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Abstract

The purpose of rolling bearings in mechanical systems is to transmit force while permit-
ting rotary motion with a minimal contribution to the frictional losses. Their successful
operation depends on the presence of a very thin lubricant film in the contacts between
the rolling elements and the rings. The lubrication regime characteristic for such contacts
is referred to as elasto-hydrodynamic lubrication (EHL). In this regime the friction in the
lubricated contact is caused by the shear of the highly pressurized lubricant film. In recent
vears down-sizing and increasingly severe operating conditions have led to a reduction of
the film thickness levels in practical applications to the point where the influence of sur-
face roughness becomes significant. Accurate prediction of the friction for the purpose
of control and optimisation requires detailed understanding of the response of a highly
pressurized lubricant film under shear and of the influence of roughness on this response.

Many experiments have been carried out over the years in which the friction coeflicient
has been measured in EHL contacts between smooth surfaces. Theoretical predictions by
means of numerical simulations aimed at the derivation of general formula to predict this
friction are rare. With respect to the specific influence of roughness on friction in the EHL
regime very little is known. The objective of this thesis is to fill this gap and to study the
friction generation mechanism in EHL contacts under rolling/sliding in a systematic way.
This is done by means of numerical simulations. Existing rheological models have been
incorporated in numerical solvers for the EHL contact problem. These solvers are based
on multilevel technigues which by their efficiency allow very detailed simulations in short
computing times. As a result computations could be done for many cases varying the
operating conditions over the entire range relevant for practical applications in bearings.

First the case of smooth isothermal EHL contacts was considered using the Eyring model
and limiting shear stress models to describe the lubricant behaviour. It is shown that
the friction generation mechanisms can be characterized by a shear stress. The friction
data calculated for these models are shown to form one curve when plotted as a function
of this characteristic shear stress. This curve forms a generalized traction curve and its
shape is shown to reflect the rheological model that is used to describe the lubricant be-
haviour. Curve fit relations are presented for these mastercurves. They constitute simple
and accurate engineering tools for the prediction of the (nominal level of the) friction.
Subsequently these mastercurves have been validated by comparing the predictions with
experimental results published in the literature.
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Because of the assumption of isothermal behaviour the derived relations are only accurate
for small slip values. To extend the range of validity of the friction mastercurves to higher
shear rates where frictional heating becomes significant a thermal correction approach
has heen developed. The friction mastercurves combined with a thermal dry contact
analysis enable the calculation of an estimate of the maximum temperature increase in
the centre of the film and the temperature at the surface. Subsequently a correction to the
computed friction coefficient due to increased temperature can be given. The results of
this simplified approach have been compared with the results of full numerical simulations
in which thermal effects are taken into account. It is shown that, even though the approach
involves major simplifications, it gives an accurate estimate of the effect of the temperature
rise on the friction. Moreover, for cases where the lubricant characteristics are accurately
known the agreement of the predictions with experimentally measured friction values is
good.

Finally the effect of surface ronghness on the friction is investigated. The study is re-
stricted to the case of longitudinal roughness which is the predominant pattern found on
bearing rings. Using the Eyring model to describe the lubricants rheological behaviour
numerical simulations have been carried out. First the relative friction variations caused
by a single harmonic roughness component were computed as a function of the amplitude
and wavelength for a wide range of operating conditions. From the results a curve fit for-
mula has been derived for the relative friction variation as a function of the out-of-contact
geometry of the waviness and a newly derived parameter characterizing the response of
the lubricant to pressure variations. Subsequently, the case of a superposition of two
harmonic components has been considered. It is shown that for the effect on friction such
a combined pattern can be represented by a single equivalent wave. The amplitude and
the wavelength of the equivalent wave can be determined from a non-linear relation in
terms of the amplitudes and wavelengths of the individual harmonic components. Finally
the approach has been applied to the prediction of the effect of a real roughness profile
(many components) on the friction. By means of full numerical simulations it is shown
that even for the case of a real measured longitudinal roughness pattern this simplified
approach based on the definition of an equivalent single component gives accurate re-
sults. It is concluded that the single component curve-fit formula and the definition of
the equivalent waviness together form a simple engineering tool for the prediction of the
effect on friction of any arbitrary longitudinal roughness profile.

Samenvatting

In veel mechanische systemen wordt een wentellager toegepast om de wrijving als gevolg
van een roterende beweging te minimaliseren. Om een lange levensduur te garanderen
is het noodzakelijk dat zich tussen de rollende elementen en de ringen van het lager een
smeerfilm bevindt die de oppervlakken volledig scheidt. In dit smeringsregime, aangeduid
met de term elastohydrodynamische smering (EHL), wordt de wrijving veroorzaakt door
de afschuiving in de smeerfilm. De steeds extremere condities waaronder wentellagers de
laaste jaren moeten functioneren hebben geleid tot een afname van de filmdikte met als
gevolg dat de ruwheid van de oppervlakken van steeds grotere invloed wordt op het func-
tioneren van het contact. Om de wrijving in applicaties dan goed te kunnen voorspellen
en te kunnen optimaliseren is het noodzakelijk dat zowel de afschuiving van de oliefilm on-
der hoge druk als de effecten van de ruwheid op dit gedrag nauwkeurig voorspeld kunnen
worden.

In de loop der jaren zijn veel experimenten uitgevoerd waarbij de wrijvingscoéfficiént in
een EHL contact is gemeten voor het geval van zeer gladde oppervlakken. Theoretische
resultaten gericht op het gebied van voorspelling door middel van bijvoorbeeld numerieke
simulaties zijn echter zeldzaam en naar de effecten van de ruwheid op de wrijving is
nauwelijks experimenteel of theoretisch onderzoek gedaan. Het doel van dit onderzoek is
om in deze lacune te voorzien. Door middel van numericke simulaties is het wrijvingsge-
drag van EHL contacten in relatie tot de operationele condities in kaart gebracht. Voor
deze numerieke simulaties is een algoritme gebaseerd op multilevel technicken gebruikt.
Deze technicken maken het door hun efficiéncy mogelijk om nauwkeurige simulaties uit te
voeren in korte tijd. Ze zijn dus uitermate geschikt voor parameter studies waarbij veel
berekeningen nodig zijn als gevolg van de vele mogelijke praktische condities.

Als cerste stap is de situatie van ideaal gladde oppervlaken en isotherme condities beschouwd.
Voor het reologische gedrag van de vloeistof ziju de twee meest geaccepteerde modellen
gebruikt, te weten het Eyring model en het limiting shear stress model. De resultaten van
de numerieke simulaties laten zien dat voor beide modellen de wrijving in het EHL contact
nauwkeurig beschreven kan worden met behulp van een unieke parameter, een karakter-
isticke schuifspanning. Voor elk van de modellen kunnen de resultaten voor alle mogelijke
operationele condities met een gegeneraliseerde wrijvingscurve beschreven worden. Voor
deze curves worden eenvoudige formules gegeven die in de praktijk als hulpmiddel bij het
ontwerpen van lager-produkten gebruikt kunnen worden. Het gevonden gedrag is vervol-
gens gevalideerd met de resultaten van experimenten zoals die in de literatuur gepubliceerd
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zijn.

Wanneer de afschuifsnelheden groot zijn is de aanname van isotherme condities niet meer
gerechtvaardigd. Om de geldigheid van de gegeneraliseerde wrijvingscurves uit te brei-
den naar situaties van hogere afschuifsnelheden waar warmteontwikkeling een rol gaat
spelen is een vereenvoudigd model ontwikkeld. De gevonden relaties voor de isotherme
situatie zijn gecombineerd met een eenvoudig model dat de warmteontwikkeling in een C Ont ent S
droog contact voorspelt. Met deze aanpak is het mogelijk om op een eenvoudige manier
een benadering te krijgen van zowel de temperatuur in het midden van de smeerfilm als
de temperatuur van de beide oppervlakken en het effect van de temperatuurverhoging
op de wrijvingscoéfficiént. Een vergelijking van de resultaten van dit model met de re-
sultaten van een volledige analyse laat zien dat deze eenvoudige benadering al een goede
voorspelling geeft. Bovendien is er een goede overeenkomst tussen de voorspellingen en Abstract i
experimentele resultaten. Voorwaarde voor een goed resultaat is wel dat de eigenschappen

van het smeermiddel nauwkeurig bekend moeten zijn. .
Samenvatting iii

Nadat het wrijvingsgedrag voor het geval van ideaal gladde oppervlakken nauwkeurig in
kaart is gebracht wordt de invloed van oppervlakteruwheid op de wrijving bestudeerd voor
het geval van longitudinale patronen. Dit is de meest voorkomende vorm van ruwheid op
de binnen en buiten ringen van wentellagers. Voor de beschrijving van het vloeistofge-
drag is gebruik gemaakt van het Eyring model. Als eerste stap is de relatieve verandering 1 Introduction 1
van de wrijving berekend als gevolg van een enkele harmonische ruwheidscomponent als

Nomenclature ix

functie van de amplitude en golflengte van de component en de condities van het con- 1.1 Elastohydrodynamic lubrication . . ... ........ ... oL L 2
tact. Uit de resultaten van de numerieke simulaties zijn curve-fit formules afgeleid die : o . ; ;

; . . . : : , 1.2 Modeling non-Newtonian behaviour . . . . . . . ... ... ... ... 5
de relatieve verandering van de wrijving voorspellen als functie van de golfgeometrie en :
een nieuw ontwikkelde parameter die de reactie van het smeermiddel op de drukvariaties | 1.3 ROUGHIESS .« © o o v oo e e e e e 3
vertegenwoordigt. Vervolgens is het geval van een patroon bestaande uit twee harmonis- '
che componenten beschouwd. Met behulp van de resultaten voor de enkele harmonische 1o CNEELIRE o s b ssn o 3w wain an v e S HE BT Bu BESHEE D 9
component wordt aangetoond dat het effect van de combinatie van twee harmonische
componenten op de wrijving beschreven kan worden als het effect van een equivalente 2 Theor
enkele component. De golflengte en amplitude van deze equivalente component kunnen Y 11
bepaald worden uit een niet-lineaire combinatie van de amplitudes en golflengtes van ‘ 2.1 Rheological models . . . . . . o 11
de twee harmonische componenten. Deze aanpak van het representeren van meerdere
harmonische componenten door een enkele equivalente harmonische component is vervol- 2.2 Elliptic contact . . . . . . ... 13

gens toegepast op het geval van gemeten ruwheidsprofielen. Met behulp van volledige

numerieke simulaties wordt aangetoond dat ook voor deze situatie met behulp van de 2.2.1  Non-Newtonian Reynolds equation . .. ............... 13
deﬁmt.l.e. van de equn.falente enkele componeu't en de bijbehorende curve-fit formule voor 2,92 Filtn thickness SHUAHOR - » o v o0 v v e e e o e 17
de wrijvingsverandering een goede voorspelling gegeven kan worden van het effect van
het ruwheidsprofiel op de wrijving. Met de afgeleide relaties kan op eenvoudige wijze het 2.2.3  Force balance equation . . . . ... ... L 18
effect van een willekeurig longitudinaal ruwheidsprofiel op de wrijving voorspeld worden
zonder dat daarvoor uitgebreide numerieke simulaties nodig zijn. Dit maakt de relaties 2.24  Friction coefficient . . . ... .. oL 18
tot een uitstekend gereedschap voor een ontwerp omgeving. - . . .
2.2.5 Dimensionless equations . . . . .. ... 18
23 Linecontact . . . . ... ... 20
2.3.1 Non-Newtonian Reynolds equation . . . .. .. ... ... .. ... 20
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xii
subscript for 67"
5 surface temperature increase

! lubricant film temperature increase

subscript for p and o:

R rough surface
5 smooth surface
subscript:

1 body number 1
9 body number 2

Chapter 1

Introduction

In many of the objects surrounding us in everyday life, from washing machines to cars,
rolling bearings are present to permit rotary motion. They represent some sort of hidden
technology, the kind that gets noticed only when it fails. Nevertheless as one of the
elements allowing motion to be transmitted they contribute in many cases to a significant
part of the power loss of the application. As part of the current drive for energy-saving
there is a strong interest in optimizing the frictional behaviour of rolling bearings.

Rolling bearings are based on the very old
principle that it requires “less effort to
move a body over rollers than to let it slide
over the same surface” [39]. A rolling bear-
ing is usually made of one or two rows of
balls or rollers between an inner and outer
ring one of which is fixed to a shaft and
the other to a housing, see Fig. 1.1. A
cage may be interposed to control the dis-
tance between the rolling elements. The
transmission of load takes place in two con-
centrated contacts on either side of each
rolling elements where very high pressures
are reached (up to 3 GPa) lubricated with a
very thin lubricant film (thickness < 1pm).

To prevent failure of the rolling bearing the Figure 1.1: Spherical roller bearing.

amount of metallic contact between surface

roughness asperities breaking through the

film in the contact area has to remain very small i.e. the film thickness of the lubricant
film should be larger than the combined roughness of the surfaces. Traditionally this has
been achieved by making the surfaces as smooth as possible and in designing the bearings
such that thick films would be created. In recent years down-sizing and increasingly
severe operating conditions have fostered a new approach in which surface roughness
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becomes also a design parameter. The goal then is to design complex surface patterns
that enhance rather than hinder lubrication. For both approaches the accurate prediction
of the lubricant film thickness is crucial to prevent failure. As a consequence a large
number of numerical studies has been performed over the years relating the film thickness
to the operating conditions. Design curves have been established to predict the film
thickness and more recently the deformation of the roughness in the contact for a wide
range of operating conditions.

The topography of the surface roughness is designed first and foremost to enhance lubri-
cation and prevent failure. It will however also have consequences on the level of friction
generated in the contacts. In most cases this level should be as low as possible but for
certain applications, in spherical roller bearings (SRB) for instance, a difference in the
friction generated in the inner ring-roller and outer ring-roller contacts is needed for the
optimum operation of the rolling bearing [50]. The differential of friction is created by
using different surface texture on each ring. In that case an accurate prediction of the
effects of roughness on friction is crucial. However by contrast with the state of the art
in film thickness prediction no systematic approach has been applied to the numerical
simulation of the friction generated in the lubricant film. There are no general predictive
formulas for the coefficient of friction in smooth contacts and the consequences of the
introduction of roughness patterns on friction are almost completely ignored.

The objective of this thesis is to apply the systematic approach used in film thickness
simulations to friction prediction. Based on the currently existing numerical tools and
rheological models the goal is to establish general engineering formulas giving the [riction
coefficient generated in the contact as a function of the operating conditions. The friction
coefficient generated in smooth contacts needs to be considered first to allow an analysis
of the effects of roughness on the smooth level of friction.

1.1 Elastohydrodynamic lubrication

The existence of a very thin lubricant film in the concentrated contact between two
rolling surfaces is explained by the combination of two effects: the elastic deformation
of the surfaces under the very high pressures occurring in the contact and the nearly
exponential increase of the viscosity of the lubricant with pressure. The first effect helps
to create a gap to allow lubricant to pass through whereas the second prevents lubricant
to flow around the contact by “freezing” by an increase of viscosity a small part just in
front of the contact. This part is then transported by hydrodynamic action in the contact
area. This lubrication regime is called elastohydrodynamic lubrication (EHL).

Fig. 1.2(a) shows a schematic cross-section of a contact between a ball and a flat surface.
Assuming that all the elastic deformation takes place in the ball, the part of the ball close
to the plane surface is flattened leading to an almost constant lubricant film thickness
in the contact. Due to hydrodynamic effects a constriction appears at the outlet of
the contact. The pressure distribution in the contact exhibits a semi ellipsoidal shape

1.1. ELASTOHYDRODYNAMIC LUBRICATION 3

Inlet

Figure 1.2: (a): Schematic representation of a cross-section in the running direction of a point
contact. P denotes the pressure profile whereas H indicates the film thickness. (b): Film
thickness map of a point contact obtained using optical interferometry. In both cases the inlet
is on the left.

with a pressure spike just before the location of the constriction and a gradual pressure
buildup in the inlet region of the contact. With increasing load or decreasing velocities
the pressure profile tends towards the perfectly semi-ellipsoidal distribution of the dry
contact situation (Hertzian contact). A picture of the film thickness in circular contact
obtained using optical interferometry is shown in Fig. 1.2(b) (courtesy of M. Kaneta).
One recognizes the central flat plateau ending in the outlet side by the constriction with
a typical horseshoe shape.

The first numerical solution of pressure and film thickness in an EHL contact was ob-
tained in 1951 by Petrusevitch [63] for a line contact. The next landmark was the pa-
per of Dowson and Higginson in 1959 [22] reporting extensive numerical calculations
of the film thickness for line contacts followed in 1976-77 by a series of publications
of Hamrock and Dowson for the point contact problem [37, 38]. The general predic-
tive formula derived by the authors from their numerical results is still used today. In
1987 Lubrecht [55] followed by Venner [71] in 1991 improved considerably the efficiency
of numerical solvers by introducing multilevel techniques. Thanks to these techniques
the analysis of transient surface roughness effects came within reach. The progress on
the experimental side has also been substantial in the last decades. The first images
of film thickness in an EHL contact were obtained in 1963 by Gohar and Cameron
[32] using interferometry techniques. Since then the development of spacer layer tech-
niques has allowed the measurements of film thickness only a few nanometers thick [19].
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The agreement between numerical T3, Ulera-Thin, F-18
and experimental results is quite re- ' '
markable, see Fig. 1.3 where a com-
parison of measured and calculated
film thickness is shown.

In almost all of the studies cited pre-
viously the contacting bodies have
the same velocities. In that case the
contact operates with almost no fric- _
tion. Only a very small pure-rolling ’ " Cm'fv;ﬁd
friction coefficient can be measured
due to the asymmetry of the pressure
distribution. However as soon as slip m2an velocisy [n/s]
is introduced i.e. when the velocities
of the contacting bodies differ, the
friction coefficient increases quickly
to reach a value of 0.03 < p < 0.12.
In EHL contacts the slip difference is
mainly accommodated in the lubri-
cant film. Recalling both the very
high viscosity of the lubricant in the
contact and the thinness of the film, the shear rates imposed on the lubricant are very
large. At these shear rate values the lubricant behaves in a non-Newtonian way.

h [nm]

Figure 1.3: Comparison of calculated and measured
film thickness as a function of speed for two temper-
atures T = 40 and 60°C. Prediction of various film
thickness formulas are also shown. Measurements per-
formed by C.H. Venner with the spacer layer technique
at Tmperial College, London.

The evidence of non-Newtonian be-
haviour is provided by the shape of
measured traction curves where the
friction coefficient is measured as a
function of slip. A schematic example
of such a traction curve is shown in
Fig. 1.4. This figure shows that the
friction coefficient increases linearly
with increasing slip, i.e. behaves as a
Newtonian fluid, for a small range of
slip values only. Quickly the traction (1)
curve bends off, stays on a constant
level and even decreases with increas- slide/roll ratio
ing slip. This nonlinear behaviour
cannot be entirely explained by ther-
mal effects as postulated by Crook in
1961 [21] but requires the existence of some sort of non-Newtonian behaviour.

friction coefficient

Figure 1.4: Schematic traction curve.

