.109e-09 1.109e-09 6.20e-10
8π 1.089e-09 1.089e-09 3.04e-10
16π 1.084e-09 1.084e-09 1.51e-10
32π 1.083e-09 1.083e-09 7.54e-11
64π 1.082e-09 1.082e-09 3.77e-11
128π 1.082e-09 1.082e-09 1.88e-11

Av. Cpu time: 2.20e-00 2.01e-02 2.00e-02

TABLE 4.18: Norm of the error for the numerical approximation of (4.1) using: Single Ma-
trix Multiplication (SMM), Fast Fourier Transform (FFT) and Multilevel Multi-Integration
Algorithm for Oscillatory kernels (MLMIO). The domain was divided in (16384) constant
intervals.
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||ε||2
k SMM FFT MLMIO
2π 7.43e-08 7.43e-08 1.85e-07
4π 1.51e-07 1.51e-07 2.64e-07
8π 3.16e-07 3.16e-07 3.89e-07
16π 6.61e-07 6.61e-07 6.58e-07
32π 1.38e-06 1.38e-06 1.34e-06
64π 2.87e-06 2.87e-06 2.87e-06
128π 5.97e-06 5.97e-06 5.97e-06

Av. Cpu time: 2.30e+00 1.98e-02 2.01e-02

TABLE 4.19: Norm of the error for the numerical approximation of (4.13) using: Single Ma-
trix Multiplication (SMM), Fast Fourier Transform (FFT) and Multilevel Multi-Integration
Algorithm for Oscillatory kernels (MLMIO). The domain was divided in (16384 + 1) con-
stant intervals.

||Eε||2 ||FEε||2
k SMM FFT MLMIO
2π 4.07e-04 4.07e-04 1.97e-05
4π 7.96e-04 7.96e-04 7.58e-05
8π 1.66e-03 1.66e-03 6.14e-04
16π 3.42e-03 3.42e-03 5.21e-04
32π 5.51e-03 5.51e-03 4.39e-04

Av. Cpu time: 5.19e+01 6.85e+00 1.89e+01

TABLE 4.20: Estimation of the norm of the discretization error (||Eε||2) for the numerical
approximation of (4.27) using: Single Matrix Multiplication (SMM) and Fast Fourier Trans-
form (FFT). Norm of the fast summation error (||FEε||2) using Multilevel Multi-Integration
Algorithm for Oscillatory kernels (MLMIO). The domain was divided in (256)2 squared con-
stant pieces.

||Eε||2 ||FEε||2
k SMM FFT MLMIO
2π 1.00e-05 1.00e-05 1.05e-06
4π 4.71e-06 4.71e-06 8.02e-07
8π 3.51e-06 3.51e-06 5.45e-07
16π 3.98e-06 3.98e-06 7.87e-06
32π 6.01e-06 6.01e-06 3.48e-06

Av. Cpu time: 8.65e+02 2.21e+00 9.58e+01

TABLE 4.21: Estimation of the norm of the discretization error (||Eε||2) for the numerical
approximation of (4.38) using: Single Matrix Multiplication (SMM) and Fast Fourier Trans-
form (FFT). Norm of the fast summation error (||FEε||2) using Multilevel Multi-Integration
Algorithm for Oscillatory kernels (MLMIO). The domain was divided in (512)2 squared con-
stant pieces.
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APPLICATIONS

As an illustration of an application in this chapter results are presented for two model prob-
lems of radiation acoustics in two dimensions where, given the velocity of a vibrating object
the pressure field is computed from the Helmholtz integral equation using a Boundary Ele-
ment Method and where the MLMIO algorithm for the two dimensional case is used for the
evaluation of the integral transform.

5.1 Helmholtz integral equation
As was shown in chapter 2 the pressure on the surface and in the fluid around of a vibrating
body can be solved from the so-called Helmholtz integral equation (2.37) with a Neumann
boundary condition which can rewritten as:

c(x)p(x) =

∫

S

p(y)
∂G(x, y)

∂ny
dS + ı̇ρ0ω

∫

S

G(x, y)v(y)dS (5.1)

with

c(x) =

{

1 , x exterior to S
1
2 , x on S
0 , x interior to S

(5.2)

where p(x) is the acoustical pressure, v(y) the normal velocity on S, and G(x, y) the free
space fundamental solution (Green’s function) which for two dimensional cases is defined
by:

G(x, y) =
i

4
H2

0 (k|x − y|) (5.3)

with normal derivative,

∂G(x, y)

∂ny
= − ik(xβ − yβ)nβ

4|x − y| H2
1 (k|x − y|) (5.4)

H2
1 (k|x − y|) is the Hankel function of first order and second kind. β represents the index

of the coordinate system and nβ the corresponding normal component on S. Note that these
functions are finite as r → 0, and they lead to singularities of order ln(r) for H2

0 (kr) and 1/r
in case of H2

1 (kr) with r = |x − y|.
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In section 2.3 it was mentioned that in order to solve p in the domain two steps are required:

1. Solve the equation for pressure p(x) on the surface using,

c(x)p(x)−
∫

S

p(y)
∂G(x, y)

∂ny
dS = ı̇ρ0ω

∫

S

G(x, y)v(y)dS (5.5)

2. Given the pressure p(y) on the surface, evaluate the pressure p(x) at any location in
the field using (5.1).

As was shown by Schenck[62] solving the surface Helmholtz integral equation non-uniqueness
problems of the solution have to be overcome related to the natural frequencies of the asso-
ciated interior Dirichlet problem. Several methods have been proposed to overcome these
problems:
The Combined Helmholtz Integral Equation Formulation (CHIEF)

Schenck [62] proposes to remove the nonuniquense by introducing additional Helmholtz in-
tegral relations evaluated in the interior of the domain. Applying a discretization of the ra-
diating surface to the CHIEF equations leads to an over determined system of the equations
for the surface pressure which can be solved in the last squares sense. However, a potential
complication of this method is the choice of the interior points at which the supplemental
equations are defined such that to any possible distortion of the solution due to the interior
critical frequencies is avoided.

