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STELLINGEN

behorende bij het proefschrift:

‘MULTILEVEL SOLUTION OF THE EHL LINE
AND POINT CONTACT PROBLEMS’

. De oorzaak van de instabiliteit van eenvoudige Gauss-Seidel relaxatie
toegepast bij het oplossen van elastohydrodynamische smeringsproble-
men is dat de (locale) drukveranderingen resulteren in te grote cu-
mulatieve veranderingen van de integralen die de elastische deformatie

beschrijven.
Dit proefschrift hoofdstuk 4 en 5

. Bij de analyse van de invloed van de microgeometrie op de drukverde:
ling en smeerfilmdikte in elastohydrodynamisch gesmeerde contacten
kunnen de veranderingen van deze microgeometrie ten gevolge van de
elastische deformatie niet verwaarloosd worden. :

Dit proefschrift hoofdstuk 7

. Extrapolatie van de effecten van oppervlakteoneffenheden op drukver-
deling en smeerfilmdikte in een elastohydrodynamisch gesmeerd contact
berekend onder stationaire condities, naar situaties waarbij de oneffen-
heid door het contact beweegt, geeft misleidende resultaten.

Dit proefschrift hoofdstuk 8

. Door de structuur van de Reynoldsvergelijking is voor veel twee-dimen-
sionale smeringsproblemen, ook wanneer elastische deformatie geen rol
speelt, het gebruik van lijnrelaxatie bij de berekening vau Jdc drukver-
deling in de smeerfilm een noodzakelijke voorwaarde voor een efficient
multigrid-algoritme.

- Juist bij het gebruik van multigrid technieken dient men zich te realise-
ren dat een zeer nauwkeurige oplossing van de modelvergelijkingen niet
per definitie ook een accurate beschrijving van de fysische werkelijkheid
is.



6. Wanneer een universiteit onder druk van overheidsbezuinigingen streeft
naar een toename van de hoeveelheid door het bedrijfsleven betaald
onderzoek ondermijnt zij haar bestaansrecht als dit ontaardt in het
vervangen van fundamenteel onderzoek door “marktgericht kluswerk”.

7. Het verdient aanbeveling om, in navolging van de waarschuwing op de
verpakking van tabaksartikelen, de wervingsadvertenties voor promo-
vendi te voorzien van de tekst:

Waarschuwing

Dit onderzoek kan schadelijke bijwerkingen hebben
voor uw sociale contacten en relatie(s).

8. Aangezien beleid, strategie en plan een samenhang tussen maatregelen
gericht op het bereiken van een herkenbaar en realiseerbaar doel sug-
gereren, lijkt het verstandig om, ter voorkoming van verwarring, tot
nader order deze woorden niet te gebruiken in combinatie met milieu
en media.

9. Een noodzakelijke voorwaarde voor een promotie is de aanvaarding van
het risico dat de grootste ontdekkingen misschien pas komen nadat het
proefschrift gedrukt is.

10. Door de sterke verontreiniging van bodem en grondwater wordt de
struisvogelpoliticus met uitsterven bedreigd.

Enschede, 22 februari 1991 C.H. Venner
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Samenvatting

Het onderwerp van dit proefschrift is elastohydrodynamische smering (EHL). Dit is
het type smering dat zich bijvoorbeeld voor doet in kogellagers en tussen tandwielen.
Meer in detail gaat dit proefschrift over het numeriek oplossen van het elastohydro-
dynamisch gesmeerde lijn en punt contact probleem. Na een korte introductie van
het onderwerp wordt een historisch overzicht gegeven van de belangrijkste ontwikke-
lingen op het werkgebied tot aan de presentatie van de eerste numerieke oplossingen
van een EHL contact probleem in 1951, Dit historisch overzicht wordt gevolgd door
een overzicht van algoritmes voor het numeriek oplossen van EHL problemen die
sindsdien zijn gepresenteerd met een beschrijving van de voor en nadelen van de
diverse algoritmes,

Dit overzicht heeft als conclusie dat, ondanks de grote vooruitgang die in de
loop der jaren is geboekt, de meeste algoritmes belangrijke beperkingen hebben
op het gebied van stabiliteit enfof rekentijd. Door deze beperkingen is het tot
dusver niet mogelijk geweest om een aantal problemen die voor de praktijk van
groot belang zijn op te lossen. Met name om te kunnen bepalen wat de gevolgen
zijn van oppervlakte oneffenheden voor de drukverdeling en de smeerfilmdikte in
praktische belastingssituaties zijn snellere en meer stabiele algoritmes nodig.

De ontwikkeling van zulke algoritmes is het onderwerp van het eerste deel van dit
proefschrift. Na een beschrijving van een fysisch mathematisch model voor elasto-
hydrodynamisch gesmeerde contacten volgt een uitleg van een tweetal zogenaamde
multigrid technieken. Deze multigrid technieken maken het in principe mogelijk om
de modelvergelijkingen snel en nauwkeurig op te lossen. Vervolgens worden de sta-
biliteits problemen geanalyseerd en opgelost. Dit resulteert in een algoritme voor
zowel het lijn als het puntcontact probleem waarmee, zoals ook aangetoond wordt,
zelfs op een mini computer de drukverdeling en filmdikte in het contact met een
grote nauwkeurigheid snel kunnen worden berekend.

Het tweede deel van dit proefschrift is toepassingsgericht. Hierin worden onder
andere het “standaard” (ideaal gladde oppervlakken) lijn en punt contact probleem
uitgebreid beschouwd. Deze problemen zijn opgelost voor een grote varieteit aan
belastingscondities, zelfs voor extreem hoge belastingen. Vervolgens wordt aange-
toond dat met de ontwikkelde algoritmes bovengenoemde studies naar de effecten
van oppervlakte oneffenheden op drukverdeling en filmdikte voor realistische be-
lastingscondities uitgevoerd kunnen worden. Het effect van verschillende soorten
oneffenheden wordt besproken voor zowel lijn als puntcontact situaties. Daarbij
komen ook dynamische aspecten aan de orde.

De studie naar de invloed van oppervlakte oneffenheden heeft geleid tot enkele
interessante nieuwe inzichten zowel met betrekking tot de smering van dit soort
contacten in het algemeen als met betrekking tot het falen van een EHL contact ten
gevolge van oppervlaktevermoeiing. Als afsluiting van het proefschrift wordt een
aantal aanbevelingen gedaan voor toekomstig onderzoek.
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Abstract

This thesis deals with the subject of elastohydrodynamic lubrication (EHL). This
is the type of lubrication that for example accurs in roller bearings and between
gear wheels. In particular, this work is directed towards the numerical solution
of the elastohydrodynamically lubricated line and point contact problems. This
thesis starts with an introduction to the subject followed by a brief historical review
going from the earliest achievements in the field of fuid film lubrication to the
first numerical solutions of an EHL contact problem that were presented in 1951,
Subsequently the different algorithms for the numerical solution of EHL contact
problems that have been presented since are reviewed and their advantages and
drawbacks are discussed.

From this review it is concluded that, in spite of the considerable progress that
has been made over the years, most of these algorithms have significant computing
time and/or stability limitations. As a consequence a number of problems of great
practical interest could not be simulated. For example to accurately study the effects
of surface features on the pressure profile and film thickness for practical loading
conditions, of essential interest for surface fatigue life predictions, requires faster
and more stable solvers.

The development of such solvers for both the line and point contact problems is
the subject of the first part of this thesis. Following the explanation of a physical
mathematical model describing the lubrication of EHL contacts, first the numerical
techniques that basically enable the fast solution of the model equations are outlined.
These techiques are usually referred to as “multigrid” or more in general “multilevel”
techniques. Subsequently the stability problems are analysed and solved. This
results in solvers that enable the solution of the EHL line and point contact problem
using large numbers of gridpoints on a small capacity computer.

The second part of this thesis directs attention towards applications. For both
the line as well as the point contact situation the “standard” EHL problems, i.e.
assuming perfectly smooth surfaces, are solved for a wide range of load conditions,
including extremely high loads. Furthermore, it is shown that the newly developed
algorithms meet the aforementioned demands by applying them to more complex
(realistic) EHL line and point contact situations. In particular, the effects of several
surface features upon pressure profile and film thickness for practical (high) loading
conditions are investigated for both line and point contact situations. Also transient
effects are discussed.

The study of surface features has led to some interesting new insights both in
general as well as with respect to the surface fatigue life of EHL contacts. Finally,
this thesis is concluded with some recommendations for future research.
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Chapter 1

Introduction

Friction and wear are two closely related phenomena that play an important role
in everyday life. For example, imagine that friction wouldn’t exist. That would
have a tremendous impact. The slightest force would put objects in eternal motion,
and many everyday activities such as simply walking from one spot to another
or turning a page of a book, e.g. this thesis, would be very complicated if not
impossible. Obviously, it would be hard to live without friction at all. Nevertheless,
in many situations friction is a nuisance and should be reduced to a minimum, see
for example figure 1.1.

Ffriction Ff; F_fz

FIGURE 1.1: An example of a situation where a minimumn friction is desired.
Ff: + F!‘z < Ffrict:’on

In particular in the design and the operation of technical equipment it is often
important to minimize the power loss caused by the friction in the various contacts
between machine parts in relative motion, e.g. in bearings and transmissions, in
order to obtain a maximum efficiency. Furthermore, wear of the surfaces of these
contacting parts should be controlled at & minimum level and if possible avoided at
all since uncontrolled wear may lead to an unexpected breakdown with sometimes
expensive and maybe even dangerous consequences.



2 Chapter 1: Introduction

An effective way to reduce friction and wear is lubrication. For example the lubrica-
tion of the main bearings of an engine with oil. The geometry of the bearing and the
crankshaft and their relative motion enable the formation of a thin cil film separat-
ing the bearing from the shaft. If the thickness of this film is large enough to fully
separate the two surfaces all shear resulting from the different surface velocities will
take place in the lubricant film. Hence, wear will be nearly absent and the coefficient
of friction will be small. Typically it is 0(0.01} whereas the coefficient of friction in
a dry contact situation is in general O(0.1). This type of lubrication that is char-
acterized by the fact that the lubricant film separating the contacting elements is
generated by the motion and the geometry of their surfaces is commonly referred to
as Hydrodynamic Lubrication. If the lubricant film fully separates the surfaces and
carries the entire contact load it is also referred to as full film lubrication.

In many situations the shape of the lubricant film is exclusively determined by

the geometry of the running surfaces. However, in the case of concentrated contacts
such as the contacts between gear teeth and between roller (ball) and raceway in
rolling element bearings displayed in figure 1.2, this is no longer true.
Because of the high pressures in the contact the shape of the lubricant film is strongly
effected by the elastic deformation of the contacting elements. The lubrication of
such contacts, commonly referred to as Elasto-Hydrodynamic Lubrication {EHL), is
the subject of this thesis. In particular this thesis is directed to the development of a
numerical algorithm enabling a fast calculation of the pressure profile and the shape
of the lubricant film in elastohydrodynamically lubricated- contacts. The algorithm
is subsequently employed in the analysis of various contact situations. The presented
results are of particular interest with respect to surface fatigue life predictions of
EHL contacts.

Before going into detail the remainder of this chapter provides some background
with respect to the research contained in this thesis. The next section presents a
more detailed introduction to EHL and explains the different types of EHL contacts

FIGURE 1.2: Two examples of lubricated concentrated contacts.
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that are generally distinguished. This introduction is followed by a brief historical
review going from the earliest achievements in the field of fluid film lubrication
via some milestones in the history of EHL to the first numerical solutions of an
EHL contact problem that were presented in 1951. Following this pioneering work
many algorithms for the numerical solution of EHL problems have been presented
over the last few decades. Section 1.3 presents a survey and discusses characteristics,
advantages and drawbacks of the most widely applied algorithms. Finally section 1.5
briefly discusses some experimental techniques that enable verification of the results
of numerical calculations and this chapter is concluded with an outline of the research
contained in the following chapters.

1.1 Elastohydrodynamic Lubrication

Elastohydrodynamic lubrication is defined as the type of hydrodynamic lubrication
in which the interaction between the elastic deformation of the contacting elements
and the fluid film formation can not be neglected.

Two examples of EHL contacts were already shown in figure 1.2. In these situ-
ations, i.e. in contraformal contacts between steel surfaces, the maximum contact
pressure can range up to 3.0 GPa. Even in everyday life these contacts play an
important role. For example the successful operation of a car depends on at least
200 EHL contacts.

The elastic deformation is not the only characteristic element in EHL studies,
The fluid film formation in such contacts is also strongly affected by the lubricant
behavior. It is well known that, for most lubricants, the viscosity increases rapidly
with increasing pressure and obviously at the high pressures mentioned above this
effect can not be neglected. On the contrary, the viscosity-pressure relation and in
general the lubricant rheology has become an essential element in the study of EHL
contacts.

The EHL theory is not restricted to the aforementioned highly loaded contacts
between steel surfaces. It applies to all situations where the stiffness of one or both
of the running surfaces is small compared to the pressure in the lubricant film. A
typical example is the contact between a steel rod and a rubber seal. .

When studying EHL contacts it is not necessary to consider the often rather
complex geometry of the contacting machine elements. Since the film thickness and
the contact width are generally small compared to the local radius of curvature of
the running surfaces, the geometry of the surfaces in the contact area locally can
be accurately approximated by paraboloids. This approximation allows a further
simplification of the contact geometry. As will be shown, it can be reduced to the
contact between a paraboloid and a flat surface.

In general two types of problems are distinguished: the line contact problem and
the point contact problem. In the case of the line contact problem the contacting
elements are assumed to be infinitely long in one of the principal directions. In fact,
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FIGURE 1.3: The EHL line contact and the reduced geometry employed in the
theoretical analysis;
R =reduced radius of curvature: R = R{' + R;'.
h =gap width.

the radius of curvature of the paraboloids approximating the surfaces in this direc-
tion is infinitely large. In the unloaded dry contact situation the surfaces touch along
a straight line. If a load is applied a strip shaped contact region is formed because
of the elastic deformations. Figure 1.3 shows the most widely used approximation
of the line contact situation: Two parabolically shaped surfaces with local radii of
curvature R; and R; moving with velocities uy and u, respectively, Figure 1.3 also
shows the reduced geometry generally used in the theoretical analysis of this type
of contact.

Figure 1.4 shows the most widely used approximation of the more general point
contact situation: Two parabolically shaped surfaces with local radii of curvature
Ry, and Ry, in the x direction and Ry, and Ry, in the y direction. The z direction
is chosen to coincide with the direction of the surface velocities u; and ug. Figure 1.4
also shows the reduction of this geometry to the contact between a single paraboloid
with radii of curvature R, and R, and a flat surface. R. and R, are generally referred
to as the reduced radii of curvature in = and y direction respectively.

In the dry contact situation, i.e. in the absence of a lubricant, both surfaces
nominally touch in a point in the unloaded situation whereas the shape of the
contact region when a load is applied depends on the ratio of the reduced radii of
curvature in z and y direction. In general it is an ellipse, and therefore this type
of contact is also referred to as an elliptic contact. Examples of point contacts are
the contact between a ball and the inner or the outer raceway in a ball bearing
and the contact between two crowned disks. A special case of an elliptic contact is
the circular contact which occurs if the reduced radii of curvature in both principal
directions are equal.

Both line and point contact problem will be addressed in this thesis. With
respect to the point contact problem only the circular contact situation is studied,
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FIGURE 1.4;: The EHL point contact and the reduced geometry used in the the-
oretical analysis;
£, = reduced radius of curvature in « direction: R = R} + Ryl
R, = reduced radius of curvature in y direction: R;' = Ry} + R}
h = gap width

because it contains all characteristic elements of 2-D EHL and this work is mainly
directed towards the development of algorithms for the solution of the problems.

1.2 EHL, a retrospective view

Nowadays it is widely accepted that Beauchamp Tower’s [T1] (1883) experimen-
tal investigation of friction in lubricated journal bearings, leading to the accidental
discovery of substantial pressures in the oil film, laid the foundation for the under-
standing of fluid film lubrication.

Tower’s experimental work provided the stimulus for Reynolds’ theoretical anal-
ysis [R1] (1886). In his paper Reynolds derives the basic differential equation of fluid
film lubrication, nowadays well known as “The Reynolds Equation”. This equation
relates the pressure in the lubricant film to its geometry and the velocities of the
moving surfaces. Reynolds not only derived this differential equation but also pre-
sented its approximate solution for restricted situations. Furthermore, he compared
his theoretical predictions with Tower’s experimental results, Hence, Reynolds was
the first who provided the engineers with a mathematical tool for the design of
bearings. One of the earliest examples of the application of Reynolds’ equation
in bearing design was the tilting pad thrust bearing, patented by Michell [M1,M2]
(Australia, 1905) and Kingsbury [K1](US, 1910).

Following the successful application of Reynolds’ theory to journal and thrust
bearings, Martin {M3] (1916) and Giimbel [G1] (1916) focussed the attention on the
more complicated problem of gear lubrication. They recognized that the conjunc-
tion between the gear tecth could be accurately represented by two cylinders and
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FIGURE 1.5: Pressure profile (P) and film thickness (H) calculated by Petruse-
vich [P1].

solved Reynolds’ equation for this geometry. Assuming the cylinders to be rigid
and the lubricant isoviscous, they deduced a relationship between the minimum film
thickness and the operating conditions. However, the film thicknesses predicted by
this formula were very small compared to the known surface roughness of gears.
Hence, it was concluded that the successful operation of gears almost without wear
as observed in practice could not be ascribed to the fluid film action.

It took some 30 years before this contradiction between theory and practical
observations was solved and two effects beneficial to fluid film formation in non-
conformal contacts were recognized: the elastic deformation of the surfaces due to
the high contact pressures and the increase of viscosity with increasing pressure.
Ertel [E1] (1939) and Grubin [G2] (1949) were the first to include both effects in the
theoretical analysis. From the solution of Reynolds’ equation in the inlet region,
with the elastic deformations according to the dry contact theory of Hertz {H1] and
the linear relation between the logarithm of the viscosity and the pressure proposed
by Barus [B1] (1893), they derived an approximate expression for the lubricant film
thickness in the center of the contact. This formula yielded film thicknesses which
were more than one order of magnitude larger than Martin’s predictions for similar
conditions. Moreover, it predicted film thickness values that were much larger than
the surface roughness in many practical contact situations. Hence, it was confirmed
that also in non-conformal contacts separation of the surfaces by a lubricant film
can be obtained. Although the formula derived by Ertel and Grubin was, as a result
of the different approximations, only valid in a limited parameter regime, their work
provided the basis for todays EHL theory.

Shortly afterwards Petrusevich [P1] (1951) presented the first “numerical” so-
lutions of the line contact problem. These solutions simultaneously satisfied both
Reynolds’ equation and the elasticity equation in a number of discrete positions
throughout the conjunction. In addition, the exponential Barus viscosity pressure
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relation was used. The results revealed details about the pressure distribution and
film shape in the contact region and contain all characteristic features of medium
to highly loaded EHL solutions (see figure 1.5): a more or less semi-elliptic pressure
distribution, a uniform film in the contact region and a dip in the film thickness pre-
ceded by a very local pressure maximum near the outlet. This second maximum in
the pressure distribution became the subject of discussions for many years to come
and is nowadays generally referred to as “the Petrusevich spike” or “the pressure
spike”.

1.3 Numerical solution methods

Following the pioneering work of Petrusevich, and stimulated by the introduction of
the digital computer and its increasing availability to scientists, many algorithms for
the numerical solution of EHI contact problems have been presented over the last
few decades. In general the applied mathematical model consists of three equations:

» The Reynolds equation, describing the pressure generation in the lubricant
film for a given film thickness.

o The elasticity equation or film thickness equation for the computation of the
elastic deformations and the film thickness for a given pressure distribution.

o The force balance equation demanding that the integral over the pressure in
the lubricant film balances the externally applied contact load.

The solutions for the pressure (P) and the film thickness (H) must simultaneously
satisfy all three equations. Furthermore, the solution is subject to the condition that
all pressures should be larger than, or equal to the vapor pressure of the lubricant,
This condition, the so called cavitation condition, is imposed because, for physical
reasons, fluids can not be subjected to pressures below this vapor pressure. The
fluid will cavitate and the pressure will equal the ambient pressure. Since this vapor
pressure is generally already small compared to the atmospheric pressure it certainly
will be much smaller than the pressures in an EHL contact and therefore it can be
assumed to be zero. Because of this cavitation condition the exit boundary becomes
a free boundary.

The algorithms used to solve the set of equations resulting from discretization
of the aforementioned constituting equations, are classified into two categories. The
direct methods versus the inverse methods. This division is entirely based upon the
different way in which Reynolds’ equation is treated in the solution process. In both
methods the elasticity equation is used only to calculate the elastic deformation for
a given pressure distribution. In addition, in both methods the same procedure 1s
followed to solve the force balance equation. Because the latter equation can be
solved in a very cheap and straightforward manner, the specific details with respect
to this equation are disregarded for the moment.
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1.3.1 Direct methods

Although the specific iterative procedure applied varies for the different algorithms,
they have in common that the Reynolds equation is solved for the pressure given
the film thickness. This seems to be the most natural way to solve the system of
equations. Indeed, Reynolds’ equation was originally derived to obtain the pressure
distribution in a conjunction in which the film shape is a priori known.

1.3.1.1 Gauss-Seidel relaxation

One of the most straightforward direct algorithms to solve the set of discrete equa-
tions consists of a simple Gauss-Seidel type of relaxation to solve the pressure distri-
bution from Reynolds’ equation. After each or after a number of iterations the elastic
deformation is recalculated. This sequence is repeated until a pressure profile and
film shape have been obtained that simultaneously satisfy all three equations within
a desired accuracy. Such an algorithm was used for the solution of the point contact
problem by among others Hamrock and Dowson [H2], Chittenden et al. [C1,02] and
Zhu and Cheng [Z1]. Furthermore, Hamrock and Jacobson [H3] applied it to the
line contact problem.

This approach has several disadvantages. Asymptotic convergence of the process
is generally slow and if n is the number of points on the grid used, then at least
O(n) relaxations are required to obtain a converged solution. Since the calculation of
the elastic deformation in all grid points requires O(n?) operations the complexity
of the algorithm is at least O(n®). This obviously leads to excessive computing
times for large n, which are unfortunately needed to accurately solve the point
contact problem. Moreover, the relaxation process appears to be unstable for highly
loaded situations. Even for moderate loads rather large underrelaxation factors were
needed to stabilize the relaxation process. Although underrelaxation may stabilize
the scheme it unfortunately also reduces the speed of convergence.

Advantages of the method are the straightforward implementation of the cavi-
tation condition and the small storage capacity required.

1.3.1.2 Newton-Raphson system approach

The Newton-Raphson algorithm is based on the linearization of the system of equa-
tions around some approximate solution. In this “working point” the Jacobian
matrix, i.e. the matrix consisting of the derivatives of all discrete equations with
respect to all variables, is evalualed, inverted and used to calculate a new approxima-
tion. This process is repeated until a solution simultaneously satisfying all equations
within the desired accuracy, is obtained. The basic algorithm is described in detail
by Okamura [01] and with some variations it is still widely used nowadays, see for
example [lamrock et al. [H4] and Sadeghi and Sui [S1]. One of the advantages of
this algorithm is that in general, convergence close to the solution is fast and that,
if it converges, only a few iterations are required. With respect to EHL problems
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however, it has some severe drawbacks, as was for example pointed out by Lubrecht
[L1]:

¢ Because of the elastic deformations, the Jacobian matrix to be inverted during
each iteration, is a full matrix. Since this inversion requires O{r®) operations
the overall complexity of the algorithm is also O(n®). Hence, accurate solution
of point contact problems with large n will lead to excessive computing times.

® On top of that both the total computer storage needed for the elements of
the Jacobian matrix as well as the total computing time needed for their
calculation are O(n?).

® The Jacobian matrix becomes almost singular with increasing load, making
the solution of highly loaded situations rather cumbersome.

¢ Because of the simultaneous solution of ali pressure updates in each iteration,
the implementation of the cavitation condition is rather troublesome. In the
case of line contact situations these problems can be avoided simply by scaling
the coordinate in the direction of flow, e.g. [B2). The scaling introduces the
location of the exit boundary as a separate unknown to be solved for in the it-
eration process. Since this location is only a single unknown the scaling doesn’t
result in a complication of the equations. However, in the two-dimensional case
the location of the exit boundary varies over the domain. In that case such a
scaling introduces not only a number of unknowns to describe its location but
also the derivatives of the exit boundary with respect to both coordinates in
the equations. This seriously complicates the problem. Therefore, extension
of this approach to the point contact problem seems impossible. The only
way out is treating the Reynolds equation with the cavitation condition as a
cornplementarity problem as proposed by Oh {02] and Kostreva [K2]. That
approach however, is rather time consuming and tedious to implement.

Most likely because of these drawbacks the majority of the papers dealing with the
application of the global Newton-Raphson method to EHL problems is dedicated to
the line contact problem and only a limited number of successful applications of this
method to point contact problems have been reported so far.

Over the years improvements to the aforementioned technique have been re-
ported: Houpert and Hamrock [H5] found a way to overcome the load limitation,
and recently Chang et al. {C3] reduced the complexity to O(n?) by truncating the
Jacobian matrix to a tridiagonal matrix. They discarded the terms that reflect the
global relation between the film thickness and the pressure caused by the elastic
deformation integrals. The truncation allows a more efficient updating of the pres-
sures. However, since these terms become increasingly important for higher loads,
it will only increase the difficulties to obtain converged solutions for highly loaded
situations.
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1.3.1.3 Multigrid techniques

The high complexity of the algorithms discussed above, seriously limits the num-
ber of nodes that can be used in the analysis, and thus the accuracy that can be
obtained. This problem was partly overcome by using local grid refinement tech-
niques and large mainframe or super computers. The benefit of faster hardware
however, is limited. The gain in computing time that can be obtained by means
of a faster computer is only a constant factor. Consequently, with an algorithm of
O(n3) complexity, the increase in number of nodes it allows is only proportional
to the cubic root of this constant. For example, to solve a point contact problem
with half of the original mesh size in the same time, requires a computer that is 64
times faster. Moreover, if a Newton-Raphson algorithm is used it should also have
16 times the storage capacity. Therefore, Lubrecht [L1,L2] shifted the attention to
the development of faster software, i.c. developing an alternative solution method
of lower complexity.

The presented algorithm was based on Gauss-Seidel relaxation of the Reynolds
equation whereas convergence of the process was accelerated using so-called Multi-
grid techniques. A brief outline of these techniques is presented below. For an
introduction to the subject the reader is referred to Briggs [B3]; the application of
these techniques to a variety of problems is extensively described by Brandt [B4].

The concept of multilevel (Multigrid) fast solvers is based upon a certain under-
standing of the convergence behaviour of iterative processes such as simple Gauss-
Seidel relaxation. In many situations it can be shown that error components with
a wavelength of the order of the mesh size, i.e. high frequency components, are
efficiently reduced by the relaxation process.

On the other hand, error components with wavelengths much larger than the
mesh size are hardly reduced and consequently, after a few iterations convergence
slows down and the asymptotic convergence rate becomes very smail. Hence, after
a few relaxations the error in the approximation is smooth compared to the mesh
size. The remaining error, in fact, can be accurately represented and solved on a
coarser grid. Therefore, instead of continuing the relaxation process when, after a
few relaxations, convergence slows down, one switches over to a coarser grid for the
solution of the error. Once an accurate approximation to the error is obtained on
this grid it is used to correct the solution on the fine grid.

Solving the error on a coarser grid generally means solving a similar problem
as the original one. So, the same iterative procedure can be applied. However,
compared to the computational cost of iterations on the fine grid, the amount of
work needed for the solution of the error on the coarse grid is much smaller. The
first reason for this reduction is that the number of nodes on the coarse grid is
smaller and consequently one iteration on this grid requires less operations. The
second reason is that, because of the larger ratic between wavelength and mesh size,
the iterative process on the coarse grid converges faster and a given error reduction
requires less iterations.
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The same reasoning applies to the iterative solution of the error on the coarse grid.
If the number of nodes on this grid is still relatively large the convergence will slow
down again after a few iterations. The remaining error on this grid will be smooth
and can be accurately approximated and solved on an even coarser grid. This process
can be repeated until a grid is reached on which the problem can be solved in only
a few iterations. The result is used to correct the solution of the problem on the
next finer grid and so on until the finest grid is reached again. Hence, to solve
the problem on some grid, a set of coarser grids is used. On each grid only a few
iterations are carried out and only on the coarsest grid the problem is really solved.
Usually the number of nodes on the coarsest grid is very small so this requires only
a few iterations. :

The total number of operations needed to solve a problem up to the level of the
discretization error with the aforementioned procedure is generally equivalent to the
amount of work of 10 to 25 iterations on the finest grid, independent of the number
of nodes on that grid, e.g see [B4].

The complexity of Lubrecht’s algorithm was, because of the evaluation of the
elastic deformation integrals, still O(n?). Nevertheless, the large reduction in com-
puting time obtained with the Multigrid techniques, enabled him to solve both
stationary line and point contact problems with a relatively large number of nodes
on a small capacity computer. As a result, extensive parametric studies for both
problems could be performed. For the line contact problem this parameter study re-
sulted in an accurate formula to predict the minimum film thickness as a function of
the operating conditions. Also the effects of longitudinal and transversal harmonic
furrows and ridges and the effects of an isotropic bump on both pressure distribution
and film thickness in a circular contact situation were investigated. A characteristic
example of a pressure distribution and the associated film thickness in a circular
contact calculated by Lubrecht is presented in figure 1.6: A semi-ellipsoid pressure
distribution in the central region of the contact. In the inlet region the pressure
smoothly builds up to this semi-ellipsoid whereas in the outlet region the pressure
is zero. Instead of a single spike the cavitated region is preceded by a spiked region
in the pressure profile. The film thickness displays another characteristic element
of EHL point contact solutions, i.e. the formation of so cailed side lobes. The film
thickness in these side lobes can be much smaller than the film thickness in the
central region of the contact.

Lubrecht’s algorithm was not suited to solve the problem for highly loaded situ-
ations. As mentioned above, the simple Gauss-Seidel relaxation process is unstable
for high loads and, with increasing load, underrelaxation and local relaxation with
local film thickness updates were needed to stabilize the relaxation process. In that
way, solutions up to a maxirmum Hertzian pressure of + 2.0 GPa were obtained.
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FIGURE 1.6: Pressure profile (P) and film thickness (H) in a circular contact
calculated by Lubrecht [L2].
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1.3.2 Inverse methods

As an alternative, Reynolds’ equation can be regarded as an equation for solving
the film thickness given a certain pressure profile. This so-called inverse solution
technique was introduced by Ertel [E1] in 1939. Driven by stability problems en-
countered when applying a direct iterative algorithm, Dowson and Higginson [D1]
(1959) were the first to develop an algorithm for the numerical solution of the EHL
line contact problem based on the inverse solution of Reynolds’ equation.

The inverse algorithms are based on the fact that the problem is only solved if the
film thickness calculated with the Reynolds’ equation, hereafter referred to as the
hydrodynamic film thickness, equals the film thickness calculated from the elasticity
equation. This leads to the following iterative scheme: For a given approximation
of the pressure profile both the hydrodynamic film thickness and the film thick-
ness based on the elastic deflections are calculated. Subsequently, the differences
between those two results are used to adjust the pressure profile. This sequence is
repeated until the hydrodynamic film thickness deviates less than some prescribed
convergence criterion from the elastic deflection film thickness.

Dowson and Higginson [D1] solved the line contact problem for a variety of oper-
ating conditions and from the results they derived a formula predicting the minimurn
film thickness as a function of the operating conditions that is still widely used. Fol-
lowing their work, the inverse approach was extended to point contact problems by
Evans and Snidle [E2,E3].

The inverse method has the following disadvantages:

* Solving Reynolds’ equation for the film thickness means solving a cubic -
equation, with basically three solutions. Since only one of those solutions
will be the appropriate one, some problems associated with the selection of
the proper root have to be solved.

e Contrary to the direct iterative solvers, the inverse method is only stable for
highly loaded situations. Therefore, Evans and Snidle [E2,E3] only used the
inverse method in the Hertzian contact region of the conjunction and applied
a direct solver in the inlet region.

¢ The relation used to calculate the pressure changes, given a certain deviation
of the hydrodynamic film thickness from the elastic film thickness, is based on
experience and insight and its mathematical or physical foundation is not well
understood.

® Because the film thickness equation is an integral equation over P the film
thickness is relatively insensitive to local changes in the pressure. Therefore,
solution of the problem in the case of rough surfaces may be difficuit.
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o The complexity of the approach is most likely close to O(r®) leading to ex-
cessive computing times for large n.

o The solution process is very sensitive to the accuracy of the first approximation.

An advantage of the inverse method is that implementation of the cavitation con-
dition is, similar to the Gauss-Seidel direct solver, very straightforward and storage
requirements are small.

The combined direct-inverse technique of Evans and Snidle was further improved
by Kweh et al. [K3]. Circular contact solutions with maximum Hertzian pressures
ranging from 1.0 to 4.0 GPa are presented. The same approach was successfully used
to investigate the effects of sinusoidal roughness in elliptical contact situations by
Kweh et al. [K4] and Barragan de Ling et al. [B5]. Furthermore, a basically similar
algorithm was presented by Seabra and Berthe [52,53].

In spite of the aforementioned disadvantages this combined inverse-direct ap-
proach is the only one so far that has enabled accurate solution of the point contact
problem for maximum Hertzian pressures up to 3.3 GPa which is the practical limit
in the case of roller bearings. Beyond this value gross plastic deformation of the
raceways starts to occur.

1.4 Variational method

An alternative approach leading to a solver for the EHL line contact problem was
proposed by Verstappen [V1]. This approach is based on variational principles. The
resulting algorithm uses an iteration in time to maintain stability with increasing
load and has some interesting elements in it. For example the introduction of a
preconditioner as a result of which the matrix to be inverted at each time step is no
longer a full matrix. It is a pentadiagonal matrix instead. This preconditioning is
the more interesting since it is claimed that it can be applied in any solver of the line
contact problem based on the inversion of the full matrix. In particular, it should
enable a reduction of the complexity of the aforementioned global Newton-Raphson
schemes to approximately O(n?).

1.5 Experimental verification

The theoretical investigations resulted in the conclusion that even in the case of con-
tacts between non conforming surfaces, complete separation of the running surfaces
can be obtained. Furthermore, the dependence of the film shape, pressure distribu-
tion and other important properties on the operating conditions was studied. Such
results of course, need experimental verification. Because of the high pressures in
the contact and the small film thickness, that is not an easy task. Several techniques
based on different physical principles have been developed over the years. Most of
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FIGURE 1.7: (a} Interferogram of a circular contact measured by Gohar [G4)].
(b) Film thickness contour plot calculated by Lubrecht [L2] for
identical conditions.

these techniques can only be used to measure some average film thickness. How-
ever, with the two techniques discussed below also details about the film shape in
the contact region can be revealed. The most popular one is the optical interfer-
ometry. This technique was for example used by Kirk [K5], Gohar and Cameron
(G3], Foord et al. [F1], Koye and Winer [K6], Gohar [G4] and it is still widely used
nowadays, for example see Kweh et al. [K3].

As was demonstrated by Lubrecht [L2], see figure 1.7, the optically measured film
thickness profiles show good qualitative agreement with the results of numerical cal-
culations. Both results display the characteristic horseshoe shaped film thickness in
the central region with the aforementioned side lobes where the overall minimum
values occur. In addition, Kweh et al, (K3] reported also a good quantitative agree-
ment between the measured central film thickness and the central film thickness
calculated numerically for the same lubricating conditions.

Optical interferometry is limited to film thickness measurements. Information
regarding the pressure distribution can not be obtained directly in this way. For that
purpose, Safa et al. [$4,55] and Baumann et al. [B6] performed measurements using
micro transducers, vacuum deposited on one of the running surfaces. Depending
on the type of transducer, this technique aliows measurement of the pressure, the
film thickness or the temperature in the conjunction. Because of the high pressures
and the high shear rates in the contact these measurements are very difficult to
perform and, so far, only results for relatively lightly loaded line contact situations
have been presented, see for example figure 1.8. Note that these measurements
confirm the occurrence of a second local maximum in the pressure profile, i.e, the
“mysterious” gpike. However, the transducers are generally not small enough to
accurately measure its height.
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FIGURE 1.8: Pressure profiles measured by Baumann et al. [B6] using micro-
transducers.

1.6 Outline of this thesis

The accurate prediction of the effect of surface roughness on the fatigue life of EHL
contacts in practically relevant situations requires algorithms that allow solution of
the line and point contact problems with a large number of nodes in a reasonable
computing time, also for highly loaded situations. To give an estimate of what such
studies require: for the point contact problem the algorithm must allow solution of
the problem with roughly 500 x 500 nodal points.

From the previous sections it is clear that none of the algorithms presented
so far is able to accomplish this task in limited times, not even on high speed
computers. One might argue that, viewing today’s rapid development of faster and
faster computers, the next generation of super computers may be fast enough. As
was explained in section 1.3.1.3, the high complexity of the algorithms severely limits
the increase in number of nodes that a faster computer will allow. In addition,
computing time on super computers is generally quite expensive. Therefore, the
alternative of developing a solver of lower complexity is adopted in this thesis.

In principle multigrid techniques do have the prospect to solve problems, with
the above mentioned number of nodes, in limited computing times on small capacity
computers. Therefore, these techniques were adopted as a starting point for further
research. The results of this research are presented in the following chapters.

This thesis can be divided into two parts. In the first part, i.e. the chapters 2 to 5
emphasis is on the theory of EHL and the necessary mathematics needed for under-
standing of the fast numerical solution of the EHL line and point contact problems.
Chapter 2 explains the mathematical model describing the isothermal EHL line and
point contact problems. The different equations are derived and, for convenience,
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they are reworked to a dimensionless form. Next, chapter 3 explains the two mul-
tilevel techniques on which fast solvers for both problems will be based. First the
“standard” muitilevel techniques to accelerate the convergence of a relaxation pro-
cess, i.e. the procedure briefly outlined in section 1.3.1.3, are explained in detail.
Secondly, a recently developed multilevel algorithm multilevel multi-integration for
the fast numerical evaluation of multi-integrals such as the elastic deformation inte-
grals is explained. In particular, it is demonstrated that, using this algorithm, the
computing time needed for the calculation of the elastic deformation in both the line
as well as the point contact situation can be reduced from O(n?) to O(nlnn). Given
a suitable relaxation scheme these two multilevel techniques in principle enable the
solution of the entire problem (line or point contact) in O(nInn) operations if n is
the number of nodes on the grid.

With respect to the relaxation scheme, an efficient multilevel solver requires a
relaxation process that effectively reduces high frequency error components. For
lightly to moderately loaded line and point contact situations this is no problem.
As was shown by Lubrecht [L2] a simple Gauss-Seidel relaxation scheme serves well.
Unfortunately this scheme, as many other algorithms developed over the past few
decades, is unstable for the highly loaded conditions that occur in practical situa-
tions. Hence, to obtain solvers of the aforementioned low complexity first alternative
relaxation schemes must be developed that remain stable in extreme loading condi-
tions and, in addition provide good error smoothing. This subject is addressed in
the chapters 4 and 5.

First chapter 4 describes the step by step development of such a relaxation scheme
for the line contact problem with the help of a seties of linearized model problems.
Subsequently, it is explained how to merge this relaxation process with the multilevel
techniques into a fast solver for the problem. The chapter is concluded with the
presentation of the results for an example load situation obained with the solver.
In particular, it is demonstrated that, because of its low complexity (Q(nlnn)),
the algorithm enables solution of the problem with a large number of nodes, e.g.
((100.000), on a mini-computer.

Next chapter 5 describes a similar approach leading to a fast solver for the circular
contact problem. Again the alternative relaxation scheme is developed with the help
of the analysis of a series of linearized model problems. Similar to what is discussed
in chapter 4, it is explained how to combine this relaxation process with both the
muitilevel solution as well as the multilevel multi-integration algorithm into a solver
of complexity O(nInn). By means of an example the low complexity of the solver is
demonstrated and particularly it is shown that it is indeed possible to solve the point
contact problem with the number of nodes mentioned at the start of this section in
reasonable times on a mini-computer.

Having developed “a set of tools” the second part of this thesis directs attention
towards applications. The chapters 6 to 10 present the results of the application
of the solvers for the line and point contact problem to a variety of EHL contact
situations. First the results obtained for line contact problems are presented. In
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particular, chapter 6 gives the results of a parametric study of the so-called standard
line contact problem, i.e. it discusses the situation in which the surfaces are perfectly
smooth. Secondly, chapter 7 addresses a more complex situation, i.e. it studies the
effect of surface features. Assurning steady state conditions the effects of some large
scale features such as indentations, bumps, and waviness on the pressure profile and
film shape are studied for conditions derived from an actual bearing application. In
addition to these results for large scale features the effects of a small scale feature,
i.e. surface toughness, are studied and pressure profiles and film shapes calculated
using the input of an actually measured surface trace are presented.

The analysis of the effects of surface features on the pressure profile and the film
shape introduces the need for a time dependent approach since generally the surface
feature moves through the contact. This subject is adressed in chapter 8. The solver
for the line contact problem described in chapter 4 is extended to transient situations
and the results of the simulation of the overrolling of an indentation, a bump and
waviness are presented and discussed. These transient studies have resulted in some
interesting new insights and demonstrate the importance of such transient studies.

TFollowing these line contact results next the circular contact problem is ad-
dressed. First chapter 9 presents the results of the application of the solver devel-
oped for this problem to a parametric study of the idealized situation in which the
surfaces are perfectly smooth. Secondly chapter 10 presents the results obtained in
some more complex situations, i.e. it shows the effects of some surface features on
both pressure profile and film thickness.

As a result of covering both the numerical mathematical side, i.e. the theory
needed for the understanding of the development of fast solvers for the EHL line
and point contact problem, as well as the engineering side, i.e. the application
of the solvers to situations of practical interest, this thesis has become quite an
extensive work.

However, in spite of all results and answers presented in the chapters 4 to 10
there are still many subjects to be studied, questions that remain unanswered, and
new questions to be answered. Therefore this thesis is concluded with a brief outline
of some interesting topics for future research.
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Chapter 2
EHL Theory

In this chapter a mathematical model describing the isothermal EHL contact sit-
uation, i.e. the lubricant flow past deformable boundaries, will be discussed. As
described before, the model consists of three equations: The Reynolds equation
that relates the pressure in the lubricant film to the geometry of the gap and the
velocities of the running surfaces. The film thickness equation for the computation
of the elastic distortion of the surfaces caused by the pressures in the film and the
force balance equation demanding that the integral over the pressure balances the
externally applied contact load.

Because of the high pressures in the lubricant film the variation of lubricant
properties such as the viscosity and the density with pressure must be accounted
for. Hence, the model is completed with some empirical relations describing the
variation of the viscosity and the density with pressure.

2.1 The Reynolds equation

Consider the situation displayed in figure 2.1: The flow between two moving surfaces
z = zy(z,y,t) and z = zo(z, y,t) with velocity vectors U; = (1,01, wy) and U, =
(ug, va,ws) respectively.

FIGURE 2.1: fluid flow between two moving surfaces.
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Assuming a narrow gap and a Newtonian lubricant behaviour, the velocities in the
flow can be solved from the Navier-Stokes equations and the boundary conditions.
Substitution of the results in the equation of continuity, i.e. demanding conservation
of mass, yields an equation for the pressure in the film. This equation was derived
by Reynolds [R1] and is generally referred to as the Reynolds equation.

2.1.1 Conservation of momentum

For a Newtonian fluid the geueral equation describing the conservation of momentum
in the flow is the Navier-Stokes equation, e.g. Milne Thomson [M1}:

p%ZPF_W’“%V[WV'UH?[V'(UV)]U-FVX[ﬂ(VxU)] (2.1)

where: p = hydrostatic pressure
1 = viscosity

U = velocity vector

p = density

F = external force field

Assuming the external force field and the mass-inertia terms to be negligible com-
pared to the viscous terms {creeping flow) this equation reduces to:

Vp= Vv U420V G9IU+Tx(vx U] (22)

In a cartesian coordinate system the equations for the z, y, and z direction read:
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where u, v and w are the fluid velocities in z, y, and z direction respectively.

In most lubrication situations the gap is narrow, i.e. if & is the characteristic
size in z direction and L is the characteristic size of the domain in both z and ¥
directions then ¢ = hA/L < 1. Hence, all derivatives with respect to the z and y
direction will be much smaller than their equivalents with respect to the z direction.
This narrow gap assumption leads to a significant simplification of the equations.
For a detailed analysis the reader is referred to Reynolds [R1] and Langlois [L1]. If
only the terms of lowest order in ¢ are considered the equations (2.3) to (2.5) reduce
to:

o ( 6—w+n@)+

dp d f du

% = 5 (Tj‘a—z) (2.6)
dp 8 [ dv

3 = 8 (Wa) (2.7)
d

a_i =0 (2.8)

These boundary conditions are based on the assumption that no slip occurs at
the surfaces. Note that, as a result of the narrow gap assumption, the pressure is
independent of z. Consequently, since the fluid flow is assumed to be isothermal,
the viscosity will not vary over the height of the gap. Integration of equations (2.6}
and (2.7} using the boundary conditions at z = z; and z = 2, renders the following
expression for the velocities u and v:

14 —u
= 53—5(22 —(z1+ z)z+ z12) + %‘H)-(Z —21) +u (2.9)
1 dp,, (va — vy)
v = %a(z — (=21 + 22}z + z129) + (_z:;)'(z —z)+u (2.10)
Introduction of 2’ = z —z;,i.e. 0 < 2' < h, where h = z; — 2 is the gap width gives:
19 z
= ﬂa;g(zﬂ —h2') + (up — 'H-I)E + (2.11)
19 k4
v o= ﬂgg(zm —h2"y + (v, — Ul)g + 0 (2.12)
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2.1.2 Conservation of mass

The equation for the conservation of mass in the flow is the equation of continuity.
In absence of a fluid source the mass balance for a volume V enclosed by the surface
S entirely in the flow reads, e.g Batchelor [B1]:

d
- V=—[pU-nd 2.13
T v pd S/p ndS (2.13)

where: § = surface of volume
n = outwards normal on surface

Considering the volume in the gap shown in figure 2.2 equation (2.13) will be satisfied

if;
%(ph) + % ( th(pu)dz') + a% ( th(pv)dz') =0 (2.14)

2 = kz,y,t)
Z (z+dz,y +dy,0)

y d
¥ 10 y
]4_ (2,9,0) dr

T

FIGURE 2.2: Contro! volume in the gap.

Note that in this equation the time rate of change of the volume resulting from
the vertical velocity of the running surfaces is accounted for, although the vertical
velacities in the flow are neglected because of the narrow gap assumption.

Substitution of u and v from equations {2.11) and (2.12) in (2.14) yields the
Reynolds equation:

a

3 3
i, {ph ap d {ph 6—p—ph(v1+vz)/2}——i@=0 (2.15)

— = —ph{us +u) /2y +— 4§
Oz | 129 0z phlur + )/ }+6y 129 3y a

In this work it will be assumed that the projections of both surface velocities on a
plane z = constant are parallel and that the z axis is chosen to coincide with this
direction. Hence, v, = vy = 0 and equation (2.15} can be written as:
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where u, = u; + u; denotes the sum of the velocities of the running surfaces. The
three terms in the right hand side represent three different effects that account for
the pressure generation in the lubricant film and are commonly referred to as the
wedge effect, the streteh effect and the squeeze effect. In this study u, is assumed
to be constant, i.e. the stretch effect is not taken into account.

The pressure is subject to the boundary condition that it equals the ambient
pressure at the edges of the domain. This pressure is generally defined as zero, i.e.
the pressure solved for is in fact the pressure rise from the ambient level. Hence, if
the domain is given by: {(z,y) € Rz, < z < 2, A —¥a £ ¥ < Yo} the boundary
conditions are:

p(ze,y) = plas,y) =0
P(I,—ya)

il
=
5
@
R

[

2.1.3 Viscosity-pressure

The increase of viscosity with increasing pressure is one of the two dominant effects
accounting for the fluid film formation in EHL contacts. One of the most widely
used viscosity pressure relations is the exponential Barus equation, e.g. Barus [B2]:

1(p) = o e (2.17)
where: 7o = the viscosity at ambient pressure i
a = the pressure viscosity coefficient, typically a az 2 1078 Per
y

The advantage of Barus’ equation is its simplicity. However, it is accurate for rela-
tively low pressures only. The predicted viscosities for pressures larger than approx-
imately 0.1 GPa are too high, e.g. see Lubrecht [L1].

A more accurate viscosity pressure relation was proposed by Roelands [R2]. The
equation is accurate for pressures up to 1 GPa. In S.I. units Roelands’ equation
reads:

2(p) = 70 exp {(m(no) +9.67) (-1 +(1+ i)')} (2.18)

with: z = pressure viscosity index, typically 0.5 < z < 0.7.
In this work z=0.68 will be used
Po= a constant: pp = 1.9810° Py
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By defining:

the Roelands equation can be written as:

7(p) = moexp {ﬂ [-1 + (1 + f)] } (2.19)

o, po and z are mutually dependent:

2 = (in(no) + 9.67)

2.1.4 Density-pressure

In the analysis of gas lubricated bearings the compressibility of the lubricant is
obviously an effect that can not be neglected. If the lubricant is a mineral oil
however, the variation of the density with the pressure is usually negligible. In the
case of EHL contacts this assumption does not hold. Because of the high pressures
the compressibility of the oil must be taken into account. The following relation
proposed by Dowson and Higginson [D2] is used throughout this work:

0.5910° + 1.34p

0.5910° + p (2:20)

2(p} = po

where: pg = density at ambient pressure

This relation limits the compressibility of the lubricant to approximately 30 %. Con-
sequently, the effect of the compressibility of the lubricant on the fluid film formation
will be much smaller than for example the effect of the elastic deformation of the
surfaces. An alternative relation between density and pressure will be discussed in
the recommendations for future research.

