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Abstract

The quality of materials and lubricants which are used in rolling element bearings
have increased significantly over the past decades. Consequently, for certain ap-
plications in the household and car industry, the load capacity and the “lifetime”
of the bearing are guaranteed and other selection criteria, like the vibrational be-
haviour of the bearing, become important. The vibrational behaviour is directly
related to the noise production of the application, since the bearing is an important
link in the transmission path of vibrations from the shaft to the bearing housing.
Noise production and its prevention are expected to become more important in
the near future, as governmental regulations and customer demands become more
restrictive.

Essential for the formulation of guidelines for reducing the noise production of
the bearing and the transmission of vibrations through the bearing, is a thorough
knowledge of the dynamics of the structural elements, e.g. the rolling elements,
outer and inner ring. An additional prerequisite is a detailed understanding of
the behaviour of the individual, elastohydrodynamically lubricated contacts that
connect these elements. Such contacts and their relation to structural vibrations
are the topics of this thesis.

A mathematical model is presented which describes the lubricated contact be-
tween a rolling element and the raceway under varying loads and free vibrations.
This model is used as a tool to obtain the main dynamical characteristics of the
contact: its stiffness and damping. In rolling element bearings, the elastic “foot-
print” is elliptically shaped and such contacts have therefore been included. Since
the amount of lubricant used in bearings continues to decrease, so-called starved
lubrication is accounted for too.

Analytical solutions of the problem are available in only a few, simplified cases.
Numerical techniques have therefore been applied. The results for circular contacts
form the basis of the discussion as to how the various parameters affect the film
thickness, pressure, stiffness and damping. From this basis, we will study the effect
of ellipticity and starved lubrication. Experimental results will also be presented.
The good, qualitative agreement between theory and experiment shows that the
model accurately describes the various phenomena observed in the contact region.

The model thus proves to be a valuable tool for understanding the behaviour
of the contact. Aided by a dynamical analysis of the structural elements, this will
enable us to predict and control the dynamic behaviour of the bearing.
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Samenvatting

Naarmate, voor bepaalde toepassingen in de witgoed en auto-industrie, de le-
vensduur en belastbaarheid van kogellagers voldoende is gewaarborgd, wordt de
kwaliteit ervan in toenemende mate bepaald door het trillingsgedrag van het lager.
Dit gedrag is direct gekoppeld aan de geluidsproductie van de toepassing waarin
het lager wordt gebruikt. Immers, de overdracht van trillingen van de as naar de
omkasting loopt via het lager. De geluidsproductie en de reduktie ervan worden
steeds belangrijker naarmate de klant, maar ook de wet, striktere eisen stelt.

Essentieël voor het formuleren van richtlijnen voor reductie van de geluidspro-
ductie en transmissie van trillingen door het lager, is een gedegen kennis van de
dynamica van de structurele elementen, zoals de kogels, de buiten- en de binnen-
ring. Tevens is een gedetailleerd begrip vereist van het gedrag van de individu-
ele, zogenaamde, elastohydrodynamische contacten, die deze elementen verbinden.
Dergelijke contacten en hun relatie tot trillingen van het lager zijn de onderwerpen
van dit proefschrift.

Een mathematisch model wordt gepresenteerd dat het gesmeerde contact be-
schrijft tussen een enkele kogel en de “raceway”. Dit model wordt gebruikt om de
belangrijkste dynamische eigenschappen van het contact te bepalen: stijfheid en
demping. Aangezien in kogellagers, het contactgebied tussen kogel en “raceway”
elliptisch van vorm is, beschrijft het model ook dit soort contacten. Omdat vaak
een gereduceerde toevoer van smeermiddel wordt toegepast, is tevens zogenaamde
schrale smering gemodelleerd.

Analytische oplossingen voor het probleem zijn slechts in enkele, vereenvoudigde
gevallen bekend. Numerieke methoden zijn daarom toegepast. De resultaten voor
het cirkelvormig contact vormen de basis voor de discussie betreffende de filmdikte,
druk, stijfheid en demping. Vanuit deze basis wordt de invloed van ellipticiteit en
schrale smering bestudeerd. Ook experimentele resultaten worden beschreven. De
goede, kwalitatieve overeenkomst tussen theorie en experiment laat zien dat het
model de verschillende fenomenen die in het contactgebied worden waargenomen,
nauwkeurig beschrijft.

Het model vormt, dientengevolge, een waardevol gereedschap waarmee het
gedrag van het contact kan worden gesimuleerd. Met de beschreven resultaten
en een analyse van het dynamisch gedrag van de strukturele elementen, kan het
trillingsgedrag van kogellagers worden voorspeld en bëınvloed.
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Chapter 1

Introduction

In tribology, one studies the design, friction, wear and lubrication of inter-
acting surfaces in relative motion. Perhaps unexpectedly, this is not a small
field of research. In fact, it includes phenomena that occur in everyday life,
from trying to walk on a slippery bathroom floor, but also “high-tech” ap-
plications like the bearings used in spacecraft. The understanding of the
underlying mechanisms, requires a combination of knowledge from fields as
varied as physics, chemistry, materials science, mechanical engineering and
mathematics and makes tribology all the more interesting. In this thesis, we
will restrict ourselves to a small, but important, tribological phenomenon:
elastohydrodynamic lubrication.

The term elastohydrodynamically lubricated contacts, or EHL contacts,
is used to describe the situation in which two solids are pressed against each
other and the lubricant, present in the gap between the solids, prevents the
two surfaces (the asperities) from touching. In addition, the contact pressures
are so large that the elastic deformation of (one of) the solids, is of the order
of the thickness of the lubricant film or larger. EHL contacts can be found
in, e.g. gears and rolling element bearings, the latter being illustrated in
Figure 1.1. In fact, lubrication and elastic deformation are what makes these
mechanical devices work the way they do.

In recent years, the introduction of high quality materials, new manufac-
turing methods and lubricants has significantly increased the load capacity
and lifetime of rolling element bearings. At present, bearings are expected
to survive contact pressures up to 3 GPa and more, for an almost indefinite
period of time. “Indefinite,” in the sense that they outlive the application
they are in. If the load increases, the thickness of the lubricant film separat-
ing the surfaces, decreases and if it becomes too small, asperties will touch.
It is evident that, in such cases, the life expectancy of the bearing drops sig-
nificantly and the surface topography becomes important. Also with respect
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Figure 1.1: A rolling element bearing (source: J. Wensing).

to low friction, for which rolling element bearings were designed in the first
place, both experimental and theoretical research is required.

Since in this thesis we will mainly restrict ourselves to theory, in the
subsequent paragraphs we will discuss the developments in theoretical work
only.

1.1 EHL and numerical solution

The theory of lubrication started over a century ago, when Reynolds de-
scribed the flow of Newtonian fluids in narrow gaps, see [60]. At approxi-
mately the same time, Hertz [30] was the first to describe the elastic defor-
mation of two, non-conforming solids in contact. It is interesting to notice
that it took over 50 years before Ertel [20] and Grubin [24] combined both
effects into what is now known as EHL. Since then, however, considerable
progress has been made in theory as well as experiment.

Petrusevich [59] was the first to present numerical solutions that satisfied
both the Reynolds equation and the equation describing the elastic deforma-
tion. Dowson and Higginson [18] presented numerical solutions for a wide
range of the parameters involved and combined these solutions to the first
film thickness formula, see [17].

In the last decades, a number of techniques have been proposed to solve
the set of equations describing EHL contacts. For instance, direct methods
have been proposed, in which the pressure distribution is determined for a
given film thickness. As a next step, an iteration is performed, by means
of Gauss-Seidel iteration or by Newton-Raphson algorithms, to satisfy the
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Reynolds and the elasticity equation, simultaneously, see e.g. Hamrock and
Dowson [28], Chittenden, Dowson, Dunn and Taylor [15, 16] and Okamura
[56]. An inverse method, which includes the method of Dowson and Higgin-
son, has also been proposed. This method was applied to circular contacts
by Evans and Snidle [21]. The multigrid method, among others developed by
Brandt [10], was applied to the EHL equations by Lubrecht [47]. Although,
compared to all methods given above, multigrid significantly increased the
rate of convergence, the evaluation of the elastic deformation integral still
dominated calculation times. Hence, the use of the algorithms for practical
studies was long hampered by CPU time. In addition, these methods be-
came unstable at higher loads. Only by including the multilevel integration
technique, as developed by Brandt and Lubrecht [12], and through, so-called,
distributive relaxation techniques, was Venner [66] able to present an algo-
rithm for both the line and point contact problem that was stable for high
loads. The complexity of the algorithm was as low as O(n lnn), where n is the
number of unknowns; a complexity way below the complexity of conventional
algorithms. The combination of methods even allowed transient problems to
be addressed. As an example, Figure 1.2 shows some film thickness contour
plots, as calculated by Venner [66], which clearly shows the “power of the
method” (263, 169 nodal points were used in the computation). The numbers
M and L, as they appear in the plot, are the (dimensionless) load number
and piezoviscosity number and will be discussed in Chapter 3. ∆H denotes
the change in the values of the film thickness between consecutive contour
lines.

Using these algorithms, and by means of fast computer hardware, the
tribologist is now able to study the (transient) effects of surface topography,
such as waviness, dents and bumps, see [69]. In addition, the algorithms
allow for more complex rheological models to be included in the analysis,
as well as analysis of temperature effects [9] and even starved or parched
lubrication [14].

1.2 Vibrational behaviour

A separate development, which brings us to the topic of the present the-
sis, is the behaviour of the contact in relation to vibrations of the bearing,
bearing noise and machine noise. The interest in this behaviour is not only
imposed by customer demands, but also by governmental regulations. As
load capacity and the lifetime of rolling element bearings are more and more
guaranteed, their quality is increasingly determined by their acoustical or
vibrational performance.
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Figure 1.2: Film thickness contour plots calculated by Venner.

The determination of how vibrations are transmitted from the shaft to the
bearing housing requires solving a system of equations, that govern the dy-
namics of the structural components in the bearing and those of the EHL
contacts between these components. In addition, the dynamical behaviour
of the bearing is affected by the dynamical behaviour of the application,
and the equations describing the application should thus be included as well.
Since it is already difficult to obtain the solution for a single EHL contact
operating under dynamic loads, including all contacts would be a huge task.
Not only would calculation times be beyond acceptable bounds, but, more
importantly, the large number of variables in such a model would make a pa-
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rameter analysis simply impossible. This would thus prevent the deduction
of general guidelines to reduce noise.

One may circumvent solving all equations simultaneously, if the solution
of a subset of the equations, which in our case will concern the behaviour of
the EHL contact, is known in sufficient detail. Then, these solutions can be
included in a bearing model, which effectively reduces the overall complexity.
Obviously, such an approximation is only valid if the cross-coupling between
the individual subsets of equations is small.

Two examples (modes) of how a bearing responds to vibrations, or the
way by which vibrations are transmitted through the bearing, are shown
in Figure 1.3. The deflections are greatly exaggerated for clarity. In fact,
Figure 1.3 shows the results obtained by means of a finite element model of
the bearing, which includes approximate relations describing the lubricated
contacts, see Wensing [71, 72].

Figure 1.3: Two vibrating modes (source: J.Wensing).

The results obtained with these models provide valuable and accurate in-
formation regarding the dynamic response of the bearing. With the aid of
additional information, obtained from experiments, these models can be used
as a tool to reduce the noise production in all kinds of machines and equip-
ment.
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1.3 Problem definition

In this thesis, the main question we would like to address is: how do EHL
contacts behave under dynamic loads or vibrations? An additional question
is whether this behaviour can be described by simple, approximated relations.
As a reference case, since it is the limiting case of high loads and vanishing
lubricant supply, we start with the behaviour of a dry contact. Subsequently,
the attention focuses on how lubrication affects the stiffness and the effects
of the parameters involved. Can the stiffness be approximated by a simple
relation? If the structural elements vibrate, how does this affect the film
thickness and the pressure distribution? How do the different (dimensionless)
variables affect the damping of the circular contact? Furthermore, we would
like to understand in what way elliptically shaped contacts differ, with respect
to stiffness and damping, from a circular contact. (An additional question
is how ellipticity can be included most effectively in the algorithm for the
circular contact.) If lubrication is insufficient to fully fill the gap, how does
this affect the solution and should this effect be included in the analysis?
Obviously, a final question to be answered is also, how realistic the simulated
phenomena are.

1.4 Outline

The outline of this thesis is as follows. In Chapter 2, the dry contact situation
is discussed. This discussion serves several purposes. Firstly, it forms an
introduction to the topic and provides a reference for the interpretation and
explanation of the results in the more complex lubricated case. Secondly,
as the dry contact is the asymptotic limit of the lubricated contact at high
loads and for vanishing lubricant supply, it has a practical significance of
its own. Appropriate scales are derived, by which the equations are made
dimensionless and analytical solutions for both sinusoidally varying loads and
free vibrations are presented.

In Chapter 3, the theory associated with the lubricated case is discussed.
The model accounts for ellipticity as well as starved lubrication. The di-
mensionless equations are presented and the theory of starved lubrication is
discussed in some detail.

Chapter 4 focuses on the numerical methods used to solve the relevant
equations. Firstly, the discretized equations are given, which approximate the
equations given in the previous chapter. Secondly, some essential elements
of the algorithm for circular contacts are discussed. Subsequently, we direct
our attention to the modifications in the circular contact algorithm, which
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are required as a result of ellipticity and starved lubrication.
In the next chapter, the circular contact problem is considered. As a

reference, it shows the steady state pressure and film thickness distribution
as a function of the parameters involved. From this steady state solution,
the stiffness of the EHL circular contact is derived. In the remaining part
of the chapter, emphasis is placed upon the transient solution for both free
vibrations and sinusoidally varying loads. It is shown how the film thickness
and pressure distribution change in time, and how the results relate to the
solution for a dry contact. From the solutions for sinusoidally varying loads,
the damping induced by the lubricant is calculated. Next, a curve-fit function
is presented that approximates the calculated values, as a function of the
operating conditions.

Subsequently, in Chapter 6, the effect of ellipticity is discussed. The
steady state solution is presented for a number of values of the parameters
involved. From this solution, the stiffness of the elliptical contact is deduced.
The transient solution is used to reveal the effect of ellipticity on damping.

Chapter 7 is about starved lubrication. It is shown how the solution
changes if the lubricant supply decreases, and that the phenomena, derived
from continuity relations, indeed show up in the numerically obtained solu-
tions. From the steady state solution, the effect of starvation on the stiffness
is discussed, and it will be shown how damping is affected by starvation.

The concluding chapter presents a comparison between results obtained
from experiments on a ball on disc apparatus, conducted by R. Larsson and
P. Eriksson at Lule̊a University of Technology, Sweden, and results obtained
with the mathematical model, see also [76]. It shows that the phenomena
described in this thesis can indeed be observed in actual experiments.



8 Introduction



Chapter 2

Theory: Dry contact

In this chapter the dynamic behaviour of two elastic solids in contact is dis-
cussed, where it is assumed that no lubricant is present in the gap between
the solids. The Hertzian steady state solution will be discussed first. Sub-
sequently, the quasi-static solution for sinusoidally varying loads, as well as
the solution for which inertia is included are discussed.

2.1 Dry contact model

Figure 2.1 shows a rolling element running on a raceway. At this stage, it is
assumed that there is no lubricant film separating the surfaces of the bodies,
leaving the discussion of the lubricated problem for the next chapter.

m

m
2

1 f

u
2

u
1

Figure 2.1: Rolling element on raceway.

Due to the applied load f both solids will deform elastically, forming an
elastic footprint or contact area. If the contact area dimensions are small
compared to the radii of curvature involved, locally, the undeformed surfaces
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may well be approximated by paraboloids. (From Pythagoras’ rule, the cir-

cular arc given in Figure 2.2 is described by z = Rx − Rx

√
1− (x/Rx)

2. A
Taylor series around x = 0, yields z ≈ x2/Rx.) These approximate relations
will be used to describe the undeformed surfaces.

Since the surfaces can be approximated by paraboloids, the shape of the
gap between the undeformed solids, abbreviated to as the gap, can also be
expressed by paraboloids. The reduced radii of curvature of the gap, Rx and
Ry, are defined according to:

R−1
x = R−1

x1 + R−1
x2 , (2.1)

R−1
y = R−1

y1 + R−1
y2 , (2.2)

where Rx1 and Rx2 are the radii of curvature in the x-direction of, respec-
tively, solid 1 and solid 2. Ry1 and Ry2 denote the radii of curvature in
y-direction, see Figure 2.2

In addition, it is assumed that the x- and y-coordinates are aligned to
the principal directions of the gap, i.e. the cross-term xy cancels in its
description. The directions of the surface velocities u1 and u2 are assumed
to coincide and to be aligned to the x-direction. The y-coordinate is taken
perpendicular to the x-coordinate.

R

R

R

y1

x2

y2

R
x1

R

R

x

y

u
1

u
2

u
1

u
2

x

y

R
x

 z = x / 2  
x

R
x

2~

Figure 2.2: Definition of the reduced radii of curvature and approximation
of the undeformed surface by a paraboloid.

If the elastic deformations are small, it is justified to apply linear elastic
theory. Furthermore, if the contact length and width are small compared to
the size of the contacting bodies (in all three dimensions), the elastic defor-
mation of the solids is approximated accurately by the deformation of two
semi-infinite bodies. These assumptions restrict the validity of the solution
to concentrated contacts.
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The elastic deformation of the solids can be calculated in the following
way. Neglecting tangential stresses on the surfaces, the normal displacement
v(x, y) of the surface of a semi-infinite solid, due to a point load f in the
origin is:

v(x, y) =
1− ν2

πE

f√
x2 + y2

, (2.3)

where E is Young’s modulus or the modulus of elasticity and ν denotes
Poisson’s ratio. This solution has been obtained by assuming that the elastic
deformation is zero at an infinite distance from the load. The reader is
referred to Love [45] and Johnson [33] for a detailed discussion on the subject.

The deformation due to a distributed normal pressure p(x, y) on the sur-
face can subsequently be obtained by integration:

v(x, y) =
1− ν2

πE

∫∫
S

p(x′, y′)dx′dy′√
(x− x′)2 + (y − y′)2

, (2.4)

where S is the contact area.
The actual gap h(x, y) between the two solids is now obtained by adding

the elastic deformation of both solids to the parabolic approximation of the
undeformed gap:

h(x, y) = −δ +
x2

2Rx
+

y2

2Ry
+

2

πE′

∫∫
S

p (x′, y′) dx′dy′√
(x− x′)2 + (y − y′)2

. (2.5)

Here, δ is the mutual distance of approach, also referred to as the mutual
approach, of two remote points in the solids. The term remote is used to in-
dicate that the elastic deformation is negligible at these points. Furthermore
E′ is the reduced modulus of elasticity:

2

E′
=

(1− ν2
1)

E1
+

(1− ν2
2)

E2
, (2.6)

where E1 and E2 denote the elasticity modulus of solids 1 and 2, respectively,
and ν1 and ν2 denote Poisson’s ratio for solids 1 and 2.

Since the surfaces do not penetrate, the gap is restricted to positive values
only. Besides, only positive contact pressures exist if the contact is non-
adhesive, as is assumed here. In addition, because a gap larger than zero
implies that the pressure is also zero, and a pressure larger than zero causes
the gap to close, the following complementarity condition holds:

h(x, y) p(x, y) = 0, with

h(x, y) ≥ 0 and p(x, y) ≥ 0. (2.7)
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Given the approach δ, Equations 2.7 and 2.5 uniquely determine the pressure
inside the contact area as well as the gap outside it. The determination of the
approach δ itself requires an additional condition. For instance, it is usually
required that the integral of the pressure over the contact area equals the
applied load. However, δ may also follow from contact dynamics, as will be
discussed in subsequent sections.

For smooth parabolic surfaces, the pressure in the contact region and the
gap outside can be solved analytically. This solution was already presented
by Hertz [30] over a century ago and, since it will be used extensively in
the present work, will be discussed in the next section. For general, non-
smooth, surfaces the solution can efficiently be obtained numerically using
the multi-level algorithm presented by Lubrecht and Ioannides [48].

2.2 Hertzian solution

Hertz [30] was the first to present the solution to the dry contact problem.
He derived the deformation of the surfaces, the resulting mutual approach
of two remote points in the solids, as well as the displacements, strains and
stresses. Hertz showed that the shape of the contact area is elliptical. The
length of the elastic footprint on the line y = 0, denoted by 2a, and the width
of the footprint on x = 0, denoted by 2b, can be expressed as:

a =

(
3fR

E′

)1/3 (
2κE
π

)1/3

(2.8)

and

b = a/κ, (2.9)

where f is the applied load, R =
(
R−1

x + R−1
y

)−1
is the reduced radius of

curvature, E ≡ E(1− κ2) is the complete elliptic integral of the second kind1

and κ denotes the ellipticity.
The ellipticity κ only depends on the ratio between the reduced radii of

curvature in the x- and y-directions, and is given implicitly by the following
expression:

Rx

Ry
= κ2 K − E

E − κ2K , (2.10)

1The complete elliptic integrals of the first and second kind are defined by, respectively,

K(m) =
∫ π/2

0
1√

1−m2 sin2(ψ)
dψ and E(m) =

∫ π/2

0

√
1−m2 sin2(ψ)dψ, where m is the pa-

rameter of the elliptic integral. Note that K(0) = E(0) = π/2.
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where K ≡ K(1 − κ2) is the complete elliptic integral of the first kind1.
Analytical curve-fits for κ are available, see Moes [51], but nowadays κ can
easily be solved numerically, directly from Equation 2.10. Figure 2.3 shows
κ as a function of Rx/Ry.