The hypersingular formulation

This method was introduced by Burton and Miller [21] and has been widely studied. The
method is based in the generation of an integral equation valid for all wavenumbers by form-
ing a linear combination of the Helmholtz integral relations used by CHIEF and its normal
derivative. However, a complication in this approach is the evaluation of the hyper-singular
integrals involving a double normal derivative of the free space Green’s function. Most re-
cently efforts to improve the approach have been investigated developing efficient methods
to evaluate the hyper singular integrals, see [5].
Visser [74] proposes a combination of the CHIEF and the hyper-singular formulation, refer-
ring to it as Combined Interior Burton-Miller Formulation (CIBMF).

In the cases shown in this chapter the CHIEF method was used.

5.2 Direct BEM discretization
The Boundary Element Method is a most suitable numerical approach for the evaluation of
exterior acoustical problems using the direct formulation of the Helmholtz integral equation
(5.1), e.g. see [22].

In the direct BEM method, the first step is to derive from the continuous equation a discrete
system of equations from which the unknowns at specific points at the boundary can be
solved. The boundary of the body is divided into N segments where the variables p (pressure)
and v (normal velocity) are approximated on the surface by locally based functions p(y) and
v(y) defined on each surface element (panel).
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So, (5.1) can be now represented as a summation over all surface elements yielding the
following discrete formulation:

c(x)p(xi) =
∑

j

∫

Sj

p(y)
∂G(x, y)

∂n(y)
dSj + iρ0ω

∑

j

∫

S

G(x, y)v(y)dSj (5.6)

where i represents nodal points and Sj is the surface of the element j on the boundary, and
c(x) = 1/2 due that the nodes are placed on a smooth surface.

Here on each element of the surface p and v are assumed to be constant. In this case they
can be taken out of the integral so the (5.1) can be rewritten as:

1

2
p(xi) =

∑

j

p(yj)

(

∫

Sj

∂G(xi, yj)

∂nj
dSj

)

+ iρ0ω
∑

j

v(yj)

∫

Sj

G(xi, yj)dSj (5.7)

For the solution of the pressure at the surface (5.1) is applied to each point i which is also at
the surface. This yields a full (densely populated) system of equations. The elements of the
influence matrices can be defined as:

Gij =

∫

Sj

G(xi, yj)dSj Hij =

∫

Sj

∂G(xi, yj)

∂nj
dSj (5.8)

So, the discrete represetation of (5.1) is given by:

1

2
p(xi) −

∑

j

Hijp(yj) =
∑

j

Gijv(yj) (5.9)

Since the discretization is done with p and v constant at the elements, Hij = 0 for i = j
because the normal is always perpendicular to the orientation of the element. So that the
diagonal matrix can be filled only with the value of the constant c(x) which in this case is 1

2 .
The linear system of equations approximating the continous integral equation is given by:

Hp = Gvn (5.10)

where vn is the vector containing the values of the normal velocity on the surface. The
coefficients of the influence matrices G and H are known and follow from the evaluation of
the discrete fundamental solution (Green’s function).

Introducing the boundary condition, i.e. Neumann condition when the particle velocity is
known on the surface of the vibrating body, reordering with respect to known and unknown
values enables us to write this system as:

Ap = b (5.11)

where the sound pressure p is the unknown. The vector b is known from the boundary
conditions. So, the values of p can be determined by solving the system of equations (5.11).
For the model cases presented in this thesis a standard LU decomposition procedure was
used in order to solve the system of the equations (5.11) [55]. The only purpose here is to test
the fast evaluation algorithm. However, the computing time required for the solution using
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LU decomposition is O(n3) if n is the number of elements. Efficient solution techniques
are obviously important for practical applications. So far efficient iterative techniques as the
Conjugate Gradient Method (CGM) and generalized Minimal Residual (GMRes) [43] have
been widely studied and can significantly alleviate the intensive computational work needed
to solve (5.11) in practical application with large number of unknowns. One of the aims in
future research is also the application of Multgrid/Multilevel techniques.

5.2.1 Fast evaluation of the integral transforms using BEM with MLMIO
The evaluation of the right hand of (5.10) requires mutiplying a fully populated matrix by
a vector, which using single matrix-vector multiplication involves O(n2) operations. This
leads to large computing times for large n. The MLMIO algorithm was developed exactly for
the purpose of faster evaluation of this task. Its prospect was illustrated for model problems
in chapter 4. In the next sections results for two model problems of acoustic radiation in two
dimensions will be shown.

5.3 Numerical cases
Two model problems were used to investigate the performance of the MLMIO algorithm for
the evaluation of the discrete integral transforms that appear in a BEM formulation of an
acoustic radiation problem. These cases serve to obtain an indication of the performance of
the MLMIO algorithm when it is part of a BEM formulation.

In the model problems shown below two quantities are considered to evaluate the perfor-
mance of the evaluation, the error of the approximation and the computing time invested for
both, the single matrix-vector multiplication and using the MLMIO algorithm in the evalua-
tion of the matrix-vector multiplication Gvn from (5.10).

The error is evaluated using a similar definition as (4.17):

||ε||2 =
1

n

n
∑

i=1

|p(xi) − ph(xi)| (5.12)

where p(xi) and ph(xi) are the exact analytical solution and the approximation of the solution
using BEM respectively, at the point xi. n is the number of constant elements used in the
boundary discretization.

5.3.1 Infinite pulsating cylinder
Consider the task of evaluating the pressure around an infinity long pulsating cylinder with
radial a normal velocity (vn) as showing in the Figure 5.1-a. The sound field satisfies the
radiation condition which means that no incoming waves can be generated from infinity.
The exact analytical solution is given as [7]:

p(x) = iρcvn
H2

0 (kx)

H2
1 (ky)

(5.13)

where the H2
1 is defined as the Hankel function of the second kind and first order. x is the

distance from the center of the source to any point located in the open domain, y is the radius
of the cylinder, vn is the normal velocity on the surface of the cylinder, i is the imaginary



§5.3. NUMERICAL CASES 73

yx

x 1î

^

θ

S

b) Vibrating wire.a) Uniformly pulsating cylinder.

S
2

xy

î
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FIGURE 5.1: Schematic representation of two physical acoustical radiation prob-
lems.

constant (
√
−1), ρ and c are the properties of the fluid. In this case they are assumed to be

unity.

