FRICTIONAL HEATING OF TRIBOLOGICAL CONTACTS

J. BOS




FRICTIONAL HEATING OF TRIBOLOGICAL CONTACTS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. Th.J.A. Popma
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op donderdag 23 november 1995 te 13.15 uur

door

Johannes Bos

geboren op 21 januari 1968

te Hoogeveen

ISBN 90-9008920-9

Copyright ©1995 by J. Bos, Enschede




DIT PROEFSCHRIFT IS GOEDGEKEURD DOOR :

Promotor : Prof. ir. A.-W.J. de Gee

Samenvatting

Overal waar wrijving optreedt, wordt mechanische energie omgezet in warmte. De
temperatuurstijging die hiermee gepaard gaat kan een belangrijke invloed hebben
op het gedrag van de elkaar rakende componenten. Behalve dat thermische ver-
schijnselen de werking van tribologische contacten bepalen, hebben ze invloed op
de betrouwbaarheid en kunnen ze falen ervan teweeg brengen.

In het eerste deel van dit proefschrift zal de nadruk liggen op de numerieke
berekening van de contacttemperatuur, gegeven de distributie van een warmtebron,
bijvoorbeeld in het geval van een gemeten wrijvingscoefficient.

Om deze contacttemperatuur te kunnen berekenen, is een multilevel algoritme
ontwikkeld, dat een niet uniforme verdeling van de in het contact ontwikkelde
warmte toestaat. Bovendien mogen de in contact staande lichamen verschillende
massatemperaturen hebben.

Simulaties voor elliptische warmtebronnen met uniforme en half-ellipsoidale
verdelingen, welke vooral van belang zijn voor contacten die onder condities van
droge- en grenssmering opereren, hebben geresulteerd in nauwkeurige functie fits
voor de gemiddelde en maximale contacttemperatuur. Deze functie fits zijn ge-
baseerd op asymptotische oplossingen voor lage en hoge Péclet kentallen en zijn
geldig voor willekeurige Péclet kentallen.

De functie fits maken het mogelijke tribologische contacten eenvoudig als on-
derdeel van een thermisch netwerk te behandelen.

Het tweede deel van dit proefschrift behandelt het EHL-lijncontactprobleem.
Eerst wordt een model beschreven, dat niet Newtons gedrag van het smeermid-
del toestaat en dat het thermische gedrag van het smeermiddel en de lichamen
beschrijft. Om dit model door te kunnen rekenen is een multilevel algoritme on-
twikkeld. Dit algoritme is toegepast op een redelijk zwaar belast geval, gebruik
makend van een vereenvoudigde energie vergelijking. Voor dit geval laten de resul-
taten zien dat er een significante reductie van de minimale filmdikte optreedt bij
toenemende slip.

Tot slot worden er enkele aanbevelingen gedaan voor toekomstig onderzoek.



Abstract

Wherever friction occurs, mechanical energy is transformed into heat. The tem-
perature rise associated with this heating can have an important influence on the
tribological behaviour of the contacting components. Apart from determining per-
formance, thermal phenomena affect reliability and may cause failure of the con-
tact.

In the first part of this thesis the emphasis will be on the numerical calculation
of the contact temperature given a heat source distribution, e.g. by means of a
measured coefficient of friction.

In order to calculate this contact temperature, a multilevel algorithm has been
derived which allows for a non-uniform division of the heat generated in the confact
and different bulk temperatures.

Simulations for elliptic heat sources with uniform and semi-ellipsoidal distribu-
tions, which are of specific importance for contacts operating under conditions of
dry and boundary lubrication, have resulted in accurate function fits for the average
and maximum contact temperature. These function fits are based on asymptotic
solutions for small and large Péclet numbers and are valid for arbitrary Péclet
numbers.

The function fits enable simple treatment of tribological contacts as part of a
thermal network.

The second part of this thesis deals with the EHL-line contact problem. First
a model, which allows for Non-Newtonian lubricant behaviour and thermal effects,
is described. For this model a multilevel algorithm is developed. The algorithm
has been applied to a moderately loaded case, using a simplified energy equation.
For this case, results show a significant decrease in minimum film thickness for
increasing slip.

Finally this thesis is concluded with some recommendations for future research.
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Chapter 1

Introduction

Technological as well as economical trends result in tribo-systems operating un-
der increasingly extreme conditions. Amongst these one finds higher loads, high
operating temperatures and severe lubricant starvation. In addition, demands con-
cerning size (weight), power consumption (viscosity) and manufacturing (surface
roughness) may cause problems.

Due to these increasingly extreme conditions, designers need more accurate
answers to more complicated problems. The latter frequently include thermal
phenomena. In general, thermal aspects in tribology are important with respect
to the determination of:

o the performance of the system (film thickness, power loss, etc.)
e magnitude and location of the maximum temperature

o effects of thermal gradients on the geometry of the contact

e heat flow to and from components of the system

Apart from determining performance, thermal phenomena affect bearing reliability
and may cause failure, e.g. due to degradation of the bearing material or the
lubricant. Also large temperature gradients may cause cracking, or by unequal
thermal expansion of components, cause seizure.

Thermal aspects are closely related to friction and viscous dissipation in the
contact. Friction, i.e. the resistance to motion, causes the conversion of mechanical
work into thermal energy, thereby leading to a local temperature rise of the tribo-
elements. The energy dissipation in the contact and the associated temperature
rise in the contacting elements may be quite substantial. The good tribological
behaviour of certain ceramic-steel contacts is for instance ascribed to local softening
of a thin layer of the steel counter part. This softened steel is transferred to the
ceramic counter part and is assumed to act as a lubricant film (see He et. al,
1995).



Figure 1.1: Schematic drawing of a concentrated contact.

The consequences of thermal effects for the operation of the contact strongly
depend upon load and operating conditions. However, it is equally important to
realize that the tribological contact is coupled to an overall mechanical system.
For example, consider a bearing supporting a shaft which drives a cryogenic com-
pressor. The heat generated in the bearing is conveyed away by the shaft, and
chances of thermally initiated breakdown are relatively small. However, the situ-
ation is quite different if the shaft drives a steam turbine, where the bearing will
be effectively heated.

1.1 Tribological Contacts

As stated before, thermal effects depend on the conditions in the contact. Figure
1.1 shows a schematic drawing of a so-called “concentrated contact”.

The energy dissipation depends on the applied load, the coefficient of friction
and the sliding velocity. Tribological contacts are often lubricated to avoid or min-
imize wear and, if required, to establish low friction between the two elements in
relative motion. The coefficient of friction is a function of the operating condi-
tions, i.e. the applied load, the lubricant properties, and the sliding velocity. This
dependence can be illustrated in a so-called generalized Stribeck or Hersey curve,
see figure 1.2, in which the coefficient of friction is plotted against the so-called
Hersey number L’g, see for instance Schipper (1988).

In this figure three regions can be distinguished. Each region is characteristic
for a lubrication regime with specific wear and friction behaviour. The regime
is determined by the way the applied load is transferred from one solid to the
other. At favourable operating conditions the surfaces will be fully separated by
the lubricant, as shown in figure 1.3%. The load is transmitted by the pressure in
the lubricant and all the shearing caused by the relative motion of the surfaces takes
place in the lubricant. If the pressure in the lubricant is low compared to the elastic
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moduli of the bodies, the film shape is determined by the geometry of the surfaces.
This lubrication regime is referred to as hydrodynamic lubrication (HL) and is
characteristic for e.g. journal bearings. In concentrated contacts the pressures
are generally high and the elastic deformation of the surfaces has a significant
effect on the film shape. This special case of HL is generally referred to as elasto
hydrodynamic Iubrication (EHL). In both HL as well as EHL the surfaces are fully
separated, hence wear is negligible for these modes of lubrication and the coefficient
of friction is generally smaller than 0.01. Tribological contacts operating in these
regimes have been analysed extensively, and over the past decades even theoretical
models for the prediction of friction for EHL contacts have been developed.

If the load is fully transmitted by the interacting asperities, the lubrication
mode is referred to as boundary lubrication (BL). Shear and wear depend on the
effectiveness of the protecting boundary layer(s), see figure 1.3%. If the surfaces are
mainly protected by the boundary layer, shear takes place in the boundary layers
or at their interface and the coefficient of friction generally is of the order of 0.1.

If the boundary layers are absent or not effective in protecting the surfaces,
direct contact of the unprotected asperities predominates. This regime is referred
to as dry friction (DF). Shear will take place at the interface or in the weaker
asperities, which may lead to substantial material transfer and wear. Generally
the coefficient of friction is high, e.g. larger than 0.2. If the protective boundary
layer is partially effective a combination of dry friction and boundary lubrication
occurs. As can be seen from the generalized Stribeck curve (figure 1.2), in the
boundary lubrication regime the coefficient of friction is constant. Unlike for EHI-
conditions, for BL-conditions theoretical tools for predicting friction do not exist
and one has to rely on data from experiments.

The intermediate regime between boundary lubricaton/dry friction and (elasto)
hydrodynamic lubrication is referred to as mixed lubrication (ML); see figure 1.3°.
In this case the load is partially carried by the pressure in the lubricant and partially
by the interacting asperities. Friction in the mixed lubrication regime is a combined
result of shear in the lubricant and friction due to asperity interactions. Due to
the complexity of the problem, also for this regime theoretical models to predict
friction are still lacking and most of the knowledge about contacts operating in the
ML regime has been acquired by experiments.

1.2 Thermal Phenomena

Regardless of the lubrication regime, the temperature increase induced by friction
affects the properties of the materials in a tribological contact, e.g. the viscosity of
the lubricant, the reactivity of the additives in the lubricant, the oxidation of the
bare surface materials and the geometry of the contact. These property changes
may affect the tribo-element, regardless whether it is a ball bearing, a cam-follower
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or a gear. In fact if the thermally induced changes are large, prediction of the
performance of such an element is very complicated, if not impossible. In other
cases the prediction of thermal phenomena may be feasable, but the result will
strongly depend on the lubrication regime in which the contact operates.

Over the past decade a lot of attention has been paid to the development of
rigorous solvers for thermo-elasto-hydrodynamic problems. One of the objectives
of these studies is to be able to predict the coefficient of friction for a wide range
of operating conditions. More powerful computers and numerical techniques en-
abled solving more and more complex models. However modelling the lubricant
behaviour under the extreme pressures and high shear rates that may occur in
EHL-contacts is still a topic under investigation.

Unlike the progress made in modelling and solving EHL, models for tribosys-
tems operating in the boundary or mixed lubrication regime are at most rudi-
mentary. In fact, determining the heat development in such a contact requires a
measured coefficient of friction. In these cases only the total rate of heat flow is
known, not the exact distribution. However, by the nature of the problem, fluc-
tuations in the heat flow distribution are only important on the scale of the size
of such a fluctuation and not on larger scales. This makes it possible to estimate
the contact temperature distribution and thus the maximum and average tempera-
ture, without knowing the exact rate of heat flow distribution. The total heat flux
and an idealized heat source distribution then suffice to obtain relatively accurate
estimates of the maximum and average temperatures.

Indeed, in engineering practice, in most cases only the maximum and aver-
age surface temperatures are relevant and hence a model for the prediction of
the surface temperatures in tribological contacts based on idealized heat source
distributions is already very useful.

It may be argued that in boundary- or dry lubricated contacts the rate of heat
flow distribution is not continuous, because the heat is generated by asperity in-
teraction, i.e. in the real contact area instead of in the apparent contact area.
However, in that case the real contact can be modelled as two bodies in multiple
contact where each contact is the contact between two asperities of the mating
surfaces. Full analysis of the heat flow in a multiple contact is a very complicated
task, especially because of the limited information about contact interface condi-
tions. See for instance Barber (1969) and Tian and Kennedy (1993). However,
if the contact spots are relatively far apart, the local temperature rise caused by
an individual heat source will not influence the local temperature rises at neigh-
bouring contact spots and the single contact results can still be used. On a larger
scale this is equivalent to a body in contact with several other bodies, e.g. a ball
in contact with the inner and outer raceway and the cage of a ball bearing.

5
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Figure 1.4: Cross section incised rod

1.3 Large and small scale Heat Flow Restric-
tions

It would be convenient if the complex problem of determining the contact temper-
ature rise could be divided into smaller and easier problems which could then be
studied separately. A possibility is given by the concept of small and large scale
heat flow restrictions, known from the contact heat transfer field and extended by
Tian and Kennedy (1993) to sliding frictional heating problems. This concept can
be used to divide the contact temperature into a superposition of two temperature
rises; a local temperature rise and a bulk temperature rise, each originating from
heat flow restrictions on a specific scale.

1.3.1 Stationary Contact

The heat flow restriction concept for tribological contacts can be explained by the
simple example of the heat flow through a rod kept at different end temperatures.
In a homogeneous material heat flow obeys Fourier’s heat transfer law: at steady-
state the temperature drop within the rod is linearly proportional to the length in
the direction of the heat flow and inversely proportional to the thermal conductivity

of the material. %
T
AT x —

*K

Now consider the situation in which a circumferential incision has been made
in the rod and part of the material has been removed, see figure 1.4. Far away
from the incision, the temperature drop will again be linearly proportional to the
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Figure 1.5: Contour plot of the temperature distribution in the vicinity of the
contact for two bodies in contact, both bodies stationary.
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Figure 1.6: Temperature distributions across the interface in and outside the con-
tact
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Figure 1.7: Temperature distributions across the interface in and outside the con-
tact for heat generated by friction in the contact.

length in the direction of the heat flow. But in the vicinity of the incision the heat
flow is confined to a smaller part than the original cross section of the rod. This
causes a non-linear temperature distribution as shown in figure 1.5.

The ’surface’ temperatures , i.e. the temperatures at z = 0, of the two parts
of the rod must be equal in the 'contact’ of the two parts, but are not necessarily
equal outside the contact (figure 1.6). This possible temperature jump across the
interface is generally known as the ‘contact temperature jump’. Now suppose
that the rod is cut in two along the plane z = 0, and the two parts are pressed
together again. Then again in the center where previously the temperature changed
smoothly, a temperature jump will occur. This is caused by the same phenomena as
mentioned above: Now, the real contact, due to surface roughness, is much smaller
than the apparent area. Only in the real contact area the contact temperatures of
the two bodies are the same, not necessarily in the entire apparent area.

According to a theory developed by Holm (1948, 1958), the temperature drop
at the contact interface can be attributed to the heat flow restriction at and near
the real contact area, due to the convergence and subsequent divergence of the
heat flow passing through this narrow contact area.

The heat flow restriction which causes the temperature drop at a contact in-
terface is defined as a small scale heat flow restriction, based on the fact that the
temperature drop is limited to a very small region at or near the real contact zone.
The heat flow restriction which causes the linear temperature drop in the heat
flow direction, outside the contact interface, is defined as a large scale heat flow
restriction, because the temperature drop takes place through the entire thickness
of the body. In the case of the rod, the heat flow is restricted to one direction
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within thermally insulated boundaries.

In the above, the heat flow was caused by a fixed temperature difference between
the end temperatures of the rod. However this is not the typical case for tribological
contacts where the heat flow is generated by friction. The small and large scale
restriction concept can be extended to the frictional heating situation as shown by
Tian and Kennedy (1993). As an example consider two circular rods in contact at
their ends, with one rod spinning about their common axis. Let us assume that
the boundary parallel to the contact interface is thermally conducting and that
the other boundaries are thermally insulated. The temperature drop can again be
divided into two components, which result from large and small scale heat flow
restrictions respectively. However, in contrast to the previous example in this case
the heat is conducted away from the contact by both bodies. At and near the
contact the small scale heat flow restriction causes a sharp nonlinear temperature
drop. If a single real contact spot exists, centered at the contact interface, this
temperature drop can be modelled by a stationary heat source on a semi-infinite
medium. Far away from the contact interface, the temperature drop is caused by
the large scale heat flow restriction, and is linear. As in the previous example, the
surface temperatures of the two rods must be equal in the real contact but they
need not be equal elsewhere. Figure 1.7 illustrates the temperature distributions
in and outside the contact region for this case.

1.3.2 Moving Contact

So far the stationary situation has been considered, i.e. the contact between the
two bodies was supposed to be stationary with respect to the bodies. However,
in tribological contacts at least one of the bodies is likely to move relative to the
contact and the heat generated in the contact will be divided between the two
bodies, the heat partition depending on the operating and cooling conditions. The
heat flow into each body is again subject to large scale and small scale heat flow
restrictions. This leads to a sharp, nonlinear temperature drop at and near the
contact, see also figure 1.7. Far away from the contact the temperature drop is
caused by the large scale heat flow restriction which depends on the geometry of
the body and the cooling conditions. For a single isolated real contact spot, the
temperature distribution at and aear the contact can be modelled as a concentrated
heat source moving along the surface of a semi-infinite body.

1.4 Surface Temperatures for Sliding Contacts
Using the concept of small and large scale heat flow restrictions, the surface tem-
perature can be divided in two contributions: the local surface temperature rise

and the bulk temperature rise. The local temperature rise is defined as the temper-
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ature rise due to the small scale heat Aow restriction during the release of frictional
heat within the real area of contact. The bulk temperature rise is defined as the
temperature rise due to the large scale heat flow restriction of the frictional heat.

For a single heat source on the contact interface, the local surface tempera-
ture rise can be modelled by a concentrated heat source, acting on a semi-infinite
medium. The semi-infinite body assumption describes the local temperature rise
well. Studies, e.g. Blok (1937), show that for a concentrated heat source acting
on a semi-infinite body, the surface temperature rise is basically limited to a very
small region in the immediate vicinity of the contact interface. Therefore the local
surface temperature rise can be modelled by a heat source acting on a semi-infinite
body under the restriction that the size of the contact is small compared to the
size of the body.

Although the temperatures at remote distances from the contact interface are
scarcely affected by the conditions at the interface, the temperature at ‘infinity’,
or the bulk temperature, does affect the temperature field near the contact. The
material of the semi-infinite body acts as an infinite heat sink of negligible re-
sistance. In the finite body reality this heat sink will be an actual heat transfer
process, for instance convection by a cooling fluid, the large scale heat flow restric-
tion. The heat flow the body can convey is therefore related to the temperature
on the exterior boundaries. This will lead to an additonal heat flow, compared to
the semi-infinite body situation, from the body with the highest bulk temperature
to the body with the lowest bulk temperature. This heat flow often leads to a non
uniform temperature rise in the contact, the bulk temperature rise.

In general the relationships for the large scale heat flow restriction will be known
or may be found by independent experiments on the solids. These relationships
depend on the geometry of the bodies and the cooling mechanisms.

1.5 History of Contact Temperature Studies

Studies investigating frictional heating and contact temperatures started as early as
1937. Blok (1937) was the first to study temperature rises due to concentrated heat
sources, i.e. flash temperatures. He studied the quasi steady state temperature
rise due to band-shaped heat sources for high Péclet numbers. The Péclet number
is a measure for the relative importance of convection and lateral conduction, and
in fact, Blok considered situations where the normal conduction and convection
are the only mechanisms of heat transfer. Subsequently many studies were carried
out to investigate frictional heating and flash temperatures, see Kennedy (1984).
Blok’s initial work needed extension in four directions.

e Flash temperatures for low and moderate Péclet numbers. In, for instance,
gear-transmissions and cam-follower systems situations occur where conduc-
tion becomes important and cannot be neglected.
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e Flash temperatures due to elliptic heat sources, because tribological contacts
are rarely band shaped, and often elliptic.

e In the contact the surface temperatures of both bodies will be equal, but
may vary over the contact. Blok approximated this condition of equal sur-
face temperatures in the interface by equating only the maximum surface
temperatures of the two bodies. A more accurate approach is to equate all
the temperatures in the contact.

e Incorporation of the effect of the bulk temperature rise on the contact tem-
perature.