2.1.5 Cavitation

Since the lubricant is assumed to be a fluid, pressures lower than the vapour pressure
are physically impossible. The fluid will cavitate and the pressure remains constant.
Cavitation will for example occur in the outlet region of the conjunction where the
gap is widening. This effect is not accounted for in the Reynolds equation presented
above. On the contrary, in such regions the equation will allow the pressure to
decrease without limit and may predict large negative pressures. The occurrence of
cavitation is therefore accounted for separately. Since in most situations the vapour
pressure of the lubricant is small compared to the ambient pressure it certainly will
be much smaller than the pressures in the contact and therefore the condition is
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imposed that the pressure should be larger than or equal to zero. As a result of this
condition the problem to be solved is a complementarity problem and the outlet
boundary of the pressurized region becomes a free boundary.

2.2 The film thickness equation

The Reynolds equation can be used to solve the pressure in the gap when its geom-
etry is known. However, because of the elastic deformation of the surfaces the gap
width depends on the pressure. In order to solve the problem a relation between
pressure and film thickness is required. The film thickness equations for both the
line and the point contact problem are presented in this section. With respect to
the calculation of the elastic deformations the contacting bodies are considered as
semi-infinite elastic bodies. This assumption will be justified as long as the elas-
tic deformations are small compared to the radii of curvature of the undeformed
surfaces. Furthermore, it is assumed that the material is isotropic and that the
deformations are small enough to justify the application of linear elasticity theory.

2.2.1 Line contact

The undeformed surfaces are approximated by parabola’s. Hence, the equation for
the film thickness reads:

2
h(z) = ho + 2—"”&- + d(z) (2.21)
where: B = reduced radius of curvature: B! = Ry + R;!
d(z) = elastic deformation
hy = a constant

The elastic deformation d(z) is obtained by summation of the deformation of both
running surfaces caused by the pressure profile. These deflections are calculated in
the following manmner: First the elastic deformation resulting from the line loading
of an elastic half-space is calculated, see figure 2.3.

Y
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FIGURE 2.3: The line loading of an elastic half space
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A line load of intensity g per unit width distributed along the y axis acts on the
surface z = 0 in the direction normal to this surface. Under plane strain conditions,
i.e. no deformation in y direction, the displacement v{z} in z direction of a point of
the surface resulting from this load is:

T

To

v(z) = _%:E_'w In

(2.22)

where: ¢ = load per unit width
xo = distance where v =0
E = Young’s modulus
v = Poisson’s ratio

For details with respect to the analysis the reader is referred to Johnson [J1j. A sim-

ilar analysis for plane stress conditions was presented by Timoshenko and Goodier
[T}

From equation (2.22) the elastic deformation caused by a distributed load p(z) can
be obtained by integration:

o(z) = —Wﬂlﬂ;" ’_m j “Ia

Hence, the expression for the elastic deformation d(z) in equation (2.21) reads:

= e g [

(:r;—:r:') p(zdz" + C {2.23)

(z -2

Io

p(zdz" + C (2.24)

Note the subscripts indicating that the elastic properties of the two contacting ele-
ments are not necessarily the same. With respect to the singularity in the integral
it is noted that the so called Cauchy principal value must be taken.

Introduction of the reduced elastic modulus:

2 _ (=), (1=

E E, E,

leads to the following equation for the film thickness:

2 oo
W) = hoo + o — / In

7 mr r 1
R AEo ) Py ) p(z"ydx (2.25)

where hgg is a constant.
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2.2.2 Point contact

Similar to the line contact situation, see section 2.2.1, the undeformed surfaces are
approximated by paraboloides. The expression for the gap width reads:

22 y?
= —+d 2.2
) = ho + 57+ o + d(as) (226)
where: R, = reduced radius of curvature in z direction:
R;' = R} + Ry,
R, = reduced radius of curvature in y direction:

- ~1 -1
Ry 1= Rly + RZy
d{z,y) = elastic deformation

The analysis leading to an expression for the elastic deformations is similar to the
analysis presented in the previous section for the line contact problem. First the
displacements are calculated for a point load acting on an elastic half space, see
figure 2.4:

ANANRNN } 2
/

i z

FIGURE 2.4: The point loading of an elastic half space

The displacement v(z,y,z) of a point (z,y,2) produced by a concentrated point
force F acting normally to the surface z = 0 at the origin is, e.g. Love [L2]:

F2 L 0P

vw, 4 2) = drprd  dwp(d + p) r

(2.27)

with: » = V2T +y? § 27
#,A = Lamé constants

The Lamé constants A and y are related to Poisson’s ratio » and Young’s modulus

E according to:
Ev E

T AT

(2.28)
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Hence, the displacement in z direction of a point at the surface is given by:
(1 —v4)F 1
rkE \/(mz +4?)

The elastic deformation of the surface of the elastic half-space caused by a distributed
normal load p{z,y) is obtained by integration:

v(z,y) = (2.29)

plz',y")dz'dy’

v(z,y) = I_V _mjm[ \/(? ') + (y — v')?

+C (2.30)

As in the line contact situation, the elastic term in the film thickness equation
is obtained by summation of the elastic deformations of the individual surfaces.
Consequently the film thickness equation reads:

2

_ i (a',y")da'dy’
h(:c’y)—hm+2RI+ 3 WE, Ir \/m_z —— @

2.3 The force balance equation
The entire contact load exerted on the contacting elements is carried by the lubricant
film. Hence, the integral over the pressure in the film must equal the applied load.

This condition is generally referred to as the force balance equation and in the case
of the line contact problem it reads:

] /mp(x)d:r: - w (2.32)

where: w = external load per unit width

The equivalent equation for the point contact problem is:

_mj_O;jm plz,y)dzdy = F (2.33)

where: F' = external load

The force balance equation determines the value of the integration constants in the
film thickness equations (2.21) and (2.31).
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2.4 Dimensionless equations

In both line and point contact situations the number of parameters can be signifi-
cantly reduced by the introduction of suitable dimensionless groups and variables,
Different dimensionless groups have been proposed over the years. For specific details
with respect to these groups and the relations between them the reader is referred
to appendix A. The dimensionless equations presented in this paragraph are mainly
based on the Hertzian dry contact parameters. Hertz's theory, see [H1), gives the
pressure profile, the geometry of the contact region, and the elastic deformatjon of
the contacting elements in the case of a loaded contact between two parabolically
shaped elastic bodies. For the line contact situation the Hertzian pressure profile is
given by:

— 2 3
p(z) ={ Phy/1= (/b if Ja| <b (2.34)
0 otherwise

Pi is the maximum pressure, generally referred to as the mazimum Hertzian pressure:

2w
Ph=— (2.35)

and b denotes the half width of the region where the bodies are in contact:

8wh
b= B (2.36)

where w is the external contact load per unit width, R is the reduced radius of
curvature and E’ is the reduced elastic modulus. In the case of a circular contact
the Hertzian pressure profile is given by:

ey | VI @I —(faF i |2 44 <a
Ploy) = { 0 \/ otherwise (237)

where pj, is the maximum pressure:

3F

= — 2.
P orat (238)
and a denotes the radius of the contact circle:
3FR,
a = R {2.39)

2K

F is the external contact load, R, the reduced radius of curvature in z direction

(circular contact B, = R,) and E' is the reduced elastic modulus of the contacting
bodies.
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2.4.1 Line contact

If both contacting elements are assumed to be infinitely long in y direction and the
stretch effect is neglected the Reynolds equation (2.16) reads:

8 (ph®dp d(ph) dph)

6—1' (7@) - 6”,—6$ hd 12—at =0 (240)

with the cavitation condition p > 0 in the domain and p = 0 at the boundaries.

After substitution of the following dimensionless variables:

P/ po
’?/TI{J
z/b
p/p
hR/b2
tu,/(26)

E 0 n

My e
|

il

with py, and b given by (2.35) and (2.36) respectively, this equation reads:

0 (pHOP\ _ O(pH) _0(H)
ax \ 7 0Xx ax ar

with the cavitation condition P > 0 in the domain and P = 0 at the boundaries.
The dimensionless parameter A is given by:

_ bnou, R
Ypa

The dimensionless viscosity 7 is defined according to:

=0 (2.41)

A

7(P) = exp(@ P) (2.42)
with @ = o p,, if the Barus equation is used and if Roelands’ equation is applied:
P
w0 e{(52) (rae B} e
0

Furthermore, the dimensionless density j is unity for an incompressible lubricant
and if the lubricant is assumed to be compressible 5 is given by:

0.5910° +1.34 P py

p(P) = 2.
PP) = =511 P oo (244)
The dimensionless film thickness equation reads:
Xz 1 e
H(X) = Hoo + 5 ~ ~ [ In}X — X'|P(X")dX' (2.45)
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where Hy, is a constant.

The corresponding dimensionless force balance equation is given by:

/ TPx)x-T =0 (2.46)
—eo 2

From the dimensionless equations describing the EHL line contact problem it can
be observed that, if the Jubricant is assumed to be incompressible and if Barus’
equation is used the problem reduces to a twe parameter problem. All solutions can
be characterized in terms of the two parameters & and A (or alternatively the Moes
non-dimensional parameters M and I, see appendix A). If Roelands’ equation is
applied and the lubricant is assumed to behave compressible the results can still be
presented in terms of these two parameters provided « and either Tjo OT Z are given.
In this thesis line contact calculations with Roelands equation for a compressible
lubricant will be carried out for given values of & and z. Unless explicitly stated
otherwise, a= 1.7 10~® and z= 0.68 will be used.

2.4,2 Circular contact

For the two dimensional circular contact problem the Reynolds equation (2.16) reads:

9 (ph8p) 8 [ph®dp d(ph) ., 08(ph) _
dz ( 7 3:1:) Oy ( n Oy _SH’W - 12—85_ =0 (2.47)

with the cavitation condition p > 0 in the domain and p = 0 at the boundaries.

Substitution of the dimensionless variables:

il

p/po
7/
z/a

y/a
p/pa
hR/a*
tu,/(2a)

il

M Ry e
I

with p, and a given by (2.38) and (2.39) results in the following dimensionless
Reynolds equation:

0 (BHOP\ 8 (FHYOP\  0(pH)  o(H)
ax (Tﬁ) aY( 7 Ei?)*’\ ax " ar =0 (2.48)

with the cavitation condition P > 0 in the domain and P = 0 at the boundaries.
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The dimensionless parameter A is given by:

A= GUQU,Ri
T @’y

As for the line contact problem the dimensionless viscosity 7 is defined by equa-
tion (2.42) if Barus’ equation is used and by equation (2.43) if Roelands’ equation is
applied. Similarly the dimensionless density p is unity for an incompressible lubri-
cant and given by equation (2.44) if the lubricant is assumed to behave compressible.
Substitution of the same dimensionless parameters in the film thickness equation
gives:

xX* y? 2 o5 o0 P(X,YdX'dY'
HX,Y)=Ho+—+5+3 f f ( ) (2.49)
2 2 Te—ood —00 /(X _Xr)2+(Y —Y')?

where Hyg is a constant.

Finally the corresponding dimensionless force balance equation reads:

2

T =0 (2.50)

] * j ¥ P(X,Y)dXdY —
—ood —o0

From the dimensionless equations it follows that, if the lubricant is assumed to
be incompressible and if Barus’ equation is used, the problem is a two parameter
problem. All solutions can be characterized in terms of & and A (or the Moes
dimensionless point contact parameters M and L, see appendix A). An approach
that still applies if Roelands’ equation is used and the lubricant is assurmned to behave
compressible however, in that case a and either fo or z must be given. In this work
calculations with Roelands’ equation and a compressible lubricant are performed for
given values o and z. Fortunately for mineral oils these two parameters do not vary
too much. Unless explicitly stated otherwise, a= 1.7 1078 and z= 0.68 will be used.
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Chapter 3

Multilevel techniques

Only in some restricted line contact situations can the pressure profile in the film
be solved analytically, for example if the bodies are assumed to be rigid and the
variation of the viscosity and the density with pressure is disregarded, e.g. Martin
[M1] and Gimbel [G1]. However, in general a numerical approach is required. The
equations are discretized on a grid covering the contact domain. Subsequently the
resulting set of discrete equations is solved using some iterative procedure. A brief
discussion of the variety of algorithms for the numerical solution of EEL problems
developed in the last few decades, has already been presented in chapter 1. The
complexity of most of the solvers is relatively high, i.e. O(n?) or O(n*). Conse-
quently the study of features requiring large n such as the study of the effects of
surface roughness on the pressure profile in the film and the consequences for bearing
fatigue life becomes rather awkward, if not impossible.

Restricting ourselves to local relaxation processes this high complexity is caused
by two effects. Firstly there is slow convergence of the relaxation process for large
numbers of nodes. This slowness can be effectively overcome by means of “standard”
multilevel techniques, i.e. employing a set of coarser grids to accelerate convergence.
These techniques are outlined in detail in section 3.1. An algorithin for the solution
of both EHL line and point contact based on these techniques was developed by
Lubrecht [L1].

The second reason for the high complexity is the computation of the integrals
describing the elastic deformation. Section 3.2 presents a recently developed multi-
level technique multilevel multi-integration for the fast evaluation of such integrals.
This technique has been developed by Brandt and Lubrecht [B1,L2] and as a result
the computing time needed for the calculation of the elastic deformation can be
reduced from O{n?} to O(nInn), where n is the number of nodes on the grid.

Together these techniques basically enable the solution of both EHL line and
point contact problems in O(nlnn) operations. This chapter gives a general de-
scription of both techniques. The details regarding the application to the solution
of the EHL line and point contact problem are discussed in chapter 4 and 5 respec-
tively.



40 Chapter 3;: Multilevel techniques

3.1 Multilevel solution

Ever since the development of the first multilevel solvers for elliptical partial dif-
ferential equations, multilevel techniques have been developed for the solution of a
wide variety of scientific problems. For an overview of recent developments in the
field the reader is referred to [M2]. The present section explains the basic theory
and techniques for the fast solution of an elliptical partial differential problem. All
aspects necessary for the understanding of the development of a solver for EHL prob-
lems are covered. For additional information on the multilevel solution of partial
differential equations the reader is referred to Brandt [B2]. The reader is further
referred to the introduction to multilevel solution techniques written by Briggs [B3].

3.1.1 Relaxation

Consider the following problem:
Lu=f on (3.1)
with appropriate boundary conditions on 2.

where: £ = differential operator
u = solution
f = right hand side function

Discretization of the problem on a uniform grid characterized by its meshsize k gives:

Lryh = f* on (3.2)
where: I* = discretized differential operator
u = vector consisting of the solution in all grid points
f = vector approximating the right hand side function in all points

Assume that this discrete problem is solved using some relaxation process. Starting
with a first approximation u? of the solution a new approximation of the solution
ul is calculated according to the rule characteristic for the relaxation process under
consideration. This sequence is repeated until an approximation of the solution has
been obtained that satisfies some prescribed tolerance.

It is characteristic for many relaxation processes that the asymptotic speed of
convergence is small. Typically the error reduction per relaxation sweep is O(1—h”)
where p is usually 2 or 3. Consequently, for small A (large number of nodes n), many
relaxation sweeps are needed to solve the problem up to some fixed accuracy.

Using Fourier analysis techniques it can be shown for simple cases that this slow
convergence is due to the fact that, whereas high frequency components in the error
are efficiently reduced by the relaxation, it hardly effects low frequency components.
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This behaviour is illustrated in the following example, the solution of the 2-I Poisson
problem with a simple one-point Gauss-Seidel relaxation.

Error smoothing: Example

The equation to be solved reads:

Pu  H?
5;; + 53’_"; =f (3.3)

with some suitable boundary conditions. The usual second order discretization of this
equation on a uniform grid with mesh size h results in the following equation for each
interior grid point (zy, ¥, ):

B2 (W tm + Sigrm + ey + Uma1 — 4Um) = fim (3.4)

The approximation of the solution before relaxation is denoted by #;m- One relaxation
sweep consists of visiting all sites (I,m) in lexicographic order replacing &;m by 4,
to satisfy equation (3.4) in the particular gridpoint. It is characteristic of Gauss-Seidel
relaxation that the changes applied in the previously visited sites are taken into account
while relaxing a gridpeint, Hence, ), is solved from:

W™ (Umrm + g tm + Ty + Gmpy — 48 0) = fim (3.5)

The error at site (I, m) before relaxation is given by:
Btm = Um — U (3.6)

whereas the error after relaxation at this site is defined as:
l_”l,m = Ulm — ﬁ!,m (37)

Substitution of & and @ from equations (3.6) and (3.7) in equation (3.5) results in the
following equation relating the error after relaxation to the error hefore relaxation:

Vi-tm + Btrym + Oymet + Tmr ~ 48 = 0 (3.8)

This equation shows that the error in (I,m) after relaxation is a weighted average of
neighboring values of both # and ©. Hence, if the error before relaxation is smooth the
error after relaxation must be much smoother.

This smoothing effect can be quantified by means of a so-called “local mode analysis”.
Becanse of the local nature of the relaxation process, i.e. the effect of changes applied at
a specific site on points several meshsizes away decays exponentially with the distance,
the analysis can be restricted to the interior of the domain. The grid is regarded to be
embedded in a rectangular domain allowing expansion of both ¢ and 7 into Fourier series:

Bim = 3 A(f)eiBri+62m) (3.9)
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Brm = 3 A(g)e O™ (3.10)
where § = (8;,82).
The summations are over a subset of the square | 8 | = max(| 6, |, [f2]) < .
Since the relaxation maps a specific Fourier component on itself, it is sufficient to consider
the effect of the relaxation on only one component. From equation (3.8) the following
relation between the amplitude of a component before and after relaxation can be derived:

(e"el + eiaz) A(el,gz) + (e""el + g2 _ 4) /‘1(91,92) =0 (3.11)

Consequently the amplification factor of the § component due to one relaxation sweep is:
_ A(01a82) . e‘:ﬁl + eingz

u(8) = A(81,0,) T |4 = e — iz (3.12)

This amplification factor as a function of (#y,8;) is shown in figure 3.1.
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FIGURE 3.1: u(f,,0;) for Gauss-Seidel relaxation on 2-D Poisson problem.

From figure 3.1 it is obvious that, since p(8) — 1 as § — 0, the relaxation hardly re-
duces low frequency components. As a result asymptotic convergence rates are small. In
reality, i.e. taking into account the boundary conditions, the asymptotic reduction per
relaxation of these components is (1 — O(h?)). High frequency components on the other
hand are very effectively reduced as is illustrated by the asymptotic smoothing rate. This
asymptotic smoothing rate ji is defined as the maximum amplification factor for those

error components that can not be represented on a (coarser) grid with, for example, twice
the mesh size:
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B = max p',(el,GQ) (3.13)
WIZIQISW
For the situation considered here, i.c. one point Gauss-Seidel relaxation applied to the
solution of the 2-D Poisson problem with the usual 5-point discretization 7 = 0.5. Hence,
after only three relaxations the high frequency components are reduced by almost an
order of magnitude. Obviously after a few relaxations the error in the solution will mainly
consist of components with a wavelength large compared to the mesh size h.
This completes an example of a local mode analysis, In general such an analysis, also
referred to as “smoothing rate analysis”, provides the basis for a multilevel algorithm for
the numerical solution of a partial differential problem.

The convergence behaviour shown in the example above is characteristic for many
relaxation processes. After a few relaxations the error in the approximation will be
smooth compared to mesh size of the grid. Such a smooth error can be approximated
accurately and solved on a coarse grid. This is the basic idea behind the multilevel
solution technique. Instead of continuing the relaxation process when, after a few
relaxations, convergence slows down, one switches over to a coarser grid for the
solution of the error. Once an accurate approximation to the error is obtained on
this grid it is used to correct the solution on the fine grid.

Two different schemes are discussed. The most straightforward is the so called
Correction Scheme (CS). However, this scheme, explained in section 3.1.2, is re-
stricted to linear problems. For non linear problems, e.g. the EHL problem, the Full
Approzimation Scheme (FAS) must be used. This scheme is described in section
3.1.3.

3.1.2 Correction scheme

Consider again the solution of the problem:
Dt = P on O* (3.14)

After some relaxations an approximation #" to the solution u” has been obtained.
The error in this solution is defined as:

h h

v u" -

h (3.15)

Using %" residuals can be calculated according to:

]

i~

rh = fh_ phgh (3.16)
By definition LAu* = f*. Hence, this equation can be written as:

rh - thh _ Lh,gh (317)
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Assuming L" to be a linear operator this equation reduces to:
Lhuh — @*y = o* (3.18)
Substitution of v* from equation (3.15) results in an equation for the error:
LM = o (3.19)

As was stated in the previous section, after some relaxations, the error v* will be
smooth compared to the mesh size. Hence, it can be represented and solved on a
coarser grid. For reasons of simplicity only one coarse grid with mesh size H=2h
is assumed for the moment. A coarse grid approximation v¥ to v* is solved from

equation (3.19) on grid H:

R (3.20)

LH is the representation of the matrix operator L* on the coarse grid whereas If is
a restriction operator from the fine grid to the coarse grid. After an approximation
7 to v¥ has been calculated it is used to correct the approximation #* on the fine
grid according to:

@t =" + IE" (3.21)
where If is an interpolation operator. Because the corrections calculated on the
coarse grid are smooth, a linear interpolation (bilinear interpolation if the problem
is two dimensional), generally provides sufficient accuracy.

3.1.3 Full approximation scheme

If L* is a non linear operator the correction scheme is not applicable since the
step leading from equation (3.17) to equation (3.18) is not allowed. Therefore, an
alternative coarse grid equation for the solution of the error must be derived. This
equation is again obtained from equation (3.17):

rh = Lrh — Lhgh (3.22)
Substitution of u* = " + v* from equation (3.15) gives

b= LME* o) — DA (3.23)
This equation can be written as:

LMt + ot = Lhat + o (3.24)

Equation (3.24) is usually referred to as the FAS increment equation and will be
used to obtain an approximation of the error on the coarse grid. Defining a coarse
grid variable:
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W =1 4 o7 (3.25)
the coarse grid representation of equation (3.24) reads:
LHgH = " (3.26)
where IH is referred to as the FAS right hand side:
=gy + (3.27)

From an approximation #¥ to the solution ¥ of equation (3.26) a coarse grid ap-
p

proximation 7 of the error v* can be calculated according to:

oM = gfl — [Hgh (3.28)

This approximation is used to improve the fine grid solution according to:

g* =@t + (" - IFh) (3.29)

3.1.4 Intergrid operators

Two different inter-grid operators have been used in the two preceding sections,
i.e. a restriction operator f}7 and an interpolation operator I%. 1f v* is a fine grid
function then Ifv" is a coarse grid function. Hence, if ny is the number of nodes on
the fine grid and n. is the number of coarse grid points the restriction operator Y
can be written as a n. x ny matrix. The most straightforward restriction operator
is denoted as injection. The value of Jf'v* in a coarse grid point is simply the value
of v* in the fine grid point coinciding with this coarse grid site. Alternatively, the
value If'v" in a coarse grid point can be obtained by taking a weighted average
of the values of v* in the coinciding fine grid point and some sites adjacent to it.
Figure 3.2 illustrates the restriction from a fine to a coarse grid for both operators
in the one dimensional situation. The stencil of injection is given by:

I =10,1,0] (3.30)

whereas the stencil of full weighting reads:

I =-[1,2,1] (3.31)

ol R

In the two dimensional situation the stencil of 7 reads:

000
F=1010 (3.32)
000
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1 P
" ' I ' ' ' \ / h
H —- * ” H
injection Sfull weighting
FIGURE 3.2: Restriction operators ford = 1
in the case of injection whereas for full weighting it reads:
1 1 21
= T B (3.33)
1 21

The second inter-grid operator is the interpolation from the coarse to the fine grid
denoted by the symbol T}y, 1f v¥ is a coarse grid function then If;v™ is a fine grid
function. Assuming ny fine grid nodes and n. coarse grid points, the interpolation
operator I}, can be written as a n; X n. matrix. If ¢ is a coarse grid function, then
Ihof is a fine grid function obtained by multi-polynomial interpolation of some
specified order, e.g. linear interpolation in the case of a one dimensional problem,
see figure 3.3. Let the subscript ¢ denote a point of the fine grid and I a coarse grid
point. Assuming that the even fine grid points coincide with the coarse grid points,
i.e. i = 2I, the value of [Ihv*"]; is defined as:

Ao Hy — ) VI 1=21
b v .
1 2 % 1
H

FIGURE 3.3: Linear interpolation d = 1
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3.1.5 Coarse grid correction cycle

If the number of nodes on the fine grid is large, the number of nodes on a coarse grid
with H = 2h may still be relatively large and after a few relaxations convergence on
the coarse grid will slow down again. Obviously, the same reasoning as presented in
the preceding section applies to the solution of the error on this grid. After a few
relaxations the error on this grid will be smooth and can be described accurately on
a grid with mesh size 2H. This process of coarsening can be repeated recursively
until a grid is reached where the number of nodes is so small compared to the original
fine grid that the equations can be solved exactly or almost exactly in only a few
operations.

To describe the coarse grid correction in the case of a sequence of grids the
superscripts b and H are replaced by the superscript & indicating the level. The
coarsest grid is referred to as level 1. In general, the mesh size on level & is given
by 21=*h!, where ! is the mesh size on the coarsest grid. Other coarse to fine grid
mesh size ratio’s are possible but in general the ratio 2 is very convenient and will
be assumed throughout this thesis. The problem to be solved on a given level k is
written as:

Lry* = f* (3.35)
The recursive description of the coarse grid correction for level k then reads:

o If £ = 1, i.e. the coarsest grid, solve the problem exactly or carry out ug
relaxations to solve the problem nearly exactly.

s ifk>1
— Perform vy relaxation sweeps on (3.35), resulting in a new approximation
—k
T
— Calculate the coarse grid right hand side, e.g. if the correction scheme is
employed calculate If~r¥,
— Perform -y coarse grid correction cycles on the level k — 1 equation.

— Correct the solution on level k using the results of level k — 1 e.g. if the
correction scheme is used:

b gt bt (3.36)

— Finally, perform v, additional relaxation sweeps on (8.35) starting with
#* yielding the final new approximation to u*,

7

The sweep counts v, and v, are usually either 0,1 or 2 whereas g is in general larger,
e.g. vo = O(v1+ 12). The coarse grid correction cycle for 4 = 1 is generally referred
to as the V(m,;)-cycle. For the situation of 4 levels (grids), this cycle is displayed
in figure 3.4. Figure 3.5 shows the coarse grid correction cycle with v = 2 for the
same nummnber of levels. This cycle is generally referred to as the W{ry,1) eycle.
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Level

FIGURE 3.4: V(1,12) cycle.

FIGURE 3.5: W (v, ) cycle.
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3.1.6 Performance

An estimate of the error reduction that is possible with a coarse grid correction
cycle can be obtained from the smoothing rate analysis. Assuming that the low
frequency components of the error are solved on the coarser grids, the error reduction
is determined mainly by the efficiency of the relaxation process to reduce the high
frequency components. Hence the reduction factor per cycle is:

alre) (3.37)

where i is the asymptolic smoothing rate defined as the maximum amplification
factor for the error components that can not be described on the coarse grid:

max  p(6q,8;) (3.38)
nfag|f|<n

ji
For example, the asymptotic smoothing rate for Gauss-Seidel relaxation with lexi-
cographic ordering on the 2-D Poisson problem (see section 3.1.1) is 0.5. Hence, a
correction cycle with 1 =2 and »; =1 gives an error reduction of almost one order
of magnitude. Note that this reduction is independent of the number of nodes on
the grid.

Next the amount of work a coarse grid correction cycle costs is investigated. For
that purpose the Work Unit (WU) is introduced. One work unit is defined as the
amount of work equivalent to one relaxation on the finest grid. Let WUV denote
the amount of work of one V(u1,1,) cycle. If the intergrid transfers and the larger
number of relaxations, vy, on the coarsest grid are neglected it follows from the
theory of geometrical series that:

(1 4 )
(1-279)
where d is the dimension of the problem. Equation (3.39) shows that, if one relax-
ation requires O(n) operations a V cycle also costs O(n) operations.

For example for the model problem (d = 2) a V(2,1) cycle adds up to the amount
of work of approximately 4 relaxation sweeps on the finest grid. Three relaxations
are actually performed on this grid (, + v, =3) so all the work done on the coarser
grids equals the equivalent of only one fine grid relaxation. Consequently, in an
amount of work equivalent to four relaxations on the finest grid the error is reduced
by an order of magnitude, independent of n. The power of the multilevel approach
for large n is clearly demonstrated by the fact that, if no coarser grids are used, a
similar reduction requires O(n) relaxations, i.e. O(n) WU.

WUV < WU (3.39)

3.1.7 Full multigrid

The solution of the system of discrete equations is an approximation to the solution
of the continuous differential problem with an accuracy limited by the discretization



50 Chapter 3: Multilevel techniques

error. In fact one is only interested in the solution of the differential problem.
Consequently, any approximation that differs by less than the discretization error
from the exact solution of the discretized problem, is as good an approximation
to the solution of the continuous differential problem as the exact solution of the
discretized problem itself. An approximation that satisfles this criterion will be
denoted as a converged solution,

Because the discretization error is usually O(RP) it decreases with decreasing
mesh size and, starting with an arbitrary first approximation, O{lnn) coarse grid
correction cycles are needed to obtain an approximation with an error smaller than
the discretization error. However, if a converged solution of the discrete problem on
a coarser grid is used as a first approximation, only O(1) cycles are required.

Since coarser grids are used to accelerate convergence anyway, they might as
well be used to generate an accurate first approximation. This first approximation
is subsequently improved by coarse grid correction cycles. Applying this idea recur-
sively results in the solution process that is generally referred to as the Full Multigrid
(FM@) algorithm. For the situation of 4 levels using one V{v;, ;) cycle per level
the FMG algorithm is shown schematically in figure 3.6.

The double circles indicate the converged solutions at each level. I} denotes
the interpolation of the converged solution of a coarse grid to the next finer grid to
serve as a first approximation. In many situations the same multi-linear interpola-
tion can be applied as is used for the interpolation of the corrections in the coarse
grid correction cycle. However, in some situations it should be of a higher order.
Therefore it is represented by a different symbol, i.e. I}, instead of I}y, In the next
section the subject of convergence is treated in more detail. In general a FMG algo-
rithm with one or two coarse grid correction cycles per level is sufficient to solve the

Level

FIGURE 3.6: FMG — 1V (14, 14)
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problem within discretization error. Using the FMG algorithm the total amount of
work units needed to solve the problem becomes independent of n. Neglecting the
intergrid transfers, the total amount of work in the case of one V{v,14) cycle per
level is approximately:

{1 + v2)

-2y
Hence, in the case of the example presented in section 3.1.1, such an algerithm
provides a solution of the problem in a computing time equivalent to the computing
time of approximately 6 relaxations on the finest grid. In fact, only 3 relaxations
are actually performed on this grid.

WU (3.40)

3.1.8 Convergence

An additional advantage of the FMG algorithm is that, employing the sequence
of solutions computed on the different grids, it is easy to check the order of the
discretization error and to test if the solutions have indeed converged below the
level of the discretization error. For that purpose the following difference norm is
calculated for all pairs of converged solutions (the solutions marked by a double
circle in figure 3.6) @* and &*°1;

ERR(k,k—1) = H'Y | ~ IF'a* (3.41)

where the summation takes place over all coarse grid points. H denotes the mesh
size on level k — I whereas A is the mesh size on level k, H=2h. d is the dimension
of the problem. The multiplication factor H? is used to obtain a number that is
independent of the level.

ERR(k,k — 1) will be made up of several parts:

e The discretization error on level k, i.e. the difference between the exact solu-

tion u* of the discretized problem on this particular grid and u, the solution
of the continuous differential problem represented on the same grid:

RS |u — ut] (3.42)

¢ Similarly, the discretization error on level k — 1:

HY Yy - o] (3.43)

o The algebraic error on level k, that is, the error in the approximation @ to
the exact solution u* of the discrete problem.

WYl — o (3.44)
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o The algebraic error on the coarsest of the two grids, level k£ — 1, similarly
defined as:

Hdz |’l_1k—1 _ uk—ll (3‘45)

By calculating solutions on both grids using one additional V or W cycle, both
solutions (#" and #7) can be obtained with algebraic errors being much smaller
than the error in the original solutions (generally smaller by an order of magnitude
as can be checked using the residuals). If the difference between the value of the norm
{3.41) for the original solutions and its value for the solutions with smaller algebraic
errors is small, both will be dominated by the discretization error. Obviously, the
discretization error is the same in both situations, hence, the algebraic error must
be small compared to the discretization error and the solutions are said to have
converged below truncation error of the discretized equations.

The norm defined in equation {3.41) also serves as a check of the order of con-
vergence of the discrete approximation to the continuous solution of the differential
problem. For that purpose simply calculate the ratios ERR(k, k—1)/ ERR(k—1,k-2).
With increasing k, i.e. decreasing mesh size, this ratio converges to 277 where p is
the approximation order obtained in practice. It may deviate from the theoretically
expected value because of singularities or boundary effects.

3.1.9 Time dependent problems, the F cycle.

The previous sections outlined the multilevel techniques developed for the fast nu-
merical solution of problems governed by elliptical partial differential equations.
Using a suitable relaxation scheme these techniques for example enable a fast so-
lution of the stationary EHL line and point contact problem. However, one of the
interesting subjects in the study of EHL contact situations is the analysis of the ef-
fects of surface features on pressure profile and film shape in the contact region and
such an analysis requires a transient simulation since in general the surface feature
moves. This section describes one of the multilevel techniques developed by Brandt
and co-workers for the efficient solution of such a transient problem.

Consider the following discretized transient problem, where L** is a differential
operator discretized on a grid with meshsize &, time step k, u™* is the solution to
be calculated and J:"’k is a right-hand side function:

Lh,k uh,k — Ih.k (3.46)

Using the solution at the previous time step k—1 as an approximation to the solution
at the current time step &, residuals can be calculated according to:

phk = Rk phk bkt {3.47)
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Defining:
g = gk k=1 (3.48)
equation (3.46) can be written as;
Lhk(yhk=t g ghH) = LAk ghk=1 | phik (3.49)

In general, §** contains all frequencies the grid can represent, though in fact it is
very often dominated by low frequencies. Using the normal FAS or C§ coarse grid
correction cycle O(ln(n)) cycles are needed to solve the problem to the level of the
truncation error, with n being the number of nodes in spatial direction. If the first
approximation were accurate up to the level of the truncation error on the coarser
grid only O(1) cycles would be needed. To obtain a first approximation of this
accuracy is the purpose of the F cycle.

Characteristic for the F cycle is that equation (3.49) is solved on the coarse grid

first. Hence solving 5% from:

LH,k(ﬁH,k) — LH,k (Ifuh,k—l) + I’{i[h,k (350)

h,

an approximation &"* is calculated according to:

k= k-1 Th(GHE I yhk-1y (3.51)

Subsequently, normal FAS or C§ coarse grid correction cycles can be used to reduce
the error to the level of the truncation error. The same approach can be applied to
the solution of the coarse grid problem, i.e. equation {3.50). Hence, the algorithm
is defined recursively. For the case where one V(14,14) cycle is used, the solution
process per time step is as depicted in figure 3.7, in which 4 grids are used.

FIGURE 3.7: F — V{1, 11)} cycle
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The figures in the circles denote the number of relaxation sweeps carried out on
the grid. Note that in the first coarsening sequence no (0, zero) relaxations are
performed. On the coarsest grid the equations should be solved almost exactly.
Hence, v is in general larger than v and ¥, which are both usually O(1). The
double circles represent converged solutions. In this figure the first approximation
to u™* is marked by an *. This approximate solution is subsequently improved by
coarse grid correction cycles.

3.1.10 Conclusion

The multilevel techniques described in this section will be used to deal with the
slowness of convergence of the relaxation process applied to the solution of the EHL
line and point contact problem and enable a fast calculation of the pressure and film
thickness as a function of place and time. Attention is now directed towards the
integral part of the problem. Because of the elastic deformation a suitable relaxation
process when combined with the multilevel solution techniques will still result in a
solver of a relatively high complexity, i.e. O(n?). The computing time will be
dominated by the computation of the integrals describing the elastic deformation.
The next section presents a fast algorithm for the evaluation of such integrals. The
algorithm enables computation of the integrals in O(nInn) operations without loss
of accuracy.

3.2 Multilevel multi-integration

In a general formulation the subject of study is multi-integration, i.e. given a function
u, and a kernel K on a domain {2 and requested the integral w where:

w(z) = j K(z,p)u(y)dy, <€QCR (3.52)

To calculate w(x) at a certain location requires an integration over the entire domain.
The discrete analogue of multi-integration is the multiplication of a vector by a dense
matrix having certain smoothness properties. This numerical task arises in many
physical and mathematical problems, as for example: integro-differential equations,
integral equations, elasticity problems, coulombic molecular interactions and other
many-body long range interactions.

If equation (3.52) is discretized on a uniform grid with mesh size b and n =
O(h~%) nodes, the evaluation of every integral requires ((n) operations. Hence,
a total of O(n?) operations are needed for the calculation of w(z) in each of n
gridpoints. Since in many situations a large number of nodes is essential, this often
leads to rather excessive computing times, particularly if in the course of the iterative
solution of an integral or integro-differential problem, e.g. the EHL problem, the
integrals need to be evaluated more than once. Under these conditions the multi-
integration quite often consumes the major part of the total computing time. For
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example, the reader is referred to the multilevel algorithms for the solution of the
EHL line,- and point contact problem developed by Lubrecht [L1]. The application of
the multilevel solution techniques resulted in a significant reduction of the computing
time needed to solve the problems compared to the time required if conventional
methods are used. However, the complexity of the algorithms was still O(n?) because
of the calculation of the elastic deformation integrals.

Recent developments enable a reduction of this complexity. Brandt and Lubrecht
(B1] developed a multilevel algorithm for the fast numerical evaluation of such in-
tegrals. It was shown that for sufficiently smooth kernels the complexity can be
reduced from O(n?) to O(n), whereas for potential type kernels such as In [z — y]
and |z — y|* a reduction to O{nlnn) can be obtained without loss of accuracy.
This reduction is obtained by performing part of the integration on coarser grids.
Exploiting the smoothness properties of the kernel X, this can be done in such a
way that the error introduced by the coarse grid integration remains small compared
to the original discretization error on grid A. In the following subsections first an
outline is given of the multilevel multi-integration algorithm. Next, the results of its
application to a one and two dimensional sample problem with the aforementioned
kernels are presented.

3.2.1 Discretization

Define z# = zo + ik to be equidista.nt gridpoints in 2, where z € IR and ¢ =
(t12%2,...,%2) and let uf = vh(z}) and w? = w*(z}) denote the approximations to
u and w on this grid. If the function u is approx1mated by a piecewise polynomial

function &* of degree 2s — 1 satisfying d(z ) = u? equation (3.52) can be discretized
as:

j K(z,4)dy)dy = 21{,’*;* ; (3.53)

The coeflicients K"‘;‘ can often be calculated analytically. In particular, the dis-
cretization of the elastic deformation integrals for both the EHL line and point
contact situation, is outlined in appendix B. Provided u is sufficiently smooth the
discretization error in equation (3.53) is O(k**|uls,), where |w|2, is an upper bound

for the 2s-order derivatives of u.

3.2.2 General description

Before dealing with the specific situation of reducing the complexity of multi-integrat-
ion when the kernel has a singularity (singular smooth), the general idea of the
algorithm is described first. Section 3.2.2.2 outlines how to replace the original fine
grid multi-summation by a similar summation on a coarser grid in such a way that
the additional error remains small compared to the discretization error. For reasons
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of simplicity only one coarser grid with mesh size H = 2h will be used. The exten-
sion of the algorithm to situations where the kernel has a singularity is discussed in
section 3.2.4.

3.2.2.1 Notation

The running index on the coarse grid will be denoted by a capital letter. z¥ =
zg+J H represents a coarse grid point whereas z;‘ = %, -+ jh is a point in the fine
grid. The coarse grid points are chosen to coincide with the even fine grid points
satisfying =¥ = z%;. Similarly «f = u”(x_,) denotes the value of the coarse grid
function u¥ in the coarse grid point z%. Furthermore, the symbol I% will denote an
interpolation operator from the coarse to the fine grid of some specified order. The
symbol I% will be used instead of I} to indicate that the interpolation will often
be of higher order. The index on which the interpolation works will, if necessary, be
denoted by a dot. For example HHKhH represents, for each j a fine grid function
obtained by lnterpola,tlon from the coarse grid function KhH The value of the result
in the fine grid point n:J will be denoted by [T} K}‘H]J {"H denotes a discrete
kernel whose first index is in the fine grid and the second in t.he coarse grid, that
approximates K(zf, z¥).

3.2.2.2 Coarse grid integration

The coarse grid equation is obtained from the fine grid equation in two steps. First
an approximation @f to w! is derived which only involves summations over coarse
grid points. Let Kﬂ‘ be an approximation to K ,’:;‘ defined as:

KMo~ K= (0 K"”] (3.54)

where the interpolation I} is of sufficiently high order. The coarse grid function
K"H is obtained by “injection” from the fine grid function I\’ ; Ley KM "H = KM

1 20
Using A  equation (3.53) can be written as:

w = A fof‘f PR - K (3.55)
J
Since I\ is an interpolation of I\ 1tself using only coarse grid points, the operator
(K,",‘Jh - K,’::‘) is given by:

b _ johE j=2J
(K3 k! )_{ O(R? K@) (£)}  otherwise (3.56)

where 2p is the interpolation order and K**)¢)} is a 2p'* derivative of K at some
intermediate point £. Whenever K is smooth compared to u that is, if [A?? K(?7)] «
|h2*u(29)|, the second term in equation (3.55) will be small cornpared to the dis-
cretization error and w! can be approximated accurately by #” defined as:
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PRt Y KM = R Y IRK Ml =m0 ST KM () ety (3.57)
J ¥ J

where (I})T is the adjoint of #},. If n; denotes the number of nodes on the fine
grid and n. the number of coarse grid points, then I}, can be written as a n; x n,
matrix and its transpose (X})7 is a n. x ny matrix. Hence, (F};)T describes a fine-
to-coarse transfer operator, For example if I}y denotes multi-linear interpolation,
its adjoint is, apart from a constant factor H/h, the well known “full weighting”
operator, extensively used in multigrid algorithms.

Defining:
e ~d ()Tt (3.58)

equation (3.57) can be written as:
@ = H*Y KM (3.59)
J
Note that the evaluation of @} involves a summation over the coarse grid only.

The second step in the derivation of a coarse grid equation is based on the fact
that very often K(x,y) shows similar behaviour with respect to both variables.
Introducing K " being an approximation to K, I"fh, which is defined as:

K= [H KA, (3.60)

equation (3.53) can be written as:

ok .
= Ww) + R (KD - KMy (3.61)
i
where:
wh = wh, = pe Z Kfj‘uh = hdZKuJ u; (3.62)
i

K{'* is obtained from K"‘f by injection, i.e. K} = Kﬂj Similar to Kf‘;‘, K"h is an

mterpolatlon of K} itself, using only the points coinciding with coa.rse grid pomts,
i.e. the grid pomts ¢ = 2I. In particular, if K(z,y) is symmetric EH = Ik can be
used. Assuming f}; to be an interpolation of the order 2p the operator (K~ K ,";‘

is given by:

o [0 i= oI
(Ko — K _,{ O(R*K®)(¢)) otherwise (3.63)

If £ is sufficiently smooth with respect to the z direction, the second term in
equation (3.61) can be neglected and w” can be approximated by:
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wh & [Fu); (3.64)

with:

wlf = wh (3.65)

Hence, if K is smooth with respect to the x direction it is suflicient to calculate the
integrals in the points i = 27 only, using interpolation to obtain the values in the
intermediate points.

Combining the results of both steps:

o If K is sufficiently smooth with respect to the y direction w! can be accurately
approximated by @} obtained by summation over the coarse grid points, j =

2J, only.

e If K is sufficiently smooth with respect to the x direction it is sufficient to
calculate wf in the points i = 2F only, using interpolation to obtain the values
in the other points.

leads to:

wl = [ﬁf;,rw‘t‘v]l (3.66)

with:

wi =y =H*Y KFFulf (3.67)
7
where K/ is “injected” from K'Y, ie. KFfl = KM, = K}, ;.
Hence, the original multi-surnmation (3.53) can be replaced by:

o The transfer of u* to the coarse grid giving uf according to equation (3.58).
» The “calculation” of the coarse grid kernel: Kf'ff = K4t .

® Multi-summation on the coarse grid (3.67) to obtain w¥.

o Injection of the coarse grid w} to the coinciding fine grid points i = 21,
foliowed by an interpolation to obtain the values in the intermediate points,
i=2I+1.
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3.2.3 Coarse grid integration cycle

The procedure of replacing the multi-summation by a fine-to-coarse transfer, a coarse
grid multi-summation and an interpolation described in the previous section can be
applied once more to the coarse grid multi-summation and repeated recursively until
a grid is reached with a number of gridpoints proportional to v/n. On the latter grid
the multi-summation is actually performed, requiring O{n) operations. The use of
even coarser grids would not reduce the overall complexity since both the transfer
of " from the finest grid to the next coarser grid, as well as the interpolation of the
integrals from this coarser grid to the finest grid, already require ((n) operations.

Consequently, similar to the coarse grid correction cycle described in section 3.1.5,
a sequence of coarser grids is used to obtain the approximations to the integrals on
a given grid. The different grids are again referred to as levels and numbered,
starting with the coarsest grid as level 1, the next finer grid being level 2, etc. For
the situation where 3 coarser grids are employed, the multileve] calculation of the
integrals on level 4 is schematically displayed in figure 3.8.

Level

3w =2 )T

k=1k=1 __ jrkk k_ gk k-1
2 Ki7 = K3Tas wt = I w

w = (1) Ty K7}

FIGURE 3.8: Multilevel multi-integration using 3 coarser grids.

3.2.4 Singular smooth kernel

In section 3.2.2.2 the kernel I was assumed to be much smoother than the function u
over the entire domain of integration. However, the kernels in the elastic deformation
integrals, i.e. K(z,y) = In|z—y]| for the line contact problem and K{xz,y) = |z—y|™*
in the point contact situation, are what is referred to as “singular smooth”, that is
they have a singularity. In the vicinity of the singularity the 2p** differences of K
will not be small. Hence, the second terms of both equation (3.55) and equation
(3.61) will not be negligible. However, far from the singularity (Jiy — z|| 2> h or
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[l7 — || > 1 for the discrete case), the 2pt* differences of K will again be small. This
knowledge of K will be used to derive corrections for the integrals such that again
the error introduced by the coarse grid integration remains small compared to the
discretization error. Consider first the calculation of the integrals in the even fine
grid points Equation (3.55) can be written as:

wi=wy + AT 3 (KM KMyt Rt S (KM - Kbyt (3.68)

f]
[li-illem {li=éll>m

where in the one-dimensional situation || — j|| = |{ — j|. In situations with two or
more dimensions the meaning of this norm is more complicated. It depends on the
direction of interpolation as will be discussed in section 3.2.6. For the moment it is
assumed that m is determined in such a way that the last term in equation (3.68)
can be neglected. Consequently w! is approximated by:

B =wi +h* Y (KM - RMyub (3.69)
li=ill€m
with:
wyl = H¢ S KWl (3.70)
f

Hence, in case of a singular smooth kernel, the multi-summation is again performed
on the coarse grid. However, when injecting the results to the fine grid the contri-
bution coming from the region in the vicinity of the singularity is corrected.

A similar procedure applies to the calculation of the integrals in the points i = 2741.
Assuming that X has similar smoothness properties in = and y direction, and that
therefore identical interpolation operators are used in (3.54) and (3.60) equation
(3.61) is written as:

w} = [Tw!) + b 3 (KM — EMyul 4 p¢ 3 (K- KMt (371)

M
i-ill<m [t —il[>m

The last term is again neglected and w! is approximated by:

wh o (Ml + B Y (KM — Ky (3.72)
[lF=il[€£m
with:
wh = ol (3.73)

Summarizing, compared to the situation of a smooth kernel, only the step from the
coarse grid to the fine grid to obtain the integrals changes. First, as in the case of a
smooth kernel described in section 3.2.2.2, coarse grid integrals are calculated. These
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integrals are corrected and injected to the fine grid (3.69). Secondly, the corrected
integrals in the points ¢ = 2I are interpolated to the points ¢ that are not part of
the coarse grid and corrected again (3.72).