Rx/Ry

κ

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.3: Ellipticity κ as a function of Rx/Ry

Hertz also showed that the pressure in the contact area is semi-ellipsoidal
and the maximum normal pressure ph is given by:

ph =
3f

2πab
. (2.11)

The mutual approach c of two remote points in the solids was shown to be:

c = (f/k)2/3 =
a2

2R

K
E , (2.12)

with

k =
2

3
E′
√

2R

√√√√ π2E
(2κ)2K3

. (2.13)

c has been introduced to denote the mutual approach at the nominal load f ,
which for time-dependent problems is generally different from δ.

Equation 2.12 defines the so-called Hertzian spring, i.e. for any approach
δ, the contact force can be obtained from f = kδ3/2. The corresponding
stiffness equals 3

2
kδ1/2, showing that the Hertzian spring is a stiffening spring.

The flexibility of the Hertzian contact, i.e. the inverse of the stiffness, is given
by 2

3
k−2/3f−1/3 = 2

3
k−1δ−1/2.
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For the sake of completeness, it should be mentioned that Hertz also
presented the solution for two impacting solids. He assumed that no external
load was applied, which allowed him to determine the contact pressures, the
mutual approach and the total contact time as a function of the impacting
velocity. Since we are interested in cases for which an external load is applied,
Hertz’ transient result will not be discussed here. Instead, we will present
the more general equation of motion.

2.3 Contact dynamics

If the mass of the raceway is large compared to the mass of the rolling
element, we can assume it to be a solid of infinite mass (m2 → ∞). From
Newton’s second law, the equation describing the relative motion of two
remote points in the solids becomes:

m
d2δ

dt2
+

∫∫
S

p(x, y)dxdy = f(t), (2.14)

where m ≡ m1 is the mass of the rolling element and f(t) is the applied
load. Henceforth, f(t) will denote a force that may vary in time, whereas f
will be used to denote the average load. Equation 2.14, being a second order
differential equation, requires two initial conditions, e.g. one for the initial
mutual approach and one for the initial approaching velocity:

δ(t = 0) = δ0 and

dδ

dt
(t = 0) = δ̇0. (2.15)

In dry contact situations, the force which results from a given approach δ
(the second term in Equation 2.14), is simply the Hertzian spring kδ3/2. The
equation of motion then reduces to:

m
d2δ

dt2
+ kδ3/2 = f(t). (2.16)

For negative δ the solids separate and the contact force is obviously zero.
Hence, Equation 2.16 only holds for positive δ. For negative δ, it is valid
provided the second term is set to zero.

The solution of this equation for arbitrary initial conditions and loads
is easily obtained numerically. However, we will restrict ourselves to two
particular sets of solutions, in view of what will be needed for the analysis
of the lubricated contact. The first solution is the quasi-static solution for
sinusoidal perturbations of the load. The second solution includes inertia
and assumes a constant load.
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2.3.1 Sinusoidally varying loads

If the load is perturbed sinusoidally, i.e. if f(t) = f · (1 + A sin (ωt)), and
there is an instantaneous adaptation to the applied load, the approach δ
directly follows from Equation 2.16, i.e. the solution is quasi-static. However,
to facilitate a comparison between the lubricated case and the present dry
contact case, the problem will be expressed in a time dependent form.

Before examining the solution, Equation 2.16 will be made dimensionless
to reduce the number of independent variables. Introducing:

∆ = δ/c,

T = tω, (2.17)

where c is the Hertzian approach at the nominal load f , see Equation 2.12,
the equation reduces to:

∆3/2 = 1 + A sin(T). (2.18)

Note that Equation 2.18 does not hold for A > 1. This is evident because
in this case the load becomes negative, resulting in tensile stresses at the
contacting surfaces. This already contradicts the Hertzian assumptions, since
the solids separate whenever negative pressures occur as they are assumed
to be non-adhesive.

Multiplying both sides of Equation 2.18 by ∆̇ and integrating with respect
to T yields:

2

5
∆5/2 = ∆ +

1

5
(1 + A sin T)2/3 (−3 + 2A sin T) + C, (2.19)

where C is a constant of integration. It represents the amount of deviation
from equilibrium and ranges from C = 0 for A = 0, to C = 22/3 for A = 1. The
individual terms in this equation may be interpreted as the potential energy
due to the elastic deformation, the work done by the nominal load and the
work done by the perturbation load, respectively. Obviously, such an energy
equation could be derived only since, per definition, the elasticity model does
not include any dissipative forces.
Figure 2.4 shows ∆(T) for A = 0.1, 0.5 and 1.0. In addition, it illustrates how
the solution can simply be constructed from the relation between the mutual
approach and the applied load, i.e. ∆ = F 2/3, where F is the dimension-
less load. Due to the non-linearity, the asymmetry of the solution around
the equilibrium solution ∆ = 1 clearly shows. Note that in terms of the di-
mensionless variables, the frequency ω vanishes from the set of independent
variables. Thus, the “period of oscillation” maps onto Te = 2π.
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Figure 2.4: Response ∆(T) for sinusoidally varying loads for A = 0.1, 0.5 and
1.0.

2.3.2 Inertia

A second model can be obtained by introducing forces due to the inertia of
the rolling element. Assuming a constant load, substitution of the following
variables makes the independent variables in the equation of motion vanish,
i.e. substituting

∆ = δ/c and

T = t

√
f

mc
, (2.20)

the equation of motion reduces to:

d2∆

dT 2
+ ∆3/2 = 1. (2.21)

In this case, initial conditions are required, which in terms of the new vari-
ables read:

∆(T = 0) = δ0/c = ∆0 and
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d∆

dT (T = 0) = δ̇0

√
m

fc
= ∆̇0. (2.22)

Just as for the equation for sinusoidally varying loads, Equation 2.21 can be
integrated once, yielding the energy equation:

1

2
∆̇2 +

2

5
∆5/2 = ∆ + C, (2.23)

where ∆̇ denotes differentation with respect to T and C is a constant of
integration. C ranges from C = 0 for oscillations, for which at some in-
stant ∆ becomes zero but otherwise remains positive, to C = −3/5 for the
steady state solution ∆ = 1. The individual terms may now be interpreted
as, respectively, the kinetic energy, the potential energy due to the elastic
deformation and the work done by the unit force.

Analytical solutions of Equation 2.21, subject to the initial conditions
given in Equation 2.22, can only be obtained in some special cases. One such
solution is the linearized solution for small oscillations. A second solution is
the one for which C = 0.

For small initial deviations from the equilibrium solution ∆ = 1, Equa-
tion 2.21 can be linearized and the solution is readily obtained as:

∆ = 1 +A cos
(√

3/2T + φ
)

, (2.24)

where A is the amplitude of the oscillation and φ denotes a phase shift. Both
the amplitude and phase shift can be determined from the initial conditions.

Thus, for small oscillations, the period of oscillation is Tn = 2π/
√

3/2 ≈
5.130.

If C = 0, ∆ will become zero at some time, otherwise it remains posi-
tive. This solution can be given in terms of the Weierstrass elliptic function
℘(z; g2, g3), where g2 = 0 and g3 = −1/800:

∆ = 400℘
(
T − ι

√
20C2; 0,−1/800

)2
, (2.25)

where ι is the imaginary unit and C2 is a constant of integration and represents
a phase shift, see Appendix A. Between the zeroes of this function there are
alternating regions where the solution is bounded and regions where it tends
to infinity. Since, obviously, the bounded solution is the appropriate one, the
period of oscillation Tn can be shown to be

Tn = 2
∫ ∞

1
10

3
√

5
2

(
4σ3 + 1/800

)−1/2
dσ ≈ 5.383. (2.26)
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Figure 2.5: ∆(T ) for ∆0 = 1.1, 1.5 and (5/2)2/3 and ∆̇0 = 0.

The maximum mutual approach is ∆max = (5/2)2/3 ≈ 1.842.
The solution for arbitrary values of C and C2 can easily be solved numerically.
Figure 2.5 shows ∆ for different values of ∆0 where ∆̇0 = 0. One observes that
the asymmetry is less profound than in the case of sinusoidal perturbations
of the load.

From the linearized, the numerical and the Weierstrass solution, it can
be seen that the period of oscillation only slightly increases with C, i.e. it
is virtually independent of the amplitude of the oscillation. In fact, the
difference in natural frequency between the linearized and the Weierstrass
solution is only about 4.7%. Hence, one may conclude that the non-linearity
in the amplitude of the oscillation is only small. This result will be shown to
be a useful reference in the discussion on lubricated contacts.



Chapter 3

Theory: Lubricated contact

In this chapter the model, as presented in the previous chapter, is extended to
lubricated contacts. The additional equation describing the lubricant flow is
given, as well as the cavitation condition and two empirical relations concern-
ing the viscosity and density of the lubricant. Furthermore, using appropriate
scales, dimensionless equations are presented.

A further extension that will be described is starved lubrication, i.e. when
lubrication is insufficient to fully fill the gap between the contacting bodies.
For that purpose, the equation describing the lubricant flow is modified and
so-called continuity conditions will be discussed. The chapter ends by pre-
senting the modified dimensionless equations.

3.1 EHL theory

The equations describing the fully flooded EHL contact are, among others,
the Reynolds equation describing the flow in the gap, the equation for the
gap or film thickness and the equation of motion. Each equation is discussed
below.

Reynolds equation

In EHL contacts, the thickness of the lubricant film between the contacting
surfaces is generally small compared to the characteristic dimensions of the
contact area. Moreover, the forces due to inertia in the lubricant are negli-
gibly small compared to the viscous forces. In this case, the Navier Stokes
equations, describing the flow of a Newtonian fluid, reduce to a single equa-
tion that relates the pressure in the gap to its geometry. This equation is
known as the Reynolds equation, see Reynolds [60], named after the person
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who first derived it. If the velocities of both surfaces are in the x-direction
only and fully flooded conditions apply, the Reynolds equation reads:

∂

∂x

(
ρh3

η

∂p

∂x

)
+

∂

∂y

(
ρh3

η

∂p

∂y

)
= 6us

∂ρh

∂x
+ 6ρh

∂us

∂x
+ 12

∂ρh

∂t
, (3.1)

where p = p(x, y, t) is the hydrostatic pressure above ambient pressure and
h = h(x, y, t) is the gap between the contacting surfaces. The viscosity and
the density of the lubricant are denoted by η = η(x, y, t) and ρ = ρ(x, y, t),
respectively. Finally, the sum velocity us equals the sum of the velocities of
the two surfaces, i.e. us = u1 + u2.

In the present study, it is assumed that us is constant. Hence, the so-
called stretch effect (the second term on the right hand side of Equation 3.1)
disappears. The remaining terms on the right hand side are generally referred
to as the wedge term and the squeeze term according to the mechanism of
pressure generation they represent. Flow induced by the wedge term is also
known as Couette flow. Pressure induced flow, as on the left hand side of
the equation, is usually termed Poiseuille flow.

The Reynolds equation requires conditions on the boundary enclosing the
spatial domain. Since p is the pressure above ambient pressure, the pressure
on the boundary of the domain is set equal to zero:

p (x, y, t) = 0; ∀(x, y, t) ∈ ∂S, (3.2)

where ∂S denotes the boundary of the spatial domain.

Cavitation

If the pressure in the lubricant becomes smaller than the vapour pressure,
the lubricant cavitates. In the cavitated region, the pressure in the lubri-
cant remains constant and equal to the vapour pressure, when the void that
is formed is filled by the lubricant vapour. The lubricant pressure equals
the ambient pressure if the surrounding medium occupies the void. This
effect is not accounted for in the Reynolds equation and, without any fur-
ther provisions, the Reynolds equation predicts negative pressures. Since the
vapour pressure and the ambient pressure are generally small compared to
the pressure occurring in the contact, it is justified to assume that the lubri-
cant cavitates at zero pressure. Hence, cavitation is taken into account by
restricting the pressure to positive values only, i.e.:

p (x, y, t) ≥ 0; ∀(x, y, t) ∈ S, (3.3)

where S is the domain.
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Film thickness equation

If the undeformed surfaces are approximated by paraboloids and the elastic
deformation of the surfaces is accounted for, the gap between the surfaces
can be described by:

h(x, y, t) = −δ(t) +
x2

2Rx
+

y2

2Ry
+

2

πE′

∫∫
S

p (x′, y′, t) dx′dy′√
(x− x′)2 + (y − y′)2

, (3.4)

as was given in Equation 2.5.

Viscosity/Compressibility

The viscosity and the density of the lubricant are generally pressure depen-
dent. Particularly at the high pressures occurring in EHL contacts, this
dependence cannot be neglected.

A simple relation that is frequently used to describe the increase of the
viscosity with pressure is the so-called Barus relation, see Barus [5]:

η = η0e
αp, (3.5)

where η0 is the viscosity at ambient pressure and α is the pressure-viscosity
coefficient. Experience has shown that, for most lubricants, the Barus re-
lation overestimates the viscosity. Roelands [61] proposed a relation which
is valid up to pressures of approximately 1 GPa. For isothermal conditions
Roelands’ equation reduces to:

η = η0 exp (ln (η0) + 9.67) (−1 + (1 + p/pr)
z), (3.6)

where pr = 1.96 108 and z is the pressure-viscosity index. The index z ranges
from approximately 0.1 to 1.5 for various lubricants, see [61]. In the present
work Roelands’ relation will be used with z = 0.67.

From:

α ≡ 1

η

(
dη

dp

)
p=0

, (3.7)

α, pr and z are related according to:

z =
prα

ln (η0) + 9.67
. (3.8)

The density of most mineral oils increases with pressure. Often this effect is
small and can be neglected. However, at the large pressures that occur in
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EHL contacts, this is no longer true. An empirical relation that describes
this increase was proposed by Dowson and Higginson [17]:

ρ = ρ0
0.59 109 + 1.34p

0.59 109 + p
, (3.9)

where ρ0 is the density at ambient pressure. According to Equation 3.9, the
density can increase with approximately 30%.

Equation of motion

If the mutual approach δ is given, the Reynolds equation and the film thick-
ness equation form a well posed problem, i.e. there is one unique solution for
the pressure and film thickness. However, generally δ is unknown too. For
example for steady state conditions, our particular interest is in the value of
δ for which the contact force, i.e. the integral of the pressure over the contact
area, equals the applied load f . In this case, the equation of motion reduces
to the equation: ∫∫

S
p(x, y)dxdy = f. (3.10)

In the transient case, the mutual approach is governed by the general equa-
tion of motion as is given in Section 2.3. Assuming sinusoidal perturbations
of the load and including inertia terms, this equation reads:

m
d2δ

dt2
+

∫∫
S

p (x, y, t) dxdy = f · (1 + A sin(ωt)). (3.11)

As for the dry contact case, this equation will not be used in its complete
form, i.e., either the inertia term or A is set to zero.

3.1.1 Dimensionless equations

The number of independent parameters presented in the above equations can
be greatly reduced by the introduction of similarity groups. These groups
are preferably dimensionless but this is not essential. A powerful tool to
obtain similarity groups for a given set of equations is the so-called optimum
similarity analysis, as presented by Moes [50]. This method ensures that the
number of independent parameters is minimal.

In the present study, the similarity groups are based on the Hertzian so-
lution. This leads to a number of independent similarity groups that equals
the minimum number obtained by the optimum similarity analysis. These
specific groups are preferred because the value of most of the variables will
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be around unity, which minimizes the loss of accuracy in numerical compu-
tations. Moreover, as will become clear, it facilitates the interpretation of
the solution.

Hence, after substitution of the following variables:

X = x/a, Y = y/b,
H = h/c, ∆ = δ/c,
P = p/ph, T = tus/ (2a),
ρ̄ = ρ/ρ0, η̄ = η/η0,

the Reynolds equation reduces to:

∂

∂X

(
ρ̄H3

η̄λ

∂P

∂X

)
+ κ2 ∂

∂Y

(
ρ̄H3

η̄λ

∂P

∂Y

)
=

∂ρ̄H

∂X
+

∂ρ̄H

∂T
, (3.12)

where λ is defined by:

λ =
6usη0a

c2ph

. (3.13)

The boundary condition is P (X, Y, T ) = 0; ∀(X, Y, T ) ∈ ∂S, where ∂S now
denotes the enclosure of the dimensionless spatial domain S. The cavitation
condition poses the condition P (X, Y, T ) ≥ 0; ∀(X, Y, T ) ∈ S.

The dimensionless film thickness, in terms of the given variables, reads:

H(X, Y, T ) = −∆(T )+SX2+(1− S) Y 2+
1

πK

∫∫
S

P (X ′, Y ′, T ) dX ′dY ′√
κ2 (X −X ′)2 + (Y − Y ′)2

,

(3.14)
where S = S(κ) is a shape factor which only depends on the geometry of the
undeformed solids. It is defined according to:

S (κ) =
E − κ2K
K − κ2K , (3.15)

where limκ→1 S(κ) = 1/2. The reader is referred to Section 2.2 for the
definition of the complete elliptic integrals K and E . Figure 3.1 shows the
shape factor S(κ) for 0 < κ ≤ 1. Values of the shape factor for κ > 1 can
be obtained from its value for κ < 1 using S(κ) = 1− S(1/κ). The function
0.5κ3/11 has been included in Figure 3.1. It approximates S(κ) within 0.5%,
for 0.1 < κ ≤ 1. Due to the small values of S(κ) for κ < 1, the percentage
becomes less favourable.
The Barus relation describing the dependence of viscosity on pressure reduces
to:

η̄ = eᾱP , (3.16)
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S(κ) ≈ 0.5κ3/11

S(κ)

κ

S(κ)

10.80.60.40.2

0.5

0.4

0.3

0.2

0.1

Figure 3.1: Shape factor S(κ).

where ᾱ is defined as:
ᾱ = αph. (3.17)

Roelands’ equation reduces to:

η̄ = exp
{(

αpr

z

)
(−1 + (1 + (Pph/pr))

z)
}

, (3.18)

whereas the Dowson and Higginson relation, in terms of the dimensionless
variables, reads:

ρ̄ =
0.59 109 + 1.34Pph

0.59 109 + Pph

. (3.19)

Finally, Equation 3.10 reduces to:

3

2π

∫
S

P (X, Y )dXdY = 1, (3.20)

whereas the dimensionless equation of motion reads:

1

Ω2
n

d2∆

dT 2
+

3

2π

∫
S

P (X, Y, T )dXdY = 1 + A sin (ΩeT ) . (3.21)

In this equation Ωn is the dimensionless natural frequency defined as:

Ω2
n =

4fa2

mu2
sc

=
8fR

mu2
s

E
K , (3.22)

and Ωe is the dimensionless excitation frequency defined as:

Ωe =
2aω

us
, (3.23)
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where the reader is reminded that f denotes the nominal load.
From the variables introduced, it can be concluded that the steady state
solution for fully flooded conditions only depends on the parameters λ, ᾱ and
κ. The solution for sinusoidally varying loads depends also on the frequency
Ωe and the amplitude A. For free vibrations, the solution further depends
on the frequency Ωn and the initial conditions ∆0 and ∆̇0.

The set of parameters λ, α and κ are not the only set that is independent
and minimal in the sense as described earlier. In fact, there are an infinite
number of sets which are independent and minimal, provided they are unique
combinations of λ, α and κ. One such set has been derived by Moes [50],
and this set is often used within the tribology community. The set is based
on the optimum similarity analysis. Although all calculations are performed
using the parameters based on the Hertzian solution, this set will be used to
identify the specific cases.

Moes’ parameters are the load parameter M and lubricant parameter L.
They are defined according to:

M =
f

E′R2
x

(
E′Rx

η0us

)3/4

(3.24)

and

L = αE′
(

η0us

E′Rx

)1/4

. (3.25)

The parameters λ and α are related to M , L and κ according to:

λ =

(
128π3

3M4

)1/3 (
16π (E − κ2K)

5

κ4 (1− κ2)K6

)1/3

, (3.26)

and

ᾱ =
L

π

(
3M

2

)1/3
(

π2κ (1− κ2)
2

16 (E − κ2K)2

)1/3

. (3.27)

It is noted that for κ = 1, one should take the principal values of these
expressions (limκ→1). In that case, the factors containing the elliptic integrals
converge to 1.

3.2 Starved lubrication

The Reynolds equation presented in the previous section is only valid for fully
flooded conditions, which apply when the lubricant completely fills the inlet
region of the domain. In real applications, however, the amount of lubricant
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in the inlet is often insufficient to establish these fully flooded conditions. The
lubricant only partly fills the gap, whereas the remaining part is occupied
by vapour or the surrounding medium. As a result, the pressure equals the
ambient pressure at that location. In addition to these global scale features,
the lubricant may also cavitate locally, when surface features like dents or
bumps are present. A general term indicating these phenomena is starved
lubrication.