Four regions can be distinguished in a typical traction curve: (1) an initial linear increase
of the friction coefficient with slip followed by (2) a leveling of the traction curve at
higher slip rates. (3) At even higher slip rates the value of the friction coefficient appears
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to become independent of the slip. (4) Finally the friction coefficient decreases with
slip. The general opinion is now that thermal effects become significant mainly in the
fourth region. To explain and predict the second and third regions of the traction curve
accurately the non-Newtonian behaviour of the lubricant under EHL conditions has to be
characterized and implemented in numerical solvers.

The next section gives an overview of the history of modeling non-Newtonian effects in
EHL contacts. Because this thesis considers friction simulation the emphasis lies on the
models implemented in numerical solvers more than on the experimental characterization
of non-Newtonian behaviour.

1.2 Modeling non-Newtonian behaviour

By the mid 1970s there was a general consensus that an explanation of the non-linear
shape of measured traction curves based entirely on thermal effects was not valid. Several
papers had already described the response of the lubricant as nonlinear, notably that of
Trachman and Cheng [69] in 1972 and of Hirst and Moore [40] in 1974, when Johnson
and Tevaarwerk published their classical paper in 1977 [48]. This last paper presented
a nonlinear Maxwell constitutive equation in which the nonlinear viscous response of
the lubricant was described using Eyring theoretical sinh law. Note that a significant
amount of friction is generated in EHL contacts such that the shear stresses are usunally
large enough for the non-linear viscous flow to dominate the strain rate in the lubricant
film. Consequently, in the rest of this work elastic effects are neglected. The rheological
behaviour of the lubricant is based only on viscous effects. The viscous component of the
model of Johnson and Tevaarwerk relating the shear rate 4 to the shear stress is given by:

¥= T—Osinh(Te/Tg) (1.1)
n

with 7, an equivalent shear stress. The characteristic parameter in this model is the
Eyring stress 7p which represents the value of the shear stress beyond which the response
of the fluid to shear hecomes nonlinear. Eyring’s activation theory gives only an order of
magnitude for 7y: 7y ~ 4 MPa [49]. Johnson and Tevaarwerk showed that their model
could describe experimental traction curves measured on a two-disk machine. However a
major drawback of the approach with respect to friction prediction is the fact that the
values of the parameters of the model need to be curve-fitted from measured fraction
curves,

Two years later a radically different approach was presented by Bair and Winer in two
companion papers [3, 4]. Their analysis of non-Newtonian behaviour of lubricants at high
shear rate was based on primary laboratory experiments using constant pressure stress
strain apparatuses and high-shear viscometers. They showed that the lubricants exhibited
a limiting shear stress and proposed the following relation between shear rate and shear
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stress:

y=-Z (1 - ) (1.2)

TL

The characteristic parameter of the model is the limiting shear stress 7,. It was shown
to vary approximately linearly with pressure 7, = 774 + vp where 770 is small (O(1)MPa)
and 0.03 <~ <0.12.

These two models have coexisted until today although they are very different hoth in the
constitutive equation and in the approach taken. Most of the corpus of numerical studies
of non-Newtonian effects in EHL contacts up to this date are either based on the Eyring
model or on some variation of Eq. 1.2. Only a small number of studies have considered
another type of model. Among them Jacobson and Hamrock presented [46] a model in
1984 in which limiting shear stress behaviour was obtained by allowing slip to occur at
the surfaces. Recently Ehret et al. [24] have also implemented slip-at-the-wall boundary
conditions in a non-Newtonian EHL analysis.

In order to predict friction, the
shear stress distribution has to be
solved and integrated numerically us-
ing the previously described rheolog-
ical models. The complexity of the
numerical studies has increased over
the years. The first analyses of John-
son and Tevaarwerk [48] and Bair
and Winer [4] and later of Gecim
and Winer [30] assumed simplified
pressure and film thickness profiles
or a Grubin-like inlet analysis and

A Newtonian
B visco-plastic|
C Gecim&Winer

; 0.4 D Gen. n=2 T

concentrated on calculating the shear
s i s E Gen. n=1.8

stresses and resulting friction coeffi- 5 s 5 Gen. et
c1e1_1t. The ﬁrst full nur.nerlcal s0- & Eyring
lution for a line contact incorporat- . . .
ing non-Newtonian effects was pre- a 0 1 2 3 4 5
sented in 1984 by Jacobson and Ham- ny/T,

rock [46] for a slip-at-the-wall limit- Figure 1.5: Rheological models. Limiting shear stress

ing shear stress model. It was fol- odel: 7, = 77, Eyring model 7, = 79 = 71,/3.

lowed in 1987 by Conry et al. [20]

and in 1991 by Sul and Sadeghi [68] for the Eyring model. Later on several variations of
the limiting shear stress model were implemented in line contact studies: the linear model
introduced by Wang et al. [76] and later used by Tivonen and Hamrock [45]; the circular
model by Lee and Hamrock [53], also used by Hsiao and Hamrock [43, 44]. A useful
generalization of the limiting shear stress models is given by Elsharkawy and Hamrock
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)"

where the linear model corresponds to n = 1 and the circular model to n = 2. A good
approximation of Eq. 1.2 is given by n = 1.8 whereas Gecim and Winer model [30] can be
approximated by n = 2.8. Fig. 1.5 illustrates the different rheological models mentioned.
It shows the rheological function giving the shear stress as a function of the shear rate for
the different models.

[27]:

=

The analysis has been extended to point and elliptic contacts by Kim and Sadeghi [51],
Holt et al. [42], Ehret et al. [24] for the Eyring model and Ehret et al. [24] and Sharif et al.
[67] for limiting shear stress models. In general for this configuration the implementation
of non-Newtonian effects in a numerical solver is not straightforward. Except for [51] and
[67] some approximation of the rheological function is used in the other works.

As can be seen in the previous paragraphs, the number of full numerical studies of non-
Newtonian EHL contacts is small. Moreover in most cases these studies focus on the effect
of the non-Newtonian behaviour on the film thickness and pressure profiles rather than
on friction prediction. When friction results are presented either the range of variation
of the operating condition is small and no general prediction formula is given, with the
exception of Jacobson and Hamrock [46], or the objective is to compare with experimental
results in specific cases.

In recent years it has become increasingly clear that to model accurately non-Newtonian
behaviour in EHL contacts not only the constitutive equation had to be correctly modeled
but also the other lubricant characteristics such as its piczo-viscosity. Since 1984 one
group of researchers has introduced viscosity pressure relations taken from high-pressure
physics to describe the viscosity pressure data they obtained with falling-body viscometers
and high-pressure viscometers [78, 6). They have shown that the shape of the pressure
viscosity curve could have an influence on the shape of the caleulated traction curves and
therefore on the kind of rheological model appropriate to describe non-Newtonian effects
in EHL contacts [7, 8]. Similarly they have shown that implementing shear thinning
effects could play a big role in the position and shape of the nonlinear region of the
predicted traction curves [9]. Generally speaking they have tried to introduce concepts
and approaches commonly used in rheology to elastohydrodynamic lubrication [11]. At
this point, however, this approach is only starting to be implemented in full numerical
analyses [52].

Summarizing, the state-of-the-art in modeling of non-Newtonian behaviour in EHL con-
tacts is composed of a few full numerical studies of elliptic contacts based on rheological
models described in their principle at the end of the 1970s. The results for line contacts
are more numerous but all in all no wide-ranging systematic analysis of the friction coef-
ficient in EHL contacts has been reported yet. The divide existing at the time between
the two approaches used for describing non-Newtonian effects has not been reduced. On
the contrary recent attempts to broaden the field of rheological studies in EHL contacts
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to piezo-viscous effects and shear thinning has only increased it.

1.3 Roughness

In elastohydrodynamic lubrication the rolling surfaces are generally fully separated by
a lubricant film. However, as a result of down-sizing and increasingly severe operating
conditions the film thickness in contacts in actual applications has decreased to a level
where the effects of surface roughness on the operation can no longer be neglected. This
does not necessarily imply that in response the surfaces have to be made smoother during
the manufacturing process. Alternatively, surface roughness can be designed in such a
way that it mainly consists of components that will deform elastically in the contact
and thereby prevent film break-through. This method is generally preferred considering
the cost of the surface finishing operations required to smooth the surfaces. To make
this approach successful requires a detailed understanding of the way surface roughness
deforms inside a contact. As measuring this deformation in-situ is only possible in model
contacts (between glass disk and steel ball) the main way to acquire such knowledge has
been by means of numerical simulations. At present, as a result of the improvements
in computational capability, numerical simulations can be performed using an explicit
description of the ronghness.

One way to study the influence of roughness is then to consider measured rough profiles on
one or both surfaces. The film thickness and pressure distributions are then calculated as
a function of time as the roughness goes through the contact [1, 77]. This approach seems
to be the closest approximation to “reality” but there are several drawbacks: a very large
number of discretization points is needed to represent the roughness profile and to obtain
an accurate estimate of the effect of these components on the pressure and film thickness.
Even with efficient algorithms the computing time for the transient calculation will quickly
be very large. Secondly, because of the complexity of most roughness distributions it is
very difficult to draw general conclusions let alone derive formulas that can be of practical
use in engineering design.

An alternative approach consists of a description of surface roughness in terms of its
harmonic components. The effect of each component can be studied individually. The
influence of complex roughness distribution can then be understood by superposition of
the individual components, see [72, 57] and references therein. This approach has proved
very efficient and has lead to simple engineering formulas for the prediction of roughness
deformation in EHL contacts.

The emphasis in the numerical studies has been the prediction of the roughness deforma-
tion i.e. the film thickness and the pressure fluctuations, and most studies were restricted
to the case of Newtonian lubricant behaviour. By contrast very little work has been done
regarding the prediction of the effects of roughness on friction. One of the few publica-
tions in which the friction generation in rough EHL contacts is studied is the paper of
Xu and Sadeghi [77] in which the effect of a real roughness distributions on friction is
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considered for a thermal Newtonian contact. In this paper a relation is inferred hetween
the statistical parameters characterizing the roughness distribution and the values of the
maximum friction coefficient, temperature, and pressure. The practical value of this re-
lation is questionable considering the difficulty of adequately characterizing a complex
roughness distribution with statistical parameters. Moreover non-Newtonian effects are
not taken into account.

1.4 OQOutline

Since the mid 1970s it has become clear that the frictional behaviour observed in EHL
contacts is mainly caused by a non-Newtonian response of the lubricant to shear and only
at high shear rates also by thermal effects. The number of numerical studies in which
frictional behaviour is investigated is very small compared to the number of numerical
studies in which emphasis is on the prediction of the film thickness in smooth and rough
EHL contacts. Also the nature of the studies on friction is very different. This may be
attributed to the fact that friction can relatively easily be measured whereas film thickness
measurements are only possible in model contacts. In any case this has led to the situation
where the level of knowledge regarding the prediction of film thickness is much higher than
that regarding the prediction of friction. So far no systematic theoretical study of friction
generation has been conducted. b

Yet, the basis on which such a systematic analysis could be built exists. From a numerical
point of view stable and efficient solvers based on multilevel techniques are available for
the Newtonian problem. From a rheological point of view several models have already
been defined and implemented describing a large range of lubricant response. For elliptic
contacts specifically the incorporation of non-Newtonian effects in a full numerical analysis
has been reported for the Eyring model and can be used in that case without modifications.
However, for limiting shear stress models some work will have to be done to increase the
efliciency and accuracy of the methods published until now. Finally, with respect to
the influence of roughness, an approach based on the study of harmonic components has
proved very useful for film thickness prediction and can also be used for friction.

The objective of this thesis is therefore to start a systematic study of friction generation
in EHL contacts by combining the existing numerical techniques, rheological models and
approaches for considering roughness effects. The equations describing the non-Newtonian
EHL problem and a description of the numerical methods used in the numerical solver are
described in Chapt. 2 and Chapt. 3 respectively. The numerical solver is then applied
extensively to the isothermal prediction of the friction coefficient for the rolling sliding
contacts in Chapt. 4. A simplified analysis giving a correction of the friction coefficient
due to thermal effects is described in Chapt. 5. Finally the consequences of introducing
roughness on the level of the friction obtained for the smooth contacts is studied in Chapt.




Chapter 2

Theory

The introduction of non-Newtonian lubricant behaviour in EHL contact models involves
the derivation of a modified Reynolds equation to describe the flow of lubricant. Non-
Newtonian effects are usually taken into account by means of effective viscosities so that
the flow equation keeps the same form as the Reynolds equation for Newtonian lubri-
cants. The complexity of the expressions giving the effective viscosities depends on the
rheological model considered and the number of assumptions made regarding the distri-
bution of the shear stresses in the film. For line contacts the expressions are simple. For
elliptic contacts, the expressions are in general complex but simplified expressions can be
obtained by making assumptions on the form of the rheological function [42] or by using
a perturbational approach [24].

In this chapter the derivation of a non-Newtonian Reynolds equation for elliptic contacts is
given based on a perturbational approach. It results in new and more accurate expressions
for the effective viscosities for limiting shear stress models. For the Eyring model the
expressions given by [24] are used. Subsequently, the film thickness, force balance, and
friction coefficient equations are presented. For completeness the corresponding set of
equations for the line contact problem is also given. The Hertzian dry contact parameters
are used to obtain the dimensionless equations. The equations describing the dependence
of the Iubricant viscosity and density on pressure are listed next. The chapter ends with
the derivation of a set of independent parameters characterizing the contact.

2.1 Rheological models

The different types of rheological response of a lubricant subjected to shear in a rolling /slid-
ing EHL contact have already been described in Chapt. 1. The mathematical formulation
of the models considered in this work is presented hLere. Of interest are the rheological
function f(7/7,) which relates the shear rate to the shear stress and a characteristic shear
stress 7,.. The characteristic shear stress for the Eyring model is named the Eyring stress

11
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and denoted 7, = 7o. It represents the shear stress beyond which the fluid starts to behave
as a non-Newtonian fluid. In practice its value is obtained from the slope of measured
traction curves [59]. For the limiting shear stress models the characteristic shear stress
is the limiting shear stress 7. = 77, where 77 is taken to depend linearly on pressure:
7 (p) = Tro + P with 779 small (10° Pa in this work) and 0.03 < v < 0.15. The limiting
shear stress proportionality coefficient 7 can be obtained independently of traction tests
using a constant pressure stress-strain apparatus (3, 5], a high-pressure chamber [41] or a
falling ball apparatus [47] (see also [64, 65]).

The rheological function f(r/7,) relating the shear rate 7 to the shear stress 7 is defined
by:

ny=T7f(7/7) (2.1)

Evring f(r/m0) = mo/7sinh(7 /7o)
General model
Limiting shear stress | f(r/m) = (1 = (r/7)") ="
Gecim & Winer f(r/m) = /T tanh™ (7 /7L)

Table 2.1: Rheological functions.

For the models considered: the Eyring model, the general limiting shear stress model [27]
with n = 1 (linear model [45]), n = 1.8 and n = 2 (circular model [53]) and Gecim and
Winer’s model [30], f(r/7,) is given in Table 2.1. Its behaviour as a function of (t/7) is
shown in Fig. 2.1. The main difference between the limiting shear stress models is the
rate at which they approach the limiting shear stress 7.

: T
G
A / B
1k
C D =
0.8 1
& A Newtonian
“C_D.G I F B visco-plastic]|
C Gecim&Winer
0.4 r D Gen. n=2 T
E Gen. n=1.8
0.2 F F Gen. n=1 B
G Eyring
0 : : : !
0 1 2 3 4 5
/T

Figure 2.1: Rheological models. Limiting shear stress model: 7, = 7z, Eyring model 7. = 19 =
7./3.
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Figure 2.2: Geometry of the gap.

2.2 Elliptic contact

2.2.1 Non-Newtonian Reynolds equation

In this section, an equation describing the flow of a non-Newtonian lubricant through a
narrow gap of known geometry is derived. See Fig. 2.2 for a description of the geometry
of the gap. If the lubricant behaves as a Newtonian fluid the equation reduces to the
traditional Reynolds equation.

The following assumptions are made about the contact and the flow:

1. The forces due to inertia are neglected.

2. The thickness of the lubricant film is small compared to the characteristic dimensions
of the contact area.

3. In addition, because in this work sliding occurs only along the running direction (x-
direction) the shear stresses in both direction are taken to be only partially coupled,
i.e. the equivalent shear stress equals the shear stress in the main direction of shear
Te = /T# + T; ~ 7, and the mean shear stress in the y-direction is negligible. Then
the shear stresses are given by:

dp dp

Te = T + 22—, Ty = 27—
T m 8.1' Yy 6]} (22)
with 7, the mean shear stress in the running direction. Starting from the shear rate shear-
stress relations the flow equation relating the pressure to the film thickness is derived for

both the Eyring and the limiting shear stress models. The shear stress shear-rate relations
read:

du v
7783

— Tyf(ﬁf.r) (2.3)
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Substituting Eq. 2.2 in Eq. 2.3 gives:

du dp ap du _ 9p

ngi(Terz—)f(Tm-}-z z

) e -
A dz”’ T8z ~ oy

%) (2.4)

flrm+2

For a Newtonian lubricant Eq. 2.4 can be integrated twice with respect to z in closed
form. The Reynolds equation is obtained after substitution of the resulting equation
in the integrated equation of continuity. The introduction of non-Newtonian effects by
means of the rheological function f(r) makes the integration in closed form impossible.
The alternative is either to approximate the rheological function at this point in such a
way that it becomes possible to integrate Eq. 2.3 in closed form or to keep the integrals
and try to find a way to evaluate them simply at a later stage. The first method has been
used by Ehret et al. [24] and by Holt et al. [42]. In [24] a perturbational method based
on a first-order Taylor expansion of f(7,, + 2(dp/dz) with respect to z is used leading to:

. 8p ap !
+z2—) = JlTm &—1 T, 2:5
f(Tm 83:) f(Tm) + alf( m) (2.5)
The resulting shear stress-shear rate equation can be integrated twice with respect to 2
in closed form to obtain a modified Reynolds equation just as in the Newtonian case.
Greenwood [34] has shown that for the Eyring model, the loss of accuracy is negligible.

For the limiting shear stress model however, because of the asymptotic behaviour of the
rheological function, using a first-order approximation at this stage leads to large errors.
The modified Reynolds equation is therefore derived in a different way for the Eyring and
the limiting shear stress models. For the Eyring model the approach described in [24] is
used whereas for the limiting shear stress models the integrals are kept.