The remaining problem is to find a value of m for which the last terms in (3.68)
and {3.71) can be neglected. For a detailed analysis the reader is referred to Brandt
and Lubrecht [B1]. For example, for the logarithmic kernel in the one dimensional
situation, the condition that the coarse grid integration error should be smaller than
the fine grid discretization error gives:

m=0.Tpn*/? — 1 {3.74)

Combining this equation with the requirement of a minimum number of operations
per fine grid point gives:

m o In(n) (3.75)

Hence, the complexity of multi-integration in case of a singular smooth kernel can
be reduced from Q(n?} to O(nlnin}).

3.2.5 One dimensional example

As an example consider the following multi-integral where the exact solution can be
calculated analytically:

w(z) = _lfl ln |z — yl(1 — y*)dy, z €[-1,1] (3.76)

Discretizing the equation on a uniform grid with mesh size h, as described in ap-
pendix B, gives:

wh =3 KMl (3.77)
J
with:
uf = (1-3) (3.78)
and:

KM = (i—j+ %)h(ln(h -i+ %lh) -1) -
(= = 3)hlInli~] ~ 310~ 1) (3.19)

Equations (3.69) and {3.72) were used for the fast integration with m = 3 + 21In(n).
The coarsest grid I = 1 consisted of 8+1 points, the next finer grid 1641 etc. As much
as 16 levels (n =262144+1) have been used. To monitor the error in the multilevel
multi-integration the following error norm is defined:
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1 n
ERR, = — 3> |wf — w(a:)], (3.80)
i=0

ERRY, is the average absolute error of the integrals on level [ when the actual multi-
summation is carried out on level k , (k < ). Note that ERR} is by definition the
L, norm of the discretization error on grid . wf" is the approximation to w; on the
finest grid obtained through equations (3.69) and (3.72). Table 3.1 gives the average
errors (3.80) when sixth order transfers are used. The use of non-central operators
near the boundaries was avoided as described in [B1]. The stencil of the 6% order
restriction reads:

1
(F)" = 75[-1,0,9,16,9,0,~1] (3.81)

The results marked by an asterisk indicate the calculations where the actual multi-
summation was performed on a grid with approximately \/n nodes. When one allows
the additional error introduced by the coarse grid integration to be as large as the
discretization error on the finest grid, the sixth order transfers give good results for
20—k <17. This result is the same as that found by Brandt and Lubrecht [B1] using
different K. Hence, using sixth order transfers, up to { =11 the actual summation
can be carried out on a grid with approximately \/n points. The computing times
for the calculations presented in table 3.1 are shown in table 3.2.

The first column illustrates the O(n?) complexity if no coarser grids are used
whereas the sequence of starred results shows a complexity O(nlnn). Comparing
the computing times for these results with the computing time needed if k = {
clearly illustrates the power of the algorithm.

The result of similar calculations performed with tenth order transfers are pre-
sented in table 3.3. The computing times for the calculations presented in this table
are shown in table 3.4. Using tenth order transfers at least up to level 16, that is
n = 262144 + 1, the actual summation can be carried out on a grid with O(y/n)
points without loss of accuracy. Without the use of the multilevel algorithm, the
multi-summation on this level would require some 27 hours of computing time. As
a result of the techniques presented here this time is reduced to some 50 seconds,
that is by a factor of 2000.
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1 | k=1 k=I-1 |k=1-2 |k=1-3 |k=l4 k=1-5 k=l1-6 k=1-7
5 |9.2le-5 | 9.17e-5 | 9.10e-5 | 8.4%9e-5
6 | 2.29e-5 | 2.28e-5 | 2.26e-5 | 2.23e-5 | * 2.19e-5 2.32e-5
7 | 5.69e-6 | 5.64e-6 | 5.53e-6 | 5.34e-6 | 5.01le-6 4.73e-6 5.38e-6
8 | 1.42e-6 | 1.41e-6 | 1.3Te-6 | 1.32e-6 | 1.21e-6 | * 1.04e-6 | 9.24e-7 9.35e-7
9 | 3.55e-7 | 3.50e-7 | 3.41e-7 | 3.23e-7 | 2.87e-7 2.23e-7 1.30e-7 8.48e-8
10 | 8.80e-8 | 8.63e-8 | 8.17e-8 | 7.26e-8 | 5.45e-8 3.54e-8 | * 6.76e-8 | 1.40e-7
11 | 2.21e-8 2.00e-8 | 1.71e-8 1.13e-8 1.12e-§ 2.77e-8 6.28e-8
12 | =5.5e-9 3.88e-9 | 2.27e-9 4.07e-9 1.05e-8 | * 2.40e-8
13 | =1.4e-9 9.78e-10 | 2.64e-9
Table 3.1: Average error ERR} logarithmic kernel using 6'* order transfers
1 k=l | k=}-1 | k=1-2 { k=1-3 | k=14 | k=1-5 | k=}-6 | k=1-7
5 6.02( 0.02( 002] 0.01 0.01
6 0.09| 0.04| 0.03| 003]*0.03 0.03
7 035 012 0.07] 0.06 0.06 0.06 0.06
8 1381 043 | 019| 0.14 0.13 [ * 0.14 0.14 0.14
9 551 154 058 0.38 0.30 0.30 0.31 0.31
10 | 22.80 548 | 190 0.93 0.77 0.65 | * 0.57 0.60
111 95.80 6.33 | 2.57 1.58 1.46 1.34 1.36
12| =~384 7.84 4.17 3.11 2.90 | * 2.04
13 | =~1536 10.60 6.74
Table 3.2: Computing time in seconds for table 3.1 (HP 9000/845s)
1 | k=l k=1-4 k=1-5 k=1-6 k=1-7 k=1-8 k=1-9 k=1-10
5 | 9.21e-5 9.27e-5
6 |2.2%-5 * 2.29¢.5 2.18e-5
7 | 5.6%¢-6 5.67e-6 5.6%-6 6.30e-6
8 | 1.42e-6 1.42¢-6 | * 1.42e-6 1.42e-6 1.44e-6
9 | 3.55e-7 3.54e-7 3.53e-7 3.53e-7 3.58e-7 3.58e-7
1 | 8.86e-8 8.83e-8 8.80e-8 | * 8.74e-8 8.69e-8 8.90e-8 8.93e-8
11 | 2.21e-8 2.21e-8 2.20e-8 2.18e-8 2.17e-8 2.15e-8 2.17e-8 | 2.17e-8
12 | &5.5e-9 5.52e-9 5.50e-9 5.47e-9 | * 5.42-9 5.33e-0 5.28e-9 | 1.03e-8
13 | =1.4e-9 1.38e-9 1.37e-9 1.35e-9 1.32e-9 1.27e-9 1.17e-§ | 1.03e-9
14 | ~3.5e-10 3.42e-10 3.39e-10 | 3.32e-10 | * 3.17e-10 | 2.90e-10 | 2.42e-10
15 | =9.0e-11 8.47e-11 | 8.32-11 | 8.00e-11 7.26e-11 | 5.74e-11
16 | =2.5e-11 1.88e-11 1.68e-11 | * 1,22e-11 | 8.28e-12

Table 3.3: Average error ERR), logarithmic kernel using 10 order transfers
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k=l [ k=14 [ k=1-5 | k=1-6 | k=1-7 k=1-8 k=19 | k=1-10
0.03 0.02
0.09 || *0.04 0.03
0.35 0.06 0.06 0.07
1.38 013 [ *0.14 0.14 0.14
g 5.51 0.30 0.29 0.30 0.34 0.24
10 22.80 0.64 0.59 | *0.60 0.61 0.62 0609 0.60
11 95.80 1.52 1.33 1.29 1.34 1.29 1.29 1.29
12 =380 39 3.01 2.83 [ *2.81 2.78 2.87 2.88
13 | =1.5e3 10.21 6.70 5.77 5.62 5.57 5.91 5.93

Q1| | X e

14 | =6.0e3 16.90 | 13.03 | 12.06 | * 12.30 13.25 | 13.46
15 | =~2.4ed 29.60 [ 25.90 25.10 25.10 | 24.80
16 | =~9.6e4 54.90 51.67 | * 50.52 [ 50.56

Table 3.4: Computing time in seconds for table 3.3 (HP 9000/845s)

3.2.6 Two dimensional example

The algorithm developed for the one dimensional problem presented above can easily
be extended to two dimensions by applying the coarsening(s) procedure alternately
in the z and y directions. In that way, the transfer of the function « and the kernel
K and the correction of the integrals w are essentially the same as for the one di-
mensional situation. This approach may seem awkward at first sight but it has some
major advantages amongst which is the simplicity of generalization to even higher
dimensions without the need for complicated transfer operators. Furthermore, it
ensures that the total work will continue to be O(n Inn), since all parts of the algo-
rithm are at most of this complexity. Its disadvantage is the additional storage (50
%) required for the semi-coarsened grids.

The following multi-integration problem, where the integral can be calculated ana-
lytically, is studied:

w(e,y) = [ K(@,p,2',9)ul',y )da'dy’ (3.82)
with:

K(a:,:c', y!y’) = [(z - zl)2 + (y - yr)2]-1/2

. (1 -z yﬂ)l/’a’ 2 + yl2 <1
u(z,y) = { 0 otherwise
Q={(z,y) € B2’ +4* <1}

The second order (s = 1) discretization of equation (3.82) described in appendix B
will be used. The coarsest grid employed in the calculations consisted of (4+1)x (4+1)
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1 | k=l k=11 |k=I-2 k=I-3 k=l-4 k=1-5

2] 2.3le1 }2.32-1

3[7.68e-2 | 7.63e-2 | * 7.67e-2

4]1.5le-2 | 1.50e-2 | 1.49e-2 1.53e-2

5[4.69e-3 | 4.58¢-3 | 4.43e-3 | *4.25e3 | 4.73e-3

6| ~1.2e-3 1.10e-3 2.85e-4 | 9.30e-4 1.59%-3
7 | ~3.0e-4 3.63e-4 | * 3.06e-4 | 3.43e-4
8 | ~7.5e-5 4.32e-5 | 1.07e-4
9 | =1.8e-5 * 5.38e-5

Table 3.5: Average error ERR., in the two-dimensional singular-smooth mul-
tilevel multi-integration using 6 order transfers

nodes and the finest grid (1024+1)x(1024+1). The corrections of the integrals ac-
cording to equations (3.69) and (3.72) have been carried out over rectangles of
(2my 4 1) % (2m3 + 1) points around the singularity, where m; denotes the half-
width of the correction region in the direction of interpolation and mg is the half-
width in the perpendicular direction. The calculations have been performed using
my =3 + 0.5In(n} and m; =2. Table 3.5 gives the average error ERR} using 6%
order transfers. The first column of table 3.5 confirms that the discretization is of
2" order. The results marked by an asterisk indicate the approximations to the in-
tegrals on the finest grid obtained when the actual multi-summation is performed on
a grid with approximately 1/r points. Allowing the additional error resulting from
the coarse grid integration to be as large as the discretization error the integration
can be carried out on a grid with \/n points up to at least level 8 (n ~260.000).

Table 3.6 gives the computing time for the calculations presented in table 3.5, The
first column illustrates the O(n?) complexity if no coarse grids are used. Each time
the mesh size is decreased by a factor of 2 the computing time increases by a factor of
16. The computing times for the results marked by an asterisk demonstrate that the
multilevel techniques reduce the complexity of multi-integration to approximately

O(n). (In(n) increases very slowly with n). As a result, particularly for large n,
large reductions in computing time are obtained.

The average error and the computing times when using 8** order transfer opera-
tors are presented in tables 3.7 and 3.8 respectively. In this case the integrals can be
calculated on a grid with v/n points without loss of accuracy up to 9 levels (n = one
million). Without the multilevel techniques this computation would require some
36 days whereas with the multilevel algorithm it requires some 14 minutes. The use
of this large number of nodes may seem exaggerated for a two-dimensional problem
but for a three dimensional problemn a grid with only 100 pomts in each direction
already gives a million points.
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1 k=1]| k=1-1]| k=1-2 [ k=1-3| k=Il4 k=I1-5
2 0.12] 0.12

3 0.59 1 0.29 | *0.28

4 4531 1.13] 0.82] 0.81

5| 47.75| 6.08| 3.07|* 2.58 2.54

6| 768.80 13.41 | 10.05 9.61 9.64
7| ~1.2ed 41.63 | * 38.59 38.34
8 | ~2.0e5 153.06 151.87
9 | ~3.1eb . | *628.03

Table 3.6: Computing time in seconds for table 3.5 (HP 9000/845s).

1| k=l k=1l-1 | k=I-2 k=1-3 k=1-4 k=1-5

2| 2.31le-1 | 2.31e-1

3| 7.68e-2 | 7.92e-2 | * 8.02e-2

41 1.5le-2 | 1.52e-2 | 1.52e-2 1.51e-2

5]14.69-3 |4.72e-3| 4.77e-3 | *4.77e-3 | 4.Tle-3

6 | =~1.2e-3 1.25e-3 1.27e-3 1.26e-3 1.25e-3
7 | =3.0e-4 4.26e-4 | * 4.05e-4 | 3.54ed
8 | ~7.5e-5 7.71le-5 5.95e-5
9 1 ~=1.8e-5 * 1.28e-3

Table 3.7: Average error ERRY in the two-dimensional singular-smooth mul-
* tilevel multi-integration using 8** order transfers

1 k=l | k=l-1] k=1-2 | k=1-3| k=l-4 k=1-5
2 0.12| 0.28

3 0.59 [ 0.60 | * 0.57

4 453 | 1.87 140 1.39

5| 4775 | 8.62| 4.16| *3.72 3.73

6| =760 17.65 | 13.49 12.95 12.92
7| ~1.2e4 54.74 | * 49.31 49.30
8 | ~2.0eb 202.12 | 195.95
9 | ~3.1e6 * 835.68

Table 3.8: Computing time in seconds for table 3.7 (HP 9000/8453).
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3.2.7 Additional insights

As mentioned above, in many situations the multi-summation is performed in the
course of the iterative solution of the function u occurring in the integral. For
example u is solved from an integral equation in terms of « and w, see [B1], or from
a partial differential equation in u and w, e.g. EHL problems. In these situations the
multilevel solution techniques and the multilevel multi-integration algorithm can be
combined very efficiently.

Assuming that the problem is solved using some relaxation process, the tech-
niques described in section 3.1 can be used to accelerate convergence of the relaxation
process, whereas the multilevel-multi-integration algorithm can be used for the fast
evaluation of the integrals. In particular for the case of a one dimensional problem
the two techniques can be combined in a very straightforward manner. The multi-
level integration can use the very same coarse grids used by the solver. Additional
storage is only required for the coarse grid K% and for the correction factors needed
if the kernel is singular smooth. The multilevel solution and multi-integration can
also be combined easily in the case of a two dimensional problem. However, the
situation with respect to storage is less favourable because of the semi-coarsened
grids used by the multi-integration that are generally not used by the solver.

The resulting complexity of a solver combining the multilevel solution techniques
described in section 3.1 with the multilevel multi-integration algorithm will be O(n)
for a smooth kernel and O(nlnn) if the kernel is singular smooth.

If the multi-integration is performed in the course of the iterative solution of the
function u an even larger reduction of the total amount of work of the solver can
be obtained by having it resort to full order multi-integration as seldom as possible.
In fact, only one such multi-integration on the finest grid, plus some much less
expensive ones (on coarser grids and/or using lower accuracy) is all that is desired.

The proposed procedure to obtain a solution with some prescribed accuracy on -
the finest grid is an MG algorithm as follows: First the equations are solved to a
similar accuracy on a coarser grid, say with meshsize 2A. {This is done by a similar
procedure - so the algorithm is defined recursively.) The grid 2k solution is then
interpolated to grid h to serve as the first approximation there. As a second step,
the first approximation thus obtained, denoted by u®, is used for the calculation of
the integrals by multi-integration. In the following coarse grid correction cycles to
improve this first approximation on grid A no full order multi-integration is needed
anymore. Instead, whenever needed (e.g., after each relaxation sweep or coarse grid
correction), a multi-integration is done on the solution increment, i.e., the difference
between the current approximation of the solution and u®, and the integrals thus
calculated are added to those of u°. The incremental multi-integration can be of
lower order, i.e. it can can be performed using smaller p and m and consequently it
requires less operations than the first multilevel multi-integration, see [B1].

Besides this, the calculation of the coarse grid corrections for the finest grid in-
volves multi-summations on the coarser grids. The necessary accuracy of these sum-
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mations is even lower, since in fact only a crude correction function is calculated. In
summary, the entire FMG solution process requires only one full multi-summation
on the finest grid, plus a similar one on each of the coarser grids.
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Chapter 4

Numerical solution of the line
contact problem

From the description of the multilevel solution techniques in chapter 3 it is obvious
that an efficient multilevel solver for the line contact problem requires a relaxation
process that effectively reduces high frequency error components. In addition, to
enable simulation of practically relevant situations, i.e. maximum pressures in excess
of 2 GPa, the relaxation process should be very stable. The simple one point Gauss-
Seidel relaxation process applied by Hamrock and Jacobson {H1] and Lubrecht [L1]
does not meet these demands. For moderately loaded conditions the process serves
well, although with increasing load underrelaxation and local relaxation with local
film thickness updates are needed to stabilize the process. However, the process is
not stable for high loads. With the analysis of a linearized version of the problem
the nature of this unstable behaviour is explained (section 4.2). Subsequently, an
alternative relaxation scheme is proposed that provides good error smoothing and
stability for all load conditions, including high loads and section 4.3 explains how to
combine this relaxation process and the multilevel techniques, described in chapter 3,
into a (fast) multilevel solver for the line contact problem. Finally, as an example,
the results obtained with this solver for a specific load situation are studied in detail.
Convergence to the solution of the continuous differential problem is demonstrated
as well as its low complexity.

4.1 Discretization

The governing equations are discretized on a uniform grid with mesh size A covering
the calculational domain X, € X £ X,. For the moment a stationary situation is
assumed (the transient problem is addressed in chapter 8). Hence, the dimensionless
Reynolds equation (2.41) reads:
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d ( dP\ d(aH) _
e (eﬁ) S Lkt (4.1)

with the cavitation condition: P > 0
and the boundary conditions:

P(Xa)= P(-Xb) =0

€ is given by:

pH?
DY
where
_ GﬂouaRz
B
In case of an incompressible lubricant the dimensionless density is given by p =1,
otherwise it is calculated from the Dowson and Higginson equation:

A

_ 0.5910° + 1.34 P p,
p(P) = 5

05910° + P p,
For an isoviscous lubricant the dimensionless viscosity 7 is equal to one whereas for
a viscous lubricant 7 is calculated either from Barus’ equation:

(4.2)

7(P) = exp(aP) (4.3)

or from Roelands’ equation:
H{P) = exp [ﬁp—” (—1 +(1+ &P)Z)} (4.4)
z Po

Unless explicitly stated otherwise the Roelands equation will be used throughout
this thesis and the lubricant is assumed to be compressible.

Using second order central discretization for the first term of (4.1) and first order
upstream discretization of the wedge term, the discretized Reynolds equation at site
1, X = X, + ih, reads:

h_z(fi-gpi—l —{ei-1 T e p) P+ €y 1 Pra) {4.5)
—hY B Hi — pio Hig) = 0

with the cavitation condition: P; > 0. ¢_; and €41 denote the value of € at the
2 F

tntermediate locations X = X, 4 (i—1/2)h and X = X, +(i+1/2)h respectively. They

are calculated from values of ¢ in the sites ¢ and i — 1 or ¢ and i + 1. For example:
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€im1y2 = (€ +€_1)/2

Alternatively an harmonic average can be used:

5:—11/2 = (' +¢4)/2

€; is simply defined as:

p(F)H}
€ = ———— (46
7P A )
The equation for the dimensionless film thickness reads:
X% 1

H(X) = Hoo+ - == [ nix - x|P(x")ax” (4.7)

Discretization of the elastic deformation integral as described in appendix B gives
the following equation for H;:

X 13
2 ri3
where

R | Lo L
Kt =@ =5+ 3)h(Wn(i~ + ;1) = 1)

~ (= = h(inlli~j — 5h) - 1)

The dimensionless force balance equation, stating that the integral over the pressure
balances the externally applied contact load, is discretized according to:

n-lp .
hZ(PJ+2PJ+1)_§=0 : (4.9)

7=0

This global condition determines the value of the constant Hyg in equation (4.8).

4.2 Relaxation

One of the problems encountered in the simultaneous numerical solution of the
equations (4.5) and (4.8) together with the condition (4.9} is that the coefficient ¢
in equation (4.5) varies several orders of magnitude over the calculational domain.
In both the inlet and the outlet region € > 1 since in those regions 77 and g are
close to one and H?® will be large. For example, taking a quite common location
of the inlet boundary X, = —4, ¢(X = X,) will be 0(500). On the contrary, in the
contact region 7 is large, O(10) to O(10'%) or even larger, p will never exceed 1.33
and H? is small; O(107%) to 0(10=?). The parameter A varies from O(1) for very
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lightly loaded situations to Q(10~%) for high loads. Consequently, (X = 0) can be
as small as 10-2". As a result the character of the problem changes. In the regions
where ¢ is large the problem behaves as a differential problem whereas in the contact
region the integral aspect of the problem dominates. An additional complication is
that, with increasing load, the “boundary layer”, i.e. the region X = —1 where ¢
changes from a relatively large to a very small value, narrows. In particular for
highly loaded situations the pressure gradient in this region is large. The rapidly
increasing pressure results, due to the exponential relation between viscosity and
pressure, in an even larger increase ol the viscosity and as a result the value of ¢
drops several orders of magnitude in a region of only a few times the mesh size on
the grid. The reverse occurs in the outlet region, i.e. X ~ 1, where the steeply
decreasing pressure results in an increase of € of several orders of magnitude over
only a few gridpoints.

The relaxation process used in a multilevel solver should be a good and stable
error smaother over the entire domain, i.e. for both large and small values of e. With
respect to the solution of highly loaded conditions (high pressure, large & resulting
in large #, small H) the behaviour for extremely small € is of particular interest. A
local mode analysis as presented in chapter 3 provides a useful tool for the analysis
of the convergence behaviour of a relaxation process. However, carrying out such an
analysis for the complete problem with local and global boundary conditions, cavi-
tation condition and non-linearity is far too complex, if not impossible. Therefore
the problem is linearized and a new relaxation process for the line contact prob-
lem will be developed based on the results obtained from the local mode analysis
of the linearized problem. The model problem is chosen in such a way that it is
characteristic for the local behaviour of the full problem.

4,2.1 Linearized problem

The following linear approximation of the EHL line contact problem (equation (4.1})
is studied:

d*P dH

P =etz -2 =0 X.<X<X (4.10)

With the boundary conditions P{X,) = P(X;) = 0 and H given by equation (4.7).
€ is assumed to be a constant. Any value of the constant Hyp can be chosen and the
force balance equation plays no role. Furthermore the cavitation condition is not
taken into account, i.e. negative values of P are allowed. Discretization of (4.10} on
a uniform grid with mesh size h gives:

LH(P) = e(Pioy — 2P 4 Pep) R — (Hy— Heg)/h =0 (411)
with
X2 1&g
Hi = Hoo+ 5-— — Y KI'F, (4.12)
i=0
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Since the matrix K} is independent of P the problem is linear in P and a smoothing
rate analysis can be carried out for different types of relaxation. Apart from the
limiting situations € — oo and € = (0 the smoothing rate of a specific relaxation will
depend on e/h2. If ¢/A? > 1 the first term of equation (4.11) dominates and the
problem behaves like the one-dimensional Poisson problem. In that case a simple
Gauss-Seidel relaxation has good smoothing and stability properties. This Gauss-
Seidel relaxation can be described as follows. Given an approximation P in each grid
point and an approximation H; to H; calculated from equation (4.12), the gridpoints
are visited in lexicographic order and in each gridpoint a new approximation P; is
computed according to:

o s fernT?
F=F+ ('3—’3") T (4.13)
where r; is the dyhamic residual defined as:
ri = (Hi — Hi)/h - e(P_y — 2P, + Py ) /02 (4.14)
and
oL} 1, Lo hh
"5_;3: = —2¢/h* + ;(K;,; - K0/ (4.15)

The new approximation P; is subsequently used to recalculate or update the elastic
deformation integrals and to compute a new approximation H; to H; from equa-
tion (4.12). Hence, starting with an approximation to F; in all gridpoints and the
associated approximation to H;, one relaxation consists of one sweep to compute new
pressures according to equation (4.13) followed by a multi-integration to compute
the elastic deformation and film thicknesses associated with this new approximation
to the pressure.

This type of relaxation scheme in which all integrals are recalculated or up-
dated simultaneously and only once per relaxation sweep is preferred since then all
integrals needed in one relaxation sweep can be computed by one (multilevel) multi-
integration. The smoothing factor g as a function of @ for large ¢/h? is depicted
in figure 4.1. Since p(d) < 1 for all § the scheme is stable. Moreover it efficiently
reduces high frequency error components since the asymptotic smoothing rate fi is
0.45. Consequently the scheme is very well suited to serve in a multilevel solver for
the problem.

Unfortunately, with decreasing ¢/h? the performance of the scheme deteriorates
and below a specific value of ¢/h? low frequency error components are amplified
and the relaxation process diverges. In the above argument it was assumed that
the integrals are evaluated only once per relaxation sweep. The amplification of low
frequency error components is caused by the fact that the changes in the discrete
integrals, resulting from changing all pressures, are large. Hence, some improvement
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FIGURE 4.1: Amplitude reduction factor u(#) for Gauss-Seidel relaxation on lin-
earized problem, e/h? > 1

can be obtained by updating the integrals in the vicinity of the point where the
pressure is changed during the relaxation.

Alternatively the stability range in terms of ¢/h® can be extended to smaller values
by means of underrelaxation. However, even combining both underrelaxation and
local recalculation of integrals does not provide stability for the small values of ¢/A?
that will occur in the contact region at high loads.

To find a stable relaxation scheme with good smoothing properties for small € it
is important to ensure that the process remains effectively locali.e., that relaxing at
a point z; introduces only small changes to the discrete integral H; and in particular
to the discrete derivative (H;— H;_1)/h at points x; far away from z;; otherwise each
such integral would accumulate too many significant changes in a relaxation sweep.
This can be achieved using a suitable kind of distributed relazation.

In general, a distributed relaxation of the order r is a relaxation where each set of
simultaneous changes is an r** —order difference of a local function. {e.g., a multiple
of a discrete delta function). Instead of changing the approximation in only one
point, changes are also applied at one or more adjacent sites. For example, in the
case of a first order distributive relaxation two unknowns are changed at a time:
P, — P+ é; and Py + Py — 6, where §; is calculated in such a way that, after
applying these changes, the equation to be solved, e.g. equation (4.11), is satisfied
at #;. Such a relaxation can ensure that the changes in the integrals remain local
since the changes in the integral at z; caused by r** —order distributed changes at =,
behave like @K"(z;,2;)/82", which decays like |z; — x;|~". Moreover, the changes in
the derivative dH/dX occurring in the equation will behave like K™ +(z;, 2,)/8z7+!,
which decays even faster.
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FIGURE 4.2: Amplitude reduction factor p(8) for Jacobi dipole relaxation on the
linearized problem, ¢ = 0

The distributive relaxation scheme can be used either as a simultaneous displacement
scheme, (new values of P and H replacing the old values at the end of a sweep),
in which case it is referred to as a distributive Jacobi relaxation; or in successive
displacements (the changed values being immediately used in relaxing subsequent
equations), in which case it is called a distributive Gauss-Seidel relaxation.

For the linear model problem the effect of a first order distributed Jacobi relax-
ation was studied. This relaxation can be described as follows: starting with an
approximation P; in each gridpoint and an approximation H; to H; calculated from
equation (4.12) changes §; are computed from:

e([Pior — 8] = 2([Ps + 6]) + P )/ B — (H; — Hiy)Jh = 0 (4.16)

Subsequently all grid points are visited in lexicographic order adding §; to the ap-
proximation in gridpoint i and subtracting §; from the approximation in gridpeint
i — 1. Because a change of the same magnitude but with opposite sign is applied
at two adjacent gridpoints this relaxation is also referred to as a dipole relaxation.
Hence, as a result of these changes, the new approximation to the pressure at site ¢
is given by:

P=P 46— b (4.17)

The relaxation sweep is completed with the recalculation or update of all film thick-
nesses. Appendix C presents the calculation of the smoothing rate of this first
order distributed relaxation for the model problem with ¢ = 0. The result of this
calculation, i.e. the smoothing factor u(8) is depicted in figure 4.2.
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Obviously this relaxation process is stable since (#) < 1 for all #. Moreover, it
efficiently reduces high frequency error components. The asymptotic smoothing rate
i = 0.4. An even better reduction of high frequency components can be obtained if
an underrelaxation factor of 2/3 is used, in which case g = 0.2.

The relaxation process is equally effective for small values of . However, with
increasing ¢/h? the performance deteriorates and the process gradually becomes
unstable. This problem can be overcome by using some underrelaxation. Using
an underrelaxation factor of 0.6 the process is stable even for large values of €/h?
with an asymplotic smoothing rate of 0.7. Consequently for large values of ¢/A? the
Jacobi dipole relaxation is outranked by the simple Gauss-Seidel relaxation.

From the results presented above it is concluded that a stable and efficient multi-
level solver for equation (4.11) regardless of the valite of ¢ can be obfained if the two
relaxation schemes are combined. However, to ensure overiap in stability regions,
at least for the Jacobi relaxation an underrelaxation factor of 0.6 should be used.

e On grids where €/h? is larger than a prescribed limit the simple Gauss-Seidel
relaxation is used.

o On grids where ¢/A? is smaller than the prescribed limit, generally the coarsest
grids, the Jacobi dipole relaxation is employed.

The optimal value of the cross-over point can be determined from smoothing rate
calculations. If no underrelaxation is used for the Gauss-Seidel changes it is ap-
proximately e/h* = 1.0 provided k is sufficiently small. On very coarse grids it is
sornewhat larger.

However, if an underrelaxation of factor 0.6 is used for the distributive changes
the specific value of the cross-over point chosen in the calculations does not affect the
overall performance too much as long as it is chosen sufficiently large. For example,
using the (more conservative) switch criterion ¢/h = 0.01 (instead of e/h?) also serves
well. The only consequence is that the Jacobi dipole relaxation is applied on grids
where also the simple Gauss-Seidel relaxation is stable. As a result the asymptotic
error reduction per coarse grid correction cycle will be somewhat smaller.

4.2.2 Varying coefficient

The next step towards a relaxation process for the solution of the EHL line contact
problem is to consider equation (4.1) and, instead of assuming ¢ to be a constant (as
was done to obtain equation (4.10)), € is given as function of the spatial coordinate
X. Hence, ¢ varies over the calculational domain and the problem to be solved reads:

d dP dH

with the boundary conditions P(X,) = P(X,) = 0 and H again given by equation
(4.7). For the present purpose €(X) was chosen as:
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L[ X x> 1
€(X) = { 0 otherwise (4.19)

a function that resembles the € occurring in equation (4.1). The discontinuity at
|Xj =1 was chosen as a worst case simulation of the aforementioned boundary layer.
Cavitation is not taken into account and again Hyg and the force balance equation
play no role. The equation is discretized according to:

h ey Py — (gioy + 1) P+ €41 Pia) (4.20)
—h_I(H,‘ —H,;)=0

where ¢; = €(X;). In the multilevel algorithm described in 4.2.1, the relaxation type
used on a specific grid depended on the value of ¢/h? (or ¢/h) on that grid. Since
relaxation is, by its nature, a local process, both relaxation types can be combined
on one grid. Thus, in regions of the domain where the coefficients are large, simple
Gauss Seidel changes are applied, whereas in regions where the coefficients are small
Jacobi dipole changes are calculated and applied after the sweep is completed. Using
this hybrid relaxation type in a multilevel solver for equation (4.20) with ¢(X) given
by (4.19), a reduction of the residuals of one order of magnitude per coarse grid
correction cycle (V(2,2) or W(2,2) cycle) was easily obtained.

4.2.3 'The line contact problem

The only remaining step towards the full non linear problem is to replace the de-
pendence of ¢ on X by a dependence on H and P. In that case the changes §&; to
satisfy equation (4.5) can not be solved exactly. Instead a local Newton linearization
is used. Assuming an approximate solution P; with H; given by equation (4.8) in
regions of large ¢/h? new approximations to P; are calculated according to:

5 5, (BLE\T
P,=F + (_c'-i—}"f) T (4.21)

where r; is the dynamic residual of the discrete Reynolds equation at site #:

= —(Ei—llzpi—l —{eicap2 + Ei+1]2)P£ + €£+1j2}35+1)/h2+ (4.22)
(el — picy Hioy)/R
and (L} /8P;) is approximated by
aF;

The dipole changes §; to be added to P; and subtracted from P._; in regioné of small
e/ h? are calculated from:

1. "
R —(65-1/2 + €i+1/2)/ h? + ‘;(PEKE:? — Pi1 K:l-hu)/h (4.23)
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gL oLk \7!
. t_ 3 : 4.24
5 (613‘_ ) n (4.24)
with:
Ty = _(fi~1/2ﬁ';'—1 - (6.'-1/2 + €=‘+1/2)P; + f;+1/213<+1)/h2+ (4.25)

(Al ~ piaHia) /R
and, since the kernel is symmetric (K;;_y = K;_1,):

B h
g—‘;‘;‘_ - b%% ~ (—2eim1/2 — &)/ RE + %(ﬁ;Kﬁf‘ — pim KM VR (4.26)
Note the small, but essential, difference between the residual r; defined by equa-
tion (4.22) and (4.25). At first sight these equations seem the same, however, equa-
tion (4.22) already incorporates the changes applied in the previous gridpoint as
is characteristic for Gauss-Seidel relaxation. On the contrary, equation (4.25) is
entirely based on the old approximation.

The cavitation condition can be easily taken into account by simply replacing
a negative P by zeto. To obtain a solution that also satisfies the force balance
equation the integration constant Hoo is adjusted once every s relaxations in the
following way:

n—1
Hog — Hog — C(g — kY 05(B; + Pyyy)) (4.27)

i=0

where ¢ is a suitably chosen constant and P; denotes the current approximation to
P;. Basically this correction is of the same type as the correction of P; according
to equation (4.21), with the constant c replacing the derivative. The value of Hyy
depends on the values of governing parameters such as A and &. With increasing
load however it approaches a limiting value that can be calculated from the Hertzian
dry contact theory:

Heo = _i - %1;1(2) (4.28)
The number of relaxations, s, after which the force balance equation is relaxed, must
be large enough and the multiplication factor ¢ must be sufficiently small to avoid
unstable oscillations. On the other hand, if ¢ is chosen too small or s too large the
changes of the value of Hyg are too small and the relaxation of the force balance
condition significantly slows down the overall convergence.

The hybrid relaxation process described above provides a stable solver for the line
contact problem up to high loads. Because of the non-linearity some underrelaxation
is required. The necessary underrelaxation factor depends on the load conditions and
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varies from 0.1 to 0.6 (the aforementioned upper limit) for the Jacobi dipole changes
and from 0.5 to 1.0 for the Gauss-Seidel changes. Furthermore, in particular for
high loads, the mesh size on the grid should be sufficiently small. This matter is
discussed in more detail in section 4.3.5. Since this relaxation scheme has good error
sroothing properties it provides a sound basis for a multilevel solver of the problem.

4.3 Application of multilevel techniques

Having developed a stable relaxation process with good error smoothing properties
this section directs the attention towards its implementation in a FMG algorithm.
First some specific details with respect to the application of the multilevel solution
techniques to Reynolds’ equation, the film thickness equation and the force balance
equation are discussed. Since the problem is not linear the correction scheme does
not apply and the Full Approximation Scheme must be used. This applies to all
three equations. Secondly the coarse grid correction cycle is described followed
by the implementation of this coarse grid correction cycle into a FMG algorithm.
Finally the implementation of the multilevel multi-integration algorithm for the
fast computation of the elastic deformation integrals is addressed. To distinguish
between the different grids used in the calculations, the superscript k is again used
to indicate the level. Level 1 denotes the coarsest grid.

4.3.1 The Reynolds equation

With respect to Reynolds’ equation it should be noted that the problem to be
solved is in fact a complementarity problem. This equation is not valid in the entire
domain: either the fluid obeys Reynolds’ equation or the fluid cavitates and the
pressure is zero. The cavitation condition can be implemented in the multilevel
process in a straightforward manner as described by Brandt and Cryer [B2]. Near
the cavitational boundary both for the transfer of the residuals as well as for the
transfer of the solution to the coarse grid injection should be used.

4.3.2 The film thickness equation

The film thickness equation also deserves special attention. For a given pressure pro-
file this equation allows an exact calculation of the associated H;. Hence, provided
a relaxation sweep ends with the update or recalculation of all H;, the residuals of
this equation are zero before going to the coarser grid. It is important to realize
that this dees not imply that the FAS right hand side of this equation on the coarse
grid is zero. Recalling the definition of the FAS right hand side:

77 = PP + [ (4.29)

If the residuals are zero this equation reduces to:
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P = e (4.30)

Hence, in the case of multiple grids, the film thickness H; on a specific level & is
solved from:

X? 1 s
i Ho- 5+ LS Kt < (a3
i
where f¥ = 0 on the finest grid used in the correction cycle, whereas on all coarser
grids:

: - k+1 Xt 1 i ~ b+l
F=nl7 )i — Ho— 5+ -V KEIEL BT (4.32)
i
The treatment of the film thickness equation outlined here is essential to obtain an
efficient multilevel algorithm for the solution of the problem.

4.3.3 The force balance equation

If only a single grid is used the treatment of this equation is quite straightforward.
After a number of relaxations the value of Hgg is changed in the direction that drives
the residual of the force balance equation to zero. In case of multiple grids one might
suggest to do something similar, that is to change the value of the constant from
time to time on the finest grid. However this is not the appropriate way. The force
balance equation is a global condition, i.e. it has a large global effect on the solution.
The reader is reminded that the purpose of relaxation in a multilevel solver is to
smooth the error. Relaxation of such a condition on the finest grid may frustrate
this error smoothing process. In fact such a global condition should not be treated
at all on the fine grid, see [B1, page 64]. All one should do is to transfer the residual
of the condition to serve as the right-hand side for a similar condition on the next
coarser grid. This process is repeated all the way down to the coarsest grid. On this
grid the condition should be solved. Together with the FAS right hand sides of the
Reynolds equation and the film thickness equation, the FAS right hand side for the
force balance equation (4.9) is calculated. As a result the force balance condition on
level k reads:

n—1
R 0.5(PF + PEy) = ¢ (4.33)
=0
On the finest grid employed in the correction cycle g* = x/2 whereas on all coarser
grids ¢* is calculated from:

el k41

oy
gF =k 0[P 4 PP )+ (4.34)
J=0
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rp—1 - .
gt — B 3T 0.5(PF + Phy)
j=0

where h* and k**! denote the mesh size at level k and level k + 1. Similarly n; is
the number of nodes on level k+1 and n. denotes the number of nodes level k. Note
that the last two terms in this equation are the residual of the same global condition
on the next finer grid. On the coarsest grid, k = 1, the equation is relaxed, i.e. Hyy
is changed according to:

nig~—1 . ~
Hoo — Hoo —c(g' — k' Y 0.5(P! + P},)) (4.35)
=0

where P! denotes the current approximation to the solution of the level 1 equations.
As the treatment of the film thickness equation outlined in the previous section the
approach described here is essential to obtain an efficient multilevel solver.

4.3.4 Coarse grid correction cycle

The recursive description of the coarse grid correction cycle reads:
e If k£ =1, i.e. the coarsest grid:

— perform vy relaxations to solve the problem nearly exactly.

— every s (vp > s) relaxations the integration constant Hyy is changed
according to equation (4.35).

e ifk>1

— Perform 4 relaxations on the level & equations to obtain an approxima-
tion P*. One relaxation sweep consists of:

* The calculation of a new approximation to the pressure profile from
the discretized Reynolds equation using the hybrid relaxation scheme.,

* A multi-integration to compute the elastic deformation and the as-
sociated new approximation H* to H*.

— Transfer the solution (P* and f*) to the coarse grid to serve as a first
approximation on this grid and calculate the FAS coarse grid right hand
sides for all equations.

~ Perform 7y coarse grid correction cycles on the level k—1 equation resulting
. k-1
in P

— Correct the solution on level k according to equation (3.29):

Pt PPk (PFT - P pY (4.36)
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Since the film thickness equation can be solved exactly at any moment
only the pressures are corrected. The corrected pressure profile is subse-
quently used to calculate the associated approximation to the film thick-
ness: H*,

— Finally, Perform v, additional relaxation sweeps on the level k equation.

4.3.5 Full multigrid

"The coarse grid correction cycle described in the previous section is implemented in
a Full Multigrid algorithm as described in section 3.1.7. To obtain a first approxi-
mation to the solution on level k the converged solution of the preceding coarse grid
is used. This approximation is subsequently improved with coarse grid correction
cycles. As a first approximation on the coarsest grid, level 1, the dimensionless
Hertzian dry contact pressure profile is used:

R={ J1- X2 i |X) <1 (4.37)

0 otherwise

To interpolate the solution of a coarser grid to the next finer grid to serve as a first
approximation there a second order accurate interpolation is recornmended. This
first approximation is subsequently improved with coarse grid correction cycles.

For low load situations a FMG algorithm with two V(2,1) cycles per level is
sufficient to obtain a converged solution. However, with increasing load the solution
of the force balance equation becomes more difficult and convergence slows down,
"This can easily be overcome by using the more robust W cycle. In general a W(2,1)
cycle gives an error reduction of one order of magnitude, even for highly loaded
conditions and large numbers of nodes, and a FMG algorithm with two wW(2,1)
cycles per refinement provides a solution that has converged below the level of
the discretization error. For a particular load situation this is demonstrated in
section 4.4,

With respect to the solution of highly loaded situations it is important to separate
the two functions of the coarser grids. With increasing load the discretization error
on a given grid increases. If the grid is rather coarse the solution of the discrete
problem on this grid is a very poor approximation to the solution of the differential
problem. Moreover, the solution is also a bad first approximation to the solutjon
on the next finer grid. Characteristic for such situations is the occurrence of rather
large (O(1}} negative film thicknesses. In combination with the non-linearity and
the cavitation condition these negative values of H frustrate the convergence of the
relaxation process. Hence, the first grid employed in the FMG algorithm must have
a sufficiently small mesh size. The above argument however does not apply to the
coarsest grids used in the coarse grid correction cycle. In the correction cycle the
coarser grids are used to calculate a smooth correction to the fine grid pressure
profile and upon convergence the coarse grid variable approximates the restriction
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of the fine grid solution to this grid. Consequently in the coarse grid correction
cycle the aforementioned problem does not occur. Summarizing, for highly loaded
conditions the FMG process starts with one or two coarse grid correction cycles
on a sufficiently dense grid (in general ((100) nodes) and in fact the two or three
coarsest grids are skipped. However, although the last mentioned grids are not used
in the process of generating a first approximation, they are used in the coarse grid
correction cycle. Subsequently the normal FMG procedure is followed, i.e. the
solution is used as a first approximation to the solution on the next finer grid and
improved with some coarse grid correction cycles etc.

4.3.6 Multilevel multi-integration

Each relaxation consists of the calculation of a new approximation to the pressure
profile followed by the computation of the associated film thicknesses. The elastic
deformation integrals needed in the latter computation require a multi-integration
that can be performed in O{n Inn) operations using the techniques outlined in the
previous chapter. Hence, the summations:

1 n
-=3" K‘-"j"Pj (4.38)
T =0
are transferred to coarser grids, calculated, and interpolated back (using the correc-

tion procedure outlined in section 3.2.4) to the fine grid. To obtain the film thickness,
the value of

X2
Hoo + 5 (4.39)

is added to the fine grid integral in each point. If, using the advanced techniques
described in section 3.2.7, only updates of the integrals are calculated, the summa-
tions:

1 n
- ST KMSP; (4.40)
i=0

are transferred to coarser grids, calculated, interpolated back to the fine grid (us-
ing the correction procedure), and added to the fine grid summations that were
calculated upon arrival at the specific grid for the first time:

1 "
_ = E K'f‘j"PJP (4.41)
T izo

where P° denotes the first approximation to pressure profile and 6P = P — P, i.e.
the difference between the current approximation and the first approximation.
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Obviously calculating a new approximation to the pressure profile requires O(n) op-
erations. The following update or recalculation of the integrals requires O(n Inn) op-
erations. Hence, one relaxation on the finest grid, i.e. one WU/, represents Q(nlnn)
operations.

4.4 Example

As an example a specific load situation is studied in detail. The values of the
governing parameters are: M = 20 and L = 10 in terms of the Moes parameters or
& =17.84 and X = 9.25¢ — 3 in terms of the parameters occurring in the equations or
W =8.94e -5, U = 1.0e — 11 and G = 4730 in terms of the Dowson and Higginson

dimensionless parameters.

4.4.1 Calculational details

The calculational domain extended from X, = —4 to X, = 1.5. The solution has
been calculated using a FMG algorithm with two W(2,1) cycles per refinement,
each cycle giving an error reduction of approximately one order of magnitude. The
coarsest grid employed in the calculations consisted of 15 nodes and as much as
14 levels have been used (n ~115.000). The solution has been calculated using the
Roelands relation and the lubricant was assumed to behave compressible according
to the Dowson and Higginson equation.

4.4.2 Solution

Figure 4.3 presents the calculated pressure profile and the associated film shape for
the situation studied. The solution contains all characteristic elements of medium to
highly loaded EHL solutions. Starting at the inlet (X = —4) the pressure gradually
builds up to a nearly semi-elliptical profile in the Hertzian contact region ~1 € X < 1.
The cavitated outlet region X > 1 is preceded by a pressure spike. This spike, caused
by the exponential relation between the viscosity and the pressure, is discussed in
detail in chapter 6. In particular the height of this spike has been the subject of
many discussions. For the conditions considered here it can be shown that it is finite
and smooth provided the local nodal density of the grid is sufficiently large. This
is illustrated in figure 4.4 which gives an enlargement of the pressure profile in the
spike region.
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FIGURE 4.3: Pressure profile and film thickness for M = 20 and L = 10
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FIGURE 4.4: Pressure profile in the spike region for M = 20 and L = 10
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4.4.3 Convergence

Convergence to the level of the discretization error will be checked using the proce-
dure outlined in section 3.1.8. The solution has been recalculated using three W (2,1)
cycles. The values of ERR(k,k — 1) calculated for the different levels for both 2 as
well as 3 cycles are presented in table 4.1.

One W(2,1) cycle gives an error reduction of approximately one order of magni-
tude. Hence, the error in the solution calculated with three W (2,1} cycles is much
smaller than the error if two W cycles are used. However, the value of ERR(k, k — 1)
calculated in both situations hardly differs. Consequently, it is dominated by the
discretization error. Hence, two W(2,1) cycles are sufficient to obtain a solution that
has converged below the level of the discretization error.

From table 4.1 it can be observed that, with increasing n, the ratio of ERR(k, k —
1)/ ERR(k — 1,k — 2) approximates a factor 1/2 indicating a first order convergence
to the solution of the continuous differential equation.

The order of convergence can also be checked by monitoring the value of a char-
acteristic parameter such as the minimum film thickness or the pressure spike height
as a function of the number of nodes. Tor the situation considered here these results
are presented in table 4.2 and figure 4.5. Both the (dimensionless) minimum film
thickness as well as the (dimensionless) spike height converge first order to a limiting
value with decreasing mesh size.

This first order convergence is exactly what one would expect since a first order
upstream discretization of the wedge term in Reynolds’ equation was used. Only in
very lightly loaded situations where this term is negligible compared to the Poiseuille
term, a second order convergence can be obtained, see for example Lubrecht {L1].

2W(2,1) [ 3W(2,1)
1.24e-3 1.24e-3
6.64e-4 6.5%-4
3.74e-4 3.76e-4

9 1.99e-4 1.97e-4
10 1.06e-4 1.06e-4
11 5.57e-5 5.35¢e-5
12 2.77e-5 2.72e-5
13 1.36e-5 1.36e-5
14 6.78e-6 6.78¢e-6

o —I| | =

Table 4.1: ERR(k,k — 1) using 2W and 3 W cycles
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level n+l1 H, P,
6 449 | 0.07502 | 0.677

7 897 | 0.07439 ! 0.710

8 1793 | 0.07404 | 0.758

9 3585 | 0.07385 | 0.787

10 7169 | 0.07375 | 0.825
11 | 14337 | 0.07370 | 0.850
12 | 28673 | 0.07367 | 0.867
13 | 57345 | 0.07366 | 0.875
14 | 114689 | 0.07365 | 0.879

Table 4.2: Convergence of spike height and minimum film thickness with in-
creasing number of nodes for M = 20 and L = 10,
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FIGURE 4.5: Minimum film thickness and pressure spike heigth as a function of

the number of nodes n for M = 20 and I = 10.
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An alternative way to check convergence is to calculate the mass flow defect as a
function of the number of nodes. Define the dimensionless mass flow per unit width
® as:

= pH3 dP -
O =—-—"—"——"—"+)pH 4.42
7 ax T (4.42)
Using a second order central discretization for the pressure gradient the dimension-
less mass flow per unit width at node ¢ is given by:

5. H?
@;=_o.s-’%(aﬂ- )k + AR H, (4.43)

Note that this expression is not valid in the cavitated region.