Since, under the assumptions made in Section 3.1, the pressure in the
cavitated area equals the ambient pressure, one may consider cavitation and
starvation to be different words representing the same thing.

For starved lubricated contacts, one may thus distinguish a starved region
and a pressurized region. For the two-dimensional flow considered here, the
starved region surrounds the pressurized region. (Obviously, the starved
region may enclose a number of pressurized regions, which in their turn may
enclose starved regions.) This is shown in Figure 3.2. The cross section A−A
is also included in Figure 3.2.
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Figure 3.2: The pressurized and starved regions, and the cross section.

In the pressurized region the lubricant fully fills the gap and the Reynolds
equation can be used to determine the pressure in the film. Note that the
position of the boundary between the pressurized region and the starved
region, the so-called meniscus, is unknown. Hence, this boundary is a free
boundary, which may even change in time, and its location is part of the
solution to be obtained. Compared to fully flooded conditions, this adds to
the complexity of the problem.

In recent years, a number of authors have analysed starved lubrication.
The first reports on cavitation were the contributions of Stieber [63], Jakobs-
son and Floberg [32] and Olsson [65]. Jakobsson and Floberg introduced the
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concept of a fractional film content and derived continuity relations which
hold on the meniscus. Olsson extended the condition posed by Jakobsson and
Floberg to the transient case. The derivation of these continuity relations
will be given in a subsequent section. An algorithm for the automatic deter-
mination of the meniscus in slider bearings, which is basically the algorithm
that is adopted here, was presented by Elrod [19]. However, numerical results
for steady state EHL contacts were only recently reported in Chevalier [14].

3.2.1 Modified Reynolds equation

Although the cavitation condition, Equation 3.3, is sufficient for simulating
a single cavitation boundary, it cannot simulate pressure generation from a
starved region. This requires the introduction of a fractional film content θ.
The fractional film content is defined as the ratio between the height of the
lubricant layer or oil film, denoted by hl, and the total gap h at that location:

θ =
hl

h
, (3.28)

see Figure 3.2. It is noted that, contrary as the Figure might suggest, the
lubricant may be distributed unevenly across the gap.

Since the lubricant is confined within the gap, the value of θ is within the
range:

0 < θ (x, y, t) ≤ 1; ∀(x, y, t) ∈ S, (3.29)

where θ < 1 in the starved regions and θ ≡ 1 in the pressurized regions.
It is subsequently assumed that, in the starved region, the lubricant is

continuously distributed across the film and thus can be modelled as a con-
tinuum. However, since the lubricant only partly fills the gap, the density
of the continuum has to be adjusted accordingly. The density of the vapour
or surrounding medium is neglected and the density of the continuum in the
starved region is set equal to θρ, where ρ is the density of the lubricant. Since
obviously the pressure equals the cavitation pressure, the sole mechanism for
transport of lubricant in the starved region is Couette flow.

Based on this concept, the Reynolds equation can be modified to:

∂

∂x

(
ρh3

η

∂p

∂x

)
+

∂

∂y

(
ρh3

η

∂p

∂y

)
= 6us

∂θρh

∂x
+ 6θρh

∂us

∂x
+ 12

∂θρh

∂t
. (3.30)

This modified Reynolds equation is valid in the pressurized regions, as well
as in the starved regions and, indeed, it reduces to the classical equation if
θ = 1.
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To obtain a unique solution, the following complementarity condition
must be fulfilled:

p(x, y, t) (1− θ(x, y, t)) = 0, with

p(x, y, t) ≥ 0 and 0 < θ(x, y, t) ≤ 1, (3.31)

since a point is either in a pressurized region (p > 0 and θ = 1) or in a
starved region (p = 0 and θ < 1).

The modified Reynolds equation and the complementarity condition en-
sure continuity of flow across the boundary between starved regions and
pressurized regions. This will be discussed further in Section 3.2.2.

The boundary conditions for the modified Reynolds equation differ from
the boundary conditions for the classical Reynolds equation. Instead of spec-
ifying the pressure, one now needs to specify the fractional film content θ on
the boundary of the domain. Note that because, in the starved region, the
modified Reynolds equation is a hyperbolic differential equation, boundary
conditions may only be specified at the inlet of the domain.

In the present study, the value of the fractional film content on the bound-
ary will be derived from the “height” of the inlet lubricant layer, hl = hl;inlet.
Furthermore, it will be assumed that hl;inlet is constant and equal to hoil,
i.e. it is assumed to be independent of the spatial coordinates as well as
independent of time. The fractional film content at the inlet of the domain
then follows from:

θ (xa, y, t) =
hoil

h(xa, y, t)
, (3.32)

where xa is the position of the inlet boundary, see Figure 3.2. Note that
h(xa, y, t) depends on the pressure distribution, and hence the boundary
condition is a function of the solution itself.

3.2.2 Continuity relations

As was mentioned before, a continuity relation must hold on the boundary
between the starved region and the pressurized region. This relation is known
as the Jakobsson-Floberg-Olsson (JFO) relation, see [32] and [23].

For steady state conditions, the JFO relation reduces to the so-called
Reynolds cavitation boundary condition at the outlet meniscus. This con-
dition is ascribed to Reynolds although he did not state it explicity. In the
sequel of this section, the JFO relation will be extended to two-dimensional
problems. For reasons of simplicity, the continuity relation for the one dimen-
sional problem will be derived first. Contrary to Olsson, its derivation will
be based on Green’s theorem, which allows a more straightforward extension
to the two-dimensional, time dependent situation.
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One dimensional flow

If the radius of curvature Ry is large compared to Rx, the modified Reynolds
equation becomes independent of y and reduces to:

∂

∂x

(
ρh3

η

∂p

∂x

)
− 6us

∂θρh

∂x
− 12

∂θρh

∂t
= 0. (3.33)

This can be rewritten in terms of the divergence of a vector field V as

∇ · V = 0, (3.34)

where

V = (
ρh3

η

∂p

∂x
− 6usθρh , −12θρh), (3.35)

and ∇ ≡ (∂/∂x, ∂/∂t). Then, also the integral
∫∫

S∇ · V dS must vanish on
an arbitrary domain S in (x, t)-space.
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Figure 3.3: The regions S, as indicated by the shaded areas, on and across
the boundary between the starved and pressurized region (left) and the pres-
surized and starved region (right). Please note the t-direction.

Applying Green’s theorem1 on a region S near and across the boundary
between the starved region and the pressurized region or the pressurized

1Green’s theorem reads: ∫ ∫
S

∇ · V dxdt =
∮

∂S

V · nds, (3.36)

where ∂S is the contour, n is the exterior unit normal on ∂S and s is the coordinate which
runs along the contour counter clockwise.
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region and the starved region, see Figure 3.3, and letting the contours ∂S
collapse onto the boundary, one obtains:

−h2

η

∂p

∂x
nx + 6us (1− θc) nx + 12 (1− θc)nt = 0, (3.37)

where nx and nt denote the components of the unit normal vector n on
the boundary. Although this choice is arbitrary, we will let n point in the
direction of the starved region, see Figure 3.3. In Equation 3.37, θc is the
value of the fractional film content which is in the starved region and nearest
to the boundary. Note that in Equation 3.37, the term (1 − θc) is actually
the difference between the fractional film content in the fully flooded region,
θ ≡ 1, and the fractional film content in the starved region, θc < 1. The
relation shows that if a pressure gradient exists on the meniscus, a jump
in θ must occur! From nt/nx = −ẋc, where ẋc denotes the velocity of the
meniscus, we can rewrite Equation 3.37 as:

−h2

η

∂p

∂x
+ (6us − 12ẋc) (1− θc) = 0. (3.38)

In Figure 3.3, the inlet- and the outlet meniscus have both been denoted by
xc, to show that the continuity relation is valid on both boundaries.

Steady state

In the steady state situation, Equation 3.38 reduces to:

−h2

η

∂p

∂x
+ 6us (1− θc) = 0. (3.39)

Near the exit of a pressurized region, see Figure 3.3, it is obvious that the
pressure gradient must be negative or zero, since on the left hand side of
the boundary the pressure is larger than the vapour pressure on the right
hand side of the boundary. If ∂p/∂x were negative, θc would have to be
larger than unity in the cavitated region, for Equation 3.39 to be true. This
violates Equation 3.29 and, as a result, the pressure gradient must vanish at
the exit of the pressurized region. The fractional film content is a continuous
function.

This is not true at the entrance of the pressurized region, as is explained
in the frame below. Thus the pressure gradient as well as the discontinuity
do exist at any inlet to a pressurized region, which is illustrated in Figure
3.4.
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Figure 3.4: Pressure, film thickness, fractional film content and hl;exit.

On the discontinuity of the fractional film content and pressure
gradient.

In this frame, we will explain why the pressure gradient and the
discontinuity of θ must exist at the inlet of the pressurized region. For
this purpose, it is shown that, at the first point at which the pressure
gradient vanishes, the pressure itself is maximal. This contradicts the
statement that, by definition, the pressure is minimal in the starved
region and hence, a jump in the fractional film content and a discon-
tinuity in the pressure gradient must occur.

At the outlet meniscus, it was shown that the pressure gradient
vanishes, therefore only Couette flow remains at the exit. For one
dimensional flow, the flow at that position thus equals the total flow
and is equal to ρhl;exit, where hl;exit denotes the film thickness at the
outlet boundary. As a result, the pressure gradient vanishes only at
locations where ρh = ρhl;exit. Assuming the density to be constant,
this implies that ∂p/∂x = 0 if h = hl;exit. This is illustrated in Figure
3.4. Note that in this case, hl;exit = hl;inlet. This is obvious since
incompressible and one-dimensional flow is assumed.

Furthermore, for concentrated contacts, the gap tends to infinity
for x→ ±∞. Since cavitation can only occur when the gap diverges,
there must at least be one additional point in the pressure zone for
which h = hl;exit. In fact, h must cross the line h = hl;exit, in an
even number of points for it to go to infinity for x → ±∞. This is
illustrated in Figure 3.4 where the gap h is shown to cross the line 2
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times.
As a result, since the pressure is minimal at the exit, the pressure

must attain a maximum at the first point at which the pressure gra-
dient is zero, and there can be no point in front of this point which is
within the pressurized region, for which the pressure gradient vanishes.
Thus, the pressure gradient on the inlet boundary of the pressurized
region is non-zero.

As a consequence, the pressure gradient and the discontinuity in θ

must occur at the inlet meniscus between the starved region and the
pressurized region.

Transient

From Equation 3.38, one can observe that a similar analysis applies for the
transient case. However, one now needs to include the velocity ẋc of either the
inlet or the outlet meniscus. Based on the arguments given in the paragraph
above, the pressure gradient vanishes and θ is continuous if (us/2 − ẋc) is
positive, i.e. regardless of whether the meniscus is at the entrance or at the
exit of the pressurized region. However, if (us/2− ẋc) becomes negative, i.e.
if ẋc > us/2, the argument ceases to hold and a pressure gradient as well as
the discontinuity in θ will show. Simply stated, the JFO relation states that
whenever lubricant enters the pressurized region, a jump occurs. Whenever
lubricant leaves the pressurized region, no discontinuity is observed. This
topic will be further discussed in Chapter 7.

Two-dimensional flow

The continuity relation for the two-dimensional situation can be derived in
a similar way. In this case, the vector field V , as given in Equation 3.34, is
given by:

V = (
ρh3

η

∂p

∂x
− 6usθρh ,

ρh3

η

∂p

∂y
, −12θρh), (3.40)

and ∇ is defined according to ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂t). Gauss’ theorem, i.e.
the three-dimensional version of Green’s theorem, can now be applied on
a volume S that is near and across the boundary in the three-dimensional
(x, y, t)-space, where the volume integral now reduces to a surface integral.
By letting this surface collapse onto the boundary, the following continuity
relation results:

−h2

η

(
∂p

∂x
nx +

∂p

∂y
ny

)
+ 6us(1− θc)nx + 12(1− θc)nt = 0, (3.41)
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where n denotes the unit normal vector on the boundary surface (pointing
towards the starved region), nx is its component in the x-direction, ny in
the y-direction and nt in the t-direction. Apparently, the continuity relation
in the two-dimensional situation is similar to the continuity relation for the
one dimensional case, except that it is valid in the direction normal to the
boundary. The JFO relation for two-dimensional flows is discussed in more
detail in Chapter 7.

Dimensionless equations

Adding the fractional film content adds only one extra variable to the num-
ber of variables that was introduced in Section 3.1.1. Since θ is already
dimensionless, it can easily be included in the set of dimensionless variables.
Substitution into the modified Reynolds equation gives:

∂

∂X

(
ρ̄H3

η̄λ

∂P

∂X

)
+ κ2 ∂

∂Y

(
ρ̄H3

η̄λ

∂P

∂Y

)
=

∂θρ̄H

∂X
+

∂θρ̄H

∂T
. (3.42)

The dimensionless boundary condition for θ reads:

θ(Xa, Y, T ) =
Hl;inlet(Xa, Y, T )

H(Xa, Y, T )
, (3.43)

where Hl;inlet = hl;inlet/c and Xa denotes the position of the inlet boundary of
the dimensionless domain. As was stated earlier, Hl;inlet may be a function
of X, Y as well as T , however, it is assumed to be constant and equal to
Hoil = hoil/c. The introduction of θ does not affect the other equations.

Hence, starvation influences both the steady state and the transient solu-
tion and adds the dimensionless thickness of the inlet lubricant layer or inlet
oil film Hoil to the set of parameters. In particular, its value influences the
stiffness of the contact as well as the damping.
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Chapter 4

Multilevel methods

This chapter discusses the methods that were used to solve the equations
given in the previous chapter. It especially focuses on the effect of elliptic-
ity and starved lubrication. First, the discrete equations will be presented.
Secondly, the methods are described that were used to solve the system of
equations; the multigrid method and the multilevel multi-integration method.

4.1 Introduction

Only in a few, simplified, asymptotic cases can solutions to the EHL prob-
lem be obtained analytically. In general however, a numerical approach is
required. In the last few decades a number of methods have been proposed to
numerically solve the EHL equations. However, due to stability and comput-
ing time problems, most algorithms were not really suited for realistic, often
highly loaded conditions. This situation has changed dramatically since the
introduction and further development of multigrid techniques by Lubrecht
[48] and Venner [66]. Lubrecht was the first to apply the multigrid tech-
nique to the steady state line and point contact problem. Compared to
the algorithms in use at that time, Lubrecht’s algorithm was very efficient.
Unfortunately, it was not stable at high loads and also the O(n) efficiency,
where n is the number of unknowns, was not obtained as the evaluation of
the elastic deformation integral required O(n2) operations. To reduce the
time needed to evaluate this deformation integral, Brandt and Lubrecht [12]
developed the so-called multilevel multi-integration.

Venner [66] incorporated this technique into algorithms for the steady
state line and point contact problem, as well as a time dependent line contact
problem. He also introduced distributive relaxation in EHL, which solved
the stability problems at higher loads. The resulting algorithms were of
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O(n lnn) complexity and this efficiency enabled even transient problems to
be addressed.

Venner’s algorithm has formed the starting point in the present work.
However, to facilitate accurate determination of damping, also in elliptically
shaped contacts, further development was needed.

Accuracy

For steady state problems, a first order discretization provides sufficiently
accurate results. However for the transient problem, second order discretiza-
tion is indispensable. Due to the shear flow dominance in the contact region,
the steady state Reynolds equation reduces to:

−∂ρ̄H

∂X
− ∂ρ̄H

∂T
≈ 0, (4.1)

forcing ρ̄H = ρ̄H(X − T ). From computational fluid dynamics, it is well
known that a first order discretization results in what is known as numerical
damping. In the present study, using a first order discretization for the
equation above would result in the calculated damping being larger than the
actual value of the damping for the continuum problem. Therefore, second
order discretization is essential.

Many second order schemes are available for the discretization of the
wedge/squeeze term, e.g. see Yavneh [77]. In the present study two dis-
cretization schemes have been used. For simplicity, the standard upstream
discretization (SU2) was used for the starved lubricated problem. The so-
called narrow upstream discretization (NU2) was used for fully flooded con-
ditions.

The choice for the NU2 discretization was motivated by the fact that
the discretization error for any characteristic component is smaller than the
error using SU2 discretization. In addition, a time step hT = 2hX can be
used for small Ωn or Ωe without loss of accuracy, see Appendix B.

Ellipticity

A straightforward extension of Venner’s circular contact algorithm to ellip-
tically shaped contacts is described in Nijenbanning [54]. In Nijenbanning’s
approach, contrary to the scaling of the y-coordinate with the Hertzian con-
tact width b (Y = y/b), y was scaled with a, the Hertzian contact size in
the x-direction (YN = y/a). (The dimensionless coordinates given in Ni-
jenbanning will be denoted by YN and XN .) For ellipticity ratios around
κ = 1, this approach is quite efficient and virtually no modifications need to
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be applied to the algorithm. However, for small ellipticity ratio’s, i.e. if the
contact width is large compared to the contact length, the domain becomes
very large in the YN -direction compared to its size in the XN -direction.

Thus, if the mesh size hXN
in the XN -direction equals the mesh size hYN

in the YN -direction, the number of unknowns in YN -direction, nYN
, becomes

much larger than the number of unknowns in XN -direction, nXN
. Apart from

the fact that such a large number is not necessary (the discretization error is
mainly due to the small number of unknowns in XN -direction), the coarsest
possible grid will still contain a large number of points. This has a significant
adverse effect on the performance of a multigrid algorithm.

One way to overcome this problem is to increase the mesh size hYN
, such

that nYN
is of the same order of magnitude as nXN

. However, this requires a
modification of the multilevel multi-integration technique, as is described at
the end of the chapter.

Since a modification is required anyway, a more elegant approach is to
scale the y-coordinate with the Hertzian contact width b, i.e. Y = y/b. This
was indeed applied in the equations given in Chapter 3. Then, in terms of
the dimensionless coordinates, the actual elliptical contact region maps onto
a circle and a mesh size hX = hY can be used again.

Starved lubrication

For starved lubrication, Elrod [19] presented an algorithm that automatically
determines the position of the meniscus between the starved and pressurized
region. Chevalier [14] adopted Elrod’s algorithm for EHL and presented
steady state solutions for the EHL circular contact obtained using multilevel
methods. However, this algorithm used only a first order discretization and
also “line-relaxation” was not implemented.

The extensions of Chevalier’s algorithm to second order accuracy, time
dependence and line-relaxation, will be discussed below.

The outline of the chapter is as follows. First, the discrete equations
are introduced. Subsequently, the multigrid method is discussed briefly with
its application to fully flooded and starved EHL. The technique used for
the fast evaluation of the elastic deformation integral, the multilevel multi-
integration, will be discussed separately in Section 4.5.

4.2 Discrete equations

The equations describing the EHL contact problem are discretized on a rect-
angular domain Xa ≤ X ≤ Xb and Ya ≤ Y ≤ Yb. The domain is covered
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by a mesh of points whose distance from one to another is the mesh size
hX and hY in the X- and Y -directions, respectively. In the present analysis,
hX = hY . The mesh size in the time direction or the time step is denoted by
hT .

The different variables, like pressure and film thickness, now reside on
this mesh and discrete equations are derived that approximate the equations
involved and relate the variables on the mesh. For the discretization of the
Reynolds equation, a standard second order discretization for the Poiseuille
term and a NU2 discretization for the wedge/squeeze term are used. For
starved lubricated problems, SU2 discretization was used. In the discrete film
thickness equation as well as the force balance equation and the equation of
motion, the pressure is assumed to be constant on X−hX/2 ≤ X < X+hX/2
and on Y −hY /2 ≤ Y < Y +hY /2. For free vibrations, the equation of motion
is discretized using the Newmark scheme. In this section the choices for the
specific discretizations are elaborated upon.