5.3.2 Infinite vibrating wire
This test case consists of the evaluation of the pressure field generated by a vibrating wire
with velocity v0 as shown in Figure 5.1-b. This problem also satisfies the radiation condition
for unbounded domain.
The exact analytical solution is represented by [7]:

p(x) = −iρ0cv0 cos θ
H2

1 (kx)

H2
1 (ka)

(5.14)

again the properties of the fluid are assumed to be one.
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6.1 Conclusion

A low noise level is a strategic quality for products ranging from personal appliances to aero-
planes. Reliable and efficient methods and computational tools to design silent products and
to identify sources of noise are urgently needed. Impressive results have been obtained with
models and computer simulations to predict noise for specific problems. However, it is still a
long way towards efficient and reliable computational tools for the design of silent products
in many practical applications. A crucial bottleneck is that the required computational effort
is often far too large for extensive use of the computer simulations in design.

In this thesis an alternative algorithm for the fast numerical evaluation of integral trans-
forms with oscillatory Green’s functions as they appear in acoustic radiation problems has
been developed. The algorithm is the generalization of the Multilevel Multi-Integration algo-
rithm which was introduced and proven to be very efficient for transforms with smooth and
asymptotically smooth Green’s functions by Brandt and Lubrecht [16]. In the generalized
algorithm, using the concept of separation of directions and the smoothness of the oscillatory
part as a function of the phase angle the original transform is rewritten as a special case of the
more generalized task of the evaluation of a series of transforms each with an asymptotically
smooth Green’s function. The smoothness of these functions can then be used to replace the
original task on the target grid by a series of intergrid transfers and a coarse grid discrete
transform. This concept was outlined by Brandt [14] over a decade ago but no numerical
results were presented so far. In this thesis it has been demonstrated that the concept really
works. A careful step by step approach was adopted starting with one dimensional model
problems for which the concept is straightforward. Subsequently, the much more involved
two dimensional problem was tackled. Also for this case results were presented for trans-
forms with different Green’s functions including the Hankel function which appears in many
practical applications. It has been shown that the algorithm yields an accurate approximation
to the discrete integral transform with an error that can be kept comparable to the discretiza-
tion error that is made anyway, in a computing time that is much smaller. The performance
is independent of the wavenumber which is crucial as in practice the computing time prob-
lems are most urgent for high frequencies where large numbers of nodes are required. The
required cpu time is reduced from O(n2) to O(npd log n) operations. So far only uniform
grids were used. The algorithm was benchmarked against the popular Fast Fourier Transform
which also has a O(n log n) complexity but is restricted to uniform grids on flat domains. For
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the two dimensional problem the required cpu time is about three times larger than used by
an FFT algorithm. However, the main goal of this thesis was to prove that the concept works
and yields a fast alternative algorithm. Optimization of the computation of the a posteriori
corrections will most certainly lead to an algorithm that for uniform grids is fully competitive
with FFT. Besides, the uniform grid case is only for testing. The algorithm has the prospect
that it can be used for non-uniform grids and grids on curved surfaces.

As a first step towards implementation in Boundary Element Methods for acoustic radiation
problems in chapter 5 some first results obtained with a BEM algorithm obtained for some
accoustic model problems were presented.

6.2 Recommandations for further research

The evaluation of integral transforms with oscillatory kernels using the multilevel multi-
integration algorithm involves the following tasks: coarsening (spatial anterpolation and an-
gular interpolation), fast summation (multisummation on the coarsest level), refining (spatial
interpolation and angular anterpolation), and correction (involving directions, angular and
spatial interpolations).

As was shown in the chapters three and four the computationally most expensive task in
the algorithm is the computation of the a posteriori corrections related to the error introduced
in the region around the singularity where the auxiliary kernels are not smooth. A detailed
optimization of the different parameters in the algorithm ,i.e. the angular interpolation (pθ),
the spatial interpolation (pxy) and the size of the correction rc, e.g. by carrying out an opti-
mization analysis as done in [16] and [17] can be carried out to further optimize the algorithm
and to reduce the size of the correction region. Also, in the present implementation the cor-
rection matrices are computed by applying the algorithm itself in a local form. The advantage
of this approach is that it is very robust as it allows correction for any approximation made in
the algorithm, including some of the assumptions of angular smoothness of variables in the
coarsening procedure. It thus allows correction to zero error which is important in a develop-
ment stage. However, various cheaper alternatives should be investigated such as correction
based on the spatial interpolation error in the auxiliary kernels only or the use alternative of
kernel softening around the singularity. This will lead to further reductions of computing
time and the use of memory involved in storing the correction coefficients.

Another option for further development is the following. In the algorithm as described
in chapter 3 the spatial coarsening is the same for each direction y1 and y2 (or x1 and x2).
However, as can be seen from the auxiliary kernels Gijlm(x, y) for a given l this kernel
is much smoother in the direction m on the grid than in the direction perpendicular to m.
Hence, when represented on a grid aligned with this direction it can be represented with the
same accuracy using a larger meshsize in the direction of alignment. The idea is now to
introduce spatial grids aligned with the different directions on the angular grid. Subsequently
in the coarsening these grids can be coarsened faster in the direction of alignment than in the
cross direction. As a result the total number of nodes on the all coarser grids will decrease
faster than 2d−1 which can lead to an even more efficient algorithm. A similar approach
has proven successful in the development of a multigrid solver for the Helmholtz equation in
differential form developed, see [15].

However, before exploiting such possibilities it is important that the present algorithm finds
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its way towards applications to help alleviate computing time problems. In this respect it is
important that the extension to three dimensional problems is implemented first as well as the
extension to curved surfaces.

As shown in chapter 5 the evaluation of the integral transform is usually a subtask in the
process of solving the integral equation. In principle the algorithm presented here can already
be used for this purpose in combination with any type of solver. However, as has been shown
in research in contact mechanics and lubrication problems there is an enormous prospect of
efficiency increase when also for the solution of the integral equation multigrid techniques
are used, see [70]. Multigrid techniques provide many options to further reduce the computa-
tional effort in acoustic radiation problems also for the inverse problem where complications
arising from regularization may be overcome by appropriate use of the different scales. In
this respect the research presented in this thesis is a crucial first step.