Table 4.3 gives the maximum, minimum, and average value of ®; as a function of
the number of nodes, Also the mass flow defect in percent of the average mass flow:
- (max(®;) — min(®,))

By =1 _ 4.44

def 06 av(@,-) ( )

is displayed. Figure 4.6 displays the maximum, minimum and average mass flow

as a function of the number of nodes. All three show a first order convergence to

the same value and consequently the mass flux defect defined according to (4.44)
converges to zero, see figure 4.7.

level | n+1 | max(®;) | min(®;) | av(®;) | Duy
6 449 | 9.969e-4 | 7.573e-4 | 9.008e-4 | 26.60

7 897 | 9.747e-4 | 8.535e-4 | 9.256e-4 | 13.09

8 1793 | 9.627e-4 | 9.016e-4 | 9.377e-4 | 6.53

9 3585 | 9.559¢-4 | 9.255e-4 | 9.436e-4 | 3.22

i0 7169 | 9.528e-4 | 9.376e-4 | 9.466e-4 | 1.61
11| 14337 | 9.511e-4 | 9.435e-4 | 9.480e-4 | 0.81
12 | 28673 | 9.503e-4 | 9.46le-4 | 9.487e-4 | 0.44
13| 57345 | 9.49%-4 | 9.477e-4 | 9.491e-4 | 0.23
14 | 114689 | 9.497e-4 | 9.486e-4 | 9.493e-4 | 0.12

Table 4.3: Convergence of the maximum, minimum and average dimension-
less mass flow per unit width and mass flux defect with increasing
mumber of nodes for M =20 and L = 10.
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FIGURE 4.7: Mass flux defect in percent defined according to equation (4.44) as
a function of the number of nodes n for M = 20 and L = 10.
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4.5 Computing times

To conclude this chapter the complexity of the solver is discussed. Table 4.4 presents
the computing time on an HP 9000/845s computer as a function of the number of
nodes n when using a FMG algorithm with 15 nodes on the coarsest grid if two V(2,1)
or two W(2,1} cycles are used per refinement. The computing times in the first
column are representative for lightly loaded conditions whereas the second column
displays the computing time generally required to obtain a converged solution in a
medium to highly loaded situation.

The required computing time approximately doubles with increasing number of
nodes indicating a complexity close to O{n). The larger increase going from level 12
to level 13 is caused by the change from 6* order to 10* order transfer operators
in the multilevel calculation of the elastic deformation integrals, in order to keep
the additional error introduced by the multilevel calculation small compared to the
discretization error.

The data presented in table 4.4 is plotted in figure 4.8. For reasons of comparison
also a line ¢ n is drawn, Since one work unit represents O{n Inn) operations, a V cy-
cle and consequently a FMG algorithm with V cycles requires O(n Inn) operations.
Since In(n) increases very slowly with n the computing time results run parallel to
the ¢ n curve. With respect to the W cycles the situation is a bit more complicated.
One would expect the ratio between the computing time needed for a FMG algo-
rithm with 2 W cycles and the computing time required by a FMG algorithm with 2
V cycles to be constant. This ratio is displayed in figure 4.9. Obviously it increases
with increasing number of nodes. The reason is that a W cycle in the case of a one
dimensional problem requires @(Inn) work units as can be shown with an analysis
similar to the one for a V cycle presented in section 3.1.6. Hence, the complexity of
the scheme when W cycles are used is O(n(lnn)?).

level n+l | 2 V(2,1) cycles | 2 W(2,1) cycles
5 225 2 6.2
6 449 4 14.8
7 897 7 34.5
8 1793 14 1:19
9 3585 29 2:58
10 7169 58 6:38
11 | 14337 1:57 14:56
12| 28673 4:04 32:00
13| 57345 9:50 1:17:43
14 | 114689 20:04 2:41:00

Table 4.4: Computing time in hours:minutes:seconds as a function of the num-

ber of nodes. (HP 9000/845s computer)
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4.6 Conclusion

Based on the analysis of a linearized model problem an alternative relaxation process
for the EHL line contact problem has been developed. Incorporating this relaxation
process in a F'M G algorithm together with the use of multilevel multi-integration
for the calculation of the elastic deformation integrals results in a solver with a
complexity close to O(n). This low complexity enables accurate solution of the
problem using a large number of nodes on a small capacity computer. Moreover, as
will be demonstrated in chapter 6 the algorithm is stable up to very high loads.
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Chapter 5

Numerical solution of the circular
contact problem

This chapter describes the development of a fast multilevel solver for EHL circular
contact problems. The first step towards such a solver is to develop a relaxation pro-
cess that gives good error smoothing and stability. As for the line contact problem
the simple Gauss-Seidel relaxation that was for example applied by Chittenden et
al. [C1,C2), Hamrock and Dowson [H1], Lubrecht {L1] and Zhu and Cheng [Z1] does
not provide stability for highly loaded conditions. Again a linearized problem, char-
acteristic for the local behaviour of the full problem, is studied to reveil the nature of
this unstable behaviour. Based on the results of this study an alternative relaxation
scheme providing stability and good error smoothing also for extreme conditions,
is developed. This scheme is subsequently merged with the multilevel techniques
described in chapter 3 into a solver for the circular contact problem of O(nlnn)
complexity. This complexity as well as convergence to the solution of the continu-
ous integro-differential problem are demonstrated using a specific load situation.

5.1 Discretization

The equations are discretized on a rectangular uniform grid extended over the do-
main {{X,Y) e R}X, £ X < X,,-Y, <Y < Y.}, where X is the dimensionless
coordinate in the direction of flow. Assuming a circular contact and steady state
conditions the dimensionless Reynolds equation (2.48) reads:

2 (0PY, 8 (oP\ i) _
ax (Eax)“LaY (an) ox " (5.1)

with the cavitation condition P > § and the boundary conditions:

P('XB'IY) = P(Xbay) =0
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and
P(X,Y,})= P(X,-Y;) =0.

¢ is given by:

o
et

€

where

_ ot Fiz

~ d¥ps
As in the line contact situation the dimensionless density is unity for an incompress-
ible lubricant. In the case of a compressible lubricant the non dimensional expression
of the Dowson and Higginson equation is used, see section 4.1. Similarly for an iso-
viscous lubricant the dimensionless viscosity is one, otherwise it is computed from
Roelands’ equation (4.4)

Using a second order accurate central discretization for the first two terms of

equation (5.1) and a first order upstream discretization of the wedge term leads to the
following equation to be satisfied at each non boundary site (2, j), (Xa+ih, —Ya +jh):

ht (&i1j25(Pics — Pig) 4 €ipapeg(Pons — Pt (5.2)
€ijor2(Pij—1 = Pij) + €ijprpa(Pijar — Pij))+
— 7 (piHi = pi-1Hiy) =0

with the cavitation condition: F;; > 0.
€i-1/2,4s €i41/2,js Gij—1/2 and € ;1172 denote the value of € at the infermediate locations:

(X,Y) (Xa-'l'(i_ 1/2)""’_}{1 +Jh);
(Ko + (i + 1/2)h, - Y4 + jh),
(Xe +th, =Y, + (j — 1/2)h), and

(Xa + ik, =Y, + (7 + 1/2)R)

respectively.

They are computed in an analogous way as described for the line contact problem
in section 4.1, for example:

€io1/24 = (€5 + €im1,5)/2

£;,; 18 defined as:

T a(Pi))
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The dimensionless film thickness equation for the circular contact (equation 2.49)
reads:

HX,Y) = Hoo+X—+—+ A PX, YY) dX” dY (5.4)
2 \/X XV +(Y -y

Discretizing the clastic deformation integral as described in appendix B gives:

X2 Y2 2 ny Hy
H ;= 5 _23_ = = S KNP (5.5)
k=01=0

where (n; + 1) and (n, + 1) denote the number of nodes on the grid in X and
Y direction respectively. Note that with respect to the elastic deformation inte-
grals the general notation ¢ = (i), ..,44) used in chapter 3 to describe the multilevel
multi-integration algorithm is abandoned here. The reason for this change is the
combination of the integral equation with Reynolds’ equation.

Finally the force balance equation determining the value of the integration constant
Hyo is discretized according to:

ng—11ny—1

Yy ZP,,—%=O (5.6)

i=l j=1

5.2 Relaxation

The problems encountered in the simultaneous numerical solution of the discrete
equations (5.2) and (5.5) with the global condition {5.6) are very similar to the
problems one had to overcome in case of the line contact problem. The coefficient
¢ varies several orders of magnitude over the calculational domain. Globally in the
Hertzian dry contact region, i.e. (X? + ¥?2) < 1, the integral aspect of the problem
dominates, whereas in the remaining part of the domain the problem behaves like a
differential problem and also the intermediate region, the boundary layer, narrows
with increasing load. However, with respect to the multilevel solution of the problem,
an additional complication shows up with increasing load. This complication is
related to the fact that the problem is two-dimensional. In the region of small €
equation (5.1) reduces to:

3(pH)
ax

being a relation in X direction only. Consequently, when discretized, there is no
direct coupling via the pressure between adjacent gridpeints in Y direction. These

~ 0 (5.7)
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points are only indirectly, and very weakly coupled via the elastic deformation in-
tegrals. This problem, i.e. the loss of coupling in ¥ direction was already observed
by Lubrecht [L1] and is addressed in more detail in 5.2.1.

The approach to obtain a relaxation process that will also give good error smooth-
ing for extreme conditions is basically the same as described in chapter 4 for the
line contact problem. First a linear model problem is studied. This model problem
is chosen in such a way that it is characteristic for the local behaviour of the full
problem. Subsequently, using the results of the analysis of this linear problem, step
by step, a relaxation process for the full problem is developed.

5.2.1 Linearized problem

The following linear approximation of the EHL circular contact problem, i.e. equa-
tion (5.1}, is studied:

ax:  oy? ax

on the domain {{X,¥) € B?}X, € X < X3, -Y, £ ¥ < ¥,} and the condition that
P = 0 on the boundaries. H is given by equation (5.5) and ¢ is assumed to be a
constant. In addition, cavitation is disregarded and the force balance equation plays
no role. Discretization of equation (5.8) on a uniform grid with mesh size h gives:

L(P)___E(_Ei_}_’_+az_P)_6_H=[] (5.8)

L?.j(Pi.J') = €(Pirj+ Purg+ Prjo1 + Fijp — 4P5)[0°
—(Hij —Hio13)[h=0
(5.9)

with:

X? Y2 2 N
7’ + - S ):K,"k’;f;’*Pk,f (5.10)
=0I=0

H{j""

The smoothing rate of a specific relaxation process applied to the solution of equa-
tion (5.9) with H;; given by (5.10) depends on the ratio ¢/k%. For large values of this
ratio the following simple one point lexicographic Gauss-Seidel relaxation provides
good error smoothing and stability.

Given an approximation P, ; in each grid point and the associated approximation
A, ; to H;; calculated from equation (5.10), the gridpoints are visited in lexicographic
order and at each gridpoint a new approximation P;; is computed according to:

. . LN
B, =F; (BRJ) Tij (5.11)
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where

rig = (Hij— Hioi )b — (P + Poay + Py + Pja—4P )[R (5.12)

and b
¥ 2
ET P‘-j = —de/h? = S (KN — KN )/ (5.13)

The new approximation P;; is subsequently used to recalculate or update the elas-
tic deformation integrals and to compute a new approximation H,; to H;; from
equation (5.10).

Summarizing, given an approximation P to P, in all gridpoints and the associ-
ated approximation H;; to H;; one relaxation consists of one sweep to compute a new
approximation to P ; according to equation (5.11) followed by a multi-integration
to obtain the associated new approximation to H; ;.

The preference for such a relaxation scheme, in which all integrals are recalcu-
lated or updated simultaneously only once per relaxation sweep, has already been
explained. Such a scheme enables an efficient combination with the multilevel multi-
integration algorithm explained in section 3.2.

It is no surprise that this relaxation gives good error smoothing for large ¢/h2.
Under these conditions the discrete 3H/8X term in equation (5.9) is small compared
to the first term and the equation approximates the 2-D Poisson equation. For
this problem with the usual 5-point discretization the asymptotic smoothing rate
of one-point lexicographic Gauss-Seidel relaxation is 0.5 as was demonstrated in
section 3.1.1.

With decreasing ¢/h? two problems occur. Firstly, the relaxation gradually be-
comes unstable. Below approximately ¢/h? = 0.5 low frequency error components
are amplified and the relaxation process diverges. This unstable behaviour is caused
by the accumulation of changes in the elastic deformation integrals during one re-
laxation sweep. Consequently, updating the integrals during the relaxation sweep
and/or applying underrelaxation alleviates the stability problemns to a certian ex-
tent. However, even a combination of both measures is not sufficient to stabilize
the relaxation process for the small values of the ¢/h? that will definitely occur in
high load point contact situations. Secondly, because of the loss of coupling in ¥
direction, the relaxation becomes increasingly ineffective in reducing high frequency
error components in ¥ direction.

A rigorous solution to the first problem, i.e. the stability problem, is provided by
a distributed relaxation, since such a relaxation scheme can ensure that the changes
of the integrals resulting from changing all pressures remain effectively local, e.g.
see section 4.2.1. As a first guess one might suggest the application of the same
distributed relaxation that was effective for the line contact problem, i.e. the Jacobi
dipole relaxation.

The smoothing factor as a function of the error frequency (61,8,) for this first
order distributed Jacobi relaxation applied to the solution of the linearized problem
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FIGURE 5.1: Amplitude reduction factor u(8,,8;) for Jacobi dipole relaxation on
the linearized model problem with ¢ = 0.

with ¢ = 0 is displayed in figure 5.1. From this figure it is obvious that the relaxation
is stable since p(#) < 1 for all §. However, with respect to the use of this relaxation
in a multilevel solver figure 5.1 reveals two problematic areas, i.e. regions associated
with high frequency error components where u(@) = 1.

Firstly, the relaxation is not effective in reducing the error components that are
high frequency in X direction and low frequency in ¥ direction, i.e. the components
for wich (|6 = =,|0:] & 0). This problem can be overcome easily by means of
underrelaxation. This can be seen from figure 5.2, showing the smoothing factor
for the same relaxation process if an underrelaxation factor of 0.7 is used. The
aforementioned high frequency components are effectively reduced now.

The second problem is that the relaxation is ineffective in reducing low frequency
compouents in X direction, regardless of the frequency in Y direction, i.e. the com-
ponents (6 = 0,8;). Comparing figure 5.1 and figure 5.2 shows that underrelaxation
does not solve this problem. In fact, the bad reduction of these components is a
more fundamental problem. As mentioned before when discussing the simple Gauss-

Seidel relaxation it is caused by the fact that for e = 0 (and by approximation also
for small €} equation (5.8} reduces to:

dH

X 0 {5.14)
Consequently the direct coupling via P between neighbouting points in ¥ direction
vanishes. Only the weak and indirect coupling via the elastic deformation integrals
remains. Because of this very weak coupling any local relaxation (one point or
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FIGURE 5.2: Amplitude reduction factor u(6y, ;) for Jacobi dipole relaxation on

the linearized model problem with € = 0 and underrelaxation factor
0.7.

distributive, simultaneous or succesive displacement) where the changes for P are
calculated from equation (5.9) scanning the gridpoints one by one in some specified
order will be inefficient in reducing the aforementioned components. Consequently,
if such a relaxation scheme is applied it will result in a tendency of the solutions to
oscillate with respect to the ¥ direction. For the complete circular contact problemn
this tendency was indeed observed by Lubrecht, see [L1, page 78], and it is exactly
what is reflected in figure 5.1 and figure 5.2. The solution of this problem of weak
coupling is a necessity in order to obtain an efficient multileve] solver.

In general there are two possible ways to solve this problem of weak coupling. The
first alternative is generally referred to as semi-coarsening. The standard choice of a
coarser grid having twice the mesh size of the finer grid is entirely based on the fact
that the relaxation is effective in reducing high frequency components in both spatial
directions. In this particular situation one should conclude that this choice can not
lead to a fast solver. The relaxation is only effective in reducing error components
that are high frequency in X direction. Consequently after a few relaxations the
error will be smooth with vespect to the X direction only and can be represented on
a grid that is coarse with respect to this direction only. Subsequently, all techniques
discussed in chapter 3 can be applied. For more information on this so-called semi-
coarsening the reader is referred to Brandt [B1]. Disadvantages of semni-coarsening
are that, assuming a two-dimensional problem, almost twice as much storage is
required and that the necessary computing time for a coarse grid correction cycle
approximately doubles compared to the situation of coarsening in both directions.
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The second, more elegant, solution to the (multilevel) problems related to weak
coupling is to apply a line relaxation as is proposed by Brandt, see [B1, page 11].
Instead of visiting the gridpoints one by one in some order, e.g. lexicographic order,
and solve the discrete equation at each gridpoint, the discrete equations on a line
of points are solved simultaneously. The lines to be solved should be lines in the
direction of the strong coupling, i.e. in the situation studied lines in the X direction
(lines of constant Y').

At this stage it can be concluded that a relaxation process enabling efficient
multilevel solution of the linearized model problem for all ¢/A* and in particular
for ¢ = 0, should contain both elements discussed above, i.e. it should combine
distributive changes with elements of line relaxation. Assuming for the moment the
limiting situation that ¢ = 0, such a scheme is derived below. First the equations
are written as a system of two equations with two unknowns, I and P:

Hi; —wi; = fi; (5.15)‘
(Hij — Hiis)/h 0 (5.16)

where w; ; denotes the discretized elastic deformation integral. Suppose that H, ;
is given and satisfies the second equation. In thal case the problem reduces to
solving P from the first equation. Hence, the problem reduces to the basic equation
describing the elastic dry contact situation, i.e. see Lubrecht [L2]. This problem
can be solved by means of the following second order distributive relaxation scheme:
Given an approximation P;; to P;; and the associated integral values ; ;, all grid
points are visited in lexicographic order and changes & ; to be applied at sites (%, 7)
and the adjacent sites (11, 7), and (¢, £1) according to the following distribution:

1 0 -1 0
G (5.17)
0 -1 0
are calculated according to:
fig g — Hij
bij= —‘i:—zAIJ({}??h - (5.18)

where:
hhhh _ prhbhh ~hhih h h
ARG = Kt — (K325 + K?iﬁ-h{;‘j + I{Pij;}—] + K.'i_:'la’}:-ll)/‘L (5.19)
The changes are applied simultaneously after the sweep is completed. As a result of
the distributive changes the new approximation F;; to P;; is given by:

Frj=Pj+6i;— (8im1j 4 Gig1s + 8 jo1 + 6ijy1) /4 (5.20)
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tributed relaxation solving P from equation 5.15

The relaxation sweep iz completed by a multi-summation to obtain all @, ;, i.e. the
values of the integrals associated with the new approximation to P. Because of the
distributed changes the accumulated changes in the integrals during one sweep are
small and the relaxation process is stable. Moreover, it is very effective in reducing
high frequency error components in both directions. This is illustrated in figure 5.3.
The asymptotic smoothing rate i equals 0.45. Consequently, together with the
multilevel techniques described in chapter 3, it provides a fast and stable solver for
the problem as is for example clearly demonstrated by Lubrecht [L2].

Hence, given an approximation to the film thickness, a stable and efficient solver
for the pressure is available. The next step is to solve H. For that purpose we
consider the second equation of the system, i.e. equation (5.16). This equation
should be satisfied everywhere except at the boundaries of the domain. At the
boundaries, in particilar at the inlet boundary, it does not apply, and the values of
H can be calculated straightforwardly from equation (5.15). Given the values of H
at this boundary associated with an approximate pressure profile, equation (5.16)
can be solved in one sweep setting H;; equal to Hy ;.

Obviously, the aforementioned distributive relaxation for solving P when H is
given, can be combined directly with the solution of H from equation (5.16). This
leads to the following relaxation scheme for the model problem with ¢ = 0: Given
an approximation P;; and the associated integral values 1 ;

e Compute the values of I on the boundary X = X, i.e. Hy;, from equa-
tion (5.15).
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e Solve A in all interior points from equation (5.16), i.e. set H;; equal to Hg ;.
e Calculate a new approximation P;; using the distributed relaxation process.

o (Multilevel) Multi-integration to recalculate or update the integrals to obtain
lD"'j.

With some simple numerical tests it can be shown that this relaxation scheme ef-
ficiently reduces all high frequency components. However, due to the interaction
with the boundaries when solving H from equation (5.16), a quantification of the
smoothing effect is complex since the relaxation does not map a specific Fourier
component onto itself. Nevertheless, it can be shown that the overall performance
is reasonably well approximated if the changes of the values of H are disregarded
in the analysis, i.e. by an analysis based on equation (5.15) only. In that case, the
predicted asymptotic smoothing rate is 0.45. Consequently a W(2,1) or V(2,1) cycle
should give an error reduction of one order of magnitude. This reduction is also
easily obtained for the complete problem.

This completes the description of a stable relaxation scheme that efficiently re-
duces high frequency components for the model problem with ¢ = 0. Note that
the scheme, although in a very simple way, contains both necessary elements men-
tioned before. This is obvious as far as the distributive changes needed to limit
the accumulated changes of the integral values are concerned, However, the scheme
also contains the line relaxation element in the form of the simultaneous solution of
equation (3.16) in all points on a line j by setting the value of H;; equal to the first
value on that line, Le. Hy ;.

As a next step the aforementioned scheme is extended to a full distributive line
relaxation scheme, that is, to visit all lines of constant ¥ and to solve at each line
simultaneously a new approximation H;; to H;; and all changes 6;; (1 <i < mn,—1)
to be applied distributively from:

2 nz—1

H;;— = > AKy;ibi,
k=1

f."j + l?),"j (5.21)

(Hij — Hio5)/h = 0 (5.22)

After all interior lines j have been visited the changes are applied according to:

Pij= Py 6y — (8isy + Siny + Sijon + bi4) /4 (5.23)

and the new values of the pressures P;; are used to update or recalculate the in-
tegrals. This distributive line relaxation scheme is even more effective in reducing
high frequency error components {disregarding the changes of H: ji = 0.2). The
only complication is how to solve all changes together with the new values of H;;
on one line simultaneously. In fact, this requires the solution of a {full) system of
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O(y/n) discrete equations, where n is the total number of nodes on the grid. How-
ever, to obtain the full line relaxation efficiency, the equations need not be solved
exactly. In general it is sufficient if the error on that line is reduced by say one or two
orders of magnitude. Therefore, since AK}"* decreases very fast with increasing
distance |t — k], it is sufficient to take into account only the three largest terms of
the summation and to solve all 4; ; and I?[;,j from:

_ 2

H;— F(Affﬁ?;‘ Rois+ AKEM 61+ AKE 6ia) = fai iy
(5.24)

(Hij — Hirj)/h = 0 (5.25)

There are various alternatives enabling a fast solution of all H;; and &;; from this
reduced system. An effective way is for example by means of decimation. This
process and its implementation for the linear model problem considered here are
explained in detail in appendix D.

The line relaxation process described above was implemented in a multilevel
solver for the model problem with ¢ = 0 and an error reduction of an order of
magnitude per V(2,1} or W(2,1) cycle was casily obtained.

Having developed a stable relaxation scheme giving good error smoothing for
the extreme situation that ¢ = 0, attention is now directed towards the situation
where € # 0. The distributive line relaxation scheme can be easily extended to this
situation. In that case the changes &;; to be applied distributively and the new
values ff,-,_,- on one line § must be simultaneously solved from:

2 nr—1

H,"j - ;I'-E Z AK{}:;’;"&;,,, = f{,j + 'IIJ'{,J' (526)
k=1

/R (Pioyj—biai/4+6i0;— 8, ;/4) +
(Prg ~ 8, 5/4 4 biarj — i jf4) —
AP, =i+ 6 - /) +
(Pjpr —6:3/4) +(Pjaa—65/4) ) —
(Hij — Hia )k = 0 (5.27)

After all interior lines § have been visited the changes & ; are applied distributively
and the new values of the pressures, see equation 5.23, are used to update or recalcu-
late the integrals to obtain t; ;. Again it is not necessary to solve the system exactly
to obtain the full line relaxation efficiency and it is sufficient to solve a reduced ver-
sion of this set of equations. For further details regarding the solution of this system
of equations the reader is referred to appendix D. The distributed line relaxation
scheme presented here is very well suited for the solution of the model problem for
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small €/h?. Also for larger values of e/h? it rather effectively reduces high frequency
error components and even in the limiting case of very large ¢/h?, i.e. the two di-
mensional Poisson problem, the asymptotic smoothing rate ji is still 0.6. However,
for these large values of €/h? the present relaxation process is outranked by the one
point Gauss-Seidel relaxation described at the start of this section, which has an
asymptotic smoothing rate of 0.5. An even better alternative for large values of €/h?
is a (Gauss-Seidel line relaxation with an asymptotic smoothing rate of 0.4. The
Gauss-Seidel line relaxation can be described as follows: For each line of constant
Y (j) changes §;; and a new approximation H;; to H;; are solved simultaneousiy
from:

nz—1

_ 2 . .
Hi;— g Y Kikjibe, = fij+; (5.28)
k=1

e/ { (Piorj +6im13) + (Pgry + Gigry) —
4(Pi+8) + Py + Py )~
(H:; — Hi_1;)]h = 0 (5.29)

When all §; ; for a line j are solved they are applied immediately:

Pj=Pij+6; (5.30)

These new values of P on line j are subsequently used when treating the next line
as is characteristic for a successive displacement scheme. In order to obtain the full
eficiency it is not necessary to take into account all terms of the summation, Since
KBM decreases with distance as i — k|~1 it is, as in the procedure described above,
sufficient to take into account only three terms,

As was found for the simple (one point) Gauss-Seidel relaxation the Gauss-Seidel
line relaxation, although it does not suffer from the loss of coupling, is not stable for
small values of ¢/h%. Below e/h* » 0.3 low frequency error components are amplified
and the process diverges.

By combining both the Gauss-Seidel line relaxation and the Jacobi distributed
line relaxation an efficient multilevel algorithm for the solution of the model problem
can be obtained if:

¢ On grids where ¢/A? > 0.3 the Gauss-Seidel line relaxation is used,

¢ On grids where e/h* < 0.3 the Jacobi distributive line relaxation is used.

With a multilevel solver for the linearized problem considered here based on these
two relaxations an error reduction of one order of magnitude per V{(2,1} or W(2,1)
cycle was obtained regardless of the value of .
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5.3 Varying coeflicients

The next step leading to a solver for the circular contact problem is to consider
equation (5.1) and allow the coefficient ¢ to vary over the grid, i.e. to solve the
problem:

a ap J { apP dH

L(P) = ﬁ (6ﬁ) + B_Y (ﬁa—y) o B_X =0 (531)
on the domain {{(X,Y) € R%X, < X < X},,-¥, < ¥ <Y,} with the condition that
P = 0 on the boundaries and H is given by equation (5.5) for different functions

¢(X,Y). Cavitation is disregarded and the force balance equation plays no role. To
approximate the full circular contact problem ¢( X, Y) is chosen as:

[ (XTEYIP/8 i XT Y1
(X,Y) = { 0 otherwise (5.32)
Equation (5.31} is discretized according to:
B (€im1/2,i(Pimrg = Pig) + €inrg2,i(Pivrs — Pig)+ (5.33)
€ii-172(Pijo1 — Pis) + €ii012(Piger — Pij))
— kY p:Hi — pic1Hisy) =0

€i-1/2,5 €i+1/24 €ij—1/2 and €& ;142 denote the value of ¢(X,Y) at the intermediaie
locations:

(Xa Y) = (Xa + (2 - 1/2)h! ~Ya "i‘-jh),
(X, + (1 4+ 1/2)h, =Y, + jh),
(Xs+ih,—Ys +(j —1/2)k), and
(Xa+1ih, =Y, + (7 + 1/2)h)

respectively. In the multilevel algorithm described in section 5.2.1 the relaxation type
used on a specific grid depends on the value of ¢/h?. As mentioned before, relaxation
is, by its nature, a local process. Hence different relaxations can be combined on
one grid. For the specific problem considered here the two line relaxation processes
can be combined in the following way: For a given line of constant Y the changes
§;; and the new approximations to M, ; are solved from a system of equations, i.e.
two equations per gridpoint 4. If at least one of €112 ;:1/2/R* exceeds the value of
the crossover point the two equations for this grid point are:
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52l .
Hij— = 3 Kijibr; = fi; + i,
T k=1
(5.34)
R { (Ei—-llz,j(j)i—l,j +6;1) +
€ir725(Fivr; + 6ig1j) —
(€ig-172 + €ijrrpa + €iprjag + €mrpay) (Poj + 6i5) +
€ijrif2bijh + tigo12Fia )~
(H;;— Hioyj)/h = 0 (5.35)

Otherwise, i.e. if all €;41/241/2/h* are smaller than the value of the crossover point,
the two equations for this grid point are:

nx—1
H; - ‘7;25 E AKRS, = fi;+di;
(5.36)
B2 a1y i(Porg — Gica /A + im0y — 8, 5/4) +
€is1/2(Pivrg = 6, 311+ Bigr — 6ignjf4) +
cgra(Pojin — 8i5/4) + oo Prjor — 6:5/4) -
(€ii—1/2 + € jrja + €12, + €io1/2,)
i i (Pij = Sicaif4+ 805 — bia /1) ) —
(Hij — Hior5)/h = 0 (537

In both situations it is sufficient to solve a reduced version of the system of equations,
Le. see appendix D. Once all 6; ; and H; ; for the specific line are solved ; ; is added
to P;; or, when the sweep is completed, to P;; and partly to its four neighbours
depending on the equations solved for the gridpoint (3, 7).

Using this hybrid relaxation scheme in a multilevel solver for equation (5.33) with
€(X,Y) given by (5.32), a reduction of the error by almost one order of magnitude
(a factor of 8) per coarse grid correction cycle was obtained.

5.4 The circular contact problem

In the previous section the coefficient € was given as a function of the spatial coor-
dinates X and Y. The next step towards a relaxation scheme for the full non-linear
circular contact problem is to give € as a function of H and P instead. This can be
done straightforwardly since the description of the relaxation scheme in the previous
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section was entirely given in terms of ¢, i.e. instead of using equation (5.32), ¢, ; is
calculated according to:

p(P;) HE,;

7(F)A
In addition, 8H/AX is replaced by &pH)/8X and when applying the pressure
changes the cavitation condition is imposed, i.e. negative values of P are not al-

lowed. The last step is to add the force balance equation to the system. Once every
s relaxations the integration constant Hyg is adjusted according to:

€ij =

ny—1ny—1
Hop — Hoo — c(33E ~h2Y 3 By (5.38)
i=1 j=1
where P ; is the current approximation to the pressure profile. As described for the
line contact case in section 4.2.3, the number of relaxations after which the force
balance equaiion is relaxed, s, must be large enough and the multiplication factor ¢
must be sufficiently small to avoid unstable oscillations. On the other hand, ¢ and s
should also be chosen in such a way that the overall convergence is not slowed down
too much. The reader is reminded that in the case multiple grids are used the force
balance equation is only relaxed on the coarsest grid.

This concludes the description of a relaxation scheme that provides a stable
solver for the circular contact problem. Because of the non-linearity underrelaxation
is needed. The necessary underrelaxation depends on the load conditions and as
experience has shown varies from 0.3 to 1.0 for the distributed changes and from 0.6
to 1.0 for the single changes. In addition, in particular for high loads, see section 4.2.3
and 4.3.5, the mesh size on the grid should be sufficiently small. This subject is
discussed in more detail in section 5.5.1.

5.5 Application of multilevel techniques

This section deals with the implementation of the relaxation process described above
and the multilevel multi-integration algorithm described in chapter 3 into a fast
multilevel solver for the circular contact problem. With respect to the treatment of
the different equations, the calculation of the FAS coarse grid right hand sides, and
the coarse grid correction cycle the reader is referred to the description for the line
contact case given in section 4.3. Basically the same approach applies to the circular
contact problem, hence, the description is not repeated here.

5.5.1 Full multigrid

As a first approximation to the solution on the coarsest grid the Hertzian dry contact
pressure profile is used. In terms of the dimensionless parameters used in this thesis
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this pressure profile is given by:

— X2_vy? j 2 2 .
P‘_‘jz{‘/l XP-Y? il |X7+Y}? <1 (5.39)

0 otherwise

To interpolate the solution of a coarse grid to the next finer grid to serve as a first
approximation a bi-cubic interpolation is recommended. Subsequently, two V(2, 1)
or W(2,1) cycles are sufficient to obtain a solution that has converged below the level
of the truncation error. The V{(2,1) cycles are applied for lightly loaded situations.
In the case of high loads the changes of the integration constant related to the
force balance equation significantly reduce the reduction factor that can be obtained
with a ¥ cycle. In those situations the more robust W cycles are used. Another
important observation with respect o the solution of highly loaded situations is
again to separate the two functions of the coarser grids, i.e. the error correction and
the solution approximation, in the FMG process as was done in the line contact
case, see section 4.3.5.

5.5.2 Multilevel multi-integration

The implementation of the multilevel multi-integration algorithm described in chap-
ter 3 in a FMG algorithm solving the circular contact problem gives a minor com-
plication. Because in the multilevel calculation of the integrals the coarsening is
performed in two steps it requires the introduction of a number of half-coarsened
grids. These grids are only used for the multilevel multi-integration and are skipped
in the solution process. Apart from this complication the implementation does not
differ from the approach for the line contact problem described in section 4.3.6. At
the first visit on a certain level the summations:

2 Rz My

> S KRR Py (5.40)

2
T k=0 =0

are transferred to coarser grids, calculated, and interpolated back (using the correc-
tion procedure) to the fine grid. To obtain the film thickness the value of

Xt y?
Hoo + ==+ ~2i (5.41)

is added to the summation in each point. If the advanced techniques described in
section 3.2.7 are used, i.e. if at the following occasions multi-integration on this grid
is required only updates for the integrals are calculated, the summations:

2 nr—1ny—1

= . Y KiMkspy (5.42)

k=1 (=1
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are transferred to coarser grids, calculated, interpolated back to the fine grid (us-
ing the correction procedure), and added to the fine grid summations that were
calculated upon arrival at the specific grid for the first time {see also section 4.3.6):

2
2

ny Ny
Y KitePy (5.43)

k=0 1=

5.6 Example

To check convergence to the solution of the continuous integro-differential problem
and to check the complexity of the algorithm the results obtained for a specific load
situation are studied in detail. The values of the Moes dimensionless point contact
parameters for this load situation are: M = 20 and L = 10. This coincides with
& =9.89 and A =0.2. Upon assuming again « =1.7 107% the maximum Hertzian
pressure for this load situation is 0.6 GPa. Values of the Hamrock and Dowson
non dimensional point contact parameters describing the same load situation are:
Wie=18910"7, / = 1.0 1011, and G = 4728,

5.6.1 Calculational details

The solution has been calculated on a uniform grid covering the domain {(X,Y) €
R?* -45< X £15,-3 <Y <3}, The FMG algorithm described above was used
with two W(2,1) cycles per refinement, each cycle giving an error reduction of almost
one order of magnitude. The coarsest grid used in the FMG algorithm, level 1,
consisted of (84 1) x (8+ 1) nodes and the finest grid consisted of (5124 1) x (512+ 1)
nodes. Hence, the solution has been calculated using as much as 263.169 nodal
points. The calculation has been performed using Roelands equation and assuming
a compressible lubricant.

5.6.2 Solution

The figures 5.4 and 5.5 show the calculated pressure profile and the associated film
shape. It may be obvious that, with the number of nodes used in the present
calculations, the usual presentation of the results in a “wire” figure such as figure 1.6,
is impossible (it becomes totally black). Therefore, the results are presented using
colorgraphics. The different shades represent different angles between the outward
normal on the profile and the viewer.

These figures show all characteristic elements of medium to highly loaded EHL
circular contact solutions. Firstly, the pressure profile resembles the Hertzian dry
contact semi-ellipsoid pressure profile. In the inlet region the pressure gradually
builds up to the semi-ellipscid. The cavitated region is preceded by the three di-
mensional version of the pressure spike. Note that, when compared to the one di-
mensional situation this “spike” is a shield of high pressure values “wrapped around”
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FIGURE 5.4: M = 20, L = 10, circular contact: pressure profile.

FIGURE 5.5: M = 20, L = 10, circular contact: film thickness.
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the Hertzian contact region. Secondly, the film thickness graph clearly displays the
formation of the so called side-lobes or of a horseshoe shaped region. The overall
minimum film thickness occurs at these side lobes and its value deviates significantly
from the minimum film thickness found on the centerline of the contact.

An alternative way of presenting the calculational results is by means of contour
line plots, i.e. drawing lines along which the film thickness or the pressure is con-
stant. Such graphs for the pressure and the film thickness are presented in figures 5.6
and 5.7. In figure 5.6 the pressure spike region can be recognized easily. It is the
dark region of large gradients. Also the fact that the spike is in fact a shield wrapped
around a more or less semni-ellipsoid is clearly visualised. The film thickness contour
graph (figure 5.7) clearly displays the horseshoe shaped region, i.e. the slide lobes.
Note that the region of large gradients in the film thickness in figure 5.7 coincides
with the region of large gradients in the pressure in figure 5.6.

5.6.3 Convergence

To check if the solution obtained with the FM algorithm using 2 W(2,1) cycles per
level has converged below the level of the discretization error the procedure outlined
in section 3.1.8 is used and the solution has been recalculated using an additional
W(2,1) cycle. The calculated values of ERR[A, H] for the different levels for both two
as well as three W(2,1) cycles are displayed in table 5.1. The error in the solution
obtained using three cycles is about 8 times smaller than the error in the solution
obtained using two cycles. Hence, as the calculated values of ERR[h, H] for both
situations hardly differ, it is concluded that 2 W(2,1) cycles are sufficient to obtain
a converged solution. )

Table 5.1 shows that the ratio between the subsequent values of ERR[k, H] cal-
culated on the different levels approximates a factor of 2, This was also found for
the line contact problem, see section 4.4, and it is exactly what could be expected
because of the first order upstreamn discretization of the wedge term in Reynolds’
equation. Only in very lightly loaded situations where the wedge term is small

compared to the Poiseulle terms second order convergence can be observed, see also
Lubrecht [L1].

kln+1[n+1[2W(2,1) [3W(2,1)
2 17 17 | 3.808 3.800

3 a3 33| 1.024 1.032

4 65 65 | 3.192 10~! | 3.203 10!
5 129 129 | 1.216 10~ | 1.215 167 T
6 257 257 | 5.486 1072 [ 5.463 102
i 513 513 | 2.713 1072 | 2.717 102

Table 5.1: ERR(k,k — 1) using 2 W(2, 1) and 3 W(2,1) cycles
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k|{n.+1in,+1]|H, H, H./H,
1 9 9| 9.813 1072 | 5.045 51.42
2 17 17 [ 3.242 1071 | 1.178 3.633
3 33 33 | 3.587 107! | 4.568 107! 1.274
4 65 65 [ 3.552 101 | 4.889 107! 1.376
5 129 129 | 3.492 10~ | 5.023 10~ 1.438
6 257 257 | 3.446 107! | 4,983 107! 1.446
7 513 513 [ 3.421 1071 | 4.950 107" 1.447

Table 5.2: Minimum and central film thickness as a function of the level.

From a sufficiently small mesh size onwards this first order convergence also shows
if the value of a characteristic parameter such as the minimum film thickness or
the central film thickness is monitored as a function of the mesh size (level). For
example, table 5.2 gives the value of the minimum and central film thickness as
a function of the mesh size for the load situation considered here. Table 5.2 also
displays the ratio between the minimum and central film thickness.

When comparing the convergence behaviour displayed in table 5.2 to the results
for the line contact problem presented in chapter 4 the first order convergence is
less pronounced. This is obviously caused by the additional dimension of the point
contact problem as a result of which solutions with the same number of nodes as in
the line case are in fact less accurate.

5.7 Computing times

To conclude this example the computing time required to obtain a solution is studied.
Table 5.3 presents computing times used by the FMG algorithm with two V(2,1) and
two W(2,1) cycles per refinement as a function of the number of nodes. The first
column is representative for lightly loaded situations whereas the second column is
representative for moderate to highly loaded loaded situations. The data displayed
in table 5.3 is also shown in figure 5.8. For reasons of comparison in this figure also
a line representing a computing time of O(rn) and a line representing a computing
time of O(n?) are drawn. Obviously the complexity of the algorithm is very close to
O(n). Halving the mesh sizes, i.e. increasing the number of nodes by a factor of 4,
the computing time increases by a factor of 4. The fact that it is actually O(n lnn)
can not even be recognized.

In addition to these results figure 5.9 displays the ratic of the computing time
needed by the FMG algorithm with 2 W(2,1) cycles and 2 V(2,1) cycles respectively.
Neglecting the larger number of relaxations on the coarsest grid and the intergrid
transfers the ratio between the number of Work Units required by a FMG algorithm
with V(#1,12) cycles and the number of Work Units in the case of W(wy,1) cycles
should be 1.5 for a 2 dimensional problem.
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k[n,+1][n, +1][2V(2,1)[2W(21)
2 17 17 9.5 9.5
3 33 33 22.1 40.3
4 65 65| 1:23 2:44
5 129 129 451 10:40
6| 257 257 17:35 41:27
7] 513| 513 | 1:07:53 | 2:41:25

Table 5.3: Computing time as a function of the number of nodes for the FMG
algorithm with two V(2,1) cycles and two W(2,1) cycles.

This can be shown with the type of analysis presented in section 3.1.6, i.e using the
theory of geometrical series, see also {B2). Figure 5.9 shows that the ratio obtained
with the presented algorithm exceeds this value and amounts to approximately 2.5.
This deviation from the theoretically expected value can be ascribed to the addi-
tional work included to solve the force balance equation (larger number of relaxations

performed on the coarsest grid) and the relatively high cost of the multi-integrations

on the first few levels.
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FIGURE 5.8: Computing time on a HP 9000/845s computer for the FMG algo-
rithm with two V(2,1) cycles and two W (2,1) cycles.
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FIGURE 5.9: Ratio of the computing time used by the FMG algorithm with 2
W and 2 V cycles per refinement as a function of the level,

5.8 Conclusion

Using distributive relaxation techniques together with the multilevel solution and
muiti-integration techniques described in chapter 3 an algorithm for the fast solution
of the EHL circular contact problem has been developed. It is demonstrated that
the algorithm is of very low complexity, i.e. O(nlnn) with n being the number
of nodes on the grid. Consequently, it allows solution of the problem with a large
number of nodes, e.g. 250.000 on a mini-computer. Moreover, as will be shown in
chapter 9 the algorithm is very stable.

The presented algorithm does not only apply to the circular contact situation
to which this thesis is restricted. It can also be used to solve elliptical contact
situations.



120 Chapter 5: Numerical solution of the circular contact problem
References
[B1] Brandt, A., 1984, “Multigrid Techniques: 1984 Guide with applications to fluid

(B2]

[C1]

iC2)

[H1]

Ly

[1.2]

(21]

dynamics,” available as G.M.D).-Studien No. 85, from G.M.D.-F1T , Postfach 1240,
D-5205, St. Augustin 1, W. Germany.

Briggs, W.L., 1987, “A Multigrid Tutorial,” SIAM, Philadelphia, Pennsylvania,
ISBN 0-89871-221-1

Chittenden, R.J., Dowson, D., Dunn, I.F., and Taylor, C.M., 1985, “A
theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated
contacts I. Direction of lubricant entrainment coincident with the major axis of the
Hertzian contact ellipse,” Proc. K. Soc. Lond., A 397, 245-269.

Chittenden, R.J., Dowson, D., Dunn, J.F., and Taylor, C.M., 1985, “A
theoretical analysts of the isothermal elastohydrodynamic lubrication of concentrated
contacts II. General case, with lubricant entrainment along either principal axis of
the Hertzian contact ellipse or at some intermediate angle,” Proc. R. Soc. Lond., A
397, 271-294.

Hamrock, B.J., and Dowson, D., 1976, “Isothermal elastohydrodynamic lubri-
cation of point contacts, part 1-Theoretical Formulation,” ASME JOT, 98, 223-229,

Lubrecht, A.A., 1987, “The numerical solution of the elastohydrodynamically lu-
bricated line- and point contact problem using multigrid techniques,” PhD Thesis,
University of Twente, Enschede, ISBN 90-9001583-3.

Lubrecht, A.A., Ioannides, E,, 1989, “A fast solution of the dry contact problem
and the associated sub-surface stress field, using multilevel techniques,” ASME JOT,
to appear.

Zhu, D., and Cheng, H.S., 1988, “Effect of surface roughness on the point contact
EHL,” ASME JOT, 110, 32-37.




121

Chapter 6

Line contact results: Smooth
surfaces

To explore the possibilities of the algorithm described in chapter 4 it has been
applied to a parametric study of the “standard” EHL line contact problem, i.e. the
situation in which the surfaces are perfectly smooth. In section 4.4 it has already
been demonstrated that the fow complexity of the algorithm enables the solution of
this problem using a large number of nodes which is a necessity in order to study
surface roughness effects and point contact problems. The results presented in this
chapter show that the algorithm also meets a second requirement for such studies,
i.e. it is very stable.

The problem is solved for a variety of load conditions, including extremely high
loads. Two subjects are discussed in detail. First the minimum gap width as a func-
tion of the governing parameters is studied. Based on the results of the calculations
the formula for the minimum film thickness as presented by Lubrecht et al. [L1] has
been improved. The modified formula is presented and its predictions are compared
with predictions of formulas presented by several other authors. Next the so-called
pressure spike is discussed. The occurrence and the height of this second maximum
in the pressure profile and its relation with the lubricant behaviour assumed in the
calculations are addressed in section 6.3.

6.1 Solutions

With varying values of the dimensionless parameters M and L different pressure
profiles and film shapes are found. Figure 6.1 gives a global indication of the changes
in the pressure profile and film shape with varying M and L. These variations are
studied in more detail in the following sections.
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FIGURE 6.1: Characteristic pressure distributions and film shapes.

6.1.1 Calculational details

All solutions presented here have been calculated using Roelands’ equation and
assuming a compressible lubricant. The FMG algorithm described in chapter 4
was used with two W(2,1) cycles per refinement. The coarsest grid employed in the
calculations consisted of 15 nodal points. In most situations the calculational domain
extended from X, = —4 to X, = 1.5. However, in some lowly loaded situations a
larger inlet region was needed in order to avoid “numerically starved lubrication”.
Convergence of the solutions was checked as described in section 4.4.3.

6.1.2 Varying M

Figure 6.2 displays the calculated (dimensionless) pressure profiles for six values of M
and constant L (L = 10). The associated (dimensionless) film shapes are presented in
figure 6.3. With increasing load the pressure profile approximates the semi-elliptical
Hertzian pressure and deviates from this profile only in the inlet region of pressure
generation and in the outlet region where the pressure spike occurs. Furthermore,
the width of the spike region and the inlet region narrows down. Here it is recalled
that these regions are the boundary layers between the parts of the domain where
the problem behaves as a differential problem and the region where the integral
aspect dominates. All solutions have been calculated using 28673 nodal points.
The resulting local nodal density in the spike region is not always sufficient for the
spike height to have converged; in particular for M=50 and M=100 its height is
underestimated,
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FIGURE 6.2: Pressure profile for M=2 (A), 5 (B), 10 (C), 20 (D}
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The results presented in figure 6.3 show that the film thickness and particularly its
minimum value, decreases monotonously with increasing M (load). Meanwhile the
effect of the elastic deformation increases as can be observed from the increasing
width of the region of nearly uniform film thickness, i.e. the part of the domain
where the integral aspect of the problem dominates (d(3H)/dX = 0). This region
increases until it covers nearly the entire Hertzian dry contact region -1 < X < 1.
Assuming & =1.7 1078 the maximum Hertzian pressure for the situations presented
in figure 6.1 and 6.2 varies from 0.3 to 2.35 GPa.

6.1.3 Varying L

Figure 6.4 displays the calculated (dimensionless) pressure profiles for five values
of L and constant M (M = 20). The associated {dimensionless) film shapes are
presented in figure 6.5. The pressure profiles presented in figure 6.4 are difficult to
distinguish. The main differences between the various pressure profiles occur in the
outlet region as is illustrated by the enlargement of the five pressure profiles in this
region displayed in figure 6.6. With increasing L a spike gradually develops. This
subject is discussed in detail in section 6.3. Again the solutions have been calculated
using 12 levels (n+1 = 28673). The resulting nodal density in the spike region is not
large enough to show convergence of the spike for the L = 25 solution. Obviously,
with increasing L the film thickness increases, illustrating the beneficial effect of a
viscosity increasing with pressure on fluid film formation. Assuming & =1.7 108 the
solution for M = 20 and L = 25 represents a maximum Hertzian pressure of 2.6 GPa.
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6.1.4 High loads

Here it is recalled that one of the purposes of the present study was to develop an
algorithm that enables the analysis of the effects of surface features, e.g. indenta-
tions, bumps, waviness, surface roughness, on the pressure profile and film thickness.
This kind of information is of particular interest for surface fatigue life predictions
of concentrated contacts. The study of these effects for realistic loading situations,
i.e. maximum pressures ranging up to 3.0 GPa, requires an extremely stable algo-
rithm since these surface features put an additional demand on the stability of the
algorithm, that is they cause small regions of extremely small coefficient values. To
test out if the algorithm presented in chapter 4 provides the necessary stability to
carry out the aforementioned studies, the smooth surface problem was solved for
some extreme loading conditions, for example M = 100 and L = 25.