1.5.1 Conduction

Jaeger (1943) and Carslaw and Jaeger (1959) [§10.7] extended Blok’s model to
contacts with limited Péclet numbers, that is, for band-shaped contacts, they ex-
tended Blok’s model to situations where lateral conduction becomes an important
heat transfer mechanism.

1.5.2 Heat Source Shape

Until 1959, most of these studies considered the contact temperature between two
semi-infinite solids under steady state conditions assuming a band shaped con-
tact, although Jaeger’s (1943) already included rectangular contacts as well. For
circular contact areas Archard (1959) introduced an approximate solution on the
basis of Jaeger's work together with a simple rule of thumb for the partitioning
of the generated heat. However, most practical contacts are neither band shaped
nor circular, but elliptic. Initially this was accounted for by using Jaeger’s (1943)
solution for rectangular contacts as an approximation. For conditions where the
lateral conduction can be neglected, this approach will yield good approximations.
However for situations where the lateral conduction becomes an important factor,
ambiguous decisions have to be made regarding the dimensions and the distribution
of the rectangular heat source in order to assure a good approximation, since in this
sitnation the entire heat source distribution and shape determines e.g. the maxi-
mum temperature, not just some cross section in the direction of the velocity. The
elliptic problem itself was addressed much later, e.g. by Kuhlmann-Wilsdorf (1986,
1987) who introduced approximate solutions for elliptic contacts, that are generally
applicable. Accurate solutions for elliptic contacts are still lacking though.

1.5.3 Frictional Heat Partition

The partition of the frictional rate of heat flow at the contact interface is such that
the surface temperatures in the contact interface are equal. For two semi-infinite
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bodies with zero bulk temperatures, this heat partition depends on the material
properties of the bodies and their velocities. Blok (1937) approximated the con-
dition of equal surface temperatures in the interface by equating the maximum
surface temperatures of the two bodies whilst Jaeger (1942) equated the average
temperature over the contact. To some extend, the latter method takes into ac-
count the variation of temperature over the contact area; it is thus less likely to fail
under unusual conditions. However the correct approach for the steady state heat
partition and the associated contact temperatures for arbitrarily shaped contacts is
to match the surface temperatures of the two contacting solids at all points inside
the contact area, thus allowing for variation of the heat distribution with position.
The solution of this problem generally requires a numerical approach, see 1.6.

1.5.4 Bulk Temperature Rise

For finite bodies the frictional heat flow partition also depends on the large scale
heat flow restriction. For instance, if one of the bodies is fully insulated except
for the contact interface, the net heat flow entering this body through the contact
interface must be zero. This can be achieved by studying the problem of two semi-
infinite bodies with different bulk temperatures, without heat generation at their
interface. Holm (1948, 1958), conducted studies on this problem but for stationary
solids only. Elshof (1994) studied the problem for bodies moving relative to the
(elliptic) contact.

1.6 Outline of this Thesis

This thesis can be divided in two parts. In the first part, i.e. chapters 2 to
5, the essential tools for the calculation of contact temperatures for known heat
sources in elliptical contacts will be derived. The emphasis will be on how, given a
heat source distribution, the contact temperatures can be calculated. The results
presented here are of specific practical importance for BL and ML contacts, i.e.
situations where, due to the complexity of the phenomena, no models are available,
see section 1.1. The second part of the thesis, i.e. chapters 6 and 7, deal with the
EHL-line contact problem for which the heat generation can be calculated from
fundamental equations like the Reynolds equation and the energy equation.

In chapter 2 a numerical algorithm will be introduced for the calculation of the
surface temperature of a semi-infinite body moving along an arbitrary heat source.
Subsequently the algorithmm will be applied to elliptic heat sources with either a
uniform or a semi-ellipsoidal distribution. For these heat sources accurate curvefit
formulas for the maximum and average contact temperature will be presented. The
formulas are valid for the entire range of Péclet numbers.
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In chapter 3 the algorithm of chapter 2 will be extended to the situation where
two semi-infinite bodies are in contact, moving relative to each other. Heat is
generated in the contact as a result of friction. Since the heat flow into each body
is not known a priori, it must be calculated by matching all the temperatures in the
contact. Once the two heat flows have been calculated the contact temperatures
can be calculated by using the algorithm explained in chapter 2. Again the results
for the maximum and average contact temperatures are curvefitted, resulting in
formulas for elliptic contacts with either a uniform or a semi-ellipsoidal heat source.

In chapter 4 the algorithm derived in chapter 3 will be applied to the situation
where the two semi-infinite bodies in contact have different bulk temperatures.
There is no heat generation in the contact, but due to the bulk temperature differ-
ence, heat will flow from the body with the highest bulk temperature to the body
with the lowest bulk temperature, the bulk temperature difference heat flow. In
general this will lead to a non-uniform contact temperature distribution.

In chapter 5 it will be demonstrated how the curvefit formulas derived in the
previous chapters can be applied to estimate the contact temperature of bodies in
contact with different bulk temperatures. First the extreme case of an insulated
body in contact with a semi-infinite body with zero bulk temperature will be
treated. Since in the steady state the net heat flow entering the insulated body
must be zero, the insulated body must have a high bulk temperature in order to
prevent heat, generated in the contact, from flowing into this body. It will be
shown how the curvefit formulas derived in chapter 3 and chapter 4 can be used
to estimate the maximum and average contact temperature. Further it will be
shown, by means of an example, how the contact temperatures of multiple bodies
in contact, or bodies in multiple contact, can be calculated by using the curvefit
formulas.

Although it is necessary to assume the heat source distribution for bodies in contact
under conditions of dry, mixed and boundary lubrication, this is not necessary for
(elasto) hyvdrodynamically lubricated contacts.

In chapter 6 a model for EHL-line contacts will be proposed. This model
takes into account non-Newtonian lubricant behaviour and thermal effects when
calculating the film thickness, the pressure distribution, the coefficient of fricton
and the temperature.

In chapter 7 thermal effects will be addressed. Although the model described in
chapter 6 allows for non-Newtonian behaviour of the lubricant, Newtonian lubri-
cant behaviour is assumed in order not to mix non-Newtonian effects with thermal
effects.
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Chapter 2

Local Temperature Rise

In this chapter the part of the contact temperature due to the small scale heat
flow restriction, i.e. the local temperature rise, will be addressed. Over the years,
this subject has been studied extensively. The studies started in 1937 with a
study by Blok that stimulated numerous subsequent works. Kennedy (1984) gives
a comprehensive literature review. It is now generally accepted that the local
temperature rise can be modelled well by the surface temperature rise of a semi-
infinite solid moving past a heat source. The basic theory for this problem is well
established; see for instance Carslaw and Jaeger (1959), and analytical results have
been derived for some simple heat distributions e.g. uniformly heated rectangles at
high Péclet number. However, for heat sources with arbitrary shape and heat flow
distribution or arbitrary Péclet number, numerical simulations are needed for the
computation of the surface temperature. The model will be described in section
2.1 after which the numerical algorithm is explained in section 2.2. Although for
tribological contacts the shape of the heat source will in general be known, this
is not true for the heat source distribution as seen by the individual bodies in
contact. This is due to the fact that the known heat source in the contact will be
distributed between the two bodies in contact, according to an a priori unknown
partition function. The partition problem itself will be addressed in the next
chapter. For now it suffices to realize that heat sources with arbitrary distribution
will occur and the algorithm to be developed should be able to deal with these
heat sources.

Subsequently the algorithm will be applied to heat sources covering an ellipse
with either a uniform or a semi-ellipsoidal distribution. These heat sources play an
important role in tribology, but accurate formulas for the maximum and average
surface temperature are still lacking. Such formulas will be derived, using the
numerically obtained values and asymptotic solutions.

As an illustration the maximum and average temperature in the contact be-
tween a ceramic ball and a steel surface will be calculated using these formulas.
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Figure 2.1: Contour plot of the Greens function for % =7

2.1 Model

For the calculation of the quasi-steady state surface temperature of a semi-infinite
homogeneous solid the solution for a moving point source of unit strength, i.e. the
Greens function is particularly usefull.

Suppose that heat is emitted at the origin at the rate of one heat unit per
unit time, and that a semi-infinite homogeneous medium moves uniformly past
the origin with velocity U parallel to the z-axis. Then according to Carslaw and
Jaeger (1959), the quasi-steady state surface temperature distribution is given hy:

Cey) = 5 xB(— (R~ 2)) (21)

R = ot

where K is the conductivity of the solid and x = K/pc its diffusivity. To illus-
trate the distribution of this function, a contour plot of the function G(z,y) =
+exp(—2(R — z)) is shown in figure 2.1.

This expression can easily be extended to heat sources of arbitrary shape and
distribution by integrating with respect to the appropriate spatial coordinates. For
the sitnation shown in figure 2.2, the quasi-steady state surface temperature rise
is given by:

W(z,y) = fs g(z,y) Gz —c,y—y) dz'dy (2.2)

q

where S, is the area over which the heat source extends.
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Figure 2.2: Schematic drawing of a semi-infinite body moving past an elliptic heat
source of arbitrary distribution.

17



2
b
a U
\ I

Figure 2.3: Definitions for the geometry of the contact ellipse.

Generally there are two heat transfer mechanisms operating simultaneously:
convection and conduction. The Péclet number P, i.e. the ratio between the con-
vective and the conductive heat transfer, is a measure for the relative importance
of convection, compared to conduction. It is defined by

P==—, (2.3)

LU
3
where L represents some characteristic heat source length. The heat sources are
assumed to be elliptic, the usual shape of concentrated tribological contacts. The
definitions for the contact geometry are shown in figure 2.3. The aspect ratio of
the ellipse is defined by

¢=b/a ' (2.4)

In the literature (Kuhlmann-Wilsdorf 1987, Greenwood 1991), the semi-axes
of the contact ellipse in the direction of the wvelocity, a, is often chosen as the
characteristic heat source length. In that case

P=

&

(2.5)

This definition of the Péclet number will be used in this thesis.

To present solutions that are generally applicable, the number of parameters
determining the surface temperature rise should be reduced to a minimum. There-
fore the optimum similarity analysis introduced by Moes (1992) has been applied.
This leads to the following dimensionless equation:
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2.2 Numerical Algorithm

In this section an algorithm will be presented for the fast numerical evaluation of
equation (2.6). First the equation will be discretized in section 2.2.1. Since the
equation at hand is an integral equation this leads to a dense matrix multiplica-
tion. As will be shown, straightforward multiplication is very expensive from a
computational point of view. Instead a more efficient algorithm, i.e. Multilevel
Multi Integration, introduced by Brandt and Lubrecht (1990), will be used. This
algorithm is discussed briefly in section 2.2.2.

2.2.1 Discretization

Equation (2.6) is discretized on a uniform grid with meshsize 7. When the heat
source distribution is approximated by a piecewise constant function on the sub-
spaces surrounding each grid point, i.e. T —h/2 < T < T, +h/2AG-h/2<F <
7, +h/2, the integral in equation (2.6) can be written as the following summation,

ne Ty

e 1 L —
W) = Z Z :?jz?this (2.9)
PLVE e e
where i
iy Tp ]yp Vau 1
i — —————exp (—=P(Vu? + 1% — u)), 2:10
igkl fzm i m p( 2 ( )) ( )
with
u=T;—T , v=F;—7,
T =Ti—Tx+hf2 , ZTa=T—Tx—h/2
yngj—§t+h/2 ) ym:_j_?!_h/z-

Carslaw and Jaeger (1959) found an analytical expression for the integral in equa-
tion (2.10) which reduces it to a line integral. However, as their expression contains
infinite integrals, it is less suited for use in a numerical process. Mathematica 2.0
reduces (2.10) to a line integral which, apart from exponential integrals, consists of
finite integrals only. For those who have a sound sceptical attitude towards com-
puter generated results, a formal derivation of the following result can be found in
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Where F; is the exponential integral, defined by

% exp (—t
El(:c)z/ e—x%ldt (z>0).
Polynomial as well as rational approximations exist for the exponential integral
e.g. Abramowitz and Stegun, (1965).
The line integrals of equation (2.11) have been solved numerically using the
double adaptive algorithm of Oliver (1972).

2.2.2 Multilevel Multi Integration

Equation (2.9) in itself represents a straightforward way to calculate the surface
temperatures, simply by carrying out all the summations. However from a com-
putational point of view this approach is inefficient. The calculation of each tem-
perature ¥;; costs O(N) operations, N being the number of nodes on the grid.
So, the calculation of the N temperatures costs O(N?) operations. Hence, if the
evaluation must be done frequently, e.g. in the course of the iterative solution of
an integral problem, it will consume the major part of the total computing time.
Brandt and Lubrecht (1990) developed an algorithm called Multilevel Multi Inte-
gration for the fast numerical evaluation of such integrals. They showed that for
sufficiently smooth kernels the complexity can be reduced from O(N?) to O(N),
whereas for potential type kernels such as In |z — y| and |z — y|™" a reduction to
O(Nlog N) can be obtained without loss of accuracy. This reduction is obtained
by effectively performing part of the “integration” on coarser grids. Exploiting the
smoothness properties of the discrete kernel, K“3}", this can be done in such a way
that the error introduced by the coarse grid integration remains small compared

to the original discretization error on grid h.
Brandt and Lubrecht’s approach can be summarized as follows: when the func-
tion u’ is defined on a grid of meshsize h, one wants to evaluate in O(/N) operations:
wl=3" Kiu! Vi (2.12)

7
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This can be achieved by the following four recursive steps, see Balsara and Brandt,
(1991). Assume there exists a coarse grid of size H = 2h and that a p order
interpolation matrix I% is being used to transfer solutions from grid H to h.

1. Adjoint Interpolation to Coarse Grid
Evaluate 1
5 = ?(I}})T u" (2.13)
on the course grid I, Here d is the dimensionality of the space.

2. Solve on Coarse Grid

On the coarse grid evaluate

wh =38 K yH (2.14)
Here K#H is the injection of K™ onto the coarse grid, i.e. KA = KL%,
3. Interpolate to Fine Grid
Interpolate the coarse grid solution to the fine grid as follows
ot = It (2.15)
4. Make local Corrections on the Fine Grid
Combination of (2.12), (2.13), (2.14) and (2.15) gives
wh — @ = (K™ — [1b K (1T (2.16)

Written like this the summation in (2.16) extends over all points in the domain and
thus no gain of efficiency is obtained. However, for asymtotically smooth kernels,
i.e. kernels that have the property that

loF K(z,y)l| < CGp€*™ (2.17)

for all £ > O(h), efficiency can be gained. Here £ = ||z — y||, &% is any p or-
der derivative with respect to z, ¢ is independent of p and C, depends only on
p. If (2.17) is satisfied unconditionally the kernel is smooth troughout and cor-
rections need not he made at all. For asymptotically smooth kernels and p order
interpolation,

KA — [y K7H (1)), ~ O €977) (2.18)
and |h? £97P| is a rapidly decreasing function of § = ||i — j||. Thus for suitable p
(depending on the accuracy €) there exists an m such that for ||i — j|| > mh ',

1TFor potential-type kernels m is not independent of the meshsize and thus depends on the
number of grid points. However it can be shown that for potential-type kernels m = ¢1 + ¢z InN
where ¢; and co are constants. So for large N, m becomes negligible compared to N.

Thus for singular smooth kernels the correction of each point after interpolation from a coarser
grids costs O(In N) operations resulting in O(N In N) operations for the interpolation and cor-
rection of every point.
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|KE — [T}y KHH (I})T);;| is smaller than a fraction of € and can be neglected, so
corrections are needed only for ||i — j|| < mh.

Realizing that every step in the procedure takes O(N) operations except for
step 2, it is clear that if this step can be accomplished in O(N) operations as well,
the evaluation of (2.12) is done in only O(N) operations. Since the procedure is
recursive, the recursion can be continued down to a level which has only O(v'N)
grid points, so here the multi integration can be accomplished in O(N) operations
by direct evaluation.

The Multilevel Multi integration algorithm needs to be modified if it is to
be applied for high Péclet numbers. First will be explained why and how the
characteristics of the kernel change for high Péclet numbers and how these changes
influence the performance of the Multilevel Multi Integration algorithm. Then a
remedy will be given.

The elements of the kernel are given by equation (2.10). From this equation it
is clear that for high Péclet numbers, the only elements of the kernel that differ
substantialy from zero are the elements with v ~ O and w > 0 (j =l and i > k), i.e.
the kernel becomes an almost one dimensional function, independent of y. Thus if
one looks at the kernel in the y-direction, it will look more and more like a delta
function for increasing Péclet number. Such a function can not be approximated
by a polynomial, the smoothness properties in the y-direction are lost. Therefore
from coarsening in this direction no efficiency is gained since all points need to be
corrected with m being O(n) as stated in equation (2.16).

So for high Péclet numbers coarsening in the y-direction should not be applied.
Just coarsening in the z-direction would result in an algorithm with a complexity
of O(Nv/N1n N) because on the coarsest grid one would have n./n points (n is
the number of points in 1 direction, i.e. N = n?), and the evaluation of the
temperature in one such a point would require ny/nln N operations. However the
summation now need not extend over the entire number of point on the coarsest
grid. There are only O(+/n) elements of the kernel on the coarsest grid that differ
from zero (see Figure 2.4). Therefore, evaluation of the temperature in one point
on the coarsest grid requires only O(y/nIn N) operations, and the evaluation in all
coarse grid points requires O((ny/n).o/nln N) = O(NIn N) operations as before.

2.2.3 Results

To verify the consistency of the discretization, the integrals are solved on a series of
increasingly finer grids, each next grid having half the meshsize of the previous grid.
The resulting integrals should then converge to the exact solution. The difference
between two subsequent solutions should decrease with the meshsize and the ratio
of two such successive differences should become a constant, 2P, where p is the
discretization order. The discretization as used here is of second order, i.e. p = 2,
and the constant should be 4.
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Figure 2.4: Sketch of the region over which the kernel extends for high Péclet
numbers.

23



Vs

grid Qﬂ%\/ﬁxﬁ—y2|qz_i(l_xz_yz)z

1 0.31908 0.34846 0.5004611

2 0.31329 0.36875 0.5047230

3 0.31483 0.37318 0.5078755

4 0.31682 0.37465 0.5089108

5 0.31790 0.37490 0.5091957

6 0.31812 0.37498 0.5092704

7 0.31819 0.37499 0.5092894
exact | 0.31831 0.375 0.5092958

Table 2.1: Maximum dimensionless temperatures for different heat distributions

—10
on increasingly finer grids for P=10

The discretization is checked for the Péclet numbers P = 107 and P =
10%. to make sure the discretization order is independent of the Péclet number.
Fur,thermore three different heat distributions are considered, all on the unit circle.
The first heat distribution is the uniform one. This heat source is discontinuous
at 22 + y? = 1. The second one is the semi-ellipsoidally shaped heat source. This
heat source is continuous throughout, but the first derivative is discontinuous at
2 +y? = 1. Finally a third heat source distribution is considered that ijs Zero
on the boundary of the unit circle and continuous throughout, as well as in the
first derivative. The results are presented in table 2.1. The first grid (grid 1)
has (14+4)x(1+4) nodal points. Grid 2 has (1+8)x(1+8) nmlia] points, etc. For
the first two heat distributions table 2.1 shows that the maximum dimensionless
temperature converges to its exact solution. However, if one looks at the differences
between the solutions on each pair of subsequent grids, see table 2.2, one has to
conclude that for the uniform heat distribution, and to a lesser extent for the semi-
ellipsoidally shaped heat distribution, the ratio between subsequent diﬁerencgs does
not converge to a constant. This phenomenon is explained by the way the circular
region over which the heat source extends is discretized. The circle is divided into
squares. On the boundary of the circle the squares will partially extend over the
boundary. And since the heat source is assumed constant within each square, an
error is introduced. This error decreases when the area of the squares becomes
smaller, so the discretization still is consistent, although not of second order. The
third case shows results for an artificially constructed heat distribution described by
a fourth order polynomial which smoothly tends to zero at the boundary. Th.is hfaat
distribution (which has no practical relevance) does not suffer from discretization
ary of the domain and is seen to be of second order as follows
stant 4 in table 2.2 for the ratio of succesive

errors at the bound
from the nice convergence to the con
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Q=L [Q=2Vi-&@ -y |Q=2(1-a ¢
grid diff. | rat. diff. | rat. diff. | rat.
12 | 5795 3020¢-5 1268007
2.3 | 5de5 | 10.7 | 443e5 16 3152567 | 14
3.4 [ 1995 | 0.3 | 147e5 3.0 10353e-7 | 3.0
25 (1085 | 1.8 | 2505 5.9 9849e7 | 3.6
5-6 22e-5 | 4.9 8e-5 i | 746e-7 3.8
6-7 Te-5 | 3.1 le-5 8 190e-7 3.9

Table 2.2: Maximum dimensionless temperature differences for P = 10710

Q=5v1—a*—y
grid Ii /PP diff. | rat.
1 0.54803
2 0.57162 | 235%-5
3 0.58484 | 1322e-5 | 1.8 |1}
4 0.58763 279e-5 | 4.7
5 0.58885 122e-5 | 2.3
6 0.58919 34e-5 | 3.6
7 0.58931 12e-5 | 2.8 [¢

[T 6P(P — oc) = | 0.589487 | | |

Table 2.3: Maximum dimensionless temperature and differences for P = 10*

error differences. Thus, in conclusion, the consistency of the dicretization scheme
has been validated, even though the approximation of the circle on a cartesian
mesh slightly affects the order of the overall scheme.