78 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS



REFERENCES

[1] M. Abramowitz and I.A. Segun, Handbook of mathematical functions, Dover Publica-
tions, Inc., New-York, USA, 1968.

[2] S. Amini and S.M. Kirkup, Solution of the Helmholtz equation in the exterior domain by
elementary boundary integral methods, Journal of Computational Physics, 118 (1995)
208-221.

[3] L. Baker, C mathematical function handbook, McGraw-Hill, USA, 1992.

[4] G.K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, New
York, USA, 2000.

[5] W. Benthien and A. Schenck, Nonexistence and nonuniqueness problems associated
with integral equation methods in acoustics, Computers and Structures, 65 (1997) 295-
305.

[6] R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, John Wiley and
Sons, New York, USA, 1960.

[7] D.T. Blackstock, Fundamentals of physical acoustics, John Wiley and Sons, New York,
USA, 2000.

[8] J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature,
324 (1986) 446-449.

[9] A. Boag, E. Michielssen, and A. Brandt, Nonuniform polar grid algorithm for fast field
evaluation, IEEE Antennas and Wireless Propagation Letters, 1 (2002) 142-145.

[10] A. Boag, A fast multilevel domain decomposition algorithm for radar imaging, IEEE
Transaction on Antennas and Propagation, 49 (2001) 666-671

[11] A. Boag, A fast iterative physical optics (FIPO) algorithm based on non-uniform polar
grid interpolation, Microwave and Optical Technology Letters, 35 (2002) 240-244.

[12] J. Board and K. Schulten, The fast multipole algorithm, Computing in Science and
Engineering, 2 (2000) 76-79.

[13] J. Bos, Frictional heating of tribological contacts, University of Twente, PhD thesis,
Enschede, The Netherlands, 1995.



80 REFERENCES

[14] A. Brandt, Multilevel computations of integral transforms and particle interactions with
oscillatory kernels, Computer Physics Communications, 65 (1991) 24-38.

[15] A. Brandt and I. Livshits, Wave-ray multigrid method for standing wave equations,
Electronic Transactions on Numerical Analysis, 6 (1997) 162-181.

[16] A. Brandt and A.A. Lubrecht, Multilevel matrix multiplication and fast solution of in-
tegral equations, Journal of Compuational Physics, 90 (1990) 348-370.

[17] A. Brandt and C.H. Venner, Multilevel evaluation of integral transforms with asymptot-
ically smooth kernels, SIAM Journal on Scientific Computing, 19 (1998) 468-492.

[18] A. Brandt and C.H. Venner, Multilevel evaluation of integral transforms on adaptive
grids, Gauss Center Report WI/GC-5, Rehovot, Israel, 1996.

[19] W.L. Briggs, V.E. Henson, and S.F. McCormick, A multigrid tutorial, SIAM, Philadel-
phia, USA, 2000.

[20] E.O. Brigham, The fast Fourier transform and its applications, Prentice Hall, New Jer-
sey, USA, 1988.

[21] A.J. Burton and G.F. Miller, The application of integral equation methods to the nu-
merical solution of some exterior boundary-value problems, Proceedings of the Royal
Society of London. Serie A, Mathematical and Physical Sciences, 323 (1971) 201-210.

[22] R.D. Ciskowski and C.A. Brebbia, Boundary element method in acoustics, Wessex In-
stitue of Technology, Southapton, UK, 1990.

[23] R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method for the wave
equation: A Pedestrian Prescription, IEEE Antennas and Propagation, 35 (1993) 7-12.

[24] J.W. Cooley and J.W. Tukey, An algorithm for the machine computation of complex
Fourier series, Mathematics of Computations, 19 (1965) 297-301.

[25] F. Colin and A.A. Lubrecht, Comparison of FFT-MLMI for elastic deformation calcu-
lations, Journal of Tribology, ASME, 123 (2001) 884-887.

[26] G. Dahlquist and A. Björck, Numerical methods, Printice Hall, New Jersey, USA, 2001.
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[28] E. Darve, The fast multipole method: numerical implementation, Journal of Computa-
tional Physics, 160 (2000) 195-240.

[29] H.E. de Bree, The Microflown, ISBN 90-365-1579-3, 2001.

[30] J.E. Dowling and J.E. Williams, Sound and sources of sound, John Wiley and Sons,
New York, USA, 1983.

[31] D.G. Duffy, Green’s functions with applications, Chapman and Hall/CRC, Florida,
USA, 2001.



REFERENCES 81

[32] O. Estorff and O. Zaleski, Efficient acoustic calculation by the BEM and frequency in-
terpolates transfer functions, Engineering Analysis with Boundary Elements, 27 (2003)
683-694.

[33] G. Evans, Practical numerical analysis, John Wiley and Sons, New York, 1995.

[34] M. Fischer, U. Gauger, and L. Gaul, A multipole Galerkin boundary element method
for acoustics, Engineering Analysis with Boundary Elements, 28 (2004) 155-162.

[35] L. Greengard, A fast algorithm for classical physics, Science, 265 (1994) 909-914.

[36] L. Greengard and V. Rokhlin, A fast algorithm for particle simultions, Journal of Com-
putational Physics, 73 (1987) 325-348.

[37] M.M. Grigoriev and G.F. Dargush, A fast multi-level boundary element method for the
Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, 193
(2004) 165-203.

[38] M.M. Grigoriev and G.F. Dargush, A multi-level boundary-element method for two-
dimensional steady heat diffusion, Numerical Heat Transfer, 46 (2004) 329-356.

[39] I. Hernández-Ramı́rez and C.H. Venner, Multilevel algorithms for the fast evaluation
of integral transform in acoustics, Third International Conference on Acoustics 2003:
Modelling and Experimental Measurements in Acoustics, Cadiz, Spain, June 16-18,
2003.

[40] D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of scientific computing,
Brooks/Cole, California, USA, 2002.

[41] L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of Acoustics,
John Wiley and Sons, New York, USA, 2000.

[42] R.H. Lyon and R.G. DeJong, Theory and applications of statistical energy analysis,
Butterworth-Heinemann, 1995.

[43] S. Merburg and S. Schneider, Performance of iterative solvers for acoustic problems.
Part I. Solvers and effect of diagonal preconditioning, Engineering Analysis with
Boundary Elements, 27 (2003) 727-750.