This load situation is equivalent to W = 2.8 10-3, U = 3.9 10~1° and & = 4730
in terms of the Dowson and Higginson dimensionless parameters and with & =99.74
and A =3.70 10~%, With o =1.7 1073, the maximum Hertzian dry contact pressure
for this situation is 5.9 GPa. Figure 6.7 presents the pressure profile and film shape
calculated using 28673 nodal points.

Once more it is emphasized that solutions of the smooth surface EHL line contact
problem for such extremely high loads in itself are of little practical relevance for
many reasons. Among things, the viscosities are unrealistically high. Moreover, at
such high pressures the lubricant will most likely behave as a solid instead of a fluid.
Furthermore, in the case of steel surfaces beyond 3.3 GPa gross plastic deformation
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FIGURE 6.7: Pressure profile and film thickness for M = 100, L = 25.
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of the raceways will occur which is also not included in the model. However, the fact
that the smooth surface problem can be solved for such high loads, (extremely small
coefficient values in the entire contact region) gives confidence that the algorithm will
also enable the study of the aforementioned more complex EHL situations (extremely
small coefficients locally).

6.2 Minimum film thickness

From the first theoretical studies of fluid film lubrication onwards one of the main
subjects of interest has been the prediction of the minimum film thickness in the
conjunction. An interest that is easily explained from a designers point of view.
In general, concentrated contacts should run with minimum amount of friction and
wear. Hence, it is important to design the contact in such a way that, under the
given operating conditions, the surfaces will be fully separated by the lubricant film.
It is generally assumed that the surfaces will be fully separated if the minimum
gap width calculated for the smooth surface situation is sufficiently large compared
to a sum of the roughnesses of the opposing surfaces. However, in particular in
EHL contact situations this criterion is very crude. The elastic deformation of the
roughness or more in general the deformation of the microgeometry and its effect
on the minimum film thickness is not accounted for. This deformation has not
necessarily a positive effect on the minimum film thickness as one might expect at
first glance. The eflect will strongly depend on the geometry of the roughness or
surface feature and its position in the contact region as will be shown in chapter 7.

6.2.1 Asymptotic solutions

With respect to the minimum film thickness in the conjunction three asymptotic
situations are generally distinguished. First the solution for rigid surfaces and an
isoviscous, incompressible lubricant, as calculated by Martin [M1] and Gimbe! {G1] 1s
described. Expressed in the Moes dimensionless parameters this asymptotic solution
reads:

Hpin =245 M1 (6.1)

Secondly the elastic-isoviscous asymptote is given, i.e. elastic surfaces and an iso-
viscous, incompressible lubricant. According to Moes [M2] this asymptote can be
written as:

Hopin = 2.05 M™Y° (6.2)

This equation merges with the Herrebrugh solution [H1] and is of particular interest
for so called soft EHL contacts, e.g. the contact between a steel shaft and a rubber
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seal or the contact in human joints where, although the pressures in the lubricant
film are relatively small, the film shape is dominated by the elastic deformations.
Finally there is the Ertel [E1] and Grubin [G2] solution. In fact Ertel and Grubin
calculated the film thickness in the center of the contact region but assuming the
minimum film thickness to be 3/4 times this central film thickness the asymptote
reads, e.g. Terril [T1]:

Hopin = 0.99 M~1/8 [3/4 (6.3)

This formula especially applies to highly loaded contacts between steel surfaces
lubricated with a mineral oil (exponential viscosity pressure relation).

6.2.2 Film thickness formulas

For design purposes, several researchers have presented formulas predicting the mini-
murm gap width, or a dimensionless minimum film thickness parameter, as a function
of the governing parameters. To the author’s knowledge Dowson and Higginson [D1]
were the first to present such a formula:

H!, =1.60 G*¢ Yo7y 013 (6.4)

where H,,, G, U, and W are dimensionless parameters defined according to:

H, = hnn/R
G = aF
W = w/(E'R)
U = (now,)/(E'R)

This set of parameters, although widely used by researchers in the field of EHL is not
used troughout this thesis. As was explained in chapter 2 the Moes dimensionless
parameters are used because they allow presentation of all film thickness results in
one diagram Hpin(M, L). Strictly this only applies if the Barus® equation is used and
the lubricant is assumed to be incompressible. When using Roelands’ equation and
assuming a compressible lubricant such a diagram is restricted to some fixed values
of the lubricant paramelers & and z. The Moes dimensionless parameters Hpi,, M
and L are related to the Dowson and Higginson parameters according to:

Hpin = H;n(2U)‘1/2
M = W (2U)“1/2
L = G QUM

Equation (6.4) is based on a curve-fit of the results obtained from numerical cal-
culations. Formulas obtained in a similar way were presented by Hamrock and
Jacobson [H2):
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H! =307 G5Tyonw-on (6.5)
and recently by Pan and Hamrock [P2}:

H:n = 1.714 G{].568 U0.694 W—D.]23 (6.6)

In their paper the constant is given as 1.174. However, to obtain the predictions
presented in the paper its value should be 1.714.

A disadvantage of the formulas (6.4) to (6.6) is that they are only accurate within
a limited range of values of the governing parameters. In particular for small L values
the predictions are rather inaccurate. A more accurate formula can be obtained if
the asymptotic solutions are taken into account. Such a formula has been presented
by Lubrecht et al. [L1]. Using two parameters s and r, the three asymptotic solutions
are merged into one formula predicting the minimum film thickness over the entire
parameter range. The parameters s and r take care of a smooth transition in the
region between the asymptotes. The formula reads:

H,; = [{(0'99 M—1/8L3/4)r + (2‘05 M—1/5)r}s/r+ (2.45 M—l)a]l/s (6.7)
- o e

Ertel,Grebin EIaatic/}:oviscous Rigid/Isoviscous
where:
s =4 —exp(—L{2) — exp(—2/M) (6.8)
and:
r =exp{l — 4/(L +5)} {6.9)

In equation (6.7) the aforementioned asymptotic solutions are indicated separately.
At first sight equation (6.7) may seem complex compared to the equations (6.4)
through (6.6). However, a closer look reveils that the structure is quite straightfor-
ward and allows easy programming on a pocket or personal computer.

6.2.3 Film thickness diagram

Figure 6.8 presents a plot of the dimensionless minimum film thickness parame-
ter Hopin as a function of M and L. The drawn lines represent the predictions
obtained from equation (6.7) with s and r from (6.8) and (6.9) respectively. The
aforementioned asymptotic solutions are indicated separately. The markers indicate
the presently calculated values. The results rather closely match the predictions of
equation (6.7) in the esymptotic regions. However, in the intermediate region, in
particular for large L, significant deviations occur between the predicted values and
the calculational results. The dashed lines in figure 6.8 are lines of constant & which
are drawn using equation (6.7). Given a value of « these curves represent lines along
whichk the maximum Hertzian pressure p, is invariant.
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FIGURE 6.8: Calculated values of the dimensionless minimum film thickness pa-
rameter Hpy,, (*) as a function of M and L, the drawn lines give
the predicted values according to equation (6.7). The dashed lines
represent lines of constant &

6.2.4 Modified film thickness formula

Based on the results of the present numerical calculations Moes [M3] improved the
minimum film thickness formula (6.7). The modified equation reads:

Honin = [{(0.99 M7VBE34Y 4 (2,05 M-I/*")*}” (245 MY & (6.10)
where r, s and ¢ are given by:
r=exp{l—3/(L +4)} (6.11)
s =3 — exp(—1/(2M)) (6.12)
and:
t=1- exp{—3.5%]f—/f—} (6.13)

In figure 6.9 the predictions of equation (6.10) with , s and ¢ given by (6.11), (6.12)
and (6.13) respectively, are compared with the calculational results. In particular
for the larger L values, i.e. I > 10, the predictions agree much closer with the results
of the numerical calculations.
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FIGURE 6.9: Calculated values of the dimensionless minimum film thickness pa-
rameter Hy,in (*) as a function of M and L, the drawn lines give
the predicted values according to equation (6.10). The dashed lines
represent lines of constant a

6.2.5 Comparison of different film thickness formulas

In the preceding sections different minimurmn film thickness formulas were reviewed.
In this section the values predicted by these formulas are compared with the results
of numerical calculations for three load situations. The first situation is more or
less representative for a highly loaded contact between steel surfaces, i.e. M = 200
and L = 10 or in terms of the Dowson and Higginson parameters U/ = 1.0 10~,
G = 4730, and W = 8.94 10~* The values of & and X for this case are : & =56.42,
A =9.25 107°. With o =1.7 107® the maximum Hertzian pressure is 3.3 GPa. Fig-
ure 6.10 displays the calculated dimensionless pressure profile and film shape for this
load situation. Table 6.1 gives the value of the Moes dimensionless minimum film
thickness parameter as a function of the number of nodes. Furthermore, table 6.2
gives the value H,,;, predicted by the different formulas and the difference between
these predictions and the calculational result. For the calculation of this difference
the value of H,,;, calculated on level 12 was taken as a reference,

It appears that in this particular situation all equations give an accurate prediction.
This is no surprise since the formulas {6.4) to (6.6) were mainly derived from calcu-
lational results for I =~ 10 and also the assumptions that led to the Ertel and Grubin
asymptotic solution, equation (6.3}, are characteristic for the present load situation.
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FIGURE 6.10: Calculated pressure profile and film shape for M=200 and L=10.

fevel | n+41 | H.in

6 449 | 2.982

7 897 | 2.903

8| 1793 | 2.873

9| 3583 | 2.845

10| 7169 | 2.827

11 | 14337 | 2.820

12 | 28673 | 2.816

Table 6.1: Convergence of H,,;, as a function of the number of nodes for M =
200 and L = 10.

SOUrce: Hin | Difference (%)
Ertel, Grubin 2.90 3.0
Dowson and Higginson | 2.85 1.4
Hamrock and Jacobson | 2.86 1.8
Pan and Hamrock 2.67 4.9
Lubrecht et al. 2.95 5.0
Moes 2.87 2.1

Table 6.2: Comparison of H.,;, predicted by different formulas with calculated
result for M = 200 and L = 10,
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FIGURE 6.11: Calculated pressure profile and film sﬁape for M =200 and L = 1.

The second situation is representative for soft EHL contacts, i.e. seals etc. Again
M = 200 but this time with L = 1. Using the Dowson and Higginson parameters
this load situation can be described by : &7 = 1.0 10", G = 473 and W = 8,94 107
The values of & and X for this case are & =5.64 and X =9.25 1073, Hence, assuming
e =1.7107® the maximum Hertzian pressure is only 0.3 GPa. The calculated pressure
profile and film thickness are plotted in figure 6.11. Note that, in spite of the
relatively low maximum Hertzian pressure, the film shape is dominated by the elastic
deformations (large region of nearly constant film thickness). This is characteristic
for soft EHL contacts.

The calculated value of H..;, as a function of n is given in table 6.3. Furthermore,
table 6.4 shows the predictions of the different formulas and the differences between
these predictions and the numerically calculated result.

level | n+1 | Hupin
6 449 | 1.049

7 897 | 1.023

8| 1793 | 0.994

9| 3585 |0.978

10| 7169 | 0.967
11 § 14337 | 0.961
12 | 28673 | 0.958

Table 6.3: Convergence of H,,;, as a function of the number of nodes for

M = 200 and

L=1.
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source: Hin | Difference (%)
Dowson and Higginson | 0.716 25.3
Hamrock and Jacobson | 0.770 19.6
Pan and Hamrock 0.723 24.5
Lubrecht et al. 1.010 5.4
Moes 0.978 2.1

Table 6.4: Comparison of H,,;, predicted by different formulas with calculated
result for M =200 and . = 1.

Obviously the predictions obtained from equations (6.4) to (6.8} are rather inaccu-
rate. The predicted minimum film thickness is much too small. Fortunately, from a
designers point of view, the minimum film thickness is underestimated. With respect
to Dowson and Higginson’s formula this observation was also made by Lubrecht [L1].
This inaccuracy is a consequence of the fact that these formulas are based mainly
on a curve fit of numerical results for relatively high L values. The predictions from
equation (6.7) and (6.10) are much more accurate. However, the close agreement
between the predictions of these two formula and the numerical calculations was
already shown.

The inaccuracy in the predictions from equations (6.4) to (6.6) is even larger
if both L and M are small, i.e. close to the “rigid isoviscous” asymptote as is
demonstrated by the following example: M =1 and L = 1. In terms of the Dowson
and Higginson parameters this load situation can be described by W = 4.5 1078,
U =1.010"", and G = 473. The values of & and A for this situatjon are: @ = 0.40
and A =3.70. Figure 6.12 displays the calculated dimensionless pressure profile and
the associated dimensionless film shape. The value of H,;, as a function of n is
presented in table 6.5.

In this case it is important that the solution is calculated using a sufficiently
large inlet region, otherwise the computed film thickness will be too small, a numer-
ical artefact that is referred to as “numerically starved lubrication” or “numerical
starvation”. The pressure profile and film shape presented in figure 6.12 have been
calculated using X, = —32. Figure 6.12 shows that this load situation can hardly be
characterized as EHL. The elastic deformations are very small and the film shape
closely approximates its undeformed parabolical shape.

The predictions of the different formulas for this load situation are given in ta-
ble 6.6. In addition, table 6.6 gives the percentual differences between (he predictions
and the numerically calculated result. Once more it appears that the values pre-
dicted by equations (6.4) to (6.6) are inaccurate and, together with the previously
considered load situation, the results demonstrate the limited validity of these film
thickness formulas.
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FIGURE 6.12: Calculated pressure profile and film shape for M = 1 and L = 1.

level | n+1 | Hnpin

6 449 | 3.400

7 897 | 3.333

81 1793 | 3.300

9| 3585 | 3.282

10 | 7169 | 3.275

11 | 14337 | 3.270

12 | 28673 | 3.267

Table 6.5: Convergence of H,,;, as a function of the number of nodes for M = 1
and L = 1.

source: H,in | Difference (%)
Dowson and Higginson | 1.43 56.2
Hamrock and Jacobson | 1.38 57.8
Pan and Hamrock 1.42 56.5
Lubrecht et al. 3.10 5.1
Moes 3.29 0.7

Table 6.6: Comparison of Hy;, predicted by different formulas with calculated

result for M =1 and L = 1.
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6.3 The pressure spike

One of the most intriguing features in the calculated line contact pressure profiles
is the occurrence of a very local maximum close to the outlet. Petrusevich [P1] was
the first who showed this second local maximum and consequently it is nowadays
generally referred to as “the Petrusevich spike” or simply “the pressure spike”.

Ever since, the spike has been the subject of discussion, see for example [K1,
H3,L1,B1,H4] and references therein. Two reasons can be given for the interest in
the pressure spike. Firstly the academical interest in the phenomenon. The sec-
ond reason given in literature arises from surface fatigue life considerations, A very
small region of high pressures, such as the spike, can act as a stress raiser, i.e. it
can lead to stress concentrations in the contacting elastic solids located close to the
surface. Consequently one can argue that the spike may have a significant effect
on the surface fatigue life of the concentrated contact, e.g. see [H5]), and as such
requires investigation, the more so since measurements performed with micro trans-
ducers [S1,B1] have demonstrated that the spike is not a numerical artefact but that
a second local maximum really occurs. However, as will be shown in chapter 7,
the possible effect of the spike on the fatigue life of the contact will be small, if
not negligable, compared to the effect of surface features, such as indentations and
surface roughness, on life. Consequently, from the viewpoint of fatigue life analysis,
the study of the effects of surface features on the pressure profile is much more im-
portant than the investigation of the pressure spike. Nevertheless, the “academical”
interest in the spike remains. An additional reason for studying the spike here is
that “capturing” the spike requires a large number of nodal points. As such the
study provides another testcase for the stability of the algorithm.

Up till now the discussion with respect to the pressure spike has been focussed
mainly on its height in relation with the values of the governing parameters and the
lubricant behaviour assumed in the calculations. In particular the question if the
spike is a singularity for some values of the operating conditions has been addressed.
On the one hand Kostreva [K1] and Lubrecht [L1] argue that the spike might be a
logarithmic singularity for some specific situations. On the other hand Hamrock et
al. [H3] and Pan et al. [P2] implicitly suggest the opposite by presenting formulas
giving the spike height as a function of the governing parameters. Furthermore,
Bisset and Glander [B2] explicitly claim the spike to be finite and smooth provided
it is studied at a sufficiently small length scale. A dubious claim, since it is supported
by only a few calculational results.

Notwithstanding this dispute of the spike, it is commonly accepted that it is
caused by the exponential relation (Barus or Roelands) between viscosity and pres-
sure. Furthermore, it is agreed upon that for the same conditions the calculated
spike height is larger if the Barus viscosity pressure relation js used instead of the
Roelands equation. Similarly, higher spikes are calculated if the lubricant is assumed
to behave incompressible, see [H4], [L2].
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In this section the occurrence and the height of the pressure spike in the stationary
isothermal EHL line contact situation is investigated. The parameter range where
a second local maximum in the pressure profile can be expected is mapped for a
compressible and an incompressible lubricant for both the Roelands equation as well
as the Barus relation. Furthermore, using the Roelands equation the variation of the
spike height with the governing parameters is investigated for both a compressible
and an incompressible lubricant.

6.3.1 Onset of the spike

One of the differences between the pressure profiles obtained for different values of
M and L is the number of extremes (locations where dP/dX = 0), e.g. see figure 6.1.
This observation can be used to define a parameter characterizing the onset of the
pressure spike. This parameter, Lo, is defined as that value of L, for a certain value
of the load parameter M, for which the pressure distribution has two extremes and
below which only one extreme is found (the maximum located near the center of
the contact). For L > L, three extremes occur; two local maxima, i.e. one in the
center of the contact and ancther, the spike, near the outlet, with a local minimum
in between. For example figure 6.13 gives details of the pressure distribution in the
outlet region for a specific value of M (M = 5) and three values of L: L, < L,
Lg =~ L, and Lg > L, showing the evolution of the second local maximum. For L
slightly larger than L, this maximum is only a small bump. However, with increasing
L it gradually changes into a real spike, see also figure 6.6.
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FIGURE 6.13: Onset of pressure spike
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FIGURE 6.14: L, as function of M and L, and indirectly the zones with different
types of pressure profiles

The value of the onset parameter L, for a given value of M depends on the viscosity-
pressure relation used in the calculations. Furthermore, it is different for a com-
pressible and an incompressible lubricant. Figure 6.14 gives L, as a function of the
load parameter M for different situations of lubricant behaviour, i.e. Barus versus
Roelands and incompressible versus compressible. The characteristic pressure dis-
tributions prevailing in the regions separated by these curves are also shown. Note
that in the region left of the almost vertical part of the curve the pressure profile
always has only one extreme. Figure 6.14 shows that the influence of the presumed
behaviour of the lubricant is rather small. For large values of M the curves run
nearly parallel and approximately L, o« M~999,

From a practical point of view, it may be interesting to plot these curves in
the dimensionless minimum film thickness diagram. Consequently, it can not only
serve to predict the minimum film thickness but it also provides information on the
type of pressure distribution. See for example figure 6.15 where the curve for the
Roelands/compressible situation is presented in the Moes plot.

6.3.2 Spike height

In the previous section it was shown that there is more to say about the pressure
spike than simply concluding that it does occur in the case of an exponential rela-
tion between viscosity and pressure and is absent under isoviscous conditions. In
particular, it was shown that the spike does not appear suddenly but that it evolves
gradually. Having mapped the parameter range where a spike occurs the next step
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FIGURE 6.15: Onset of pressure spike in the film thickness plot

is to study its height as a function of M and L within this range. In particular the
variation of the dimensionless spike height with increasing M is of interest since it
has been subject of discussions in the past. One of the complications in such a study
is that, given a value of L, the spike narrows with increasing M. Consequently, at
least locally, increasingly dense grids are required to capture it.

The newly developed algorithm enables the solution of the line contact problem
using large nodal densities. As a result in many situations, for example the load
condition considered in section 4.4, convergence of the spike height to a finite value
can be shown.

The variation of the spike height with the governing parameters observed for
two situations is considered, i.e. using the Roelands equation and assuming both an
incompressible as well as a compressible lubricant. Figure 6.16 displays the variation
of the spike height in the case of a compressible lubricant. Only situations where
convergence of the spike height with increasing number of nodes could be shown
within 14 levels (n + 1 = 114.689) are presented. From the viewpoint of testing out
the algorithm this number of nodes was considered sufficiently large. To obtain
spike height results beyond the parameter range presented in figure 6.16 local grid
refinement techniques are recommended. These techniques are straightforward to
apply in a multilevel solver and much more efficient when the only purpose of study
is a local feature such as the spike.

Figure 6.16 shows that, within the parameter range presented, the dimension-
less spike height decreases with increasing load. This is illustrated in figure 6.17,
figure 6.18, and table 6.7. First figure 6.17 presents the pressure profiles for three
different. values of M and L = 12.
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FIGURE 6.16: Variation of the dimensionless spike height with varying M and L
when Roelands equation is used and the lubricant is assumed to be

compressible.
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6.3 The pressure spike 141

2 & B

T

g

2
TTIEVE T I IVIETTI SIYTI ART Y ITSARSRTN FRRTARTITY SNNTH FRARY FPVRARTIN,

5

5

ARSI aLAaY LaLas LA ARAILLLAN DRMRS LELAS

RARRARAREN ALY RARI LANREARY LERRNRRRAN RRAhl RERAS RARRY RRLLILARLS SALAY RRLES]
6700 0BTH0 05800 (480 NG00 O8G0 07000 7050 Q70 OIS 07200 07250

=
o

5
=

g

2 E

T TTRTRTENt FYVRNATITY UURT TR RN E VYTl RRTLINTN

040003

soloadingdy

g

08200 (8225 03250 DE2T5 QBGD0 RIS 030 OR3P CBAGC OB425 DEASD OR4T5

5 E B B
ool logalsdvnbe v Tl

g

£

=

LARSE ERARNLLLL] RALEN LLLL) LN LR GARARCRRRARAREFLARAY RAREE RALES LAALE RLRLS RARLISLLES LLESE RAALE LALES RLLAS ALY
Q8700 08725 Q750 OBTTS GEA00 DBE75 SAR0 QTS GASD 0ASMS OB9S0 GBGTS
x

FIGURE 6.18: Enlargements of the pressure profiles presented in figure 6.15 in the
sptke region .



142 Chapter 6: Line contact results: Smooth surfaces

level n+l ([ M=5|M=10 | M =15
6 449 |1 0.936 0.915 0.793

7 897 | 0.964 0.976 0.817

3 1793 | 1.191 1.024 0.898

9 3585 | 1.248 1.077 0.938

10 7166 | 1.288 1.127 0.979
11| 14337 1.312 1.150 1.024
12| 28673 1.325 1.164 1.047
13| 57345 1.332 1.173 1.062
14 | 114689 | 1.336 1177 1.070

Table 6.7: Convergence of the dimensionless spike height as a function of the
number of nodes n for three values of M and I, = 12

Secondly figure 6.18 gives enlargements of the three pressure profiles in the spike
region and finally table 6.7 gives the (dimensionless) spike height as a function of
the number of nodes.

From figure 6.16 one might be tempted to draw the general conclusion that
the spike height decreases with increasing load and, as for example Pan and Ham-
rock [P2] derive a formula for general use expressing this tendency. However, such a
conclusion is doubtful as is shown in figure 6.19 where the calculated dimensionless
spike height for an incompressible lubricant is presented.
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FIGURE 6.19: Variation of the dimensionless spike height with M and I when

Roelands equation is used and the lubricant is assumed to be in-
compressible.
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In that case the non-dimensional spike height, P,, also decreases with M but only
in a limited range of values of M and L. Beyond this range P, increases rather
steeply with M for a fixed value of I.. The reader is reminded that the Dowson and
Higginson relation limits the compressibility of the lubricant to some 33 percent.
Hence, for larger values of L than presented in figure 6.16 a similar increase of the
dimensionless spike height with increasing M might be found.

6.3.3 Comparison of spike height results

In figure 6.20 a comparison is made between some present results and spike heights
for similar conditions presented by Hamrock et al. [H3], and Pan et al. [P2]. In these
papers some situations with fixed I/ and @ and varying W are presented. In terms
of the Moes parameters this means I is fixed whereas M is varied. The presented
results apply to U7 = 1.0 107! and G = 5007.2, hence, L = 10.59 and were obtained
using Roelands’ viscosity pressure equation and assuming a compressible lubricant.
Since I is fixed a curve similar to the ones presented in figure 6.16 can be expecied.

For low loads the results of the different methods match very well whereas the
differences increase with increasing M. Part of the difference may be accounted
for by different values of & and z used in the calculations with Roelands’ equation.
However, the rather large differences between the results presented here and in [P2],
from the results presented in [H3] are probably caused by numerical inaccuracy of
the spike height data presented in [H3]. As mentioned before, with increasing M the
spike narrows and the local nedal density required to describe it accurately increases.
Using only 32 nodes in the region 0.9 < X < 1.0 to describe the spike, see [H3], has
resulted in an underestimation of its height, especially for large M.

e —+— [H3]
1.0} .
® A --a-- L =10.59
a .
* N —e- [P2
\o--. [P2]
\
+
0.3 : e
1 10 100
M

FIGURE 6.20: Comparison of spike height results.
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6.4 Conclusion

The newly developed algorithm enables accurate solution of the smooth surface EHL
line contact problem under all conditions. A parametric study has resulted in a more
accurate formula for the prediction of the minimum film thickness. Considering the
same loading conditions the results compare favourably with results presented by
other authors. With respect to the pressure spike it is demonstrated that it does
not occur for all possible combinations of parameter values. The variation of the
spike height with varying values of the governing parameters was studied. The
results amply demonstrate that the utmost care should be taken in using spike
height formulas presented over the years. They should not be used outside the
range of parameter values they were based upon. For many values of the governing
parameters it was shown that the spike is not a singularity but that its height
converges to a finite value with decreasing mesh size. However, the presented results
do not justify generalisation of this conclusion to the entire parameter domain.

Finally, the demonstrated stability of the algorithm for highly loaded conditions
gives confidence that it can be used succesfully in the study of the effect of surface
features on the pressure distribution and the film shape. The results of the applica-
tion of the algorithm to these more complex contact situations will be presented in
the following two chapters.
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Chapter 7

Line contact results: Surface
features

In the previous chapter the pressure generation and fluid film formation in an EHL
line contact for perfectly smooth surfaces was discussed. Hence, the analysis was
restricted to the macrogeometry of the contact. However, in reality technical surfaces
are not perfectly smooth and the pressure generation and lubricant film shape will
also be affected by the microgeometry of the contacting surfaces.

For this reason in the present chapter the effects of four different microgeomet-
rical features on the pressure generation and the fluid film formation in an EHL
line contact under steady state conditions are investigated. The results of a similar
study using a time-dependent approach will be presented in chapter 8. The moti-
vation for studying the effects of surface features arises from sub-surface fatigue life
considerations as is explained in section 7.1.

The features are distinguished with respect to their characteristic length scale.
In section 7.2 indentations, bumps and waviness are discussed, i.e. features with
a characteristic length scale of the order of 0.1 to 1.0 times the size of the half
width of the Hertzian contact region, for diflerent load conditions. In particular, the
maximum pressure and minimum film thickness in dependence of the wavelength
and amplitude of the feature are investigated. Similar theoretical studies have been
carried out before, see for example Chow and Cheng [C1], Cheng [C2], Goglia et
al. [G1,G2], Lee and Hamrock [L1] and references therein. However, their results
were generally restricted to relatively lightly loaded situations.

Subsequently, in section 7.3 a surface feature with a much smaller characteristic
length scale is treated, i.e. surface roughness. Typically the characteristic length
scale of roughness is O(0.1) to O(0.01) times the Hertzian contact size. In this section
pressure profiles and film shapes obtained using an actually measured surface trace
in the calculations are presented and discussed.

Throughout this chapter it is assumed that the Reynolds equation remains valid,
i.e. in all situations considered the characteristic size of the feature in the direction of
the flow (its wavelength) is large compared to its characteristic amplitude, typically
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wfA <2 107? if w is the wavelength and A the amplitude. If this ratio is not small
the vertical velocities in the flow resulting from the features can not be neglected
and the Stokes equations should be used.

7.1 Fatigue life

It has been stated several times that the study of the effects of surface features such
as bumps, indentations, waviness and surface roughness is of specific interest for the
prediction of the surface fatigue life of rolling element bearings.

This phenomenon may occur when part of the contacting surfaces is damaged,
either by incorrect manufacturing, handling or by the overrolling of debris in the
oil. The resulting surface features will disturb the pressure in the lubricant film and
consequently the stresses in the sub-surface are affected. These surface imperfections
can be viewed as focal stress raisers, leading to imperfection-related fatigue failure
and a substantial reduction in service life.

So far, the relation between surface features and the fatigue life has mainly been
investigated experimentally, for example by means of endurance tests, running bear-
ings in batches under specific operating conditions until they fail. By their nature
such tests are time-consuming, costly and destructive. However, until recently, these
tests were practically the only alternative. The lack of a proper theory relating the
geometry of the surface feature to fatigue life, the time consuming numerical solu-
tion techniques, and the high price of powerful computers made the subject hard to
access theoretically.

Recent developments in the field of theoretical research have significantly changed
this situation. Firstly, the New Life Theory presented by Ioannides and Har-
ris [I1] enables a detailed study of the relation between surface features, the as-
sociated stresses and fatigue life. Secondly, the introduction of the multilevel multi-
integration techniques, enables a fast calculation of the sub-surface stress integrals,
i.e. see Lubrecht et al. [L2], and finally the development of fast and stable algorithms
enables the computation of the necessary input for such stress calculations, i.e. the
pressure profile in the contact. In particular, Lubrecht [L2] developed multilevel
solvers based on distributive relaxation schemes to compute the pressure distribu-
tion, assuming a dry contact situation. These pressure profiles are more or less worst
case results for fatigue life studies, since the lubricant film is neglected.

The main motivation for the study presented in thig chapter is to provide input
for surface fatigue life calculations taking into account the effect of the lubricant
film. However, the subject of fatigue life itsell will be addressed only briefly. For
a detailed study of this subject, where some of the results presented here served as
input, reference is made to Lubrecht et al, [L3].
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7.2 “Large scale” features

First the effect of three “large scale” surface features on the pressure profile and film
thickness is studied. The study of surface features requires a modification of the film
thickness equation. This modification is discussed in section 7.2.1. The features will
be studied for three load conditions. These conditions and some calculational details
are explained in section 7.2.2. Subsequently the results for the indentations, bumps
and waviness are presented and discussed in sections 7.2.3 through 7.2.5.

7.2.1 The film thickness equation

In order to account for surface features the dimensionless film thickness equation,
i.e. equation (2.45) is extended to:

2 00
H{X,T) = Hoo(T) + XT -R(X,T) - % oo] PY, T)In|X —Y|dY (7.1)
In general R is a function of both space X and time T that describes all features
on both surfaces that result in a deviation of the undeformed gap from its usual
parabolical shape, i.e. surface roughness, surface waviness, bumps, indentations, etc.
However, in this chapter a steady state situation is assumed. Hence, R represents a
feature located on the stationary surface and is a function of X only.

7.2.2 Calculational details

As in this chapter the input conditions are derived from an actual bearing applica-
tion, the characterization of the load situations using non-dimensional parameters
used in the previous chapters is partly abandoned in the current study. Nevertheless,
for convenience the results are still presented in terms of the dimensionless pressure
P and film thickness H.

All parameters, except for the reduced radius of curvature, are fixed. The invari-
ant parameters and their values are listed in table 7.1, To study the effect of load for
a given feature the following approach is followed. The half width of the Hertzian
contact region b is fixed and different values of the reduced radius of curvature are
considered, resulting in maximum Hertzian pressures of 1, 2, and 3 GPa. This ap-
proach was chosen to single out the effect of the larger pressure and 1t ensures that
a specific feature has the same scale compared to the contact size in all three load
situations. The values of the reduced radius of curvature, the resulting maximum
Hertzian pressures, the values of the Moes dimensionless parameters M and L as
well as the dimensionless parameters & and A for the load situations created in this
way are displayed in table 7.2. In addition, table 7.2 gives the calculated dimen-
sionless minimum film thickness under smooth surface conditions in micrometers
(pm).
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Parameter | Value Dimension
E 2.26 - 10" | [Pa]

o 2.2-10"% | [Pa7Y]

z 0.68

o 401072 | [Pa s}

i, 1.94 ms™!]

b 5.0-107% | [m]

Table 7.1: Parameter values used in the calculations.

1 [m] pu [Pa]l | M L o A Bonin [m]
2.83107% ] 1.0 10° [ 35.02 19.32 |22.00 | 3.0 10— 0.337
1411077 [ 2.0 10° | 100 11.08 | 44.20 | 3.7 10~ { 0.232
9.42107°]3.010° | 181.95 | 12.26 | 66.03 | 1.1 10-* 0.190

Table 7.2: Different loading conditions.

7.2.3 Indentations

First the effect of an indentation on the pressure profile and the film thickness is
studied. The reason for this choice is that, over the years, experimental investi-
gations, e.g. see Sayles and Macpherson [$1] and Lordsch {L4], have demonstrated
that indentations, regardless wether they stem from handling damage, overrolling of
hard or ductile particles (contaminants in the lubricant) cause a significant reduc-
tion of the surface fatigue life of the rolling element in bearings. The following dent
geometry is assumed, e.g. see figure 7.1
X - Xd)
W

RO = 4107°0F) s (27r (7.2)

where: 4 = dimensionless amplitude (4 < 0 for a dent): A = AR/
W = dimensionless wavelength of the dent: W = w/b
Xs = dimensionless position of the centre of the dent: Xe=xz4/b

This specific shape was preferred over a simple harmonic dent because it has no
sharp corners at the edges and it emulates a physical dent more realistically because
it contains the bulged-out shoulders resulting from the indentation of the material.
Since this chapter is restricted to steady state conditions the location of the dent
denoted by X, is fixed.
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FIGURE 7.1: Geometry of indentation, A = —0.2, W = 1.0.

As an example figure 7.2 presents the {dimensionless) pressure profile and (dimen-
sionless) film thickness for the 2 GPa loading condition in the case of an indentation
with an amplitude of 2 ym and a wavelength of 0.5 mm (W = 1 and A = -0.11)
located at the center of the contact (Xy = 0). The pressure profile differs from the
well known smooth surface pressure profile in the pressure rises at the trailing and
leading edge of the indentation with a pressure drop in between, i.e. at the center
of the dent. The pressure rises at the leading and trailing edge are equal, i.e. apart
from the inlet and outlet region the pressure profile is symmetrical.

The solution has been calculated using 5633 nodal points on a domain extending
from X, = —4 to X, = 1.5, The resulting nodal density is not large enough to
accurately represent the pressure spike. Consequently the height of the spike is
underestimated but the exact height is not our aim here.

Notwithstanding the obvious deviation of the pressure profile from the smooth
surface pressure, the film shape is only slightly affected by the presence of the
indentation. As the film shape in absence of any surface feature it is nearly uniform
in the contact region. This is no surprise since under the given conditions of a
relatively high maximum Hertzian pressure {&=44) the Reynolds equation in the
contact region reduces to:

d(pH)

Dowson and Higginson’s density pressure equation limits the compressibility of the
lubricant to about 33 % hence, unless the amplitude of the indentation is relatively
large (large pressure drop at the center), it will hardly show up in the film shape.
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FIGURE 7.2: Pressure profile and film shape for the 2 GPa loading condition in

the case of a dent with a wavelength of 0.5 mm and an amplitude
of 2 ym at Xy = (.

7.2.3.1 Varying wavelength and amplitude

For a given load condition, the pressure rise at the trailing and leading edge of
the indentation depends on its wavelength and amplitude. Figure 7.3 presents the
ratio of the maximum pressure in the case of an indented surface to the maximum
pressure under smooth surface conditions as a function of the wavelength for four
different amplitudes, i.e. 1,2, 3 and 4 pm (A=-0.056, -0.11, -0.17, and -0.23), for the
2 GPa load condition. All results apply to an indentation located at the center of
the contact. From figure 7.3 it can be observed that the relative maximum pressure
1s inversely proportional to the wavelength. In addition, it is proportional to the
amplitude,

A similar graph for the minimum film thickness relative to the minimum film
thickness under smooth surface conditions is presented in figure 7.4. This figure
shows that the indentation causes a decrease of the minimum film thickness. How-
ever, even though the amplitude of the dent is up to 20 times larger than the smooth
surface minimum film thickness, in all situations the effect of the indentation on the
minimum gap width is small (< 4%).
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FIGURE 7.3: Relative maximum pressure as a function of the wavelength for the
2 (GPa load situation and amplitudes of 1, 2, 3, and 4 um.
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FIGURE 7.4: Relative minimum film thickness as a function of the wavelength
for the 2 GPa load situation and amplitudes of 1, 2, 3, and 4 um.
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7.2.3.2 Cavitation

Note that the results presented in figure 7.3 and 7.4 are limited to rather shallow
dents. For a given wavelength, the pressure drop at the center of the dent increases
with increasing amplitude. Gradually both sides of the indentation start to act as
separate contacts, see for example figure 7.5. This figure presents the dimensionless
pressure profile and film shape for the same loading conditions (2 GPa) with an
amplitude of 3 pm and wavelength 0.5 mm (A = ~0.17 and W = 1}. The pressure
at the dent center is almost zero. The pressure profile and film shape at both the
left and right side of the indentation show all characteristics of the normal smooth
surface solution, i.e. a nearly uniform film wich narrows at the end where this narrow
region is preceded by a pressure spike.

For larger amplitudes, the fluid will actually cavitate at the dent location and
both sides of the contact will really become separate contacts, seec also Goglia [G1].
This feature lirnits the validity of the results that can be obtained with the present
model since this model is based upon the assumption that the contact is fully flooded
throughout the entire pressurized region. If cavitation occurs at the dent location
the present model will predict pressure generation downstream of this site from the
moment the gap narrows again regardless whether it is fully flooded at that point
or not. Hence, to solve situations were cavitation occurs at the center of the dent
requires an extension of the model allowing positive pressures only if the gap is fully
flooded. This can for example be done in the way described by Elrod [E1].

2105 —— - 021
180 E 018
150 E-015
120-] E- 012
P E
090 - 0,09
0603 — 006
030 E- 0,03
000 Trrmrrerprrer e O e 000

400 350 -300 250 -200 150 100 -050 000 050 100 150

X

FIGURE 7.5: Pressure profile and film film thickness for the 2 GPa load condi-
tions in the case of an indentation with an amplitude of 3 pm and
a wavelength of 0.5 mmn located at X; =),
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7.2.3.3 Varying p;

Having stndied the effect of the wavelength and amplitude of the indentation on
the maximum pressure and minimum film thickness for a given maximum Hertzian
pressure, next the effect of the maximum Hertzian pressure itself is studied. For
this purpose the three different load situations described earlier are considered. The
results presented in this section apply to an indentation with an amplitude of 2 gm.
This is equivalent to a dimensionless amplitude A = -0.23, -0.11 and —0.075 for the
1, 2, and 3 GPa load situation respectively.

Figure 7.6 presents the maximum pressure at the shoulder of the indentation
relative to the maximum pressure in the case of smooth surfaces as a function of the
wavelength of the indentation for the three different load situations. In the 2 and 3
GPa load situations this is also the overall maximum pressure. This is not true for
the 1 GPa load condition. In the case of a wavelength of 0.5 mm the pressure spike
preceding the pressure drop at the indentation exceeds the maximum pressure at the
shoulders of the dent. In that case the maximum at the shoulder is not the overall
maximum. However, it is expected that the maximum pressure at the shoulder of
the dent determines the effect of the dent on the fatigue life. Therefore, and for
reasons of comparison with the other load situations, this value is displayed.

The relative maximum pressure increase is largest for the load situation of 1 GPa
and smallest for the 3 GPa situation. This is due to the fact that in the 1 GPa
situation the elastic deformation is smallest, in other words, the amplitude of the

175
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FIGURE 7.6: Relative maximum pressure as function of the wavelength of the
indentation for three different values of p,. The amplitude of the
dent is fixed at 2 uym.
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indentation relative to the maximum elastic deflection is largest resulting in a larger
relative pressure increase.

This only applies to the relative increase. Reworking the data to absclute values,
see figure 7.7, reveals that the absolute increase of the maximurn pressure is roughly
independent of p,. This implies that the local pressure generated by the indenta-
tion is independent of the global pressure (and thus independent of the load). For
wavelengths of the order of 2b this is no longer true. In those situations the dent
starts to modify the macro pressure distribution and is no longer local. However,
with increasing wavelength (W > 2) these effects disappear again and gradually the
smooth surface solution returns.

1.50

= 1.00 1 —— 1 GPa
o
2
N 0.50 —— 2 GPa
£
% —¥— 3 GPa

0.00 1

-0.50 : -

0.00 0.50 1.00 1.50

wavelength (mm)

FIGURE 7.7: Absolute maximum pressure rise as a function of the wavelength of
the indentation for three values of p,. The amplitude of the dent

is fixed at 2 pm.
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The values of the minimum film thickness relative to the minimum fitm thickness in
the case of smooth surfaces for the situations presented in figure 7.6 are displayed
in figure 7.8. This figure shows that the indentation causes a reduction of the
minimum film thickness that increases with the wavelength. Furthermore, for a
given wavelength the reduction of the relative minimum film thickness increases
with decreasing maximum Hertzian pressure. This is explained by the fact that with
decreasing p; the amplitude of the indentation relative to the elastic deformation
increases.

In all situations presented for the 2 and 3 GPa load conditions the minimum film
thickness is found at the end of the contact region, i.e. at X =z 1 and the reduction of
the minimum film thickness is quite small. This does not apply to the results of the
1 GPa load condition. For the larger wavelengths the minimum film thickness also
occurs at the end of the contact region and the deviation from the smooth surface
minimuim film thickness is relatively small. However, for the two smallest values of
the wavelength of the indentation the minimum film thickness occurs on the inlet
edge of the indentation and its value deviates much more from the value calculated
in the case of smooth surfaces. In these situations the pressure at the dent location
is close to zero and the contact in fact behaves as two separate contacts.

1.00

0.98 :

—— 1 GPa

W
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I —— 2 GPa
B
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x 08 —*— 3 GPa

0.921

0.90 . .
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wavelength (mm)

FIGURE 7.8: Relative minimum film thickness values associated with the results
presented in figure 7.6.
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7.2.3.4 Varying location

So far the location of the indentation was fixed. However, the pressure rise at the
edges of the dent and the change of the minimum film thickness resulting from
the presence of the indentation will depend on its position in the contact region.
The effect of the position is studied here. It is emphasized that still a steady state
situation is assumed, i.e. the velocity of the indented surface is zero and only the
opposing smooth surface moves {(simple sliding).

As an example figure 7.9 shows the calculated dimensionless pressure profile
and film shape for the 3 GPa load situation in the case of an indentation with a
wavelength of 0.5 mm and an amplitude of 2 pm (A = —0.075 and W = 1.0) located
at X; = —0.5.

Obviously the pressure profile is no longer symmetric with respect to the dent
location. The largest pressure occurs on the edge of the indentation that is nearest
to the center of the contact. The maximum pressure still exceeds the maximum
pressure for smooth surfaces but it differs from the maximum pressure found for the
same situation with the dent located in the center of the contact.

The relative maximum pressure at the dent shoulder as a function of the location
of the indentation in the contact for the 1, 2, and 3 GPa load conditions listed in
table 7.2 is displayed in figure 7.10. The calculations have been carried out assuming
a dent with a fixed amplitude of 2 pum and a wavelength of 0.5 mm.
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FIGURE 7.9: Pressure profile and film shape for the 3 GPa load situation with
indented surface. The wavelength of the dent is (.5 mm whereas
its amplitude is 2 ym. The dent is located at X; = —0.5.
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FIGURE 7.10: Relative maximum pressure as a function of the position of the
dent in the case of an indentation with an amplitude of 2 pm and
a wavelength of 0.5 mm for three values of py.

In particular for the 1 GPa load situation the value displayed is not always the overall
maximum pressure, as was already explained in section 7.2.3.3.

If the dent is located far away from the center of the contact region the pressure
profile and film thickness are almost identical to the smooth surface pressure profile
and film shape. The largest maximum pressures are found if the dent is located just
beside the center of the contact. The maximum pressure always occurs on the edge
of the indentation that is closest to the center of the contact. Hence, if X; < 0, the
maximum pressure is found on the edge of the dent at the outlet side and if Xz > 0
it occurs on the edge at the inlet side. Note that in fact the maximum pressure is a
function of | X4|, i.e. it is symmetric with respect to the position of the dent in the
contact region.

The associated results for the relative minimum film thickness are presented in
figure 7.11. This figure shows that the effect of the indentation on the minimum film
thickness depends significantly on its position in the contact region. With respect
to the relatively large reduction of the minimum film thickness for the 1 GPa results
it should be noted that for all -1 < X; < 1 the overall minimum film thickness
occurred at the inlet edge of the indentation, i.e. the large pressure drop at the dent
location divides the entire contact in two almost separate contacts, whereas in all
other situations it was found at the end of the contact region.

Nevertheless, figure 7.11 clearly shows that the largest effect on the minimum
film thickness occurs if the dent is located in the inlet region of the contact, i.e. if
X4~ —1. This is no surprise since it is well known from the numerous calculations
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FIGURE 7.11: Relative mimimum film thickness values associated with the results
presented in figure 7.10

for smooth surface situations that the pressure generation in the inlet region deter-
mines the minimum film thickness. Any microgeometrical feature located in this
region changes the pressure generation and therefore it may significantly affect the
minimum gap width.

7.2.3.5 Implications of a dent for the fatigue life

From the results presented in the previous sections it can be concluded that the
indentation will result in stress concentrations below both edges of the indentation.
These stresses will exceed the maximum sub-surface stresses under smooth surface
conditions and consequently the indentation may result in a reduction of the fatigue
life of the contact. With respect to the depth below the surface it can be expected
that, with decreasing wavelength, the stress concentration will be located closer to
the surface.

To include the effect of the location of the dent one could use a semi-transient
approach, i.e. calculate the maximum stresses over all positions of the indentation in
the contact region, e.g. see [L3]. Such a study gives similar results. The maximum
value of this quantity will be found below the edges of the indentation. Moreover,
its value will be equal for both sides.

Hence, it is concluded that, as far as the theoretical predictions are concerned,
if the contact fails due to surface fatigue, spalling will initiate with equal possibility
below either one of the edges of the indentation. As this is not in accordance with
the experimentally observed failure location, this subject will be addressed once
more in chapter 8.
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7.2.4 Bumps

The results presented in this section apply to the reverse of the feature discussed
in section 7.2.3, i.e. a bump instead of aii indentation. The bump geometry used
is the same as the dent geometry described by equation (7.2) with an amplitude of
the opposite sign. This specific shape was chosen because it has no sharp corners or
discontinuities at the edges.

As an example figure 7.12 presents the calculated (dimensionless) pressure profile
and (dimensionless) film shape for the 2 GPa load condition in the case of a bump
with an amplitude of 2 ym and a wavelength of 0.5 mm (A = 0.11 and W = 1.0)
located in the center of the contact (X4=0).

Comparing the pressure profile displayed in figure 7.12 with the smooth surface
pressure profile shows that the bump causes a significant increase of the maximum
pressure in the contact region. With respect to the film shape it is interesting to
see that, although the bump amplitude is 9 times larger than the smooth surface
minimum film thickness (sée table 7.2), the film shape hardly deviates from the
smooth surface film shape. This is, similar to the situation for an indentation
discussed in the previous section, explained by the relatively large value of & and
the accompanying degeneration of the Reynolds equation in the center region to
d(aH)/dX = 0.
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FIGURE 7.12: Pressure profile and film shape for the 2 GPa load condition in the

case of a bump with a wavelength of 0.5 mm and an amplitude of
2um at X; =0,
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7.2.4.1 Varying wavelength and amplitude

First the effect of the wavelength of the bump on the minimum film thickness is
studied in the 2 GPa load situation for different values of the amplitude. Figure 7.13
presents the maximum pressure relative to the smooth surface maximum pressure
as a function of the wavelength for amplitude values of 1, 2, 3, and 4 pm. (A = 0.056,
0.11, 0.17, and 0.23).

Figure 7.13 shows that the relative pressure rise at the bump is inversely pro-
portional to the wavelength. In addition, it is proportional to the amplitude of the
bump as foliows from figure 7.13 where the results are presented as a function of
the amplitude. Hence the increase of the maximum pressure is approximately pro-
portional to the ratio A/W. With respect to the large increases of the maximum
pressure found for small wavelengths and large amplitudes it should be noted that
these results are not realistic. In reality the pressure at the bump can not rise
beyond the plasticity limit of the material (= 3.3 GPa in the case of steel surfaces).

The minimum film thickness relative to the minimum film thickness under smooth
surface conditions associated with the results presented in figure 7.13 is displayed in
figure 7.15. This figure shows that the presence of a bump results in an increase of
the minimum film thickness. However, even if the bump amplitude is large compared
to the smooth surface minimum film thickness, the increase is still small.