For high Péclet numbers the results show the same phenomena. For high Péclet
numbers the product 9 - /¢ P converges to a known constant. As an example the
case with P = 10* and a semi-ellipsoidal shaped heat source has been calculated;
see table 2.3.

2.3 Function Fits

For engineering practice general formulas for the maximum and average tempera-
ture will be particularly usefull. In this section such a formula based on function
fits of the numerically obtained data, will be derived. These function fits use the
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asymptotic solutions for small and large Péclet numbers as building blocks. The
asymptotic solutions will be presented in a way suitable for combining them into
a general function fit. The general function fit is then compared with numerically
obtained values.

Two heat source distributions will be considered, the uniform and the semi-
ellpsoidal heat source distribution. A uniform heat supply seems to be a fair
approximation if EHL-conditions prevail, i.e. for full film conditions.

In case of dry contact or boundary lubrication conditions a semi-ellipsoidal heat
supply seems a good approximation, since for a constant coefficient of friction the
heat supply has the same distribution as the elastic (Herzian) contact pressure.

For a uniform heat source distribution over an elliptic area the heat generated
per unit area is given by

Q) =22 (sl <), vl <b)

F is the total heat generated in the contact. For an elliptic contact with a semi-

ellipsoidal source
3 F z\2% fy\?
e =531 (5) ()

(lz] < z5(y), [yl <)
applies with z, given by

rw)=af1- (1) (wl<b).

2.3.1 Stationary Asymptotic Solutions

The asymptotic solution for small Péclet numbers is the temperature of a semi-
infinite solid due to some specified stationary heat source distribution. One is
generally interested in the average and maximum temperature in the contact. For
elliptical contacts the average and maximum temperature rise can be written as

ML
K+ab

Where 6; (I refers to low speed) has different values, depending on the distribution
of the heat source (e.g. uniform versus semi-ellipsoidal) and depending on whether
the average or maximum temperature is considered. The effect of the ellipticity
of the contact is taken into account by the shape factor S(¢), which reduces to
S(1) =1 for the circular case (¢ = b/a, the aspect ratio of the contact ellipse).
For a circular contact area and a uniform heat source distribution the maxi-
mum dimensionless surface temperature rise of a stationary solid is ;™ = 1/m =

95 = 0S(¢) (2.19)
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0.318310... 2 (Blok, 1937). The average dimensionless contact temperature is
fgpe = 8/3m? = 0.270190... (Carslaw and Jaeger, 1959). The solution for the actual
temperature distribution has been presented by Francis (1971) in terms of complete
elliptic integrals.

For a circular contact area and a semi-ellipsoidal heat source distribution the
maximum dimensionless contact temperature is given by 6;™ = 3/8 = 0.375 and
the average dimensionless contact temperature is 6f* = 9/32 = 0.28125. This
according to the analogy of the theory for concentrated elastic contacts of Hertz
(1881) as proposed by Francis (1971). In the thermo-elastic analogy @ represents
the contact pressure, 9 the deformation and K the elasticity parameter E/2(1—1?).
It is clear that transforming the shape of the heat source has an effect on the
resulting temperature distribution, even if the total rate of heat supply and the heat
source area remain unaltered. For an elliptic contact area and either a uniform or
a semi-ellipsoidal heat source distribution, the dimensionless contact temperature
can be calculated by applying the shape factor:

_ /2 (1-9l\,
S(¢)—1+¢;K(1+¢), (2.20)

where K(k) represents the complete elliptic integral of the first kind and £ its
modulus; see Abramowitz, e.a. (1965). This exact solution for S(¢) applies to
the maximum contact temperature as well as the average contact temperature. In
figure 2.5 the variation of S(¢) is shown for ¢ € [0.1,10].

Holm (1958) found the same shape factor for the constriction resistance of an
elliptic contact divided by the constriction resistance of a circular contact.

2.3.2 Large Péclet Numbers

In the previous section the low speed asymptotic solution has been discussed. There
the prevailing heat transfer mechanism was conduction. Now, consider the case
where only convection is of importance, thus neglecting any lateral conduction.
Because of the essentially one-dimensional nature of the heat transport for
the Péclet numbers considered, a contact of any shape may be treated as a band

contact. An asymptotic solution for large Péclet numbers that applies to a band
shaped contact with a uniform distribution has been derived by Jaeger (1943).
This solution is readily extended to contacts with other distributions by solving

L1 1 pinem) Q(E, y)dE
Wz, y) = il I . (2:21)

In this equation the integration boundaries are defined by

1(y) = —z.(y) , 22(y) = (1)

?For a summary of the asymptotic solutions see table 2.4
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Figure 2.5: The shape factor S(¢).

The solution of (2.21) is identical to the end temperature variation with time
of a one-dimensional rod, see Carslaw and Jaeger (1959), where time equals the
residence time during which the heat input is felt, i.e. the distance from the moving
heat front divided by its velocity.

Using the dimensionless variables given in (2.7) and (2.8), equation (2.21) can

be written as o
_ 1 pmin@32) Q(E,7)dE
HT, PP = —= e (2.22)
&) NERENE) T—¢
Thus for elliptic contacts the maximum and average temperature can, in analogy
with (2.19), be obtained from

fom 2 Ly
= KJabJoP

The flash temperature numbers 6, that for elliptic contacts follow from the in-
tegral (2.22) will now be summerized. Jaeger’s (1943) result for the maximum
temperature in a uniformly heated band contact also applies to a uniformly heated
elliptic contact resulting in §*™ = 2v/2/m\/7 = 0.507949... For the semi-ellipsoidal
heat distribution De Winter (1967) obtained for the maximum temperature ¢;™ =
0.589487...

Less interesting, although more generally applied, is the average temperature of
the contact area that, for a uniform heat source distribution, has been calculated

(2.23)
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as
32v2r(3)

57

o — P(7) = 0.309955... (2.24)
Consequently Archard’s (1959) approximated solution of the average temperature,
ie. 0, = 0.31, is quite to the point. Also quite to the point is the maximum
temperature according to Archard and Rowntree (1988), viz. 1.64 times the average
temperature. The solution according to Kuhlmann-Wilsdorf (1986) though, viz.
. = 9/32 = 0.281, underestimates the average temperature by about 10 %.

For the sake of completeness the average temperature of the contact area for
a semi-ellipsoidal heat source distribution has been calculated as 5 = 0.322991...
This differs only 7% from the average temperature for a uniform distribution. For
general applications though, the maximum temperature is of more importance.

The solution that has been presented is a generalization to elliptic contacts
of the asymptotic solution that applies to a band shaped heat source. However,
the maximum local temperature rise for an elliptic contact is much larger than
the average temperature rise over the contact area. Thus for elliptic contacts,
whether the heat source is uniform or semi-ellipsoidal, the average temperature is
a bad approximation for the maximum local temperature rise, an approximation
frequently used for band contacts.

2.3.3 General Curvefit Function

For the asymptotic cases, i.e. very small and very high Péclet numbers, the analytic
solutions have been given in the previous sections. For intermediate Péclet numbers
neither of the asymtotic solutions decribes the local temperature rise well by itself.
In this range both convection and conduction act as heat transfer mechanisms. If
one can argue that the mechanisms of heat transfer are distinct and both operative,
then an interpolation law can be found by assuming that both mechanisms are
working in parallel, i.e.
1 1 1

3, B
where ¢, and 9, are the temperatures due to, respectively, conduction only and
convection only. For ¥; and 1, expressions (2.19) and (2.23) have been derived in
the foregoing sections. However the division of the heat flow into convection and
conduction is spurious, the attribution of the two heat flows is wrong. This does
not lead to accurate approximations of the local surface temperature rise in the
intermediate range of Péclet numbers. Based on the results for a square source
Greenwood (1991) found that the interpolation rule given above did indeed not
lead to good approximations. He suggested that the local surface temperature rise
of a source of any shape may be estimated by interpolation of the stationary and
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uniform

maximum average
[ (=i oy ge
0.318310 | 0.507949 | 0.270190 | 0.309955
semi-ellipsoidal

maximum average
grm gem gre g
0.375000 | 0.589487 | 0.281250 | 0.322991

Table 2.4: Survey of the flash temperature numbers in six digits

high speed solutions, #; and ¥, according to the following rule:
1 1 1

2-g e
This interpolation formula showed a remarkably good agreement with numerically
calculated temperatures. Comparing the curvefit with numerical data, it was found
that the following interpolation formula gives even better results for elliptic heat
sources:
9 =9 +9; (2.25)
with
s=0.5-exp(l — ¢) — 2.5, (2.26)

or, equivalently,

o i lesor o} ]

(2.27)
where 6, and @, represent the asymptotic flash temperature numbers for low and
high Péclet numbers respectively. Equation (2.25), or (2.27), is a generalization of
Greenwood’s interpolation fomula and for circular contacts, ¢ = 1, it is actually
the same formula.

The asymptotic flash temperature numbers 6; and 8, still depend on the shape
of the heat supply distribution and on the kind of temperature concerned, i.e. the
maximum or the average temperature. Table 2.4 gives a list of the different flash
temperature numbers.

2.3.4 Comparison with Numerical Data

Figures 2.6 and 2.7 show the numerically calculated surface temperatures and
values obtained from the function fit for elliptic heat sources with, respectively,
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Figure 2.6: Average- and maximum temperature, uniform heat source. Markers
denote numerically calculated values. The lines represent the curvefit function.
+:¢=1/5,0: ¢=1/3,C : ¢=1, A : ¢=3, % : ¢=5.
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Figure 2.7: Average- and maximum temperature, semi-ellipsoidal heat source.
Markers denote numerically calculated values.
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The lines represent the curvefit
Q=3 K i

uniform and semi-ellipsoidal distributions. As can be seen from these figures,
there is a very good agreement between the numerically obtained values and the
approximate values from the function fit. The error is always less than 5% in the

range of ¢ € [1/5, 5].

2.4 Example

As an illustration the maximum contact temperature of a zirconia ball with a
diameter of 10.0 mm sliding against a steel plate will be calculated as function of
the sliding velocity. Table 2.5 lists the material properties of the bodies. As the
conductivity of steel is about 20 times higher than the conductivity of zirconia,
the contact temperature can be estimated reasonably well by assuming that all the
heat generated in the contact will flow into the steel plate.

First the dimensions of the contact need to be calculated. According to the
Hertzian theory the radius of the circular (¢ = 1) contact area is 0.15 mm, for a
load of F, = 100 N. For the coefficient of friction a value of u = 0.38 is taken (He,
et. al., 1995). The rate of heat flow follows from:

F=ul, U

Due to the elastic deformation of the bodies the rate of heat flow will have a
semi-ellipsoidal distribution, so 0™ and 9™ should be used for 6, and 6, in equa-
tion (2.27). Substitution of these values leads to the following expression for the
maximum contact temperature as function of the sliding speed:

—1/2

—2
uk, U 9 all

9, (U) ~ L= {gmy T+ 6

f( ) Kstee.! ab [{t } {T / K’steel}

This expression is plotted in figure 2.8. It can be seen that for U > 0.1 m/s the
local temperature rise exceeds 200°C, indicating that tempering of the metal and
therefore softening is likely to occur at and just below the surface.

2.5 Conclusion

An algorithm, able to calculate the surface temperature of a semi-infinite body,
moving past a heat source of arbitrary shape and distribution, has been developed.

By applying the algorithm to elliptic heat sources with uniform and semi-
ellipsoidal distributions, function fits for these heat sources were constructed and
verified for the maximum and average temperature, see equation (2.27).

For practical engineering use, the function fits can be used to calculate the
maximum or average temperature rise, without having to perform complicated
numerical simulations.
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Material Properties

AISI52100 hardened steel | Z70y
Young’s modulus [GPa] | E 213 191
Poisson’s ratio v 0.3 0.3
Thermal conductivity | [W/mK] | K 45 255

Table 2.5: Relevant material properties for ball bearing steel and zirconia. From
He et. al. (1995)

1400.00 T T T T T T T T
1200.00 T
1000.00 =
800.00 |- -
1 K]
600.00 -
400.00 -

200.00 -

0.00 1 1 | 1 | 1 1 1 1
0 02 04 06 08 1 1.2 14 16 18 2
U [m/s]

Figure 2.8: Maximum contact temperature rise in the contact between a zirconia
ball and a steel plate. F, = 100N; Kgeer = 13 — 6
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Chapter 3

Partition Problem

In chapter 2 the surface temperature rise of a semi-infinite body moving past a heat
source was studied. In tribological contacts this represents the local temperature
rise of two bodies in sliding contact, where one of the bodies has a much higher
conductivity than the other, e.g. a metal in contact with a ceramic material or a
plastic. However, in many tribological contacts the bodies will have conductivities
of the same order of magnitude and the heat developed in the contact will be
distributed between the two bodies in contact according to an a priori unknown
partition function. As an example consider the following two situations; 1) two
identical bodies, well cooled in sliding contact where one body is stationary and
the other is moving relative to the contact, 2) both bodies are moving in the
same direction relative to the contact with the same speed as in situation 1. If
the total heat, generated in the contact, is the same for both situations, then the
contact temperature is expected to be highest in situation 1. The only heat transfer
mechanism for the stationary body is conduction whereas in situation 2 for both
bodies convection too is available as a heat transfer mechanism. So in situation 1
the moving body has to convey more heat compared to either body in situation 2
resulting in a higher contact temperature. From this example it becomes clear that,
depending on the Péclet numbers of the bodies, different contact temperatures can
be expected, even if the total heat generated in the contact is the same. This
implies that the heat flow is divided differently for the two situations described.

This more general problem of determining the local temperature rise for two
bodies with conductivities of the same order of magnitude in contact, i.e. the
heat partition between the two bodies, was addressed numerically by Allen (1962)
for band shaped contacts. This work was later improved upon by Cameron et
al. (1965). These studies considered the contact temperature between two semi-
infinite solids under steady state conditions. For circular contact areas Archard
(1959) introduced an approximate solution on the basis of Jaeger’s work together
with a simple rule of thumb for the partition problem. However, most practical
contacts are neither band shaped nor circular, but elliptic. Initially this was ac-
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counted for by using Jaeger’s (1943) solution for rectangular contacts by way of an
approximation. For conditions where the lateral conduction can be neglected, this
approach yields good approximations. For situations where the lateral conduction
becomes an important factor, i.e. for low and intermediate Péclet numbers, am-
biguous decisions have to be made regarding the dimensions and the distribution
of the rectangular heat source in order to assure a good approximation.

In this chapter an algorithm will be developed for the heat partition problem.
It computes the heat partition by matching the surface temperatures of the bodies
at all points within the apparent contact area. Furthermore, asymptotic solutions
for the local temperature rise in the case of opposing velocities are calculated for
both uniform and semi-ellipsoidal circular heat sources. Subsequently, using these
asymptotic solutions, numerically calculated local temperature rises and asymp-
totic solutions known from the literature, closed-form function fits will be derived
to predict the maximum local temperature rise in the contact for the entire range
of possible values of Péclet numbers.

3.1 Equations

In dimensionless variables, the steady state surface temperature rises of the con-
tacting semi-infinite solids can be written as (see chapter 2 section 2.1):

1 1 rQuE,7)exp(-8{R-(z-7)})

0(z7) = w3 Js - d¥dy  (3.1)
N 11 q 7-—',—' LBin. o
B,(z,7) = XT3 Squ(CU 7 )exp( };{ (z—7 )})df & (3.2)

where P, and P, are the Péclet numbers, A = K,/K] is the conductivity ratio, S,
the contact area, i.e. an ellipse, and

R=\@-27+F-7)"
The two bodies are assumed to have the same bulk temperature, i.e. the lo-
cal temperature rise is considered. Further it is assumed that the bodies cannot
exchange heat outside the contact area.

By definition, the partition function o, describes the part of the heat flowing
into body 1:

_ !

Q7)) = QT ,7)a@.7) (3.3)
In the contact the surface temperatures are assumed to be equal, so temperature
drops over intermediate layers of any kind, like oxides or oil films, are neglected:

EI(Ts g) - 52(3’5: ?) =0, (Ea g) € Sq (3'5)
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Substitution of equations (3.1 - 3.4) in this equation results, after simplification,
in:

[ 3.1 o) o R 0= D)
Q@ .7) 1 -, 7)) ep(-2{R-(E-Z)}) .
Sl 7 dzT dy (3.6)

or written in terms of @

,, Aexp(—E{R—(-7)}) +exp(—2{R - (f—f)})d o

f@(f'.‘y) R Td? -
Sq

BIR—(T-TF C o
[ 9@, 7) G dGn A tinCRIB Y (3.7)

From this equation the dimensionless heat flux @, can be solved for a given Q and
thus the local temperature rise in the contact can be found by applying equation
(3.1). The partition function o then immediately follows from (3.3).

3.2 Numerical Approach

In recent years it has been amply demonstrated that multigrid techniques yield
fast and efficient solvers for tribological problems, e.g. EHL see Lubrecht, (1986).
The first step in the development of a multigrid solver is the discretization of the
problem on a grid, followed by the development of a stable relaxation scheme which
reduces the high frequency error components effectively. Once such a relaxation
scheme is devised, the multilevel schemes can be applied (see Brandt 1984 and
references therein). The discretization is the same as in the previous chapter and
the details will not be repeated here. The relaxation scheme for the partition
problem will be described in section 3.2.2.

3.2.1 Discrete Equation

In order to solve the dimensionless heat flux from equation (3.7), the discretization
from section 2.2.1 is used, resulting in a set of linear equations from which @, ; in
each grid point can be solved.

This linear set of equations can be written compactly in index notation as:

Y S IKMMGD,, = £ (3.8)

k=0 1=0
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Here
Z Z[ jkl QQki (39)
k=01=0
and hh hh h h
[ z:,lk?h t]k{!1 h + [ hhh ] (310)

The [K ’;’;ﬁ‘h] matrix is a full matrix and thus solving this set of equations for @, in
fact requires inverting this full matrix, either directly or by means of an iterative

scheme.