Reynolds equation

On writing

εi,j ≡
ρ̄i,jH

3
i,j

η̄i,jλ
, (4.2)

where i and j are the spatial grid indices and taking

εi+1/2,j ≡ (εi,j + εi+1,j) /2,

εi−1/2,j ≡ (εi,j + εi−1,j) /2,

εi,j+1/2 ≡ (εi,j + εi,j+1) /2,

εi,j−1/2 ≡ (εi,j + εi,j−1) /2, (4.3)

the SU2 discretization of the Reynolds equation, used for starved lubrication,
reads:

h−2
X

(
εi+1/2,j (Pi+1,j − Pi,j)− εi−1/2,j (Pi,j − Pi−1,j)

)
+κ2h−2

Y

(
εi,j+1/2 (Pi,j+1 − Pi,j)− εi,j−1/2 (Pi,j − Pi,j−1)

)
−h−1

X

(
1.5 θρ̄Hi,j − 2.0 θρ̄Hi−1,j + 0.5 θρ̄Hi−2,j

)
−h−1

T

(
1.5 θρ̄Hi,j − 2.0 θρ̄Hi,j,k−1 + 0.5 θρ̄Hi,j,k−2

)
= 0. (4.4)

The terms without a time index denote the term at time index k, e.g. Pi,j =
Pi,j,k. Furthermore, terms like θρ̄Hi,j,k have been used to denote the term
θi,j,kρ̄i,j,kHi,j,k.
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The NU2 discretization, used for fully flooded conditions, has two forms
depending on the ratio hX/hY . For hX ≤ hT and time index k, it reads:

h−2
X

(
εi+1/2,j (Pi+1,j − Pi,j)− εi−1/2,j (Pi,j − Pi−1,j)

)
+κ2h−2

Y

(
εi,j+1/2 (Pi,j+1 − Pi,j)− εi,j−1/2 (Pi,j − Pi,j−1)

)
−

(
h−1

X − h−1
T

) (
1.5 ρ̄H i,j − 2.0 ρ̄H i−1,j + 0.5 ρ̄Hi−2,j

)
−h−1

T

(
1.5 ρ̄Hi,j − 2.0 ρ̄Hi−1,j,k−1 + 0.5 ρ̄Hi−2,j,k−2

)
= 0. (4.5)

For hX > hT it reads:

h−2
X

(
εi+1/2,j (Pi+1,j − Pi,j)− εi−1/2,j (Pi,j − Pi−1,j)

)
+κ2h−2

Y

(
εi,j+1/2 (Pi,j+1 − Pi,j)− εi,j−1/2 (Pi,j − Pi,j−1)

)
−h−1

X

(
1.5 ρ̄H i,j − 2.0 ρ̄H i−1,j,k−1 + 0.5 ρ̄H i−2,j,k−2

)
−

(
h−1

T − h−1
X

) (
1.5 ρ̄H i,j − 2.0 ρ̄H i,j,k−1 + 0.5 ρ̄Hi,j,k−2

)
= 0. (4.6)

If a single mesh and a constant time step were used, obviously, the NU2 dis-
cretization would require only one of the two equations given above; however,
in the multigrid algorithm which is explained below, the solution is calcu-
lated on different grids and different grids are used to update the solution
on the finest grid. Consequently, both forms of the discretization are used in
the algorithm.

Film thickness equation

Assuming the pressure to be constant on Xr − hX/2 ≤ X < Xr + hX/2 and
on Ys− hY /2 ≤ Y < Ys + hY /2, the equation for the film thickness becomes:

Hi,j = −∆ + SX2
i + (1− S)Y 2

j +
nX∑
r=0

nY∑
s=0

KirjsPr,s. (4.7)

The elastic deformation integral thus reduces to a multi-summation; for all
(nX + 1)(nY + 1) film thicknesses Hi,j, one needs to carry out a multi-
summation over (nX + 1)(nY + 1) points.

The expression of the discrete kernel Kirjs is given in Appendix C. Its
value depends on the mesh size, the ellipticity κ and on the absolute distance
between Xi and Xr and Yj and Ys, i.e. it depends on |r − i| and |s− j|. As
a result, Kirjs can be expressed as a two-dimensional matrix.
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Equation of motion / Equations of state

For harmonic excitation, the second order derivative in the equation of mo-
tion is set to zero and the discrete force balance equation at time index k is
simply:

3

2π
hXhY

nX∑
i=0

nY∑
j=0

Pi,j,k = 1 + A sin(ΩekhT ) (4.8)

Note that, by setting A = 0, this equation is also valid for steady state
conditions.

For free vibrations, where the load is assumed to be constant, the equa-
tion is discretized according to the so-called Newmark integration scheme,
see [53]. This implicit second order scheme is widely used in finite element
calculations. The derivation of the scheme can also be found in Bathe [6].

One of our aims is to find the influence of lubrication on damping. Hence,
in order to present quantitative results, the amplitude decay of an oscillatory
component due to discretization errors must be small. Since for linear second
order differential equations the Newmark scheme shows no amplitude decay,
this scheme was adopted. It is noted however, that the Newmark scheme
does exhibit some period elongation.

The Newmark scheme is derived by taking the average of the second order
derivative at times khT and (k − 1)hT , i.e.:

∆k = ∆k−1 + hT ∆̇k−1 +
1

2
h2

T

(
1

2
∆̈k−1 +

1

2
∆̈k

)
(4.9)

and

∆̇k = ∆̇k−1 + hT

(
1

2
∆̈k−1 +

1

2
∆̈k

)
. (4.10)

For the equation of motion, substitution and rearranging of terms yields:

∆k + E
3

2π
hXhY

nX∑
i=0

nY∑
j=0

Pi,j,k = F, (4.11)

where

E =
1

4
Ω2

nh2
T (4.12)

and

F =
1

4
Ω2

nh2
T + ∆k−1 + hT ∆̇k−1 +

1

4
h2

T ∆̈k−1. (4.13)

The derivation of the discrete forms of Roeland’s equation and the equa-
tion of Dowson and Higginson is straightforward and hence will not be given
here explicitly.
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4.3 Multigrid

The general idea behind multigrid methods, quoting Brandt [10], is to find
algorithms for which the following “golden rule” applies:

The amount of computational work should be proportional to the
amount of real physical changes in the computed system.

This implies that if a process stalls despite the work that is invested, there
is bound to be a faster way to solve the problem. Multigrid methods seek
for these ways by trying to solve components of the solution on the scale on
which they appear.

A discrete approximation of the solution of a non-linear differential equa-
tion needs to be solved by means of some iterative solution process, so-called
relaxation, since the coefficients of the differential- or integral-operator de-
pend on the solution itself. Conventional relaxation schemes, like Gauss-
Seidel relaxation, are known to efficiently reduce high-frequency error com-
ponents in discrete approximations of the solution of elliptic differential equa-
tions. (High-frequency components are those components whose wavelength
is of the order of the mesh size of the grid.) On the other hand, if the compu-
tational domain is large compared to the mesh size, most relaxation schemes
hardly reduce the low-frequency components. Hence, after a number of relax-
ation sweeps, the error consists of low-frequency components only and error
reduction stalls.

The stalling of this process can be circumvented by approximating the
now smooth error on a coarser grid. The mesh size of the coarse grid is
usually taken twice as large as the mesh size of the fine grid, which is referred
to as standard coarsening. Subsequently, so-called “coarse grid equations”
are derived and solved and its solution is used to update the solution on
the fine grid. Obviously, the coarse grid equations need to be solved by an
iterative procedure as well and a similar procedure can be applied to these
equations. In fact, the process can be repeated recursively until a grid is
reached where the mesh size is of the order of the domain and a fixed number
of relaxations is sufficient to completely solve the coarse grid equations. This
recursive procedure is called a “cycle”. If 1 coarse grid correction per level
is performed, the cycle is called a V -cycle, its name being derived from the
shape of the picture, illustrating the cycle in Figure 4.1. From the Figure,
it can be seen that the W -cycle denotes a cycle for which two coarse grid
corrections per level are used.

Although multigrid cycles can be applied to any initial approximation, an
initial approximation on the fine grid can be obtained by interpolation of a
solution from a coarser grid which has an error below the discretization error
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Figure 4.1: V (ν1, ν2)- and W (ν1, ν2)-cycle.

on that grid. Subsequently, this fine grid approximation is updated using the
multigrid cycles described above. The preference for such a strategy is that
the number of cycles, needed to obtain a converged solution, is constant and
independent of the number of unknowns. In the “full multigrid”-algorithm
(FMG), this strategy is applied recursively. The FMG algorithm is illustrated
in Figure 4.2.
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Figure 4.2: The FMG algorithm with 1V (ν1, ν2)-cycle per grid.

The FMG algorithm has the prospect of solving the problem below the dis-
cretization error in an amount of work that is proportional to the number of
unknowns n, i.e. its complexity is O(n). Provided the individual components
of the algorithm are at most of this complexity O(n), the FMG algorithm is
optimal (a further reduction is impossible as a plain evaluation of the solution
already requires O(n) operations).

For an introduction to the multigrid method the reader is referred to
Briggs [11]. Elaborate discussions can be found in Brandt [10], Stüben and
Trottenberg [64], and Joppich [35]. A résumé of the method is given in
Appendix D.
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4.3.1 Relaxation

The cornerstone of the multigrid procedure is relaxation. Obviously, the
relaxation procedure should be stable, but, for the multigrid method to work,
it should also effectively reduce high-frequency error components. As the
point and elliptical contact problems are two-dimensional problems, it should
do so in both the X and Y -directions, so coarsening can be applied in both
directions.

A prerequisite to obtain a fast and stable multigrid algorithm is to un-
derstand the behaviour of the equations in the calculational domain. As the
convergence of the solution is dominated by the convergence of the Reynolds
equation, we only need to focus on this equation.

In the Reynolds equation, as stated by Venner [66], two types of behaviour
can be recognized. One is the behaviour of the equations for low pressures,
which will be discussed in the next section. The other type is the behaviour
in the high pressure zone, which is discussed later.

Low pressures

For low pressures, the elastic deformation of the surfaces is small and, con-
sequently, the differential aspect of the equations dominate the behaviour of
the equation, i.e. the Reynolds equation reduces to the anisotropic Poisson
equation with varying coefficients:

∂

∂X

(
ε
∂P

∂X

)
+ κ2 ∂

∂Y

(
ε
∂P

∂Y

)
= F (X, Y ), (4.14)

where F (X, Y ) denotes the right-hand side function. For this equation, which
is an equation of elliptic type, one-point Gauss-Seidel relaxation is stable.
However, as will be explained shortly, for small values of κ, error components
with high-frequency in the Y -direction are hardly reduced. Hence, coarsening
in this direction would not be possible.

Fortunately, the loss of coupling can be restored using so-called line-
relaxation. Instead of applying single, consecutive changes, in line-relaxation
all changes on a line perpendicular to the direction of weak coupling, are
solved and applied simultaneously. Heuristically, the distributive relaxation
relies on the property that the coupling between many, almost uncoupled
variables is much stronger than the coupling between the individual variables.
Contrary to the single changes, line-relaxation requires solving a system of
equations. The solution of this system of equations can, for instance, be
obtained using decimation or Gaussian elimination with partial pivoting, see
Atkinson [3].
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The error reduction or smoothing behaviour of relaxation schemes, such
as the one-point relaxation and line-relaxation, is clearly illustrated by means
of local mode analysis. In the frame below, the error reduction for the
anisotropic Poisson equation is studied for both the Gauss-Seidel one-point
and line-relaxation. (For convenience, the variable u will be used for the
pressure P , x for X, y for Y and f will be used to denote the right-hand side
function.)

Local mode analysis for the anisoptropic Poisson equation.

Consider the anisotropic Poisson equation:

∂2u

∂x2
+ κ2 ∂2u

∂y2
= f. (4.15)

The central second order discretization of this equation relates the
unknown ui,j to its neighbours according to:

uh
i−1,j − 2uh

i,j + uh
i+1,j

h2
x

+ κ2
uh

i,j−1 − 2uh
i,j + uh

i,j+1

h2
y

= fh
i,j, (4.16)

where uh
i,j = u(xi, yj) and hx = hy denotes the mesh size. (In the

following discussion, hx = hy ≡ h.) It is assumed that the boundary
conditions are either periodic or sufficiently far away and, as a result,
the influence of the boundary on the analysis may be neglected.

Let ũh be some approximation to uh. Applying one-point Gauss-
Seidel relaxation in lexicographic order, the unknowns are scanned one
by one and ũh

i,j is replaced by a new value ūh
i,j, such that Equation

4.16 is satisfied. That is, ūh
i,j satisfies:

ūh
i−1,j − 2ūh

i,j + ũh
i+1,j

h2
+ κ2

ūh
i,j−1 − 2ūh

i,j + ũh
i,j+1

h2
= fh

i,j. (4.17)

Since after one complete relaxation sweep, ūh
i,j does not satisfy Equa-

tion 4.16, further sweeps are required to improve it.
Substitution of the error ṽh

i,j ≡ uh
i,j − ũh

i,j before the relaxation
sweep and v̄h

i,j ≡ uh
i,j − ūh

i,j after the sweep, yields:

v̄h
i−1,j − 2v̄h

i,j + ṽh
i+1,j + κ2

(
v̄h
i,j−1 − 2v̄h

i,j + ṽh
i,j+1

)
= 0, (4.18)

which shows that the error after relaxation is some average of the
errors before and after the relaxation.
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A Fourier expansion of the error yields:

vh
i,j =

∑ ∑
A(θ1, θ2)eι(θ1i+θ2j), (4.19)

where ι =
√
−1. For each component (θ1, θ2), substitution provides a

relation between the amplitude of the Fourier component A(θ1, θ2) =
Ā(θ1, θ2) after the relaxation sweep and the amplitude A(θ1, θ2) =
Ã(θ1, θ2) before the sweep:

µ(θ1, θ2) =

∣∣∣∣∣Ā(θ1, θ2)
Ã(θ1, θ2)

∣∣∣∣∣ =

∣∣∣∣∣ eιθ1 + κ2eιθ2

2 + 2κ2 − e−ιθ1 − κ2e−ιθ2

∣∣∣∣∣ , (4.20)
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Figure 4.3: Amplification factor µ(θ1, θ2) for one-point Gauss-Seidel relaxation;
κ = 1 (left) and κ = 0.1 (right).

Figure 4.3 shows the amplification factor for one-point Gauss-Seidel
relaxation for κ = 1 and κ = 0.1 and indeed, for κ = 1, the Figure
shows that Gauss-Seidel reduces high-frequency components (π/2 ≤
|θ1,2| ≤ π), whereas low-frequency components (0 < |θ1,2| < π/2) are
hardly affected. This smoothing behaviour is reflected in the so-called
smoothing rate. It is defined as the largest factor by which the high-
frequency error components, i.e. those components which can not be
represented on a coarser grid, are reduced. The smoothing rate for
κ = 1 is 0.5.

For κ = 0.1, the figure shows that, although the relaxation effi-
ciently reduces high-frequency components in the x-direction, (π/2 ≤
|θ1| ≤ π), high-frequency components in the y-direction, (π/2 ≤ |θ2| ≤
π), remain unaffected. As a result, the smoothing rate in this case in-
creases up to 0.98. The slow convergence of these components is due
to the loss of coupling between the variables in the y-direction. (For
small κ, the variable uh

i,j is related to uh
i−1,j and uh

i+1,j only.)
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So-called line-relaxation does not show bad error reduction for
high-frequency components in the y-direction, provided the line is
perpendicular to the direction of weak coupling, i.e. in this case the
x-direction. For line-relaxation in the x-direction, instead of single
changes, new approximations ūh are applied simultaneously on each
line of constant y. The new approximations thus follow from:

ūh
i−1,j − 2ūh

i,j + ūh
i+1,j

h2
+ κ2

ūh
i,j−1 − 2ūh

i,j + ũh
i,j+1

h2
= fh

i,j, (4.21)

and the amplification factor is given by:

µ(θ1, θ2) =

∣∣∣∣∣ κ2eιθ2

2 + 2κ2 − e−ιθ1 − κ2e−ιθ2 − eιθ1

∣∣∣∣∣ . (4.22)

The amplification factors for Gauss-Seidel line-relaxation for κ = 1
and κ = 0.1 are shown in Figure 4.4.
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Figure 4.4: Amplification factor µ(θ1, θ2) for line-relaxation; κ = 1 (left) and
κ = 0.1 (right).

The smoothing rate for this type of relaxation is 0.447, irrespective
of κ, provided κ ≤ 1. For κ = 1, the smoothing rate is thus smaller
than for the one-point Gauss-Seidel relaxation. (It must be noted that
there is a price to pay for the smaller smoothing rate, i.e. one needs
to solve a system of equations.) More importantly however, the am-
plification factor for κ = 0.1 is such that high-frequency components
in the y-direction are greatly reduced. In fact, the Figure shows that
actually all error components, except those around θ1 = 0, are solved.
Although this may come as a surprise, note that all related unknowns
are updated simultaneously and as a result so do all error components.

Finally it is noted that for κ > 1, instead of x-line relaxation,
y-line relaxation should be applied.
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From the analysis above it is concluded that, although one-point relax-
ation suffices for circular contacts, line-relaxation is essential to obtain an
efficient multigrid algorithm for small values of κ. The implementation de-
tails for Gauss-Seidel relaxation for the Reynolds equation are discussed in
Section 4.4.

With respect to the line-relaxation, a problem arises on how these pressure
changes should be solved simultaneously, with the new values of the film
thickness. Since the film thickness involves a summation of these changes,
this leads to a full matrix and the solution of this set of equations would
require a solver which is equivalent to a solver for the EHL line contact
problem. Fortunately, the equations need not be solved exactly to obtain
full efficiency. A reduction of the error by one or two orders of magnitude
proves to be sufficient and one only needs to take into account the three
largest terms in the summation. The full matrix then reduces to a banded
matrix, which can be solved using some standard matrix solver, e.g. using
decimation or Gaussian elimination. Recalculation of the elastic deformation
is not required after the relaxation of a single line. An update after the
relaxation of all lines suffices.

High pressures

For high loads, as will be shown in subsequent chapters, the film thickness H
becomes very small and when the exponential increase of viscosity with pres-
sure is included, the viscosity is large as well. Consequently, ε = ρ̄H3/(η̄λ),
as it appears in Equation 3.12, becomes very small and the steady state
Reynolds equation reduces to:

∂ρ̄H

∂X
≈ 0. (4.23)

The Reynolds equation thus prescribes that for high pressures ρ̄H = ρ̄H(X)
is constant and independent of Y . Hence, in contrast to being a differen-
tial equation, the Reynolds equation reduces to an integral equation for the
unknown pressure, i.e. one needs to solve the pressure for a given film thick-
ness, which involves an integral of the product of pressure and the elastic
deformation kernel, see 3.14.

Gauss-Seidel relaxation is known to be unstable for this type of integral
equation, see Brandt and Lubrecht [12]. The instability can easily be shown
as follows. First, it is noted that a pressure change δr,s in some point causes

the elastic deformation at a distance d =
√

(Xi −X ′r)
2 + (Yj − Y ′s)

2 from

that point, to change as δr,s/d. Hence, the elastic deformation in a specific
point is only affected by pressure changes close to that point. In the process
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of updating the pressures so as to satisfy the Reynolds equation, the effect of
such a pressure change on the elastic deformation, and consequently on the
film thickness, is local.

The change in the elastic deformation as a result of the pressure changes in
a complete relaxation sweep, should also remain local. Otherwise relaxation,
which is a local process, cannot correct for these accumulated changes. Since
a constant pressure change δ on a line in all points up to a distance d, causes a
change in the elastic deformation which is proportional to δ log d, the change
in the film thickness indeed grows without bounds for increasing d and as a
result the scheme is unstable.

The solution to the stability problem requires the introduction of a dif-
ferent type of relaxation; so-called distributive relaxation. In this type of
relaxation, instead of changing one unknown, a number of unknowns is up-
dated according to some predefined distribution.

For second order, uniform, distributive relaxation, five unknown pressures
are updated simultaneously according to:

P̄i,j+1 = P̃i,j+1 − δi,j/4,

P̄i−1,j = P̃i−1,j − δi,j/4,

P̄i,j = P̃i,j + δi,j,

P̄i+1,j = P̃i+1,j − δi,j/4,

P̄i,j−1 = P̃i,j−1 − δi,j/4, (4.24)

where P̄ denotes the new update and P̃ the old approximation. In so-called
stencil notation, the distribution thus reads:

−δi,j/4

−δi,j/4 δi,j −δi,j/4

−δi,j/4

.

After one relaxation sweep, the new pressure P̄i,j thus relates to the old
pressure P̃i,j as:

P̄i,j = P̃i,j + δi,j − (δi+1,j + δi−1,j + δi,j+1 + δi,j−1) /4, (4.25)

If updated “a là” Jacobi, the elastic deformation, and as a result the film
thickness Hi,j, thus changes according to:

H̄i,j = H̃i,j +
nX−1∑
r=1

nY −1∑
s=1

∆Kirjsδr,s, (4.26)
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where

∆Kirjs = Kirjs − (Kir+1js + Kir−1js + Kirjs+1 + Kirjs−1) /4.

(4.27)

Because ∆K decays much faster with d than K itself, the distributive relax-
ation forces the changes in the film to be local, i.e. a constant pressure change
δ in all points upto a distance d, now induces a change δ/d2 in the elastic
deformation. For circular contacts a stable relaxation is thus obtained.

For wide elliptical contacts (κ � 1), the uniform distributive relaxation
is stable, only if line-relaxation is applied, i.e. the uniform distributive re-
laxation is unstable if one-point changes are applied. This instability is due
to the amplification of error components which have a high frequency in the
Y -direction and is apparentely a result of forcing changes to the unknowns
according to a distribution which does not reflect the distribution of the in-
tegral operator. A possible remedy for the instability is a distribution which
does reflect the distribution in the integral operator; the non-uniform dis-
tributive relaxation given by:

−κδi,j/(2 + 2κ)

−δi,j/(2 + 2κ) δi,j −δi,j/(2 + 2κ)

−κδi,j/(2 + 2κ)

.

That the non-uniform distribution is stable might be verified by examining
the behaviour of the relaxation for vanishing κ, i.e. for the line contact
problem. In that case, the distribution reduces to the second order distribu-
tive relaxation, δi,j/2 δi,j δi,j/2 , that already proved to be stable for line
contacts, see Venner [66]. In addition to the stability, the relaxation has
reasonable smoothing properties in both directions.