[44] S. Merburg and S. Schneider, Performance of iterative solvers for acoustic problems.
Part II. Acceleration by ILU-type preconditioner, Engineering Analysis with Boundary
Elements, 27 (2003) 751-757.

[45] P.M. Morse and K.U. Ingard, Theoretical Acoustics, McGraw Hill, New York, USA,
1968.
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SPATIAL AND ANGULAR TRANSFERS

The schematical representation of how the intergrid operators work in the MLMIO algortihm
are showed in Figures A.1 and A.2. It is well known that the value of an arbitrary function
φ(x) at location x can be approximated by the values known of the function φ at the locations
xβ around of it, such as:

φ(xi) =

p
∑

β=−p

ωβ(xi)φ(xβ) (A.1)

where p is the order of interpolation. So, the integrid coefficients can be evaluated by:

ωβ(xi) =























1 if i = 2I and β = 0
p
∏

m(even) = −p

m 6= β

(xi−xm)
(xβ−xm) if i = 2I + 1

0 otherwise

(A.2)

So, the interpolation intergrid operation can be schematized as:
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φ
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FIGURE A.1: Schematic representation of the interpolation from a spatial coarse to
fine grid, it can be seen as the distribution of the values of φ into the spatial domain.

In another hand, the anterpolation is defined as the adjoint of the interpolation which in
terms of the full weighting the coefficients can be defined by 2−dωT [16] [70]. It can be
seen as the collection of the values of φ from a p-order region. The anterpolation intergrid
operation is represented as:
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FIGURE A.2: Schematic representation of the anterpolation from a spatial fine to
coarse grid, it can be seen as the collection of the values of φ into the spatial domain.

The angular case of interpolation and anterpolation follows the similar scheme that for
spatial integrid operations, however, the mod 2π (or mod λ, where λ is the number of di-
rections in which is divided the angular domain) is used to determinate the direction that
participate in the distribution or collection of values on the angular grid. This scheme is
represented by Figures A.3 and A.4.

Angular interpolation:
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FIGURE A.3: Schematic representation of the interpolation from a angular coarse
to fine grid, it can be seen as the distribution of the values of φ into the angular
domain.
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Angular anterpolation:
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FIGURE A.4: Schematic representation of the anterpolation from a angular fine to
coarse grid, it can be seen as the collection of the values of φ into the angular
domain.
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D

IXRESULTS OF THE MLMIO
ALGORITHM

In this appendix are shown the way in that the discrete coefficients of the function G(x, y)
are determinated for each one of the problems showed in the chpater four. Furthermore,
anlaytical solution for the first and second model problems of is provided. Additionally,
tables with the norm of the error, computational time and fast evaluation error for the model
problems showed in the chaper four are presented here.

B.1 First model problem

B.1-A) Exact analytical solution of (4.1)
The exact analytical solution of (4.1) is defined as:

v(x) = vp(x) + vn(x) (B.1)

with,

vp(x) = e−ikx{
[

(1 − b2)c2 − c3 + c4b
]

eikb cos(x − b)

−
[

(1 − x2)c2 − c3 + c4x
]

eikx

+
[

(b2 − 1)c1 + c5 − c6b
]

eikb sin(x − b)} (B.2)

vn(x) = eikx{
[

(x2 − 1)c2 + c3 + c4x
]

e−ikx

−
[

(a2 − 1)c2 + c3 + c4a
]

e−ika cos(x − a)

−
[

(a2 − 1)c1 + c5 + c6a
]

e−ika sin(x − a)} (B.3)

where the constants are detfined as:

c1 =
1

1 − k2
c2 = ikc1

c3 = 2i(−k3 − 3k)c1 c4 = 2(−1 − k2)c2
1

c5 = 2(−1 − 3k2)c3
1 c6 = 4ikc2

1 (B.4)
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B.1-B) Coefficients of the kernel for the discretization of separation of directions
From Equation (4.1), it can be represented by the separation of directions as:

v+(x) =

∫ b

x

G(x, y)u(y)e−ikydy (B.5)

v−(x) =

∫ x

a

G(x, y)u(y)eikydy (B.6)

G(x, y)u(y) was approximated by a polynomial piecewise w(y) as:

w̃(y) = wj + (wj+1 − wj)(
y − yj

h
) (B.7)

Where, wj is defined in y = yj , and wj+1 in y = yj+1, so the integrals v+(x) and v−(x)
were carried out in an exact way between j + 1 and j, Thus, the two next expressions were
obtained to this scheme of discretization,

v+(xi) =
∑

j

G+(xi, yj)u+(yj) (B.8)

v−(xi) =
∑

j

G−(xi, yj)u−(yj) (B.9)

where,

G+(x, y) =







(A+ + B+)G(x, y) y > x,
A+ G(x, y) y = x,
0 y < x,

(B.10)

G−(x, y) =

{ 0 y > x,
B− G(x, y) y = x,
(A− + B−)G(x, y) y < x,

(B.11)

and

u+(yj) = eikyj u(yj) (B.12)

u−(yj) = e−ikyj u(yj) (B.13)

and, the constants A+, B+, A− and B+ are defined as:

A+ =
i

k
+

1

hk2
(1 − eikyj ), B+ = − i

k + 1
hk2 (1 − e−ikyj ), (B.14)

A− = − i

k
+

1

hk2
(1 − e−ikyj ), B− = i

k + 1
hk2 (1 − eikyj ), (B.15)

B.1-C) Additional results of the numerical evaluation of (4.1).
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k = 8π
1st Scheme of Discretization 2nd Scheme of Discretization

fl Mesh ||ε||2 cpu time [sec.] ||ε||2 cpu time [sec.]
5 64 7.19e-05 <1.00e-02 2.01e-05 <1.00e-02
6 128 1.79e-05 <1.00e-02 5.00e-06 <1.00e-02
7 256 4.46e-06 <1.00e-02 1.25e-06 <1.00e-02
8 512 1.11e-06 <1.00e-02 3.11e-07 1.00e-02
9 1024 2.79e-07 1.00e-02 7.78e-08 1.00e-02
10 2048 6.97e-08 4.00e-02 1.95e-08 3.00e-02
11 4096 1.74e-08 1.30e-01 4.86e-09 1.40e-01
12 8192 4.36e-09 5.40e-01 1.22e-09 5.50e-01
13 16384 1.09e-09 2.25e+00 3.04e-10 3.10e+00
14 32768 2.72e-10 1.10e+01 7.48e-11 1.60e+01
15 65536 6.81e-11 4.75e+01 2.02e-11 6.37e+01