Eq. 2.4 and Eq. 2.5 are integrated once with respect to z to obtain the velocity distribution
across the film. No-slip boundary conditions are used: u = u;, v =0at z = —h/2 and
u=1ug, v=0at z=nh/2

Limiting shear stress Eyring
nu(z) = nui + Tm / flr) d2’ + nu(z) = M +(z— E)Tnlf(Tm} 4
Jny2 2 2
dp . Pl E rpp ' 871)
o [, fode () + Tl ()
nu(z) = o [ flrg)e ds (2.6) z? Gp
Ay S w2 ‘ nu(z) = Ea_y (2.7)

At the same time an equation for the mean shear stress is obtained:
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Limiting shear stress Eyring

7(ug — uy) — g—i’fg
5L

T — (2.8) ~onlug —wy)

Tm f ( Tm /TT ) h

(2.9)

where I; and I, are defined below. Egs. 2.6 and 2.7 are integrated once more with
respect to z to obtain the volume flow rates. Using mass conservation finally results in
the modified Reynolds equation:

Limiting shear stress Eyring
d I ) P 3!3] : i
Rl e G TS I | d ; h* 3
du [( Ia ) o . [(f('fm) + T f'(Tin)) f‘)ﬁgﬂ +
8 [[48817] _ o[, .ph?adp
Ay | "ndy 5 f(’fm)m@ -
2 |:(u1h+(urgu1)é) p] =0 (2.10) d (uz+w
dz ! % 5 hp| =0 (2.11)
with:
h/2 h/2
I =[ flm) dz, I, :f flre)zdz
—hf2 —h/2
h/2  pz B2 pz
I =f / flr) d2'dz, Tp= / / flr)z d2'dz (2.12)
—hf2d—nj2 Jnj2d—ns2 _

The modified Reynolds equation is defined on the domain 2, < < 2y, ¥ <y < - On
the boundaries of the domain p = 0 and a complementarity cavitation condition p > 0 is
imposed everywhere. Compared to Eq. 2.11 obtained for the Eyring model, Eq. 2.10 still
contains integrals that have to be evaluated. This adds to the complexity of the problem
and makes the numerical solution of the flow equation rather cumbersome.

At this point however the rheological function f(7) for the limiting shear stress models can
be replaced by a first-order Taylor expansion with respect to z with little loss of accuracy.
Indeed by using the first order Taylor expansion once that the Reynolds equation has been
completely derived rather than in the first stages of its derivation, the loss of significant
terms in the equation can be prevented. In that case the integrals I; to I can all be
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evaluated straightforwardly vielding:

I =hf(ry)

b= g

b=t - L 2 ()

h= 2 ) + e 2 () (213)

Substitution of Eq. 2.13 in the modified Revnolds equation, Eq. 2.10, gives:

d ph® dp d hp ph? Op

E {f(’f’m)m&c] ak 5 Kf(”fm) 39 (Tm)) 127?514] -

%) g + 1y h 9p f'(Tm) _ :
e (T e wgg e ) ok =0 @1

The influence of non-Newtonian effects can now be represented by effective viscosities
giving the following Reynolds equation for the two models:

Limiting shear stress Eyring
L {Phg @] 4 [Ph3 313] - 9 [ ph® 9p] . @ [ ph® Op
Ox (121, 0x|  dy |12n, 0y o [%g} T [12%3—3;] i
= _ = 0
5% [imph] =0 (2.15) 5z [tmph] =0

where iy, = uy — (u2 — u1)/12(0p/dx) f'(70n) [ f (7). The effective viscosities can be
obtained from flexible and easy to evaluate relations.

Limiting shear stress Eyring
Ui
= f Tm
e ( ) 77_? = f("rm) + Tmf’(’—m)
0o hadp ,, =
. Frm) — e (Tm) (2.16) nl = f(rm) (2.17)
Yy

In the case of the limiting shear stress model a correction to the wedge term also appears
giving an explicit dependence of the Reynolds equation on the slip velocity. Both models
depend on the value of the mean shear stress given in both cases by:

n(ug — wy)

Tl Chnd )= — (2.18)
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Figure 2.3: Comparison between 77/n,(a) and n/n,(b) obtained using an analytical integration
of Eq. 2.12 for the calculation of 1, and 7, given in Eq. 2.10, Eq. 2.16 and the relation given
in [24]. n =2, (k/2)(Op/0z) = T, — Tm.

To check the accuracy of Eq. 2.16 17/n, and n/7, following from this equation are compared
with the exact analytic solution in the particular case of n = 2 for which the integrals
of Bq. 2.12 can be evaluated in closed form. In order to give an upper bound for the
error (h/2)(dp/dx) is taken at its maximum value, 77, — 7,. The result can be seen in
Fig. 2.3 in which the expression obtained with the perturbational method of [24] (Eq.
2.17) has also been plotted. Eq 2.16 leads to a slight underestimation of the effective
viscosities and therefore of the non-Newtonian effects whereas Eq. 2.17 results in a very
large overestimation.

Summarizing, by applyving the perturbation approach at the end of the derivation of the
modified Reynolds equation rather than at the beginning, the simplicity and flexihility
shown in [24] is preserved but a much more accurate approximation of the effective vis-
cosities is obtained.

2.2.2 Film thickness equation

The contact dimensions are very small compared to the dimensions of the bodies in
contact such that their undeformed geometries can be approximated by parabolas, see
Fig. 2.2. The gap h(x,y) is obtained by adding the elastic deformation due to a pressure
distribution p(z,y) to the undeformed geometry described by parabolas. The mutual
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approach & represents the distance by which both bodies come closer to each other.

xg " da' dy'
Mz9) == 2R, TE’ /f \/ z—a )+ (y—y')? (2.19)

2.2.3 Force balance equation
For steady state conditions the equation of motion reduces to:

i bl dedy= | (2.20)

The value of the mutual approach § in the film thickness equation must be found such
that the force balance equation is always satisfied.

2.2.4 Friction coefficient

The friction coefficient is calculated in the middle of the film by integrating 7, over the
computational domain:

[ gmdzdy

=iy (2.21)

2.2.5 Dimensionless equations
Eqgs. 2.15 to 2.21 are made dimensionless using the Hertzian dry contact parameters:
X =2z/a, Y =y/b,

H=h/e, A=d/c
P:p/ph’a ”:m:"m/Tr

(BfR e gy e
= |- ; b=a/k
&) (5) :

a’ K 3

C= o5 PH =57 R=(R;'+R;")"

with:
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The ellipticity ratio x depends uniquely on R,/R,:

R, , K-&
R =Pk (2.22)

where K = K(1 — k%) and £ = £(1 — k?) are the complete elliptic integral of the first and
second kind respectively, see [75].

Eqgs. 2.15 to 2.21 can now be written in dimensionless form.

2.2.5.1 Modified Reynolds equation

The dimensionless modified Reynolds equation for the elliptic contact can be written as:

Limiting shear stress Eyring
~r73 ~773
) o jror o] [ -
X | Mix 0 Ay Y T 5 2
3] S 8 T'(T) [pH] =0 (2.24)
— N = X
ox [(1 57X f(’rm))pH} ’ ox

(2.23)

with A = (6ngusa)/(c*pr). On the boundary of the domain X, < X < X, ¥, <Y <Y,
P = 0 and a complementarity cavitation condition P > 0 is imposed everywhere. The
dimensionless mean shear stress 7, is given by the same relation in both cases:

7S
T () = M= (2.25)
where:
- APEK 2p; K
N, = g Ny = 2.26
o 6E'T,.’ : Bl ( )

The dimensionless effective viscosities are given by:

Limiting shear stress Eyring
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2.2.5.2 Film thickness equation

The dimensionless film thickness equation reads:

gl i i
H(X,)Y)=-A+8X*+(1-S)Y? +— Al _ (2.29)
s/RA(X - X2+ (Y -Y)2

where & = 8(x) is a shape factor due to the ellipticity of the contact:

£ — KK

RS

(2.30)

The value of the dimensionless mutual approach A is determined by the dimensionless
force balance equation.

2.2.5.3 Force balance equation

2
/] Pdxdy =" (2.31)
s 3

2.2.5.4 Friction coefficient

Finally a reduced friction coefficient is defined as:

Limiting shear stress Eyring

7 pr [fsm(puP)TmdX dY

B=p = Y
Te(pu)  Tolpw) [[g PdX dY _ pg [[¢TmdXdY

2.3 Line contact

The present study is mainly about friction in elliptic contacts. However for completeness
line contact situations are also studied as they represent the limit case for very wide
elliptic contacts x < 1. The equations describing line contacts are listed below.
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2.3.1 Non-Newtonian Reynolds equation

For the Eyring model, the non-Newtonian Reynolds equation has been derived by Conry
et al. [20]:

B [pfﬁ 'QD} a L by oh] =10 (2.34)

o 120, dx dx

on the domain =, < = < x with p(z,) = p(x) = 0 and a complementarity cavitation
condition imposed everywhere p > 0. The effective viscosity is given by:
sinh ¥ — X cosh ¥ h dp

n/ne = —3 5 cosh(r, /), with: £ = %7 O (2.35)

The mean shear stress follows from:

nus —wq) =

—_— 2
hrg  sinhE (2.26)

sinh(r,/m) =
For limiting shear stress models, the non-Newtonian Reynolds equation can be directly
deducted from the analysis for the elliptic contacts, see Sect. 2.2, as 7, = 7,. In that case
it reads:

a [ ph® op '
—_ — | — = = 23
ox [lQnI B:L'] [Emph] =0 (23

where the effective viscosity is given by:

_ ) uy — uy Op f'(7m)
e =F(Tm)y G =Um = =55 ) (2.38)

The mean shear stress follows from:

Tonf (Ten/T7) = fn(mg ) (2.39)

2.3.2 Film thickness equation

Introducing the reduced radius of curvature R~' = Ry + R5?, the film thickness equation
reads:

p(z') da! (2.10)

%2 4
i e
(z) = flg+2R TE"_[ghl

with ap the distance at which the elastic deformation is zero and hg a constant such that
the force balance equation is satisfied.

Lo

B
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2.3.3 Force balance equation

The force balance equation is given hy:

/'p(a:) dr = w (2.41)
J 5

2.3.4 Friction coefficient

The friction coefficient is calculated in the middle of the film by integrating 7,,, over the
computational domain:

B fs T O

=t (2.42)

2.3.5 Dimensionless equations

Eqgs. 2.34 to 2.42 are made dimensionless using the Hertzian dry contact parameter for
this problem:

X = z/b, H =nl/5, Hy = hoR/V* (2.43)
P= P/pn, Tm = Tm/Tr (24-1:)

{8wR 2w
= = 2 45
b nE"’ PE= " (28

2.3.5.1 Non-Newtonian Reynolds equation

with:

For the Eyring model, the dimensionless Reynolds equation is defined on the domain
X, € X < X, with P(X,) = P(X,) = 0 and the complementarity cavitation condition
P > 0 everywhere.

o [pH® aP a ..

with A = (12nu,, R?)/(b*pyr). The effective viscosity is given by:
3sinh ¥ —X¥coshX P

0/ix =— =3 cosh(7, /), with: & = NgHaX (2.47)
The mean shear stress follows from:
7 b
sinh(7,) = N, ﬁ (2.48)

"H sinh &
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with:

Mol L' . pub
! 16prb . 2RT, s

For the limiting shear stress models, the corresponding equations are:

a [pH*oP d S or f’(fm)) _ ] -
_ —En 9.
axX [J]I)\ BX] oX {(1 670X f(Tm) Al 0 L2a0)

n/ix = f(Tm) (2.51)
fmf(';m) = T]% (2'52)

Finally, the dimensionless film thickness, force balance and friction coefficient equations
become:

2.3.5.2 Film thickness equation

X7 1d .
H(x) = Hy + 5 " [ln |X - X'| P(X")dX' (2.53)
2.3.5.3 Force balance equation
fP(X)dX = (2.54)
s 2
2.3.5.4 Friction coefficient
Limiting shear stress Eyring
st TL(PaP)Tm dX ; FndX
=t s s (2.55) i P - Js X (2.56)

mlpn)  Tulpn) [s PdX —h T L PdX
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the value of « that would be used for Barus’ pressure-viscosity relation. The introduction
of non-Newtonian effects results in a fourth parameter S taking into account the amount
of slip in the contact and the rheological behaviour of the lubricant:

= SE' { nyus 1/275(11/@)2
s (ﬁ) =5 (2.69)

where 7. is 7y for the Eyring model and 7, (pgy) for the limiting shear stress models.

The parameters @ and A used in the set of dimensionless equations are given in terms of
M, L and & by:

5= (1287T3)1/3 (IGW(E - HZIC)C")I/S (2.70)
3M1 £4(1 — K2)2KS '

_ L (3M\'® w2k(1 — k2)? i _

= (T) (16(5‘ = 5216)2) 27

In the rest of this work the operating conditions are described by specifying the values of
M, L, a, D, S and 7.

i

Chapter 3

Numerical techniques

The system of dimensionless equations describing non-Newtonian EHL contacts has been
derived in Chapt. 2. This chapter describes the numerical methods used to solve this
system. They are based on multilevel techniques. The application of multilevel techniques
to EHL problems has meant a real breakthrough in the complexity of the problems that
can be studied. The use of multilevel techniques, pioneered by Lubrecht [55] and Venner
[71], is now becoming quite widespread owing to publications describing the method in
great detail, see [74]. In the field of computational EHL the method has become almost
common knowledge. Consequently, only a short description is given here. The reader
interested in more details is referred to [74].

The chapter starts by listing the discretized system of equations for non-Newtonian elliptic
contacts. The numerical approach used to solve this system is introduced by a short
description of multilevel techniques. A description of a suitable relaxation scheme for each
equation and of some implementation details follow. Subsequently, a few typical examples
of shear stress distributions and traction curves are shown. The chapter is concluded with
an illustration of the numerical accuracy of the friction coeflicient calculations.

3.1 Discretized equations

The dimensionless system of equations describing the lubrication of non-Newtonian EHL
contacts derived in Chapt. 2 can not be solved analytically in most cases. A numerical
solution using an iterative procedure based on some sort of relaxation is generally required.
The system of equations is therefore discretized with second-order accuracy using finite
differences on a grid of mesh-size hy = hy = h. The discretized non-Newtonian Reyvnolds
equation is given hy:

27
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X X X . X P
€121 — (fi—1/2,j + €i+1/2,j)P1’«" + Gy ilicig +

e
2 E;:j—l/ZPi,j—l - (Gg:j—l,@ + Eg.j+1/2)Pf;j +k E3.;;+1/2P2\j+1 B
12
1.5p;Hij — 2pi-1,;Hi—15 +0.50 9 Hiaj 0 (3.1)
h
where:
x (BH?/7ix )i + (PH? [Tix)i-1,4 x  _ (PH¥x)isg + (BH [Tix)ig
€i-1/24 = 2\ v Girt/2g T 2 ‘
y (BH? /Ty )iy + (PH? [Ty )ig—1 v _ (AR ay)ige + (PH? /Ty )i
€172 = 2\ v G2 T 27
(3:2)
For the Eyring model j; ; = pi; while for the limiting shear stress models:
S(H-—nH_LJfTﬁmuﬂ)
u“:_;i‘ 1_7\’{:_ o] -J — b 33
mJM(iM% R Fmea) -

The Reynolds equation is defined on the domain X, < X < X, ¥, < X < Yy, with
boundary conditions P = 0 on the domain boundary. A complementarity cavitation
condition is imposed on the pressure P;; > 0, Vi, j.

The elastic deformation, i.e. the last term in Eq. 2.29 is discretized by approximating
the pressure by a piecewise constant function Py in X — h/2 < X < X} + h/2 and
Yi—h/2 <Y <Y/ + h/2. The discrete deformation at (X3, Y)) is given by:

nx ny

Wi = Z Z KinjiPry (3.4)

k=0 I=0

with Kikﬂi

1 Yi+h/2 Xp+h/2 dx'dy’
B f _— (3.5)
T Jyimnp Sx-npr /RH(X — X7+ (Y - Y7)
An analytical solution can be found for Eq. 3.5 reading:
1 s v ” e s
Kikjy = R( Xp| sinh 1()/11/)‘1?) + |¥;| sinh 1(}*10/}71)
—| X | sinh ™Y,/ Xrn) + |Yp|sinh ™ (X / Yp)
—| X, sinh ™ (Yin/Xp) + |Yia| sinh ™ (X,/ Vi)
+| X sinh ™ (Vi / Xom) + | Vo] sinh ™ (X / Vo)) (3.6)
where:
)(p :JY?j*lYk-‘-f'l/Q, -‘Ym ZX-.L' —Xk—h/Z,
Y, =(Y; — Y1+ h/2)/k, Yu=(;-Y1-h/2)/x (3.7)
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Finally, the discretized force-balance equation is given by:

nx ny

PIPIE TR (3.8)

i=0 j=0

o

3.2 Multilevel techniques

Iteratively solving systems of equations resulting from the discretization of partial differ-
ential equations on a domain with a large number of discretization points using relaxation
is generally a very time consuming process. Most relaxation schemes significantly reduce
the error in the first few relaxations but then the convergence stalls. Multilevel methods
aim at finding a solution in the same number of operations as there are discretization
points i.e. at developing a solver of O(n) complexity where n is the number of points on
the discretization grid. To achieve this multilevel techniques rely on an understanding of
the local nature of relaxation processes which causes the slow convergence [14].

In many cases an analysis of the relaxation process shows that the high-frequency com-
ponents of the error are quickly reduced in the first relaxations hence the good initial
performance of the algorithm. Lower frequency components then dominate the error and
as they are only slowly reduced the convergence stalls. Here, high and low frequency
are relative to the discretization mesh-size. Most relaxation schemes can therefore be
described as good smoothers but bad solvers.

The good smoothing properties of relaxation schemes can be used to develop [ast solvers
in the following way: consider the error on a grid of mesh size h. After a few relaxations
the error is smooth and can be represented without loss of accuracy on a coarser grid,
say a grid of mesh-size H = 2h. On the coarse grid, the relaxation scheme can be applied
once more to solve the error. The convergence will automatically be faster because the
mesh-size has increased. Moreover, on a coarser grid the error is not so smooth anymore
and fast convergence can be expected in the first few relaxations. Once the solution has
been found on the coarse grid it can be interpolated to the fine grid to correct the solution
obtained there. If the fine grid has a large number of discretization points it is likely that
on the coarse grid the number of points will still be significant and the rate of convergence
will accordingly be low. However, an even coarser grid can then be used to increase the
convergence speed of the solution process on the coarse grid in the same manner. In this
way a recursive algorithm can be built which quickly reduces all the components of the
error using different grids. Eventually a grid is reached containing only a few points where
the equations can be solved in only a few iterations. To increase the convergence even
further the coarse grids can also be used to provide an accurate initial approximation: the
problem is defined on a coarse grid, solved using the recursive algorithm described above
and its solution interpolated to the fine grid where it is used as an initial approximation.
This procedure can also be applied recursively and is called Full MultiGrid or FMG.

Summarizing, the multigrid principle is to use grids of different size and to reduce on each
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grid the high-frequency components corresponding to this grid. A few relaxations only
are needed on each grid as smoothing is required and not solving. For more information,
the reader is referred to Brandt [14], Briggs [17] and Venner and Lubrecht [74].

The relaxation schemes ensuring acceptable convergence rates and stability are described
next for the modified Reynolds, film thickness and force balance equations. Note that the
discretized equations shown above correspond to the equations on the finest grid. On the
coarser grids the right hand side of the equations changes to reflect the fact that on those
levels the error is solved. Because the equations are non-linear the Full Approximation
Scheme (FAS) is used, see [74].