5.00
4.00] ™ 1 um
n
£ 3.00 T 2m
X
£ 2.00] T 3 #m
a8
1.00 oA
0.00

0.00 0.50 1.00 1.50

wavelength (mm)

FIGURE 7.13: Relative maximum pressure as a function of the wavelength for the
2 GPa load situation and amplitudes of 1, 2, 3, and 4 pm.
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FIGURE 7.15: Relative minimum film thickness as a function of the wavelength
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7.2.4.2 Varying p;

In a similar way as done for an indentation (section 7.2.3.3) for a specific bump the
dependence of the maximum pressure in the contact and the minimurm filim thickness
on the maximum Hertzian pressure has been investigated. Figure 7.16 presents the
relative maximum pressure at the bump center as a function of the wavelength for
the aforementioned load situations of 1, 2, and 3 GPa. In all situations presented
here this is also the overall maximum pressure. The relative maximum pressure
is largest for the 1 GPa load situation, because in this situation the amplitude of
the bump is largest compared with the maximum deformation. Reworking the
data presented in figure 7.16 to the absolute increase of the maximum pressure in
GPa gives figure 7.17. Obviously the absolute pressure rise caused by the bump
is approximately independent of the maximum Hertzian pressure. As was found
for an indentation this implies that the local pressure generated by the bump is
independent of the global pressure (and thus independent of the load). Again for
wavelengths of the order of 2b deviations occur because the bump starts to modify
the macro pressure distribution and is no longer local. However, with increasing
wavelength (W 3> 2) these effects dissapear again and gradually the smooth surface
solution returns.

Figure 7.18 presents the relative minimum film thickness values associated with
the results presented in figure 7.16 and 7.17. In all three load situations the bump
results in a relatively small increase of the minimum fitm thickness.
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FIGURE 7.16: Relative maximum pressure as a function of the wavelength for
three load situations. The bump amplitude is fixed at 2 .
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FIGURE 7.17: Absolute maximum pressure rise as a function of the wavelength
for three load situations. The bump amplitude is fixed at 2 um.
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FIGURE 7.18: Relative minimum film thickness as a function of the wavelength
for three load situations. The bump amplitude is fixed at 2 ym.
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For a given wavelength the effect of the bump on the relative minimum film thick-
ness increases with decreasing maximum Hertzian pressure. As for an indentation,
see section 7.2.3.3, this is explained by the increasing relative size of the inden-
tation compared to the elastic deformation. However, in all situations considered
the relative increase of the minimum film thickness is quite small (< 8 %). Hence,
notwithstanding the large size of the amplitude of the bump compared to the smooth
surface minimum film thickness {A = 10 h,.;,} the minimum film thickness in the
contact is not significantly affected by the presence of the bump.

7.2.4.3 Micro EHL

For a given wavelength with increasing amplitude the bump gradually starts to act
as a separate EHL contact. This behaviour is generally referred to as micro EHL, e.g.
see Cheng [C2], Goglia et al. [G1], and Lee and Hamrock [L1]. Figure 7.19 displays
the dimensionless pressure profile and filin shape for the 1 GPa load condition in the
case of a bump with an amplitude of 4 pm and a wavelength of 0.5 mm (A = 0.46
and W = 1.0). Because of the large amplitude of the bump the pressure profile
and film shape in the three parts of the contact, i.e. the part on the inlet side of
the bump, the part on the cutlet side of the bump and the bump itself show all
characteristics of the normal smooth surface pressure profile and film shape.

490+ -0.70
4203 E- 060
350 E 050
2803 040
P ; H
210 E- (.30
140+ 020
0703 - 010
0.00 :"”I”"l"“l RRRbIARABE RALLE ALARA AL Lt LAEM LbAUARAR NARAC LLAA R DURARATRALAI S AAALI L ol 0.0

400 -350 300 250 200 150 100 050 000 050 100
x

FIGURE 7.19: Pressure profile and film shape for the 1 GPa load situation in the

case of a bump with an amplitude of 4 um and a wavelength of
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7.2.4.4 Varying location

As in the case of an indentation, see section 7.2.3.4, the effect of a bump on the
maximum pressure and minimum film thickness depends on the location of the
bump in the contact region. As an example figure 7.20 displays the dimensionless
pressure profile and film shape for the 3 GPa load condition in the case of a bump
with an amplitude of 2 gm and a wavelength of 0.5 mm located at X; = —0.5
(A = 0.075 and W = 1.0).

Figure 7.21 presents the maximum pressure at the bump relative to the maximum
Hertzian pressure as a function of the location in the contact for the three load
situations considered here. The results apply to a bump with an amplitude of 2 um
and a wavelength of 0.5 mm.

With respect to the results presented in figure 7.21 it should be noted that the
value displayed is not always the overall maximum pressure in the contact, In
particular, in the case of the 1 GPa load situation with the bump located at X, = 1
the pressure spike exceeds the maximum pressure at the bump center.

The largest values of the relative maximum pressure are found if the bump is
located in the center of the contact. Note that, similar to what was found for an
indentation, the relative maximum pressure at the bump center is in fact a function
of |X4|. Figure 7.22 presents the associated relative minimum film thickness as a
function of Xy. The largest changes occur again if the bump is located in the inlet
region.

e 02t

T T T O [T I T T A T A [T T A T T v

G.00 LSS AR b ARALE AL AL AL LU ALY LAALE LALAE RLALE RAARE SALLY RLALI LELAT REAL LEEL RELLY LELLY LALLD LAdy 0.00

400 -350 -300 250 -200 -150 100 -050 000 050 100 150
x

FIGURE 7.20: Pressure profile and film shape for the 3 GPa load condition in the

case of a bump with an amplitude of 2 ym and a wavelength of
0.5 mm at X3 = —0.5.
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FIGURE 7.21: Relative maximum pressure as a function of the position for a bump
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FIGURE 7.22: Relative minimum film thickness results associated with the results
presented in figure 7.21.
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7.2.4.5 Implications of a bump for fatigue life

The previous sections have shown that a bump causes a significant rise of the max-
imum pressure in the contact. The absolute increase of the maximum pressure is
larger if the wavelength is smaller and it is roughly proportional to the slope of the
bump and independent of the maximum Hertzian pressure unless the wavelength of
the bump is too large and the bump is no longer a local feature. With respect to the
sub-surface stresses, the bump will result in a stress concentration below the sur-
face with a value exceeding the maximum sub-surface stress in the case of perfectly
smooth surfaces. This bump related stress concentration will be located closer to
the surface if the wavelength is smaller and the value is roughly proportional to the
ratio A/W unless the wavelength of the bump is too large.

7.2.5 Waviness

In this section the influence of what is generally referred to as waviness on the pres-
sure generation and fluid film formation is investigated for the same load situations
as considered in the previous sections. Characteristic for waviness is that the de-
viation from the smooth surface parabolical shape is periodic with a wavelength of
the order of magnitude of half the width of the Hertzian contact region and that
it extends over the entire contact domain. Compared to the two features discussed
above waviness is one step closer to real surface roughness albeit that the charac-
teristic length scale of surface roughness is much smaller. The following harmonic
waviness is considered;

R(X) = Acos (gigfy;—m)

where W denotes the dimensionless wavelength and A is the dimensionless ampli-
tude. As in the preceding sections the steady state situation of simple sliding is
assumed, i.e. only the smooth surface moves.

Figure 7.23 presents the dimensionless pressure profile and film shape for the
2 GPa load situation in the case the waviness has an amplitude of 1 pm and a
wavelength of 0.25 mm (W=0.5 and .4=0.056). The presented results apply to Xz = 0.

From this figure it can be concluded that the waviness causes a periodic variation
on the smooth surface pressure profile with a wavelength that is the same as the
wavelength of the feature itself, see also [G2]. Notice the Micro EHL features occur-
ing at the “asperities” or “ridges” on the inlet and outlet side of the Hertzian contact
region. In spite of the relatively small amplitude the fluid almost cavitates at these
locations. Because of the relatively small elastic deformation in both the inlet and
outlet region the cavitation limitation discussed in section 7.2.3.2 applies even more
to the calculations with waviness and consequently with the current model only
shallow waves can be simulated. This once more stresses the need for an extension
of the model to allow for pressure generation following a cavitated region.

(1.4)
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FIGURE 7.23: Pressure profile and film shape for the 2 GPa load situation with a
harmenic waviness of amplitude 1 ym and wavelength 0.25 mm.

With respect to the film thickness, figure 7.23 shows that, as was observed earlier for
indentations and bumps, in the central region the surface feature is flattened and
hardly shows up in the film shape.

7.2.5.1 Varying wavelength and amplitude

First the influence of the amplitude and wavelength on the maximum pressure and
minimum film thickness are investigated for given load conditions and position of the
waviness with respect to the center of the contact. Figure 7.24 displays the relative
maximum pressure as a function of the wavelength for two values of the amplitude
and X, = 0. The presented results apply to the 2 GPa load condition. As was found
for indentations and bumps the relative maximum pressure is inversely proportional
to the wavelength.

The calculated minimum film thickness relative to the smooth surface minimum
film thickness for the situations presented in figure 7.24 is displayed in figure 7.25.
This figure shows that, compared to the situation of a bump or a dent considered
in the previous section, the effect of the waviness on the minimum film thickness
is quite large. This is explained by the fact that the minimum film thickness is
mainly determined by the inlet region of pressure generation. A bump and a dent
are basically local features that, particularly if the wavelength is small, hardly affect
the inlet geometry. On the contrary waviness, being a global feature, also for small
wavelengths affects the inlet geometry and the pressure generation in this region. In
particular, depending on the wavelength either a ridge or a valley is located in the
inlet. This explains the larger effect on the minimum film thickness,
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FIGURE 7.25: Relative minimum film thickness as a function of the wavelength
for amplitudes of 0.5 and 1 gm for given load conditions.
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7.2.5.2 Varying p

Having investigated the effects of the wavelength and amplitude of the feature for
a given load condition, the effect of the Hertzian pressure is studied next. The
amplitude is fixed at 0.5 gm and all results apply to X,;=0. Figure 7.26 displays the
relative maximum pressure as a function of the wavelength for the 1, 2 and 3 GPa
load conditions. This figure shows that the relative maximum pressure is largest
for the 1 GPa load condition and smallest for the 3 GPa load condition. Reworking
the data presented in figure 7.26 to the absolute increase of the maximum pressure
caused by the feature gives figure 7.27. This figure shows that also in the case of
an harmonic waviness the absolute increase of the maximum pressure is roughly
independent of the maximum Hertzian pressure.

To conclude this section figure 7.28 presents the relative minimum filn thickness
data associated with the resuits presented in the figures 7.26 and 7.27. This figure
shows that, as was already outlined in the previous section, because of its global
character the waviness has a rather large effect on the minimum film thickness. In
addition, this figure shows that, as was found for an indentation and a bump, for a
given wavelength and amplitude the relative change of the minimum film thickness
increases with decreasing maximum Hertzian pressure.
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FIGURE 7.26: Relative maximum pressure as a function of the wavelength for
three different values of p,. The amplitude is fixed at 0.5 ym and
X;=0.
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FIGURE 7.28: Relative minimum film thickness values associated with the results
presented in figure 7.26.
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7.2.5.3 Varying location

The results presented so far (section 7.2.5.1 and 7.2.5.2) applied to a waviness with
a fixed position relative to the center of the contact, i.e. X; = 0. In the present
section the effect of this position on the relative maximum pressure and minimum
film thickness is investigated. Obviously the results will be periodic in X, with a
wavelength equal to the wavelength of the feature. Assuming a waviness with a
wavelength of 0.25 mm and an amplitude of 0.5 ym figure 7.29 presents the relative
maximum pressure as a function of Xz, Obviously for this situation the maximum
pressure is relatively insensitive to the position of the wave with respect to the center
of the contact.

This does not apply to the minimum film thickness as can be seen from figure 7.30
presenting the relative minimum film thickness values assoclated with the results
presented in figure 7.29. Depending on the position of the feature relative to the
center in this specific situation either a decrease or an increase in film thickness is
found. The two extreme values occur for Xz = 0 and X, = 0.25 (Xz = 0.5W). In the
first situation the minimum film thickness is decreased by some 20 percent, whereas
for X; = 0.25 an increase is observed that adds up to 20 percent for the 2 and 3 GPa
load situation. Because the waviness extends over the entire domain a shift of the
relative position with respect to the center of the contact implies a change of the
inlet geometry.
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FIGURE 7.29: Relative maximum pressure as a function of X, for three values of

pn. The wavelength is fixed at 0.25 mm and the amplitude is fixed
at 0.5 um.
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FIGURE 7.30: Relative minimum film thickness values associated with the results
presented in figure 7.29.

Since the inlet region determines the minimum film thickness this explains the rela-
tively strong influence of the relative position of the waviness on the minimum film
thickness,

7.3 Surface roughness

Over the last few decades a large number of papers has been published considering
the influence of surface roughness on pressure generation and fluid film formation in
lubricated contacts. For a general review of work on this topic the reader is for exam-
ple referred to Elrod [E2]. The majority of the papers is restricted to hydrodynamic
lubrication. In addition they are generally limited to so called Reynolds roughness.
This type of roughness has small “slopes” (the variations in z direction are small
compared to the variations in # and y direction) so the underlying assumptions of
Reynolds’ equation are not violated and this equation can be used to describe the
fluid flow. As mentioned in the introduction to this chapter this assumption is also
made in the present work. When the slopes of the surface feature or the roughness
profile are too large, the Stokes equation must be used to properly describe the
fluid flow. Consequently, that type of roughness is called Stokes roughness. To the
authors knowledge only a few papers dealing with the latter type of roughness have
been presented, e.g. Sun and Chen [52] and Phan Thien [P1].

The different studies of Reynolds roughness have in common that, based on
certain properties of the roughness height distribution, an averaged Reynolds equa-
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tion is derived, e.g. Tzeng and Saibel [T1], Christensen [C3), Elrod [E3], Patir and
Cheng [P2], Phan-Thien [P3}, Tender [T2], and Chengwei and Linging [C4). In par-
ticular the so called flow factor method has become quite popular. This method was
introduced by Patir and Cheng [P2] and further work along this line was carried
out by Elrod [E4), Teale and Lebeck [T3], and Tripp [T4]. An average Reynolds
equation is introduced with flow factors incorporating the effect of the fluid flow
past rough surfaces. For example, the equation for the case of an incompressible
lubricant presented by Patir and Cheng [P2] reads:

J k3 Op 0 k3 ap (uy +up) Ohr  (uy —uy) 89, Ohy
3 ( ma—) ay (‘I’ma) =T 7 et 2 e ta UV
where: p = mean hydrodynamic pressure

h = nominal film thickness

hr = local film thickness: A + 6, 4 6,

81,6, = roughness surface 1,2

hr = average film thickness

®., ®, = pressure flow factors

®, = shear flow factor

The flow factors, ®,, ®,, and ®,, are determined numerically simulating the flow
around the rough boundaries. They are generally given as a function of the ratio
of film thickness and standard deviation of the roughness height distribution and
an orientation parameter v, where v = 1, ¥ = 0, and v = oo represent isotropic,
transverse and longitudinal roughness respectively. Although originally developed
for hydrodynamic lubrication this flow factor method has been widely applied in the
study of surface roughness effects in an EHL line contact situation. The reader is
for example referred to Patir and Cheng {P4], Tripp and Hamrock [T5), Sadeghi and
Sui [$2], and Dong Zhu et al. [D1].

Notwithstanding its popularity the flow factor method has some serious limita-
tions with respect to EHL problems. The first is that the elastic deformation of the
asperities is not accounted for in the analysis. The flow factors used in the calcu-
lations are usually the factors presented by Patir and Cheng [P2] which are based
on a hydrodynamic analysis only. Hence, by applying the flow factor method to
EHL problems only the effect of the elastic deformation on the global geometry is
taken into account and the surface roughness is in fact assumed to be rigid. Based
on the results presented in the previous section for large scale features it can be
expected that this assumption may not be valid and that the elastic deformation of
the roughness asperities may have a significant effect on the results. This will apply
particularly to the line contact situation, where, as a result of the one dimensional
approximation, the fluid can not flow around an asperity.

The second disadvantage is the orientation parameter 4. This parameter does
not uniquely define the orientation of the roughness. In particular, ¥ = 1 is not




7.3 Surface roughness 177

by definition equivalent with an isotropic roughness profile. Another disadvantage
arises when the purpose of study is to investigate the effect of the roughness on
the surface fatigue life of the contact. Different roughness profiles may have the
same statistical properties. The flow factor method will give the same “averaged”
pressure profile and film shape whereas in reality the profiles may very well have a
completely different effect on the surface fatigue life.

In this thesis an alternative approach is proposed. The low complexity of the
solver developed for the line contact problem enables an accurate description of the
surface geometry. Therefore, instead of using some averaged equation, a determin-
istic description of the roughness can be used. In particular, the calculations can be
performed with data obtained from surface roughness measurements as input. This
section presents some preliminary results obtained in this way. First, section 7.3.1
discusses some calculational details. Subsequently the results of calculations for
various load conditions are presented.

7.3.1 Calculational details

For a given surface roughness profile first the effect of the velocity is investigated for
a maximum Hertzian pressure of 2 GPa. As a next step the effect of the Hertzian
pressure is investigated for a given velocity. As was done in the analysis of large
scale features the half width of the Hertzian contact region is fixed at 0.5 mm and,
to obtain another value of the maximum Hertzian pressure, the reduced radius of
curvature is varied. Apart from the velocity and reduced radius of curvature no
parameters are varied. The values of the other parameters are the same as used in
the study of the large scale effects, e.g. see table 7.1.

First for a specific value of the reduced radius of curvature coinciding with a
maximum Hertzian pressure of 2 GPa (R = 1.41 107?) the effect of the roughness is
investigated for four values of the velocity. The values of the Moes non dimensional
parameters and the values of the dimensionless parameters & and A describing the
four load conditions created in this way are listed in table 7.3.

In addition table 7.3 gives the calculated minimum film thickness, and the calcu-
lated average film thickness in the Hertzian contact region, -1 < X < 1, assuming
perfectly smooth surfaces:

u, [mfs] { M L & A Amin (] | hoy [pm)]
3 49.2 | 15.7 | 44.0 | 1.53 1073 | 0.647 0.728
4 69.7 1132 |44.0 | 763 107* | 0.393 0.443
2 98.5 |11.1144.038210°*}0.239 0.270
1 139.2 | 9.35 {44.0 | 1.91 107 | 0.146 0.165

Table 7.3: Different loading conditions, p, =2 GPa, varying u,.
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R [m] p {Pa] | M L o A Fomin [am] | Raw [pm]
9.42 1073 [ 3.010° | 255.4 {104 | 66.0 | 5.68 10~3 | 0.119 0.133

Table 7.4: 3 GPa load condition, u, = 1 m/s.

1 b
how = 5 hbf b de (7.6)

Secondly, for a given value of the surface velocity, i.e. u,=1 m/s, the reduced radius
of curvature is changed to obtain a maximum Hertzian pressure of 3 GPa. The
values of the different dimensionless parameters for this load situation are displayed
in table 7.4. In addition table 7.4 gives the value of the minimum and average film
thickness calculated assuming perfectly smooth surfaces.
The calculations are performed using one specific roughness profile. This measured
profile is displayed in figure 7.31. The calculated value of the cla roughness, R,, for
this profile is 3.68 1072 um and the calculated rms roughness, R,, is 4.56 10~2 um.
The profile presented in figure 7.31 is obtained from a stylus measurement and
consists of 879 height values whereas the trace length is about 1.13 mm. (= 2.256)
Since the calculational domain is taken from X, = —4 to X, = 1.5 the profile
can cover only part of the domain and it is extended with zero height values on
both sides. The first non zero height value is taken at X = —1.45. The preliminary
calculations presented here have been carried out using 1409 nodal points on the
entire domain. To determine the value of the roughness height at a calculational
point simple linear interpolation from the measured profile is used.

1.00

0.60F
0.20
-0.20 E '

-0.80

R (m)
(E-6)

~1.00 ' : : *
0.00 0.03 0.05 0.08 - 0.10 0.13

E-2
‘ (m) (E-2)

FIGURE 7.31: Roughness profile used in calculations.
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7.3.2 Variation of speed

Figure 7.32 presents the calculated (dimensionless) pressure profile for the 2 GPa load
condition and a surface velocity of 8 m/s. This figure shows that, the roughness
causes a high frequency oscillation (high frequency relative to b) on the smooth
surface pressure profile. Note that the pressure spike can no longer be distinguished
from the variations caused by the roughness. The associated film shape is presented
in figure 7.33. On a global scale the film shape is very much alike the usual smooth
surface film shape. The roughness only causes a high frequency rippling.

Similar results for a much smaller velocity, e.g. u, =1 m/s, are presented in
figure 7.34 and 7.35. Comparing figure 7.34 with figure 7.32 shows that at the larger
velocity the amplitude of the oscillations is smaller. This is explained by the film
thickness which is larger for the higher velocity. The lubricant film has a “damping”
effect on the pressure oscillations and as a result they increase with decreasing
velocity (film thickness). At this point the reader is referred to section 7.1 where
pressure profiles calculated assuming a dry contact situation were referred to as
worst case results,

Comparing the film shape presented in figure 7.33 with figure 7.35 shows that for
a smaller velocity the variations on the film thickness are notacibly smaller. Since
both figures are plotted using the same scale this indicates an increasing elastic
deformation of the roughness profile. This subject will be addressed in more detail
below. First the calculated minimum and average film thickness as a function of
the velocity for the rough surface situation are compared with the results obtained
assuming perfectly smooth surfaces, see tahle 7.5.
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FIGURE 7.32: Pressure profile calculated with rough surface for a maximum
Hertzian pressure of 2 GPa and surface velocity of 8 m/s.
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FIGURE 7.35: Film shape associated with the pressure profile presented in fig-
ure 7.34.

Us [m/8] | hmin [#m] | Amin(smooth) [um] | oy [pm] | hey(smooth) [um]
8 0.612 0.647 0.727 0.728
4 0.349 0.393 0.443 0.443
2 0.193 0.239 0.270 0.270
1 0.099 0.146 0.164 0.165

Table 7.5: Comparison of the calculated minimum and average film thickness
as a function of surface speed for p,=2 GPa in the case of a rough
surface with the values obtained assuming smooth surfaces.
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Comparing the values obtained in the present (rough) case with the values for
smooth surfaces shows that, in particular for the smaller velocities, the minimum
film thickness deviates significantly from the smooth surface value. The reason can
be seen from figure 7.35. In these situations the minimum film thickness occurs at
one of the asperities near the end of the Hertzian contact region.

A more interesting result is that for all situations the average film thickness
hardly deviates from the value found assuming smooth surfaces. This observation
contradicts the results generally obtained with the flow factor method. For the
situation considered here, i.e. transverse ronghness, this method would predict an
increase of the average film thickness due to the roughness. This increase is larger
for smaller values of a parameter h/o. For the 1 m/s surface velocity condition
presented here the value of this parameter based on the average film thickness is
approximately 3. At such a value the flow factor method would already predict a
noticable increase, e.g. [P4,D1)], whereas no effect whatsoever is observed here.

To the author’s opinion this is explained by the elastic deformation of the rough-
ness profile. This elastic deformation is significant and can not be neglected as will
be demonstrated. Figure 7.36 presents an artificial film thickness for the 1 m/s con-
ditions in the contact region. This film thickness was obtained by superimposing
the undeformed roughness profile on the calculated smooth surface film thickness.
Hence, this figure gives an indication of what the film shape in the contact region
would be if the asperities were assumed to be rigid as is done in the flow factor
method. Figure 7.37 presents the actually calculated film thickness in the contact
region for the same conditions, i.e. figure 7.37 is an enlargement of the film shape
presented in figure 7.35. Comparing the two figures shows the effect of elastic de-
formation of the roughness, i.e. the amplitude of the film thickness variations in
figure 7.37 is much smaller than the amplitude of the variations displayed in fig-
ure 7.36.

To quantify the deformation of the roughness profile table 7.6 displays the mean
value, the average deviation from this value and the standard deviation of the ar-
tificial film thickness (figure 7.36) and the calculated film thickness (figure 7.37) in
the Hertzian contact region:

how = = S hz:) o] < b (7.7)
Ro= = 3 h(a) — bl il < b (7.5)
Rc2r = nnl— 1 Z(h(x‘) - hav)2 lzif < b (7'9)

nn denotes the number of gridpoints in the region |z| € b This table shows that
the mean values are almost the same. However, the values of B, and R, differ
significantly.
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oy [prn] | By [pm] | R, [pm]
h (artificial) | 0.167 0.0286 | 0.0359
h (calculated) | 0.165 0.0101 | 0.0151

Table 7.6: Comparison of the characteristic parameters for artificially created
film thickness and calculated film thickness.

For the real solution of the film thickness they are smaller, roughly by a factor of 2.5,
which obviously indicates a significant elastic deformation of the roughness profile.

This finding indicates that, when studying the effects of surface roughness in
stationary EHL line contacts, neglecting the deformation of the asperities can not
be justified. Moreover, as can be seen by comparing the film shape for a velocity of
8 m/s and the film shape calculated for a velocity of 1 m/s, the elastic deformation
of the profile increases with decreasing film thickness (velocity) and the error made
by neglecting this deformation will be larger. This applies in particular to the line
contact problem considered here, where, as a result of the 1 D approximation, the
fluid can not flow around an asperity.

Summarizing, from the results presented in this section the conclusion can be
drawn that the increase of the central or average film thickness in the case of a
stationary EHL line contact with transverse roughness predicted by the flow factor
method may be artefacts resulting from neglecting the deformation of the asperities.

7.3.3 Variation of p,

To visualise the effect of the Hertzian pressure on the results, the problem is solved
once more for a surface velocity of 1 m/s but this time with another value of the
reduced radius of curvature resulting in a maximum Hertzian pressure of 3 GPa, e.g.
see table 7.4. Figure 7.38 presents the calculated pressure profile. Comparing this
figure with the results for the same velocity but for a smaller Hertzian pressure, e.g.
figure 7.34 clearly shows that in the 3 GPa load situation the pressure variations are
smaller, This can be explained by the smaller relative height of the roughness com-
pared to the elastic deformation. A similar effect was found in the study of bumps,
indentations and waviness. The associated film thickness for this load situation is
presented in figure 7.39.

The calculated value of the minimum film thickness for this situation is 0.069 pm
whereas the average film thickness is 0.130 gm. The minimum film thickness is
smaller than the value calculated assuming smooth surfaces, e.g. see table 7.4. As
was found for the same velocity but with a maximum Hertzian pressure of 2 GPa
discussed in the previous section it occurs at one of the asperities. Furthermore,
the calculated average film thickness hardly deviates from the value found when
assuming perfectly smooth surfaces (< 2%). For the conditions considered here the
flow factor method would again predict an increase of the average film thickness.
The fact that such an increase is not observed once more indicates the importance of
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FIGURE 7.38: Calculated pressure profile for p,=3 GPa, u,=1 mfs in the case of
a rough surface.
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taking the elastic deformation of the asperities into account when studying surface
roughness effects in EHL line contact situations.

7.4 Conclusion

The algorithm developed for the solution of the EHL line contact problem was used
to study the effect of a number of surface features on the pressure generation and
the film thickness, With respect to the large scale surface features such as bumps,
indentations and waviness it was demonstrated that, when located in the Hertzian
contact region, the surface feature mainly affects the maximum pressure in the
contact whereas the minimum film thickness changes only slightly, This can be
ascribed to the large elastic deformations. However, if located in the inlet region
where the elastic deformations are small, the feature may result in a significant
change of the minimum film thickness. Furthermore, it was shown that the absolute
increase of the maximum pressure caused by the feature is roughly independent of
the maximum Hertzian pressure,

The study of these features reveiled a shortcoming of the model used in this
thesis. In particular only relatively shallow dents and waviness can be simulated
with the model as presented in chapter 2. The main reason is that it does not
correctly model pressure generation from a cavitated region.

Furthermore, the algorithm was used to solve the pressure profile and film shape
using the input of actually measured surface roughness. Although the results werc
limited to a single roughness profile they clearly indicated the importance of incor-
porating the elastic deformation of the asperities, when studying surface roughness
effects in EHL.
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Chapter 8

Simulation of the overrolling of a
surface feature

The analysis of surface features, as described in chapter 7, introduces the need for
a time-dependent approach since both surfaces generally move. This problem will
be addressed in the present chapter. An accurate transient analysis requires the
solution of the model equations at a large number of time steps. As the computing
time needed for each time step is approximately equal to the time required for
the solution of the steady state problem, it is obvious that an accurate transient
simulation requires a fast algorithm for the solution of the pressure and film shape
in the contact. Moreover, to simulate situations of practical importance, that is
with a maximum Hertzian pressure of some 2.0 GPa, the algorithm should also be
stable.

As was outlined in chapter 1 most algorithms for the solution of the steady
state line and point contact problem presented over the years are of relatively high
complexity. When extended to study transient situations the accuracy that can
be obtained is rather limited even when high speed computers are used. Hence,
the transient results presented so far, have been obtained using a relatively small
number of nodes in spatial direction(s) and only a few time steps, e.g. Oh [01],
Lee and Hamrock [L1] and Chang et al. [C1]. Furthermore, most likely because of
stability problems, only relatively lightly loaded situations have been studied. To
avoid the aforementioned computational complexities, many papers deal only with
the steady state problem.

In chapter 4 a fast and stable algorithm for the computation of the pressure
distribution and film shape in EHL line contact situations was presented. This
algorithm has been extended to solve transient problems, and some results with
respect to the overrolling of an indentation, a bump and a specific waviness are
presented in the present chapter. The low complexity of the algorithm enabled a

simulation using a relatively large number of nodes in spatial direction combined
with a small time step.
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The results of the simulations and some implications for the fatigue life of the con-
tact are discussed. These results show that extrapolation of results from a stationary
analysis to practical conditions where the surface feature is moving can be mislead-
ing. Furthermore, the relation between the simulation results and the detection of
surface defects using vibration and acoustic diagnostic techniques in the condition
monitoring of bearings is discussed.

8.1 Equations

The one dimensional Reynolds equation written in a dimensionless way, i.e. equa-
tion (2.41), taking into account transient effects (the squeeze term) reads:

d ¢ apP O0(pH) 8(pH) _
ox(ax) ~ox o= (8.1)
where the cavitation condition P > 0 should be satisfied at all times in the entire
domain, and the boundary conditions are P(X,) = P(X:) =0 ¥T.

€ is given by:

pH?
€= ——
A
where
67,1, 22
)= deltet
b*py
The dimensionless lubricant density 7 is assumed to depend on the pressure ac-
cording to the Dowson and Higginson relation and the Roelands viscosity pressure
relation is used. The dimensionless film thickness equation, accounting for a moving
surface feature reads:

Xx? o0
H(X,T) = Ho(T) + 5 + R(X,T) - = J7 PO TR IX - xYaxt (82)
T —oo
where: Hgo(T') = the integration constant determined by the force balance
condition.
R(X,T) = geometry of the undeformed surface feature

In the most general situation R(X,T) consists of all features on both surfaces that
result in a deviation of the undeformed gap from its usual parabolical shape, i.e. sur-
face roughness, surface waviness, bumps, indentations, etc,

For reasons of simplicity only large scale features such as a dent, a bump, and
waviness are considered here. In addition the feature is assumed to be located on
the surface moving with velocity us. For example if the position of a dent or a bump
at ¢ = 0 is given by =z, then its location at time ¢ is given by: x4 = z, + uz t. Hence,
in terms of the dimensionless variables its position at time T is given by:

X,=X, + 2%T

8
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At all times the solution is subject to the condition of force balance, i.e. the inte-
gral over the pressure equals the externally applied contact load. Expressed in the
dimensionless variables this condition reads:

me(X,T) dX-%=0 VT (8.3)

-
The equations (8.1)-(8.3) are discretized on a uniform grid with mesh size A, ex-
tending over a domain X, € X € X,. Using second order central discretization for
the Poiseuille-term, first order upstream discretization for the wedge term, and first
order backward discretization of the squeeze term, the approximation of Reynolds
equation at time step k in node ¢ reads:

-2
Ao ga P — (e g + €3 0) Pk + €t 1 Pipri) =

A;I(ﬁi,kHi.k ~PimipHioin) — At_l(ﬁi,kHi.k — Pipr Hig-1) =0 (8.4)

with the cavitation condition F;, > 0.

The discretized film thickness equation reads:

X? 1>
Hi,k = Ho,k + T’ + R(X.’,Tk) - ;r' EI"{?"A’.PJ"_& (8-5)
j=0
where

R | .o 1
K3*d = (i—j+ 5)A,,(ln(|z —-Jj+ §|Am) -1)

~ (= = )Aulinli— 5 - 3{A) - 1)

The dimensionless force balance equation reads after discretization:

r=1/(p .
Ay, st Fraa) +2P’“‘") ~2=0 Vi (8.6)
i=1

8.2 Numerical solution

Assume for the moment the overrolling of a feature with a limited length, e.g. a
bump or an indentation. The situation in the case of waviness is somewhat different
and will be discussed later. Before the leading edge of the bump or dent reaches the
boundary of the calculational domain, the squeeze term in the Reynolds equation
will be zero in all nodes on the grid. Hence, film thickness and pressure profile are
identical to the stationary smooth surface solution. An algorithm allowing a fast
and accurate calculation of this solution was described in detail in chapter 4.

From the moment the feature enters the domain the squeeze term will no longer
be negligible. At each time step the pressure and film thickness are to be solved
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from equations (8.4) to (8.6) using the solution of the previous time step for the
evaluation of the squeeze term. When the trailing edge of the feature passes the exit
boundary of the domain the steady state solution slowly returns.

In the case of waviness the feature is present in the entire domain also at the start
of the simulation. Hence, the starting solution is not the smooth surface solution.
In this thesis the simulation is started with the stationary (simple stiding) solution,
i.e. the solution calculated for zero velocity of the wavy surface. Subsequently at
each time step the pressure and film thickness are solved from equations {8.4) to
(8.6). As will be shown in section 8.5, the use of the stationary solution at the start
of the simulation causes some numerical “running in” effects. However, after a short
time the pressure profile and film shape will be periodic in time with a wavelength
that equals the spatial wavelength of the waviness since pure rolling is assumed.

The relaxation process solving the stationary problem is also suitable for the
solution of the equations at each time step, provided the squeeze term is properly
accounted for in the algorithm. Convergence of the process can be accelerated using
the coarser grids. Hence, given a first approximation of the solution at a specific
time step the equations can be solved by repeating coarse grid correction cycles until
the desired accuracy has been obtained. The required number of cycles depends of
course on the accuracy of the first approximation.

The most straightforward approach is to use the pressure profile of the previous
time step as a first approximation to the solution on the current time step. Such
an algorithm was, for example, employed by Woods et al. [W1] when solving the
dynamically loaded journal bearing problem. Hence, at each time step the coarser
grids are only used to accelerate convergence of the relaxation process on the finest
grid. The disadvantage of this technique is that the error in the first approximation
at the finest grid contains all frequency components the grid can represent and at
each time step the starting residual is rather large,

A more accurate first approximation, and consequently a reduction in the num-
ber of coarse grid correction cycles needed per time step, can be obtained if the
coarser grids are employed in a way rather similar to the Full Multi Grid process
for stationary problems. This alternative, the so-called F cycle, was developed by
Brandt and co-workers and has been described in section 3.1.9.

The calculational results presented in this chapter apply to the 2 GPa conditions
described in chapter 7, e.g. see table 7.2.

8.3 The overrolling of an indentation

The same dent geometry as used in the previous chapter is assumed, e.g. sec fig-
ure 7.1. Consequently R(X,T) is given by:

RX,T)=A lO_ID(X;WXd) cos (ZWX—;V—)-{—d) (8.7)
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where: A = dimensionless amplitude of the dent
W = dimensionless wavelength of the dent
Xz = dimensionless position of the dent center at time T.

Assuming pure rolling conditions, X, is defined according to:

Xe=Xo+T (8.8)

X, denotes the position of the dent at 7 = 0, Its value is chosen such that the dent
is outside the calculational domain at the start of the simulation, i.e. X, < X, - W.

8.3.1 Simulation results

This section presents and discusses the results of the simulation of the overrolling
of an indentation with a wavelength of 0.5 mm (W = 1.0) and an amplitude of 2 um
(A = —0.11). The solution has been calculated using 208 time steps (A, = 0.03125)
with 1409 nodes in spatial direction, i.e. A; = 8 X A,. This choice of a time step that
equals an integer number of times the mesh size in space is necessary to accurately
monitor the variation of the pressure and film thickness at a specific location on one
of the (moving) surfaces as a function of time.

Figure 8.1 shows the steady state solution at 7 = 0 whereas figures 8.2 to 8.4
show the solutions at the times when X; = —0.5, 0.0, and 0.5, respectively. For
reasons of comparison figure 8.5 shows the solution for pressure and film thickness
under steady state (simple sliding) conditions with the dent located in the center of
the contact, i.e. at X = Q.
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FIGURE 8.1: Solution M=100, L=11.08, Pressure and film thickness as a function
of X. Stationary solution.
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FIGURE 8.2: Solution M=100, L=11.08, Pressure and film thickness as a function
of X. Transient solution in the case of pure rolling with the dent at
location: Xy = —0.5.
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Comparing this steady state solution (figure 8.5) with the transient solution {hig-
ure 8.3) illustrates the effect of the squeeze term. The most obvious difference is
that in the steady state (simple sliding) situation with the dent located in the center
the film thickness is nearly uniform, i.e. the dent is flatiened whereas in the tran-
sient {pure rolling) situation when the dent is at this location it clearly shows up in
the film thickness.

The flattening of the dent in the steady state situation is explained by the fact
that the Reynolds equation in the contact region reduces to:

d(pH)

A1) o 9
x>0 (8.9)

Since Dowson and Higginson’s equation limits the compressibility of the lubricant
to about 33 %, the result is a nearly uniform film thickness in the Hertzian con-
tact region that rather closely resembles the smooth surface solution, e.g see also
chapter 7.

The much smaller change of the dent geometry in the transient situation illus-
trated in figure 8.3 can be explained using a similar argument as given above. In
the transient situation the Reynolds equation in the contact region reduces to:

9(pH) 0(pH)

This equation prescribes that by approximation (PH) and, since p is limited, at high
loads eventually #, will be a function of {X =T) only. Hence, in the lirit it describes
a film thickness change moving a dimensionless distance one per dimensionless unit
of time. In the pure rolling condition assumed here, this equals the velocity of the
feature.

For the full problem this implies that for sufficiently high loads there is a tendency
to preserve the geometry of the feature during the time it moves through the Hertzian
contact region. This tendency can indeed be recognized in the results presented in
the figures 8.2 through 8.4.

Nevertheless, this still does not explain the smaller change in the geometry of the
feature compared to the steady state situation. However, note that equation (8.10)
only states that the squeeze and wedge term should be equal but of opposite sign,
Because of the moving feature the squeeze term is non-zero. Hence, to satisfy
equation (8.10) the wedge term must change accordingly resulting in a non-uniform
film thickness.

The behavior described above can also be explained in physical terms. As a
result of the high viscosities, pressure induced flow is almost absent in the contact
region. Hence, shear flow dominates and the additional amount of fluid trapped in
the dent upon its entrance of this region is just shifted through. However, as can be
seen from the figures 8.2 through 8.4, small geometrical changes of the dent do ocecur
during its motion through the contact region, i.e. the slopes become smaller, since
the pressure gradients slowly spread the lubricant, in spite of the high viscosities.
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In addition to this observation with respect to the film thickness another interesting
effect shows up when comparing the transient and stationary results, The pressure
profile displayed in figure 8.5 is almost symmetrical, the pressure rise at the trailing
edge of the indentation equals the pressure rise at the leading edge. As can be seen
from figure 8.3, in the transient situation the pressure rise at the trailing edge is
larger whereas the pressure rise at the leading edge of the dent is smaller than it
is in the steady state situation. This difference is obviously caused by the squeeze
term.

An alternative way of presenting the results of the simulation is to monitor the
pressure or film thickness at a certain point on one of the surfaces during its motion
through the contact. As an example, the pressure variations experienced by two
points at equal distance from the center of the dent are presented in figure 8.6.
The curve on the left is for the point on the leading edge whereas the curve on the
right is for the trailing edge. Both points are at a relatively large distance from
the center of the dent, | X4 — X| = 0.5. Note that these are exactly the curves that
a transducer on the surface at these locations would measure. Because they are
relatively far removed from the center of the dent, both points experience a pressure
signal over time that is equal to what any point would experience under smooth
surface conditions.

Similarly, figure 8.7 shows the pressure as a function of time for {Xq—X| = 0.1875,
i.e. located closer to the center of the dent. In that case the maximum pressure
experienced by the point at the trailing edge is obviously larger than the maximum
pressure observed by the point at equal distance from the center of the dent on the
leading edge. To visualize this difference we define:

T,

I(Xy — X) =0/ " P(Xy— X,T) dT (8.11)

to indicate the total “force” experienced by a point on the indented surface during
overrolling. This integral is constant for points far removed from the dent. For pure
rolling conditions this constant is 7 /2. For points in the vicinity of the dent the
integral will deviate from this value. The value of the integral as a function of the
distance from the center of the dent is presented in figure 8.8.

This graph displays an interesting feature. Far from the center of the dent,
the integral for a point on the leading edge equals the value of the integral for a
point on the trailing edge. However, over the entire dent the integral for points
on the trailing edge is larger than the integral for points on the leading edge. The
maximum difference between the two curves is some 8 % of the smooth surface value.
Similar calculations have been carried out for smaller amplitudes giving the same
overall result. However, in the case of a smaller amplitude the maximum difference
between the two curves is also smaller. Hence, the maximum difference increases
with increasing amplitude.
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FIGURE 8.8: Value of the integral T as a function of the distance from the center
of the dent | X; — X| on the indented surface (pure rolling).

These results indicate that the maximum sub-surface stress experienced by points
below the leading edge will be less than the maximum sub-surface stress experienced
by points below the trailing edge; this phenomenom is analyzed in detail in the next
gection.

8.3.2 Sub-surface Stresses

For the specific situation considered here, i.e. the overrolling of an indentation, the
implications for the sub-surface stresses have been studied by Lubrecht et al. [L2].
The tesults of this study are presented in detail in the aforementioned paper and
also in [V1]. However, since these results demonstrate the importance of the type of
investigation carried out in this chapter they are repeated here.

In section 7.1 it was emphasized that a theoretical model to describe the relations
between surface features and fatigne life is of great value since the experimental in-
vestigations are very time-consuming, energy-consuming and costly. The theoretical
model used is described in detail in [L2]. For this model to be accurate, the time-
dependent behaviour of the pressure in the lubricant film is essential, resulting in a
time-consuming series of stress calculations (5 cpu hours on a SGI 240).

As an example, the directional preference of fatigue initiation with respect to an
indentation is discussed. Generally, a spall is created after (below the trailing edge
of) the indentation. Using stationary lubricated or dynamic dry contact calcula-
tions, no preference in direction can be found. However, when the time-dependent
lubricated calculations are performed an asymmetry in the pressure profile is ob-



200 Chapter 8: Simulation of the overrolling of a surface feature

served (see figures 8.3, 8.7 & 8.8). This difference is reflected in the sub-surface
stresses, which are larger {(and much closer to the surface} below the trailing cdge
of the indentation (see figure 8.9).

Actually, the quantity displayed is not a stress, but a risk-related stress, incor-
porating the maximum shear stress over any angle, the hydrostatic pressure and the
fatigue limit of the material (see [I1]). For convenience we will briefly refer to it as
a “stress”.

This stress graph was obtained by computing the sub-surface stresses resulting
from the pressure distribution at each time step. For this purpose the indented sur-
face is monitored while the pressure profile is sweeping over it, and at each location
in the material the maximum stress is recorded with respect to the subsequent time
steps. It is obvious that far removed from the dent the iso-stress contours should
become straight horizontal lines, only close to the dent will these contours be modi-
fied. Note that the stress concentration below the trailing edge of the dent is larger
and extends much closer to the surface. As is explained in [12] the stresses can be
converted to a (fatigue) risk integral. The risk integral over the left part of figure 8.9
is almost twice as high as the integral over the right part. Since the difference in
stress is concentrated in a small region only (say 10%) the risk of spalling will be
much higher for the trailing edge of the dent, explaining the experimentally observed
preference. In real applications the depth of the indentations will be larger, and by
extrapolation of the theoretical results obtained from shallower dents the asymmetry
will be even more pronounced,

[ S— - |

FIGURE B.9: Maximum sub-surface stresses helow a dent during overrolling cal-
culated by Lubrecht [L1] (pure rolling). Conditions as in figure 8.1.
The arrow denotes the direction of overrolling.
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8.3.3 Condition monitoring

As mentioned above, surface indentations generally result in a significant reduction
of the fatigue life of an EHL component. Because the unexpected breakdown of one
of the bearings in a machine may have dangerous and/or expensive consequences,
the detection of surface defects, i.e. indentations or small spalls, is an important
topic in the condition monitoring of rolling bearings. One of the techniques employed
is based on the analysis of the vibration or acoustic signals. To a certain extent a
simulation as presented above can provide some theoretical support for the research
on this subject, in particular with respect to the relation between the indentation and
its contribution to the aforementioned signals. For that purpose the pressure as a
function of time is monitored at a certain location fixed in space. Figure 8.10 displays
the pressure in the center of the contact as a function of time for the conditions and
the surface feature considered in this section. Before the leading edge of the dent
reaches the specific location, and after the trailing edge passes the location the
pressure equals the steady state value. The passage of the indentation causes a
pressure variation. The magnitude and the frequency content of this variation will
be characteristic for its contribution to the vibrations or acoustic emission in the
bearing under the full film lubricated conditions assumed in this thesis.
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FIGURE 8.10: Pressure in the center of the contact (X = 0) as a function of T in
the case of the overrolling of a dent (pure rolling).
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8.4 The overrolling of a bump

This section presents the results of the numerical simulation of the overrolling of
a bump for the same load conditions as considered for a dent in section 8.3, i.e.
the maximum Hertzian pressure is 2.0 GPa. The bump geometry is the same as
the dent geometry used in the previous section, apart from the opposite sign of the
amplitude and the results apply to a wavelength of 0.5 rnm and an amplitude of
2 pm. As in the previous section, the simulation has been carried out using 208
time steps with 1409 nodal points in spatial direction. At the start of the simulation
(T = 0.0} the bump is located at X = —4.5, i.e. the solution cquals the smooth
surface steady state solution. For this stationary solution at T = 0.0 the reader is
referred to figure 8.1. The figures 8.11 to 8.13 show the solutions at the times when
the bump is located at X; = —0.5, 0.0, 0.5, respectively. For reasons of comparison
figure 8.14 repeats the steady state solution with the bump located at X; = 0.0
presented earlier. (figure 7.12).

Comparing the steady state solution with the bump located in the center of the
contact (figure 8.14) with the transient solution at the moment the bump is at this
position (figure 8.12) again shows the effect of the squeeze term. The differences in
the pressure profiles are very small. In the transient situation the pressure profile in
the vicinity of the bump is slightly asymmetric, i.e. the pressures at the leading edge
of the bump are somewhat larger and at the trailing edge they are somewhat smaller
than in the steady state situation. These differences can indeed be ascribed to the
squeeze term. For example, for points on the leading edge of the bump 8(pH)/oT
is smaller than zero which leads to an additional pressure generation compared to a
stationary situation. Similarly on the trailing edge the squeeze term is positive which
reduces the pressure generation compared to the steady state situation. Notwith-
standing the small differences between the pressure profiles the differences in the
film shape are more obvious. In the steady state solution the bump was hardly
visible in the film shape because of the large elastic deformation. However, in the
transient situation the bump clearly shows up in the film shape.
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FIGURE 8.11: Solution M = 100, L = 11.08. Pressure and film thickness as a
function of X. Transient solution in the case of pure rolling with
the bump at location: X; = —0.3.
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In addition to these pressure profiles and film shapes as a function of X at different
times, the pressure signal experienced by a fixed point of the surface with the bump
is monitored as a function of time. For example, figure 8.15 presents the pressure
as a function of time for two points on the trailing and leading edge of the bump
at equal distance from its center. Since the distance from the center of the bump is
relatively large, | Xz — X| = 0.5, both curves are nearly equal to the variations any
point of the surface would experience if the surfaces perfectly were smooth, see also
figure 8.6. However, for points located closer to the center of the bump the pressure
variation experienced by a point on the leading shoulder differs from the variation
experienced by a point at the same distance from the center of the bump on the
trailing shoulder. For example, see figure 8.16, where the pressure as a function of
time experienced by the two points for which Xz — X| = 0.1875.

The differences between the pressure variations experienced by points on the
trailing edge and the leading edge are again visualized with the integral of the
pressure over time, see equation 8.11. The value of this integral, I, as a function
of the distance from the center of the bump is presented in figure 8.17. The largest
value of the integral is found at the center of the bump. For large distances from the
center of the bump the values for a point on the leading and trailing edge are equal
and approximate the aforementioned constant for smooth surfaces and pure rolling
conditions, i.e. 7/2. However, in the intermediate region higher values are found
for points on the leading edge. As mentioned before this difference is caused by the
squeeze term causing an additional pressure generation since at this edge (pH)/6T

is negative.
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FIGURE 8.15; Pressure as a function of time for two points at Jocation Xq— X =
0.5 and Xy — X = 0.5 on the bumped surface (pure rolling).
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Contrary to the situation for a dent the consequences of a bump for the fatigue
life of the contact have not been studied because bumps don’t happen frequently
in practice. However, if they were studied the transient results would probably not
lead to additional insights compared to a steady state analysis. The largest values
of the integral are found at the center of the bump. It can be expected that below
the center of the bump the largest sub-surface stresses will be found and spalling
will most likely initiate at this location.