TABLE B.1: Average norm of the error and cpu time for both discretizations (1st discretiza-
tion: Single Matrix Multiplication. 2nd discretization: Separation of Directions)(k = 8π).

k = 32π
1st Scheme of Discretization 2nd Scheme of Discretization

No. Mesh ||ε|| cpu time [sec.] ||ε|| cpu time [sec.]
7 256 4.49e-06 <1.00e-02 3.12e-07 <1.00e-02
8 512 1.11e-06 <1.00e-02 7.75e-08 <1.00e-02
9 1024 2.77e-07 1.00e-02 1.93e-08 1.00e-02
10 2048 6.93e-08 4.00e-02 4.83e-09 3.00e-02
11 4096 1.73e-08 1.40e-01 1.21e-09 1.40e-01
12 8192 4.33e-09 5.30e-01 3.02e-10 5.50e-01
13 16384 1.08e-09 2.15e+00 7.54e-11 3.19e+00
14 32768 2.71e-10 1.11e+01 1.88e-11 1.61e+01
15 65536 6.77e-11 4.83e+01 4.77e-12 6.44e+01
16 131072 1.69e-11 1.98e+02 9.13e-13 2.56e+02

TABLE B.2: Average norm of the error and cpu time for both discretizations (1st discretiza-
tion: Single Matrix Multiplication. 2nd discretization: Separation of Directions)(k = 32π).

||ε||2, k = 8π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
5 64 2.01e-05 2.01e-05 2.01e-05 2.01e-05* 2.01e-05
6 128 5.00e-06 5.00e-06 5.00e-06 5.00e-06 5.00e-06 5.00e-06
7 256 1.25e-06 1.25e-06 1.25e-06 1.25e-06 1.25e-06* 1.25e-06
8 512 3.11e-07 3.11e-07 3.11e-07 3.11e-07 3.11e-07 3.11e-07
9 1024 7.78e-08 7.78e-08 7.78e-08 7.78e-08 7.78e-08 7.78e-08*
10 2048 1.95e-08 1.95e-08 1.95e-08 1.95e-08 1.95e-08 1.95e-08
11 4096 4.86e-09 4.86e-09 4.86e-09 4.86e-09 4.86e-09 4.86e-09
12 8192 1.22e-09 1.22e-09 1.22e-09 1.22e-09 1.22e-09 1.22e-09
13 16384 3.04e-10 3.04e-10 3.04e-10 3.04e-10 3.04e-10 3.04e-10
14 32768 7.48e-11 7.48e-11 7.48e-11 7.48e-11 7.48e-11 7.48e-11
15 65536 2.02e-11 2.02e-11 2.02e-11 2.02e-11 2.02e-11 2.02e-11

TABLE B.3: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers. (k = 8π)
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||ε||2, k = 8π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9
5 64
6 128
7 256 1.25e-06
8 512 3.11e-07 3.12e-07
9 1024 7.78e-08 7.79e-08 7.81e-08
10 2048 1.95e-08 1.95e-08 1.95e-08 1.98e-08
11 4096 4.86e-09* 4.86e-09 4.87e-09 4.91e-09
12 8192 1.22e-09 1.22e-09 1.22e-09 1.22e-09
13 16384 3.04e-10 3.04e-10* 3.04e-10 3.04e-10
14 32768 7.48e-11 7.48e-11 7.48e-11 7.48e-11
15 65536 2.02e-11 2.02e-11 2.02e-11* 2.02e-11

TABLE B.4: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers. (k = 8π) (Continue)

||ε||, k = 32π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
7 256 3.12e-07 3.12e-07 3.12e-07 3.12e-07 3.12e-07* 3.12e-07
8 512 7.75e-08 7.75e-08 7.75e-08 7.75e-08 7.75e-08 7.75e-08
9 1024 1.93e-08 1.93e-08 1.93e-08 1.93e-08 1.93e-08 1.93e-08*
10 2048 4.83e-09 4.83e-09 4.83e-09 4.83e-09 4.83e-09 4.83e-09
11 4096 1.21e-09 1.21e-09 1.21e-09 1.21e-09 1.21e-09 1.21e-09
12 8192 3.02e-10 3.02e-10 3.02e-10 3.02e-10 3.02e-10 3.02e-10
13 16384 7.54e-11 7.54e-11 7.54e-11 7.54e-11 7.54e-11 7.54e-11
14 32768 1.88e-11 1.88e-11 1.88e-11 1.88e-11 1.88e-11 1.88e-11
15 65536 4.77e-12 4.77e-12 4.77e-12 4.77e-12 4.77e-12 4.77e-12
16 131072 9.13e-13 9.13e-13 9.13e-13 9.13e-13 9.13e-13 9.13e-13

TABLE B.5: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers. (k = 32π)

||ε||, k = 32π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
7 256 3.12e-07
8 512 7.75e-08 7.75e-08
9 1024 1.93e-08 1.93e-08 1.93e-08
10 2048 4.83e-09 4.83e-09 4.83e-09 4.83e-09
11 4096 1.21e-09* 1.21e-09 1.21e-09 1.20e-09 1.21e-09
12 8192 3.02e-10 3.02e-10 3.02e-10 3.01e-10 2.99e-10
13 16384 7.54e-11 7.54e-11* 7.54e-11 7.54e-11 7.50e-11
14 32768 1.88e-11 1.88e-11 1.88e-11 1.88e-11 1.88e-11
15 65536 4.77e-12 4.77e-12 4.77e-12* 4.77e-12 4.76e-12
16 131072 9.13e-13 9.13e-13 9.13e-13 9.13e-13 9.13e-13

TABLE B.6: Average norm of the error in the numerical evaluation of (4.1) using the MLMIO
algorithm with p = 8 order transfers. (k = 32π)(Continue)
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B.2 Second model problem
B.2-A) Exact analytical solution of (4.13).
The analytical solution for (4.13) is represented by:

v(x) =







vp(x), if x = a
vn(x), if x = b
vp(x) + vn(x), otherwise.