3.3 Reynolds equation

3.3.1 Newtonian case

The treatment of the Reynolds equation for a Newtonian lubricant is explained first
as it forms the basis on which non-Newtonian effects are incorporated. The Reynolds
equation is an integro-differential equation as the film thickness depends on the pressure
with coefficients that change abruptly and significantly over the domain. The domain
can be divided in two regions: a low-pressure region where the differential character of
the equation dominates and a high-pressure region where due to piezo-viscous effects the
Poiseuille terms become negligible and the integral character of the equation dominates.

In the low-pressure region, the Reynolds equation reduces to the anisotropic Poisson
equation with varving coefficients:

0 [ 0P, 20 | 9P| _ vy
X {E\B‘J TRy [an] =) (3.9)

Simple one-point Gauss-Seidel relaxation is stable and efficient if the anisotropy is not
too pronounced. If the ellipticity is important, one direction becomes loosely coupled to
the other and the convergence rate decreases [75]. An acceptable convergence rate can be
restored if the coupling is artificially reinforced by means of line relaxation [2].

In the high-pressure region, the Reynolds equation reduces to:

0(pH)
0X
In this case too, there is a loss of coupling in one direction and line relaxation is required.

Line Gauss-Seidel relaxation is however not stable in this case. Due to the integral
character of the equation the changes introduced by the relaxation do not remain local

=0 (3.10)
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[71]. The changes can be forced to remain local using distributive relaxation in which
changes are applied not only at one point but are also distributed to its neighbours
according to a given pattern.

The boundary between the two regions is set by the value of e/h?. It can be shown
that when ¢/h* < 0.3 line distributive Jacobi relaxation should be used whereas when
e/h? > 0.3 line Gauss-Seidel may be used without stability problems [71]. In practice,
when solving for one line, the criterion is applied on the preceeding and following lines.
If for both lines, ¢/h? > 0.3, line Gauss-Seidel is applied. If not line distributed Jacobi
is applied. This ensures that, in highly loaded cases, line distributive Jacobi is used
whenever there is a risk of instability.

In addition to these two regions, one may also distinguish a third: the cavitated region.
The analysis of the effect of cavitation on the convergence rate of the multigrid solver
has shown that an additional point Gauss-Seidel relaxation sweep along the cavitation
boundary is needed to restore a good convergence rate. In the solver build here, point
Ganss-Seidel has been used in this region.

Finally, because the equations are non-linear under-relaxation is needed. The under-
relaxation factors used in this work range from 0.8 to 0.3 for the line Gauss-Seidel, 0.6
to 0.1 for line distributed Jacobi and 0.6 to 0.1 for the point Gauss-Seidel scheme used
along the cavitation boundary.

3.3.2 Influence of non-Newtonian effects

The introduction of non-Newtonian behaviour affects the character of the Reynolds equa-
tion in several ways:

1. The anisotropy is increased due to the difference between 7y and 7y. However
this is not harmful for the stability and efficiency of the solver as line relaxation is
already applied.

2. In the high-pressure region large non-Newtonian effects may lead to a decrease of
fix and/or 7y such that the Poiseuille terms become significant. It does not happen
for the Eyring model for which the decrease of the effective viscosities is moderate
but may occur for the limiting shear stress models.

In this case patches appear where Gauss-Seidel relaxation should be applied in the midst
of a distributed Jacobi region. The changes of film thickness and pressure required to solve
the equation are then too large and cause instability. From a physical point of view, the
occurrence of significant distortion of the film and pressure profiles in the central region of
the contact is not likely. For this reason, it seems best to decouple almost completely the
film and pressure calculations from the shear stress calculations. In practice whenever H
and P are such that 7y = 7 + NoHOP/OX > 1, Ty is chosen very close to but smaller
than 1 for the calculation of the effective viscosities. It means that the pressure and
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film thickness profiles are not allowed to vary significantly from their Newtonian values.
It is obviously a crude approximation but the consequences for the friction coefficient
calculations are small. Indeed at this end of the traction curve the values of the friction
coefficient are close to 1 and the error made can not be large. Note that the perturbational
approach described in [24] does not explicitely use (h/2)(dp/dz). The approach proved
nevertheless unstable due to the overestimated decrease of the effective viscosities in the
high-pressure region. This lead Ehret et al. [26] to use Newtonian film thickness and
pressure profiles for their traction calculations.

As a consequence of the approach chosen, the limiting shear stress models can not be
used for the study of roughness effects on friction later in this work. Indeed the variation
of friction due to roughness are caused by pressure and film thickness variations that the
present approach can not properly describe. The analysis of roughness effects presented
in Chapt. 6 is therefore limited to the Eyring model.

Summarizing, the effects of non-Newtonian behaviour are negligible for the Evring model
and voluntarily limited for the limiting shear stress models. The relaxation schemes
developed for the Newtonian case can therefore be applied without changes to the solution
of the non-Newtonian Revnolds equation.

3.3.3 Implementation

Two different schemes are required to solve the non-Newtonian Reynolds equation. The
switch from one to the other depends on the value of min (e¥/Rh% ¢"/Rh?). Line Gauss-
Seidel relaxation is used if min (¢* /h?, €" /h?) > 0.3 . Otherwise line distributed Jacobi
is used.

3.3.3.1 Line Gauss-Seidel relaxation

The non-Newtonian Reynolds equation is relaxed along a line of constant Y to obtain the
pressure. At each relaxation sweep a new approximation 15” in each point ¢ for a given j
is computed simultaneously from the previous approximation f’é,j, 15” = 15” +4; and the
changes are applied immediately. The value of the changes ¢; can be obtained from:

1725l (Prvg +0in1) — (Pog + &) + 1 15 [(Bimrj + Gim1) — (Pij +4)] "

h2
e eic1plPugnt = (Pig + 0l + €y plPrijor = (P + )]
hZ
1.55;jH; ; —2.08;_13H;_1; +0.58i_0;Hi_s

=0 (3.11)
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where for each 1, I:L;J = Hi_j +> K0 The magnitude of the kernel decreases so fast
with distance that this summation may be approximated by its three first terms only:

i+1
H—i,j = H,;,j “F Z Ix’i’k?j’jdﬁ;c (3.12)
k=i—1
Eq. 3.11 may be rewritten:
Gir10i1 + Gl + qim10im1 + Giadi_o + qi_30i_3 = Ty (3.13)

where 7; ; is the residual. This leads to a band matrix which can be solved using Gaussian
elimination. The coefficients of the band matrix are given by:

X s s
€r1yeg  LBPi K014 ;
Qiv1 = . hé L — J!aI - (3.14)
_ ‘5\;1/2,;' + ffiuzj . ngg;i-ﬁ-l/? + 63,}—1/2
2 2 ’ 02
1501 K — 2.0pi 1K1 (3.15)
Iy
X e oo . ; -
S 155K — 2.00; 1K 14155 +0.88-03Ki-25-144 (3.16)
h-1 h? hy
—2.00; 1K 15955+ 08P 0K 04 09
Gio = — Pi 1,5 1, T,J.Jh Pi 2,j4Yi—2,3-2.4.9 (3.17)
xT
flg— _0.58i-2Ki—0-344 (3.18)

hy

3.3.3.2 Line distributed Jacobi relaxation

For the line distributed Jacobi relaxation, the changes to the pressure computed at one
point of the line are distributed to its neighbours. This is equivalent to saying that at a
given point the new pressure P;; results from the summation of the changes coming from
neighbouring points and of the old approximation P, j, P;; = Pij +6;; — (Si41; + 0i—15 +
8;j+1+0ij-1)/4. The changes are applied only at the end of a complete relaxation sweep
over the whole contact. They are obtained from:
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E;:/'2-1/2,3'[(R’H.j + Giv1 — (8 + Giv2)/4) — (Pij + 6 — (6i—1 + dit1)/4)] +

h
X 12l (Pt + Gim1 — (Gim2 +63)/4)) — (Piy + i — (d5-1 + 141} /4)] 4
h
5 €irralPigr1 = 0if4 — (Pij+ 6 — (61 + diy1) /4)]

K % =+
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ke
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Ly

Kiijj—1+ Ki;;;+1)/4. Taking once again the three most important terms of the summa-
tion only, the coeflicients of the matrix to solve for each line are:
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3.3.3.3 Cavitation boundary

The Reynolds equation has a complementarity equation imposing P > 0. In practice
whenever P;; < 0, P;; is set to 0. The position of the cavitation boundary is not fixed,
it may vary during the iterative solution process. Line relaxation schemes lack flexibility
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to treat free boundary problems: the equation is solved at each point of the line with the
information of the previous entire sweep. If the solution at point (¢, 7) is put to 0, this
information is not known to the following points which will take into account the previous
value of the pressure at point (i, j). The resolution of the Reynolds equation in the points
close to the cavitation boundary as calculated in the previous sweep should be decoupled
from their neighbouring points. In that way a sort of point Gauss-Seidel relaxation is
introduced. In practice, when a point is close to the boundary, the extra-diagonal terms
of the matrix are put to zero.

The position of the free boundary is local information. Accordingly, in a multilevel solver
the localisation of the boundary should be done on the finest level. On coarser levels
and in the transfers between the different levels special treatment is used close to the
cavitation boundary, see [74].

3.4 Film thickness equation

The evaluation of the elastic deformation integral in a straightforward way requires O(n?)
operations, with n the number of points on the grid. If the evaluation is performed in
this way the gain in complexity obtained by applying multilevel methods to the other
equations is lost and the overall complexity of the EHL solver would be O(n?). However
Brandt and Lubrecht [15] showed that it was possible to reduce this complexity to O(n)
for smooth kernels and O(nlnn) for singular smooth kernels.

The method developed is called multilevel multi-integration. It takes advantage of the
smoothness of the kernel to interpolate it on coarser grids where the evaluation can be
performed at a fraction of the cost needed on the fine grid. If the kernel is singular, as the
elastic deformation kernel, the errors introduced by interpolating the kernel close to the
singularity need to be corrected. Local correction patches are then defined. The size of
the patches depends on the kernel [75] but can be taken small enough such that at most
O(In(n)) extra work is done per grid-point.

In practice the film thickness is calculated at the end of a relaxation sweep with the new
values of the pressure obtained from the Reynolds equation.

3.5 Force balance equation

The force balance equation is relaxed indirectly by changing the value of the mutual ap-
proach A. This happens on the coarsest level only. One reason for this is that the changes
caused by the relaxation of the force balance equation are global, i.e. low frequency, and
should therefore be relaxed on the coarsest level. A second reason is that on the coarsest
grid, relaxation is efficient enough to accommodate the changes in film thickness caused
by the relaxation of the force balance equation. There A may be changed and the residu-
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als of the Reynolds equation reduced significantly before transferring the corrections to a
finer level. On the finest level only very small changes of A would be acceptable without
ruining the stability of the scheme and in order for these changes to be accommodated
quickly.

3.6 Characteristic results and numerical accuracy

The system of equations describing the lubrication of non-Newtonian EHL contacts is
solved numerically according to the method described in the previous sections. The
output of the calculations are the film thickness, pressure and shear stress distributions.
From the latter the friction coefficient can be calculated.

It is well-known that the film thickness and pressure profiles obtained with a lubricant
following the Evring model differ only slightly from Newtonian results [20, 51, 42]. The
ratio of minimum to central film thickness varies slightly with slip and the amplitude
of the pressure spike decreases. The approach chosen in this work to consider limiting
shear stress models also results in distributions close to those obtained for a Newtonian
situation. In all calculations performed in this work, the main characteristics of Newtonian
EHL contacts were therefore found. An almost flat central plateau with a constriction
at the outlet for the film thickness and a roughly semi-ellipsoidal pressure distribution
approaching the dry contact solution for high loads and/or low speeds, see Fig. 3.1.
For more information about the characteristics of Newtonian EHL contacts the reader is
referred to [71].

The pressure, film thickness and shear stress distributions obtained for the Eyring model
are presented for one case in Fig. 3.1(a-c). In Fig. 3.1(d) the shear stress distribution
obtained using the circular model (n = 2) for the same conditions is shown. The conditions
are M = 500, L = 6 corresponding to a Hertzian pressure of 0.789 GPa, 7, = 4 MPa or
~ = 0.06 and the slip is 0.1%. The lubricant is incompressible and its pressure-viscosity
behaviour is given by Barus.

For the Eyring model the shear stress distribution has a semi-ellipsoidal shape with a
maximum around 7 = 875. With the circular model, the limiting shear stress is reached
under those conditions over a large part of the contact zone.

The variation of the shear stress distributions and of the friction coefficient with slip are
presented in Fig. 3.2(a-f) for the Eyring and the circular (n = 2) models. A circular
contact is considered lubricated with either an incompressible fluid following the Barus
viscosity-pressure relation or a compressible fluid following the Roelands viscosity-pressure
relation. The conditions are identical to those taken to calculate the distributions shown
in Fig. 3.1. The slip is varied from 0.005 to 10%. The shear stress distributions are
presented by means of cross-sections in the running direction (Y = 0, Fig. 3.2(a)(b)) and
in the transverse direction (X = 0, Fig. 3.2(¢)(d)). The overall reduced friction coefficient
is given as a function of slip in Fig. 3.2(e)(f).
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Figure 3.1: Pressure (a), film thickness (b) and shear stress distributions (c)(d) obtained with
the Eyring model (a-c) and the circular model (d). M =500, L =6, S =0.1%, 7o =4 MPa or
4 = 0.06. (257x257).

In this figure it can be seen that the shear stress increases with slip for both rheological
models. For the Eyring model the shape of the shear stress distribution remains roughly
constant but its magnitude increases with slip. For the circular model, at low slip values
the shape does not change but only the magnitude increases with slip. However at higher
slip rates, the limiting shear stress is reached in the centre of the contact and a 7 = 7,
region spreads from the centre to the sides of the contact.

The pressure-viscosity relation chosen influences both the magnitude and the shape of
the shear stress distribution. The Roelands relation predicts significantly lower values for
the viscosity than the Barus relation for p > 0.5 GPa. Accordingly, in the centre of the
contact where p ~ py the shear stress is lower for the contact where the lubricant follows
Roelands’ relation. At the edges of the contact where the pressures are low, however,
both models predict almost identical shear stress distributions.
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Note that in the case of the circular model, beyond a certain value of the slip rate the
limiting shear stress is reached in most of the contact and the differences between the
results of the different piezo-viscous models decrease. This is reflected in the traction
curves, see Iig. 3.2(e): for the large values of S the predicted values of the reduced
friction coefficient fi for both models are quite close. At that point g is close to its
asymptotic value of 1. By contrast, for the Eyring model the traction curves for the
different piezo-viscous relations do not come closer to one another, see Fig. 3.2(f). On a
log-linear graph the traction curves show a linear increase of i with S beyond S ~ 1%
which is characteristic for the Eyring model.

The numerical accuracy of the friction coefficient calculations can be estimated by com-
paring the value of i obtained using different grid densities. This is presented in Table
3.1for M =500, L =6, S=0.1%, 79 =4 MPa or v = 0.06 and S = 1%. The reduced
friction coefficient is given for both rheological models for the case of a piezo-viscous be-
haviour according to Barus’ relation, fig, and according to Roelands’ relation, jip. The
difference between the values obtained on two subsequent grids, |@" — "], is also given.
The difference decreases in all cases by a factor 4 or more when the mesh-size is halved
showing that the friction coefficient is converging with second order accuracy. The oscil-
lation observed in the case of the circular model and Barus’ piezo-viscous behaviour is
not unusual: it can also occur in a similar way in film thickness caleulations and may be
caused by the pressure spike.

xn Eyring circular
TV Be (A" pe [1A"=A"T] me [IF"-p"[] pr [[&"—&"
65x65 | 6.6515 3.0607 0.8266 0.5694
129x129 | 6.3298 0.3217 2.7562 0.3045 0.8121 0.0145 0.5165 0.0529
257x257 | 6.2669 0.0629 2.6915 0.0647 0.8095 0.0026 0.5046 0.0119
513x513 | 6.2572 0.0097 2.6758 0.0157 0.8101 0.0006 0.5017 0.0029
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Figure 3.2: Shear stress distributions 7(X, ¥ = 0)(a)(b), 7(X = 0,Y)(c)(d) and reduced friction
coefficient fi(e)(f) as a function of slip. For the shear stress distributions the curves correspond
in increasing order of magnitude to S = 0.01, 0.1, 1 and 10%. Left column: limiting shear
stress model; right column: Eyring model. (257x257).

Table 3.1: Reduced friction coefficient i as a function of the grid density.

Between the values of i obtained on a grid of 257x257 and 513x513 points, the difference
is less than 1%. All calculations in this work are performed on grids of 257x257 points so
the error is generally below 2%.




Chapter 4

Friction in isothermal smooth
contacts

The tools developed to analyze numerically non-Newtonian EHL contacts have been de-
scribed in Chapt. 3 together with examples of shear stress distributions and traction
curves. In this chapter the numerical solver is used for an extensive analysis of the fric-
tion generation in isothermal smooth EHL contacts. A large number of cases is considered
covering a wide range of variations of the operating conditions for both types of rheological
models: the Eyring and the limiting shear stress models. It is shown that a unique param-
eter exists that characterizes the friction generation. In terms of this new parameter all
computed results collapse on a generalized traction curve. The shape of this curve reflects
the type of rheological model chosen. A validation of the observations is then performed
using experimental results published in the literature. The chapter is concluded with a
comparison of the Eyring and limiting shear stress models. It is shown that a relation
between 7y and 77 can be found such that both models predict the same friction.

4.1 Contacts, conditions, lubricant characterization

In isothermal smooth EHL contacts, the level of friction depends on three factors: the
properties of the lubricant, the operating conditions and the contact geometry. The
properties of the lubricant are its rheological parameters, ¢ or 7y, its compressibility
and its piezo-viscous behaviour. The operating conditions (load, speed ete..) can be
represented by three dimensionless parameters M, L and S, see Chapt. 2. Finally, the
contact geometry can be a line (band) Ry /Ry = 0, elliptic Bx/Ry # 1 or circular
Ry /Ry = 1. Friction generation is mapped over the entire range of variations by means
of 6 cases. The cases are defined as:

41 .
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circ 1B Circular contact with an incompressible lubricant following
Barus’ pressure-viscosity relation, e = 22 GPa™'.

circ CR Circular contact with a compressible lubricant following Roe-
lands’ pressure-viscosity relation, o = 22 GPa~! and zp = 0.67.

cire CY Circular contact with a compressible lubricant following Yasu-

tomi’s pressure-viscosity relation corresponding to HVT 650 at
100°C, o = 17.7 GPa™!, see Appendix.
Ry/Ry =1/2 CR Elliptic contact with a compressible lubricant following Roe-
lands’ pressure-viscosity relation, o = 22 GPa™! and zp = 0.67.
Ry/Ry =1/5 CR Elliptic contact with a compressible lubricant following Roe-
lands’ pressure-viscosity relation, a = 22 GPa~! and zx = 0.67.
line 1B Line contact with an incompressible lubricant following Barus’
pressure-viscosity relation, o = 22 GPa™'.

For each case, the operating conditions are varied widely: 50 < M < 1000, 5 < L < 20.
This corresponds to Hertzian pressures ranging [rom py = 0.3 to py = 4 GPa. The slip
is varied from very low values up to 2%. For the Eyring model 2 < 75 < 8 MPa. For the
limiting shear stress models 0.06 < v < 0.1 and 779 = 10° Pa.