3.2.2 Relaxation Scheme

This section describes the relaxation scheme. For convenience, the multi summa-
tions at the left hand side of equation (3.8) are denoted by t;;. Equation (3.8) can
then be written as:

tij = fij (3.11)
with
=373 [ (3.12)
k=0 I=0

This equation is very similar to the equation for the dry contact problem de-
scribed in Lubrecht and Ioannides, (1989) and, indeed, their numerical approach
can be applied here.

Equation (3.11) can be solved by means of the following second order distribu-
tive relaxation scheme: Given an approximation @hj to G:L.—,- and the associated
integrated values £;;, all grid points are visited in lexicographic order and changes
§;; are calculated according to:

fl (3
bij = AJKMhi (3.13)
17
where:
hhkhh g
AR = K — (KIS + KRS + nigily + Kagit) /4 (3.14)

Once all the changes §;; have been calculated, they are applied at sites (¢, ) and
the adjacent sites (i = 1,7) and (i,j £ 1) according to the following distribution:

1 0 -1 0

00| -1 4 -1 (3.15)
0 -1 0
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The changes are applied simultaneously after the sweep is completed, a so called
“Jacobi relaxation”. The new approximation Ql to @, , Is thus given by:

Qlij = Qlij + 51':,: = (51'71_',: + 6i+1j + 5ij—1 + 5@]‘4_1 )/4 (3.16)

The relaxation sweep is followed by an update of the multi summations, for which
the multi level multi integration algorithm described in chapter 2 is used in or-
der to obtain all #;;, the values of the multi-summations associated with the new
approximations to Q.

The distributive relaxation ensures stability of the relaxation by keeping the
accumulated changes in the multi summations small. It is also very effective in
reducing high frequency error components in both z- and y-direction see Venner
and Lubrecht, (1993).

3.2.3 Verification

Although in general the partition function cannot be derived analytically, for two
bodies moving in the same direction with the same Péclet number, the partition
problem simplifies to:

9.0 o)) e ER- = gy

Qi g) ep(~HR-(E-2)}) . s
X . dz' dy, (3.17)

1+ A)

= (3.18)
i.e. ais independent of the position in the contact. In particular for A = 1 the
heat is divided evenly and o = 3 everywhere in the contact. For a circular contact
the partition function for this situation is shown in figure 3.1.

Another interesting situation is the following: two bodies moving in opposite
direction with the same Péclet number and A = 1. If the heat supply in the contact
is symmetric around the origin then a should be asymmetric around the line z =0
with &(0,7) = 1. This situation is shown in figure 3.2

Figure 3.3 shows the partition function at y = 0, to demonstrate the asymmetry
around z = 0 and to show that o(T = 0) = 1, something that is not immediately
clear from figure 3.2. This figure shows another interesting aspect of the partition
function; it does not vary between zero and one, but between —oo and co. Since
for two bodies sliding in opposite directions, in each half of the contact most of
the heat will go into the cooler incoming body, it is clear that the division of heat
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Figure 3.1: Partition function for two bodies moving in the same direction with
equal Péclet numbers and A =1

Figure 3.2: Partition function for two bodies moving in opposite directions with
equal Péclet numbers, P =20, A=1
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Figure 3.3: Centre line partition function values for two bodies moving in opposite
directions with equal Péclet numbers, P =20, A =1

is not uniform over the contact. However by assuming the range of the partition
function to be between zero and one, circulation of heat is excluded, i.e. heat
flowing from body 1 to body 2 at some place and vice versa at another with a net
zero result. For band contacts these aspects of the partition function have already
been observed by De Winter (1967).

3.3 Results

Figure 3.4 shows the surface temperature distributions for both contacting surfaces
due to a uniform heat source for the combination of Péclet numbers P, = 5, P, = 0.
Both the temperature distribution in the contact region and part of the tempera-
ture distribution outside the contact are shown. Note that, because of the boundary
condition in the contact (3.5), the surface-temperatures for both bodies only differ
outside the contact area.

The temperature distribution of solid 2 (figure 3.4.B) shows a groove at the right
edge of the contact region. These local minima of the temperature are caused by a
negative heat flux for solid 2. At these positions the temperature of solid 1 (figure
3.4.A) has to rise from almost ambient temperature (the heat source has not yet
passed the surface there) to the elevated temperature of solid 2. This results in an
additional heat flux from solid 2 into solid 1, i.e. the partition function is larger
than 1. The corresponding local negative heat flux for solid 2 leads to a the local
temperature drop.

Figures 3.5 and 3.6 show center-line (y = 0) temperatures for a uniform and
a semi-ellipsoidal heat source respectively. In both figures the combination P, =
5, P, = 0 shows, as expected from the example in the introduction of this chapter,
the highest maximum temperature. For the uniform heat source the maximum
temperatures for the combinations P, = 5, P, = 5, a situation which might occur
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Figure 3.5: Center-line temperatures for different Péclet numbers, uniform heat
source, A = 1.
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Figure 3.4: Temperature distributions of both bodies for the combination of P, =5
and P, =0, A=1 Figure 3.6: Center-line temperatures for different Péclet numbers, semi-ellipsoidal

heat source, A = 1.
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for two sliding bodies with different specific heats, and P, = —5, P, = 5 are, supris-
ingly almost identical although located at different positions. From the point of
view of available heat transfer mechanisms the fact that the maximum tempera-
tures are (almost) the same makes sense; ignoring the distributions of @1 and @5,
the available heat transfer mechanisms are the same for both situations. In general,
the distributions @Q; and @ cannot be ignored or replaced by their average values.
This follows from the situation where the total heat supply has a semi-ellipsoidal
distribution.

Figure 3.6 shows that for the semi-ellipsoidal heat source, the maximum temper-
ature for the combination P, = —5, P, = 5 is higher than that for the combination
P, = 5P, = 5. Apparently, for semi-ellipsoidal heat sources, heat transfer is
hampered by opposing velocities.

3.4 Function fits

The closed-form function fits of chapter 2 cover only part of the situations that
can occur for two bodies in sliding contact with conductivities of the same order of
magnitude. If the two bodies have the same Péclet number and are moving in the
same direction, the partition function is a constant. Also for two bodies moving in
the same direction with asymptotically high Péclet numbers the partition function
becomes a constant, which can be calculated without performing the full numerical
simulation decribed in section 3.2 and thus the function fits of chapter 2 can be
applied for these situations as soon as the partition constant is determined.

In this section generally applicable function fits will be derived, i.e. function
fits that also apply for bodies moving in opposite direction or for situations of
intermediate Peclet numbers. These function fits use the asymptotic solutions for
small and large Péclet numbers as building blocks. As in the previous chapter,
the asymptotic solutions will be presented in a way suited to combine them into
a general function fit. The general function fit is then verified against numerically
obtained values, using the algorithm described in section 3.2

3.4.1 Asymptotic solutions
Velocities in the same direction

For two bodies moving in the same direction with a high Peclet number Blok (1937)
has shown that the rate of heat supply is partitioned over the two solids in contact
according to the simple relation

VKiPiCiUi' (3 19)
S KpcU’ ’
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F=

where S/ Kpcll = VEK1p1c1U1 + /KapacoUs. The heat supply to the individual
bodies has the same shape as the total heat supply. The flash temperature for
two solids in contact, moving in the same direction, can be calculated from the
asymptotic solution for the surface temperature at large Péclet numbers:

min(z,zs(y)) M
\F \/mf . vE—E

The flash temperature follows from the maximum for the contact temperature after
substituting equation (3.19) into (3.20) and reads:

Wz, y); (3.20)

o F 1
"b/a Y /KpcU

This is in fact applying Archard’s rule of thumb. In this relation 6, is the flash
temperature factor derived in chapter 2 which takes into account the distribution
of the heat supply and the temperature concerned, i.e. maximum or average. The
subscript 7 indicates a predominantly rolling movement of the bodies in contact.

By = (3.21)

Velocities in opposite directions

The temperature distribution for Kypscals = Ki1p1c;Up with Uy and Us in opposite
directions, e.g. two identical bodies moving at equal speeds in opposite directions
and a uniform heat supply, has been calculated numerically for high Peclet numbers
by applying the following integral equation defining @;—and thus the partition of
the heat flow:

Vi QuEY)dE _ (=W Q& y)dg (5.22)

) Jle—e VE-z’

This is Abels’s integral equation with constant integral limits. This equation was
solved numerically. With the proper adjustments for the one dimensionality of the
problem, the numerical approach is similar to the one described in section 3.2 for
the general two dimensional problem. For more details on the subject see Bos and
Moes, (1995)

Equation (3.22) was solved for both a uniform and a semi-ellipsoidal heat sup-
ply. Surprisingly, for a uniform heat distribution, the numerically obtained maxi-
mum temperature rise was very similar (7 decimal places) to the maximum tem-
perature rise for two bodies moving in the same direction. Recently Greenwood
(1995) showed by means of an analytic proof that for an uniform heat supply, the
maximum temperature rise for bodies moving at high speeds in opposite directions
is exactly the same as for bodies moving at high speeds in the same direction. So

F 1
sm 2K pcU’
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9; =0 (3.23)




with 9™ = ¥ = 2/2/m\/m = 0.507949 - - -

The maximum flash temperature is not independent of the direction of the
velocities in general, as was already indicated by the results shown in section 3.3.
For a semi-ellipsoidal supply of heat and two identical bodies moving at equal, high,
speeds in opposite directions the maximum local temperature rise is substantially
higher than the maximum local temperature rise for two identical bodies moving
in the same direction at equal, high, speeds, i.e. ™ = 0.700792--- (whereas
gc™ = 0.589487---).

For the average flash temperatures the discrepancies are even stronger; be-
cause 0% = 8v/2/5m/T = 0.406359--- (whereas ** = 0.309954---) and 67" =
0.437504 - - - (whereas 5% = 0.322991 - - -) have been calculated for a uniform and a
semi-ellipsoidal heat supply distribution, respectively. The index s was introduced
in order to indicate the predominating sliding movement of the two mating surfaces;
the index r introduced in chapter 2 indicates a predominating rolling movement
of the two mating surfaces. Both indices indicate high speed asymptotic solutions,
i.e. the only lateral heat transfer mechanism is convection.

Stationary solids

The heat partition for two stationary solids follows from

e
FF=—2F (=12) ; 3.24
SoF (i=12) (3.24)
where T K = K, + K. Although academic, since there is no heat generation in the
contact for this situation, the results are needed for the general function fit. This
leads to the following equation for the flash temperature for two solids in contact:

F 1
WaTE

Where 6, is the flash temperature factor from chapter 2.

Iy =05 (3.25)

3.4.2 General function fit

Archard’s (1959) rule of thumb for the partitioning of the heat flow also holds when
maximum temperatures instead of average temperatures are used. It then reads

LI I I
TR TR T

where the two temperatures at the right hand side are the maximum temperatures
that would occur if all the heat was supplied to either solid 1 or solid 2. These
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temperatures can be determined with the curve-fit relation derived in the previous
chapter;

ﬁisz/&g [{9;5(¢)}*+( \/ZSEE)S]US =107 ; (3.26)

This rule of thumb invariably represents the exact solution for the heat partitioning
at the asymptotic conditions. Therefore, accepting this rule of thumb as a general
condition will probably yield good approximations for the general case, see sec-
tion 3.4.3. Consequently the flash temperature may be represented by the simple
equation

F 1
s71/s
o sy + ()| G=12) (325)

with s = 0.5 % exp (1 — ¢) — 2.5. In this equation the auxiliary flash temperature
factor 8, represents the flash temperature solution for high velocities. Contrary to
the 1 body situation the direction of the velocities of the bodies with respect to
the contact ¢s important if two bodies are in contact. @, is a function fit based on
the asymptotic solutions @, and @, and takes into account the sliding conditions
which prevail when the bodies are moving in opposite direction. It is defined as

8. + 10
= 2 g 2
S T et
In this expression ¢ represents:
t = max (0, —— with ¢ = sign(U; - Uy) mi L 3.30
] 1 g g — s81g 1 2) Imin p)E 3 ( : )

p= \/%. (3.31)

For convenience, situations with velocities in opposite directions have been, and
will be, indicated by a combination of a positive and negative Péclet number.
Please note that when using the formulas (3.26), (3.28) and (3.31), positive Péclet
numbers should always be applied. '
Further it is convenient to observe that for velocities in the same direction
equation (3.29) reduces to
Bh = gru

so for velocities in the same direction equations (3.30) and (3.31) need not be
evaluated.

49



Figure 3.7: Maximum temperature, semi-ellipsoidal heat source. Markers denote
numerically calculated values. The lines represent the curvefit function. G P =
50, + P1=10, O I.Pl:l,)\:].

The heat fluxes entering bodies 1 and 2, respectively, can be approximated by

N 1/6,
- 1/0, 4+ A/6a

/8

F B NG

F (3.32)

3.4.3 Comparison with numerical results

Figures 3.7 and 3.8 show numerically calculated maximum contact tempera-
tures and function fit values for circular, i.e. ¢ = 1, semi-ellipsoidal and uniform
heat sources respectively. Bach figure shows the maximum contact temperature
for three different Péclet numbers of one body and a range of Péclet numbers of
the second body, i.e. P, =1, P, = 10 and P, = 50 and P varies from -25 to 25.
Thus velocities in opposite direction and velocities in the same direction are both
considered.

As can be seen from these figures for circular contacts, the approximated curve-
fit values agree very well with the numerically obtained values. The error is always
less than 5%, as was found previously for the situation where only one body moves
past a heat source.

Indeed, the curvefit formula accurately predicts the value of the flash temper-
ature, but the shape of the curves at some points is less accurate, e.g. notice the
wiggle in the curve for the semi-ellipsoidal heat source at P, = 10 and P, = —10.
Such a wiggle can not be physical. Here it is an artefact resulting from the use of
(3.29) (t becomes infinite for this situation). By choosing a more gradual transition
between the asymptotic solutions one can easily avoid this wiggle. However, this
generally results in a decreased overall accuracy of the curvefit.

50
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0.15 =
;010 [ .
i i}
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Figure 3.8: Maximum temperature, uniform heat source. Markers denote numeri-
cally calculated values. The lines represent the curvefit function. & : P, = 50; + :
PII].O, O ZPIZI,)\:].

3.5 Example

In the previous chapter (par. 2.4) the maximum contact temperature of a zirconia
ball with a diameter of 10.0 mm, sliding against a steel plate has been calculated
as a function of the sliding velocity. As the conductivity of steel is about 20 times
higher than the conductivity of zirconia, the heat flowing into the zirconia ball was
neglected. Now, with the formulas derived in this chapter, this heat flow can be
taken into account.

Consider the same situation as in chapter 2. If the zirconia ball is purely sliding
against the steel plate then the Péclet number for the ball is zero. From equations
(3.30) and (3.31) one obtains ¢ = 0 and therefore by using eq. (3.29), 8, =46,. If
the steel plate is denoted as body 1 and the zirconia ball as body 2 then 6; and 8,
can be calculated by using equation (3.28):

-2
U
[{9:"‘}-2+{9:m/ . }
ﬁ;ateel
9, = o™

il
2z

0

Il

Substitution of §; and @, in equation (3.27) results in the following expression for
the maximum local temperature rise as a function of the sliding velocity:

uF, U 1
b Kaﬂlm Tk rcon

This expression is shown in figure 3.9 together with the relation derived in the
previous chapter. As is clearly indicated by the figure, the assumption made in the

dp(U) =
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Figure 3.9: Maximum contact temperature rise in the contact between a zirconia
ball and a steel plate. Conditions as in figure 2.7. The thin line is the full approx-
imation. The thick line shows the result when the heat, flowing into the zirconia
ball, is neglected.

previous chapter, i.e. that the heat flowing into the zirconia ball can be neglected,
is justified.

3.6 Conclusion

A numerical algorithm has been developed for the heat partition problem. It
matches the temperatures in all points in the contact and thus allows for a variable
partition of heat in the contact. Furthermore a closed-form function fit (3.27) has
been derived, based on numerical calculations and asymptotic solutions for large
and small Péclet numbers, as well as an asymptotic solution for opposing velocities,
see the equations (3.21), (3.23) and (3.25). This function fit approximates the flash
temperature for an arbitrarily chosen Péclet number combination with an error less
than 5%. Both uniform and semi-ellipsoidal heat sources are covered. This implies
that Archard’s rule of thumb also holds for opposing velocities.

Finally, it was found that for semi-ellipsoidal heat sources the maximum lo-
cal temperature rise is substantially higher if the surfaces of the bodies move in
opposite directions, compared to the case of velocities in the same direction.

Note that the results of this chapter apply only to situations where both bodies
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have the same bulk temperature. If the bodies have different bulk temperatures
an additional heat flux due to the bulk temperature difference will occur, which in
turn influences the contact temperature. This topic will be addressed in the next
chapter.
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Chapter 4

Bulk Temperature Differences

In chapters 2 and 3 the local temperature rise in the contact has been considered,
ie. the temperature due to the small scale heat flow restriction. By assuming
the bodies to be semi-infinite, large scale heat flow restrictions were neglected;
by definition the materials of the semi-infinite bodies act as infinite heat sinks of
negligible resistance. In practice, however, the bodies in contact will be finite and
instead of an infinite heat sink there will be a cooling mechanism, e.g. a cooling
fluid. In the steady state situation the bodies will have a bulk temperature such
that heat is transferred from the contact to the cooling medium. In general the
relation between the bulk temperature and the rate of heat flow transferred to
the environment of the solid will be known or may be found from independent
experiments on the solids. Such a relation will depend on the geometry of the
body and the cooling mechanism (air, water, forced or free convection).

The bulk temperatures are not necessarily the same for both bodies in contact.
If they are, the contact temperature is simply the superposition of the local contact
temperature rise and the bulk temperature. In all other cases, the temperature
distribution in the contact is affected by the bulk temperature difference. The
maximum temperature, as well as its location in the contact, will change. As an
example, consider the situation in which one of the bodies is insulated. All the
heat generated in the contact will flow into the other body. This however, does
not imply that locally the heat flux through the contact surface of the insulated
body is zero, only the net heat flow entering the insulated body must be zero.

If the contact is small compared to the size of the bodies, the effect of bulk
temperature differences can be modelled by two semi-inifinite bodies in contact
with different bulk temperatures. The effect of a bulk temperature difference can
be separated from the conditions at the contact interface by considering two semi-
infinite bodies in contact with a bulk temperature difference but without heat
supply in the contact. Due to the bulk temperature difference heat will flow from
the body with the highest bulk temperature through the contact to the other body.
If this heat flow is superimposed on the heat flows following from the partition
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Figure 4.1: General problem as superposition of two simpler problems
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problem, the heat flows for each body are found and the contact temperature can
be calculated. See figure 4.1

4.1 Equations

The rate of heat low between two bodies in contact with different bulk tempera-
tures depends on the difference in bulk temperature, not on their absolute values.
Therefore the rate of heat flow can be examined by considering a body (body 1)
with zero bulk temperature in contact with a body (body 2) of positive bulk or
mass temperature, ¥,,. To distinguish the temperature rise in the contact from
the bulk temperature difference, the subscribt b is used for the temperature rise
in the contact and the subscript m for the bulk temperature difference ( = mass
temperature difference).

For the situation described above, the surface temperatures of the two bodies are
given by (Carslaw and Jaeger, 1959):

,Jy.)exp(—Ul(R —ﬁ()x —x))/2K1) Ty (4.1)

B , 4 o nexp(=Us(R — (z —z')) /2Ky
?ﬂ(il?, y)z = Py 427(}—{2 [S\, Qm(:'? 1y) R

where @,, is the unknown rate of heat flow due to the bulk temperature difference.
This rate of heat flow acts as a heat source for solid 1 and as a heat sink for solid
2.