An additional problem, again with respect to the multigrid solver, is the
loss of coupling in the Y -direction. Since in the high pressure zone ρ̄H
was shown to be independent of Y , the coupling of the variables in the Y -
direction is lost. Hence, as was observed for the Gauss-Seidel relaxation at
small values of κ, the relaxation becomes increasingly ineffective in reducing
high-frequency components in this direction. Consequently, after a number
of relaxations, the error is not smooth in the Y -direction and coarsening in
this direction would not be possible.

A solution to this problem was already given earlier, in the discussion on
the loss of coupling due to small values of κ. That is to say, also in the high
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pressure zone, the relaxation should be applied in a line-relaxation manner
and the line should be aligned to the X-direction.

The implementation details of Jacobi distributive relaxation is elaborated
upon in Section 4.4.

The combination of the distributive and line-relaxation thus provides a
stable scheme in the high pressure zone, which has good smoothing properties
in both directions.

Cavitation and the equation of motion

Cavitation is simply taken into account by setting the pressure to zero, when-
ever negative pressures are encountered in the relaxation scheme.

Furthermore, since the relaxation of the Reynolds equations dominates
the convergence of the solver, the relaxation of the force balance equation or
equation of motion (the residual of the equation decreases by changing the
value of ∆), only needs to be performed after a fixed number of relaxations of
the Reynolds equation. The unknown derivative of the equation with respect
to ∆, which is required in the Newton-Raphson iteration, can be approxi-
mated by a constant, i.e. a fraction of the residual is added or substracted
to ∆, according to the sign of the residual.

The details with respect to cavitation and the force balance equation and
the equation of motion are given in Section 4.4.

Starved lubrication

In the previous chapter, it was explained that in a starved lubricated con-
tact, one can distinguish a starved region enclosing one or more pressurized
regions. In fact, it might be possible that, in its turn, a pressurized region en-
closes a starved region. The position of the boundary between these regions,
referred to as the meniscus, is unknown and in time dependent situations,
this position may even change in time. Hence, an algorithm must be able to
find this position automatically.

Chevalier [14] first adopted Elrod’s algorithm for EHL and presented
solutions for the EHL circular contact at steady state conditions. Chevalier
used the modified Reynolds equation, given in Chapter 3, which is valid in
both the starved and pressurized region, see also Bayada [8].

In the pressurized zone, similar problems arise as those encountered in the
fully flooded situation. That is to say, in the low pressure region, the Gauss-
Seidel line-relaxation is needed, whereas Jacobi distributive line-relaxation is
required in the high pressure zone.
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The modified Reynolds equation determines the fractional film content
in the starved region and, since line-relaxation is applied anyway, it is very
convenient and straightforward to include the changes δi,j for θi,j , in the
system of equations for the changes δi,j for Pi,j.
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Figure 4.5: Relaxation scheme for starved lubricated contacts.

An additional step is the application of the complementarity condition im-
mediately after the change δ has been applied to either θ̃ or P̃ , i.e. if θ̄ > 1
then θ̄ = 1 and if P̄ < 0 then P̄ = 0 and, if a point changes its state, a ver-
ification whether the change was legitimate. The reason for such a scheme
is as follows. One can imagine that a change of state from a pressurized
point to a starved point, or vice versa, can affect the states of other points
in the vicinity of that point. In fact, a single change of state can induce a
complete cascade of state-changes which may cause the relaxation scheme to
swap between different solutions (or even become unstable). This cascade is
prevented by an immediate relaxation on the new variable. That is to say, if
a new approximation θ̄i,j > 1, θ̄i,j = 1 and a new update P̄i,j is determined
by means of a one-point Gauss-Seidel relaxation. If this new approximation
P̄i,j < 0, P̄i,j is set to zero. On the other hand, if after the first relaxation, the
approximation P̄i,j < 0, P̄i,j = 0 and a new approximation θ̄i,j is determined
by a one-point Gauss-Seidel change. If this new update θ̄i,j > 1, θ̄ is set to
1. The relaxation scheme thus established is illustrated in Figure 4.5.
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4.4 Implementation details

In this section, details with respect to the relaxation and the implementation
of the multigrid method to the EHL equations are given.

4.4.1 Relaxation

As stated in the previous section, for fully flooded conditions two types of
relaxation are needed, depending on whether a point is in the high pressure
zone or in the low pressure zone. Actually, as was stated in Venner [66],
the value of ε/h2

X determines whether Gauss-Seidel line-relaxation or Jacobi
distributive relaxation should be applied; Gauss-Seidel relaxation is sufficient
if ε/h2

X > 0.3 and Jacobi distributive relaxation is needed when ε/h2
X ≤ 0.3.

The two discretization forms in the NU2 discretization require two differ-
ent relaxation schemes depending on the ratio hX/hT . Hence, two relaxation
scheme are needed for both the Gauss-Seidel line-relaxation and the Jacobi
distributive relaxation.

If hX ≤ hT , the Gauss-Seidel changes δi,j for each line j on time step k
thus follow from the system of equations:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j)− (P̃i,j + δi,j)

)
−εi−1/2,j

(
(P̃i,j + δi,j)− (P̃i−1,j + δi−1,j)

)}
+κ2h−2

Y

{
εi,j+1/2

(
P̃i,j+1 − (P̃i,j + δi,j)

)
−εi,j−1/2

(
(P̃i,j + δi,j)− P̄i,j−1

)}
−

(
h−1

X − h−1
T

) (
1.5 ρ̄H̄i,j − 2.0 ρ̄H̄i−1,j + 0.5 ρ̄H̄ i−2,j

)
−h−1

T

(
1.5 ρ̄H̄i,j − 2.0 ρ̄Hi−1,j,k−1 + 0.5 ρ̄Hi−2,j,k−2

)
= 0, (4.28)

where P̃ denotes the old and P̄ and H̄ the new approximations. It is noted
that Hi−1,j,k−1 and Hi−2,j,k−2 are, respectively, the film thickness on the pre-
vious time step and the time step before and thus do not have the bar as
superscript.
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For hX > hT , the Gauss-Seidel changes follow from:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j)− (P̃i,j + δi,j)

)
−εi−1/2,j

(
(P̃i,j + δi,j)− (P̃i−1,j + δi−1,j)

)}
+κ2h−2

Y

{
εi,j+1/2

(
P̃i,j+1 − (P̃i,j + δi,j)

)
−εi,j−1/2

(
(P̃i,j + δi,j)− P̄i,j−1

)}
−h−1

X

(
1.5 ρ̄H̄ i,j − 2.0 ρ̄H̄ i−1,j,k−1 + 0.5 ρ̄H̄ i−2,j,k−2

)
−

(
h−1

T − h−1
X

) (
1.5 ρ̄H̄ i,j − 2.0 ρ̄H i,j,k−1 + 0.5 ρ̄Hi,j,k−2

)
= 0. (4.29)

As stated earlier, only the three largest contributions to the elastic deforma-
tion need to be included. Hence, the new approximation of the film thickness
H̄ is related to the old approximation H̃ by:

H̄i,j = H̃i,j +
i+1∑

r=i−1

Kirjsδr,s. (4.30)

Because the Reynolds equation is non-linear, under-relaxation should be ap-
plied, i.e. only a fraction of the calculated changes δ are added to the vari-
ables. For the Gauss-Seidel relaxation, these factors range from 0.8 for small
values of M down to 0.4, if M is large.

The Jacobi distributive changes for hX ≥ hT , applied when ε/h2
X ≤ 0.3,

follow from the system of equations:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j − (δi,j + δi+2,j)/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi−1/2,j

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̃i−1,j + δi−1,j − (δi−2,j + δi,j)/4)
)}

+κ2h−2
Y

{
εi,j+1/2

(
(P̃i,j+1 − δi,j/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi,j−1/2

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̄i,j−1 − δi,j/4)
)}

−
(
h−1

X − h−1
T

) (
1.5 ρ̄H̄ i,j − 2.0 ρ̄H̄ i−1,j + 0.5 ρ̄H̄i−2,j

)
−h−1

T

(
1.5 ρ̄H̄i,j − 2.0 ρ̄Hi−1,j,k−1 + 0.5 ρ̄Hi−2,j,k−2

)
= 0. (4.31)
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If hX < hT , the distributive changes follow from:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j − (δi,j + δi+2,j)/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi−1/2,j

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̃i−1,j + δi−1,j − (δi−2,j + δi,j)/4)
)}

+κ2h−2
Y

{
εi,j+1/2

(
(P̃i,j+1 − δi,j/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi,j−1/2

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̄i,j−1 − δi,j/4)
)}

−h−1
X

(
1.5 ρ̄H̄i,j − 2.0 ρ̄H̄i−1,j,k−1 + 0.5 ρ̄H̄i−2,j,k−2

)
−

(
h−1

T − h−1
X

) (
1.5 ρ̄H̄i,j − 2.0 ρ̄Hi,j,k−1 + 0.5 ρ̄Hi,j,k−2

)
= 0. (4.32)

For all distributive changes, the new update of the film thickness H̄ follows
from:

H̄i,j = H̃i,j +
i+1∑

r=i−1

∆Kirjsδr,s, (4.33)

with ∆Kirjs defined in Equation 4.27. Again, note that only the three largest
contributions have been included. Relaxation factors for the Jacobi distribu-
tive relaxation range from 0.6 down to 0.2 for large values of M .

The value of the mutual approach ∆ is determined by the force balance
equation or the equation of motion. As stated earlier, since the derivative
of the equations with respect to ∆ is unknown, one can only replace the
derivative by a constant value c∆.

In the steady state situation, the new value ∆̄ is thus calculated from the
old value ∆̃, by:

∆̄ = ∆̃ + c∆

2π

3
− hXhY

nX∑
i=0

nY∑
j=0

Pi,j

 . (4.34)

For sinusoidally varying loads, the relaxation changes to:

∆̄ = ∆̃ + c∆

2π

3
(1 + A sin(ΩekhT ))− hXhY

nX∑
i=0

nY∑
j=0

Pi,j,k

 . (4.35)

If the equation of motion is included, the value is updated according to:

∆̄ = ∆̃ + c∆

F − (∆k + E
3

2π
hXhY

nX∑
i=0

nY∑
j=0

Pi,j,k)

 , (4.36)
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where E and F are defined in Equations 4.12 and 4.13. c∆ ranges from 0.2
down to 0.05 for the finer grids, see also Section 4.4.2.

Since the convergence of the Reynolds equation dominates the conver-
gence of the system of equations, the force balance equation/equation of
motion only needs to be relaxed after a number of relaxations, say 30, of the
Reynolds equation.

Starved lubrication

As stated above, for starved lubricated conditions the Reynolds equation was
discretized using the SU2 discretization. The Gauss-Seidel changes on the
line j thus follow from:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j)− (P̃i,j + δi,j)

)
−εi−1/2,j

(
(P̃i,j + δi,j)− (P̃i−1,j + δi−1,j)

)}
+κ2h−2

Y

{
εi,j+1/2

(
P̃i,j+1 − (P̃i,j + δi,j)

)
−εi,j−1/2

(
(P̃i,j + δi,j)− P̄i,j−1

)}
−h−1

X

(
1.5 θρ̄H̄i,j − 2.0 θρ̄H̄ i−1,j + 0.5 θρ̄H̄i−2,j

)
−h−1

T

(
1.5 θρ̄H̄i,j − 2.0 θρ̄H i,j,k−1 + 0.5 θρ̄H i,j,k−2

)
= 0, (4.37)

where P̃ denotes the old and P̄ the new approximations. H̄ is the new
approximation for H and is given in Equation 4.30.

The distributive changes follow from the system of equations:

h−2
X

{
εi+1/2,j

(
(P̃i+1,j + δi+1,j − (δi,j + δi+2,j)/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi−1/2,j

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̃i−1,j + δi−1,j − (δi−2,j + δi,j)/4)
)}

+κ2h−2
Y

{
εi,j+1/2

(
(P̃i,j+1 − δi,j/4)

−(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)
)

−εi,j−1/2

(
(P̃i,j + δi,j − (δi−1,j + δi+1,j)/4)

−(P̄i,j−1 − δi,j/4)
)}

−h−1
X

(
1.5 θρ̄H̄i,j − 2.0 θρ̄H̄ i−1,j + 0.5 θρ̄H̄i−2,j

)
−h−1

T

(
1.5 θρ̄H̄i,j − 2.0 θρ̄H i,j,k−1 + 0.5 θρ̄H i,j,k−2

)
= 0, (4.38)
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where H̄ is given in Equation 4.33.

The Gauss-Seidel changes for θ, included in the system of equations for
the changes for P , follow from:

h−2
X

(
εi+1/2,j

(
P̃i+1,j − P̃i,j

)
− εi−1/2,j

(
P̃i,j − P̃i−1,j

))
+κ2h−2

Y

(
εi,j+1/2

(
P̃i,j+1 − P̃i,j

)
− εi,j−1/2

(
P̃i,j − P̃i,j−1

))
−h−1

X

(
1.5 (θ̃i,j + δi,j)ρ̄i,jH̄i,j − 2.0 (θ̃i−1,j + δi−1,j)ρ̄i−1,jH̄i−1,j

+0.5 (θ̃i−2,j + δi−2,j)ρ̄i−2,jH̄ i−2,j

)
−h−1

T

(
1.5 (θ̃i,j + δi,j)ρ̄i,jH̄ i,j − 2.0 θρ̄H i,j,k−1 + 0.5 θρ̄H i,j,k−2

)
= 0.

(4.39)

4.4.2 Additional insights

With respect to the multigrid solver, some remarks must be made.

First of all, the FMG algorithm should start at a sufficiently fine level.
Otherwise, the discrete approximation is an inaccurate approximation of the
continuum solution. Especially for high loads, this inaccuracy leads to neg-
ative film thicknesses and, as a result, the relaxation scheme is unstable.

A convenient initial approximation for the pressure is the dry contact
pressure for the initial value of the mutual approach ∆, i.e. P (X, Y ) =√

∆−X2 − Y 2. The initial approximation for the film thickness follows from
the elastic deformation associated with the initial pressure.

If, after a number of relaxations on the coarsest grid, the error is below
the discretization error, the solution is interpolated to the next finer grid.
For this purpose, a fourth order interpolation suffices.

Subsequently, the solution on the next finer grid is updated by means of
the coarse grid correction cycles. Since the Reynolds equation is non-linear,
the Full Approximation Scheme (FAS) should be applied to all equations
involved, i.e. the Reynolds equations, the film thickness equation and the
force balance equation/equation of motion, see Appendix D. This implies
that the right-hand side of Equations 4.28, 4.29, 4.31, 4.32, 4.38 and 4.39,
should be replaced by the FAS right-hand terms. Also, the FAS right-hand
side should be added to the right-hand side of Equations 4.30 and 4.33. For
Equations 4.34, 4.35 and 4.36, the terms 2π/3, 2π/3 · (1 + A sin(ΩeT )) and
F should be replaced by the appropriate FAS right-hand side.

With respect to the relaxation of the force balance equation and the
equation of motion, it is noted that a change in ∆ only introduces global
changes in the solution. Therefore, since the relaxation of the force balance
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or equation of motion affects low-frequency components in the solution, it
should be performed on the coarsest grid only.

For fully flooded conditions, the Reynolds equation is not valid in the
cavitation zone. Hence, injection should be applied in the residual transfer
from the fine to the coarse grid. For starved lubricated contacts however,
full weighting may be applied, as the modified Reynolds equation is valid in
both the starved and the pressurized region.

Injection should be used in the restriction operator of the solution to the
coarse grid at both the cavitation boundary in fully flooded situations and
at the position of the meniscus in starved lubricated conditions.

With respect to the interpolation of the solution to the next finer grid in
the FMG algorithm, higher order interpolation should only be applied if all
points involved in the interpolation are either starved of fully flooded. Linear
interpolation can be used otherwise.

Finally, it is noted that generally 3 or 4 V (2, 1) cycles per level are suffi-
cient to converge below the discretization error.

4.5 Multilevel multi-integration

Obviously, the complexity of the FMG algorithm is only O(n), if the indi-
vidual components of the algorithm are, at most, of the same complexity.
Unfortunately, it is this assumption that does not hold for the EHL equa-
tions; plain evaluation of the deformation integral (the last term in Equation
3.4) is an O(n2) process.

Similar to the multigrid technique, a reduction of this complexity may
be achieved by the so-called multilevel multi-integration method (MLMI),
developed by Brandt and Lubrecht [12]. The reduction is achieved by ex-
ploiting smoothness properties of the elastic deformation kernel. Although
the kernel is singular near (X ′, Y ′) = (X, Y ), sufficiently far away from this
point the kernel is smooth. Hence, in both the X- and X ′-direction, as well
as in the Y - and Y ′-direction, the kernel in “odd” points may thus be in-
terpolated from its values in the “even” points. In doing so, Brandt and
Lubrecht managed to reduce the evaluation time to O(n lnn). The deviation
from the optimal O(n) complexity is due to the O(lnn) corrections for the
large interpolation errors near the singularity.

Résumé

The elastic deformation integral is an example of so-called integral trans-
forms. In terms of the notation of Brandt and Lubrecht, the two-dimensional
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integral transform reads:

w(x, y) =
∫∫

S
K(x, x′, y, y′)u (x′, y′) dx′dy′, (x, x′, y, y′) ∈ S. (4.40)

In this relation, K(x, x′, y, y′) denotes the kernel of the integral transform
and u(x′, y′) is a given function.

According to Equation 3.14, the elastic deformation kernel, in the nota-
tion of Equation 4.40, is:

K(x, x′, y, y′) =
1

πK
1√

κ2 (x− x′)2 + (y − y′)2
. (4.41)

As an illustration, Figure 4.6 shows the circular kernel (κ = 1) and an
example of an elliptic kernel (κ = 0.1), as a function of |x− x′| and |y − y′|.
Obviously, because of the singularity, the function is truncated in the Figure.
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Figure 4.6: The circular kernel (κ = 1, left) and an example of an elliptic
kernel (κ = 0.1, right).

The discrete analogue of Equation 4.40 is

wi,j =
nx∑
r=0

ny∑
s=0

Kirjsur,s, (4.42)

which shows that the evaluation of all elastic deformations is an O(n2) pro-
cess. For large number of unknowns, these O(n2) operations will eventually
dominate the total number of operations and computing times will increase
accordingly.

A reduction of the complexity can be achieved by exploiting the fact that,
since a numerical approach is adopted anyway, the discrete deformation does
not need to be evaluated exactly. An approximation of the deformation
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is sufficiently accurate if the difference between the approximation and the
exact solution is dominated by the discretization error. Indeed, under this
restriction, multilevel multi-integration will evaluate the integral in O(n lnn)
operations.

From this point, it is assumed that the reader is familiar with MLMI for
the circular contact kernel, i.e. for κ = 1. For those unfamiliar with the
method, a detailed discussion can be found in Appendix E. In this section,
apart from a brief résumé, we will focus on the modifications required for
small values of κ.

As explained in the introduction, MLMI exploits smoothness properties
of the discrete elastic kernel by interpolating the discrete kernel in “odd”
(fine grid) points, from its values in the “even” (coarse grid) points. Note
that the interpolation is performed in the x-, x′-, y- and y′-directions.

To illustrate the method, consider the one-dimensional multi-summation:

wh
i =

∑
j

Khh
i,j uh

j , (4.43)

for which the discrete kernel Khh
i,j is smooth with respect to the mesh size h

and non-singular. In addition, let K̃hh
i,j be a coarse grid approximation of the

discrete kernel Khh
i,j , defined by:

K̃hh
i,j ≡

[
IIh

HKhH
i,.

]
j
, (4.44)

where IIh
H is the interpolation matrix. The index on which IIh

H works is
denoted by a dot, i.e. in this case the interpolation works on the index j. If
the kernel is sufficiently smooth, the summation can now be approximated
by:

wh
i ≈ w̃h

i ≡
∑
j

K̃hh
i,j uh

j =
∑
j

[
IIh

HKhH
i,.

]
j
uh

j

=
∑
J

KhH
i,J

[
(IIh

H)Tuh
.

]
J
≡

∑
J

KhH
i,J uH

J . (4.45)

The operator (IIh
H)T is generally referred to as anterpolation, since it is the

adjoint (or transpose) of the interpolation matrix. Anterpolation thus maps
uh

j onto a coarse grid variable uH
J (J denotes the grid index on the coarser

grid whose mesh size is H). Moreover, rewriting the summation in this form,
reduces the fine grid summation to a summation over coarse grid points
only. Apart from the operations needed for the anterpolation, the number of
operations is thus reduced by a factor 2. Note that the work associated with
the anterpolation is only O(n) and thus does not add to the complexity of
the method.
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Assuming that the kernel has similar smoothness properties in the x-
direction, which is true for the elastic deformation kernel, the kernel may be
interpolated in this direction as well. Hence, defining

K̂hh
i,j =

[
IIh

HKHh
.,j

]
i
, (4.46)

the summation may also be approximated by:

wh
i ≈

[
IIh

HwH
.