4.2 Numerical analysis

An analysis is performed to identify the mechanism of friction generation using the friction
data computed for the cases described above. Using multiple regression on the case in
which the smallest number of parameters appear, circ IB, it can be shown that the friction
depends on a combination of the parameters M, L and S. Subsequently, the physical
quantities represented by this combination are identified resulting in a parameter that
reflects the mechanism of friction generation.

4.2.1 Eyring model

The Eyring model is considered first. In view of deriving a correlation between the
variables describing the operating conditions and friction, the case presenting the smallest
number of variables is chosen to start with: circ IB. The friction data calculated for the
range of values of M, L and S is analyzed with multiple regression. It can be shown that
the influence of the various variables on the reduced friction coefficient fi can be combined
in one parameter, see Fig. 4.1.

p=f(S"*ML?) (4.1)

Using @ = L/7 (3/2;‘1{)1/3., Eq. 4.1 can be rewritten as:
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Figure 4.1: Computed reduced friction coefficient, fi, as a function of SY*ML?. Circ IB.

= f(5a") (4.2)

Taking the high power of @ as a representation of the viscosity, the reduced coefficient
of friction appears to be related to the viscosity at the centre of the contact multiplied
by a parameter representing the slip. This strongly suggests that the underlying physical
parameter is the shear stress in the centre, 7,

= f (”(i’qﬂ) = f (%) (4.3)
1

where H, = 1.7 M~Y°L%* is the central film thickness, see [71]. Eq. 4.3 provides an
understanding of the mechanism of friction generation where Eq. 4.1 only gives a com-
bination of variables. It indicates that the friction coefficient is determined by the shear
stress in the centre of the contact, 7.. This is confirmed by Fig. 4.2(a) where the reduced
friction coefficient is plotted as a function of 7.: the data points now fall closer together
on a single line, a friction “master” curve.

For other viscosity-pressure relations or contact configurations the mechanism of friction
generation remains the same: the shear of a highly pressurized mostly uniform lubricant
film in the centre of the contact. This is shown in Fig. 4.2(b) where the friction results
of the other cases are added and also fall on the same line as circ IB when plotted as a
function of 7.

The friction mastercurve obtained is accurately approximated hy:

i = sinh™(7,/5) (4.4)
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Figure 4.2: Computed reduced friction coefficient, fi, as a function of 7. (a) Circ IB, (b) all
cases. The dotted line is given by Eq. 4.4.

The shape of the curve reflects the rheological model chosen. The constant 1 /5 was
found by curvefitting the data points and can be seen as the result of an averaging of the
shear stress distribution over the contact. This is confirmed by the fact that a simplified
analytical analysis of the shear stress distribution in the centre of the contact would give
a similar value, see [35].

Summarizing, it seems that for rolling/sliding EHL contacts in which the lubricant exhibits
non-Newtonian behaviour following the Eyring model, the coeflicient of friction is directly
related to a characteristic shear stress 7.. This 7. reflects the mechanism of friction
generation, the shear of a highly pressurized film of lubricant. The form of the resulting
generalized traction curve, Eq. 4.4, mirrors the rheological model chosen.

4.2.2 Limiting shear stress models

It is expected that the choice of the limiting shear stress type of models instead of the
Eyring model has little influence on the mechanism of friction in sliding contacts. Only the
response to shear and the magnitude and behaviour of the resultant friction coefficient will
differ. Hence, the parameter 7. should still be the characteristic parameter determining
the value of 7 for the limiting shear stress models with Eq. 4.4 replaced by another form.

This is illustrated below with the circular model, n = 2. The friction data obtained for the
case circ IB is plotted in Fig. 4.3 as a function of 7. Note that now S = (L/a)?/(E'tL(pH))

and i = ppy /7o (pu)-

The figure shows that the data points follow a single curve but a large spread occurs in

B
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Figure 4.3: Computed reduced friction coefficient i as a function of 7. for the circular model
(n=2). Circ IB.

the transition region where the friction coefficient starts to approach its limiting value and
its rate of increase with 7. decreases strongly. It implies that 7, still crudely represents
the friction generation mechanism but apparently it is not only the shear in the centre
that determines the value of fi.

To identify the origin of the spread, the shear stress distribution obtained with the circular
.model along the central line (Y = 0) for increasing slip i.e. increasing friction coefficient,
is compared to that obtained under the same conditions with the Eyring model, see Fig.
14, '
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Figure 4.4: Dimensionless shear stress profiles in the running direction (Y = 0) for the Eyring
model and the circular model. Cire IB, M = 500, L = 8, 79 = 2MPa, v =0.1.
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The shape of the distribution for the Eyring model remains roughly the same when the
slip increases: it is dominated by the shear stress value in the centre of the contact. For
low slip values the use of the circular model gives a shear stress profile with a shape
similar to that obtained with the Eyring model but very soon the limiting shear stress is
reached and a region where 7 = 77, starts to spread. So, beyond a certain point, the level
of friction is no longer determined entirely by the value of 7. at the the central point but
by the growth of a 7 = 7, patch. An unifying parameter for this case needs to reflect the
fact that a proportion of the contact is covered by a 7 = 7, patch. This can be achieved
by calculating 7. using the average value p instead of py. However, this should be done
only for high values of py as for low values it is still the value of the shear stress in the
centre that determines the frictional behaviour as for the Eyring model. A simple way to
switch from the use of py to j is to define a pressure quantity p* which approximates py
for low values of py and p for large values of py:

" pr/10°
= 1 —_— Y — 4_,r
P PH ( Xl +pH/109 ( Q)

The value of v in Eq. 4.5 depends on the contact geometry: for circular and elliptic
contacts, p = (2/3)py so x = 1/3 whereas for line contacts p = (r/d)py so x =1—7/4.

Fig. 4.5(a) shows the same data points as plotted in Fig. 4.3 but presented in terms of
7(p*) where p* is given by Eq. 4.5. The points now fall much closer together.

The friction results obtained for the other cases are now plotted together with circ 1B in
Fig. 4.5(b) as a function of (7(p*), i). The friction data computed for the other cases
fall on the same curve as the circ IB case, which confirms that 7.(p*) accurately represents
the friction generation mechanism.
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Figure 4.5: Computed reduced friction coefficient fi as a function of 7,(p*) for the circular model
(n=2). (a) circ IB, (b) all cases. The dotted line is given by Eq. 4.7.
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Finally Fig. 4.6 shows the data obtained for the other three limiting shear stress models
plotted as a function of 7.(p*).
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Figure 4.6: Computed reduced friction coefficient i as a function of 7.(p*) for the various
models. The dotted line is given by Eq. 4.7.

Just as for the circular model the friction data collapses on a single curve when plotted as
a function of 7.(p*). The shape of the mastercurve differs slightly for each limiting shear
stress model. Using n = 2.8 to approximate Gecim and Winer’s model with the general
model, the equation of the mastercurves is given by:

sinh ™ (7.(p*))

=
Il
—_
=
(=]
==
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The differences between the mastercurves are however small. The models vary in the rate
at which they approach the limiting shear stress but on the scale of the mastercurve where
7, varies by several orders of magnitude the difference is not significant. For simplicity,
Eq. 4.6 can be replaced by a unique relation independent of n:

i = ~—4/3—— - 4.7
g [1 * sinhl(fc(pm} 1)
where:
R A (48)
= _ (L/a)? § o ~ pa/10° .
S= Bl p* =px (1 x_lerH/mg) (4.9)

with x = 1/3 for circular and elliptic contacts and x = 1 — /4 for line contacts.

By slightly modifying 7. to account for the difference in the friction generation mechanism
compared to the Eyring model, the [riction results obtained for all cases with the limiting
shear stress models can be represented on a single curve which is accurately approximated
by Eq. 4.7. Note that again the shape of the curve reflects the rheological model itself.

4.3 Experimental validation

In the previous section it has been shown that the calculated friction data can be brought
together on a single curve when plotted in terms of a characteristic shear stress. In this
section, an experimental validation is performed using measured traction curves published
in the literature. Two points need to be verified. Firstly, whether the experimental
traction data obtained under various conditions follows a single line when plotted as a
function of (7, fi). Secondly, whether the curve thus found follows Eq. 4.4 or Eq. 4.7.

The experimental validation requires an accurate and independent knowledge of the lu-
bricant characteristics, v or 7, and of the piezo-viscous behaviour. Independent in this
context means that the values have not been derived from the tests that are being repli-
cated or from similar tests. In particular, the value of 7y is usually derived from the slope
of measured traction curves. A prediction of measured traction curve with the Eyring
model is meaningless if 75 is obtained in this manner. However, the experimental re-
sults can still be used to verify whether 7. brings the various friction results together.
On the other hand, the limiting shear stress proportionality constant 7 can be obtained
independently enabling a full validation of the limiting shear stress mastercurve.
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Lubricant | py (GPa) | T(°C) | uy(m/s) | ~ | o(MPa)
oP4E 0.6 100 0.5 0.06 2.7
S50 0.8 100 1 0.07 5
HVIB50 0.8 100 1 0.028 7
DOP 1.04 90 6.4 0.03 9

DOP 1.27 90 6.4 0.03 10

Table 4.1: Operating conditions of the experiments.

4.3.1 Experiments

The accuracy of the validation depends on the accuracy of 4 and of the viscosity. With
respect to the viscosity only traction tests under conditions within the range of viscos-
ity measurements have been used. With high-pressure viscometers this corresponds to
pressures lower than 1.4 GPa at high-temperatures and lower than 1 GPa at ambient
temperatures. The Free Volume (Yasutomi [78]) relation is used to approximate the mea-
sured viscosity data. The limiting shear stress proportionality constant v is known with
an accuracy of around 20 to 30 %. This has little influence on the horizontal position of
the data points on the (7., i) graph considering that 7, varies by several orders of mag-
nitude. However, this inaccuracy can result in significant vertical shifts: g ~ u/v. It is
therefore possible that values of fi larger than 1 are observed.

Traction data: The friction data is read from experiments conducted on two-disc
machines reported in the literature. Traction curves were measured for a synthetic
polyphenylether 5P4E, a mineral oil HVI 650 and a traction fluid Santotrac 50 (S50)
for line contact conditions, see [29] and a di(2-ethylhexyl)phthalate (DOTP) for elliptic
contact conditions, see [39].

Viscosity: The viscosity should be obtained independently of traction measurements
to avoid the need for assumptions regarding the rheological behaviour of the lubricants.
Here, data obtained with falling body viscometers is used, see [78] for 5P4E, [8] for HVI
650 and [7] for S50 and DOP. The viscosity at the Hertzian pressure is calculated using the
Free Volume relation within the range of the high pressure viscometer i.e. the Free Volume
relation is not used to extrapolate values at lower temperatures or higher pressures than
actually tested.

Limiting shear stress: For all cases but one the limiting shear stress proportionality
constant 7 is obtained independently from traction tests. It is taken either from measure-
ments on a constant pressure stress-strain apparatus [5] (3P4E) or from measurements
done with a high pressure chamber [41] (HVI 650 and S50). Unfortunately, for the case
of DOP no such data is available and a value based on the traction curves has been used.

Eyring stress: The values of 7y are read from the 7, = f(p, T) graphs given in [28].

Table 4.1 gives the conditions of the traction tests considered for the different lubricants
as well as the values of v and 7p.
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4.3.2 Validation

The experimental data is plotted in terms of (7, f) in Fig. 4.7 for the Eyring model
and the limiting shear stress model. In the figure it can be seen that the data indeed
groups around a single curve. However whereas the data points for S50, HVI 650 and
DOP are relatively close together the results for 5P4E are shifted to the right-hand side
of the graphs.
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Figure 4.7: Experimental traction results plotted as a function of (7., ). The dotted line is
given by Eq. 4.4 (Eyring model) or Eq. 4.7 (limiting shear stress model).

This discrepancy may be explained by thermal effects in the contact. Although the
traction experiments were carefully controlled to ensure isothermal conditions a slight
increase of temperature 7 may already have a large effect on the viscosity and thus on
the value of 7, resulting in a shift of the data points to the left. This is illustrated by
Fig. 4.8(a) and (b) in which the same friction results are presented but with 7. calculated
assuming a slightly different temperature, see table 4.2.

Lubricant | py(GPa) | T(°C) | 6T(Lim) | dT(Eyr)
SP4E 0.6 100 15 7
550 0.8 100 i} 0
HVIG30 0.8 100 0 0
DOP 1.04 90 0 0
DOP 1.27 90 0 10

Table 4.2: Temperature increase 4T for the Eyring and limiting shear stress models.

The spread in the results is decreased. Another explanation for the case of the limiting
shear stress models has heen suggested by Bair [9]. Tt ascribes the shift of the data points
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to the right of the curve to shear-thinning effects. These effects do not change the shape
of the traction curve but result in a shift to higher shear rates. This corresponds quite
well to what is observed in Fig. 4.7(b).
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Figure 4.8: Experimental traction results plotted as a function of (7, ji) at T + 0T, see Table
4.2. The dotted line is given by Eq. 4.4 (Eyring model) or Eq. 4.7 (limiting shear stress model).

Allowing for a slight temperature increase in the centre of the contact the experimental
data confirms that 7. accurately represents the mechanism of friction generation in sliding
EHL contacts. For the limiting shear stress model the use of independent viscosity and
limiting shear stress measurements enables a fully independent validation of Eq. 4.7.
The good agreement observed strongly supports the limiting shear stress mastercurve as
prediction tool for friction in rolling/sliding EHL contacts.

4.4 Comparison of the mastercurves

The friction generation in isothermal contacts can now be mapped simply using Eq. 4.4
and Eq. 4.7 for the two main types of rheological models. The experimental validation has
however underlined that Eq. 4.4 predicting the friction coefficient for the Eyring model
can hardly be applied in practice as values of 7y obtained independently of traction tests
are not available. Without entering the discussion about whether that disqualifies the
Eyring model as a whole, the presence of one expression for the Eyring model and one for
the limiting shear stress model allows for a mathematical comparison of the two models.
Realizing that after all both types of model seek to describe the same phenomenon,
the objective of this section is to find out whether a relation can be found between the
characteristic parameters of both models, 7y and 7, such that the predictions of Eq. 4.4
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The calculated values of 7y are quite close to the measured values allowing for some
uncertainty in the value of 7. The comparison is less favorable for DOP. The explanation
of the discrepancy may be found in the limited range of shear rates considered which fails
to cover much of the linear region suitable to measure 7.

Summarizing, based on a mathematical analysis an equation relating 7y to 77 has been
found. It allows for independent prediction of friction using the Eyring model. Applied
to a particular case, the difference between limiting shear stress and Eyring models was
shown to be small.

4.5 Conclusions

A large set of friction data has been calculated mapping friction in rolling/sliding EHL
contacts for the Eyring and four different limiting shear stress models. The analysis of
the data has shown that the friction generation is dominated by the shear of the highly
pressurized lubricant film in the centre of the contact. This can be characterized by a
characteristic shear stress 7., calculated at the Hertzian pressure (Eyring model) or at an
intermediate pressure (limiting shear stress model). Plotting the friction data in the form
ft = f(7) all data points collapse on a single curve with the form of f(7.) reflecting the
rheological models used.

An experimental validation has been performed for both mastercurves using measured
friction data published in the literature. For the Eyring model the verification has been
largely hampered by the fact that the Eyring stress 7y can not be obtained independently
from the traction tests. For the limiting shear stress models a fully independent validation
gives a good agreement between the mastercurve and the experimental data.

A comparison between the mastercurves derived for both types of rheological model results
in a relation between 7y and 7, (Eq. 4.17) such that both models give the same friction.
Using Eq. 4.17 independent friction predictions can now be performed with the Eyring
model.

Chapter 5

A simplified approach of frictional
heating

In rolling/sliding EHL contacts, the shear stress in the lubricant film is so large that
frictional heating will not be negligible. The heat generated in the film may affect the
structure of the material close to the surface. It also leads to a reduction of the friction
coefficient due to a decrease of the viscosity of the lubricant in the centre of the contact.
At large shear rates, the isothermal analysis presented in Chapt. 4 needs to be corrected
for thermal effects.

To introduce thermal effects requires an extension of the model with the energy equation
to be solved across the film simultaneously with the other equations. It adds a dimension
to the problem as a description of the flow across the film is needed, see [51, 68]. To
avoid this complexity one could either assume a given temperature profile shape across
the film (parabolic for instance [54, 25]) which effectively removes the need for an analysis
across the film, or assume given film thickness and pressure profiles and concentrate on
solving the energy equation, see [56]. The validity of these simplified approaches relies on
an accurate description of the flow of the lubricant. The existence of several rheological
models encompassing behaviour ranging from Eyring to slip bands shows that the exact
characteristics of the flow are still unclear. The models coexist because each of them can
describe the overall frictional behaviour with some accuracy.

In this chapter a simplified thermal model for rolling/sliding EHL contacts is described
based on the friction mastercurves derived in the previous chapter and the results of the
analysis of thermal effects in dry contacts by Bos [13]. The surface temperature increase
and friction coefficient predicted by the simplified model are compared with numerical
results obtained with full numerical simulations to check the validity of the assumptions.
Subsequently the predictions of the model are validated against measurements of surface
temperature increase and of traction curves.

o
<t
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5.1 Model description

As a first approximation the rolling/sliding EHL contact is considered with respect to
thermal effects as a dry contact in which the value of the friction coefficient is given by
the mastercurves (Eqgs. 4.4 and 4.7). Assuming a semi-ellipsoidal heat supply distribution
combined with a constant value of the friction coefficient results in a heat distribution
close to that obtained in EHL contacts where the shear stress distribution is almost semi-
ellipsoidal. By considering the contact as a thermal dry contact it becomes possible to
use the function fits derived in [13] giving the maximum surface temperature increase.
Note that using a dry contact analysis implies that the surface temperature distributions
are equal on each surface.

The temperature increase in the contact influences in a nonlinear way the value of the
friction coefficient. Using a parabolic heat distribution across the film and taking advan-
tage of the fact that the mastercurves require the calculation of the shear stress at one
point in the contact only, the maximum temperature in the film can be related to the
maximum surface temperature calculated with the dry contact analysis. The relation ob-
tained is solved numerically giving the maximum temperature increase at the surface and
at mid-film as well as the value of the friction coefficient incorporating thermal effects.

Below some of the results of the dry contact analysis by Bos [13] are recalled. The
simplified model for the heat distribution across the lubricant film and its combination
with the dry contact results are explained next.