If temperature drops across layers like oxides or reaction products are neglected,
the temperatures in the contact must be equal and @,, can be found from:

271'1}{1 e Qm(ﬂ?',y')exP(_Ul(R — (z—2))/21)

R
1 v nexp(=Us(R — (z — x))/2k2)
27TK2 qu, QM(x = ) R

e = 5o [l @nle

) dz'dif4.2)

dz'dy =

dz'dy’ (4.3)
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In dimensionless form this equation reads:

12 | — .t _ry €XP (—%L{R— (-J_;'_..'f’)}) e
e d
2,’,1,\/5 s, m($1y) R dT dy +
11 g %exp(—%{Rf(T—f)}) i —
LN i = O .
or /3 Squ(w,y) B dz dy ¥ (4.4)
where (see chapter 2)
- K\Wab — _ _ab
= =0Q— 4.5
i = 7 Q@ QF (4.5)
z=2 and gzg (4.6)

For a given U, @, can be found by solving equation (4.4) for Q,,,. The contact
temperature can then be found by applying equation (4.1), which in dimensionless
form reads:

- A e | _l - ___f
E{f, ?)1 _ %% i Qm("’v iy)exp( ‘QRPI{R (“T T )})dfrdgr (47)

From a numerical point of view equation (4.4) is similar to equation (3.7). There-
fore the numerical algorithm, derived in the previous chapter can be used here as
well.

4.2 Function Fits

4.2.1 Asymptotic solutions

Like in the preceding chapters, first a set of asymptotic solutions will be derived
to use them as the building blocks of a general function fit.

Velocities in the same direction

Analogous to equation (3.20), for high speeds the relation between the bulk tem-
perature difference and the surface temperature in the interface can be written as:

El i min(z2s(4) Qu (€, y)dE
V7 VE52620s 120 vE=E

with Q. (z, y) the rate of heat flow from body 2 into body 1 and z, = a4/1 — (%)2,
see chapter 2. At the interface this heat flow represents a source for body 1 and a
sink for body 2. If both velocities U; and U, are in the same direction one obtains
the following equation for the surface temperature in the interface for body 1:

Nz, y) = Um (4.8)

11 prinem) Qu(€,y)dE 4.9
Vo) = TRl ety BT v
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From (4.8) it follows

min(z,x.(y)) M

% > (W) /—z.(w i om (4.10)

1 _ 1 1
where Z (\/K.ocU) ~ VEipialh + VEapacaUs”
According to Abel (1823) this equation can be inverted as

19m d min(z,z.(y dé
Qu(z,y) = \/_E( y (-/—:c.,(y) \/H) '

This leads to the following closed form analytical solution for the additional rate
of heat flow distribution over the interface:

Qn(z,y) =

U T+T =42
\/_Z( ){ +z(9)} . (4.11)

Finally, by integrating @, over the elliptic interface, a relation is obtained
between the bulk temperature difference and the total rate of heat flow, Fj,, that
it induces;

S fz:( m) (412)

Where ¢, is derived as (see Elshof, 1994):

3
. = I =0.
¥, = T*(3/4) = 0358491

According to this equation and the equations (4.9), (4.10) and (4.11) the tem-
perature at the interface due to the bulk temperature difference, ¥,,, reads:

vV KapacaUy
O o 413
SN 0 (4.13)

The temperature rise over the interface is uniform, therefore this solution can
simply be added to the local temperature rise, as discussed in the previous chapter.
Consequently the maximum contact temperature for two bodies moving in the same
direction with high Péclet numbers follows from ¥, + 9.

Velocities in opposite directions

The temperature distribution for K;picU; = Kypoc Uy = KpeU with U and Us
in opposite directions, e.g. for two identical bodies moving at equal high speeds
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in opposite directions is defined by the following integral equation for the rate of
heat flow distribution:

2:) Qum(€,y)dE
= O, 4.14
f T/ ch —o) 4/|€ — z| @14

with a constant value for ¥,,. Since according to Hijmans (1992), see appendix B:

$|2r—1 T

e _
./_1 (1—¢2)r K== (7r)

which reduces to

(-1<x<1,0<r<1) (4.15)

fl(lf&)ﬁ:mﬁ (-1<z<1,0<r<1)
B4 [ Skl

for r = ﬁ, this equation can be solved by recognising
Qm = (1 . ‘52)_%

as: 1/4
(4.16)

Qm(z,y) = —\/lz:wﬂm KpcU [{z:(y)}* = {=}"]
This solution for the heat flux leads to a temperature distribution over the interface,
?(z,y), which, in contrast to the situation where two bodies move in the same
direction is far from uniform. However, in the center of the contact, because of
symmetry conditions, ¥, = %ﬁm. Figure 4.2 shows the dimensionless temperature
distribution for the line y = 0.
Integration of equation (4.16) over the elliptic contact leads to the following re-
lation for the bulk temperature difference and the total rate of heat flow it induces:

wisZ( TR ) (4.17)

Where 1), is given by (see Elshof, 1994):

by = —o = 0.209206 - --

421
The highly non-uniform distribution of the temperature at the interface com-
plicates the estimation of the actual maximum contact temperature, i.e. the sum
of the local temperature rise derived in the previous chapter and the temperature
rise at the interface due to a bulk temperature difference. If the bulk temperature
difference is small compared to the maximum local temperature rise, the actual
maximum contact temperature can be approximated by ¥ + %19,“ since for this
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z
Figure 4.2: Temperature distribution at the line of symmetry for two equal bodies
with equal high Péclet numbers, moving in opposite directions

situation the maximum local temperature rise occurs in the center of the contact.
However, if the total rate of heat flow due to the bulk temperature difference ex-
ceeds the heat generated in the contact, only the average contact temperature can
be approximated accurately. For more details on this subject one is referred to
chapter 5.

Two bodies at rest

The asymptotic solution for low velocities is the solution for two bodies at rest.
To this situation Holm’s (1958) analogous solution for electrical resistances can be
applied

F
I = US(d) —= 1/K); 4.18
iy (¢) \/(E Z ( / ) ( )
with ¢ = ﬁ. The corresponding uniform temperature over the interface is:

K,

ﬁb:f}?

D (4.19)

To obtain the actual maximum interface temperature this solution can simply be
superimposed on the analytical curve fit for the flash temperature introduced in
chapter 3. Thus the actual maximum contact temperature is 9, + 9.
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4.2.2 General solution

Equation (4.4) has been solved numerically with the algorithm described in chap-
ter 3. Based on such numerical solutions and the asymptotic solutions of equa-
tions (4.12), (4.17) and (4.18) for arbitrary Péclet numbers, the following relation
between the bulk temperature difference and the resulting rate of heat flow is
proposed:

o _ o Kivab  Fn
By = Vm } ~ = (% + 92/, (4.20)
with
s11/s
w=hwawF+{whwﬂ}}. (4.21)

Here 5 = 0.5 - exp(1l — ¢) — 2.5. In this equation the auxiliary bulk temperature
number 1, represents the bulk temperature number for high velocities. It takes
into account the rolling or sliding conditions depending on the direction and the
value of the velocities of the bodies relative to the contact. Since 1, is substantially
smaller than 1, an expression similar to equation (3.29) will apply for ¥y,

_ e+t

4.22
1+t 4.22)

Un

Where
L= 1-4¢ ith ¢ = sign(U;U;) min . (4.23)
=2 —gi P '
T+g q gn\v1tz p P

_ B
- E »

Please note that the expression for the parameter t differs from the expression for
t as obtained for the partition problem. For a survey of the bulk temperature
numbers see table 4.1.

Although the total rate of heat flow due to a bulk temperature difference is
approximated well by equation (4.20), see section 4.2.3, the calculation of the cor-
responding temperature rise over the interface, 9, leads to complications. Actually
1, varies over the interface. As a consequence only the average temperature rise in
the contact, due to the bulk temperature difference can be predicted. From equa-
tions (4.13), (4.19) and (4.21) it follows that the average temperature rise over the
interface due to the bulk temperature difference ¥,, can be approximated by:

and

_ v -
Oy 8 ———— . 425
°T YA+ U (4.25)
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I ¥

1
- =10.25
W 1

5 B
¥ | 7-T%(3/4) = 0.358491 -

3
s — = 0.299206 - - -
v 44/ 27

Table 4.1: Survey of the bulk temperature numbers.

n is exact for two bodies at rest and for two bodies with high Péclet
d velocities in the same direction. For arbitrary Péclet number combi-
. ons this formula represents an accurate approximate rule, see section 4.2.3.
natio stated earlier, the contact temperature is the sum of the local temperature
. A.Se the temperature rise due to the small scale heat flow restriction, and
rise, Llllc temperature rise, i.e. the temperature rise due to the large scale heat
the bu triction. For the approximation of the maximum contact temperature a
flow res arises in case of two bodies moving in opposite directions; the location
problem o local temperature rise does not coincide with the location of the
of tl:{e mm bulk temperature rise. However, since the maximum local temperature
ma,xllilliy occurs at or near the center of the interface area, a fair approximation for
he maximumt jnterface temperature may be obtained by superimposing the flash
the e according to the equation (3.27) on the average bulk temperature over

:i[:?nterface according to the equation (4.25), i.e. ¥, + ¥y

The relatio
ﬂumb ers an

genef

= TR 1
Wy + 0 = D, + A :
VYR S e+ a6, (4.26)

to predict the actual maximum rise of the interface temperature for

ver, v
Ho;;esed velocities will invariably be somewhat more complicated.
op

4.2.3 Comparison with numerical results

Figure 43 shows numfarically calculated and function fit values for the bulk
erature difference which causes a rate of heat flow F,, = F. The figure shows
temp [k temperature difference for three distinct Péclet numbers of one body and
fhe bt ¢ Péclet numbers of the second body, i.e. Py =1, P, =10 and P, = 25

[0)
a 1ange _95 to 25.

and P2 varies from
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Figure 4.3: Dimensionless bulk temperature difference for ' = F,, and a circular
contact. Markers denote numerically calculated values. The lines represent the
curvefit function. © : P =1; + : P,=10; 0 : =25 A=1

As can be seen from this figure, the values obtained from the curvefit agree
very well with the results numerically obtained. The error is always less than 5%.

Figure 4.4 shows the average temperature rise over the contact due to a di-
mensionless bulk temperature difference of 1, (¥,, = 1) for the same cases. The
numerically calculated values are compared with the values, obtained from relation
(4.25). From this figure it is clear that the average temperature rise in the contact
due to the bulk temperature difference is well approximated by eyuation (4.25). In
fact, the error is always less than 5%.

4.3 Example

To illustrate the practical value of the results presented in this chapter, consider
the following example, the calculation of the rate of heat flow through the contact
of two bodies in rolling contact with different bulk temperatures. The quasi steady
state is considered, i.e. the bulk temperatures of the bodies are not affected by
the heat transfer. Furthermore, heat generation in the contact, e.g. due to elastic
hysteresis, is neglected.

Consider a steel ball with a diameter of 10.0 mm in rolling contact with a steel
plate. If a normal force of 100 N is applied, according to the Hertzian theory the
radius of the contact circle is 0.147 mm (a Young’s modulus of 213 GPa and a
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Figure 4.4: Average dimensionless contact temperature rise, due to a dimensionless
bulk temperature difference of 1. Markers denote numerically calculated values.
The lines represent the curvefit function. ¢ : P, =1; + : P, =10; O : P, = 25,
A=
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Figure 4.5: Rate of heat flow as function of the rolling speed, for a steel ball in
contact with a steel plate. The bulk temperature difference is 10 degrees Kelvin.

Poisson’s ratio of 0.3 are assumed).
Given the diffusivity, Kgeer = 13 107¢ m?/s, the Péclet number of the bodies
can now be expressed as a function of the rolling velocity, U:
al

Ksteel

P=5F=

Since the Péclet numbers are the same for this situation, 1, = ¥,. With A =1
and K| = K e, equation (4.20) can be rewritten as:

Ksteei\/a_b
29(P)

For ¥,, = 10, this relation is presented graphically in figure 4.5 (K sees = 45 W/mK).

B (P) = by

4.4 Conclusion

A formula has been derived (eq. 4.20) which enables accurate approximation of the
rate of heat flow due to a difference in bulk temperature of two bodies in contact
or vice versa. To apply this formula, the bulk temperature numbers of the two
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bodies in contact must be known. They can be calculated by applying equation
(4.21).

The proposed relation is a function fit, based on asymptotic solutions for low
and high Péclet numbers and numerical solutions. The asymptotic solution for high
Péclet numbers is again a function fit based on two asymptotic cases; two bodies
in contact moving in the same and in opposite directions, see equation (4.22). The
asymptotic bulk temperature numbers are listed in table 4.1.

Given the bulk temperature numbers of the two bodies in contact, the average
temperature rise can be approximated by using equation (4.25).

Finally the maximum contact temperature for two bodies in contact, which
have different bulk temperatures and where heat is generated in the interface, can
be approximated by using equation (4.26), which is the combined result of the
present and the previous chapter.
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Chapter 5

Thermal Networks

The frictional heat generated in e.g. brakes, bearings and seals, is transfered to
the environment through machine parts and contacts between machine parts. This
will lead to different temperature levels in the machine, depending on how well the
heat is conveyed by the machine parts. A complete analysis of the heat fluxes
and temperature levels in machines, i.e. solving the energy equation for the whole
machine, is often very complicated, e.g. due to complicated geometries of machine
parts.

However, since machines often contain a lot of standard components like shafts
of which the thermal response has been determined for all kinds of thermal inputs
and cooling conditions, these parts can be described as thermal resistances (sta-
tionary situation) or capacitances (non-stationary situation). By describing the
machine as a thermal network, i.e. a combination of thermal resistances, capaci-
tances and heat sources, the analysis can be simplified (see van Heijningen, 1986),
since solving the thermal network requires a much smaller numerical effort than,
e.g., the numerical simulation of the energy equation for the whole machine.

To describe a machine as a thermal network requires a characterization of the
thermal behaviour of each part, e.g. based on measurements or numerical analysis.
For example, the curve fit formulas derived in the preceding chapters, summarize
the results of such numerical simulations in such a way that concentrated con-
tacts can be incorporated in a thermal network as resistances. These formulas are
improvements upon work conducted by Blok (1969), Barber (1970) and Francis
(1971) who took the first steps in describing a concentrated tribological contact as
a thermal resistance.

5.1 Insulated Body

Modelling the environment of a tribological contact requires knowledge of the ge-
ometry of the bodies in contact and of the heat loss characteristics of the contacting
bodies. Determining the heat loss characteristics of bodies is a problem by itself
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and is not the aim of this work. However without detailed knowledge of the bod-
ies in contact, two extreme situations can be studied: perfectly cooled bodies and
perfectly insulated bodies. In chapter 3 the situation of two perfectly cooled bod-
ies has been studied. Now the situation of an insulated body in contact with a
perfectly cooled body will be addressed.

In the thermal steady state, the temperature of the insulated solid will have
risen to such extent that the net heat flux entering this body is zero. Since the
other body is perfectly cooled, its bulk temperature will remain equal to the en-
vironmental temperature. By using the curve fit formulas derived in chapters 3
and 4, the bulk temperature of the insulated body can be calculated as well as the
maximum and average contact temperature.

The rate of heat flow entering the insulated body (say body 2) is given by
equation (3.32).

q (3-32) Y

VSV
Now the zero net heat flux for the insulated body requires a bulk temperature
difference between body 2 and body 1, such that it induces exactly this heat flux,
but in the opposite direction, i.e. if F,, denotes the heat flux asociated with the
bulk temperature difference then F,, = Fy. According to equation (4.20) this is
accomplished by a bulk temperature, ¥,,, of body 2 of

&

Fy
= = — X
Py =V, I ,—ab(¢1+?i)2/ )

or
N A6y , & 51
vy = m(%-l-%/)\)[{lm (5.1)

_ APy + 1/)29 B

Aby + 0y IK;L\/ab
The maximum contact temperature can be calculated from equation (4.26) which
can be written as:

() B 1 F
Yo/ X+ " 1/60+ N6 Kiv/ab
Substitution of (5.1) for 9, gives

19;,+’l9f%

Uy A+ P 1 F
= f 5:2
Yottt (%/le N6 T 1/6 +A/62) K1V ab (5.2)
Aty + Oy it

Aby + 0, lKl\/EB‘
Comparing the expression for the bulk temperature (5.1) with the expression for
the maximum contact temperature (5.2) shows that the maximum contact tem-
perature is higher than the bulk temperature of the insulated body, since @, the
flash temperature number, is always larger than 1, the mass temperature number.
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5.2 Verification of Maximum Contact Temper-
ature

In chapter 4 it was shown that the temperature rise in the contact due to a bulk
temperature difference is generally non-uniform. It will be clear that by taking the
average bulk temperature rise and superimposing this to the maximum local tem-
perature rise, the maximum contact temperature can be found with the restriction
that the bulk temperature rise should be small compared to the local temperature
rise. However, if the bulk temperature rise is of the same order of magnitude as the
local temperature rise, as for a perfectly cooled body in contact with an insulated
body, the result for the maximum contact temperature as obtained in equation
(5.2), i.e. the superposition of the two temperature rises, is questionable. There-
fore, this result will be verified by examining the worst case, i.e. a perfectly cooled
body in contact with a perfectly insulated body, moving at high speeds in opposite
directions. This situation gives rise to the most un-uniform bulk temperature rise,
see figure 4.2; the difference between the maximum and the average bulk tempera-
ture rise is the largest for this situation, and the maximum bulk temperature rise in
the contact is of the same order of magnitude as the maximum local temperature
rise.

For two equal bodies moving at high speeds in opposite directions, inserting
th = 63, Y1 = 1 and

05 Ps
g~ d 9~ —
vep M V™ gp

see equations (3.28) and (4.21), in equation (5.1) yields:

oo b _F
" VeP K\Vab

T [DP = 1, (5.4)

Now that the bulk temperature difference has been determined, figure 4.2 can be
used to determine the distribution of the bulk temperature rise, ¥, at the line of
symmetry in the contact.

The local temperature rise, 9y, at the line of symmetry can be determined
by solving numerically equation (3.22) for @y, for both a uniform and a semi-
ellipsoidal heat supply. Subsequently @) can be substituted in equation (3.20),
which subsequently can be evaluated. This has been extensively described by Bos
and Moes, (1995).

Figures 5.1 and 5.2 show the bulk, the local, as well as the actual temperature
rise, for a uniform and a semi-ellipsoidal heat source, respectively. From these
figures it is clear that the maximum actual temperature rise is only slightly higher

(5.3)

or in dimensionless form:
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Figure 5.1: Centerline solution for local, bulk and actual contact temperature rise,

uniform heat supply (A = 1).

than the sum of the maximum local temperature rise and the average bulk tem-
perature rise, i.e the actual temperature rise at T = 0. For a uniform heat supply
the difference is 3%, whilst for a semi-ellipsoidal heat supply the difference is even
smaller, i.e. 1%. So, even for this extreme case, the formulas for the maximum
contact temperature rise are quite accurate.

5.3 Analogy Heat versus Electricity

So far only one contact has been considered and application of the curve-fit func-
tions was relatively easy. For more complex situations the implicitly stated analogy
with electrical circuits can be exploited. The rate of heat flow, F, is the equivalent
of the electrical current, the temperature is the equivalent of the potential, and the
bodies are represented as resistances.

The electrical scheme for the division of heat generated in a contact is shown
in figure 5.3. The electrical scheme for two bodies in contact with different bulk
temperatures is shown in figure 5.4. Although both problems can be described
well by electrical schemes, the two problems cannot be combined into one electri-
cal scheme. The calculation of the heat flows and the temperatures proceeds in
two steps. First for each contact, the heat flows entering the bodies in contact
are calculated according to the scheme in figure 5.3. Once these heat flows are
calculated they can be added to the scheme for the bulk temperature differences,
shown in figure 5.4.
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Figure 5.2: Centerline solution for local, bulk and actual contact temperature rise,
semi-ellipsoidal heat supply (A = 1).