]
i
, (4.47)

where wH
I is the summation evaluated in the coarse grid points. Also in this

case, the number of operations is reduced by a factor 2.
The two steps may be combined in such a way that both the summation

and the evaluation of the integral transform extend over the coarse grid
points only. The integral transform in the fine grid points is then calculated
by means of interpolation of the values in the coarse grid points. Neglecting
the intergrid transfers, the amount of work is thus reduced by a factor 4.

This may not seem much of an improvement. However, with respect to
the coarser grid, the kernel may still be smooth and an additional coarsening
procedure can be applied. In fact, the coarsening may be applied recursively,
until a grid is reached for which the number of points is only O(

√
n). On

this grid, plain summation requires O(n) operations only. Consequently, an
optimal method is obtained, since the anterpolation and interpolation also
require O(n) operations.

The method is illustrated in Figure 4.7, where the index k is used to
denote the grid number.
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KHH
I,J = Khh

2I,2J

w̃H
I =

∑
J KHH

I,J uH
J

w̃h
i = IIh

Hw̃H
I

Figure 4.7: The multilevel multi-integration cycle.

Unfortunately, the elastic deformation kernel is singular in (x′, y′) = (x, y).
Only sufficiently far away from the singularity is the kernel again smooth; a
property referred to as singular-smooth. MLMI may be applied to singular-
smooth kernels, provided one corrects for the large errors introduced by the
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interpolation from points near the singularity. Brandt and Lubrecht showed
that, for the one-dimensional kernel ln |x − x′|, the m = 3 + 2 lnn points,
closest to the singularity, need to be corrected. The complexity of the method
for the singular smooth kernel is thus O(n lnn), which, for large n, is very
close to the O(n) complexity.

For two-dimensional kernels, the method described above can easily be
extended by alternately coarsening in the x- and x′- directions and the y-
and y′- directions. Then, the anterpolation and interpolation procedures are
essentially the same as in the one-dimensional case and, as a result, so is
the complexity of the method. Furthermore, despite the additional storage
required for the “half coarsened grids,” it is very effective and easy to extend
to higher dimensions.

It must be realized that, for two-dimensional kernels, also the correction
patch is two-dimensional. Hence, a correction size in the direction of inter-
polation as well as perpendicular to the direction of interpolation is required.
Based on the correction size for the one-dimensional kernel, Brandt and Lu-
brecht concluded and verified that the number of corrections in the direction
of interpolation should equal m1 = 3+0.5 lnn and the number of corrections
perpendicular to the direction of interpolation should be m2 = 2, for the
additional error to be below the discretization error.

Ellipticity

Essentially, MLMI remains unchanged when ellipticity is included. That is,
the values of the kernel in the fine grid points may be approximated by the
values of the kernel in the coarse grid points. However, as Figure 4.6 already
suggests, the smoothness of the kernel in the x-direction is now different from
the smoothness in the y-direction. (Note that, like the y- and y′-directions,
the properties of the kernel with respect to the x′-coordinate are the same
as those with respect to the x-coordinate. In this section, we will therefore
assume x′ = 0 and y′ = 0.) Ellipticity thus only affects the size of the
correction patch.

The intention of the next analysis is not to give a rigorous proof of the ac-
tual size of the correction patch. Instead, our goal will be to examine how it
should be changed, compared to the correction patch for the circular contact,
in order to obtain errors which are small compared to the discretization error.
The comparison of the Hertzian elastic deformation with the discrete defor-
mation obtained using MLMI, will verify whether the size of the correction
patch satisfies this restriction.

It is known from standard numerical analysis that, for pth order interpo-
lation, the pth order derivative of the interpolated function is a measure for
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the interpolation error, see Atkinson [3]. Since a function is termed smooth
if the pth order derivative is sufficiently small, smooth functions have small
interpolation errors.
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Figure 4.8: |∂4K/∂x4| (left) and |∂4K/∂y4| (right) for the circular contact
kernel (κ = 1.0).

Figure 4.8 shows the absolute value of the 4th order derivative of the circular
kernel with respect to the x-direction (|∂4K/∂x4|) as well as the y-direction
(|∂4K/∂y4|), for x′ = 0 and y′ = 0. From the Figure it can clearly be seen
that in both pictures values are large in an approximately circular shaped
patch. Thus, instead of the narrow rectangle proposed by Brandt and Lu-
brecht, the Figure suggests that the shape of the correction patch should be
approximately circular. Apparently, the total error introduced by the inter-
polation is so small, that only a limited number of these largest errors require
correction.
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Figure 4.9: |∂4K/∂x4| (left) and |∂4K/∂y4| (right) for the elliptical contact
kernel (κ = 0.1).
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For κ = 0.1, Figure 4.9 shows the absolute value of the 4th order derivative
in the x- and the y-directions. One observes immediately that, for both
directions, the largest values occur in a narrow strip close to y = 0. For the
derivative in the x-direction however, the values are much smaller than those
observed for the circular kernel. Instead, the values are much larger for the
derivative in the y-direction.

Hence, the two correction sizes m1 and m2, which were sufficient for the
circular kernel, no longer suffice. In fact, four correction sizes need to be
defined. A correction size mx

1 will be used to denote the number of points
of the correction patch in the direction of interpolation, if interpolation is
in the x-direction. The number of points perpendicular to the direction of
interpolation is denoted by mx

2 . Similarly, my
1 will denote the number of

points in the direction of interpolation, if it is in the y-direction, whereas my
2

denotes the number in the direction perpendicular to it.
Compared to the circular kernel, the most significant contributions to the

error are thus introduced by interpolation in the y-direction. In particular,
compared to the correction size in the direction of interpolation (my

1), the
Figures show that perpendicular to this direction (my

2), the correction size
should be much larger. Evidently, interpolation from values which include
the singularity should be avoided. This restricts the reduction of the value
of mx

1 .
An obvious choice would thus be to make my

2 proportional to 1/κ and,
accordingly, mx

2 proportional to κ.

Verification

The actual values of the correction sizes have been determined from a numer-
ical experiment. For this purpose, consider the elastic deformation integral:

w(x, y) =
1

πK

∫∫
S

u (x′, y′) dx′dy′√
κ2 (x− x′)2 + (y − y′)2

. (4.48)

If u(x, y) =
√

1− x2 − y2, which is similar to the Hertzian pressure distribu-
tion, the solution in the unit circle x2 + y2 < 1, is known analytically:

w(x, y) = 1− Sx2 − (1− S)y2. (4.49)

In this equation, S is the shape function defined in Equation 3.15.
To monitor the error in the multilevel multi-integration, the error norm

El
k is defined according to:

El
k = hxhy

nx∑
i=0

ny∑
j=0

|wk,l
i,j − w(xi, yj)|, (4.50)
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where wk,l
i,j is the discrete approximation on level l, for which the multi-

summation has been carried out on level k. Hence, El
k is the average absolute

error of the integral and, for k = l, the norm reduces to the L1 norm of the
discretization error. Then, if El

k ≈ El
l at a level k for which the number of

points is O(
√

n), the error introduced by MLMI is small compared to the
discretization error and the summation would cost O(n) operations.

Based on this condition, the following correction sizes were obtained:
mx

1 = my
1 = p + 4, mx

2 = 2κ + 4 and my
2 = 2/κ + 4, where p is the order of

interpolation. The values have been verified for values of κ down to 0.0125
and up to 20.

Tables 4.1 and 4.2, which show the El
k-norm for κ = 0.63, confirm the

correctness of the correction sizes. The interpolation orders are, respectively,
6 and 8. The calculational domain is −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. The
coarsest level, l = 1, contains (4 + 1)(4 + 1) grid points, level l = 2 contains
(8 + 1)(8 + 1) points, etc. Hence, the mesh sizes hx and hy decrease by a
factor 2 for each level.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5 k = l − 6
1 2.87 10−1

2 1.58 10−1 1.58 10−1

3 4.66 10−2 4.66 10−2 4.66 10−2 ?

4 1.55 10−2 1.55 10−2 1.55 10−2 ? 1.55 10−2

5 3.05 10−3 3.04 10−3 3.04 10−3 3.04 10−3 ? 3.04 10−3

6 9.46 10−4 9.38 10−4 9.28 10−4 9.25 10−4 ? 9.25 10−4 9.25 10−4

7 2.46 10−4 2.42 10−4 2.34 10−4 2.23 10−4 2.20 10−4 ? 2.20 10−4 2.21 10−4

8 8.92 10−5 8.68 10−5 8.21 10−5 7.41 10−5 6.35 10−5 ? 6.09 10−5 6.09 10−5

Table 4.1: El
k-norm for κ = 0.63 (Rx/Ry = 0.5) using 6th order transfer.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5 k = l − 6
1 2.87 10−1

2 1.58 10−1 1.58 10−1

3 4.66 10−2 4.66 10−2 4.66 10−2 ?

4 1.55 10−2 1.55 10−2 1.55 10−2 ? 1.55 10−2

5 3.05 10−3 3.06 10−3 3.06 10−3 3.06 10−3 ? 3.05 10−3

6 9.46 10−4 9.47 10−4 9.48 10−4 9.48 10−4 ? 9.48 10−4 9.46 10−4

7 2.46 10−4 2.47 10−4 2.47 10−4 2.48 10−4 2.48 10−4 ? 2.48 10−4 2.46 10−4

8 8.92 10−5 8.94 10−5 8.98 10−5 9.05 10−5 9.13 10−5 ? 9.15 10−5 9.15 10−5

Table 4.2: El
k-norm for κ = 0.63 (Rx/Ry = 0.5) using 8th order transfer.

These Tables indeed confirm that the additional error introduced by MLMI,
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on a level which has approximately O(
√

n) points (indicated by the stars
in the Table) is small compared to the discretization error in L1 norm. In
addition, it shows that 6th order interpolation suffices.

To show that also for smaller values of κ, the correction sizes are correct,
the El

k-norm for κ = 0.22 and κ = 0.055 is shown in Tables 4.3 and 4.4.
Indeed, also in this case, 6th order interpolation is sufficient.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5 k = l − 6
1 3.01 10−1

2 1.53 10−1 1.53 10−1

3 4.47 10−2 4.47 10−2 4.47 10−2 ?

4 1.50 10−2 1.50 10−2 1.50 10−2 ? 1.50 10−2

5 2.94 10−3 2.92 10−3 2.92 10−3 2.92 10−3 ? 2.92 10−3

6 9.19 10−4 9.06 10−4 8.88 10−4 8.84 10−4 ? 8.84 10−4 8.84 10−4

7 2.40 10−4 2.33 10−4 2.18 10−4 2.00 10−4 1.95 10−4 ? 1.95 10−4 1.96 10−4

8 8.82 10−5 8.41 10−5 7.57 10−5 6.10 10−5 4.26 10−5 ? 3.79 10−5 3.78 10−5

Table 4.3: El
k-norm for κ = 0.22 (Rx/Ry = 0.1) using 6th order transfer.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5 k = l − 6
1 3.18 10−1

2 1.46 10−1 1.46 10−1

3 4.09 10−2 4.09 10−2 4.09 10−2 ?

4 1.41 10−2 1.41 10−2 1.41 10−2 ? 1.41 10−2

5 2.74 10−3 2.72 10−3 2.72 10−3 2.72 10−3 ? 2.72 10−3

6 8.70 10−4 8.44 10−4 8.25 10−4 8.17 10−4 ? 8.17 10−4 8.18 10−4

7 2.33 10−4 2.05 10−4 1.75 10−4 1.55 10−4 1.49 10−4 ? 1.49 10−4 1.50 10−4

8 8.62 10−5 6.71 10−5 3.88 10−5 4.98 10−5 6.35 10−5 ? 6.87 10−5 6.88 10−5

Table 4.4: El
k-norm for κ = 0.055 (Rx/Ry = 0.01) using 6th order transfer.

It has thus been established that, for interpolation in the y-direction, the cor-
rection patch becomes very large in the x-direction. Unfortunately, for very
small values of κ, these corrections may start to dominate the total number
of operations. It might be worthwhile to examine whether the evaluation of
these corrections could be done by a similar MLMI procedure. It has in fact
been found that the correction kernel, i.e. the kernel minus the interpolated
kernel, is smooth in the x- and the x′-direction and thus may be interpolated
from its values on coarser grids. Since the correction patch does not extend
over all points in the domain (for κ = 0.05, my

2 = 40 and the grids for which
the method is designed to work contains about 257x257 or 513x513 points),
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the implementation might however be cumbersome. In addition, it is not
obvious whether the number of corrections is large enough for MLMI to be
more efficient than plain summation.



Chapter 5

EHL Circular contact

The objective of the present work is to study the behaviour of EHL contacts
for cases where the structural elements vibrate as a result of force variations
(applied or inertia induced). This chapter shows the influence of vibrations
on the film thickness and the pressure distribution of the circular contact.
Also the flexibility (stiffness) and damping of the contact will be discussed.

From the steady state solution, the flexibility of the contact is derived. It
is computed for a wide range of values of the governing parameters. An ana-
lytical curve-fit function is presented that accurately predicts the flexibility.

To study damping, clearly the time dependent problem must be consid-
ered. The characteristic behaviour of time dependent solutions, for the case
of vibrations resulting from the inertia of the rolling element, is discussed. It
is shown that small oscillations are indeed damped by the viscous forces in
the lubricant film.

To quantify this damping, simulations for the case of sinusoidally varying
loads are performed. Damping values for a wide parameter range are obtained
and a simple analytical curve-fit function is presented that approximates the
calculated values.

5.1 Steady state solution

This section focuses on the stiffness of the EHL circular contact model. First,
we will discuss the film thickness and pressure distribution and how they
change as the parameters change. Next, the accuracy of the presented solu-
tions is estimated.
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5.1.1 Pressure and film thickness

Figures 5.1 and 5.2 show typical examples of the pressure distribution and
the film thickness distribution in an EHL circular contact. The Moes dimen-
sionless parameters for the case presented are M = 100 and L = 5. The
parameters based on the Hertzian solution are λ = 2.37 10−3 and ᾱ = 8.46.

Figure 5.1: Pressure distribution P (X, Y ) for M = 100 and L = 5.

Figure 5.2: Film thickness distribution H(X, Y ), plotted upside-down, for
M = 100 and L = 5.

The pressure in the contact closely resembles the Hertzian semi-ellipsoidal
distribution. It deviates from this distribution in the inlet region and in the
outlet region of the contact. In the inlet region, instead of the discontinuity
in the pressure gradient, occurring for dry contacts, now a smooth pressure
distribution is obtained. In the outlet, an additional local pressure maximum
occurs. This local maximum is known as the “pressure spike,” first discov-
ered by Petrusevich [59], and has been the subject of many discussions, see
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Kostreva [41], Hamrock, Lee and Houpert [26], Lubrecht, Breukink, Moes,
ten Napel and Bosma [46], Baumann, Von Frey and Haller [7], Hamrock, Pan
and Lee [27] and Venner [66]. The spike is a consequence of the exponential
increase of the viscosity with pressure. Its height depends on the density and
consequently on the density pressure relation that is used.

Figure 5.2 shows that the film thickness is approximately constant in the
high pressure zone. The minimum film thickness is generally found in the
so-called side lobes.

Figure 5.3 shows the film thickness of Figure 5.2, by means of an interfer-
ence plot1. Interference plots will be used extensively in this thesis, not only
because the film thickness distribution is observed more clearly (the horse-
shoe shaped constriction is clearly visible), but also because these interference
plots can actually be observed experimentally, see Chapter 8.

Figure 5.3: Interference plot of film thickness for M = 100 and L = 5. Flow
is from left to right.

The influence of the load parameter M on the film thickness and pressure
distribution is illustrated in Figure 5.4. The figure shows the film thickness
and corresponding pressure along the centre line (Y = 0) and in a direction
normal to the centre line (X = 0), for different values of M . The value of
the lubricant number L is 5.

1In the interference plot the film thickness is shown by means of the intensity I. It is
defined according to:

I(X,Y, T ) = 0.5 + 0.5 cos
(

2πH(X,Y, T )
Λ

)
, (5.1)

where Λ is the dimensionless wavelength. The grey tones in the interference plot range
from white for I = 1 to black for I = 0. Hence for every other fringe, the film thickness
differs by an amount which is equal to the wavelength Λ.
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Figure 5.4: Film thickness and pressure along the centre line (left) and per-
pendicular to the centre line (right) for L = 5 and M = 10, 20, 50, 100, 200,
500 and 1000.

As one would expect, with increasing load (M), the film thickness decreases.
Also, the film thickness becomes more uniform within the high pressure zone,
and the pressure distribution resembles the Hertzian distribution more and
more.

Figure 5.5 illustrates the influence of the value of the lubricant parame-
ter L on the film thickness and pressure distribution. The value of the load
parameter M is 100. The Figure shows that the film thickness increases with
increasing values of L. This illustrates the beneficial effect of pressure depen-
dent viscosity for film formation. In addition, it shows that the film thickness
is indeed minimal in the side lobes. The variation of the pressure profile ap-
pears to be much smaller as the variation observed in Figure 5.4 for varying
M . The overall shape is still roughly Hertzian, however, with increasing L,
the pressure rise is steeper in the inlet region. Note that, although difficult
to distinguish because of the small differences, the Petrusevich spike for this
particular value of M only occurs for L values larger than approximately 5.
These observed differences can be explained as follows.
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Figure 5.5: Film thickness and pressure along the centre line (left) and per-
pendicular to the centre line (right) for M = 100 and L = 0, 1, 2.5, 5, 10,
and 25.

For larger values of L, the viscosity increases with pressure at a steeper rate.
Since the Poiseuille term decreases with increasing viscosity, it will be less
at a certain pressure, if L is larger. Later in this chapter, Poiseuille flow will
be shown to be negligibly small in the high pressure zone. Hence, for larger
values of L, it will vanish at lower pressures. This means that, with increasing
values of L, an increasing amount of lubricant is forced to go through, rather
than flowing around the contact, thus increasing the gap between the two
surfaces.

In the past, emphasis was placed on the prediction of the minimum and
central film thickness in the contact. For example, based on a series of
numerical results, similar to those presented above, curve-fit formulae were
derived, e.g. see Hamrock and Dowson [29], Venner [66], and Nijenbanning,
Venner and Moes [54]. Here, we are interested in a quantity important from
the viewpoint of dynamic behaviour, i.e. the stiffness of the contact.
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5.1.2 Flexibility and stiffness

The stiffness is defined as ∂f/∂δ∞, where f is the applied load and δ∞ denotes
the mutual approach at equilibrium. To obtain the stiffness from the model
in terms of the dimensionless quantities, we thus should study the variation
of M with varying ∆∞, for a given L. However, in view of what will be
discussed in the time-dependent case, we will adopt the inverse approach,
i.e. given the parameters M and L, we calculate ∆∞. The relation of ∆∞
versus M defines the flexibility of the contact.

For example, the calculated dimensionless approach for M = 100 and
L = 5 is given by ∆∞ = 0.897. This means that the approach is 0.897 times
the Hertzian approach and indicates that the rolling element and raceway
are pushed slightly apart compared to the positions they would have if no
lubricant were present.

Figure 5.6 displays the calculated values of the equilibrium approach ∆∞
for various values of M and L.

∆∞(M, 25)
∆∞(M, 0)

25
10
5

2.5
1

L = 0

M

∆∞

100010010

1

0.5

0
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Figure 5.6: ∆∞ as a function of M for L = 0, 1, 2.5, 5, 10 and 25 and the
approximated function.

The Figure shows that, for a given L, ∆∞ increases with increasing M ,
eventually approaching ∆∞ = 1. This is the natural limit. After all, with
increasing M , the film thickness decreases and becomes more uniform. Thus,
the contact approximates the Hertzian dry contact more and more, for which
∆∞ ≡ 1, see Chapter 2. Hence, for large M , the flexibility of the surfaces
determines the flexibility of the contact.

For small M , particularly if L is large, the situation is completely differ-
ent. For these cases, negative values of ∆∞ are observed, which implies that
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the film thickness at the centre of the contact exceeds the Hertzian defor-
mation. Hence, the flexibility of the contact will be determined much more
by the flexibility of the lubricant film than by the flexibility of the elastic
bodies.

For engineering purposes, a curve-fit function of the flexibility is con-
structed that closely approximates the calculated values. Using the fact
that, for high values of M , ∆∞ → 1, one can assume that ∆∞ is of the
form 1− pMq. Fitting the parameters p and q for different values of L, the
following curve-fit function was derived:

∆∞(M, L) = 1− p(L)Mq(L) where

p(L) =
(
(4− 0.2L)7 + (3.5 + 0.1L)7

)1/7

q(L) = −
(
0.6 + 0.6 (L + 3)−1/2

)
(5.2)

The function is included in Figure 5.6.
From the definition of ∆, the actual approach δ∞ follows from:

δ∞ = ∆∞(M(f, . . .), L(. . .))

(
9f 2

8E′2R

)1/3

, (5.3)

with ∆∞(M, L) according to Equation 5.2. If, on the other hand, the ap-
proach δ is given, the load f is obtained implicitly from Equation 5.3. The
stiffness of the EHL contact subsequently follows from (numerical) differen-
tiation with respect to δ.