(B.16)

with,

vp(x) = 1
k3

{π[−1 −
1

2
k

2(1 − x
2)] + 2kx(c1 − 1) + ke

ik(b−x)[b + x + 2a ln(b − x)]

−2kxE1(ik(x − b)) + i[3(1 − e
ik(b−x)) + c1(k

2
x

2 + c2) + πkx

+c4 ln(b − x)eik(b−x) + (k2
x

2 + c2)E1(ik(x − b))]} (B.17)

vn(x) = 1
k3

{π[−1 −
1

2
k

2(1 − x
2)] + 2kx(c1 − 1) + ke

ik(x−a)[a − x + 2a ln(x − a)]

+2kxE1(ik(a − x)) + i[3(1 − e
ik(x−a)) + c1(k

2
x

2 + c2) − πkx

+c3 ln(x − a)eik(x−a) + (k2
x

2 + c2)E1(ik(a − x))]} (B.18)

where the constants are defined as:

c1 = γ ln(k) c2 = −k2 − 2

c3 = k2a2 + c2 c4 = k2b2 + c2 (B.19)

Here γ = 0.577215664901532... which is the Euler constant and E1(z) represents the
exponential integral defined as[1]:

E1(z) =

∫ ∞

1

e−zt

t
dt =

∫ ∞

z

e−t

t
dt (|arg z| < π) (B.20)

Numerical evaluation of the exponential integral is suggested to be performed [75] using
series expansions for (|z| ≤ 1):

E1(z) = −γ − ln(z) −
∞
∑

n=1

(−1)n zn

nn!
(|arg z| < π)

and continued fractions for the arguments (|z| > 1) :

En(z) = e−z

(

1

z+

n

1+

1

z+

n + 1

1+

2

z+
...

)

(|arg z| < π)

with n = 1.
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B.2-B) Coefficients of the kernel for the discretization of separation of directions
The coefficients of the function G(x, y) for the discretization of separation of directions are
determined by:

Positive direction
xi > yj :

Ghh
p (xi, yj) =

∫ yj+ h
2

yj−
h
2

ln(xi − y)dy

= (xi − yj +
h

2
) ln(xi − yj +

h

2
) (B.21)

−(xi − yj −
h

2
) ln(xi − yj −

h

2
) − h

xi = yj

Ghh
p (xi, yj) = lim

yj→xi

∫ yj

yj−
h
2

ln(xi − y)dy

=
h

2
(ln(

h

2
) − 1) (B.22)

Negative direction
xi < yj

Ghh
n (xi, yj) =

∫ yj+ h
2

yj−
h
2

ln(xi − y)dy

= (yj − xi +
h

2
) ln(yj − xi +

h

2
) (B.23)

−(yj − xi −
h

2
) ln(yj − xi −

h

2
) − h

xi = yj

Ghh
n (xi, yj) = lim

yj→xi

∫ yj+ h
2

yj

ln(xi − y)dy

=
h

2
(ln(

h

2
) − 1) (B.24)

B.2-C) Additional results of the numerical evaluation of (4.13).
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||ε||, k = 8π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
5 64 1.31e-02 1.31e-02 1.31e-02 1.31e-02* 1.31e-02
6 128 3.52e-03 3.52e-03 3.52e-03 3.53e-03 3.53e-03 3.53e-03
7 256 9.41e-04 9.43e-04 9.40e-04 9.46e-04 9.51e-04* 9.51e-04
8 512 2.50e-04 2.50e-04 2.51e-04 2.50e-04 2.51e-04 2.50e-04
9 1024 6.63e-05 6.64e-05 6.66e-05 6.69e-05 6.61e-05 6.70e-05*
10 2048 1.75e-05 1.75e-05 1.76e-05 1.77e-05 1.79e-05 1.74e-05
11 4096 4.60e-06 4.61e-06 4.61e-06 4.63e-06 4.68e-06 4.71e-06
12 8192 1.21e-06 1.21e-06 1.21e-06 1.21e-06 1.23e-06 1.26e-06
13 16384 3.17e-07 3.17e-07 3.17e-07 3.18e-07 3.23e-07 3.36e-07
14 32768 8.27e-08 8.27e-08 8.28e-08 8.30e-08 8.36e-08 8.55e-08
15 65536 2.16e-08 2.16e-08 2.16e-08 2.17e-08 2.18e-08 2.24e-08

TABLE B.7: Average norm of the error in the numerical evaluation of (4.13 using the MLMIO
algorithm with p = 8 order transfers. (k = 8π)

||ε||, k = 8π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9
5 64
6 128
7 256
8 512 2.50e-04
9 1024 6.63e-05
10 2048 1.77e-05 1.71e-05
11 4096 4.58e-06* 4.42e-06
12 8192 1.28e-06 1.21e-06 1.06e-06
13 16384 3.70e-07 3.89e-07* 3.18e-07
14 32768 9.15e-08 1.05e-07 1.06e-07 1.04e-07
15 65536 2.41e-08 2.91e-08 3.91e-08* 3.82e-08

TABLE B.8: Average norm of the error in the numerical evaluation of (4.13 using the MLMIO
algorithm with p = 8 order transfers. (k = 8π) (Continue)

||ε||, k = 32π
fl Mesh cl=fl cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
7 256 4.25e-03 4.25e-03 4.25e-03 4.25e-03 4.25e-03* 4.25e-03
8 512 1.12e-03 1.12e-03 1.12e-03 1.12e-03 1.12e-03 1.12e-03
9 1024 2.94e-04 2.94e-04 2.94e-04 2.94e-04 2.94e-04 2.94e-04*
10 2048 7.72e-05 7.72e-05 7.73e-05 7.71e-05 7.72e-05 7.70e-05
11 4096 2.02e-05 2.02e-05 2.02e-05 2.02e-05 2.02e-05 2.02e-05
12 8192 5.28e-06 5.29e-06 5.29e-06 5.30e-06 5.30e-06 5.28e-06
13 16384 1.38e-06 1.38e-06 1.38e-06 1.38e-06 1.39e-06 1.40e-06
14 32768 3.59e-07 3.59e-07 3.59e-07 3.60e-07 3.61e-07 3.65e-07
15 65536 9.34e-08 9.34e-08 9.34e-08 9.35e-08 9.38e-08 9.49e-08
16 131072 2.42e-08 2.42e-08 2.43e-08 2.43e-08 2.44e-08 2.47e-08