5.4 Example: The Four Ball Tester

As an example the contact temperatures in a four ball tester, see figure 5.5, will
be estimated. This apparatus is often used in Tribology to qualify lubricants in a
qualitive manner. Todays lubricants often contain additives; chemical components
whose activity strongly depends on the temperature. So, to get a more than qual-
itative insight in the characteristics of the lubricant, it is necessary to know the
contact temperature. Hsu and Klaus, (1977) determined the contact temperature
by analysing the wear debris. They used chemical reaction rate data to correlate
dynamic wear tests (the four ball tester) and static, externally controlled temper-
ature runs. The temperature, measured this way was 351 °C, much higher than

B
S K1vab

= _Oy |
Kavab
Fy

Figure 5.3: Electric scheme for the partition of the heat generated in the contact.
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Figure 5.4: Electrical scheme for bulk temperature differences.

the Blok-Archard flash temperature relations predict (132 °C).

The Blok-Archard relations predict the local temperature rise, i.e. they as-
sume the bodies in contact to be perfectly cooled. Naturally this leeds to lower
temperatures compared to the situation where finite heat transfer coefficients are
considered, as in a four ball tester. By taking into account the relation between the
balls and the environment, one can expect to find higher and thus more realistic
contact temperatures. Below a thermal network representing the four ball tester
is introduced. Subsequently for the conditions for which Hsu and Klaus measured,
the contact temperature is calculated to find out whether the difference between
measured and predicted contact temperature can indeed be ascribed to the finite
size of the bodies in contact.

5.4.1 Conditions of the experiment by Hsu and Klaus

Hsu and Klaus deduced a contact temperature of 351 °C, in a four ball tester
running at 600 rpm, under a load of 400 N. The oil temperature was kept at 75
°C. The diameter of the measured wear scar varied during the first 100 minutes
from 0.3 mm to 0.9 mm, whereas in the second 100 minutes it varied from 0.9 mm
to 0.995 mm. Furthermore they report a calculated contact temperature of 132 °C
obtained from the Blok-Archard relations for this situation. Unfortunately, Hsu
and Klaus did not report the coefficient of friction during the experiments, so the
coefficient of friction has to be guessed. However, since they report substantial
wear (the width of the wear scar much exceeded the width of the Hertzian contact
circle; 0.3 mm) indicating incipient scuffing, a value of 0.3 seems reasonable; see
Begelinger et. al., (1976). Figure 5.5 shows a schematic drawing of the four ball
tester. The ball at the top of the tetrahedron is rotating whilst the others are
locked.

P is the load applied, i.e. 400 N. From the geometry of the equilateral tetrahe-
dron it follows that P, = P/+/6 = 163N, P, = P/3 = 133N and P; =~ P;sin35° =
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Figure 5.5: Schematic drawing four ball tester

94N. Because the contacts between the top ball and the 3 underlying balls are
identical, we can restrict ourselves to the analysis of one of these contacts and the
contact between one of these balls with the environment. The dimensions of the
contacts can be calculated using Hertzian theory; the size of contact 1, however,
is given by the diameter of the wear scar. It is taken as the average of the second
run, ie. a diameter of 0.948 mm. The diameters of contacts 2 and 3 have been
calculated as 0.352 mm and 0.314 mm respectively.

5.4.2 Local temperature rise

The reported value of 132 °C given hy Hsu and Klaus for the calculated contact
temperature, can be used to verify the assumption of 0.3 for the coefficient of
friction. Since the Blok-Archard relations describe the local temperature rise,
using the curve-fit functions from chapter 3 should result in about the same contact
temperature.

First the rate of heat flow, F, generated in the contact is calculated. For the
four ball tester a rpm of 600 corresponds to a linear velocity of 0.23 m/s. So the
rate of heat generated in contact 1 is

F=uPU=03-163-023=11.25 W
The Péclet numbers for contacts 2 and 3 are zero as well as the Péclet number of
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the stationary ball in contact 1. The Péclet number of rotating ball is

P 0.5+ Deontact, U _ 0.5-0.948-107%-2.29 _s4
Ksteel 13- 10_6
Figure 5.3 can be used to calculate the maximum contact temperature and the
heat fluxes going into the stationary and rotating ball. If the stationary ball is
denoted by 1 and the rotating one by 2 then
92 __
F = ——pleeoh P —363W
— a4 2
Kyeavarby — KotearVairby

KR = F-FK=762W

For the values of the flash temperature numbers 6, see equation (3.28) (a semi
ellipsoidal heat supply has been assumed). The maximum local temperature rise
follows from:
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Adding this local temperature rise to the oil temperature leads to a contact tem-
perature of 139 °C, which is very close to the 132 °C’ calculated by Hsu and Klaus
for the same situation. So it can be concluded that the assumption 0.3 for the
coefficient of friction is valid.

9 =

5.4.3 Network for the four ball tester

Taking the local temperature rise as the contact temperature, assumes the
bodies to be perfectly cooled. Another extreme case is taking the bodies to be
perfectly insulated, i.e. the heat flow generated in the contact between the rotating
ball and the stationary ball is transfered to the environment through the contacts
only. Figure 5.6 shows how the thermal resistances are connected. This figure can
be used to calculate the bulk temperatures of body 1, ¥m1, and 2, ¥m 2, and the
bulk temperature rise of contact 1, ¢ ;. The values of the resistances are given by:

R = ﬁ — 48°C/W

B = K—t% — 117 °C/W

By = By Eﬁ 316 °C/W
Ry = Re= ﬁ — 354 °C/W

R; and R, form the contact resistance of contact 1 for the heat flow due to bulk
temperature differences, R3 and R, that of contact 2 and R5 and R that of contact
3. ¥, and ¥ are the bulk temperatures for body 1 and 2 respectively.
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Chapter 6
Thermal EHL Theory

In this chapter a mathematical model describing the thermal EHL line contact
situation will be discussed. The running surfaces are assumed to be separated by a
lubricant film and to deform elastically. The fluid low depends on, amongst other
factors, the geometry of the contact, the running conditions, i.e. the load applied
and the velocities of the surfaces, and the material properties of the fluid. By
comparing measured film thicknesses with calculated film thicknesses, Venner and
Lubrecht, (1994) showed that accurate film thickness predictions can be made un-
der the assumption of isothermal and Newtonian fluid behaviour. The differences
between measured and calculated mimimum film thicknesses they found were less
than 10% for the cases considered (a maximum Hertzian pressure of 0.54 GPa).
Under these assumptions, however, the prediction of the energy loss due to fric-
tion, i.e. viscous dissipation is highly unrealistic and is orders of magnitude too
high compared with experimental results. More realistic models for the fluid and
including thermal effects lead to lower predictions of the energy dissipation. A
model capable of describing the thermal non-Newtonian EHL problem consists of
five equations:

1. The film thickness equation for the computation of the elastic deformation
of the surfaces caused by the pressure in the fluid.

2. A constitutive equation that relates the shear rate to the shear stress and
the viscosity of the fluid.

3. The energy equation which relates the temperature rise in the fluid to the
viscous dissipation in the fluid.

4. A generalized Reynolds equation which relates the pressure in the fluid to
the geometry of the contact and the velocities of the running surfaces and

5. the force balance equation requiring equilibrium of forces.
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The pressure in the lubricant is high, to such a degree that the change in material
properties of the lubricant like viscosity and density cannot be neglected and must
be taken into account. The viscosity and the density also depend on the temper-
ature, even far more than on the pressure. A temperature increase of a mere 10°,
reduces the viscosity of a standard oil by about a factor two. So the variation of
the lubricant properties with temperature must be accounted for as well.
Empirical relations describing the variation of the viscosity and the density
with pressure and temperature exist. However, for the extreme conditions under
which EHL contacts operate, the accuracy of these relations is still questionable.

6.1 Film thickness equation

If the contact is small compared to the radii of curvature of the undeformed surfaces
of the contacting solids, these surfaces can be approximated by parabolas and
the solids can be considered as semi-infinite elastic bodies. Furthermore, if the
materials are isotropic and the elastic deformations are small enough for the linear
elasticity theory to apply, then the gap between the two solids can be described
by:

.2'[2'2 4 20, ' ' ’
Bl) = B & — Efmln\x-z Ip(z')dz (6.1)

2R
where:
R = reduced radius of curvature: R~ = Ry + R,
FE' = reduced elastic modulus: EZr = “—;ﬂ + (L}’ﬂ
¢ 2
F = Elastic (Young’s) modulus
v = Poisson’s ratio

hgp = a constant

For a more detailed discussion on this subject see Johnson (1985) and Timoshenko
(1982).

6.2 Rheology

Over the years a lot of attention has been paid to the lubricant behaviour under
EHL conditions, see for instance Johnson and Tevaarwerk (1977) and Bair and
Winer (1979, 1979, 1990, 1992). Most constitutive relations derived from these
studies can be written in the following form:
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i =22+ TR (r/m) 62)

where 7, is a representative stress and & is the shear modulus.

In this ‘non-linear Maxwell’ model %{E denotes the contribution to the shear

rate of the linear elastic element and % F(r/7,) the contribution of a (possibly)
non-linear viscous element.

6.3 Energy Equation

A prediction of the temperature rise in the EHL contacts between machine elements
is an important contribution to the engineering design process. Apart from this,
the temperature rise has a significant influence on the material properties of the
lubricant and thus on the performance of the contact.

The full energy equation expressing the law of conservation of energy is (Hughes
and Gaylord, 1964)

De D {1 g
p[E+pﬁ(;)]=52+¢’+Z-(kZT)—_V_-gT (6.3)

where

e ¢ = specific internal energy per unit mass

e & = viscous dissipation function

e g = the radiation heat flux vector

e ¢ = internal heat generation

e T = temperature

e i = time

e p = lubricant density

® p = pressure

k = thermal conductivity

The specific internal energy can be expressed in terms of known quantities and
lubricant properties. According to the first law of thermodynamics

de=T dS —p dv (6.4)
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where is S is the entropy and v is the specific volume, the entropy may be regarded
as a function of the temperature, T, and the pressure, p. So

as as
ds = (ﬁ)p dT + (3_p)T dp (6.5)
One of Maxwell’s identities states
(&).--(%) 6
) r ar ’
Therefore - .
de:T(ﬁ-)p dT_T(ﬁ)p dp—pdv (6.7)

By using the definitions for the specific heat at constant pressure, c,, and the
thermal expansion coefficient, «:

a8 10v
_ Etstd — =2 6.8
CPT(@T)’ : ('UBT) (6.5)
P P
this equation can be written as
1 1
de=c,dl —eTvdp—pdv=c, dT—cT = dp—1pd p (6.9)
Thus,
Dt PDi\p)| T "Dt T D

Replacing the lefthand side of equation (6.3) with the righthand side of the previous
equation gives:

P [JDe+ D (1)] DT T@ (6.10)

D Dp 0dq
W o Y. kNT) -V 6.11)
Or
)
i [gJﬂ,zT] :%+¢+Z.(kZT)—_VW.gT+ET [;Z-l-!-zp] (6.12)

6.3.1 Relevant Terms of the Energy Equation in Case of

Elasto Hydrodynamic Lubricated Contacts

The general energy equation can be significantly reduced when applied to a lubri-
cant film:
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¢ Except for viscous heating, no heat is generated in the lubricant (No chemical

’ : - : d
reactions or radio activity). This cancels the a—{j—term.

® Within the lubricant radiation can be neglected. Therefore q =0

e For steady state situations all the time derivatives are equal to zero, this being
the case when the surfaces of the bodies are considered perfectly smooth.

w
QV
u

LAy Y v/

SN S

w(z,y,2) ~ 0 (thin film)

v(z,y,2) = 0 (line contact only)

Figure 6.1: Diagrammatic representation of the lubricant film geometry

Due to the specific geometry and flow aspects of the lubricant film, further simpli-
fications can be applied (see Figure 6.1). Since for EHL-contacts the surfaces are
almost parallel, the velocity across the film, w, is generally neglected. In concen-
trated contacts the oil film is very thin, i.e. of the order of 103 compared to the
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contact width, so:

a ary\ @ or o] oT
= e (e . — | B == 6.13
z (Ic Bm)’ﬁy (k 3y)<< 3z( az) (6:13)

Applying these simplifications to equation (6.12) results in equation (6.14):

oT ar 3] aT ap ap
T T _ 5 0T P 5 6.14
P [" Be P 6y]¢+8z(k 8z)+ET[u8:c+vE)y e

For line contacts this equation can be reduced even further, since v = 0 and all the
derivatives in the y direction ar equal to zero:

d ar a
pcpug: 0] +8—(k a—)‘i' ET'UFa_i (6'15)
‘,ﬁ/ source - * B
convection conidiction compressive heating/cooling

6.3.2 Boundary Conditions

The heat generated in the fluid is mostly transferred to the contacting solids.
Depending on the size of the contact and the surface velocities, part of the heat
will flow into solid 1 and another part into solid 2. Under the assumption of
infinite or semi infinite bodies it is possible to obtain an analytical expression for
the surface temperatures of the solids, analoguous to the one derived in chapter 2,
without solving the energy equation for both the solids as well as for the fluid.

In case of the line contact problem, the solution for the moving line source
should be applied; see Carslaw an Jaeger (1959). Heat is emitted at some rate ¢
per unit time per unit length along the y-axis (see figure 6.1). The distribution of
the surface temperature rise of a semi infinite body moving past a heated wire at
z is given by

! U I
T(z) = W‘;s etz >K0[ﬂ\x — ] (6.16)

where Ko(z) is the modified Bessel function of the second kind, k, is the thermal
conductivity of the body, U is the velocity relative to the heat source and « is the
diffusivity.

The heat, g, flowing into the bodies is generated in the lubricant film. Since
the velocities across the film are neglected, the only means of heat transfer from
the fluid to the bodies is by conduction. Therefore:

dT

= T 6.17
ql kf dZ |2’70 ( )
drl’
— ki—/| .=
q2 fdzi h
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With these heat sources the temperature distribution at the surfaces of the bodies
can be written as:

1

ks,

1 “+oo dT ' L2 ' ’
Ty(z) = To+ m/_w kfa(f )2z eV2(E=2 W“Kg[Ug/?.K;glx -z ||ldz

+oo dl’ ;. e 4 !
Ti(z) = To— f_ kfa(fﬁ M=o €125 KUy f26: |2 — [

When the contact is fully flooded, the temperature far away from the inlet can be
considered equal to the ambient temperature:

To=—oo)y="T, (6.18)

6.4 Generalized Reynolds equation

Reynolds (1886), derived the equation that relates the pressure in the lubricant
film to the geometry of the gap and the velocities of the running surfaces under
the following assumptions:

1. the body forces are negligible

2. the pressure is constant across the film

3. no slip occurs at the boundaries

4. the lubricant flow is laminar

5. inertia and surface tension forces are negligible compared to viscous forces

6. shear stress and velocity gradient are only significant across the lubricant
film

7. the lubricant behaves like a Newtonian fluid
8. the lubricant viscosity is constant across the film

9. the surfaces bounding the lubricant flow are parallel or at small angle with
respect to each other.

For EHL-problems assumptions 7 and 8 do not apply, especially when determin-
ing friction in an EHL-contact. Usually the lubricants are poor heat conductors.
Therefore, when slip is important the temperature will vary across the film due
to the viscous heating in the film. Since for most lubricants the viscosity strongly
depends on the temperature, the viscosity will also vary across the film. Further,
non-Newtonian properties of the lubricant should be included. Yang and Wen
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(1990), derived a generalized Reynolds equation which can incorporate rheological
laws of the form of equation (6.2) as well as thermal eﬁects. o -
To take into account the rheological laws, the velocity gradient is expressed as:

B _ ttrm) (6.19)
By considering the equilibrium of a small material volume of the fluid, it follows

that: ap B ar

2= (6.20)
dr 0z
Defining a function called the “equivalent viscosity” as:
e T (6.21)
KTe
an expression for 7 follows by eliminating f(r,7) from (6.19) and (6.21):
~du (6.22)
"= %,

By applying this relation, Yang and Wen (1990) a generalize(.fl Reynolds equa-
tion can be derived in which almost all rheological laws can be incorporated and
in which variations in the viscosity over the film, e.g. due to thermal effects, can
be taken into account. For smooth surfaces this equation can be written as:

o 112) et O (o ? 6.23
Z|(2) B = 12=(p"ush) + 12—(0.h) (6.23)
oz Kn)eh bz 0 H 12
where
uy = (U1+U0)/2 (6.24)
u = (Ui —Us)/2 (6.25)
(%) = 12(nep./n. — p.) (6.26)
P = [—pne2u + pelus +u))/us (627)
1 rh =z
e = 3 —d (6.28)
” 1 g p=2de
p. = ﬁ/o pfo - dz (6.29)
— (6.30)
Pe = E/; pdz
L (6.31)
Tle 0 ?7*
LA if" zdz (6.32)
Me htJo o
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and

P = 0 at the inlet and outlet boundary
p = 0 in the contact (6.33)

This last boundary condition is necessary since a fluid will cavitate when subjected
to negative pressures. The lowest possible pressure in a fluid is its Vapor pressure.
However, since this pressure is very small compared to the pressures in the contact,
1t is neglected, i.e. set to zero. So, in the outlet zone of the contact, the fluid is
described by the cavitation condition, p = 0. Tn this work transient effects, for
instance due to surface roughness, will not be taken into account, therefore the last
term of this equation is discarded. Further, u, the average velocity, is assumed to
be constant.

6.4.1 The Viscosity-Pressure-Temperature Relation

In this work two different viscosity-pressure-temperature relations have been used,
the Barus relation and the Roelands equation. The Barus relation, Barus (1893)

3

n(p,T)=mn e*P ~ (T - Ty) (6.34)
with:
7o = the viscosity at ambient pressure
a = the pressure viscosity coefficient
7 = the temperature viscosity coefficient
Ty = the ambient temperature

is used in many other EHL calculations, but is only accurate for pressures up

to 0.1 GPa. A more accurate relation was proposed by Roelands (1966). In S.1.
units this relation can be given as:

{[luna +9.67] [—1 + 1+ ) (?-;11;5) SJ}

n(p,T)=1mn e Po (6.35)
where:
z = the pressure viscosity index
So = the temperature viscosity index
Po = a coustant : py = 1.96 108
If & and v are defined as
1d 1d
- , e 2o (6.36)
Y dp p=0,T=Ty n T p=0,T=Tp
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the following relations are found between the Barus’ and the Roelands parameters,
see for instance Houpert (1985).

i = - (6.37)
5.1 10-°(In o + 9.67)
(T — 138) 6.38)
S0 In o + 9.67 (

6.4.2 The Density-Pressure-Temperature Relation

The isothermal Dowson (1966) density-pressure relation has been used in this work.
For the temperature variation, it is assumed that within the range of temperatures
considered, a linear model applies. Therefore, the complete density relation can be

expressed as

1+Bp

where A = 0.6 107 m?/N , B = 1.7 1072 m?/N and ¢ is the thermal expansion
coefficient.

0. T) = 0 (14 157 )0-er -2 (6.39)

6.5 Force Balance Equation

If the surfaces of the two bodies are fully separated by a lubricant film, the entire
load w is carried by this film. To assure equilibrium of forces, the integral over the
pressure in the film must equal the applied load, so:

w = /m p(z)dz (6.40)

—0o0
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Chapter 7

Thermal Elastohydrodynamic
Lubrication

In this chapter a multilevel algorithm will be described for the thermal EHL-
problem. First the model equations, given in the previous chapter, will be made
dimensionless using the “Optimum Similarity Analysis” (Moes, 1985) in order to
minimize the number of independent parameters. Subsequently the resulting equa-
tions will be normalized to reduce numerical truncation errors, and finally, the
equations will be discretized.