Example

In Figure 5.7, the stiffness of the EHL circular contact, for some typical values
of the variables involved, is given and a comparison is made with the stiffness
of the Hertzian contact (3

2
kδ1/2). A dry contact has no stiffness for negative

δ, but the stiffness of the lubricated contact is still significant. For larger
values of δ, the stiffness converges to the stiffness of the Hertzian contact.

5.1.3 Numerical accuracy

For most of the computations presented in this section, the size of the com-
putational domain is Xa = −4.5, Xb = 1.5 and Ya = −Yb = 3.0. However,
larger domains were used for small M to avoid the boundary conditions,
specifically the conditions at the inlet, to affect the solution.

The finest mesh, i.e. the mesh at which the solution was evaluated, con-
sisted of 513x513 nodal points. The coarsest mesh employed in the FMG
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Figure 5.7: Stiffness of the EHL contact compared to the Hertzian stiffness.
The variables are in SI units.

algorithm, contained 33x33 nodal points. (For compatibility with the previ-
ous chapter, we will denote the mesh consisting of 5x5 points by level 1, the
mesh consisting of 9x9 points by level 2, etc. The finest level is thus level 8.)

3V (2, 1) cycles and 30 relaxations on the coarsest grid are sufficient for
the solution to converge below the discretization error. This can be verified
in the first column of Table 5.1, which shows the value of ∆h

∞ obtained on the
different grids, for M = 100 and L = 5. Clearly, with decreasing mesh size,
the value rapidly converges to a limiting value. It can thus be inferred that
the mesh size is small compared to the wavelength of the Fourier components
of the solution.

level # ∆h
∞ ∆h

∞ −∆H
∞

∆h
∞−∆H

∞
∆H∞−∆2H∞

4 0.943
5 0.9086 −3.44 10−2

6 0.8996 −9.00 10−3 0.26
7 0.89726 −2.34 10−3 0.26
8 0.89668 −5.80 10−4 0.25

Table 5.1: Convergence test for M = 100 and L = 5.

The second order convergence with decreasing mesh size in the spatial coor-
dinates is illustrated by the second and third columns in Table 5.1. In the
Table, ∆h

∞ −∆H
∞ denotes the difference between the value at level l and the
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value obtained at level l−1. The third column thus shows that this difference
decreases roughly by a factor of 4, each time the mesh size is halved. This
confirms the second order convergence.

From the value for level 8, it may therefore be concluded that the differ-
ence between this value and the value for the continuum problem is below
1%. For general values of M and L, and especially for large L values, the
accuracy is of the order of 2%. This is well below the accuracy of the model.

5.2 Time dependent solution

To study damping, clearly, the solution of the time-dependent EHL model
is needed. First, by means of numerical experiments using free vibrations,
it is shown that the lubricant damps any small oscillation due to an initial
deviation from equilibrium. The effects of the vibrations on the film thickness
and pressure distribution are discussed.

Next, simulations for sinusoidally varying loads are used to show that the
damping is indeed viscous and thus can be modelled as a viscous damper.
Damping values are obtained as a function of the various parameters in-
volved. Finally, an estimate of the numerical accuracy of the time-dependent
solutions is given.

5.2.1 Free vibrations

As initial conditions, one can either choose ∆0 6= ∆∞ and/or take ∆̇0 6= 0.
As a result of these conditions, the rolling element will start an oscillatory
motion that resembles the motion observed earlier for Hertzian contacts, see
Section 2.3. However, this time the amplitude of the oscillation will decrease
and eventually become zero, as a result of the viscous losses in the lubricant.
The pressure and film thickness thus converge to the steady state solution.
In this section, the influence of the parameters involved, i.e. the frequency
Ωn, the initial deviation ∆0 and the parameters M and L, will be studied.

Varying Ωn

To show the effect of the frequency Ωn on the mutual approach, the film
thickness and the pressure, simulations were performed for Ωn = 2.56, 5.13
and 10.26. (The motivation for choosing these specific values is given below.)
The Moes parameters are M = 100 and L = 5, whereas ∆0 was chosen 15%
less than the equilibrium approach ∆∞, i.e., ∆0 = 0.85∆∞ = 0.76. The
initial approaching velocity ∆̇0 was set to zero.
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Figure 5.8: Mutual approach ∆ versus time T for M = 100 and L = 5 and
envelope, connecting the minima. The frequency is Ωn = 2.56, 5.13 or 10.26.

Figure 5.8 shows the time history of the mutual approach ∆, from which it
can be observed that the amplitude of the oscillatory motion decreases in
time. (The included envelope, connecting all minima is discussed below.)
After 8 simulated time units, the amplitude for Ωn = 10.26 has nearly con-
verged to ∆∞. The Figure shows that the amplitude reduction per oscillation
is approximately the same for the three presented solutions, i.e. the value of
∆ after one oscillation for Ωn = 2.56 is approximately the same as the value
after one oscillation for Ωn = 5.13 and Ωn = 10.26.

The frequency of the oscillation can be explained by the relation between
the time scale T , introduced in Chapter 2 for the Hertzian dry contact,
and the time scale T , used in the simulation. These time scales are related
according to:

T = ΩnT. (5.4)

It is recalled here that, for Hertzian contacts, the period of oscillation for
small perturbations is given by Tn ≈ 5.13, see Section 2.3. Thus, the period of
oscillation for Hertzian contacts in terms of the time scale T is Tn = 5.13/Ωn.
This means that, provided the influence of the lubricant on the frequency is
small (a statement which can be verified later), the frequency in terms of T
should be about equal to fn = Ωn/5.13. Consequently, for the frequencies
of the solutions presented in Figure 5.8 for Ωn = 2.56, 5.13 and 10.26, the
corresponding values of fn should be 0.5, 1 and 2, respectively. This is indeed
the case and thus justifies the assumption that the influence of the lubricant
on the frequency can be neglected.
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The envelope curves, included in Figure 5.8, are exponential functions.
Exponential functions are characteristic for linear viscous dampers (in a lin-
ear viscous damper, the viscous force is proportional to the velocity). Hence,
one may expect that the viscous forces, or the damping induced by the lu-
bricant, can be accurately described by a linear viscous damper. That this
is indeed the case, will further be discussed in the section on sinusoidally
varying loads.

The changes in the film thickness are shown in Figures 5.9, 5.11 and
5.13 by means of interference plots. Figures 5.10, 5.12, and 5.14 show the
associated pressure and film thickness along the centre line Y = 0. It is noted
that the time increment between the presented interference plots is enlarged
after the first 9 images.

Although the undeformed surfaces are smooth, the interference plots
clearly show film thickness variations in the contact region. These varia-
tions are crescent and are most clearly observed in Figure 5.13. They have
a particular wavelength and propagate through the high pressure zone at
the dimensionless speed of unity, i.e. it takes two time units for the film
thickness modulation to pass through the contact. The propagation speed is
independent of Ωn. These phenomena can be explained as follows.

Because ∆0 ≤ ∆∞, the rolling element is initially lifted slightly from the
raceway. After release, the element starts to accelerate towards the raceway.
Since the film thickness is small and the viscosity is large, Poiseuille flow is
virtually absent in the high pressure zone and, as a result, the central film
thickness hardly decreases, despite the increase in the mutual approach. In-
stead, the high pressure zone expands to compensate for the increased “load”.
Thus, as long as the rolling element approaches the raceway, squeeze motion
occurs only in the region near the circumference of the Hertzian contact circle
and the film thickness only decreases at that location. However, note that
as a result of the pressure generated by the squeeze motion, the reduction
of the film thickness is smaller than it would be if the load was increased
quasi-statically. A larger film thickness thus enters the high pressure zone.
As the motion of the rolling element reverses, by a similar mechanism, the
film thickness is reduced in the inlet and film thickness modulations are in-
duced. This process repeats periodically, with decreasing amplitude, until it
converges to the steady state solution.

As is shown in the Figures, the film thickness changes induced at the inlet
are propagated through the high pressure zone. This immediately follows
from the Reynolds equation. Since in the high pressure zone the Poiseuille
term vanishes, the Reynolds equation reduces to the advection equation:

−∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
≈ 0, (5.5)
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Figure 5.9: Interference plots of film thickness for M = 100, L = 5 and
Ωn = 2.56 at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 4.0, 6.0
and 8.0. The dimensionless wavelength is Λ = 0.06.
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Figure 5.10: Centre line pressure (left labels) and film thickness (right labels)
for M = 100, L = 5 and Ωn = 2.56 at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, 2.0, 4.0, 6.0 and 8.0. The centre line pressure at equilibrium is
included for comparison by the long-dashed line.
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Figure 5.11: Interference plots of film thickness for M = 100, L = 5 and
Ωn = 5.13 at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 4.0, 6.0
and 8.0. The dimensionless wavelength is Λ = 0.06.
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Figure 5.12: Centre line pressure (left labels) and film thickness (right labels)
for M = 100, L = 5 and Ωn = 5.13 at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, 2.0, 4.0, 6.0 and 8.0. The centre line pressure at equilibrium is
included as a reference by the long-dashed line.
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Figure 5.13: Interference plots of film thickness for M = 100, L = 5 and
Ωn = 10.26 at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 4.0, 6.0
and 8.0. The dimensionless wavelength is Λ = 0.06.
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Figure 5.14: Centre line pressure (left labels) and film thickness (right labels)
for M = 100, L = 5 and Ωn = 10.26 at times T = 0, 0.25, 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0, 4.0, 6.0 and 8.0. The centre line pressure at equilibrium
is included as a reference by the long-dashed line.
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which prescribes ρ̄H ≈ ρ̄H(X − T ). Because the lubricant’s compressibility
is limited, eventually this results in H ≈ H(X − T ) and any film thick-
ness modulation, induced at the inlet of the high pressure zone, propagates
through the contact at the dimensionless speed of unity. In real terms, this
is the average velocity of the surfaces, also referred to as the entrainment
velocity. As a result, the propagation speed is independent of Ωn.

Note that the wavelength of the film modulations is larger for smaller
values of the frequency Ωn. This is evident since the frequency with which
these film variations are induced is equal to Ωn/5.13, whereas the propagation
speed is fixed. This implies that the wavelength of the film variations equals
5.13/Ωn, which is exactly what is observed in the Figures.

It is interesting to note that the changes in the film thickness increase
in the X-direction, most clearly shown in Figure 5.14 for Ωn = 10.26. This
is due to the fact that the amplitude of oscillation at the beginning of the
simulation is larger than the amplitudes induced at a later time. Accordingly,
the film thickness modulations are thus also larger at the beginning of the
simulation. These larger film modulations have thus propagated through the
contact further downstream than the film modulations induced at a later
time.

The propagation mechanism has been observed earlier, both experimen-
tally and numerically, in studies on surface features like dents, bumps and
waviness, see [13, 57, 66, 52, 2]. For instance, in studies on the effect of dents
and bumps, some components in the solution must travel at the speed at
which the dent or bump moves through the contact. Particularly, in cases
where the contacting surfaces move at different speeds (so-called slip), the
solution contains the aforementioned component as well as the characteris-
tic component H ≈ H(X − T ). Note that, since the undeformed surfaces
are smooth, the present model is independent of the slip ratio and no such
components exist.

The propagation phenomenon is further illustrated in Figure 5.15, which
displays the central and minimum film thickness versus time for M = 100,
L = 5 and Ωn = 5.13. In the initial stage, the central film thickness is
approximately constant and only at T ≈ 1, the time at which the initial
variation reaches X = 0, is the first change in the film thickness observed.
Note again that the increase of the mutual approach, at the beginning of the
simulation, leads to an increase in the film thickness. As stated before, this
is explained by the pressure, induced by the squeeze motion, which causes
the film thickness to be larger than the quasi-static film thickness associated
with the increased load.
Also note that the minimum film thickness is immediatly affected by the
squeeze motion. Since the minimum film is located in the side lobes, it
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Figure 5.15: Central- and minimum film thickness versus T for M = 100,
L = 5 and Ωn = 5.13

responds immediately to changes in ∆. As observed in the Figure, the film
thickness oscillations gradually decay and would, for larger simulation times,
vanish completely.

The pressure distribution on Y = 0, is shown in Figures 5.10, 5.12 and
5.14. The Figures show that the contact force, i.e. the integral of the pressure
distribution, increases in the beginning of the simulation to compensate for
the inertia forces. At T = 0.5Tn the contact force reaches its maximum
value, at T = Tn it reaches its minimum value again, after which it starts
to oscillate and converges towards the applied load. The induced pressure
changes in the inlet are “fixed” to the film thickness changes and propagate
through the contact at the dimensionless speed of unity.

It is obvious that, as long as no additional parameters are introduced, one
may use different dimensionless variables in which the solution is expressed.
Specifically, it is interesting to look at the equations which result when using
the time scale T , introduced in Chapter 2 for Hertzian contacts.

The Reynolds equation and the equation of motion in terms of the timescale
T read, respectively:

∂

∂X

(
ρ̄H3

η̄λ

∂P

∂X

)
+ κ2 ∂

∂Y

(
ρ̄H3

η̄λ

∂P

∂Y

)
=

∂ρ̄H

∂X
+ Ωn

∂ρ̄H

∂T , (5.6)

and
d2∆

dT 2
+

3

2π

∫
S

P (X, Y, T )dXdY = 1. (5.7)
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As a result, for all values of Ωn the period of oscillation would approximately
equal 5.13 (the period of oscillation for Hertzian contacts), since it was shown
that lubrication does not affect the period. Neglecting the Poiseuille term in
the high pressure zone, the Reynolds equation reduces to:

∂ρ̄H

∂X
+ Ωn

∂ρ̄H

∂T = 0. (5.8)

Since the compressibility of the lubricant was shown to be limited, the so-
lution in the high pressure zone, in terms of the “Hertzian” time scale, is
thus:

H ≈ H (X − T /Ωn) . (5.9)

Hence, 1/Ωn would be the dimensionless speed at which film thickness modu-
lations travel through the high pressure zone. For large values of Ωn, the film
thickness modulations would thus propagate very slowly through the contact
and the wavelength of the induced modulations is small. The wavelength for
small values of Ωn is very large and a nearly quasi-static solution would be
observed.
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Figure 5.16: Response ∆ for a 10%, 20% and 40% deviation from equilibrium,
i.e. ∆0 = 0.8, 0.71 and 0.54, respectively. The line ∆ = ∆∞ is shown as a
reference.

Varying ∆0

The effect of the initial approach ∆0 on the response ∆ is shown in Fig-
ure 5.16. The parameters used are M = 100, L = 5 and Ωn = 5.13. The
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initial mutual approach ∆0 is 10, 20 and 40% smaller than the equilibrium
approach ∆∞.

For Hertzian contacts, see Chapter 2, it was shown that the response due
to an initial deviation from equilibrium is asymmetric with respect to ∆∞,
being more apparent for larger deviations from the equilibrium approach.

The asymmetry is also observed for the lubricated case. A close exam-
ination of Figure 5.16 shows that, the absolute value of the deviation from
the equilibrium approach is larger at a minimum value, than it is at the
previous maximum value, whereas for a linear system, the deviation would
be less than the deviation at the previous maximum. There is no indication
that the effect of the lubricant introduces an additional non-linearity, e.g.
through period elongation.

40%
20%
10%

∆∞

T

∆s

876543210

1

0.95

0.9

0.85

0.8

Figure 5.17: Response ∆ for a 10% deviation and the scaled response ∆s

onto ∆ for a 20% and 40% deviation from equilibrium. The line ∆ = ∆∞ is
shown as a reference.

To verify that the response is linear in the deviation from equilibrium, Fig-
ure 5.17 shows the solutions given in Figure 5.16 scaled onto the 10% solution,
i.e. for the 20% solution, ∆s = ∆∞+0.5(∆−∆∞) and for the 40% solution,
∆s = ∆∞ + 0.25(∆ − ∆∞). One observes that the difference between the
scaled solutions is practically negligible and one may thus conclude that the
response is linear in the amplitude of the oscillation for values up to 40% of
the equilibrium approach.
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Varying M and L

Finally, we discuss the effect of the load parameter M and the lubricant
parameter L on the response ∆, the film thickness and the pressure. Specifi-
cally, the effect on ∆ illustrates the effect of the parameters on the damping
of the contact, which will be discussed in Section 5.2.3.

For different values of M , ∆(T ) is shown in Figure 5.18. The remaining
parameters are L = 5, Ωn = 5.13 and ∆0 = 0.85∆∞. As was shown in Section
5.1.2, ∆∞ is smaller for smaller values of M . This implies that the actual
difference between the initial mutual approach and the mutual approach at
equilibrium is larger for larger M . For the present purpose this is, however,
irrelevant.
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Figure 5.18: ∆ versus T for M = 20, 50, 100, 200 and 500 and L = 5

For all values of M , one observes a similar behaviour of the mutual approach
as shown earlier for M = 100 and L = 5, i.e. ∆ oscillates around the
equilibrium position and the oscillations are damped for all values of M .
However, with the help of the logarithmic decrement of the oscillation, one
can show that the amplitude decay is larger for smaller values of M . The
viscous losses in the lubricant thus become less with increasing values of M .
This observation will be discussed in more detail in Section 5.2.3. In that
Section, also a quantification of the damping will be given.

Figure 5.19 shows ∆(T ) for different values of L at M = 100 and similar
conditions for Ωn and ∆0 as before. Although less apparent than that found
for higher values of M , one observes that the amplitude decay is smaller for
larger values of L. Since the viscosity increases with pressure at a higher
rate for larger L, this seems contradictory. However, it is noted that energy
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Figure 5.19: ∆ versus T for L = 0, 2.5, 5 and 10 and M = 100

dissipation can only occur in regions where pressure induced flow occurs and,
for larger values of L, these regions become smaller. In fact, it is the high
viscosity which prevents pressure induced flow and, as a result, no energy is
dissipated. As stated earlier, the damping induced by the lubricant will be
further discussed in Section 5.2.3.

The film thickness and pressure distribution for the different values of M
and L are quite similar to those presented earlier for M = 100 and L = 5.
Both the film thickness and the pressure are perturbations around the steady
state solution and converge towards the steady state solution.

Note however the formation of Petrusevich-like spikes near the inlet of
the contact, shown in Figure 5.20, which can be observed for larger values
of L and Ωn. The spikes are a result of the squeeze motion in the inlet
of the contact region and subsequently move through the contact practically
undisturbed. Also note that the constriction of the film thickness, just before
the spike, resembles the constrictions that can be observed in steady state
situations just after the spike. As far as pressure generation is concerned,
this illustrates that there is no difference between squeeze motion and en-
training motion, as also the Reynolds equation states; variations of ρ̄H in
the X-direction induce pressure changes similar to variations of ρ̄H in the
T -direction.

Petrusevich-like spikes in studies on pure squeeze motion have been ob-
served earlier by a number of researchers, see e.g. Larsson and Höglund [43],
Larsson and Lundberg [44], Safa and Gohar [62] and Peiran and Shizhu [58].
Hence, the present observations are a mere combination of results reported
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Figure 5.20: Centre line pressure and film thickness at T = 1.75 for M = 100,
L = 10 and Ωn = 10.26. The initial conditions are ∆0 = 0.7 and ∆̇0 = 0.

in the studies mentioned and the steady-state solutions discussed earlier.

5.2.2 Sinusoidally varying loads

By means of simulations for free vibrations, we have explained the basic
phenomena occurring in the contact. The results showed clearly that the
oscillations are damped and that this damping depends on the governing
parameters. From the decrease of amplitude as a function of time, this
damping could be quantified. A better way to do so, is to determine the
damping by means of the simulation for sinusoidally varying loads. Then,
the solution is periodic, which makes it easier to deduce damping values.

The simulation for sinusoidally varying loads is quite similar to the one of
free vibrations. Contrary to free vibrations no initial conditions need to be
specified since there is an instantaneous response to the load. Apart from a
transient effect in the initial stages of the simulation, the solution is periodic.

An additional motivation for using sinusoidally varying loads, is to show
that film thickness modulations occur in all situations, whenever a variable is
varied at a certain frequency. For instance, film thickness modulations, simi-
lar to the ones shown earlier, were observed by Kaneta [36] in an experiment
in which us was varied periodically. The modulations can thus be explained
by the mechanisms described here and the proposed wall slip might not be
necessary to explain the observations. (The present model is independent of
the slip ratio and the difference between the pure rolling and pure slip case
in [36] only affects the frequency, which is responsible for the difference in
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wavelength of the induced film thickness modulations.)

Response ∆

Figure 5.21 shows the mutual approach ∆ obtained for M = 100, L = 5,
A = 0.1 and Ωe = π, Ωe = 2π and Ωe = 4π. One observes a periodic solution
for which the frequency is fe = Ωe/(2π). Furthermore, the Figure shows that
the transient effects, which are associated with the film thickness changes in
the time span 0 < T ≤ 2, are not seen in the mutual approach ∆.

π2π4π

∆∞

T

∆

43.532.521.510.50

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

Figure 5.21: Response ∆ versus T for M = 100, L = 5 and Ωe = π, 2π and
4π.

It is interesting to point out that, similar to the free vibrations, the time scales
for the Hertzian contacts, T, and the time scale T used in the simulation, are
related according to:

T = ΩeT. (5.10)

Film thickness and pressure

In the simulations for sinusoidally varying loads, similar film thickness and
pressure distributions are observed as in the simulation of free vibrations.
However, instead of the decay, in this case, the solution becomes periodic.
The periodicity starts after the initially induced film thickness changes have
propagated through the contact, i.e. for T ≥ 2.