TABLE B.9: Average norm of the error in the numerical evaluation of (4.13 using the MLMIO
algorithm with p = 8 order transfers. (k = 32π)
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||ε||, k = 32π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
7 256
8 512 1.12e-03
9 1024 2.94e-04
10 2048 7.70e-05 7.70e-05
11 4096 2.02e-05* 2.02e-05
12 8192 5.24e-06 5.28e-06 5.28e-06
13 16384 1.38e-06 1.34e-06* 1.38e-06
14 32768 3.64e-07 3.63e-07 3.53e-07 3.41e-07
15 65536 9.76e-08 9.69e-08 9.77e-08* 9.61e-08
16 131072 2.59e-08 2.85e-08 2.79e-08 2.90e-08 3.07e-08

TABLE B.10: Average norm of the error in the numerical evaluation of (4.13 using the
MLMIO algorithm with p = 8 order transfers. (k = 32π) (Continue)

||FEε||, k = 8π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
5 64 1.31e-02 1.38e-05 2.85e-05 3.14e-05* 3.14e-05
6 128 3.52e-03 8.29e-06 4.70e-06 1.90e-05 2.18e-05 2.18e-05
7 256 9.41e-04 2.03e-06 3.66e-06 5.04e-06 1.07e-05* 1.13e-05
8 512 2.50e-04 2.34e-07 5.85e-07 4.71e-07 1.38e-06 2.03e-06
9 1024 6.63e-05 1.18e-07 3.34e-07 6.22e-07 3.60e-07 1.34e-06*
10 2048 1.75e-05 3.77e-08 1.10e-07 2.40e-07 3.89e-07 1.46e-07
11 4096 4.60e-06 6.31e-09 1.87e-08 4.25e-08 8.32e-08 1.16e-07
12 8192 1.21e-06 2.24e-09 6.66e-09 1.54e-08 3.21e-08 5.99e-08
13 16384 3.17e-07 1.12e-09 3.33e-09 7.73e-09 1.64e-08 3.31e-08
14 32768 8.27e-08 2.32e-10 6.90e-10 1.60e-09 3.42e-09 7.01e-09
15 65536 2.16e-08 8.76e-11 2.61e-10 6.07e-10 1.30e-09 2.67e-09

TABLE B.11: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 8π)

||FEε||, k = 8π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9
5 64
6 128
7 256
8 512 1.86e-06
9 1024 1.91e-06
10 2048 8.05e-07 7.75e-07
11 4096 4.98e-08* 2.10e-07
12 8192 7.76e-08 4.81e-08 1.52e-07
13 16384 6.06e-08 7.48e-08* 4.91e-08
14 32768 1.38e-08 2.43e-08 2.27e-08 3.07e-08
15 65536 5.39e-09 1.05e-08 1.82e-08* 1.66e-08

TABLE B.12: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 8π) (Continue)
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||FEε||, k = 32π
fl Mesh Disc. Err. cl=fl-1 cl=fl-2 cl=fl-3 cl=fl-4 cl=fl-5
7 256 4.25e-03 1.69e-06 3.22e-06 3.18e-06 3.18e-06 3.18e-06
8 512 1.12e-03 2.06e-07 2.72e-07 5.52e-07 4.47e-07 4.47e-07
9 1024 2.94e-04 1.13e-07 1.69e-07 3.64e-07 5.98e-07 4.89e-07*
10 2048 7.72e-05 3.72e-08 9.19e-08 6.43e-08 2.38e-07 2.41e-07
11 4096 2.02e-05 6.28e-09 1.76e-08 2.96e-08 1.09e-08 6.25e-08
12 8192 5.28e-06 2.24e-09 6.55e-09 1.40e-08 1.99e-08 1.11e-08
13 16384 1.38e-06 1.12e-09 3.32e-09 7.54e-09 1.47e-08 1.97e-08
14 32768 3.59e-07 2.32e-10 6.89e-10 1.59e-09 3.30e-09 6.01e-09
15 65536 9.34e-08 8.76e-11 2.61e-10 6.06e-10 1.29e-09 2.57e-09
16 131072 2.42e-08 4.38e-11 1.31e-10 3.03e-10 6.48e-10 1.33e-09

TABLE B.13: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 32π)

||FEε||, k = 32π
fl Mesh cl=fl-6 cl=fl-7 cl=fl-8 cl=fl-9 cl=fl-10
7 256
8 512 4.47e-07
9 1024 4.89e-07
10 2048 2.73e-07 2.73e-07
11 4096 9.10e-09* 2.36e-08
12 8192 4.37e-08 1.69e-08 2.48e-08
13 16384 1.21e-08 4.34e-08* 1.57e-08
14 32768 6.80e-09 7.81e-09 2.03e-08 2.07e-08
15 65536 4.53e-09 4.75e-09 6.63e-09* 1.69e-08
16 131072 2.60e-09 4.55e-09 3.76e-09 6.66e-09 1.70e-08

TABLE B.14: Norm of the fast evaluation error of (4.13) using the MLMIO algorithm with
p = 8 order transfers. (k = 32π) (Continue)
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B.3 Third model problem
Here are shown the exact analytical solution for the evaluation of the discrete coefficients
G(xi, yj) for the two dimensional model problem (4.27.

Ghh(xi, yj) ≡ Ghh(x1
i , x

2
i , y

1
j , y2

j ) =

∫ y1

j + h
2

y1

j
−h

2

∫ y2

j + h
2

y2

j
−h

2

dy1dy2

[(x1
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i − y2)2]
1

2

(B.25)

where the algabraic representation is given by:
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with

xp = x1
i − y1

j + h/2 xm = x1
i − y1

j − h/2

yp = x2
i − y2

j + h/2 ym = x2
i − y2

j − h/2 (B.27)