5.1.1 Dry contact results

The local temperature rise of sliding bodies has been studied by Bos [13]. Assuming a
heat source distribution which is either uniform or semi-ellipsoidal, he calculated numer-
ically the surface temperature distribution of a semi-infinite body moving along the heat
source. For the case of two bodies with conductivity of the same order of magnitude the
partition problem is solved assuming the surface temperatures to be equal at each point
of the contact area. The closed form function fits derived for the maximum and average
temperature increase are recalled below. According to the thermal dry contact theory,
the surface temperature increase 6T is related to the friction coefficient 1 by:

0Ts = cgpt (5.1)
Where ¢ takes into account the thermal properties of the surfaces and their velocities:

27 pu vV ablus — ui| -
0Ts = cspl = ——<—rr 77— 5.2
o = co = A 6:2)
with:

0= |@sty + ( \/fT)] Py d=lp (53)
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a7
where:
.5 2 2k i
s=-e'"— = and S(k) = *MIC 1 (5.4
2 Tl+k 1+ il
For k =1, S(x) reduces to unity. @ is defined as:
o, — 0, + 16,
S e (5.5}
with:
t = max [ 0, —2 i i
] ) g = sign(uyus)min(p, 1/p) (5.6)

and p = \/Pey/Pe;. Note that for velocities in the same direction A=
\/ .

The Valules of the s depend on the shape of the heat supply distribution and on whether
the maximum or average temperature increase is calculated. Here a semi-ellipsoidal hea;t
51.11)[).]3" distribution is assumed. In that way the heat supply distribution approximates the
distribution that would be obtained for an EHL contact \\'here the pressure clis;tributio s
semi-ellipsoidal with a constant friction coefficient. In that case: 6 =0 375‘ [ — 0 5891181;
(maximum) or 6; = 0.281250, 6, = 0.322991 (average) S

5.1.2 Lubricated contacts

Accor(hl}g ‘.[o the dry contact model the maximum surface temperature increase is related
to the friction coefficient by: '

(STSZ{"“‘;“:C.T_T_,: -
gpnﬁ (0'7)

with 7. = 79 for the Eyring model and 77, (py) for the limiting shear stress model.

Due to thermal effects the friction coefficient in Eq. 5.7 does not take its isothermal value
})ut a lower value. To calculate the thermal friction coefficient the temperature inc:reasé
in the middle of the lubricant film, 67}, needs to be known. If the mastercurves Eq 44
or Eq. 4.7 are used to calculate fi then the temperature increase needs only to be inO\-\:Il
at the centre of the contact. Assuming that at 2 = y = 0 and 2 = h/2 th;: temperatur

increase is 67} then Eq. 5.7 becomes: | e

AT = gy—i ) 5
5 (.5pP[£1(TG+<)7}) (5.8)
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Assuming that the heat generation is uniform in the film volume and recalling that the
surface temperatures are equal then the profile of the temperature increase across the film

is parabolic and:

= ¢'n 5.9)
5T, = 75 + 1 (

Where ¢” is the heat generated by a unit volume. For a circular contact:

mo_ (ug —w)f (5.10)
wah
Using pt = fi(7,/py) and expressing f as a function of py and a, Eq. 5.9 can be rewritten
as:

T i o o : _ pah(uz — w) :
3T, = 0Ts + cip—H,(,z(Tg +6T)) with: ¢ = K (5.11)
Introducing Eq. 5.8 in Eq. 3.11 results in an equation for the maximum temperature
increase in the lubricant film:

0T, = ;_T(CS + )Ty + 6T) (5.12)
H

The temperature increase influences the value of the friction coefficient through a decre_ase
of the viscosity and a change of the value of 7,. The reduced friction coefficient (7o +47;)

is given by:

S L/a 24 TU 5T 2
ity + o) =  (CGLL A0 ) (5.13)

where f is given by Eq. 4.4 and Eq. 4.7 for the Eyring and limiting shear stress models
respectively.

The viscosity is assumed to vary with temperature according to 7j(To+07;) = 7(Ty) f,(6T7).-
f2(0T)) may take several forms. The simplest relation was given by Barus and reads:

Rl = e (5.14)

Another relation commonly used is that of Vogel:

— 3,07, o
£2(6T)) = exp (1%5—%) (5.15)
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For the cases considered in this work the differences between both models are negligible.
In what follows the dependence of viscosity on temperature follows Barus’ relation.

The variation of the characteristic shear stress with temperature is quite unclear. Just as
for the viscosity it is assumed that 7,(Tp + 0T) = 7(To) f+(61;). For the Eyring model,
Evans and Johnson [28] showed that 7, varies roughly linearly with temperature. For one
oil it was found to decrease with temperature whereas for two others it increased. Let
f=(6T}) now be given by:

woT,

fT(ﬁTl) =1- TU(TO)

(5.16)
where w may be positive or negative.

For the limiting shear stress, the few measurements available suggest that v, the limiting
shear stress pressure dependency coefficient, decreases roughly linearly with pressure [5]
[41]. At some point however the rate of decrease of v with 67 has to slow down to prevent
meaningless negative values. The following relation is used:

v = exp(—w(T + 273)) (5.17)

where v, is a reference value, see Appendix, and T is given in °C. The fit of Eq. 5.17
with the experimental values is also shown in the Appendix. Given the value of Y=
at T' =Ty, the value at T 4 07 is given by: y(Ty + 67}) = Yofr(8T}) with:

f=(6Th) = exp(—wdT)) (5.18)
Defining:
SiL 25 0 &
To(To) = %T’%) (5.19)

Eq. 5.12 reads for the Eyring model:

o wdT ) 1 | Te(To) exp(—fB6T))
0 =(cs+e)— (1 — inh 5.20
= (e e (1 20 syt | 20 i (5.20)

70(Tv)

and for the limiting shear stress model:
1
T 4/3

8Ty = (¢ + )= exp(—wdT)) |1+ / (5.21)

Pu wosag exp(—/341;)
sinh (TC(TOJM

Egs. 5.20 and 5.21 can be solved numerically without difficulties. Once 47} is calcu-
lated the corrected value of the friction coefficient simply follows from (o +6T)). The
maximum surface temperature increase 67 is given by Eq. 5.8.
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5.2 Numerical validation

The model described above is based on various simplifying assumptions. To check that the
assumptions are valid, the results of the model are compared to numerical data obtained
using a more complex model, see Kim et al. [52]. The complex model consists of a
full numerical solver incorporating both non-Newtonian effects (Eyring model) and the
energy equation. The temperature distribution across the film is however assumed to be
paraholic such that no resolution in this direction is needed.

The complex model has been used in [52] to predict the surface temperature increase in
a pure sliding steel ball/sapphire disc contact and traction curves in a steel ball /steel
disc configuration. The results shown here are taken from Fig. 1, 5 and 6 of [52]. The
predictions of the simplified model are compared in both cases to the results of the complex
model.

Free Volume
N | Teo Ay Ay(GPa™') B By(GPa™') ¢4 Cs
107 | -30.4 | 309.1 0.3064 0.2186 29.99 10.264 27.04
Roelands
o a(GPa™t) ZR 4
0.14 22.9 0.5885 0.075
Steel ball Sapphire disc Lubricant
Density(kg/m?) | 7850 3850 884
Thermal con- | 47 36.7 0.125
ductivity(W
m/K)
Specific 460 800 2100
heat(J/kg
K)

Table 5.1: Lubricant characteristics and thermal properties of the steel ball and sapphire disc.

Table 5.1 gives the lubricant characteristics and the thermal properties of the steel ball
and the sapphire disc. For the surface temperature increase calculations both the Free
Volume and the Roelands piezo-viscosity relation are used whereas for the calculation of
the traction curves only the Roelands relation is considered. The Eyring model is used
assuming an Eyring stress value independent of temperature: 75 = 3.3 MPa.

The maximum surface temperature increase obtained for both models is listed in Table
5.2. In this table the subscript p means that Roelands’ relation was used whereas the
subscript  indicates that the Free Volume relation (Yasutomi) was used. The result of
the full numerical simulations are indicated by the reference [52]. Two sets of results are
given for the simplified model. One obtained using 79 = 3.3 MPa, the other using 7 = 3.8
MPa. The agreement between the models is very good. For the largest velocity values
considered the simplified model predicts a slightly larger temperature increase than the
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Lubricant | T,(°C) R, (m) E’'(GPa) S

HVI6E50 60 0.0127 286 2
pr(CPa) 0.88 1.02 1.2
Uy (M /5) 02505 (0751 02505 |07 |1 025|105 |0.75]|1
0Ty [52] 12 18.5 | 23 26 16 24 29 31 22 31 37 41
0Tr 12 18.8 | 234 | 26.5 | 155 [ 23.9 | 29.5 [ 33.3 | 20.3 [ 30.8 | 37.6 | 42.3
0Tr(3.8 MPa) | 13.3 | 20.5 | 25.2 [ 282 [ 17.2 | 26.2 [ 31.8 | 35.5 | 22.5 33.7 | 40.6 | 45.1
3T [52] 125 | 185 | 21 23 16 225 | 26 285 21 30 34 36
0Ty 123 | 185 | 22.2 | 24.7 | 26 23.5 | 28.1 | 31.1 | 20.9 | 30.2 | 35.8 | 39.5
0T#(3.8 MPa) | 13.5 | 19.8 | 23.5 | 25.8 [ 17.6 | 25.3 | 20.8 | 32.6 | 22.9 | 32.4 | 38 41.5

Table 5.2: Comparison of the surface temperature increase predicted by the complex model
[52] and by the simplified model. 8 = 0.124, 0.14 and 0.162 for py = 0.88, 1.02 and 1.2 GPa
respectively.

complex model. At lower velocity values the agreement is remarkably good. In all cases
the differences are lower than 10 %.

The predicted traction curves are shown in Fig. 5.1(a) for one load and three different
values of the velocity and in Fig. 5.1(b) for one velocity and three values of the load.

0.04 : . 0.04 ; ; -
0.03 0.03
50.02 =.0.02
0.01 . 0.01 f ©o<py = 0.88GPa -
#=p = 1.02GPa
L &HApy = 1.2GPa
0 1 1 1 1 L L
0 0.5 1 1.5 2 0% 0.5 1 1.5 2
s s
(a) (b)

F_igur.e 9.1: Comparison of traction curves predicted by Kim et al. [52] (plain lines) and by the
simplified model (dashed lines). Left: py = 0.88 GPa; right: u, = 0.5 m/s. 7 = 3.3 MPa.

Fig. 5.1 shows that the traction predicted with the simplified model is lower than with the
complex model but that the rate of decrease of i due to thermal effects is very similar.
The traction curves obtained with the simplified model appear to be shifted slightly
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downwards compared to the traction curves given by the complex model. There is a
difference at very low slip values already, see Fig. 5.1(a) for instance, for which thermal
effects are negligible. This implies that the isothermal predictions of the mast.e.rcurve are
not correct. To compare only the thermal effects predicted by both models, the 1sot1}§rmal
predictions should match. A good agreement of both models at low slip values is achieved
by changing slightly the value of 7 used in the mastercurve from 3.3 to 3.8 MPa. Note
that the resulting maximum surface temperature increase remains close to that obtained
with the complex model, see Table 5.2. In that case the thermal effects predict.ed Ify the
simplified model compare well with the prediction of the complex model, see Fig. 5.2.

50.02

3.0.02

4 0.01 b oepy =0.88GPa 1

Ll % py = 1.02GPa
sapy = 1.2GPa
0% OIS Z:. lf5 2 D% 0.5 1 1.5 2
S
(a) (b)

Figure 5.2: Comparison of traction curves predicted by Kim et al. [52] (plain lines) and by the
simplified model (dashed lines), Left: py = 0.88 GPa: right: uy,, = 0.5 m/s. 7p = 3.8 MPa.

The good agreement between the surface temperature increase predicted with the sim-
plified model and the complex model and between the traction curves shows that the
assumptions made to derive the simplified model are justified. With almost no loss of‘ ac-
curacy the effect of frictional heating can now be predicted by solving a simple equation.

5.3 Experimental validation

The predictions of the model: the maximum surface temperature increase and the friction
coefficient, are now compared to experimental data. The limiting shear stress mastercurve
is nsed to ensure an independent validation.
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5.3.1 Lubricant parameters

Just as in Sect. 4.3 for the experimental validation of the friction mastercurves, great
care is taken to ensure an independent verification. This implies that the lubricant char-
acteristics must be known independently and accurately. The choice from measurements
published in the literature is therefore restricted to lubricant and operating conditions
for which the viscosity 7j(py,Ty) and the pressure-limiting shear stress proportionality
constant  are known.

Viscosity n: The Free Volume model [78] is used to describe the piezo-viscous effects.
The parameters of the model are obtained from viscosity pressure measurements with
falling body viscometers, see [78] for a naphthenic oil N1, [8] for HVI 650 and (7] for
Santotrac 50. The values of the parameters are listed in the Appendix.

Temperature-viscosity coefficient 3: The temperature viscosity coefficient 3 is ob-
tained by averaging 1/7(dn/8T) over a range of 6T between 10 and 100°C under the
conditions considered in the tests.

Pressure-limiting shear stress coefficient ~: ~ has been measured for N1 in the range
25 < T < 67°C using a constant pressure stress-strain apparatus, see [5]. Values of ~ at
ambient temperature 7' < 40°C have also been obtained on the same apparatus for HVI
650 and Santotrac 50. For measurements at higher temperatures, up to 100°C see [41]
where a high pressure chamber has been used.

Temperature-limiting shear stress coefficient w: The data available for v at different
temperatures, sec above, is curvefitted using Eq. 5.17. The curvefits are shown in the
Appendix.

5.3.2 Surface temperature increase

The maximum surface temperature increase predicted by Eq. 5.21 is compared to exper-
imental measurements published in the literature [61, 18, 31, 36]. In the experiments the
temperature is measured at the surface of a steel ball pressed against a sapphire disk by
infrared spectroscopy. For further details the reader is referred to [61]. The maximum
surface temperature increase is extracted from the temperature profiles measured in this
way and compared to the results of Eq. 5.21.

The list of lubricants and operating conditions considered is given in tables 5.3,5.4and 5.5
together with the comparison of measured and calculated maximum surface temperatures
01, and 67T, respectively. For Santotrac 50 and HVI 650 two values of 6T, are mentioned.
The mention of 67, indicates results from calculations performed using o given by Eq.
5.18. Whereas 07.(1.37) or 7(1.57) indicate that the surface temperature increase
have been computed using 1.3 or 1.5 times this value of v;. The modified values reflect
the fact that the values of coefficient of friction measured during a traction curve are for
those lubricants higher than the limiting shear stress values obtained from out of contact
measurements. For instance Evans and Johnson [29] report friction coefficient values
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| Nagaraj et al. [61] ‘ higher than 0.065 at 40°C and py = 1.57 GPa while at this temperature out of contact
Tabricant p#(GPa) | T(°C) R,(mm) | 7o w [ limiting shear stress measurements give a value of 7 of 0.036 [41] (0.046 at 26°C [3]).
N1 1.02 80 15.9 0.0845 0.00742 0.034
= 2
Um(m/s) | 0.175 0.35 0.70 1.27 2.54 | Cann and Spikes [18] ]
ST 38 58 8 89 95 Lubricant pr(GPa) | T(°C) R,(mm) | w 3
o, 26.4 40.1 56.9 78.5 949 Santotrac 50 | 0.88 10 127 0.0074 | 0.0063 | 0.2
S 012 ][04 | 0.6 [1.04 13 [15 [2 5 =
U (m/s) 1 _ um(m/s) | 0.25 0.5 1
0T, 7 12 23 38 39 47 65 0T, 33 46 62
5T, 109 [238 [296 [385 [425 [451 |G666 3T, 76 39 53.7
S -0.12 [-0.4 [-0.9 [-1.52 | -2 0T.(1.37) | 32 46.7 61.3
U (M /) 1 Lubricant p(GPa) | T(°C) R.(mm) |y w i}
0T, 11 20 31 50 89 Santotrac 50 | 1.02 40 12.7 0.0974 0.0063 0.242
a7, 10.9 23.8 36 45.4 70.9 = -
B Glovnea and Spikes [31] ] wm(m/E) | 035 05 T
Lubricant pu(GPa) [T(°C) [ R.(mm) [ w s 5T 42 62 86
Santotrac 50 | 1.11 60 12.5 0.112 0.0063 0.166 5T, 39.5 17.6 636
S 2 5T.(1.37) | 39.7 56.2 1.2
Uy (0 /3) 1 Lubricant pu(GPa) | T(°C) R, (mm) | 7 | w Ji]
6T, 43 Santotrac 50 | 1.2 40 12.7 0.0974 [0.0063 | 0.222
5T 47.5 g )
3T.(1.37) 56.5 u,(m/s) | 0.25 0.5 1
[ Grieve and Spikes [36] | 6T, 58 388 114
Lubricant pu(GPa) | T(°C) R.(mm) | 7 w 3 0% 41 58.4 76.1
VI 650 1.17 80 17.9 0.0304 | 0.00662 | 0.116 5T.(1.3%) | 49.6 68.2 843
S 1.33 1 0.8 0.67 0.57 0.5 Lubricant pr(GPa) | T(°C) R,.(mm) | w B
wm(m/s) | 03 0.4 05 0.6 0.7 0.8 VI 650 0.88 60 12.7 0.0347 | 0.00662 | 0.124
5T 13 10 10 9 9 9 5 5
0T, 11.8 11.8 11.8 11.8 11.7 11.7 Uy (m/s) | 0.25 0.5 0.75 1
8T.(1.5) | 16.9 16.8 16.8 16.8 16.6 16.6 5T, 14 91 21 28
Tubricant pr(GPa) | T(°C) R,(mm) |~ w 3 0T, 9.68 15.5 19.8 23.3
HVI 650 1.33 30 9.5 0.0304 | 0.00662 | 0.13 STo(1.570) | 13.9 9.7 27.2 31.6
5 2 Lubricant pu(GPa) | T(°C) R.(mm) | w 3
U (m/5) 0.2 HVI 650 1.02 60 12.7 0.0347 0.00662 0.14
8y, 17 S 2
8T, 12.1 Un(m/s) | 0.25 0.5 0.75 1
0T.(1.57g) 17.3 0% 22 31 36 38
Table 5.3: Comparison of measured and calculated maximum surface temperature rises (1). (5T£1j}3 = i?g ;gi gi ;gé
Table 5.4: Comparison of measured and calculated maximum surface temperature rises (2).
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Cann and Spikes [18]
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Table 5.6: Operating conditions of the traction measurements.

T(°C) | pn(GPa) Um(m/s) |y
60 0.662, 0.834 | 0.75, 1.25 | 0.0521
90 0.834 1.6, 3.35 | 0.0427

67

| S 2 |
Lubricant | py(GPa) | T(°C) R,(mm) | w i}
HVI 650 1.2 60 12.7 0.0347 0.00662 0.162
um(m/s) | 0.25 05 0.75 1
0T, 29 42 48 53
4T, 16.6 25.5 31.7 36.6
STo(1.57%) | 235 31.9 125 181

Table 5.5: Comparison of measured and calculated maximum surface temperature rises (3).

In all cases the order of magnitude is correctly predicted and in most cases the prediction
is actually quite close to the measured value. The maximum difference is around 30 %.
Tt shows that the assumption of a semi-ellipsoidal heat distribution and constant friction
coefficient is justified.

Note that in most cases the slide/roll ratio is large and therefore the friction coefficient
close to its maximum value. In this respect the comparison with the experimental results
performed above is only a validation of the approach chosen. It is hardly a validation
of the limiting shear stress mastercurve itself. To do this the effects of frictional heating
on the shape of the traction curve need to be analyzed. In the next section measured
traction curves showing thermal effects at high slip values are compared to the prediction
obtained using the limiting shear stress mastercurve.