From a numerical point of view, the thermal Newtonian EHL-problem con-
tains two extensions compared to the isothermal Newtonian EHL-problem, i.e. the
coeflicients in the Reynolds equation are functions of the coordinate across the
lubricant film and an additional equation, the energy equation, must be solved.
The multilevel approach, outlined by Venner (1991), for the isothermal Newtonian
EHL-problem is extended in order to incorporate the two mentioned extensions.
These extensions will be implemented one by one. In section 7.5 the incorpora-
tion in a multilevel solver of non-closed-form coefficients in Reynolds’ equation will
be described. Then, in sections 7.6.1 and 7.6.2 the incorporation of the energy
equation, with its own numerical difficulties, is addressed. F inally the algorithm
is tested for a simplified energy equation and some results will be shown and dis-
cussed.

7.1 Normalized Dimensionless Equations

In order to decrease the number of variables and parameters the so-called “Opti-
mum Similarity Analysis” has been applied. With this method, which is described
by Moes, 1985 a minimum of dimensionless numbers and variables can be deter-
mined.
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Substitution of these normalized variables in the equations for the auxiliary vari-
ables results in:

(%) = 12(.0./7. — p.) (7.18)
p: = [0.n.25+p,(1+5)] (7.19)
p, = ﬁ ZdZ’dZ (7.20)
o = f fZ%dZ (7.21)
p. = % /0 5dzZ (7.22)
nlg - %DH‘;_? (7.23)
ni; o %/OH Z;Z (7.24)
Fo- 1P (7.25)

h

7.2.1 Normalized dimensionless equations

Substitution of the normalized variables in the governing equations results in a
number of normalized dimensionless equations, in which:

i = Ripn  _ (ﬁ)z

b T
v = Mo_ (@ga

T P
b kR
Ki, =Kpe— = -1
/s & ks b
Pe = Pech = el
2K

The symbol Pe has been used for the Péclet number instead of the symbol P used
in chapters 1-5, because P would be confusing since it is used for the pressure as
well. The equations are:
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Velocity gradient

ou r
& QR (7.26)
Equilibrium equation
arP  ar
X — 37 (7.27)
Equivalent viscosity
7= (7.28)
F(r,7) '
Shear stress equation
i (7.29)
Q az '
Reynolds equation
0 P aP
g [£] 3= o _
X [(”’?)eH 8X] 12 (p H) (7.30)
Film thickness equation:
X2 1 +OO '] I I
H(X) = Hu+ 5 - = / In|X — X'|P(X')dX (7.31)

The energy equation:
By assuming that lubricant properties such as thermal conductivity, specific heat,
and thermal expansivity do not vary with temperature and pressure, the energy
equation can be written in dimensionless form as
a (88 0e P Q ou
— = | =pCa¥— — QOFlI— — =T — 7.32
az(az) PO — I~ 7 B V)

The normalized dimensionless boundary conditions for the energy equation are:

Z =il 3
01(X) = 1_‘?8 f; gexp{(l-l-S)Pe(XfX')}Ko [+ $)Pe|x — Xx'|] ax’
& =H =
K3, +o 00 . 1
S(X) = 1+ Lm =7 exp {(1 = S)Pe(X = X}, [(1- S)PelX - X' ax

X=-00 : ©6=1

Viscosity-pressure-temperature:

Barus: )
Tal P, ] = B Bh e SiHE= (7.33)
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Roelands:
N apo P ( To — 138 )50 .
_ " ) (2o 34
A(P,©) exp{ . ( 1+(1+ N ) 7.6~ 138 (7.34)

Density-pressure-temperature relationship:

AﬁhP =
] =104+ ————— | [10—- ETH(©® -1 7.35
#P,0) = (10+ B ) 0 BTio - )] (7.35)
The force balance equation:
T +oo i r;
— = it
- [m}%XMX (7.36)

7.3 Non Orthogonal Coordinate Transformation

In order to take inlet shear heating into account, the energy equation should be
solved on a domain that extends beyond the contact area. This means that the
energy equation is to be solved on a slightly non-rectangular domain. Since non-
rectangular domains are inconvenient from a numerical point of view, this domain
will be mapped onto a rectangular domain using a non orthogonal coordinate trans-
formation. For smooth surfaces, this transformation and its consequences for the
energy equation will be explained in detail in this section. For the problem at
hand: solving the energy for an EHL-contact, a mapping from the non rectan-
gular domain to a rectangular domain is established by the following coordinate

transformation:
Z

=— =X 7.37
Figures 7.1 and 7.2 show the X, Z- and the (,¢ coordinate lines in the physical
domain. Since lines of constant ¢ coincide with the Z-coordinate lines ecisez. To
determine e it is noted that this vector is perpendicular to the unit vector n that
is normal to a line of constant ¢. n is given by:

V({ ey —fleg
e 8 WK RS 7.38
"=NOT Ve 3
where -
e, = 2
ﬁﬁcaf, a=1+4 (7.39)
and therefore
e = ei% (7.40)
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x-z coordinate sytem

X

Figure 7.1: coordinate lines in the z, z coordinate sytem

The formal coordinate transformation is completed by relating the derivatives with
respect to the X- and Z-coordinate in the cartesian system, to the derivative with
respect to the ¢- and &-coordinate:

(32), - #()

%, 4@ @, oo

One of the assumptions made when deriving the Reynolds equation was: the lu-
bricant boundary surfaces are parallel or at small angle with respect to each other,

ie. % < 1. So
0 7]
(o), = (3).

7.3.1 Transformed equations

Velocity gradient

o1 R
= HQ F(T,7) (7.42)
Equilibirium equation 5
P ar
e e 7.4
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Transformed coordinate sytem

/
.
N

/
\

£

Figure 7.2: coordinate lines of the transformed coordinate system

Equivalent viscosity

Shear stress equation

Reynolds equation
d p) 38P} o
Q—|=| H 12—(p™H
% Kn g = g H)

) = 12(n.0./M, - p.)

where

[P.1.25 + p,(1+ 5)]

= [ A“K
b= o[
pe = [ pic
1 Ld¢
= hy
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‘bl-
|

Il

(7.44)

(7.45)

(7.46)

(7.47)
(7.48)
(7.49)
(7.50)
(7.51)

(7.52)

1 rgdg
Lo /0 (7.53)

e n*
(7.54)
Film thickness equation:
£ 1 e R
H(E) = Ho+2 -~ [ lnje-€|P(€)de (7.55)
T J—oo
The energy equation:
9 (00 00 opP HQ ou
= | == | = #Cou¥ H— — H*QOFi— — — 7.56
% (52) = g & T o (7
The normalized dimensionless boundary conditions for the energy equation are:
c=0
K:t +m 1 a@ i
— fs
&) = 1-== [ gae {1+ 5)Pe(e ~ &)} Ko [(1 + S)Pelé - €'
¢ =1 :
K* 1 a@ ! U
&) = 1+=2 [ e o {(L - S)Pe(e — )} Ko [(1 - S)Pele — €' de

f=—-0 : ©6=1

The force balance equation:
+oo ’ '
= [P (7.57)
—00

7.3.2 Calculation of the equivalent viscosity

The generalized Reynolds equation is written in terms of the equivalent viscosity.
Before this equation can be solved, the equivalent viscosity must be calculated.
This is accomplished as follows: integrating the equilibrium equation (7.43) results
in
dP
T=T+H(— 7.58
+HC o (7.58)
where 7 is the shear stress on surface 1. Substituting (7.58) in (7.42) and integra-
tion over the film yields

[ rm+ac 2 o i = -2 (7.59)
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Ti is found by solving this equation for 73. For a Newtonian fluid this results in:

1+ HC 2R
f S el _C % j¢ = _;_‘; (7.60)
0 7
o 2S F, 9P
I
- e 7.61
n=T0H B H (T8
with i ! de
1 1 1
e | M s T BES 7.62
F f[) 7] ! 2 fO 7 ( )

The equivalent viscosity can subsequently be calculated by applying equation 7.44.

7.4 Discretization

The governing equations are discretized on a uniform grid with mesh size h¢ in the
£-direction and h¢ in the (-direction, covering the calculational domain

{€0eR<e<gro<c <t}

Velocity gradient

a1
2| = HOF.(n;,%;) (7.63)
a¢ i
Equivalent viscosity
=g Tij
7 F(ﬁ,jan‘i,j) ( )

Reynolds Equation
B (emaPiy — (e L+ €6 y) P+ 1 Pn) — bt (1 H; — piy Hiy) =0 (7.65)

where ¢, 4 and e, il denote the value of Q (%) H?3 at the intermediate locations

E=¢&+ (e —Hheand € =&, + (i + 1)he respectively. They are calculated from
values of ¢ in the sites i and ¢ — 1 or ¢ and 1+ 1. For example:

&€

€; is defined as:

The coefficients (%) ~and pj are defined as:

P i .
(ﬁ) = 12(0.p.. /M., — P..) (7.66)
Pi = [Pun,25+p,(1+5)] (7.67)
(7.68)
where
. e N f‘l( 1 1 ) J 1
pﬂi = _Z '5"_ =k +—* +p’x _( (—* )
2 = ( T2\ W i Z:: e Mk
. B f . hp (khc (k—ﬁ-l)hc) d (kh (k+ 1)k
SR> (55T EANC IS YIS
2 =1 72 Z:: Tk nm,k+1 B g Tk T 1
h ne—1
Pe, = EC Z (Pij + Pijs1)
J=0
1 ﬁ"‘1(1+ L )
ne,- 2 7=0 77” ﬁ:,j+1
1 CE (i, G
?721‘ 2 3=0 77” ﬁ;,jﬁ»l

Film thickness equation

2

Hy=Hyp+3 ~~ Z Pt p, (7.69)
where

K™ = =+ Dheln (i~ 5+ 11 1)
— (== hen i~ s~ 1h) 1)

Energy equation

0,,1—20;,;+6,; ii — Dig1i
J—1 h2x] J+1 o ,OzJC(]ﬂHII" (ZEH?@’] he $1J)
¢ £
— HX0. .Ea.M_@ _ 0u
o he To ™ &,
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The signs in the convection term depend on the sign of the velocity, u;;, and is
chosen such that the discretization is upstream. The equations for the boundary

conditions are discretized as:

K, .25 ke Or0 — Ok
= : = — ﬁ G]_hE BT Ee
( = 0 4 @1.‘ 1 P kgo ik Hkh(
) Otine — Dkymp—1
= 3 N P Gohehe Tk~ ~Em—l
C =] 2 92‘- 1 = ‘g ik Hkhc

where

Giighe = ff 5“%;: @ {1+ 8)Pe(e — €)} Ko [(1+ 5)Pefe — €] de

r—he

GQhEhg _ ]:H-he/z exp {(1 — S)Pe(€ — fl)}Ko [(1 — S)Pe|¢ — 5"] 3

ik o
The force balance equation
h{ ne ™
= P4+ P.,)=— (7.70),
5 1; (Fit+ Pir) = 5

This global constraint determines the value of the constant Hyy in equation 7.69.
Equations for the calculation of the equivalent viscosity

Bopy—Pi
Tij = Ti; + H; jhcﬂT}“ (v.11)
4
_ B8R Bn-Bag bk (7.72)
1 = Q H, hf 1F2.‘
with
h ne—1 1 ik
i = ik Z (—+ — )
F, 23 \ Mg Thig+
ne—1 ih i+ 1)A
1l _ s (J—<+u)
B, 2 3\ Mig+1

7.5 Numerical Approach

In recent years it has been amply demonstrated that multigrid techniques yield fast
and efficient solvers for EHL problems. Following the introduction by Lubrecht
(1986, 19877, 1987%) they have found increasing application in EHL, e.g. Osborn
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and Sadeghi (1992), Kim and Sadeghi (1991), and Huang, et al. (1992). A detailed
explanation of these techniques and their application to the EHL line and point
contact problem can be found in Venner (1991) and Lubrecht (1987%) and references
therein. In this section attention is focussed on the questions to be answered when
equations are added to the model as described by Venner (1991), i.e. for the
isothermal Newtonian EHL problem.

The corner-stone of an efficient multilevel solver for any integro-partial differ-
ential equation is a relaxation process that effectively smooths the error. In the
case of a system of equations this firstly applies to each individual equation and
the variable assigned to it. At this stage matters such as anisotropy in the equa-
tions (strong coupling in one of the directions) have to be recognized and dealt
with. Secondly, for a system of equations it should be investigated how, relaxing
one equation for its variable, affects the residuals of the other equations. This gen-
erally depends on the strength of the coupling between the equations, A formal
tool to investigate this coupling is an analysis of the determinant of the system of
equations, see Brandt (1984).

To illustrate this point of coupling: when developing a relaxation process for
Reynolds’ equation and the film thickness equation, it is convenient to have the
relaxation deal with each equation consecutively, e.g. first compute the entire
elastic deformation and film thickness and subsequently scan the grid to improve
the pressure everywhere using (the discretized) Reynolds equation. For such a
relaxation (when repeated) to converge and smooth well it is essential that the
changes applied to the pressure are such that their cumulative effect on the elastic
deformation integrals, remains small. At low loads this is automatically the case
and most standard relaxation processes will converge. However with increasing
load the coupling between Reynolds’ equation and the film thickness equation (via
the elastic deformation integrals) becomes stronger and distributive relaxation is
needed. These matters are extensively explained by Venner (1991).

The questions raised above need to be readdressed when adding equations to
the system. Assuming there exists a stable relaxation for the energy equation (see
section 7.6) the coefficients in Reynolds’ equation can be evaluated using equations
(7.66 ) and (7.67), i.e. no relaxations are needed to compute the coefficients.

The next question is that of the coupling. Compared to the isothermal problem,
Reynolds’ equation is changed in two places; through the coeffient in the pressure
flow term and through the coefficient in the wedge term. However, the pressure
flow term is, in the region where the coefficient will significantly deviate from the
coefficient in the isothermal case, not the dominant term in the equation. Conse-
quently, its changes due to relaxing the energy equation will not cause significant
changes of the residual(s) of Reynolds’ equation. Secondly changes appear in the
so-called wedge term:
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Here changes in the coefficient are more important, as this is the dominating term
in the above mentioned region. However, of the two variables appearing in it, the
‘generalized’ density is the less important one (from a relaxation point of view).
Because of the global character of the elastic deformation integrals, the cumulative
effect of pressure changes on the film thickness will be much larger than the changes
in the generalized density.

Summarizing, it can be concluded that, changes induced when relaxing the en-
ergy equation can be expected to affect the residuals of Reynolds’ equation only
in a moderate way. Hence, apart from appropriate linearization when relaxing
Reynolds’ equation, no special measures are needed and a straigthforward exten-
sion of the relaxation scheme as outlined by Venner (1991) can be expected to
work. The resulting consecutive scheme is schematically drawn in figure 7.3%.

Next the incorporation of the relaxation of the energy equation and the calcu-
lation of the coeffients in a multilevel solver is addressed. From a formal point of
view equations are added to the system. In multilevel solvers for non-linear prob-
lems it is essential that all equations are treated according to the so-called FAS
rules, see Brandt (1984). Hence, in addition to the pressure and film thickness,
the coefficients in Reynolds equation and the temperature must be fully treated as
a variable, e.g. transfer of residuals to the coarse grid and when returning to the
fine grid it is corrected using the coarse grid result. These measures are essential
for the convergence of the coarse grid correction cycle, see Venner (1991).

Before shifting attention to results obtained with the algorithm described above
two final comments are appropriate. One might suggest that simply replacing every
call for the coefficients in the original algorithm by a number of iterations of the
energy equation followed by an update of the coefficients in Reynolds’ equation can
also do the job, i.e. calculate the temperature distribution belonging to the current
pressure and film thickness and calculate the coefficients in Reynolds using these
temperatures. This in effect is the same as the procedure followed so far when
encountering coefficients determined by non-closed form equations in a numerical
solver for the pressure and film thickness, e.g. in the case thermal and/or non-
Newtonian lubricant behaviour are taken into account. An “inner” iterative loop
is introduced (on the lubricant model yielding the velocities and/or temperature
and thereby the coefficients ¢;, pf in the discrete Reynolds equation) within the
“outer” iterative loop for pressure and film thickness (that uses these coeficients).
Such a scheme is schematically drawn in figure 7.3%.

Naturally if the scheme marked by (A) converges, scheme (B) also works. How-
ever, scheme (B) is inefficient from a computational point of view. The number
of iterations to satisfy the error criterion for the inner loop, should be sufficiently
large, to avoid slowdown of the convergence of the pressure and film thickness.

12 (7.73)
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Figure 7.3: Flow diagram of the relaxtion process as proposed (A), and the (com-
putationally inefficient) alternative with a nested loop (B)
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This is particularly important if the speed of convergence of these latter variables
is relatively large as characteristic for a multigrid algorithm (coarse grid correction
cycle), and a single relaxation of the energy equation and an update of the coeffi-
cients as in the above algorithm is certainly not enough. In the case of scheme (B),
in the process of relaxing (and solving) a set of equations, the energy equation is
accurately (in practice often almost exactly) solved each sweep, even with pressure
values still far away from the converged solution. This is done at the expense of
many operations per gridpoint. Following the approach as outlined above how-
ever, the variable associated with the additional equation, i.e. the temperature,
converges along with the pressure and film thickness.

7.6 Relaxation of the Energy Equation

As stated earlier, the corner-stone of a multilevel solver is a relaxation process
that effectively smooths the error. To devise such a relaxation for the energy
equation in combination with the integral boundary conditions, is not a trivial
task. Therefore, first a simple model problem is constructed to study the effect of
an integral boundary condition.