To conclude this section the pressure and film thickness at a fixed location in
the contact region are monitored as a function of time. As was explained before the
study of such “time signals” might be of considerable interest in the investigations
of the source of exitation of vibrations and/or acoustic waves, which are used for
condition monitoring purposes. For example figure 8.18 presents the pressure and
filn thickness in the center of the contact as a function of time. Before the trailing
edge of the bump reaches the center of the contact the pressure and film thickness are
equal to their smooth surface values. The passage of the bump leads to a significant
increase in the pressure and, surprisingly, also to an increase of the film thickness.
After the trailing edge of the bump passes the center of the contact the pressure
and film thickness slowly return to their respective smooth surface values.
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FIGURE 8.18: M = 100, L = 11.08. Pressure in the center of the contact (X = 0}
as a function of T in the case the overrolling of a bump (pure
rolling).
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8.5 The overrolling of waviness

This section presents the results of the simulation of the overrolling of an harmonic
waviness:

W (8.12)

where W denotes the dimensionless wavelength and A is again the dimensionless
amplitude. In the transient situation considered here X4 is defined according to:

R(X) = Acos (M)

Xo=X, + 2%1" (8.13)
The results presented in this section apply to a wavelength of 0.25 mm and an
amplitude of 0.5 gm. The load conditions are the same as assumed in the previ-
ous sections, i.e. the maximum Hertzian pressure is 2.0 GPa. Again pure rolling
conditions are assumed, i.e. uy/u, = 0.5. Consequently, the pressure profile and
film thickness are expected to be periodic with a wavelength in time that equals
the spatial wavelength of the waviness. At T = 0, the start of the stmulation, the
solution is assumed to be the stationary solution with X4 = 0.0. The simulation
has been carried out using 1409 nodes in spatial direction and a 256 time steps with
A; = 0.015625 to accurately describe the variations in time. Hence, the simulation
starts at T' =0 and ends at T = 4.0.

Because the simulation is started with the stationary solution the results will
only display the periodicity in time after a certain “running-in” time. As will be
shown later, from 7' = 2.0 onwards the solution is fully periodic in time with the
expected wavelength. Hence, the “running in” time equals the time a point needs
to pass the entire Hertzian dry contact region ~1 < X < 1.

The (dimensionless) pressure and the {(dimensionless) film thickness at the start
of the simulation are presented in figure 8.19. This figure displays all characteristic
features discussed in the previous chapter. Because of the relatively high & the
waviness hardly shows up in the film shape. However, it clearly affects the pressure
profile.

Figure 8.20 displays the transient solution for X4 = 3.0,1i.e. at a time past the
running-in time with the waviness in the same position relative to the center of
the contact as at the start of the simulation. In addition figure 8.21 displays the
transient (dimensionless) pressure and film shape for X; = 3.25, i.e. at the time the
waviness is in a position shifted half of its wavelength compared to the situation of
figure 8.20.

Again the differences between the solutions presented in figure 8.19 and 8.20
clearly demonstrate the effect of the squeeze term. As in the case of a bump,
the differences between the two pressure profiles are small. However, significant
differences are found between the film thickness results.
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In the transient situation the geometry of the surface feature is much less affected
by the elastic deformation, i.e. the original waviness profile is much more preserved.

As was mentioned earlier both pressure and film thickness should be periodic
in time with a wavelength of 0.5. This of course applies to the pressure and film
thickness at all locations in the contact region. To demonstrate this the figures 8.22
to 8.24 present pressure and film thickness as a function of time for X = -0.5,
X =0.0, and X = 0.5 respectively.

It appears that, indeed, after some “running in” time the pressure and film
thickness are periodic in time, This running in time depends on the location in the
contact. The pressure and film thickness in the center of the contact are periodic
with respect to time from T = 1.0 onwards whereas the pressure and film thickness
at X = 0.5 are only periodic from T = 1.5 onwards. Stmilarly periodicity will be
displayed from T = 2.0 onwards for X = 1.0. For points further downstream than
X = 1.0 the pressure is zero at all times. Hence, from T = 2.0 onwards the entire
sotution will be periodic. All three figures clearly show that the wavelength of the
oscillation in time equals the dimensionless wavelength of the waviness, i.e. 0.5,
as was expected because of the pure rolling conditions presumed. Note that the
amplitude decreases from X = —1.0 to X = 1.0. This can also be observed from the
figures 8.20 through 8.22. The same reasoning as presented in the previous section
applies, i.e. in spite of the high viscosities the pressure gradients slowly flatten the
surface feature during its motion through the contact region.
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8.6 Additional insights: sliding

So far the simulations were restricted to pure rolling conditions. The presented
results demonstrate that there are significant differences between the effects of a
feature on the pressure profile and film shape predicted by a stationary and transient
analysis respectively.

This seems to apply even more when both surfaces are ot moving at the same
velocity, i.e. in the case of slip, as can already be seen from the transient Reynolds’
equation. The reader is reminded that in the Hertzian contact region where the
coefficients (¢) are small this equation in the transient situation reduces to:

OGH) _ opH) .10

0.4 ar
As mentioned before this equation prescribes that # ~ H(X —T), or in other words,
it states that the change in the film thickness # caused by a feature travels with the
dimensionless speed of unity (in terms of real velocities it moves with the average
velocity: 0.5 u,} in the region of small coefficients (the Hertzian dry contact region}.
This is a very interesting observation since the equation does not state anything
about the velocity of the feature jtself. Hernce, the velocity with which the change
in film thickness induced by the feature is propagated through the Hertzian contact
region is independent of the velocity of the feature itself,
For example, consider the overrolling of a bump or an indentation. If the velocity
of the bumped or indented surface is smaller than the average velocity of the surfaces
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the change of the film thickness initiated upon entering the high pressure zone will
move faster through this region than the feature itself. Hence, monitoring the film
thickness in a fixed location in the Hertzian contact region as a function of time it
will already deviate from the steady state value before the bump or dent is even
at this location. A similar observation applies to the situation in which the surface
with the feature moves at a higher speed than the average velocity. The change in
the film thickness caused by the feature moves at a smaller speed through the region
of small coefficients than the feature itself, i.e. when the feature leaves the contact
region the change in the film thickness it induced is still present. The situation
for the overrolling of waviness in the case of slip occurs is even more involved. In
that case the pressure profile and film shape will be periodic in time, however, for
points in the Hertzian contact region the pressure will be periodic with a wavelength
determined by the velocity of the waviness itself (P = P(X - 2 uz/u, T)), and the
film thickness with a dimensionless wavelength that fits an integer number of times
in one (H = H(X - T)).

So far, only the equations are discussed. The next step is to demonstrate that
indeed such an eflect is observed when performing transient simulations under sliding
conditions. This section presents the results of the “overrolling” of an indentation
with a wavelength of 0.5 mm and an amplitude of 2 gm located at the surface
moving with velocity u;. The load conditions are the same as considered in the
previous sections, i.e. the maximum Hertzian pressure equals 2 GPa. Two situations
are considered. In the first situation the feature moves at a velocity smaller than
the average velocity, and in the second situation it moves with a velocity exceeding
the average velocity. To clearly visualize the aforementioned phenomenon, the first
set of results applies to the situation in which u; is significantly smaller than u,:
ug/u, = 0.25. Hence, at time T the position of the dent is given by:

Xy=X,405T (8.15)

Similar to the results presented previously the simulation has been carried out using
a uniform grid with 1409 nodes covering the domain —4 < X < 1.5. The simulation
starts at T = 0 with the dent at X; = ~4.5 and a timestep A; = 0.03125 was used.
At the start of the simulation the dent is entirely outside the domain. Consequently
the solution equals the steady-state smooth surface solution, e.g. see figure 8.1.
Figure 8.25 to 8.31 present the (dimensionless) pressure profiles and film shapes
at the times the dent is at different positions in the contact region.
In the situation presented in figure 8.25 the dent has just entered the Hertzian region.
This figure displays the initiation of the phenomenon described above. The top of
the dent can be recognized clearly at X = —0.75. The dent itself is symmetric with
respect to Xy, vet, the change in the film thickness caused by the indentation is
not. Figure 8.26 shows the dimensionless pressure profile and film thickness when
the dent is at X3 = —0.5, that is 16 time steps later. Now the effect is even more
pronounced. In the time it took the dent to move from X4 = —0.75 to X; = —0.5 the
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disturbance in film thickness has travelled a larger distance whereas the disturbance
in the pressure profile is fixed at the dent position.

The following figures show how the asynchronism between the pressure variation
and the film thickness variation evolves in time. Gradually the dent itself flattens
in a way similar to the stationary results presented in chapter 7. See for example
figure 8.28. This figure displays the pressure and film thickness at the time the
dent is exactly in the center of the contact. At this time the change in the film
thickness the dent created upon its entrance already leaves the Mertzian contact
region. The difference with the pressure aud film shape tor pure rolling conditions
when the change in film thickness, the dent and the change in pressure travel at the
same speed are obvious, e.g. see figure 8.3. In the case of pure rolling conditions
a film thickness change observed at a certain time, can be directly coupled to the
passage of the dent. It is clear that in the cage of sliding, contrary to the pure rolling
situation, changes in the film thickness are observed that can not directly be coupled
with the dent itself anymore. In fact, they appear to lead a life of their own.

The following figures 8.29 to 8.31 show how the initial change in the film thickness
caused by the dent moves out of the Hertzian contact region before the dent does
and how the dent itself gradually regains its original shape upon leaving the Hertzian
contact dry region itself,
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FIGURE 8.25: Solution M = 100, L = 11.08. Pressure and film thickness as a
function of X. Transient solution in the case of slip when the dent

is at Xy = —0.75 (up/u, = 0.25).
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In addition to the pressure profiles and film shapes as a function of the spatial
coordinate X the pressure and film thickness as a function of time have been moni-
tored for different positions in the Hertzian contact region. Figure 8.32 through 8.34
present pressure and film thickness as a function of time for X = —0.5, X = 0.0, and
X = 0.5. All three figures clearly illustrate the asynchronism between the pressure
variation and the film thickness variation. A change in the film thickness is already
observed before the dent reaches the respective position. Since the dent induced
change in the film thickness moves faster than the dent itself, the time interval be-
tween the moment the film thickness variation is observed at the specific location
and the moment the pressure variation is experienced increases when going further
downstream.
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FIGURE 8.32: M = 100, L = 11.08. Overrolling of an indentation. Pressure and
film thickness as a function of T at X = —0.5 in the case of the
overrolling of a dent (ua/u, = 0.25).
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Secondly the reverse situation is considered, i.e. the same load conditions, the same
calculational domain and number of nodes, and the same dent, however, the indented
surface moves with a velocity that is larger than the average velocity. In particular,
the presented results apply to uz/u, = 0.75. Consequently, the position of the dent
at time T is given by:

Xe=X,+157T (8.16)

At T = 0 the dent is located outside the calculational domain, i.e. at X, = —4.5.
The simulation has been carried out using 288 time steps with A, = 0.015625. This
different time step was chosen for reasons of comparison, i.e. to ensure that the
dent is at X = 0.0 (the center) at an exact timestep. Based on the equation and
the results presented earlier it is expected that in this case the dent travels faster
through the Hertzian contact region than the change in the filin thickness it initiated
upon entering this region. Hence, at a specific location well in the Hertzian contact
region the largest changes in the film thickness will only be observed at a time when
the dent has already passed this position. This effect is indeed observed in the
simulation results which are presented in the figures 8.35 to 8.43.

Figure 8.35 displays the (dimensionless) pressure and film shape as a function
of X shortly after the dent has entered the Hertzian dry contact region, i.e. when
X4 = -0.75. From the figure it is clear that already at this time the asynchronism
between the passage of the dent with the pressure drop and the film thickness
change exists. Figure 8.36 shows the solution 16 time steps later. Since the dent
moves faster than the average velocity the dent itself has traveled a larger distance
in the associated time interval than the change in the film thickness it caused upon
its entrance in the Hertzian dry contact region.

Figure 8.37 displays the filin thickness and pressure as a function of X al the
time the dent reaches the center of the contact. The asynchronism between the
pressure and film thickness change is fully developed and contrary to the results for
pure rolling conditions with the dent at this position, the dent itself hardly shows
up in the film thickness.

The following figures 8.38 to 8.40 show how the process proceeds in time. In
particular figure 8.39 displays how the dent gradually regains its original shape
when moving through the region of decreasing pressure. Finally figure 8.40 shows
the pressure profile and film thickness as a function of X when the dent leaves the
Hertzian contact region, i.e. when X; = 1.0. Although the indentation has almost
left, the changes in the film shape it induced upon its entrance of the Hertzian
contact region are still present in the solution.

To demonstrate this effect more clearly the film thickness and pressure are mon-
itored as a function of time at a specific location in the Hertzian contact region.
Figure 8.41 to 8.43 show the pressure and film thickness as a function of time for
X =-0.5, X = 0.0, and X = 0.5. These figures again clearly show the asynchronism
between the passage of the dent (the pressure drop) and the film thickness change.
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In particular, downstream in the contact region the changes in the film thickness
caused by the indentation are observed only when the dent has already left the
contact region.
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FIGURE 8.35: Solution M = 100, L = 11.08. Pressure and film thickness as a
function of X. Transient solution in the case of slip when the dent
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This section started with the observation that, according to the Reynolds equation,
in moderately to highly loaded EHL contacts the changes in the film thickness caused
by a feature located on a non-stationary surface travel through the Hertzian contact
region with the average velocity of the surfaces. This is obvious for pure rolling
conditions but it also applies in the case of slip. Consequently, if slip occurs, from the
moment the feature enters the Hertzian contact region changes in the film thickness
occur that travel faster or slower than the feature itself. Hence, monitoring the film
thickness as a function of time at a certain location the major change in the film
thickness already occurs before the dent reaches the location or it occurs when the
dent has already passed. The occurence of this phenomenon was predicted by simply
looking at the equations and confirmed by simulation results for the overrolling of
a dent in the case of sliding. To the authors knowledge this phenomenon has not
been reported before in theoretical studies. Since it is obviously predicted by the
equations, the most likely explanation that it has not been observed before is that
most transient simulations presented so far have been carried out using only a few
(relatively large) timesteps.

According to the author the “physical” explanation of the feature lies in the
conservation of mass in the flow. For example, consider the overrolling of a dent.
Upon entering the Hertzian contact region the total amount of mass in the film in
this region increases because of the fluid trapped in the dent. At moderately to
highly loaded conditions, pressure driven flow is virtually impossible in this region.
In the model considered here the reason is the high viscosity of the fluid. However,
the same reasoning applies in case of solidification of the fluid at high pressures.
The only alternative for the system to move the trapped fluid through the Hertzian
contact region without violating mass conservation is by means of Couette flow and
thus by means of film thickness variations.

The phenomenon has some serious consequences. It shows that, when studying
the effect of a surface feature in EHL using a model based on the Reynolds equation
it is wrong to assume that, if the feature is located on the surface moving with
a non-zero velocity iz, the fllm thickness will be a function of = — us t. This
assumption is obviously true in case of negligible elastic deformation, i.e. in the case
of hydrodynamic lubrication. However, in EHL contact situations it only applies in
the case of pure rolling or for very lightly loaded situations.

Over the last few decades several researchers have presented modified Reynolds
equations to account for the effect of surface features. These equations are quite
often based on the aforementioned assumption. Consequently care should be taken
when applying such Reynolds equations to EHL contact situations.

Having recognized the phenomenon in the model and confirmed its occurrence
by means of numerical simulation it would be interesting to know if it really occurs
in practical contact situations. At first sight one might argue that this is unlikely
since it is caused by the high viscosities which are not realistic. However, as was
explained above, the phenomenon can occur in any situation where pressure induced
flow almost vanishes, for example in case of solidification of the lubricant. With
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respect to roller bearing applications the chances of observing the effect are probably
negligible. In these situations the slip is generally small whereas, due to short time
a feature spends in the contact region, the phenomenon can only be recognized
clearly if the slip is sufficiently large. However, it may be of importance in the
contact between gear wheels,

It would be interesting to check the occurrence of the phenomenon by means of
experiments. In particular, if it really occurs it should be possible to show it with
an optical interferometry rig extended with a high speed camera. In this respect
the experimental results presented by Kaneta and Cameron [K1] already a decade
ago are interesting. Running an artificially “rough” steel ball against a smooth glass
disk they ohserved a deformation of the asperities that strongly depended on the
sliding conditions. In particular, in the case the “rough” ball was moving and the
disk was stationary (pure sliding) they found micro constrictions at the inlet side of
the asperities whereas the macro constriction occured at the outlet. To the author’s
opinion this effect and the results presented in this chapter are related and further
research along these lines is recommended.

8.7 Conclusion

For the same operating conditions, the overrolling of an indentation, a bump and a
harmonic waviness were studied in detail for pure rolling conditions. The results of
these simulations demonstrated that transient studies are of great importance and
that extrapolation of results from steady state conditions to practical conditions
where a surface feature is moving may be misleading.

This particularly applies to the film thickness results. It has been shown that
contrary to the steady state situation where the geometry of a feature located in
the contact region is significantly changed, in the transient situation assuming pure
rolling, once the feature is in the Hertzian contact region it tends to move through
while undergoing only small geometrical changes.

In addition, the results presented for the overrolling of an indentation led to
an interesting conclusion for the fatigue life of the contact. From the results it
was concluded that spalling will most likely occur near the trailing edge of the
indentation. The very same preference that has been found in experiments.

The transient analysis also led to the discovery of an interesting property of the
Reynolds equation when applied to EHL contact situations. It was shown that the
changes in the film thickness caused by a moving surface feature travel through the
Hertzian contact region at the average speed of the surfaces regardless of the speed
at which the surface feature moves itself. This observation was confirmed by the
results of transient simulations of the overrolling of an indentation in case of slip.
The simulation results showed that the occurrence of a film thickness change at a
certain point in time can no longer directly be associated with the passage of the
feature. This phenomenon provides an interesting subject for future research.
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Chapter 9 |

Circular contact results: Smooth
surfaces

The previous chapter concluded the results for the EHL line contact problem pre-
sented in this thesis. Attention is now directed towards the EHL circular contact
problem. To start with the present chapter considers the situation in which the
surfaces are perfectly smooth. With the solver described in chapter 5 this problem
has been solved for a wide range of load conditions.

First section 9.1 discusses the variation of the pressure profiles and the associ-
ated film shapes with the variation of the governing parameters. Subsequently, the
dependence of some characteristic film thicknesses on the operating conditions is
investigated in section 9.2, In particular, diagrams are presented giving the mini-
mum, central and average film thickness as a function of the governing parameters.
From the calculational results a formula has been derived that accurately predicts
the central film thickness in the entire parameter range considered.

In section 5.6 it was already demonstrated that the algorithm is fast. The re-
sults presented in this chapter demonstrate that the algorithm also meets a second
requirement necessary for the study of more complex (non-smooth) EHL circular
contact situations, i.e. it is very stable. Results of the application of the algo-
rithm to circular contacts with various types of surface features will be presented in
chapter 10.

9.1 Solutions

First the variation of the pressure profile and film shape with variation of the op-
erating conditions is investigated. The results are presented in terms of the Moes
dimensionless point contact parameters M and . However, for reasons of compati-
son also values of the Hamrock and Dowson dimensionless parameters, characterizing
the operating conditions are given.
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9.1.1 Calculational details

The majority of the presented solutions have been calculated on a domain {(X,Y) ¢
R} -45 < X <€ 1.5,-3 <Y < 3}. However, in very lightly loaded situations a
larger calculational domain has been used. For these conditions the use of a large
domain is essential. If the domain, and particularly if the inlet region, is not chosen
large enough it results in an underestimation of the film thickness. This numerical
artefact is referred to as numerical starvation, e.g. see Lubrecht [L1] and also Kweh
et al. [K1], and was also mentioned in the previous discussion of the line contact
problem (chapter 6). In heavily loaded situations a smaller calculational domain
than mentioned above is sufficient to obtain an accurate estimate of the film shape,
e.g. the choice of X, = -2.5, X, = 1.5 and Y, = 2 serves well.

Because the surfaces are assumed to be perfectly smooth, the solutions for the
pressure and the associated film shapes must be symmetric with respect to the cen-
terline of the contact, i.e. ¥ = 0. Untill now, similar point contact calculations
have been performed using this symmetry condition as an explicit boundary con-
dition. This enables solution of the problem on only half of the domain, e.g. sec
Lubrecht {L1]. For two reasons this approach has not been followed here. Firstly,
using the full domain is much more convenient in the calculation of the clastic de-
formation integrals with the multilevel multi-integration algorithm. Secondly, and
even more important, it would limit future studies of the effect of surface features
to symmetric features only. Hence, the problem is solved on the entire domain with
only the usual Dirichlet condition P = 0 on all four boundaries of the calculational
domain. Consequently, in the present application (calculational domain and unde-
formed gap symmetric with respect to Y}, the symmetry in the solutions should
appear naturally.

9.1.2 Varying M and L

Figure 9.1 presents the pressure profile for a relatively lightly loaded situation, i.c.
M = 10, and L = 10. This corresponds with the following values of the Hamrock and
Dowson parameters: W = 9.46 1078, G = 4729, and U = 1.0 107", The values of the
parameters @ and A are: & =7.85, A =0.51. Hence, for & =1.7 10~% the maximum
Hertzian pressure for this load situation is only 0.46 GPa. The solution has been
calculated using 263.169 nodes on the entire domain which extended from X, = -9
to X, = 3 in X direction and from —Y, to ¥, in Y direction with ¥, = 6. This large
domain was used to avoid numerical starvation. The associated film shape is shown
in figure 9.2. Note the reversion of the vertical axis.

In spite of the relatively small load the pressure profile and film shape show the
characteristic EHL features. The pressure profile more or less approximates a semi-
ellipsoid and because of the low load in the inlet region the pressure smoothly builds
up to this semi-ellipsoid. Furthermore, the pressure shows the three dimensional
equivalent of the pressure spike just ahead of the cavitated region. Obviously the
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local nodal density in the spike region is not large enough to smoothly describe
the pressure profile in the spike region and consequently it looks ragged. The film
shape shows the well known horse-shoe shaped region where in this particular low
load situation the side lobes where the minimum film thickness occurs are relatively
large. This can be seen from figure 9.2 but is more obvious from a contour plot of
the film thickness, e.g. see figure 9.13.

To demonstrate the effect of load, the pressure profiles and the associated film
shapes for varying M and constant L (L = 10) are displayed in the figures 9.3 to 9.8.
In addition to this variation of M the figures 9.9 to 9.12 give the pressure profile and
the associated film shapes for M = 200 and L = 0 and L = 5 respectively. Together
with figure 9.5 and figure 9.6 the latter figures display the characteristic changes in
the solutions with increasing dependence of the viscosity on the pressure. Finally
figure 9.13 gives the film thickness contour plots for a large number of parameter
values among which also the situations presented in the figures 9.1 to 9.12,

The variations in the solutions with increasing M for a given L resemble the
tendencies discussed for the line contact problem in section 6.1.2. With increasing
M the pressure profile approximates the Hertzian dry contact pressure and both
the region of pressure generation (inlet) and the pressure spike narrow down. In
addition, as for the line contact problem, the minimum film thickness decreases
with increasing M (load).

As mentioned above, characteristic for the present circular contact situation is
the {ormation of the horseshoe shaped region in the film thickness, i.e. the sidelobes.
These sidelobes can be recognized clearly in the film thickness plots and it can be seen
that with increasing M they become smaller and “move” in the outward direction
until for large M the minimum film thickness is practically found at the side of the
contact i.e. at X = 0, Y = £1. This can be seen from the colourgraphs but is even
more obvious from the film thickness contour plots of figure 9.13. This decrease in
size of the sidelobes forms a complication with respect to the accurate estimation
of the minimum film thickness. With increasing M this becomes more difficult,
as was also observed by Kweh et al. [K1] and will be discussed in more detail in
section 9.2.2.

Comparison of the pressure profiles presented in the figures 9.9, 9.11 and 9.5 shows
the influence of the fact that the viscosity increases with pressure on the solution.
Firstly, the pressure profile for the isoviscous situation (L = 0) presented in figure 9.9
clearly has no spike and for this relatively high value of M it closely approximates
the Hertzian semi-ellipsoid pressure profile. With increasing L a pressure spike
gradually develops in an analogous way as was found for the line contact problem
(see section 6.1.3}. This is illustrated by figure 9.11 (L = 5) where “the spike” shows
up in the form of a ridge that can still be described accurately with the present
nodal density ((nz + 1)} x (ny + 1) = 263.169). Subsequently, with increasing L its
height increases and it becomes a real “spike”, e.g. see figure 9.5 where it is fully
developed. In that situation the local nodal density of the applied grid is obviously
not large enough to describe the spike accurately and consequently it looks ragged.
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FIGURE 9.1: Pressure profile M = 10 and I = 10 (W = 9.46 1078,
U=1010"",G=4729, or & = 7.85 and A = 0.51).

FIGURE 9.2: Film shape associated with the pressure profile presented in
figure 9.1, i.e. M = 10 and L = 10.
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FIGURE 9.3: Pressure profile M = 50 and L = 10 (W =473 1077,
U=1.010"", G =4729, or @ = 13.42 and X = 5.96 1072).

FIGURE 9.4: Film shape associated with the pressure profile presented in
figure 9.3, ie. M =50 and L = 10.
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FIGURE 9.5: Pressure profile M = 200 and L = 10 (W = 1.89 1075,
U=1010"", G =4729, or @ = 21.31 and XA = 9.39 1073),

FIGURE 9.6: Film shape associated with the pressure profile presented in
figure 9.5, i.e. M = 200 and L = 10.




9.1 Solutions 235

FIGURE 9.7: Pressure profile M = 1000 and L = 10 (W = 9.46 107,
U=1010"" G =4729, or & = 36.44 and A = 1.10 1073},

FIGURE 9.8: Film shape associated with the pressure profile presented in
figure 9.7., i.e. M = 1000 and L = 10.
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FIGURE 9.9: Pressure profile M = 200 and L =0 (W = 1.89 1079,
U=1010",G=0,0ora=0 and A =9.39 1073).

FIGURE 9.10: Film shape associated with the pressure profile presented in
figure 9.9, i.e. M = 200 and L = 0.
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FIGURE 9.11: Pressure profile M = 200 and L = 5 (W = 1.89 10,
U=1.010"", G =2364, or @ = 10.65 and X = 9.39 10-3).

FIGURE 9.12: Film shape associated with the pressure profile presented in
figure 9.11, i.e. M =200 and L = 5,
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M =50 M = 100
L =0 L =0
AH =2510"3 AH =2510"3
M =50 M =100
L =25 L =25
AH =2510"3 AH=2510"3
M =50 M =100
L =5 L =5
AH=2510"3 AH =2510"3
M =50 M =100
L =10 L =10
AH =2510"3 AH=2510"2

FIGURE 9.13: Continued.
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M =200
L =0
AH =2510"2
M = 200
L =25
AH =12510"3
M = 200
L =5
AH =12510"2
L‘“—‘T—"-—-——-“
M =200
L =10
AH=2510"?

FIGURE 9.13: Continued.

M = 500

L =0

AH =6.2510"*
© M =500

L =25

AH =6.25101

M =500

L =5

AH =6.2510"*

M =500

L =10

AH =1.251073
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M = 1000
L =0
AH =5.010"1

AH =1.2510"3

FIGURE 9.13: Concluded.
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Another effect related to the increasing pressure dependence of the viscosity can be
seen from the film thickness contour plots of figure 9.13. For a given value of I with
increasing M the value of & and in fact the maximum Hertzian pressure increases.
Consequently, the viscosity is higher and the flow in the contact region gradually
approximates a pure shear flow. This follows from the fact that the film thickness
contour plots become almost symmetric with respect to the Y-axis. This effect is
particularly visible in the contour plots for M = 500, L = 10 and A = 1000, L = 10.
With e= 1.7 10~® the latter solution represents a maximum Hertzian pressure of
2.14 GPa.

9.2 Film thickness

For the line contact problem discussed in chapter 6 the natural choice for a film
thickness parameter to be used in overview graphs was the minimum film thickness.
In the case of point contact problems the situation is more complex. Because of the
additional dimension the fluid can flow around a region of small film thickness and,
as a result, the ratio between the central film thickness (the film thickness at the
location where both 8P/8X = 0 and 8P/3Y = 0) and the minimum film thickness is
not necessarily a constant. This has indeed been observed over the past few years,
e.g. see Lubrecht [L1] and Kweh et al. [K1] and the value of this ratio, H;/Hr, as a
function of M and L obtained from the present calculations is displayed in table 9.1.

This table clearly shows that the ratio is not a constant and consequently the
minimum and central film thickness differ in their dependence on the load condi-
tions. Hence, the question arises which parameter can be used best to present an
overview of the results: The minimum film thickness, the central film thickness or
maybe an average film thickness. In this work graphs of all three will be presented.
Before doing so, section 9.2.1 discusses some asymptotic solutions for the central
and the minimum film thickness that have been presented so far. Subsequently in
section 9.2.2 the film thickness diagrams are given and in section 9.2.3 a formula is
presented predicting the central film thickness as a function of the operating condi-
tions.

M
3 5[ 10| 20| 50 100 | 200 | 500 | 1000
0 13131313 ]14]| 15|16 L7 1.9
1 131131311405 17119 23| 27
L125(1.3[1311.3 (1517 1.9] 22|26 3.1
5 1.3(13|13 (15|17 1.9 22271 3.1
1071311213 [15(161 18] 20] 24| 28
25 1.3 |1.2|1.2|13(15)16]| 1.8} 21| 25

Table 9.1: Ratio H./H,, as a function of M and L.
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9.2.1 Asymptotic solutions

For the case of the line contact problem the minimum or central film thickness
could be solved analytically in some simplified situations, e.g. Martin [M1] and
Giimbel [G1], Ertel [E1] and Grubin [G2], Moes [M2], which resulted in the well known
asymptotic solutions. In the point contact situation the additional dimension makes
an analytical solution of the problem, even in the restricted situations, complicated,
if not impossible, and only a few asymptotic solutions for minimum or central film
thickness are known to the author.

Firstly, the rigid isoviscous asymptote is discussed, i.e. the equivalent of the
Martin and Gimbel solution for the line contact problem. A straightforward di-
mensional analysis shows that this asymptote can be written as:

Hml'n = C AJ_2 (91)

The remaining problem is to determine the value of the constant. In a more general
sense, i.e. for elliptical contacts, this subject has among others been addressed by
Kapitza [K2] and also by Brewe et al. [B1]. For a circular contact Kapitza’s analysis
gives C = 28.4 whereas according to Brewe et al.: C = 35.0. The relatively large
difference between these two values can be ascribed to the different types of analysis
used. In particular, Kaptiza's prediction is based on half Sommerfeld solutions, i.e.
disregarding cavitation,

The author solved this specific asymptotic problem numerically. For the circu-
lar contact C' = 35.5 was obtained, see [V1]. This value was already reported by
Lubrecht [L1]. Comparing this result with the value presented by Brewe et al. it
can be stated that this asymptotic solution is established rather accurately. Hence,
it is justified to adopt the following formula for the rigid isoviscous asymptote for
the circular contact:

Hpin=355 M° (9.2)

In this asymptotic situation in which elastic deformation is absent the minimum
film thickness equals 0.75 times the central film thickness. Consequently, the dimen-
sionless central film thickness is given by:

Hepp = 47.3 M (9.3)

The second asymptotic situation considered is referred to as elastic-isoviscous. This
asymptote is of particular interest for situations in which at least one of the surfaces
has a small stiffness, e.g. in the case of seals. In terms of the Moes dimensionless
parameters these situations are characterized by: L = 0 and large M

Contrary to the situation described by (9.2) and (9.3) now the elastic deformation
is of great importance for the fluid film formation. All solutions for large M and
L 7 0 clearly show this elastic deformation for example in the large region of nearly
uniform film thickness and the formation of the side lobes, e.g. see figure 9.13.
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Consequently, to describe this asymptotic situation in fact both a formula for the
minimum as well as a formula for the central film thickness are required.

A solution for long elliptical contacts with the major axis perpendicular to the
direction of rolling was derived by Moes [M2]:

Hipin = 2.34 M1 (9.4)

However, because the analysis leading to this equation neglects the side flow it
will probably overestimate the film thickness when applied to the circular contact
situation. For that situation Moes proposed:

Hopin = 1.31 M™215 (9.5)

By means of the analytical solution of Reynolds’ equation on the centerline of the
contact under the assumption of a circular symmetric pressure profile and the elastic
deformation given by Hertz [H2], the author derived the following expression for the
central film thickness, see [V1]:

Hepn = 0.97M 7215 (9.6)

Via a comparison of the predictions of this equation with numerically calculated
values Lubrecht [L1] showed that the predicted slope of ~2/15 was fairly accurate
but that the constant was too small.

The three formulas (9.4) to (9.6) are entirely based on analytical arguments.
Alternatively Hamrock and Dowson [H1] curve fitted the results of some numerically
calculated solutions and presented formulas for both the central and the minimum
film thickness in the elastic isoviscous situation. In terms of the Moes dimensionless
parameters their equation for the minimum film thickness reads:

Hpin = 2.035 M3 (9.7)

whereas their equation for dimensionless central film thickness reads:

H..n = 5.29 M0 (9.8)

Note that there is only a slight difference in the way in which the minimum film
thickness and the central film thickness depend on the load (M). This doesn’t seem
to agree with results of numerical calculations presented by Kweh et al. [K1] and
Lubrecht [L1] who found that the minimum film thickness decreases much faster with
increasing M than the central film thickness does. This subject will be addressed in
more detail in section 9.2.2.

For the third asymptotic situation considered in chapter 6 for the line contact
problem, i.e. the Grubin solution, the author derived the following equation:

H,, = 1.02 M™% [3/4 (9.9)
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This formula was obtained solving Reynolds’ equation on the centerline of the con-
tact assuming a circular symmetric pressure profile and the elastic deformation given
by Hertz [H2], see {V1]. Comparison of the predictions of this formula with calcula-
tional results showed that it was relatively inaccurate.

9.2.2 Film thickness diagrams

Figure 9.14 displays the presently calculated values of H,.;, as a function of M and
L. The most extreme situation represented in this diagram is M = 1000 and L = 25.
Alternatively this case is described by @ =91.09 and A =1.10 10-3. Values of the
Hamrock and Dowson parameters describing these conditions are: W = 9.46 10~4,
U =781107% and G = 4729. With o =1.7 10~® the maximum Hertzian pressure for
this load situation is 5.35 GPa. The reader is reminded that, for the same reasons as
mentioned for the line contact problem in chapter 6 (irrealistically high viscosities,
lubricant solidification and gross plastic deformation), such high loads are of little
practical relevance and the result is only displayed to demonstrate the stability of
the algorithm.

In this figure the drawn line on the left represents the rigid isoviscous asymp-
tote, i.e. equation (9.2). In addition the elastic isoviscous asymptote according to
Hamrock and Dowson [H1] (equation (9.7)) is plotted. The figure shows that this
latter asymptotic solution compares favourably with the numerically calculated val-
ues although for large M (M = 1000) the calculated value falls somewhat below the
prediction of equation (9.7). Also for L > 0 and large M the dimensionless minimum
film thickness shows a tendency to decrease with a larger slope than equation (9.7)
predicts. This probably is a numerical effect caused by the fact that for high values
of M the sidelobes become very small, see figure 9.13. As a result at least locally
a large nodal density is required to obtain an accurate estimate of its value and
location. This only applies to the minimum film thickness. An accurate estimate of
the central film thickness does not require such large nodal densities.

This observation probably explains why the values of Hpin for M > 100 and
small L presented by Lubrecht [L1] are much smaller than those obtained from the
present calculations for the same conditions whereas the value of the central film
thickness is about the same. This need for a large local nodal density to accurately
represent the side-lobes in these situations also becomes evident from comparing the
film thickness contour plots presented in [L1, page 132-135} with those for the same
conditions presented in figure 9.13.

Figure 9.15 shows the presently calculated values of the dimensionless central film
thickness, Heen, as a function of M and L. The drawn lines indicate the predictions
of this film thickness according to a formula presented in section 9.2.3. Clearly the
calculational results and the predictions of this formula match quite accurately.
Finally, figure 9.16 presents the calculated values of H,,, the dimensionless average
film thickness, as a function of M and L, where the average is taken over the Hertzian
contact region (X? + Y% < 1).
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FIGURE 9.14: Calculated values of the dimensionless minirnum film thickness pa-
rameter H,;. (+) as a function of M and L, the drawn lines give
the predictions of equation (9.2) and (9.7) respectively.
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FIGURE 9.15: Calculated values of the dimensionless central film thickness pa-
rameter H..., () as a function of M and L, the drawn lines give
the predictions of equation (9.12) presented in section 9.2.3.
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FIGURE 9.16: Calculated values of the dimensionless average film thickness pa-
rameter H,, (%) as a function of M and L.

9.2.3 Film thickness formula

From the calculational results the following asymptote for the central film thickness
in the elastic isoviscous regime was derived:

Hon = 1.96 M1/ (9.10)

The predictions of this formula accurately approach the calculated values for large
M and L = 0. Note that the slope -1/9 is less steep than the slope of the Hamrock
and Dowson minimum film thickness asymptote (equation (9.7)) for these conditions.
This clearly shows that the minimum film thickness decreases much faster with load
than the central film thickness does.

For the same situation (large M) but with L > 0 the following equation quite
accurately predicts the central film thickness:

Heen = 1.70 M~1/% 314 (9.11)

Using three parameters r, s and ¢ to take care of a smooth transition in the inter-
mediate region the equations (9.3), (9.10) and (9.11) can be merged into one expres-
sion that predicts the dimensionless central film thickness over the entire parameter
range. This formula was developed by Moes [M2) and reads:

s/r /s
Hon = [{(1.70 M7YE LAy (196 MYy} 4 (473 M‘z)‘] (9.12)
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where v, 5 and t are given by:

r = exp{l — 6/(L +8)} (9.13)
s=12—10 exp(M™?) (9.14)

and: ise
t=1-—exp{-09 W} (9.15)

Note that this formula has exactly the same structure as the minimum film thickness
formula (equation (6.10)) derived for the line contact problem. The straightforward
structure allows easy programming on a personal or pocket computer.

The values for the dimensionless central film thickness predicted by equation (9.12)
are indicated by the drawn lines in figure 9.15. When compared with the calculated
values it shows that this formula accurately predicts the central film thickness in
the entire parameter regime considered in the present study.

9.3 Conclusion

The algorithm developed for the solution of the EHL circular contact problem that
was described in chapter 5 has been applied to the situation where the surfaces
are perfectly smooth. The variation of the pressure profile and particularly the
variation of the filin thickness was studied over a wide range of parameter values.
This parametric study has resulted in an accurate formula for the prediction of the
central film thickness.

Although the subject was discussed only briefly, the pressure profiles presented
in this chapter showed that, as was found earlier for the line contact, the (three
dimensional equivalent of) the pressure spike, only occurs in part of the parameter
regime. In addition, for a given M it developes gradually from a small ridge into a
real “spike” when the dependence of the viscosity on the pressure increases.

This chapter was restricted to the idealized situation of perfectly smooth surfaces.
In the next chapter some more complex EHL circular contact situations will be
considered.
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Chapter 10

Circular contact results: Surface
features

So far the circular contact results were restricted to the situation of perfectly smooth
surfaces, i.e. to the macro geometry of the contact only. However, this is a rather
crude approximation of the reality in which the surfaces have a specific micro-
geometry that will also affect the pressure profile and film shape,

This chapter considers the effect of some microgeometrical surface features on
the pressure profile and film thickness in an EHL circular contact. As was explained
in chapter 7, one of the reasons for carrying out such studies is that they can provide
input, i.e. the pressure profile, to sub-surface stress calculations which are essential
to obtain insight in the relation between surface imperfections and the fatigue life
of the contact.

However, for point contacts there is another important reason to carry out such
studies. In the case of a line contact the entire flow must pass the feature. As a
result, in the steady state situation, the feature is almost completely flattened and
the film shape is hardly affected. For point contact problems the situation may
be quite different. Because of the additional dimension the fluid in principle can
flow around a feature and consequently the feature may (locally) have a much more
significant effect on the filimn thickness,

As in the line contact the microgeometrical features can be distinguished with
respect to their characteristic length scale. On the one hand there are the features
with a relatively large characteristic length scale, such as indentations, humps and
waviness and on the other hand there is surface roughness.

The influence of “large scale” microgeometrical features on the lubrication of
circular contacts has already received quite some interest over the last few decades,
particularly from an experimental point of view. Using optical interferometry several
anthors have measured film shapes in the case of artificially created surface imper-
fections e.g. [J1,W1,W2,K1,C1,C2). Also from a theoretical point of view this subject
has been addressed although, unlike the situation for the line contact problem, the
number of papers dealing with the effect of microgeometrical features in point con-
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tacts is rather limited, e.g. Lubrecht [L1,L2], Barragan de Ling et al. [B1], Kweh et
al. [K2] and also Seabra and Berthe [S1). In particular, Lubrecht [L1] presents an
extensive series of results showing the effect of surface features upon the pressure
profile and film shape. Among the features he considered are harmonic waviness
{transversal and longitudinal), harmenic furrows and ridges {transversal and longi-
tudinal) and an isotropic harmonic bump. However, his results are restricted to a
relatively lightly loaded situation (ps = 0.5 GPa).

With respect to surface roughness the situation is less favourable. Only a few
papers dealing with this subject are known to the author. The reader is for example
referred to Bush and Skinner {B2], Zhu and Cheng [Z1] and to Jeng and Hamrock {J2].
From a point of view of surface fatigue life, unfortunately, all three studies have in
common that an averaged approach is used, i.e. a perturbation approach and the
flow factor method respectively. Furthermore, the results have been obtained using
a rather limited number of nodes and are restricted to relatively lightly loaded
conditions.

The main reason for the limited number of papers dealing with the aforemen-
tioned topics from a theoretical (calculational) point of view is probably the compu-
tational complexity of the problem. Firstly, already in the case of perfectly smooth
surfaces the accurate solution of the pressure and film shape requires a relatively
large number of nodes. This situation is even worse if a local feature has to be in-
cluded. It will be clear that for these kind of studies a fast algorithm is a prerequisite
as was explained in chapter 1. Secondly, the study of surface features puts a signif-
icant strain on the stability of the algorithm since locally very extreme conditions
may occur.

In chapter 9 it was demonstrated that the algorithm for the numerical solution
of the circular contact presented in this thesis is very stable and allows solution of
the problem to high loads with large nodal densities. In the present chapter the
algorithm is tesied on some situations with “large scale” surface features, i.e. in-
dentations, bumps and longitudinal as well as transverse waviness. The presented
results apply to one specific load condition and are restricted to steady state sit-
uations. In addition it is assumed that the Reynolds equation remains valid, i.e.
only relatively shallow features will be studied. With respect to indentations and
waviness the validity of Reynolds’ equation is not the only reason for this restriction,
As discussed in chapter 7 for the line contact problem, the validity of the results
for these features obtainable with the present model is limited because of the way
it accounts for cavitation, e.g. see also section 7.2.3.2.

10.1 Calculational details

The load conditions are representative for an actual bearing application. All pa-
rameters are fixed and the conditions are such that the maximum Hertzian pressure
is 2.0 GPa. Table 10.1 gives the values of the different parameters and the result-
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Parameter | Value Dimension
E' 2.26 - 10" | [Pa]

o 2.2.107% | [Pa77]
z 0.68

To 40-1073 Pas
U, 3.5 ms~!]
R 1.80-1072 | [m

a 5.0-1074 m

Ph 2.0 - 10° {Pa}
M 1007.6

L 12.05

& 44.0

A 1.09 - 10~°

Table 10.1: Parameter values used in the calculations.

ing values of the Moes dimensionless parameters as well as the values of & and A.
The values of the Hamrock and Dowson dimensionless parameters for this loading
situation are: W = 1.43 1075, U = 1.72 10! and G = 4972.

In section 10.2 the smooth surface pressure profile and film shape is discussed.
Subsequently in the following sections of this chapter it is investigated how the
pressure profile and film shape for this load situation are affected by some surface
features. To take into account a surface feature the equation for the dimensionless
film thickness, i.e. equation (2.49), is extended to:

2

X? vy
HX,Y) = Ho+ 5+ 5 - RX,Y)+

2 o o P(X,YdX'dY'
x? —oo/—oo] \/(X — X4 (Y - Y)? (10-1)

where R(X,Y) denotes the undeformed geometry of the surface feature.

10.2 Smooth surface solution

The contour plots of the (dimensionless) pressure profile and the (dimensionless)
film shape for this load condition assuming perfectly smooth surfaces are depicted in
figure 10.1 and 10.2. In addition figure 10.3 displays the pressure and film thickness
at the centerline of the contact (¥ = 0). Furthermore, figure 10.4 shows a cross-
section of the pressure profile and film shape in the perpendicular direction, i.e.
pressure and film thickness as a function of ¥ on the line X = 0.
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The solution has been calculated using 263.169 nodal points on a grid covering the
domain {(X,¥) € R? -25 < X £ 15,-2 <Y < 2}. Because of the relatively
high value of & (@ =44) the pressure profile closely approximates the Hertzian dry
contact (semi-ellipsoid) pressure profile. This is illustrated by figure 10.3 and 10.4.
In the contour plot this is reflected by the fact that the lines of constant pressure
show up as circles. The pressure profile deviates from the Hertzian semi-ellipsoid in
the inlet region and just before the outlet region where the pressure spike occurs.

Figure 10.2, the contour plot of the film thickness, shows that the side lobes,
obvicusly visible in figure 10.4, are rather small. This is characteristic for such
a large value of M as considered here. In addition the region of nearly uniform
film thickness covers almost the entire Hertzian dry contact circle. The calcuiated
minimum film thickness for this situation is 0.14 pm whereas the calculated central
film thickness amounts to 0.40 pm
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FIGURE 10.1: M = 1007.6, L = 12.05. Pressure profile contour plot in the case
ol smooth surfaces, AP = 0.1.

FIGURE 10.2: M = 1007.6, L = 12.05. Film thickness contour plot in the case of
smooth surfaces, AH = 7.5 1674,
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FIGURE 10.3: M = 1007.6, L = 12.05. Pressure, P, and film thickness, H, as a
function of X af the centerline Y = 0 in the case of smooth surfaces.
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FIGURE 10.4: M = 1007.6, L = 12.05. Pressure, P, and film thickness, H, as a
function of Y at the line X = 0 in the case of smooth surfaces.
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10.3 Bumps

First the effect of a bump located at the center of the contact is studied. The
geometry of the bump is the rotational symmetric equivalent of the bump geometry
considered in chapter T:

_1of (X2+¥%) VX3 ]
R(X,Y)=A10 m( w ) cos (QW—)("WLY—) (10.2)
where: A = dimensionless amplitude (A4 > 0 for a bump): A4 = AR/a?
W = dimensionless wavelength of the bump: W = w/a

As an example figure 10.5 and figure 10.6 present the contour plots of the pressure
and film shape respectively for the case of a bump with a wavelength of 0.5 mm and
an amplitude of 1 gm (W = 1.0 and A = 0.142) located at the center of the contact.
In addition figure 10.7 displays the pressure and film thickness at the centerline of
the contact as a function of X and figure 10.8 shows the pressure and film thickness
as a function of ¥ on te line X = 0. The solution has been calculated using the same
number of nodes and domain as the smooth surface solutjon presented in figure 10.1
and 10.2.

The figures 10.5, 10.7 and 10.8 show that the bump causes a local increase of the
pressure in the center of the contact. By comparing figure 10.7 with figure 10.3 it
is obvious that the maximum pressure exceeds the maximum pressure in the case
of smooth surfaces. In fact, disregarding the inlet and outlet regions the pressure
profile in the present circular contact situation is the circular symmetric equivalent
of the characteristic line contact pressure profile in the case of a bump, as was shown
in figure 7.12,

Contrary to the pressure profile the film thickness is only slightly affected by
the presence of the bump. In spite of the fact that the amplitude of the bump is
more than twice the central film thickness, it hardly shows up in the film shape.
As was found for the line contact problem, see section 7.24, the bump is almost
completely flattened. This obviously indicates that, for the present conditions, in
the major part of the Hertzian contact circle the flow is dominated by shear flow
(8(pH}/8X = 0). Hence, because of the high viscosities, the fluid simply can not
flow around the bump.
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FIGURE 10.5: M = 1007.6, L = 12.05. Pressure profile contour plot in the case of
a bump with a wavelength of 0.5 mm and an amplitude of 1 pm,
AP =0.1.

FIGURE 10.6: M = 1007.6, L = 12.05. Film thickness contour plot in the case of
a bump with a wavelength of 0.5 mm and an amplitude of 1 um,

AH =17.510"1.
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FIGURE 10.7: M = 1007.6, L = 12.05. Pressure P and film thickness H as a
function of X at the centerline Y = 0 in the case of a bump with a

wavelength of 0.5 mm and an amplitude of 1 pm.
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Of course the effect of the bump on the pressure profile and the film shape depends
on its amplitude and wavelength, For a fixed amplitude of 1 ym figure 10.9 shows the
relative maximum pressure as a function of the wavelength. Note that the behaviour
displayed in this figure is basically the same as the behaviour that was observed for
the line contact problem in section 7.2.4: The relative maximum pressure is inversely
proportional to the wavelength. With respect to the relatively large increase of the
maximum pressure for small wavelengths it should be noted that these results are of
limited practical relevance. In reality the pressure at the bump can not rise beyond
the plasticity limit of the material.