5.3.3 Traction curves

Traction curves were measured to validate the
effect of temperature increase in the contact on
the friction coeflicient predicted by the model.
The experimental set-up consists of a ball-on-
disc apparatus, see Fig. 5.3, in which a steel
ball of radius 2 = 0.02 m is pressed against a
steel disc. The lubricant used is HVI 650. The
conditions of the test are given in Table 5.6.

The comparison of the predicted surface tem-
perature increase with experimental data in
the previous section has shown that the value
of the limiting shear stress proportionality con-
stant v should be taken higher than that given
by out of contact experiments. A correction
factor of 1.5 times is used, see Table 5.6.

Figure 5.3: Ball-on-disc apparatus used
for the experimental validation.

0.04
0.03
3.0.02
0.01 =)
0.01 -
? S Ny S
Q 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
5 s
(a) Ty = 60°C, py = 0.662 GPa (b) Ty = 60°C, pyr = 0.834 GPa
0.04
0.03
3.0.02
0.01
0% I I .
0 0.25 0.5 0.75 1
S

(¢) To = 90°C, pyr = 0.834 GPa

Figure 5.4: Comparison of measured (plain lines) and predicted (dashed lines) traction curves,
Limiting shear stress model.

The predicted and measured traction curves are shown in F ig. 5.4. Consider Fig. 5.4(a)
and (b) obtained at 7 = 60°C. In hoth cases the prediction is lower than the measurements
for S > 0.25. For S < 0.25 the opposite happens. In this region thermal effects are very
small which implies that the limiting shear stress mastercurve does not correctly represenut
the isothermal frictional behaviour at low slip values. At T = 90°C the calculated friction
coefficient is very low compared to the measurements, see I ig. 5.4(c).
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Summarizing the agreement is quite poor between the calculated and measured traction
curves. However the behaviour observed at low slip values may indicate that the lim-
iting shear stress model is not appropriate for characterizing the lubricant rheological
behaviour. The large discrepancies at T = 90°C on the other hand may result from
incorrect viscosity and/or limiting shear stress input data.

A further verification is therefore performed with the Eyring model. Using Eq. 4.17 a
value of the Eyring stress 75 can be found corresponding to the limiting shear stress value,
see Sect. 4.4. Recall that the value of 75 depends on the slip. Fig. 5.5 shows the value of
7y corresponding to 7, for the different cases as a function of 7.. The rule defined in Sect.
4.4 for the choice of 7y is applied here: the value of 7y is chosen at 7. = 1. This implies
that in the nonlinear region of the traction curves, before the curve levels off towards its
limiting value in the case of the limiting shear stress, both models predict very similar
values of the friction coefficient.

For all conditions considered here this corresponds to 7y = 5 MPa. Because the variation of
Tp with temperature is unknown, 7 is assumed to be independent of the temperature in the
calculations. The predicted traction curves are shown in Fig. 5.6. The agreement is very
good for T = 60°C: for the entire range of slip values including 5 < 0.25 the predicted and
measured traction curves are quite close together. For T' = 90°C the discrepancy remains.
It seems that using the Eyring mastercurve in the simplified thermal model results in an
accurate estimation of the effect of frictional heating on the friction coefficient.

8 T

Figure 5.5: Eyring stress 7y derived from the limiting shear stress value using Eq. 4.17.
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Figure 5.6: Comparison of measured (plain lines) and predicted (dashed lines) traction curves.
Eyring model, 1y = 5 MPa.

5.4 Conclusions

The thermal effects caused by frictional heating in rolling/sliding EHL contacts can be
estimated with a simplified model in which the thermal dry contact analysis of Bos [13]
and the friction mastercurves established in Chapt. 4 are combined. The maximum
lubricant temperature increase can be easily calculated by solving numerically Eq. 5.20
or Eq. 5.21 for the Eyring model and the limiting shear stress model respecthivelv. The
corrected friction coefficient is subsequently obtained by using the isothermal maste;curves
taking into account the temperature increase. A relation giving the maximum surface
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temperature increase is also given.

The model has been compared to data obtained using full numerical calculations, see [52],
to check the validity of the simplifications. The predictions of the model show a good
agreement with the numerical data.

Finally an experimental verification has been performed. The pred.icted t(-,tmperature in-
crease compared quite well with infrared measurements published in the literature. Tlhe
prediction of the effect of frictional heating on the traction curves.proved to be quite
accurate at intermediate temperatures. At high temperatures the dlscrepancy obse.rved
between predicted and measured friction coefficient may possibly be attributed to inac-

curate lubricant characteristics.

The simplified approach to frictional heating described in this chapter gives an a,cculra?t.e
prediction of thermal effects in rolling/sliding thermal contacts. In this way the validity
and usefulness of the mastercurves can be extended to much larger shear rates.

Chapter 6

Friction in rough contacts

The mechanism of friction generation in EHL contacts between perfectly smooth surfaces
has been described in Chapt. 4. However in reality the contacting surfaces are never per-
fectly smooth and even under full film lubrication the surface roughness will influence the
level of friction experienced in the application. This chapter presents a systematic study of
the variations of the coefficient of friction 5/ /it due to longitudinal roughness. At first the
influence of a single harmonic component is considered. The relative variation of friction
di/ i is computed for a wide range of operating conditions and waviness geometries. From
the results a general prediction formula is derived based on an out-of-contact description
of the waviness and a newly derived parameter characterizing the response of the contact
to pressure variations. The analysis is then repeated for a combination of two waves and
a combination formula is established allowing the representation of complex roughness
geometries as an equivalent wave. The validity of the combination formula is verified
numerically by comparing its prediction with the results of full numerical simulations for
the case of a real rough profile.

6.1 Operating conditions, lubricant characteristics

The presence of roughness on one of the contacting surfaces causes relative variations
dfi/fi on the friction level fi that would be obtained with perfectly smooth surfaces. The
magnitude of these variations depends on the operating conditions, on the lubricant char-
acteristics and on the roughness geometry. In particular it depends on the response of
the shear stress to viscosity fluctuations induced by the pressure variations caused by
the roughness. As in Chapt. 4, the various influences are investigated by means of six
cases. However the cases considered are slightly different and correspond to circular con-
tacts only. The influence of the contact geometry is studied later in this chapter. The
importance of the piezo-viscous behaviour is reflected in the choice of two cases for each
pressure-viscosity relation, see Fig. 6.1. The cases are denoted:

71
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1B1 Circular contact with an incompressible lubricant following Barus’
pressure-viscosity relation, oo = 20 GPa™". 1

1B2 Same configuration except that a = 30 G]E_’a“ : ‘ 1

CR1 Circular contact with a compressible lubricant following Roelands
pressure-viscosity relation, a = 20 GPa~! and Z{{ =0.67.

CR2 Same configuration but now with a = 15 ‘GPa* and_zn = 0.87. )

CY1 Circular contact with a compressible lubricant following Yasutomi’s

pressure-viscosity relation corresponding to Shell TT9 at 40°C (o =
21.6 GPa™!), see Appendix.

CY2 Same configuration except that the lubricant now corresponds to
HVI 650 at 60°C (o = 22.9 GPa™'), see Appendix.

For each case, the operating conditions are varied: 100 g M < 1000, 5 < L‘ g- 15. The
slip is varied between 0.1 and 2%. The Eyring stress 7y is taken 2 <75 < 8 MPa.

30

10

1
p (GPa)

ity 7 i e fi ses considered.
Figure 6.1: Dimensionless viscosity 7 as a function of the pressure for the cases considere

The analysis in this chapter is based on the Eyring model only. .The lim.itiug shea.r st.reﬁsl
models lt;a.(l to predicted pressure profiles and film shapes .w1t.h phym‘(:al}y. unrealistic
distortions when applied with no-slip boundary conditions as is the case 1_1’1 thﬁ; lw.or.l-;, .S(ze
Chapt. 3. The introduction of large pressure gradients cllue to the roug.llme:;.cf' \\-1‘ ri%gla"aj 6‘.
this tendency. The Eyring model on the contrary predicts no su.chl distortions. ! 1oreo.\e1
calculations ‘of the deformation of wavy surfaces in a rollling/shdmg EHL contact us?llglg
the Eyring model have shown good agreement with experimental measurements, see [73].

6.2 Roughness description

The roughness of the rings and rollers of rolling bearings usualll}-' 'has a complex_topog-
raphy. In general the simulation of such complex roughness distributions adds little to
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the understanding of roughness effects. A much more fruitful approach is to describe the
roughness as the sum of harmonic components using Fourier decomposition. The effect of
a single harmonic component is a problem simple enough to be understood and accurately
modeled. Subsequently these effects can be combined to predict the overall variation due
to the original complex roughness distribution.

This approach has been very useful in studies of roughness effects on the film thickness in
EHL contacts, see for instance [33, 60, 57]. In that case it was shown that the deformation
of a rough profile could be computed by adding the deformation of each of its harmonic
components. Of course with respect to friction variation the process is non-linear and
superposition is not possible. Nevertheless the method is also very useful as will be shown.
The analysis starts by studying the effects of single harmonic components followed by a
combination of these components.

In this work the roughness is assumed to be longitudinal i.e. the lay of the roughness
is aligned with the running direction. Tt is the type of roughness lay obtained on the
rings of rolling bearings after the most common finishing processes. The dimensionless
film thickness equation for the case of a single harmonic component on a smooth surface
reads:

H(X,Y) = —A+8X*+ (1-8)Y? - Acos (20(Y/W + ¢))
1 © P(XL,Y")dX'dY?
+ // : ( ’ )‘ 4 4 (6-1)
K Js /(X —X')2+ (Y — V)2

The waviness is characterized by its dimensionless amplitude A and wavelength 1 and
its relative position to the contact centerline ¥ = 0 by ¢. Regarding the amplitude it is
useful to introduce another dimensionless quantity, the relative amplitude A defined as
A= A/H, where H, is the dimensionless smooth central film thickness. The values of 4
and W considered in this work are A = 0.25, 0.5 0.75, W = 1/10, 1/8, 1/6 ,1/4, 1/2.

A typical example of pressure, film thickness and shear stress distributions is given in
Fig. 6.2 for case IB1 with M =500, L = 10, S = 0.5% and 7, = 4 MPa; 4 = 0.5 and
W =1/6. Fig. 6.2(b) shows that the waviness is not totally deformed in the contact as
the sinusoidal variations can still clearly be seen in the central region. Accordingly the
pressure and shear stress distributions also exhibit sinusoidal variations.

In real applications it is impossible to know exactly the lateral position of the roughness.
However the value of 6fi/fi depends on this position. For the harmonic components all
values of ¢ between 0 and 1/2 will result in different values of §it/i. The influence of
roughness on friction can thus be characterized in different ways, by taking the average
value of dj1/fi for instance or its maximum value. It is chosen here to consider only the
maximum value. Indeed, introducing roughness will in most cases result in an increase
of the friction coefficient and monitoring max(df/fi) will thus give an estimation of the
WOrst case.
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Figure 6.2: Pressure (top left), film thickness (top right), and shear stress distribution (bottom)
for IB1: M =500, L =10, S =0.5% and 79 = 4 MPa; A = 0.5 and W = 1/6.

Calculating di/ 2 for the entire range of ¢ taking many values is l}oweverlnot pr:fxci:gails.
As a consequence 6ji/j is calculated for ¢ = 0 a:nd ¢ = 1/2 only. .The ?_rg;er .ms B
taken to represent the maximum value of 671/ When real rouglmefs is Sf:,ll( ied, f;ee e n
6.6, more lateral positions are considered. The maximluu'l va.lue.of _(5,(5/ [ will 1the1(11 ;e glzih
by (0f/f) + 20 where (6fi/i) is the average of the friction variations calculated for e

position and o its standard deviation.

6.3 Numerical analysis

The relative friction variation 61/ is calculated for the cases IB1 to CY2 and thelxx;avmef]ss
geometries described in section 6.2. The aim is to derive from tl_le data a general formula
giving the friction variation 6ji/fi as a function of the operating conditions and wavi-
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ness geometry. To be generally applicable and easy-to-use this relation should have only
well-known contact characteristics as input. With respect to the waviness, the relative
amplitude A and wavelength W are the only two variables known a priori.

Alternatively the film thickness variations 65 and pressure changes dP caused by the
roughness could be mapped enabling the nuse of 64 and §P as parameters. However
this approach is invalidated by the manner in which the friction variation is generated
in the contact. Consider a circular integration domain S centered on X = Y = ( of
dimensionless radius r. The integral of the shear stress variations d7(r) over this domain
should be close to 67 when r approaches 1. By monitoring the ratio of [ 67dX dY to
d0fi as a function of r, it is possible to identify which parts of the contact contributes most
to 6f. Fig. 6.3 shows the results of the numerical integration of [ 67dX dY divided
by the friction changes 8 calculated over the whole contact in case IB1 for two sets of
operating conditions and two wavelengths.

[[ 67 dX dY /s
If ¢ 07 dX dY/sg

Figure 6.3: Friction variations [ 07 dX dY/dja as a function of the radius r of the integration
zone. IB1 (a) M =500, L = 15, S = 0.5% and T = 4 MPa, (b) M = 1000, L = b, = 2%
and 7y = 8 MPa. 4 = 0.5,

The figure shows that the ratio of the integral of the shear stress variations to the overall
friction variation 8/ oscillates for r < 0.8 reaching its final value just before r = 1. The
amplitude of the oscillations can reach several times d8j1, see Fig. 6.3(a). There appears
to be no pattern in the behaviour of the amplitude of the variations of [ 67 dX dY/dj
as a function of r. An accurate determination of djt can therefore only be done when the
whole contact is taken into account.

This implies that the friction variation dfi/ i can only be related to §H and §P if they are
known over most of the contact. This does not appear to be very practical and leaves A



76 CHAPTER 6. FRICTION IN ROUGH CONTACTS
and W as the best parameters to define roughness insofar as a general predictive formula
is the goal of the analysis.

6.4 Single wave

The influence of a single longitudinal harmonic waviness on frictiony is studied ﬁrs; The
relative friction variation df1/fi is calculated for the cases IB1 to CY2, see sect. 6.1.

Consider the maximum friction variation djz/fi caused by a waviness on thfa u_pper. s.lllrf'?\.ce
of amplitude A = 0.5 and wavelength W = 1/6. In Fig. 6.4 the relative friction vanatlon.
871/ is plotted as a function of the characteristic shear stress defined for smooth contacts

7. for all six cases.
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Te

Figure 6.4: Friction variations di/f as a function of 7. for A =1/2 and W = 1/6.

In the figure it can be seen that the general trend i§ that 6ji/ ﬁ._dec?re.a.sesl with :lrlm:af;zg
7.. However the rate of decrease of dj1/ji with 7, varies. In ealch individua _Ca.se_l 113 p.ease
can be quite large. IB1 and IB2 show a very similar l)ehe};v'lour: a steep 1;11t1<1 ]ecr ;en;
followed by a region of slowly decreasing 8/t for 7, > 10°. CR_l anﬁd CR-\zrar.e % T%\th;.
similar but compared to the 1B cases dfi/ji decreases f'%-ster \V]thr-rc. Inv (.ds.e’ e t
rate of decrease is higher than in case CR2. Finally CY1 and CY2 shfm- Ve113_ (111 e‘leln

behaviour. The behaviour of CY?2 is similar to that shown lfy the IsB cases and 1.t asi t l.:
same rate of decrease. CY1 is also similar initially but for 7. > 10 thg daF?, .])01‘1-155 St?i
to stray away from the IB cases and stay at a roughly constant level which is considerably
larger than the level of all other cases.

- . . T —
The behaviour shown by the different cases cannot be expla:med Slﬂllpl} by the \p
of pressure-viscosity relation used: two different pressure-viscosity relations can give very

6.4. SINGLE WAVE T

similar results, see C'Y2 and the IB cases, whereas very different behaviour can be observed
when using the same pressure-viscosity relation, see CY2 and QY1

GO 1B1 T
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Figure 6.5: (1/7)(87/0p) as a function of the pressure for the cases IBI to Q'Y2,

The explanation lies in the response of the viscosity to pressure variations. This is illus-
trated in Fig. 6.5 where (1/7)(d77/0P) is plotted as a function of the pressure. Comparing
Fig. 6.4 with Fig. 6.5 it can be deduced that there is a clear relation between the ranking
of the cases as a function of (1 /71)(07/8P) and the rate of decrease of dp/ i with 7,. Take
for instance CY1 and CY2. For CY? the value of (1/7)(85/0P) is very close to that of
the IB cases whereas CY1 shows values much higher than that of the IB cases even at low
pressures. Correspondingly, on the 0fi/fi = f(7.) graph, CY?2 stays near the data points
of the IB cases whereas the data points for CY1 are much higher. Similarly, the fact that

for the CR cases (1/1)(87/8P) is smaller than for the IB cases is reflected by 6j2/7i in
Fig. 6.4.

If a parameter exists that characterizes the mechanism behind the friction variations due
to waviness it should in principle account for this behaviour. To find such a parameter
assume for simplicity that the behaviour of 0fi/fi can be ascribed to what happens in the
centre of the contact. Note that strictly this is not allowed because the friction variation
depends on the contribution of the whole contact, see Sect. 6.3. Assume also that the
influence of the pressure variations on dp1/ i is much greater than that of the film thickness
variations. Then based on the mastercurve obtained for the smooth contacts the friction
coefficient for a rough surface can be approximated by :

fir = i1+ 6P) = sinh ™ (7,(1 + 6 P) /5) (6.2)

To a first order approximation Eq. 6.2 reads:
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Figure 6.7: Friction variations dji/i as a function of (I' — 1) for varying A and W,
Eq. 6.8.
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Eq. 6.8.
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Figure 6.9: Friction variations dfi/ft as a function of (I' — 1) for varying A and W. Plain line,

Eq. 6.8.
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For small (I" — 1) values, the calculated dp1/ i values for this value of ¢ are found to be
larger than those obtained for ¢ = 0 or ¢ = 1/2 and the agreement of the data points
with Eq. 6.8 is much better.

6.4.1 Elliptic contacts

The validity of Eq. 6.8 is checked for elliptic contacts using a smaller data set. Instead
of a full factorial analysis with respect to A and W, for each combination (M, L, S, To)
only one random pair (A, W) is studied. The results are compared to the prediction of
Eq. 6.8 in Fig. 6.10(a) for Ry /Ry = 1/2 and in Fig. 6.10(b) for Ry /Ry = 1/5. The first
conclusion in both cases is that the results from the calculations and those obtained using
Eq. 6.8 are quite close. The spread is quite large but not higher than that observed for
the circular contact. The points far away to the bottom left of the curve for low §7/fi can
also be found in Fig. 6.7(a-d). Recall that Eq. 6.8 was chosen such that an upper bound
to the friction variations is calculated. For low values of dfi/[i this sometimes results in a
large overestimation of the §ji/ji.
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Figure 6.10: Comparison of friction variations calculated for Rx/Ry =1/2 (a) or Rx/Ry =
1/5 (b) and Eq. 6.8.