7.6.1 Model Problem

In order to the isolate the boundary condition problem from all kinds of additional
problems that might occur when relaxing the energy equation, a model problem
is constructed. The way to solve this model problem is, except from the imple-
mentation of this type of boundary condition, well known. The model problem
is depicted in figure 7.4 and can be looked upon as a medium in which heat is
generated at a constant rate everywhere on the unit square. On the left and right
boundary this medium is thermally insulated. At the lower boundary the temper-
ature is kept constant and at the upper boundary heat is transferred to a moving
semi-infinite solid medium. The kernel G, present in the upper boundary integral
condition is given by

Gz — &) = exp (P(x — o)) Ko(Py/(z — ©)?)
where K is the zero order modified Bessel function of the second kind and P is
the Péclet number.
Analysis of the relaxation of the integral boundary condition

Setting the ambient temperature T, to unity, the upper boundary equation is
discretized as:

T, =1 =3 G, — T, -1}/h (7.74)
k=0
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Figure 7.4: model problem

.where nie and ny are the number of points in z- and y-direction respectively and h
is the meshsize. The coefficients G** are defined by

z+h/2 .
Gir = /I G(z; — z')dz (7.75)

r—h/2

F_‘or now, it will be assumed that somehow the exact solution to the discrete equa-
tions is known for the points Tin,—1, i = (0,...,n;). This assumption enables a
simple analysis of the treatment of the integral boundary condition. In the follow-
ing section the treatment of the boundary points will be extended to our model
problem at hand in which the simultaneous relaxation of boundary and adjacent
interior points is required. With the assumption Just mentioned, the equation for
the boundary points reduces to an one-dimensional integral equation of the form:

Alin, + Y GiiThn, = f: (7.76)
k=0

This eq_uation can be solved by means of the following second order distributive
}"elaxz?tlon scheme: Given an approximation T;n, to T;n,, all grid points are visited
in lexicographic order and changes §; to be applied at sites i and adjacent sites i—1
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Figure 7.5: Amplitude reduction factor u(8) for Jacobi second order distributive
relaxation

and 7 + 1 according to the following distribution:
1
—6; | — — T
50 [-1 2 —1], (7.77)

are calculated according to:

5 _ fi= OTin, + 5320 GlitTin,)
{TAH (-G, + 26T - GTh)

(7.78)

The changes are applied simultaneously after the sweep is complete_d. As a result
of the distributive changes the new approximation T;,, to T;,, is given by:

_ 2 1
Tin, = Tin, + 6 — 5('51‘—1 + biy1) (7.79)

Figure 7.5 shows the amplitude reduction factor for two different values of P and
A = 0. The case A = 0 being a worst case situation as far as stability and error
reduction are concerned. From figure 7.5 it can be seen, that apart from the?
almost negligible effect of the Péclet number, the second order distributive J acol?1
relaxation is very effective in reducing high frequency error components. This
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Boundary

Figure 7.6: Distribution of the simultaneously calculated changes bin, and &, _;

aspect makes this relaxation a suitable smoother, e.g. coarser grids can be applied
to accelerate the convergence of the boundary equation given the exact solution of
the discrete equations for Tns

Combined relaxation of interior and boundary points

The interior equation is discretized using the well known 5-point stencil:

L1+ Topg + Tigor + Ty — 4T3
he

= fi; (7.80)

The upper boundary grid points are discretised as discussed in the previous section:
Nz

Tiny + 2, Gii(Temy — Temy-1)/h = fim, (7.81)
k=0

The treatment of Neumann boundaries is considered to be known and will not be
discussed. Evidently the temperatures T} n,—1 cannot be calculated exactly without
knowing in advance the temperatures on the boundary and vice versa. They have
to be solved simultaneously. In order to ensure smoothness of the error in the
direction perpendicular to the boundary, all the interior points adjacent to this
boundary are treated in a special way. Given an approximation Ti,ny to T;, and
Ti,ny,l to T;n,-1 , these grid points are visited and changes i, and &;n,—1 to be
applied at sites 7 and adjacent sites 7 — 1 and 7 + 1 according to figure 7.6 are
calculated according to:

h_lﬂ (_5 61',111,—1 + 5i,“y) = Ri,ny—l (782)

Bimy + AGE (8, = Simy—1) = Rin,
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[Tevel [ # points [ W(L,1) [ W(2,1) [ V(2,1) |
3 16x16 | 0.09 | 0.06 | 0.13
4 32x32 | 0.09 | 0.06 | 0.14
5 64x64 | 0.08 | 0.04 | 017

Table 7.1: asymptotic convergence rates

where
= 1 Mz _ -
Ri,ny = f'i,ny - (,I'i.ng e E Z Gf’t (Tk,ny — Tk.ny—l) (783)
k=0
P ey e g fiTh ol T g
Ri,ny—l fi,ny—l - (T 1ny—1 +T3+1, y 1+ ;1,1213. 9+ Ty 1ny-1 &+ 1)

1
AGH = (-Gl +2Gi} - Gizn)

10—

This means, solving both the boundary equation and the adjacent interior equation
simultaneously, taking into account the second order distribution of the changes.

A full relaxation sweep consists of a sweep over the boundary points according -

to the above mentioned scheme, followed by a Red-Black sweep over the interior
grid points.

Results

Table 7.1 shows the asymptotic convergence rates of different multigrid cycles on
different levels. These convergence rates are close to the rates obtained for the
standard 2D Poisson problem. Consequently it is concluded that, provided the
appropriate measures are taken with regard to relaxation near the boundary, also
in the case of an integral boundary condition the multi-grid textbook efficiency can
be obtained. Figure 7.7 shows a contour plot of a solution for the model problem,
for P = 10. Figure 7.8 shows the temperature on the boundary for this case.

7.6.2 Extension of the model problem to the real Energy
Equation
The treatment of the integral boundary conditions is now well understood and
therefore, the treatment of the energy equation can be addressed. If the discrete
energy equation is written in operator form like
@i,j—l — 2@5,3' + Gi,jﬂ
he

r*e;; =
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Figure 7.7: Contour lines of the temperature distribution for an example solution
with P = 10.
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Figure 7.8: Boundary temperature.
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then new approximations @i,j of ©;; are calculated from old approximations éi,j
according to :
- oL"®;;\~
C] J = ei,j + (WM‘ R—i,j:
where R; ;, the so-called dynamic residual, is defined by:
Rij= fi5— L0,
The principal term (see Brandt 1984) of the energy equation,

021 —20;,; +0; ;11
h¢

only couples points in the j-direction. Therefore, applying a lexicographic Gauss-
Seidel relaxation only smooths appropriately in this direction. In order to obtain
a good smoother for the i-direction as well, a so-called line relaxation should be
applied, i.e. all points on a i-line have to be solved simultaneously. By applying
this relaxation the coupling in the i-direction is enhanced and provides a good
smoother in both j and i-direction.

Incorporation boundary conditions

As for the model problem, the boundary equations and the adjacent interior equa-
tions should be solved simultaneously, using a second order distribution. The
equations from which the changes ¢ must be calculated, are somewhat different
though. For the boundary at ¢ = 0 the equations are:

Oko — Okt

K3 & K3 heh
‘ fs hghg i,0 - _ fs i 7.84
Sio + —AGY; u—hc fio ( ik — EOGl Hehe ) (7.84)

where AGl?jhf is given by

heh, heh,
G 1 Gl L, el
2 H;: g Hi Hiy 7

and

0+ 0ig) — 2 +6z)+612
PR CTERT) ;gl : M
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—  BinCotisn ¥ (iH? (Gig + 8i1) — (Qizrn — 51-,1/2))
%, i, i hé

For— Fia
he
+ Source(©;, + ) (7.85)

+ H}U6;, + 6:1)Fi,

where Source(0;;+6;,) is the value of £ &hr . 3—}‘

Since the source term is nonlinear, equatlons (7. 84) and (7.85) cannot be solved
exactly for 6;¢ and §; ;, instead a loca.l linearization of the source term is used.

Once the changes 6;9 and &;; have been determined for all i they are applied
simultaneously according to the distribution displayed in figure 7.6. After the
boundaries have been relaxed this way the relaxation sweep of the energy equation
is completed with the line relaxation of the interior points.

when the change &; ; is applied.

7.7 Results

The algorithm described above will now be applied to a moderately loaded case,
the maximum Hertzian pressure being p, = 1.2GPa. A simplified energy equation
is used, the only means of heat transfer is conduction, so the convection and the
compresive heating/cooling terms are neglected. Table 7.2 shows the material
properties of the solids and the lubricant as well as the operating conditions. All
results shown have been calculated using a 289x289 grid with £, = —4.5 and £ =2,

As a first check, the pure rolling case is considered. The pure rolling situation
has been approximated by using a slide to roll ratio, SR = 25%1 = 1.0e—15. For
this situation the thermal effects are due to inlet shear heating, i.e. shear heating
due to compression in the inlet. The effects of inlet shear heating have been
studied extensively, see for instance Greenwood and Kauzlarich (1973) , Murch
and Wilson (1975) and Wilson and Sheu (1983). These studies show that for
elastohydrodynamic contacts, inlet shear heating can result in a significant film
thickness reduction, especially when high speeds or high viscosity lubricants are
used. For the pure rollmg situation Wilson and Sheu (1983) derived the following
relation

-1 _
1+0.241 L0564 ks

for the correction factor, C, which describes the reduction factor of the film thick-
ness when compared to the isothermal case. The parameter L in this relation is the
so-called thermal loading parameter. A value of (L < 0.1) indicates that thermal
effects are negligible in the inlet and that conventional isothermal theory can be
used. For (L > 0.1) a significant film thickness reduction can be expected.

For the case at hand the thermal loading parameter equals L = 0.264 which
leads to a film thickness reduction factor of C' = 0.91. The Moes’ dimensionless film
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[ Parameter | Meaning [ Value [ Dimension |
| oil: | _ _IJ
kg Thermal conductivity of the lubricant 0.12 W.m :Fg
Pof Ambient density of the lubricant 866.0 kg.m
Mo Ambient viscosity of the lubricant 0.040 Pcif
y Temperature viscosity coefficient 0.04666 K _
€ Thermal expansivity coefficient 6.5e-4 K
Pressure viscosity coefficient 2.183e-08 m2. N1
So Roelands’ thermoviscous parameter 1.121 —
z Roelands’ pressure-viscosity parameter 0.670 i
Cpy Specific heat of the lubricant 2000.0 Jkg K
[ solids: | | | |
R Equivalent Radius of the contact 0.01800 m
E Equivalent Young’s modulus 2.30e+11 Pa
ks Thermal conductivity of the lubricant 52 W.m_l.fg =
Ps density of the solid 7850 kg._"rzf _
Cs Specific heat of the solids 460.0 Jkg LK
Load Condition | | | |
M Moes’ dimensionless load parameter 20.0 e
L Moes’ dimensionless material parameter 15.0 -
G D-H’s dimensionless material parameter | 5.021e403 —
U D-H’s dimensionless speed parameter 3.983e-11 —
W D-H’s dimensionless load parameter 1.785e-04 - ,
Uy Average velocity 4.123 m.s~
Dh maximum Hertzian pressure 1.226e+09 Pa
hy maximum Hertzian deformation 8.182e-06 m
b half the Hertzian contact width 3.838e-04 m
To Ambient temperature 293.0 K

Table 7.2: Material properties and operating conditions
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thickness parameter H,,;, for this situation has been calculated as Hpin = 4.62.
This parameter is defined as :

8M 0€es .
——;:4— min (H(£)).

For the same situation but using isothermal theory Venner (1991) reports H;, =
4.87 for this parameter. Applying the the correction factor C' to this value results
in a value of H;, = 4.42 which is close to H,,;, = 4.62, the value calculated using
the algorithm.
According to Greenwood and Kauzlarich (1975) the temperature rise at the far
inlet can be approximated by ,
_ 3 mou;
AT“4IT
which results in a temperature rise of 4.2 °C. Using the algorithm a maximum
dimensionless inlet temperature of Omaz,intet = 1.014 has been calculated. This
corresponds to a maximum inlet temperature rise of 4.1 °C. The overall maximum
temperature rise has been calculated as 5.9 °C' and occured in the outlet of the
contact.
The coefficient of friction for this situation has been calculated as pn=20e—4
which corresponds to a value of i = 0.067, a parameter defined by ten Napel (1975)
as:

A= p(20)4

Lubrecht (1987) reports a value of i ~ 0.07 (from graph) for this load and slip
condition, so the results agree well with results from the literature in case of the
pure rolling situation.
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After this rolling situation, higher slip cases have been calculated. Figures 7.9%b
show the coefficient of friction for small and large slide to roll ratios, respectively
(please note the differences in scale). Although the slip curve shows the behaviour
also found in experiments, i.e. a rise to a maximum followed by a monotonously
fall of the coefficient of friction, the maximum value shown in the figure is far to
high. This, of course, was to be expected since the lubricant has been modelled
as a Newtonian fluid and in this region non-Newtonian effects are important as
was shown by for instance Johnson and Tevaarwerk (1977) and ten Napel et. al.
(1985).

Figure 7.10* shows the maximum dimensionless temperature in the lubricant
for slide to roll ratios in the range of [0,1.5]. As can be seen from this figure, the
temperature rises are already substantial for small slide to roll ratios.

Another interesting result is shown in figure 7.10°. From this figure it can be
seen that the minimum film thickness decreases significantly with increasing slide to
roll ratio; at SR = 1.5 it is merely more than half the value of the pure rolling case.
In figure 7.11 the pressure distribution and the film profile are plotted for different
SR-cases. From cases 1 and 2, i.e. SR = le — 15 and SR = 0.1 respectively, it
can be observed that the first sharp drop in mimimum filmthickness (7.10%) is not
accompanied by a drop in central film thickness; on the contrary, the central film
thickness is even slightly larger for case 2.

This can be explained by studying the temperature rise in the contact more
thouroughly. In figure 7.12 the contourlines of the dimensionless temperature dis-
tribution in the lubricant are shown. It can be seen that the inlet is not yet
thermally affected for SR = 0.1. Also the pressure and film thickness distributions
are the same in the inlet for these two cases. However the central part of the
contact is heated, so the lubricant is expanded due to the temperature rise in the
contact, giving rise to a larger central film thickness compared to the pure rolling
case.

Looking at case 3 from figure 7.11, it can be concluded that for higher slide
to roll ratios the inlet has to be thermally affected. This can be seen from figure
7.13, which shows contour lines of the dimensionless temperature distribution in
the lubricant film for SR = 1.5. So, in the inlet, the viscosity of the lubricant is
effectively lower compared to the cases 1 and 2, explaining the overall smaller film
thickness.

7.8 Conclusions

It has been shown that the algorithm described in this chapter can solve the thermal
EHL problem. It has been shown that the influence of shear heating at higher slide
to roll ratios on the minimum film thickness and on traction is considerable and
cannot be neglected.
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Recommendation for future
research

The algorithm described in chapters 2 - 4 offers the possibility to numerically sim-
ulate multiple contact heat sources where the contacts are close together, i.e. when
the heat flow through one contact influences the temperature rise in neighbouring
contacts. This would be an important next step towards the simulation of realistic
engineering contact configurations.

The model used in chapters 2 - 4 assumes that the bodies in contact are homo-
geneous However, in practice often hardened or coated bodies are used. It is clear
that a surface layer with different thermal properties than the bulk material will
have a substantial effect on the contact temperature. Therefore an important ex-
tension of the model would be the inclusion of surface layers with different thermal
properties.

The algorithm described in chapter 7 can be extended in several directions. First
of all the full energy equation should be used, i.e. convection and compressive
heating and cooling should be taken into account.

Secondly, another direction for future research could be the inclusion of a more
realistic (non-Newtonian) model of the lubricant. The algorithm described allows
for non-Newtonian behaviour of the lubricant and the implementation should be
straightforward, as long as no-slip boundary conditions are assumed. This limits
the lubricant behaviour to fluids. However, extension to situations where the lubri-
cant solidifies and slip occurs between the surfaces of the bodies and the “lubricant”
is more involved.

In this work the EHL-line contact problem is treated. Future research might
be directed towards the extension of the algorithm to point contacts. This would
lead to an interesting application of the algorithm described in chapter 2, i.e. as
boundary condition of the energy equation for the lubricant.
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Appendix A

Reduction of double integral to a
line integral

The integral

Up rTp du dv P
— e — — 2 2 s
I /ym . e exp ( 5 (Vu? + 02 — ) (A.1)

can be reduced to a line integral in the following steps:

e First

\ t = g(\/uz-{wu?—u)

P U
dt = — (——-1
2 (\/u2+v2 i

is substituted into A.1. This leads to

I - /yp j‘% (Va4 =) exp (—t) dt s
m % (\/I'"2+”27Im) \/?""2 +42 % ( uu+v o 1)
Up £ (Vi +vP—zp) exp (—t)
= = / dtb dv
Ym £ (Vrm24e-z,) t

e secondly using

El(:r)zj:o ei‘pt(—‘t)dt and f:f(z) d:n::famf(:r) da:—j;mf(x) dz

the integral is rewritten as:

e —[i {El(g (1/$m2+v2—zm))~E1(§ (,/sspuvﬁ—zp))} dv

(A.2)
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e Next the first term of A.2 is treated (the second one can be treated the same
way).

P
I = y EI(E (\,‘ Tyl + 4% — Zp)) = Um El 24 Yl — p))
Il = —/ El(— (\I$m2 + 02 *.’Cm)) dv

= P P
B e R P TP O - ¥ a5 (Yo + %2 = Tm)) + 4y B —(J_TyI
—[’UE(—( T +vi—g ))J +/pvdE1(—( Tpl+vE—1z,)) dv 2 2
1 2 m m Ym 2 7 m p »? exp(ﬁg (\/_T;2+—5_$ ))

Ym
- dv +
P Up 2 2 2 VNS
— [’u El(? (\,/ Tm? + 0?2 — xm})] + Yo W L™ U }Jf:cm +v T,
i )m ' +fyr v? exp (=3 (2! +v? - z,)) d
Yp o0 exp 2 2 2 v
fym vd/% (Vamitvi-zm) @ ‘ L e VI v — 1,

= — [1; El(g (Vom?+0v?— Im))]z +
]y,, P v s (% (VE" 0 —an))

dv

i
o 2 V P+ £ (Vanl+ vl —z,)

where in the last step Leibnitz’ rule for the differentiation of integrals is used.
The last result can be simplified to:

P e
Il = —Y El(? (\,' xmz +yp2 _-Tm)) +ym EI(E (\/ me 5 ymZ - :Em)) HE

exp (= (VIm? + 0% — zn))

Yp
= d A3
/ym \/wm?' + 'U2 \/-“"'311'12 + 'Uz —Tm ! ( )

In the same way the second term of A.2 can be calculated as:

Y, P |
T o= /PEl(E (/2,2 + 02 — 1)) dv
P P
= ¥ EI(E (/%2 + 32 — %p)) — ¥m E1(5 (VTp? + ym® — 3p)) +

” 2 exp(—% (zt -
/y v p( 2( P P)) il (A4)
m \/3:,,2—1-1;2 \/zp2+v2—xp

e So finally, the total integral can be written as:
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Appendix B

If the function G is defined as:

G, &) = Lﬂi(—lgf&/; dz, 0<v<l.
then -
G(V,E)Zm, for 0§§S1

In the following proof by Dr. ir. J.P.A.M. Hijmans the notation ¢.f. Handbook of
| Mathematical Functions (HMF) (1965) is used.

Proof

Consider the the cases 0 < £ < 1;

| _ £ {E _— 211—1 21/——1
G é) = /o a:”(l - +f .1:"’(1 —z) -y ®

In the first integral substitute ¢ = :r/f and in the second £ = (1 — z)/(1 — &), then
[ after some reductions this equation can be written as:

o v L (]‘ — t)2U71
G(v,¢) = &), ra_apt
1 o t 2v—-1
+ (1- / T 1m (1 T
(HMF 15.3.1)

- B(1—v,20) & F(v,1—v;1+v;€)
¥ B(1—v,2v) (1—£)” F(vl vil+v;1-§)
where

B(1 - v,2v) = 7”11{122()2”
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By using (HMF 15.5.3)
Fla,B;7:2)=(1-2)"*" F(y—a,vy— 8;%2)

it follows:

G, &) =Bl —v,2v) & (1-€)” {F(L,2r;1+ v )+ F(1, 2014+ 151 - €)}

Define, p = £ — 2 (due to symmetry around & = 3), then it follows that
G(v, &) = B(1-v,20) 47 (1 - 4p")" S(v,p)

with .
1
S(v,p) = F(l,?t/;lJrz/;§+p)+F(1,2v;l+u;§—p)
S(v,p) is an even function of p
S(v,p) = 23 Cyu p™* with
k=0
1 [o* 1
= —— |—F(1,2v;1+v;-+p
C2k (Zk)l ap2k ( 2 ) e
1
—(%F(l+2k,2y+2k;l+y+2k;§).
(1 + V)Zk

According to (HMF 15.2.2)

4((1)"('6)"}7(05 +n,B8+ny+n;z2).
()
2,

i

d’n
T —F(a,B;7:2) =
A

n

With vy = 3(a+f+1) # 0,-1,-

L T(v)
Flo,firi5) = v NCarE)
therefore
(2v) 9k T(1+ v+ 2k)
o (14 v)a i kT(v + 1+ k)
1
) ﬁgg—i;ﬁ%(%
50
S(v,p) = 27 % 3 %(U)kzﬂcp%
2/ k=0"""
= 27 g((iiz))F(J/,l;l;élpz)
2
- LA+Y) () _ gy~ (HMF 15.18)
= /7 m(l 4p*) ( !
2

- the following holds (HMF 15.1.2):

Combining everything results in:

G8) = B—wm) 4 2y Loy
T )

To arrive at this result equations (HMF 6.1.17 and 6.1.18) have been used to rewrite
the I'-function.

Finally consider the cases £ =0 and £ =1 :

G(V: 0) = G(F/, 1) = fol (:lz—:_;};dm
(HMF 6.2.1)
N _TWI(l-v) =«
= B(v,1-v) = T e D

which concludes the proof.
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