Next the figures 10.10 and 10.11 show the results for the associated minimum and
central film thicknesses. Figure 10.10 shows that for small wavelengths the effect on
the film thickness is negligable whereas for the larger wavelengths the bump causes
a slight increase of the minimum film thickness. This is explained by the fact that
the minimum film thickness, as mentioned before for the line contact problem, is
determined in the inlet region. In the case of a relatively small wavelength the bump
does not affect the geometry in this region and consequently the effect of the bump
on the minimum film thickness is very small.

Hence, in these situations the bump induces only local changes. However, with
increasing wavelength the bump gradually starts to effect the global contact geome-
try, in particular the geometry in the inlet region. Consequently, in these situations
the minimum film thickness is affected. For large wavelengths (W > 2) these of-
fects disappear again and the smooth surface solution slowly returns. Note that the
dependence of the minimum film thickness on the wavelength is roughly the same

4.00
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£
& —— 1 TE27)
X 2.00] f
[w]
g
a
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0.00
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FIGURE 10.9: M = 1007.6, L == 12.05. Relative maximum pressure as a function
of wavelength in the case of 2 bump with an amplitude of I pm.
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as the behaviour observed in the case of the line contact problem, see figure 7.13.
Figure 10.11 shows that the effect of the bump on the central film thickness is even
smaller than the effect on the minimum film thickness. For the situations considered
here the changes are less than four percent.

The reader is reminded that the results presented in this section are restricted to
a bump located in the center of the contact, i.e. located in the high pressure region.
If the bump is located in the inlet or outlet region or if it is located near the sides
of the contact the flattening effect may be much smaller and consequently it may
have a larger effect on the film thickness.

10.4 Indentations

Secondly the effect of an indentation located at the center of the contact on the
pressure profile and film shape will be investigated. The geometry of the indentation
assumed in the present section is simply the geometry of the bump considered in
the previous section apart from the opposite sign of the amplitude.

First, to give a general impression, the situation in the case of a very shallow in-
dentation is considered. Figure 10.12 and figure 10.13 show the pressure contour plot
and the contour plot of the associated film thickness for the present load conditions
in the case of an indentation with a wavelength of 0.5 mm and an amplitude of 0.5
pm (W= 1.0 and A = -0.0712}. In addition to these contour plots figure 10.14 gives
the pressure and film thickness on the centerline of the contact, ¥ = 0, as a function
of X and figure 10.15 shows the pressure and film thickness on the line X = 0 as a
function of Y.

Figure 10.12, 10.14 and 10.15 show that the changes in the pressure profile caused
by the dent are basically the rotational symmetric equivalent of the changes observed
in the case of the line contact, i.e. see section 7.2.4. In particular, note the similarity
between the pressure and the film thickness at the centerline, i.e. figure 10.14, and
a typical line contact pressure profile and film shape in the case of a bump, e.g. see
figure 7.2. In the case of a steady state line contact a dent located in the center of
the contact causes an equal pressure rise at both shoulders of the indentation with
a pressure drop at its center. In the present situation, of course, the shoulder is a
circle and in fact a rotational symmetric pressure ridge is formed.

The film thickness contour plot, i.e. figure 10.13, and the film thickness on the
lines ¥ = 0 (figure 10.14) and X = 0 (figure 10.15) respectively show that the film
shape is almost the same as in the smooth surface situation, i.e. the dent hardly
shows up. This indicates that in almost the entire Hertzian contact circle the flow
is dominated by shear flow (d(pH)/dX 2 0). Hence, in spite of the pressure drop
at the center of the dent, even locally, the viscosities are too high to allow pressure
induced flow in this region.




10.4 Indentations 263

FIGURE 10.12: M = 1007.6, L = 12.05. Pressure profile contour plot in the case of
a dent with a wavelength of 0.5 mm and an amplitude of 0.5 pm,
AP =101,

FIGURE 10.13: M = 1007.6, L. = 12.05. Film thickness contour plot in the case of
a dent with a wavelength of 0.5 am and an amplitude of 0.5 pm,
AH=17510"1
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FIGURE 10.14: M = 1007.6, L = 12.05. Pressure P and film thickness H as a
function of X at the centerline Y = 0 in the case of a dent with a
wavelength of 0.5 mm and an amplitude of 0.5 um.
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FIGURE 10.15: M = 1007.6, L = 12.05. Pressure P and film thickness I as
a function of ¥ at the line X = 0 in the case of a dent with a
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In the situation considered above the effect of the dent on the pressure profile is
essentially restricted to the center of the contact. However, this situation can change
rather drastically as is illustrated below. Figure 10.16 and figure 10.17 show the
contour plots of the calculated pressure profile and the associated film thickness
in the case of an indentation with an amplitude of 1 ym and a wavelength of 0.5
mm (W = 1.0 and A = —0.142). In addition figure 10.18 shows the pressure profile
and the film thickness as a function of X on the centerline of the contact, ¥ = 0.
Furthermore, figure 10.19 shows the pressure and film thickness as a function of Y
on the line X = 0. From both the pressure contour plot as well as from the film
thickness contour plot it is obvious that, the changes induced by the dent are no
longer restricted to the central region only. On the contrary, over a specific width
in ¥ direction significant changes in the pressure profile and film thickness occur
in the entire wake of the dent. In fact, downstream of the dent a furrow in the
film thickness occurs that extends to the edge of the Hertzian contact circle. In
figure 10.18 this is reflected by the film thickness being uniform at different values
on the'inlet and outlet side respectively.

Notice the micro EHL features in the film thickness displayed in figure 10.18,i.e. a
nearly uniform film thickness with a decrease at the end on both sides. Furthermore,
contrary to the situation considered above in this case the pressure in the vicinity of
the dent is not circular symmetric. Near the centerline of the contact the pressures
in the wake of the dent are higher than the pressure at the same distance upstream
of the dent center. This can be seen quite clearly in figure 10.18.

These effects may seem strange at first sight. However, to the authors opinion
they are explained by the large pressure drop at the center of the dent as a result
of which locally (close to the center of the dent) pressure induced flow is enabled.
Since it is a two dimensional problem there is some fluid flow, directed to the center,
where the pressure is smallest. This is visualized in figure 10.20.
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FIGURE 10.16: M = 1007.6, L = 12.05. Pressure profile contour plot in the case
of a dent with 2 wavelength of 0.5 mm and an amplitude of 1 pm,

AP =1{.1.

FIGURE 10.17: M = 1007.6, L = 12.05. Film thickness contour plot in the case

of a dent with a wavelength of 0.5 mm and an amplitude of 1 um,
AH =17510"1
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FIGURE 10.20: Visualization of flow near (X,Y) = (0,0), the center of the contact.

Because of mass conservation the “additional fluid” will have to leave the center
again. Since the viscosity increases exponentially with increasing pressure and in
the entire outer region the pressure is high this can only be done by means of uni-
directional shear flow again, i.e. in the region downstream of the dent the Reynolds
equation again reduces to d(pH)/8X = 0. However, as a result of the aforemen-
tioned “inflow” effect the mass flow in X direction in the region close to the centerline
and on the centerline itself downstream of the dent is larger than upstream of the
dent. Consequently downstream the film thickness will be uniform at a higher level,
Restricted to the centerline only this is exactly what is displayed in figure 10.18.

Another fact that confirms the occurence of pressure induced flow directed to-
wards the dent center are the micro EHL features visible in figure 10.19 (the film
thickness on the line X = 0 as a function of ¥), i.e. the decrease of the film thickness
on both sides of the dent.

Having described the changes in the pressure profile and film thickness induced by
the indentation in two specific situations, the influence of the wavelength on these
effects is studied next. First figure 10.21 displays the relative maximum pressure on
the dent shoulder as a function of the wavelength for both an amplitude of 0.5 um
and an amplitude of 1 gm. This figure shows that, similar to what was found in the
case of the line contact problem, the pressure increase caused by the indentation is
approximately inversely proportional to the wavelength of the dent.

The associated minimum film thickness results presented in figure 10.22 show
that the indentation results in a slight decrease of the minimum film thickness. In
particular for the smallest wavelengths, W < 1.0, the effect is negligable (< 2%)
which is also about the accuracy in the minimum film thickness result. For larger
wavelengths the decrease is larger because in these situations the dent is no longer
local. In these situations it changes the geometry in the inlet region and consequently
it affects the minimum film thickness. However, for larger wavelengths (W » 2),
these effects disappear again and the smooth surface solution slowly returns.
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FIGURE 10.21: M = 1007.6, L = 12.05. Relative maximum pressure as a function
of wavelength in the case of a dent with an amplitude of 0.5 and

1.0 pm respectively.
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FIGURE 10.23: M = 1007.6, L = 12.05. Relative central film thickness as a func-
tion of wavelength in the case of a dent with an amplitude of 0.5
and 1.0 pm.

Figure 10.23 displays the central film thickness relative to the smooth surface value
as a function of the wavelenght of the dent. From this figure it can be seen that the
changes in the central film thickness induced by the dent are even smaller than the
changes in the minimum film thickness discussed above. In all situations considered
the change is less than 1 %.

10.5 Waviness

This section considers the effect of harmonic waviness on the pressure profile and
film shape. Two situations are considered, i.e. longitudinal and transverse waviness.

10.5.1 Longitudinal

In the case of longitudinal waviness R is given by:

R(X,Y) = A cos (%) (10.3)

As an example figure 10.24 and 10.25 show the contour plots of the pressure profile
and fitm shape for the present loading conditions in the case of a wavelength of
0.25 mm and an amplitude of 0.25 pm (W = 0.5 and A = 0.356). In addition to
those contour plots figure 10.26 and figure 10.27 show the pressure profite and film
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shape as a funciion of X on the line ¥ = 0 (the centerline) and as a function of ¥
on the line X = 0 respectively.

From these figures it can be seen that the waviness results in an oscillation on
the pressure profile with respect to the ¥ direction, see figure 10.27. Furthermore,
comparing the pressure on the centerline of the contact in the present situation,
figure 10.26, with the pressure on this line in the case of smooth surfaces, figure 10.3,
it is obvious that the maximum pressure is increased. For small amplitudes this effect
will be very small. However, with increasing amplitude, the ridge in the center of
the contact gradually carries an increasing part of the load. In fact, depending on
the wavelength, with increasing amplitude the contact gradually changes to a set of
nearly independent elliptical contacts with the major axis in the direction of rolling
where the ridge in the center carries the largest part of the external load. This
tendency to carry the same load in a smaller region leads to an increased rmaximum
pressure.

From the contour plot it can be seen that the effect of the longitudinal wavi-
ness on the global film shape is quite considerable, particularly, when compared
to the previously considered situations of a small dent and a bump: For example,
in section 10.3 it was shown that a bump in the center of the contact, is nearly
completely flattened. This was explained by the fact that in the Hertzian contact
region unidirectional shear flow dominates because of the high pressures. However,
in fact the situation is a bit more complex as will be explained below. In the re-
gions of high pressure (viscosities) the two dimensional Reynolds equation reduces
to #(pH){BX = 0. The Dowson and Higginson relation limits the variations of the
density, hence in the high viscosity region H tends to be a function of X only, the
value of which is determined upstream. The important observation is that this ap-
plies only with respect to the X direction. As a result, if at the entrance of the
high viscosity region the film thickness shows significant variations in ¥ direction,
these variations tend to remain present throughout the entire high viscosity region.
In this case of longitudinal waviness significant variations of H in ¥ direction ob-
viously occur in the low pressure region. Hence, although the feature is flatiened
in X direction, see figure 10.26, since it is already present at the entrance of the
high pressure region it tends to remain present with respect to the ¥ direction, see
figure 10.27.

At this point the reader is reminded of the results presented for a larger dent,
i.e. the tunneling effect downstream of the dent (figure 10.17). In fact what applies
globally in the present situation of longitudinal waviness in that case applies locally,

i.e. downstream of the dent: The tendency to preserve a variation of i in ¥
direction.
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FIGURE 10.24: M = 1007.6, L = 12.05. Pressure profile contour plot in the case
of a longitudinal waviness with a wavelength of (.25 mm and an
amplitude of 0.25 pm, AP = 0.1.

FIGURE 10.25: M = 1007.6, L = 12.05. Film thickness contour plot in the case
of longitudinal waviness with a wavelength of 0.25 mm and an
amplitude of 0.25 ym, AH = 2.5 1073,
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FIGURE 10.26: M = 1007.6, L = 12.05. Pressure and film thickness on the center-
line Y = 0 as a function of X in the case of longitudinal waviness
with a wavelength of 0.25 mm and an amplitude of 0.25 pm.
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X =0 as a function of Y in the case of longitudinal waviness with
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In addition to this global difference from the smooth surface solution also specific
values such as the minimum and central film thickness differ significantly from the
values in the case of smooth surfaces. Comparing figure 10.4 and figure 10.27 it is
clear that in the present situation the minimum film thickness is about 50 % smaller.
Considering the small value of the amplitude this effect is very large compared to
the effects of a bump and indentation considered in the previous sections.

This large (decreasing) influence on the film thickness is explained by the fact
that the waviness significantly affects the geometry in the center part of the inlet
region. The pressure generation in this region determines the minimum and central
film thickness. In the present case the central ridge causes an additional side leakage
in this region which reduces the pressure generation compared to the smooth surface
situation. Consequently the entire film thickness will be at a lower level and in
particular, the minimum and central values are smaller than in the smooth surface
sitation. It can be expected that this effect will be stronger for larger ratio’s A/W.

For the minimum film thickness there is an additional reason which in the present
situation leads to a decrease compared to its smooth surface value. For the wave-
length considered here a ridge is located at ¥ = %1, i.e. in the region where the
minimum film thickness occurs. Because on the one hand, in this region the pres-
sures and consequently the elastic deformations are small and on the other hand,
even if the the pressures would have been large the ridge would be preserved this
decreases the minimum film thickness.

Next the effect of the wavelength of the waviness on the characteristic results such
as the maximum pressure, the minimum film thickness and the central film thick-
ness is investigated. For the same value of the amplitude as considered above, i.c.
0.256 pm, the maximum pressure relative to the smooth surface maximum pressure
is displayed in figure 10.28. This figure shows that the maximum pressure increases
with decreasing wavelength. For a given wavelength with increasing amplitude or,
as considered here, for a given amplitude with decreasing wavelength the central
ridge (only part of the smooth surface contact circle) carries an increasing part of
the load and since the total dimensionless load is invariant this leads to an increasing
maximum pressure when compared to the smooth surface situation. Although for
different conditions, basically the same behaviour was observed by Lubrecht [L1].
Figure 10.29 and 10.30 show the associated film thickness results. Figure 10.30
shows that the central film thickness decreases with decreasing wavelength. This
behaviour is explained by the aforementioned increasingly poor lubrication condi-
tions {side leakage). In principle the same reasoning applies to the minimum film
thickness although “superimposed” on this the tendency to decrease there is the
effect of, depending on the wavelength, a ridge or valley being located at ¥ = +1.
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FIGURE 10.28: M = 1007.6, L = 12.05. Relative maximum pressure as a func-
tion of the wavelength in the case of longitudinal waviness with an

amplitude of 0.25 pm respectively.
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FIGURE 10.29: M = 1007.6, L = 12.05. Relative minimum film thickness as a
function of the wavelength in the case of longitudinal waviness with
an amplitude of 0.25 um.
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FIGURE 10.30: M = 1007.6, L = 12.05. Relative ceniral film thickness as a func-
tion of the wavelength in the case of longitudinal waviness witl an
amplitude of 0.25 pm.

10.5.2 Transversal

In the case of transverse waviness R is given by:

QWX) (10.4)

R(X,Y)=A cos ( W

Hence, this kind of roughness has ridges perpendicular to the direction of rolling. As
an example figure 10.31 and 10.32 show the contour plots of the calculated (dimen-
sionless) pressure and the associated (dimensionless) film thickness for the present
loading conditions in the case of a transverse waviness with a wavelength of 0.375 mm
and an amplitude of 0.25 ym (W = 0.75 and A = 6.356). In addition, figure 10.33
gives the pressure and film thickness as a function of X on the centerline of the
contact (¥ = 0) and figure 10.34 shows a cross-section in the opposite direction, i.e.
the pressure and film shape as a function of ¥ on the line X = 0.

From figure 10.31 and the cros-sections of the pressure profile presented in the
figures 10.33 and figure 10.34 it can be concluded that, as is obvious, transverse
waviness results in pressure oscillations with respect to the X direction. In addition,
comparing the pressure curves in the figures 10.33 and 10.34 with the pressure on the
same lines in the case of smooth surfaces, figure 10.3 and 10.4, shows that transverse
waviness results in an increased maximum pressure.
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FIGURE 10.31: M = 1007.6, L = 12.05. Pressure profile contour plot in the case
of a transverse waviness with a wavelength of 0.375 mm and an
amplitude of 0.25 pym, AP = 0.1.

FIGURE 10.32: M = 1007.6, L = 12.05. Filin thickness contour plot in the case
of a transverse waviness with a wavelength of 0.375 mm and an
amplitude of 0.25 pm, AH == 7.5 10~4.
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FIGURE 10.33: M = 1007.6, L = 12.05. Pressure and film thickness on the cen-
terline Y = 0 as a function of X in the case of transverse waviness
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FIGURE 10.34: M = 1007.6, L = 12.05. Pressure and film thickness on the line
X =0 as a function of Y in the case of transverse waviness with a
wavelength of 0.375 mm and an amplitude of 0.25 pm.
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With respect to the film thickness, figure 10.32 and figure 10.33 show that in the
central region the waviness is nearly completely flattened. As far as the X direction
is concerned this is obvious because of the high viscosities. In Y direction this applies
only over a limited distance, i.e. the width of the part of the first ridge where the
viscosities are high. The edges of this region are “felt” in the entire flow downstream
of this ridge. This is clearly another demonstration of the characteristic 2-d EHL
effects already mentioned several times before, i.e. the fact that Reynolds’ equation
reduces to 3(5H)/8X = 0, which is a condition with respect to the X direction only.

From the figures 10.31 to 10.34 some other interesting features can be observed.
In the smooth surface situation side leakage mainly occurs in the inlet region as was
for example shown by Kweh et al. [K2], and to a small extend on the edge of the
Hertzian contact circle. In the present situation the transverse ridges and furrows
enhance the flow in ¥ direction near the sides of the contact. This results in some
micro-EHL features in the pressure profile and film thickness in the region ¥ = +1.
This is particularly clear from figure 10.34, i.e. the pressure spikes on both sides
and the nip in the film thickness. The very same effect can also be observed in the
results for transverse waviness presented by Lubrecht [L1, figure 10.33).

With respect to specific values, comparing figure 10.34 with figure 10.4 it can be
seen that the transverse waviness slightly enhances the film thickness. This can be
explained by the fact that the transverse waviness affects the global inlet geometry
in such a way that the pressure generation is enhanced.

The aforementioned effects are much stronger if the wavelength is decreased.
This can be observed from the following figures. Figure 10.35 and figure 10.36 show
the contour plot of the pressure profile and film thickness in the case of a waviness
with the same amplitude of 0.25 gm (4 = 0.356) but with a smaller wavelength of
0.25 mm (W = 0.5). In addition figure 10.37 and 10.38 show the pressure and film
thickness as a function of X at the centerline of the contact (¥ = 0) and as a function
of Y at the line X = 0 respectively. In this case the features described above are
more pronounced. For example, in this case both the first as well as the second
ridge are felt over a specific width in Y direction throughout the entire downstream
region,
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FIGURE 10.35: M = 1007.6, I. = 12.05. Pressure profile contour plot in the case
of a transverse waviness with a wavelength of 0.25 mm and an
amplitude of 0.25 ym, AP = (0.1.

FIGURE 10.36: M = 1007.6, L = 12.05. Film thickness contour plot in the case
of a transverse waviness with a wavelength of 0.25 mm and an
amplitude of 0.25 pm, AH = 7.5 10,
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FIGURE 10.37: M = 1007.6, L = 12.05. Pressure and film thickness on the cen-
terline Y = 0 as a function of X in the case of transverse waviness
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To conclude this section the effect of the wavelength of the waviness on the maxi-
mum pressure, the minimum film thickness and the central film thickness has been
investigated. First figure 10.39 shows the maximum pressure relative to the smooth
surface situation as a function of the wavelength in the case of a fixed amplitude of
0.25 um. This figure shows that the maximum pressure is roughly inversely propor-
tional to the wavelength. With increasing wavelength the effect gradually decreases
and eventually the smooth surface solution will return.

Figure 10.40 shows that the waviness results in an increased minimum film thick-
ness. For the larger wavelengths, when there is only a single ridge in the Hertzian
contact region, this can be explained by the fact that the contact in fact has changed
from a circular contact to an elliptic contact with the major axis perpendicular to
the direction of rolling. This situation is much more favourable for the pressure gen-
eration in the inlet and consequently the film thickness is increased when compared
to the smooth surface situation. For the smaller wavelengths basically the same ten-
dency is observed. However with increasing number of ridges in the contact region
“superimposed” on the tendency of the minimum film thickness to increase there is
an effect of a ridge or valley being located in the inlet region.

Finally figure 10.41 shows the central film thickness relative to the srooth surface
value as a function of the wavelength. For the larger wavelengths also the aforemen-
tioned increasing tendency can be observed. However, for the small wavelengths the
result seem to depend strongly on the number of ridges in the contact region.
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FIGURE 10.39: M = 1007.6, L = 12.05. Relative maximum pressure as a func-
tion of the wavelength in the case of transverse waviness with an
amplitude of 0.25 pm.
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FIGURE 10.41: M = 1007.6, L = 12.05. Relative central film thickness as a func-

tion of the wavelength in the case of transverse waviness with an
amplitude of 0.25 um.
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10.6 Conclusion

The algorithm developed for the solution of the steady state EHL circular contact
problem was tested out to a more complex point contact situation, i.e. to study the
effects of some large scale surface features on the pressure profile and film thickness.
For a specific load situation with a maximum Hertzian pressure of 2 GPa the effect of
a bump, an indentation, as well as the effects of harmonic longitudinal and transverse
waviness have been studied.

Although the study was not as extensive as the study of surface features presenied
in chapter 7 for the line contact problem the results showed that the additional
dimension in the point contact situation leads to some interesting cffects. These
effects are characteristic for the physical mathematical model of the EHL contact
situation used in this thesis, i.e. a Newtonian lubricant behaviour with a viscosity
that increases exponentially with pressure. For high loads in the Hertzian contact
region Reynolds’ equation reduces to 8(pH)/dX ~ 0. This results in a tendency
to flatten a feature as was also found for the line contact problem. However, in the
point contact problem this only applies with respect to the X direction, i.e. the
direction of rolling. It would be interesting to see to what extend the same effects
will be found if non-Newtonian lubricant behaviour is accounted for.
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Recommendations for future
research |

The stability and the low complexity of the algorithms for the solution of the line
and point contact problem introduced in this work offer great possibilities for the
simulation of EHL contact situations. In that respect the subjects addressed in the
chapters 6 through 10 are only a few items of an extensive list.

With respect to the situation of perfectly smooth surfaces an extension of the al-
gorithm developed for the circular contact to elliptic contact situations is recom-
mended,

With respect to surface features extension of the point contact algorithm to transient
situations to simulate the overrolling of a feature is needed.

Further subjects for future research in this direction are: The investigation of
the influence of different features than the ones considered in the present study. A
maore extensive study of the effects of surface roughness by performing calculations
for different roughness profiles. The extension of the study of roughness effects to
point contacts and eventually extending it to transient situations for both line and
point contact. However, sch further studies, would greatly benefit from an extension
of the model to properiy account for pressure generation from a cavitated region.

An interesting topic for future study related to these time-dependent surface-feature
or rough-surface calculations is the inclusion of a solid-to-solid force which would
enable simulation of contacts operating in the “mixed lubrication” regime.

The Dowson and Higginson’s density pressure relation used in this work limits the
compressibility of the lubricant. Therefore the use of a more advanced mode] is
recommended. Such a model is for example proposed by Jacobson and Vinet [11).

The current model is not suited for prediction of the friction in the contact. For
that purpose including non-Newtonian lubricant behaviour is essential. Restricted
to the line contact problem this subject can be investigated to a limited extend with
the present model, see for example the study carried out by Hulselmans [H1) using
the algorithm presented in this thesis. In the case of ‘point contacts the situation is
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much more complex and in principle the study of non-Newtonian lubricant behaviour
requires the development of an alternative physical mathematical model.

Another interesting topic is the inclusion of the energy equation since it is known
from literature that the heat generation in the inlet zone in the case of sliding may
result in a considerable decrease of the film thickness compared to the isothermal
situation considered in this thesis. Furthermore, taking into account thermal effects
is essential to obtain reasonable predictions of the friction in EHL contacts.
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Appendix A

Dimensionless parameters

A.1 Moes and Hertzian dimensionless parame-
ters
This section presents the dimensionless equations of the steady state isothermal

EHL line and circular contact in terms of the Moes [M1] and Hertzian dimensionless
parameters,

A.1.1 Line contact

In the stationary situation, using the Barus viscosity pressure relation the governing
equations are;
Reynolds equation:

d {ph*dp d(ph)
dx ( 7 dz) B 6us? =0 (A1)

with the cavitation condition p 2 0 in the domain and p = 0 at the boundaries.
Furthermore 5 is given by:

7= no exp{a p} (A.2)

and, since an incompressible lubricant is presumed in this section, p = p,, the density
at ambient pressure.

The equation for the film thickness:

2 00
h(z) = hog + I _ ;% f In|z — 2’| p(2")dz’' (AD)

where hyg is a constant.

and the force balance condition:
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f” p(z)de = w (A4)

-0

where: w = external load per unit width

The minimum film thickness, as an example of a result, is defined according to:

hynin = min (k) (A.5)

From the equations (A.1) to {(A.5) it can be concluded that the minimum film thick-
ness is a function of no, @, s, £’y R, and w. Using a dimensional analysis entitled -
optimum similarity analysis, see Moes [M2), this set of six can be reduced signifi-
cantly by introducing the following non-dimensional variables and groups:

_ z {E'R\"* _p {ER\'
r=— = —

R \no u, P= 5 \no u
;_h(ER 12 wo v (ER 12
" R \nou, T E Ty Uy
L—aE'(ErR)_1/4 g ok (ER 1
B o Us ™" R o Us
— = _ P
7 o ? Po

Substitution of these groups and variables in the equations (A1) to (A5)usingp=1

yields:
d {R*dp dh

with the cavitation condition # > 0 in the domain and p = 0 at the boundaries.

i = exp(L p) (A7)
Tz — T o 4 o0 = = =5
h(:c)_hm+3—;_mf |z — #| p(z)dz (A.8)
where hyp is a constant.
] a(z)ds = M (A.9)
— o0

Hpin = min (&) (A.10)
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The equations expressed in the new variables show that from the original six param-
eters only two independent groups remain i.e. M, and [. Hence, the substitution
shows that the problem can be reduced to a two parameter problem. This allows
representation of the results in a very convenient way, particularly for practical
Purposes (designers). For example, each characteristic parameter, e.g, the dimen-
sionless minirmum film thickness, H,,,, is a function of two parameters only and all
possible solutions can be presented in one chart, ie. a diagram giving H,.;. as a
function of M and I.

increasing load the pressure in the lubricant film will approximate the well known
Hertzian dry contact pressure. Therefore it seems reasonable to scale the EHL
variables onto the Hertzian parameters:

b = half the contact width
Pr = the maximum Hertzian pressure
hy = a characteristic deformation by = /R
where
2w
Ph== {A.11)
and
[8wR
=4 — A2
b L (A-12)
Defining:
X = z/b
Po= plps
H = kb,
P = plpo
7= 7/

then yields the dimensionless equations as used in the present work:

4 (HdpP _,\44
dX \ 7 dx dx

with the cavitation condition P 2 0 in the domain and P = ¢ at the boundaries.

=0 (A.13)

7 = exp(a P) (A.14)
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X2 1 oo i i i
H(X) = Ho+ 5 — = f In|(X — X)| P(X") dX (A.15)
where Hgo 18 a constant.
f” P(X)dX = % (A.16)
H,, = min (H) (A.1T)

& and ) are the two governing parameters of the scaled dimensionless problem:

a&=ap (A.18)
6w, 7 (A.19)
b pn '

a=1L gl—w {(A.20)
3n?
\=om (A.21)

Furthermore, Hp, the minimum film thickness in terms of the scaled dimension-
less problem is related to the Moes dimensionless film thickness parameter fimin
according to:

Honin = % M H, (A.22)

Note that, obviously, the scaling does not introduce additional parameters, it still
remains a two-parameter problem.

A.1.2 Circular contact

With some minor changes the approach outlined before for the line contact problem
also applies to the circular contact problem. When the Barus equation is used in
the case of an incompressible lubricant the equations for the isothermal steady state
situation are:

Reynolds:

9 (PO, B (pR0RY g, Ooh)
B:z(n 6:c)+3y( 5 ) — bus =0 (A.23)
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with the cavitation condition p > 0 in the domain and P = 0 at the boundaries.
Furthermore, 5 is given by:

7 =10 exp(a p) (A.24)

and p = po since an incompressible lubricant is presumed.

The equation for the film thickness:

2

T y? 2 2 oo p(z’, y")dz'dy’
=h AR 2
h(.’l’:?y) 00+2Rr+2Ry +7{'E'—-w‘/‘°°‘[ J(I_Q:;)z_{_(y_yf)z (A 5)
with the integration constant hg,.
The force balance equation:
v o] O
) f_ _ ] p(z,y)dzdy = F (A.26)
Finally, the obvious definition for the minirmum film thickness:
Brnin = min(hk) {A.27)

Hence, in this formulation the minimum film thickness h,,;, is a function of the
six parameters 1o, a, u,, F, E', and R,. From the dimensional analysis according
to Moes, see [M2], the following dimensionless groups and variables to describe the
problem can be obtained:

oz (E'R,)”“ oy (EfRI)""
I=— =L
R, Moy y R, Tolis
__ p (E'RA\MY! ho b (ERNYV
p B E’ nﬂus - R:n 7?0“.9
. ( Mo, )1/4 _F (ER\Y
N E'R, E’Rz- Moty
1 L
"= o ? Po
Rewriting the equations in these new variables, using g = 1, gives:
g g
d (h3op 9 (k*0p 6h
—(Z22) 2 (op) ok A2
Bi(ﬁai)+ag(ﬁag 665 0 (A.28)

7= exp(L 7) (A.29)
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& § 2 e p(@ )Ty
h{z,§) = hoo + D) + ;Hm/_mf \/(g_ V1 G- ) (A.30)
T pepdady = M (A31)
Honin = min(R) (A.32)

Hence, from the equations expressed in terms of these new variables it appears that
there are only two independent parameters, i.e. a load parameter M, and a materials
parameter L. Consequently, the dimensionless minimum film thickness Hpn 15 a
function of M and L only, allowing the presentation of all possible load situations
in one diagram Ho(M,L) which is particularly convenient from a designers point
of view.

However this formulation of the problem is not used for numerical solution. For
that purpose the equations ate normalized using the Hertzian dry contact parame-
ters:

a = half the contact width
pr = the maximum Hertzian pressure
hy = the maximum Hertzian elastic deformation hy, = a?/ R,
where
3F
= AJ
=5 (A.33)
and
3FR\'/?
a = (—2?) (A34)
Defining:
X = rcfa
Y = y/e
P = p/p
H = h/h
p= pleo
7 = a/m
then yields the dimensionless equations as used in the present work:
o (H®HP § (H*oP aH
— | — == — == A5 = A.
X ( ] aX) aYy ( il BY) axX 0 (.33)
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i = exp(a P) {A.36)
X2 Y? 2 e oen P(X YY) dX' dY
HXY)=Ho+ S+ o+ 5 / (X, (A.37)
2 2 ) \/(X_X')ur(y_yf)z
oo 00 D
j f PX.Y)dX dY =T (A.38)
H,, = min(#) (A.39)

This normalization gives an alternative set of two independent parameters, e.g. &
and A. These parameters are defined according to:

o = o ph (A.40)
and
_ Gngu,Ri
e (A1)

and are related to M and I as follows:

2 1/3
e e

128 73\ 172
A= (W) (A.43)

Furthermore, H,,, the minimum film thickness in terms of the scaled variables, is
related to the Moes dimensionless minimum film thickness parameter H,.;, according

to:
Hin =t |27 (A44)

A.2 Different sets of dimensionless parameters

A.2.1 Line contact

Dowson and Higginson [D1] introduced a set of three parameters to characterize
each load situation:

W=-2 (A.45)
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G=akF (A.46)
and:
U= Lot (A.47)
T 2E'R ’
with a dimensionless film thickness parameter defined according to:
1] h in
H! = ’;{ (AA48)

Apart from the fact that the use of three parameters does not allow presentation of
the results in simple diagrams, one of the parameters is redundant. Nevertheless,
these parameters are widely used. Hence, for reasons of comparison in particular
load situations, in addition to the values of M and I characterizing the case, also
values of W, U, and G describing the situation are given in this thesis. Since one of
the latter three is redundant, it can be fixed without loss of generality. In this work
generally U will be chosen 1.0 107 Furthermore, the relation between M and L
and W and G is given by:

M = W QU)? (A.49)

L = G @ {A.50)

whereas the relation between the Dowson and Higginson dimensionless minimum
film thickness parameter H!, and Hupin reads:

Hopin = HL, QU2 {A.51)

A.2.2 Circular contact

Hamrock and Dowson [H1] use the following set of three parameters to describe a
circular contact load condition:

W= PR (A.52)
G=akF (A.53)

and:
= 1Mt (A.54
T 2F'R 54)

with a dimensionless minimum film thickness defined as:
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h .
hd __ "tmin
HM < yn (A.55)

As in the line contact case the use of three parameters to characterize a load situation
does not allow presentation of the results in simple diagrams. Moreover since one of
the parameters is redundant this set is not used in the present work. Nevertheless,
for reasons of comparison with results presented by other authors in particular load
situations, in addition to the values of M and L characterizing the case, also values
of W, U, and G describing the situation are given in this thesis. Since one of the
laiter three is redundant, it can be fixed without loss of generality and in this work

generally U is chosen 1.0 10-''. The relation between the other two, i.e. W and G,
and M and L is given by:

M = W (20)%/4 (A.56)

L = G (U (A.57)

whereas their dimensionless film thickness is related to the Moes dimensionless film
thickness parameter according to:

Hpin = H (20)71/2 (A.58)
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Appendix B

Elastic deformation

B.1 Line contact

In the line contact situation the (dimensionless) elastic deformation of the surfaces
associated with a pressure profile P(X) is given by:

i X
dX)=— f In|X; — X'|P(X")dX’ (B.1)

Approximating the pressure profile by a piecewise constant function with value P; =
P(X;) in the region X; — h/2 < X' < X; + hf2 on a uniform grid with mesh size A
the elastic deformation in grid point i {Xi = X5 + ¢ h) can be written as:

1 j=n
d(Xi) = —— 3 Ki*P; (B.2)

=0

where the coefficients K2* are defined by:

X;+h/2
rhh 7 ' '
e = P X .
Ilu b2 / In |X IdX (B 3)

These coeflicients can be calculated analytically and the result depends on the value
of | X;~ X'| in the integral, Firstly, assume (Xi—X')>0for X;—h/2 < X' < X;+h/2.
In that case integration of equation (B.3) yields:

K5 = (Xi— X; + h/2)(In(X; — X; + h/2) — 1) —
(Xi — X; — h/2)(In(X; - X; — £/2) — 1) (B.4)

Similarly, assuming (X; — X'} < 0 for Xi~hf2 < X' < X;+h/2 the integration gives:

I(:;h = (X_,-—X,-+h/2)(ln(X,-—X.-+h/2)—l)—-
(X5 = Xi = R/2)(In(X; - X — h/2) - 1) (B.5)
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Equation B.4 and equation B.5 can be written into one expression valid for all
X; # X

KM = (Xi— X;+h/2)(In|X: — X; + A2l — 1)~
(X.‘—Xj—h/g)(lIIlXi—Xj —h/2|—1) (B.ﬁ)

Finally, assume {X; — X’) changes sign, i.e. X;=X;. In that case the integral is
calculated in two steps taking the limit for ¢ — 0 of:

KB = (h/2)(n(h/2) - 1) = (e)(In(e} = 1) + (B.7)
(R/2)(In{e) - 1) = (—h/2)(In(k/2) - 1)

Hence:

KM = (R/2)(In(h/2) - 1)+ (h/2)(In(h/2) ~ 1) (B.8)

which is exactly also what equation (B.6) gives for X; = Xi. Summarizing: K5 is
given by:

KlF = (Xi— X;+R/2)(I01X; = X; 4+ ~/2] - 1) -
(X; — X; — h/2)(In | X; — X; — h/2] - 1) (B.9)

B.2 Circular contact

In the circular contact situation the elastic deformation is given by:

(X', Y")dX'dY"

2 o foo P
dX.¥) = 2 —oo./—oo./ \ﬂx — X2+ (Y —Y)? (B.10)

This integral is discretized in the same way as the discretization of the elastic de-
formation integral for the line contact problem, i.e. the pressure is approximated
by a piecewise constant function on a uniform grid with mesh size h and value P
in the region {(X,¥) € Xy — h/2 < X < X+ h/2AYI-h[2 <Y SV + hj2}.
Consequently, the elastic deformation in grid point (¢,7) can be written as:

2 Rz
dij = d(X:.Y5) = 5 203 Kt (B.11)
k=0 =0

where the coefficients K4 are given by:
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v kawz fmh/z P(X', Y')dX'dY' (B.12)
Xi—h/2 \/(

kit = Yi—ht2 X, — X:)z + (YJ _ y:)2

and can be calculated analytically. The integration yields nine different results for
the cases that X; < Xi, X; > X, Xy =Xpand Y; < ¥, Y; > Vi, ¥; = V) respectively
The nine equations can be combined into one expression:

Kl =
Yo+ X2+ V2 X +/Y2 + X2
1X, |In (—”—’3——”) +|Y,,.|1n( 2) +
Y+ X2+ Y2 X, + /Y2 + X}
Yo + /X2 + Y2 X, + Y2+ X2
|Xm|ln | Y= | + |V, |in
Y, + /X2 + Y} X + /Y2 + X2,
where:

XP=X.'-—XJ=+’E/2 , Xm=X,‘—Xk—h/2
Y=Y, Yi+h/2 , Yo=Y, ~Yi—h/2

In a shorter, more general notation, introducing ¢ = (¢,7) and r = (k,1} a compact
expression can be given for the elastic deformation:

dy = % Y KiP (B.13)

The latter notation is used in the description of the multilevel multi-integration for
the fast calculation of such summations, see chapter 3.
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Appendix C

Smoothing rate analysis
linearized EHL 1-d problem

As an example of a more complicated smoothing rate analysis consider the linearized
EHL line contact model problem with ¢ = 0.

dH
X" 0 (C.1)
Substituting the following definition of H:
H= f K(X,X')P(X") dX' (C2)
gives:
A f K(X, X")P(X") dX' =0 (C.3)
.4 ’ |

Note that in the film thickness equation, i.e. equation {C.2), the part coming from
the undeformed surface, i.e. Hgo + X2/2, is left out. This part is of no importance
with respect to the present analysis.

Our intention is to solve the discretized version of this equation using a Jacobi first
order distributive relaxation on P. The simoothing behaviour of this distributive
relaxation can be analysed using the approach outlined by Brandt [Bi, page 42].
Define the ghost function @ according to:

dd

P=-7

Substitution in equation (C.3) gives:

e [ K XN (X aX =0 (C5)
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Using the fact that for the present kernel (K(X,X’) =In|X-X"|) holds: Kx = ~ Ky,
and applying integration by parts, this equation can be reworked to:

j EEXX) o 5y axr = 0 (C.6)

dxn?
Solving P from the discrete equivalent of equation (C.3) using a Jacobi first order
distributive relaxation on P corresponds with solving @ from the discrete equivalent
of equation (C.6} with a simple (non distributive) Jacobi relaxation. Hence, the
smoothing rate is the same in both situations. However, in the latter situation this
smoothing rate can be calculated straightforwardly, whereas in the first situation,

due to the distribution, the computation is more complex. Therefore, the smoothing
rate is calculated using the problem in terms of the ghost function ®.

Discretization of equation (C.6) gives:

I{hh
Ay %@k =0 (C.7)

where AK}! denotes the second order difference of KJ*:

AKY =Kt -2 K} + KB (C.8)

The simple jacobi relaxation on @ can be described as follows. Given an approxi-
mation ®; a new approximation &, is calculated from:

SAKN® + AKK &, =0 (C.9)
k£l

Since the kernel K is symmetric define:
AK} = AKM  for Ji—jl=r (C.10)

and:

AKP =K' | -2 KM+ KR (C.11)

Subsequently, assuming the domain to be infinetely large, equation (C.9) can be
written as:

S AKMO i+ Bu) + AKE B, =0 (C.12)
=1
The error at site k before relaxation is given by:

B = @) — &, (C.13)
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whereas the error after relaxation at this site is defined as:
O = @, — i)k (0.14)

Substitution of # and & from equations (C.13) and (C.14) in equation (C.12) yields the
following equation relating the error after relaxation to the error before relaxation:

S AKH Bt + Uact) + AKG B =0 (C.15)
=1
Expanding both ¢ and & into Fourier series:

o= A(B)e'* (C.16)

v = Z}_l(ﬁ)em (C.17)
and using the fact that the relaxation maps a specific Fourier component on itself

gives the following expression for the relation between the amplitude of a component
before and after relaxation:

ASS AKP2cos(0l) + AAKG =0 (C.18)

=1

Consequently the amplification factor of the § component due to one relaxation
sweep is:

#(0) =

AB)| _ |1 > apr
A(G)\_ AK&‘;AIQ?COS(GI) (C.19)

This amplification factor as a function of (8) is shown below (see also figure 4.2) and
the asymptotic smoothingrate 7 is 0.4.
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1.00
0.751
3 0501
0.251
0.00 : : :
-3.14  —157 0.00 1.57 3.14
=]

FIGURE C.1: Amplitude reduction factor u(8) for Jacobi dipole relaxation on the
linearized problem, ¢ = 0




References 311

References

[B1] Brandt, A., 1984, “Multigrid Techniques: 1984 Guide with applications to fluid
dynamics,” available as G.M.D.-Studien No. 85, from G.M.D-FIT , Postfach 1240,
D-5205, 5t. Augustin 1, W. Germany.



312 Appendix C: Smoothing rate analysis linearized EHL 1-d problem




313

Appendix D

Decimation

D.1 General description

Consider the following system of discrete equations:

a; Uiy + bty e vy =G (D.1)

for 1 <i < n—1 with vo and v, given. Either a;, b, and ¢; are coefficients and v; is
a scalar unknown or g;, b; and ¢; are matrices and v; is a vector of unknowns. From
this equation an expression fot v; in terms of its nearest neighbours ¢ + 1 and ¢ — 1
can derived:

v = bl-_l(g',' —a; Vi1 — G ‘U,‘+1) (D.2)
where b7 denotes the inverse of b;.
Using equation (1.2) to express v;_ and v;y; in terms of their neighbouring points

and substitution of the result in equation (D.1) gives the following equation relating
v; to vi_g and vipa:

A; vi_g + By vi + C v = G : (D.3)
where:
A= —ﬂ;b‘-__lla,‘_], (D4)
B; = —abh iy + b — cibhau (D.5)
C; = ~cibiy 16 (D.6)

and
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G,- = g; ~ a;b;'_llg,'_l —_ Cgb'-__'_llg,'+1 (D?)

Equation (D.3) can be viewed as the representation of the original problem on a
coarser grid, i.e. a system of equations with only half the number of unkowns:

ArVier+ By Vi 4+ Gy Viyy = Gy (D.8)

where Vi = vy, A; = Agy, By = By, C) = Car, and G; = G,y. Assume this reduced
system of equations is solved, then the solution of the original system of equations
follows in two steps. First for all ¢ = 2/;

= V[ (Dg)

Next the values of v; in the points 7 = 27 + 1 can be computed from equation {D.2):

vy = b,-_l(g.- —a; Vi) — ¢ Ui+1) for 1=27+1 (DIO)

Summarizing, the solution of the system of equations (D.1) is obtained in two steps.
First a reduced system is constructed according to (D.8). Subsequently, this reduced
system is solved. Finally, the solution of the original system follows from (D.9)
and (D.10).

The remaining task is to solve the reduced system of equations. Obviously it has
exactly the same structure. Hence, the coarsenings procedure can be applied once
more, In fact, it can be applied recursively until a system of equations is obtained
that can be solved in only a few operations.

This completes the general description of the decimation process, The following
sections give some details with respect to the application of the process in the line
relaxation schemes discussed in chapter 5.
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D.2 Application to the linearized EHL 2-d prob-
lems

First consider the system of equations (5.26) and {5.27) to be solved on each line
(constant j) in the case of the distributed line relaxation applied to the solution of
the linearized EHL 2-d problem with constant e:

nz—1
Ry - 25 R, = v (01
k=1

/B (Piorj — bicaif4 + 8imns — 6, /) +
(Biprj — &, /4 + 8ip15 — Ginnf4) —
A(B, j-bic A48, 5 i/ +
. (ﬁif.j+l —6;/4) + (Prjo1 = 6i;/4) } -
(Hi; — Hiy5)/R = 0 (D.12)

To obtain the line relaxation efficiency it is not necessary to solve the system exactly.
Therefore, the following approximate system is solved instead:

g2 . -
Hij = (AR + ARG 65 + ARG 8 5) = foj+ Wi
(D.13)
e/ B{ (P +&—6 50+ -

(Piprj — 6, /4 +6) ~

4P, 5= b/t b 5= by /1)t
(Pjer — 8500 + (P —6/4) Y-
(Hij— Hiorg)/h = 0 (D.14)

This latter system of equations can easily be written in the form of equation (D.1)

by defining;
= b o Bt @ D
v ( Hi; ) 9 ( —L*(Py;) (D-15)

where L*P; ; is defined as:

IMBiy) = /b Py + Pryrj + P + +Pj — 4 Py) (D.16)

~ZAKRRAE — 2 A KRR 1
= w2 H—1j .= x? i
* ( 2 ¢fh? 1/h ) b ( _5 C/h’z’ ~1/h ) (D.17)
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_ 2 A JChhbA
c; = ( ”“‘2‘{15{]:2"'1” g ) (DlS)

Subsequently, the procedure outlined in the previous section can be applied to its

solution.

The approach to be followed in the case of the Gauss-Seidel line relaxation js basicaily
similar. Instead of (5.28) and (5.29) the following approximate system is solved:

H ;- %(Kﬁﬂ' PSig + KM By 4 KA S ) = fii+i;
(D.19)
e/B* { (Piov + 8icrs) + (Psr + bign ) —
(P +85) + Py + Py ) -
(Hij — Hica3)/b = 0 (D20)

This system can be written in the form of’(D.l) by defining:

=(8)  e=(B) ew

where L*(P; ;) is defined as:

IMPij) = e/ WPy + Ping + Bijus + +Py_y — 4 By) (D.22)
_zima _ZEmm
L= w2 Mi=155 e 2 Shiifg 2
@ ( e/t 1) b= g < (D.23)
—Z KM g
G = ( R ) (D.24)

To conclude this section the approximate systems of equations of one line solved
mn the case of varying coefficients are considered. This requires only some minor
modifications when compared to the approach outlined above. In the two situations
considered above the matrices a;, b; and ¢; are independent of ;. This is no longer
true in the present case. If at least one of €i+1/2,5+172/ h® exceeds the value of the
crossover point, the approximate system of equations for this grid point is:
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iy — S8 + K 8imss o+ KA i) = futiy
(D.25)
A { (eimipai{Picr + 8ic13) +
€irj2;(Piv1g + Bivr) — .
(€512 + €ijarjz + €rrya; + €i-1/24) (Pij+6:5) +

5:‘.j+1/2}3i,j+1 + fi.j—-lfzpi,j—l } -
(Hij — Him)/h

0 (D.26)

Hence, a;, b;, and ¢; are given by:

~Z K Y
R b= T D.27
a ( Ei_ljg.j/hz ]./h ) ( —EEH —1/h ) ( )

— L hhhh
= T D.28
© ( fi+1/2,j/h% 0 ) ( )

where ¥ e = (€172 + €iv1/25 + €112+ €i,j-1/2)-

On the other hand, if all E;il/g,jillz/hz are smaller than the value of the crossover
point the approximate system of equations is:

H;; — %(AK!}??"&.’J + AK.-’}I}.T};;&—LJ' + AK{;'_;_’;’}jszl.j) = fij +di;
(D.29)
h72 { ey i(Biory + 6 — 80 5/4) +
€iv1y2i(Pong — &, /4 +6ins) +
tijarja( B — 8:3/4) + e Pijor — 8i3/4) —
(€172 + Eij+1/2 + €ivry2, + €im1/25)
(Pij = 6o gf4 + 605 — 6in1i/4) } —
(Hij— Hi—ii)/h

It

0 (D.30)

and the matrices a;, &, and ¢; for this point are defined according to:

~ZAKIA 0
.= ™ i 31
“ ( (eic1/25 + Ten/4)/h* 1/h (D.31)

~LAKES ) (D.52)

bi = ( _5( )/ (480 —1/R
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(D.33)

(€it1/2; + Zeu/d)/R% 0

where again 3 ey = (€172, + €it1/2 T €172 T €jo1y2)