Summarizing, a parameter [' has been found characterizing the effect of roughness in-
duced pressure variations on the variations of the friction coefficient in EHL contacts. A
predictive formula has been derived giving 0ft/f as a function of A, W and I, see Eq.
6.8. The ellipticity enters indirectly through the parameter T'. At this point its physical
meaning remains to be found.
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6.5 Two waves

The extension of this analysis to several harmonic components is not straightforward.
The total friction variation caused by waviness is an average of the shear stress variations
over the entire contact. The addition of another harmonic component complicates the
shear stress distribution and influences the total friction variation in a non-linear way. In
this section the case of two harmonic components is studied first to get an indication of
the manner in which each harmonic component contributes to the total friction variation.

case | A | Wi | As | W

1 |04 |1/4] 04 |1/8
2 0.5 |1/4]0.25 1/8
3 025 |1/4| 0.5 [ 1/8
4 0.25 1/4 0.25 | 1/8
5 | 07 |1/4] 02 |1/8
6 0.2 |1/4| 0.7 1/8

Table 6.1: Combinations of A and W considered in the two waves study.

The relative friction variation dji/jt is calculated for the case of a waviness formed by
two components in phase and with wavelengths W, = 1/4 and W, = 1/8 and varying
amplitudes. The combinations of wavelength and amplitude considered are presented in
Table 6.2. For each of them the friction variation ¢7i/f is calculated for more than 30
cases each time varying M, L, S, 7y and the cases considered IB1 to CY2 randomly. The
calculated values of dfi/[i are plotted as a function of (I' — 1) in Fig. 6.11.

The objective of this section is to seek wether it is possible to approximate the friction
variations caused by two waves with an equivalent, single, wave. The predictions of the
one wave curvefit for waves of amplitudes A; or 3 A; and wavelengths W, withi = 1,2
are therefore plotted on Fig. 6.11 with the results of the full calculations. By comparing
the single wave predictions with the results of the calculations it is possible to get an
indication of the value of the amplitude and wavelength of the equivalent, single, wave
which would result in the same friction variation d/i/jt as the combination of two waves
when used in Eq. 6.8.

For illustration, consider case 1, 2 and 3 in Fig. 6.11(a-c):

case 1: The amplitude is the same for both wavelengths. The calculated
df1/fi data points lie between the curvefits obtained for A and 2A.
case 2: A low amplitude high frequency component (A, Wh) is superim-

posed on a high amplitude low-frequency component (A;, W;). The
values of the data points are slightly above the curvefit of (A, W),).

case 3: The opposite situation is considered: the high frequency component
has a large amplitude (Asy, W) whereas the low-frequency compo-
nent has a low amplitude (A;, W,). The values of §ji/[i are close to
the curvefit for (s, Ws).

6.5. TWO WAVES

Ot/ i

10
£GP 10"
I'-1 r-1
(e) case 5 (f) case 6

Figure 6.11: Friction variations 6/i/f as a function of (I' = 1) for the different two-waves

combinations, see Table 6.2. The bold dot-dash lines are given by Eq. 6.8 used with 4* and
Wr, '
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It seems therefore that when one component has a clearly larg.er ampl.itude, the Caselof
the combined waves behaves as that of one wave with an amplitude shgh.tl,v larger thim
the maximum amplitude of its components. Its equivalent xfravelength is close t(?lt‘le
wavelength of the large amplitude component. When the amplitudes are almost equal an
averaging process seems to take place.

Fom those observations, a possible definition of the equivalent wave’s wavelength and

amplitude is:
- / o ; AW,

The values of A* and W* corresponding to the cases described in Ta,bie E?.l are listed in
the Table 6.2. The curvefits obtained by using Eq. 6.8 with A" and W* given by .Eq. 69
are shown in bold dot-dash lines in Fig. 6.11. For all cases they are a good appromrpatmn
of the calculated values of §ji/f within the accuracy range of the one-wave analysis.

case | A, | W | Ay | Wy | A* wr
1 04 | 1/4] 04 |1/8|0.565 | 0.1875
2 | 05 |1/4]025|1/8] 0559 | 0.208
3 |025]1/4] 05 |1/8] 0550 | 0167
4 0.25 | 1/4 1 0.25 | 1/8 | 0.353 | 0.1875
5 0.7 1/4 0.2 | 1/8]0.728 | 0.222
6 0.2 | L/4] 0.7 | 1/8|0.728 | 0.133

Table 6.2: Combinations of A and W considered in the two waves study together with the
equivalent amplitudes and wavelengths obtained from Eq. 6.9.

Note however that Eq. 6.8 is much less sensitive to W than t_o fl.. It is therefore Eiii’ﬂcull(;
to validate the definition of W* given in Eq. 6.9. Other combmatlc_)nsﬁof W; and A; cou
probably be used with little difference on the predicted value of di/fi.

The friction variations caused by the combination of two harmonic components have*beer;
analyzed. It can be shown that an equivalent harmonic component of wavelength W la;l(
ampiitucle A* exists giving the same value of 6j1/fi using Eq. 6.8 as that (:alculattleF zr
the combination of two harmonic components. The equivalent wavelength and amplitude
are given by Eq. 6.9.

6.6 Real roughness

In the previous section it has been shown that the friction variation 6t/ g caused .by la wavi-
ness composed of two harmonic components can still be calculated using the single-wave
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prediction formula Eq. 6.8. This is achieved by defining an equivalent, single compo-
nent, waviness giving the same friction variation when using Eq. 6.8. The amplitude
and wavelength of the equivalent waviness are given by Eq. 6.9. This section presents a
verification of the validity of this combination for a complex rough profile described by
a large number of harmonic components. An equivalent single wave is derived using Eq.
6.9. The friction variation predicted using Eq. 6.8 with this equivalent amplitude and
wavelength is then compared to the result of full numerical calculations.
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Figure 6.12: Measured roughness profiles and truncated (n=34) Fourier reconstruction,

The complex rough profiles are taken from measurements of real surface roughness of
two balls used on the ball-on-disc machine finished with a predominantly longitudinal
roughness lay. In order to use Eqs. 6.8 and 6.9 the roughness needs to be described as
a sum of harmonic components. This is achieved by applying Fast Fourier Transform to
the measured profiles. Concurrently full numerical simulations are performed for compar-
ison with the rough profiles as an input. The complex rough profiles considered in the
calculations are obtained by Inverse Fast Fourier Transform. However the reconstruction
is restricted to the Fourier components with wavelengths larger or equal to 1 /10th of the
Hertzian half width of the contact because of the restricted range of frequencies that the
numerical solver can accurately represent on a grid. Fig. 6.12 shows the two cross-section
R1 and R2 taken from the 3D roughness distribution measured with an optical profiler
and the results of the truncated Fourier reconstruction.

As the objective is to show that the combination formula can be used for more than
two waves skipping the high-frequency information is not harmful as long as the main
irregularities of the profile remain. F ig. 6.12 shows that this is the case. The reconstructed
profile based on 34 harmonic components is sufficiently irregular to represent a good test
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of the validity of Eq. 6.9. Note that although in reality the roughness varies slightly along
the running direction, for the numerical calculations it is assumed to remain constant.

() R1 (b) R2

Figure 6.13: Dimensionless reconstructed roughness profiles R1 and R2. R1: A* =027, 0.39
and W* =0.3; R2: A* = 0.31, 0.41 and W* = 0.36.

The friction variation §/ji caused by the profiles R1 and R2 on the upper surfa.ce' is
calculated for all six cases IB1 to CY2. Previously the value of A and the operating
conditions could be varied independently. Now because the roughness information is
defined out of the contact, the operating conditions have to be chosen such that A takes
a certain value. In practice M and L values are taken to obtain a given film thic%mess
in the contact using the Venner and Lubrecht film thickness formula [74] and therefore a
certain relative amplitude of the roughness. For each of the six cases the values of M and
L needed to obtain a constant value of A are slightly different. Two levels of roughness
are considered for each rough profile: A*= 0.27 and A*= 0.39 for R1 and A*= 0.31 and
A*=0.41 for R2, see Fig. 6.13. The equivalent wavelengths are W* = 0.3 and W* = 0.36
for R1 and R2 respectively. For all configurations the maximum Hertzian pressure 1s
pr = 1.07 GPa. An example of the computed film thickness and pressure profile along
the central line of the contact is given in Fig. 6.14 for R1 (A* = 0.27) and R2 (A* = 0.31).

Eq. 6.9 predicts the maximum friction variation éj/fi and should be compared to _th?
maximum friction variation calculated for both profiles. Obviously the value of §fi/fi
ohtained with the numerical solver depends on the lateral position of the profile. To
get an approximation of the maximum friction variation d/i/fi has be?.n calculated for
nine positions of the roughness profiles representing a total shift of AY = 2. Inste.ad of
using the largest of the values calculated for the nine cases to represent the maximum
friction variation a statistical approach is used. From the set of results an average friction
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variation (4i/fi) and a standard deviation o can be calculated. A good representation of
the maximum friction variation is then Sp/p~ (6i/ ) + 20.
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Figure 6.14: Film thickness and pressure profile for R1 (A* = 0.27) and R2 (A* = 0.31). IB1
is considered.

Fig. 6.15 compares d/i/fi obtained by full numerical simulations and the results of Eq. 6.8
used with (A*, W*) derived from Eq. 6.9. For indication the interval dfi/[i + o is shown.
The predictions of Eq. 6.9 and Eq. 6.8 are slightly below the calculated values of o/ i for
R1 and slightly above for R2. For both profiles, the agreement is good except in the case
of CY1. Recall that CY1 is the case that also differed most from the others with respect
to 0fi/fi = f(7.) behaviour. Even when plotted using (I' — 1) as a parameter the data
points for CY1 sometimes stray away significantly above the curvefit of Eq. 6.8. With
the rough profile, those differences may add up and eventually the difference between the
calculated and predicted df1/fi can become quite large.

Nevertheless the comparison with full numerical calculations shows that Eq. 6.9 can be
used quite well for a combination of more than two harmonic components. It appears
that Eq. 6.9 can be applied to the Fourier transform of any longitudinal rough surface.
This enables the calculation of the friction changes induced by an arbitrary roughness
distribution with a similar accuracy as was obtained for the single wave study in a simple
way.

The validity of Egs. 6.8 and 6.9 needs to be checked experimentally. However the com-
plexity of the experimental set-up required which should be able to measure small friction
changes with great accuracy and repeatability and the difficulty in manufacturing well
controlled (close to sinusoidal) longitudinal roughness put this verification beyond reach
of this thesis.
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Figure 6.15: Comparison of the friction variation §fi/i obtained for the rgconstructed Iiroli]iglis
by full numerical calculation and by Eq. 6.9 and Eq. 6.8. From left to right 1B2, CR1, ;

Y2, OY1 and CR2.

6.7 Conclusions

The influence of sinusoidal waviness on the friction coefficient halm.s been studied e).{tBI.lE‘a.l‘\-"(-:'.ly.
A general predictive formula has been derived, Eq. 6.8, relating the chang.}els 111. fn?t}zn
0f/fi to the out-of-contact geometry of th-e waviness and a parameter I' characterizing
the respanse of the contact to pressure variations.

The analysis has been extended to several harmonic components. It is shown that the
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effect of several components on the friction variation can be modeled by defining an equiv-
alent single wave. The wavelength and amplitude of the equivalent wave are obtained by
combining in a non-linear way the wavelengths and amplitudes of the various components,
The validity of the combination formula, Eq. 6.9, has been verified numerically in the
case of real rough profiles.

Eq. 6.8 and Eq. 6.9 give the possibility to evaluate the friction changes introduced by
any arbitrary longitudinal roughness. The real roughness distribution can be decom-
posed in harmonic components using Fourier transform which can subsequently be used
to calculated the equivalent wave and its effect on friction.




Conclusions and recommendations

In this thesis the friction generation mechanisms in rolling/sliding EHL contacts have
been studied extensively using a numerical solver based on multilevel techniques.

The solver has been used at first to compute systematically the coefficient of friction
of smooth isothermal EHL contacts for a wide range of operating conditions and contact
configurations. An analysis of the results shows that the mechanisms of friction generation
can be characterized by a single parameter 7, valid for both the Eyring and the limiting
shear stress models. For each type of rheological model a simple, easy to use, engineering
formula has been derived giving the friction coefficient as a function of Te. By comparing
the formulas for both models a relation can be found between the Eyring stress 7; and
the limiting shear stress 77 such that both models predict the same friction coefficient.
This relation could prove useful to remedy to the fact that no independent data exist
concerning the value of 7 hampering an independent prediction of the friction coefficient
with the Eyring model. For the limiting shear stress model, however, a totally independent
validation is possible. A close agreement was observed between the calculations and
experimental results published in the literature.

The thermal effects due to frictional heating at high shear rates have been taken into
account by means of a simplified analysis. The contact is assumed to behave as a thermal
“dry contact” for which the value of the friction coefficient is given by the friction mas-
tercurves derived for the isothermal case. The maximum surface temperature increase
and friction reduction can then simply be calculated. The predictions of simplified model
have been successfully compared to results of full numerical analyses and to experimental
data.

Finally the numerical solver has been used to study the effect of longitudinal roughness
on [riction in the same systematic way. For a single wave the variations of the {riction
coefficient caused by the introduction of roughness can be predicted with a simple formula
as a function of the out-of-contact amplitude and wavelength of the waviness and a newly
derived parameter characterizing the response of the contact to pressure variations. Then
it is shown that the effects on friction of the combination of several waves can be predicted
by considering an equivalent single wave. In that way the friction variations caused by
any complex longitudinal roughness distribution can be estimated using the single-wave
formula.
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The present work can be extended in several ways. Some of the possible directions of
further research are listed below.

In addition to the rheological models studied in this thesis, Bair [9] has recently ap-
plied shear thinning to describe the non-Newtonian behaviour of the lubricant. It seeis
that this model could explain some of the discrepancies between measured and predicted
traction curves, see Sect. 4.3. Moreover this model has a strong physical basis and ifs
parameters can be measured independently. It would certainly be worthwhile to redo the
analysis with this model to see if a mastercurve can be obtained there too.

An obvious extension to Chapt. 6 is the study of the effects of transverse roughness. It is
likely that the current prediction formula would remain valid as the model is too coarse to
distivnguish differences in the in-contact geometry of the waviness or out of phase eﬂ’ech
in the pressure distribution for instance. Nevertheless a thorough verification of this
hypothesis is required.

An experimental validation of the effects of roughness is required. Simple surface rough—
ness should be manufactured in order to be able to verify both the single-wave prediction
formula and the combination formula. An experimental set-up should be developed ensur-
ing high accuracy and repeatability in the measurement of the friction coefficient. Ideally,
the measurement of the film thickness at the same time as the friction measurements
would allow to check if the conditions in terms of relative roughness amplitude used in
the calculations are correct. In addition precautions should be taken to ensure isothermal
conditions.

Finally, in addition to the problem of which rheological model to trust, the accurate
predicution of friction relies first and foremost on an accurate knowledge of the lubricant
characteristics under the conditions experienced in rolling/sliding EHL contacts. The
data available in the literature is scarce and covers a limited range. There is a great need
for systematic measurements.
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Appendix: Lubricant characteristics

In this appendix the characteristics of the lubricants used for the experimental validations
in Chapters. 4, 5 and 6 are listed. The Free Volume parameters of Shell TT9 used in
Sect. 6.1 are also given. The origin of the values is indicated by referring to the paper in
which they have been reported.

Viscosity

The values of the Free-Volume parameters are given together with the value of o and Tg.

Lubricant 7y Ty A | Ay(GPa™h) B, Ba(GPa~l) | ¢ C, | Ref.
5P4E 1012 | -28.8 | 134.2 1.929 4.815 0.16 16.01 | 20.69 [78]
Santotrac 50 | 107 -46.9 | 92.92 2.6 0.2965 16.275 10.51 | 20.70 T
HVTI 650 107 | -37.51 | 2785 0.4082 0.2008 24.09 10.68 | 34.8 8
DOP 107 -80.5 | 185.6 0.709 0.1298 3155 11.88 | 47.69 T
N1 1012 | 854 130 1.617 0.262 9.2 16.58 | 27.08 78]
TT9 107 -76 228.3 0.7645 0.188 25.84 11.45 | 30.26 IO]J

Table A.1: Free Volume parameters for the lubricants considered in this thesis,

Lubricant T(°C) | no(Pas) | a(GPa™") | Ref. [ K(W/m/K)
aP4E 100 0.017 15.1 28] 0.133
Santotrac 50 40 0.0348 29.6 28] 0.104
60 0.0131 22.8
100 0.0048 16.8

HVI650 60 0.14 2.9 | 28] 0.125
80 | 0.071 19.9
100 | 0.03 17.7
DOP 90 | 0.0049 | 133 | [59 0.1"
N1 80 | 0.0217 | 232 | [0 0.1"

Table A.2: Lubricant characteristics at the temperatures used in this thesis. For 5P4E, San-
totrac 50 and HVI 650 at 40. 80 and 100(°C) the values are extrapolated from the values at
30, 60, 90 and 120(°C). * For N1 and DOP the value of K is assumed.
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Limiting shear stress

The value of the limiting shear stress proportionality coefficient v have been collected in
the literature to establish the variation of v with temperature used in Chapt. 5.

| 5P4E |
Al -10 10 20 38 40 60 80
¥ 0.141 0.131 0.1 0.087 0.096 0.076 0.065

0.083

Ref. | [3] [6] [5] 31/16] | [3] [6]

| Santotrac 50 |
T -40 -20 -10 25 40 70 100
¥ 0.156 0.145 0.131 0.111 0.14 0.091 0.059
Ref. | [3] [5] [41]

[ HVT 650 |
T 26 40 70 100
¥ 0.0463 0.036 0.032 0.028
Ref. | ) 1]

L NI |
T -40 -20 0 25 26 46 60 67
v 0.116 | 0.101 |0.091 | 0.075 | 0.072 | 0.053 | 0.0495 | 0.041

0.0875 | 0.07 0.051

Ref. | [3] [5]

Table A.3: Limiting shear stress proportionality coefficient v. When two values are mentioned

for one temperature, they have been obtained under different pressures.

The decrease of the v with temperature is approximated by the following equation:
7=y exp(—w(T + 273)) (A.10)

with 7" in °C. The fit of Eq. A.10 with the measured data can he seen in Fig. A.1. The
parameters -y, and w are given in Table A.4.

Lubricant Y w
N1 0.862 | 0.00842
5P4E 1.644 | 0.00928
Santotrac 50 | 0.7 | 0.0063
HVI 650 0.315 | 0.00662

Table A.4: Parameters of Eq. A.10 approximating the decrease of v with temperature.
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Figure A.1: Limiting shear stress proportionality coefficient 7 as a function of the temperature.
Dashed lines: Eq. A.10.
Eyring stress:

The values of the Eyring stress have been obtained from the slope of the traction curves
by Evans and Johnson [28] and Moore [59]. They are recalled in Table A.5.

Lubricant T(°C) | pu(GPa) | 79(MPa) | Ref.

5P4E 100 0.6 2.7 28

Santotrac 50 | 100 0.8 5 28

HVI650 100 0.8 7 28

DOP 90 1.04 9 59]
1.27 10

Table A.5: Measured values of the Eyring stress 7.
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