Since the frequency at which the film changes are induced equals Ωe/(2π),
the wavelength of the induced film thickness variations is now 2π/Ωe, see Fig-
ure 5.22. The wavelength for sinusoidally varying loads can thus be compared
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Figure 5.22: Interference plots of film thickness for Ωe = 2π at times T = 0,
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0 and 3.5. The dimensionless
wavelength is Λ = 0.06.
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Figure 5.23: Centre line pressure (left labels) and film thickness (right labels)
for M = 100, L = 5 and Ωe = 2π at times T = 0, 0.25, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, 2.0, 2.5, 3.0 and 3.5. The centre line pressure at equilibrium is
included as a reference by the long-dashed line.
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to the wavelength in the simulations of free vibrations, if the frequency Ωe is
related to Ωn according to Ωn ≈ (5.13/2π)Ωe.

With respect to the amplitude of the observed pressure variations in Fig-
ure 5.23, it is noted that, due to the large stiffness of the contact, an ampli-
tude of 10% from the average load has a smaller effect than a 10% variation
from the equilibrium approach. This is indeed shown in Figure 5.23 in which
snapshots of the centre line pressures and film thickness are given at the same
times as those given in Figure 5.22. Hence, the perturbation of the pressure
from the steady state solution is smaller than that observed in the case of
free vibrations, see Figure 5.11.

5.2.3 Damping

As was shown before, the amplitude decay in the simulation of free vibrations
decreases for larger values of M and L. In this section, we will present
damping values for a variety of M and L values that support this statement.

The damping values for each value of M and L will be calculated from
the so-called hysteresis loop. In a hysteresis loop, the contact force is plotted
as a function of the mutual approach ∆. (The dimensionless contact force
is defined as (3/(2π))

∫∫
S PdXdY .) As an example, the loop obtained for

A = 0.1, M = 100, L = 5 and Ωe = 2π is shown in Figure 5.24.

∆

3 2
π

∫∫ P
d
X

d
Y

10.950.90.850.8

1.1

1.05

1

0.95

0.9

Figure 5.24: Hysteresis loop for M = 100, L = 5 and Ωe = 2π

Obviously, the area enclosed by the hysteresis loop equals the work per cycle
done by the load. It thus equals the energy dissipated by the viscous forces
present in the lubricant.
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Using a linear viscous damper, the viscous forces are assumed to behave
like dδ̇, where d is the damping constant. In terms of the dimensionless
variables, the damping constant, denoted by D, is defined as:

D = d
cus

2af
. (5.11)

For a linear viscous damper, the hysteresis loop is an ellipse, see the frame
below. Apart from the initial stages in the simulation, the hysteresis loop
shown in Figure 5.24 is indeed an ellipse, which supports the conclusion, given
in Section 5.2.1, that modelling the damping of the EHL circular contact by
a linear viscous damper is an accurate approximation.

On the shape of the hysteresis loop.

For harmonic excitation, the excitation force provides the energy that
is dissipated in the system due to the viscous losses in the lubricant.
Assuming a linear spring-damper model, such that the viscous force is
equal to D∆̇, the dimensionless dissipated energy per period equals:

E = −
∫ Te

0
D∆̇d∆ = −

∫ 2π/Ωe

0
D∆̇2dT. (5.12)

Assuming a response ∆ = B cos(ΩeT ), the dissipated energy equals:

E = −πDΩeB
2. (5.13)

The total force F for the single degree of freedom is:

F = −DΩeB sin(ΩeT ) + KB cos(ΩeT ), (5.14)

where the contact stiffness K is assumed to be linear around the equi-
librium position. Then, the force is related to the approach ∆ accord-
ing to:

F = K∆±DΩe

√
B2 −∆2. (5.15)

Equation 5.15 is the equation of an ellipse which is approximately
alligned with the line F = K∆.

When the hysteresis loop is known by simulation or measurement,
one can obtain an equivalent damping constant D for which the area
enclosed by the elliptic hysteresis loop equals the area enclosed by the
simulated or measured loop.
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Figure 5.25: The damping constant D and curve-fit function by the drawn
lines, as a function of M for different values of L. The frequency is Ωe = 2π.

The damping constant D was determined for a variety of values of M and
L at Ωe = 2π and is shown in Figure 5.25. As was already observed for
free vibrations, the damping decreases with increasing M as well as with
increasing L.

For engineering practice, a curve-fit function for the damping was ob-
tained. Assuming the form D = f(L)Mg(L), the following approximating
function appears to be quite accurate:

D(M, L) = f(L)Mg(L) where

f(L) = 1.14− 0.0234L

g(L) = −0.769− 0.0024L (5.16)

The function for L = 0, 5, 10 and 20, is included in Figure 5.25 by the dashed
lines.

5.2.4 Specific friction loss

The damping constant D is a global number. It does not reveal the phe-
nomena in the solution, that account for these losses. This information can
however be deduced from the specific friction loss ps, i.e., the fricition loss per
unit area. The dimensionless specific friction loss, Ps, is defined according
to:

Ps = ps
4π2 (2R)3 η0

9f 2κ2

( E
K

)3

. (5.17)
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Expressed in terms of the (earlier) introduced dimensionless parameters, the
expression for the friction loss is:

Ps =
H3

12η̄


(

∂P

∂X

)2

+ κ2

(
∂P

∂Y

)2
 , (5.18)

see Moes [51]. From the specific friction loss, the total dissipated energy per
cycle is:

E =
∫ 2π/Ωe

0

∫∫
S

PsdXdY dT, (5.19)

where the term
∫∫

S PsdXdY equals the energy per time unit, dissipated in
the lubricant.
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Figure 5.26: Specific friction loss at Y = 0 for L = 5, M = 50, 100 and 500.

Figure 5.26 shows the specific friction loss for steady state conditions at
Y = 0 for M = 50, 100 and 500 at L = 5. It can be observed that Ps is
largest in the low pressure zone, just in front of the Hertzian contact circle.
Also at the location of which the Petrusevich spike, the specific friction loss
is significant. However, for all cases shown, Ps completely vanishes in the
centre of the contact. The picture further shows that Ps decreases with M .
For M = 500, it even becomes negligible small. For steady state conditions,
the dimensionless energy that is needed (and lost) in order to keep the rolling
element rolling, thus decreases with M .

In time-dependent calculations, the specific friction loss is almost identical
to the specific friction loss in the steady state situation. (Since it can hardly
be distinguished from the steady state distribution, it is not shown.) The
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small differences occur at the locations where the friction loss for steady state
conditions was already large, i.e. just before the Hertzian circle and near the
spike.

The (small) difference between the steady state and the time-dependent
distribution equals the additional energy dissipation that causes the oscilla-
tion of the rolling element to be damped. Therefore, it can be concluded that
the additional energy dissipation is small compared to the energy which is
already dissipated in the steady state situation. In addition, this illustrates
the decrease of the damping observed for larger values of M .

Varying Ωe

The influence of the parameter Ωe on the damping coefficient is shown in Fig-
ure 5.27. Again, the parameters are M = 100 and L = 5. It can be observed
that, except for the increase for small Ωe, the damping is approximately con-
stant, i.e. about the same amount of energy is dissipated per cycle. For small
amplitudes, one would expect the damping constant to be constant and inde-
pendent of Ωe. Only near the transition from the squeeze dominated motion
to the entraining dominated motion at Ωe ≈ 2π, see Section 5.3, one might
observe some deviation from this constant value.

Ωe

D

4π7π/23π5π/22π3π/2ππ/2

1

0.1

0.01

0.001

Figure 5.27: Damping constant D as a function of Ωe for M = 100 and L = 5

It is interesting to note the inconsistency of approximating the viscous forces
in the lubricant by a linear viscous damper for Ωe → 0. As stated before,
for small values of Ωe the solution closely resembles the quasi-static solution,
given a particular value of the mutual approach ∆. Since for any quasi-
static solution the velocity is zero, adding a linear viscous damper having
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an arbitrary damping constant, does not affect its solution. It must thus be
concluded that the limit for vanishing Ωe does not exist.

This inconsistency is reflected by the (numerical) problems that arise in
determining the solution for small Ωe. Firstly, since time span that is needed
to simulate one hysteresis loop is at least the period of oscillation 2π/Ωe,
the simulation times are large for small Ωe and it is very difficult to preserve
the accuracy of the solution for these long simulation times. Secondly, and
more importantly, the two branches of the hysteresis loop virtually coincide,
which makes it impossible to determine damping constants within reasonable
accuracy.

On the other hand, for very large values of Ωe, it should be noted that,
although one hysteresis loop is obtained within a short simulation time, the
accuracy of the solution becomes smaller because the discretization error in
the equation of motion becomes larger. Moreover, one still needs to simulate
at least two time units before the film thickness modulations, induced in the
initial stages of the simulation, have propagated through the contact and
the solution becomes stationary. Reducing the time step is not an option
here, because this would lead to the same excessive computation times and
associated problems as encountered for small Ωe. Moreover, because of the
reduction of the time step, discretization errors in the discrete Reynolds
equation increase, see Appendix B. The problems for small Ωe can however
be solved using a pure squeeze model.

Numerical accuracy

To determine the accuracy of the solutions presented so far, in this section
we will present the solutions obtained on different mesh sizes. Contrary to
the steady state solution, the presented time-dependent solutions have been
obtained using a mesh with 257x257 nodal points. At the expense of a small
increase in the discretization error, the coarser mesh has been adopted to
reduce simulation times.

So-called F -cycles were used in the simulation, see Venner [66], where
3V (2, 1) cycles per time step proved to be sufficient to converge below the
incremental discretization error. In some cases however, 4V (2, 1) cycles were
needed, specifically for large M combined with large L values. This is due
to the under-relaxation which is needed to stablize the numerical process.
Underrelaxation slows down the convergence rate per cycle and, as a result,
one additional cycle is necessary to converge below discretization error.

To show that the presented solutions indeed converge quickly, Figure 5.28
shows ∆ obtained in the simulation of free vibrations, at different mesh sizes.
Let h = hX = hY = hT = 6/256 denote the finest mesh size in the simulation,
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then Figure 5.28 shows the approach ∆ versus time on grids 4h, 2h and h.
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Figure 5.28: ∆ versus T obtained on grid h, 2h and 4h.

First, it is observed that, since ∆∞ is slightly larger for coarser grids (see
Table 5.1), the initial deviation from the equilibrium approach, ∆∞ − ∆0,
is larger on the coarser grids. Secondly, the solution will converge to an
equilibrium approach ∆∞ which matches the value for that specific grid. For
coarser grids it thus converges to a larger value. Both effects are related to
the spatial accuracy.

The rate of decline of the amplitude of the oscillation is approximately
the same for all solutions. Hence, the incremental discretization error must
be small compared to the discretization error in the spatial coordinates. This
indicates that the incremental discretization error is O(h3

T ), which is less than
the spatial discretization error. Consequently, the accuracy of the solution,
presented in Section 5.2.1 for a given time T , is indeed O(h2

T ) and the solution
is estimated to be accurate to within 2%.

5.3 Concluding remarks

In this chapter, the stiffness and damping of the EHL circular contact
were determined numerically. It was shown that vibrations of the structural
elements induce film thickness modulations and associated pressure changes
in the contact. In addition, it was shown that free vibrations of the rolling
element are damped by the lubricant. Specifically, the obtained curve-fit
functions for the stiffness and damping may be used in a structural dynamics
analysis or acoustical analysis of rolling element bearings.
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For instance, as reported by Wensing [71], finite element models can be
used to describe the structural dynamics of the raceways and rollers. The
behaviour of the EHL contacts are then introduced by a spring and damper,
for which the stiffness and damping are those given in, respectively, Equa-
tions 5.2 and 5.16.

It is interesting to note that the frequencies Ωn or Ωe bring together
two reasearch fields that exist in tribology. For instance, if Ωn � 5.13 or
Ωe � 2π, one can conclude beforehand that squeeze motion dominates. In
that case, a pure squeeze model yields an accurate approximation. Pure
squeeze models are adopted in studies of the film thickness between a ball
impacting and rebouncing on a lubricated surface. References are given at
the end of Section 5.2.1.

On the other hand, if Ωn � 5.13 or Ωe � 2π, i.e. when the surface speeds
are much larger than the speed at which the bodies approach each other,
the steady state model that is used in standard EHL theory is sufficient.
Note that this does not imply that the mutual approach may not change in
time. Its value may still be governed by the equation of motion, however,
the pressure and the film thickness equal the quasi-static solution given a
particular value of the mutual approach ∆.
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Chapter 6

Elliptical contacts

In this chapter, the solutions for elliptical contacts are presented. They were
obtained with the algorithm described in Chapter 4. First, we discuss the
effect of ellipticity on the film thickness and the pressure distribution. The
stiffness of the elliptical contact, derived from the steady state solution, will
be presented. From the simulations with sinusoidally varying loads, the effect
of ellipticity on damping is deduced.

6.1 Steady state solution

Figure 6.1: Pressure distribution P (X, Y ) for Rx/Ry = 0.05, M = 500 and
L = 5.

As an illustration, Figures 6.1 and 6.2 show typical examples of the pressure
and film thickness distribution of elliptical contacts, in terms of the vari-
ables used in the simulation. For this particular case, the ratio of curvatures
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Rx/Ry = 0.05, i.e. κ ≈ 0.14 and the actual contact width is thus approx-
imately 7 times as large as the contact length. The Moes dimensionless
parameters are M = 500 and L = 5.

The Figures clearly show that the actual elliptical contact region maps
onto a circle. The same characteristic phenomena are observed as for circu-
lar contacts, i.e. the pressure distribution resembles the Hertzian pressure
distribution except for the smooth increase in the inlet and the (start of a)
Petrusevich-like spike near the exit. A closer examination reveals that the
pressure distribution resembles the pressure distribution for circular contacts,
corresponding to a smaller value of M , see Figure 5.1. This will be elaborated
upon later.

Figure 6.2: Film thickness distribution H(X, Y ) for Rx/Ry = 0.05, M = 500
and L = 5.

The film thickness, which is plotted in Figure 6.2, again confirms the mapping
of the elliptical contact region onto a circle. In addition, the Figure clearly
shows the difference in dimensionless radii of curvature in the two directions.
Note that the difference in radii, as observed in the Figure, is a result of the
applied scaling and is the exact opposite of the difference in the actual radii
of curvature. The Figure also shows the constriction near the outlet of the
contact.

6.1.1 Varying Rx/Ry

To further illustrate the effect of ellipticity on film thickness and pressure,
Figures 6.3 and 6.4 show interference plots of the film thickness, the pressure
and the film thickness on Y = 0 and X = 0, for different values of the cur-
vature ratio Rx/Ry. Again, the values of the Moes dimensionless parameters
are M = 500 and L = 5.
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Figure 6.3: Film thickness interference plots, P (X, 0), P (0, Y ) (solid line,
left labels), H(X, 0) and H(0, Y ) (dashed line, right labels). The Moes pa-
rameters are M = 500, L = 5 and, from top to bottom, Rx/Ry = 1, 0.4, 0.2,
0.1 .
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Figure 6.4: Film thickness interference plots, P (X, 0), P (0, Y ) (solid line,
left labels), H(X, 0) and H(0, Y ) (dashed line, right labels). The Moes pa-
rameters are M = 500, L = 5 and, from top to bottom, Rx/Ry = 0.05, 0.025,
0.0125.

As was already described in Nijenbanning [54], one observes clearly that with
decreasing values of Rx/Ry and constant values of M and L, the overall film
thickness increases. Furthermore, the position of the minimum film thickness
shifts from the side lobes to the exit on the centre line of the contact. In
addition, as is shown in the Figure, a local minimum in the film thickness
forms in the centre of the contact as Rx/Ry decreases.

These phenomena can be explained as follows. By fixing M , the value
of the applied load is also fixed. Further analysis shows that if the ratio
Rx/Ry decreases, the maximum Hertzian pressure decreases. As a result, the
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film thickness increases and the pressure distribution resembles the circular
contact distribution at a smaller Hertzian pressure and thus a smaller M
value.

The local minimum film thickness, observed in the centre of the contact, is
due to Dowson and Higginson’s compressibility relation, which is included in
the analysis. In this relation, the increase in density is limited to about 30%.
Hence, as long as the pressure is sufficiently large, this will also be the density
increase in the high pressure zone. Now, as the maximum Hertzian pressure
decreases, the pressures in the contact reach a level where the changes in
the density vary in the contact. The density increase will be highest in
the centre of the contact and the film thickness will decrease to compensate
for the density increase. This corresponds with the fact that the Reynolds
equation reduces to ρ̄H = C(Y ) with C(Y ) being constant and dependent
on Y only, see also Nijenbanning [54].

6.1.2 Varying M and L

Figure 6.5 and 6.6 show, respectively, pressure contour plots and interference
film thickness plots for different values of M and L at Rx/Ry = 0.05. The
motivation for choosing the particular M values will be explained below.

The pressure distribution in Figure 6.5 closely resembles the pressure dis-
tribution for circular contacts. Indeed, as for circular contacts, the pressure
distribution converges to the Hertzian pressure distribution for larger values
of M , whereas, for smaller values of M , the pressure build-up starts further
upstream. The pressure spike can be seen only for larger L values. The effect
of the ellipticity only shows in the pressure distribution for smaller values of
M ; the pressure spikes extend further to the sides of the contact, especially
for L = 10.

Compared to the circular contact, the film thickness constriction, seen at
the outlet, is more pronounced for the elliptical contact and extends further to
the sides of the contact. Otherwise, the film thickness distribution resembles
the distribution for circular contacts. The reader is referred to Kapitza [40],
Kweh [42] and Nijenbanning [54] for additional information about the film
thickness and the pressure in elliptical contacts.
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Figure 6.5: Pressure contour plots for Rx/Ry = 0.05, M is, from top to
bottom, 89.4, 223.6, 447.2, and 2236 and L is, from left to right, 0, 5 and 10.
The pressure increment between consecutive lines is 0.1.



6.1 Steady state solution 109

Figure 6.6: Film thickness interference plots for Rx/Ry = 0.05, M is, from
top to bottom, 89.4, 223.6, 447.2 and 2236 and L is, from left to right, 0, 5
and 10.
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6.1.3 Flexibility and stiffness

The effect of the ellipticity ratio on the mutual approach ∆∞ is shown in
Figure 6.7. The curve-fit functions for the circular contact, see Equation 5.2,
for two L values are included in the Figure and indicated by ∆c

∞.
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Figure 6.7: ∆∞ as a function of M for different values of L. Rx/Ry = 0.1.

As was observed earlier for the circular contact, for a given L, ∆∞ increases
with increasing M , approaching the Hertzian value ∆∞ = 1. Hence, for large
M , the flexibility of the surfaces determines the flexibility of the contact. For
small M , and particularly if L is large, the situation is completely different.
In these cases, the values for the elliptical contacts are smaller than those
calculated for circular contacts and negative, implying that the film thickness
at the centre of the contact exceeds the Hertzian deformation. Clearly, the
flexibility of the lubricant film plays a more important role as it did for
circular contacts.

From a similarity analysis it follows that the solution in the rigid, iso-
viscous case only depends on N , defined as N = (Rx/Ry)

1/2M , and on a
factor, depending on Rx/Ry only, see Moes and Bosma [49]. The factor is
relatively independent of the ratio Rx/Ry when it is small. Hence, at least
for the rigid, isoviscous asymptote, the mutual approach, as a function of N ,
should be independent of Rx/Ry.

Figures 6.8 and 6.9, showing the mutual approach ∆∞ as a function of N
for Rx/Ry = 0.2 and 0.05, confirm that the values of ∆∞ closely resemble the
values of the curve-fit function derived for circular contacts. Also for larger
values of L and N , the scaling proves to be quite accurate. As a result,
the curve-fit function for circular contacts given in Equation 5.2 can also be
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Figure 6.8: ∆∞ as a function of N for different values of L. Rx/Ry = 0.2,

applied for elliptical contacts, provided that M is replaced by N . The mutual
approach ∆∞ may thus be described by:

∆∞(N, L) = 1− p(L)N q(L) where

p(L) =
(
(4− 0.2L)7 + (3.5 + 0.1L)7

)1/7

q(L) = −
(
0.6 + 0.6 (L + 3)−1/2

)
(6.1)

The introduction of N motivated the choice for the particular values of M
which were used in Figures 6.5 and 6.6, i.e. for Rx/Ry = 0.05; they are
equivalent to N = 20, 50, 100 and 500.

6.2 Time dependent solution

6.2.1 Film thickness and pressure

For free vibrations as well as for sinusoidally varying loads, the solution, in-
cluding the mutual approach, the pressure and the film thickness, is similar
to the solution for circular contacts. For free vibrations, the rolling element’s
oscillatory motion, as a result of an initial disturbance, is damped by the lu-
bricant and the solution will eventually converge to the steady state solution.
For sinusoidally varying loads, a periodical solution is obtained.

As the rolling element oscillates, it introduces film thickness modulations
at the inlet of the contact, which propagate through the contact with the
dimensionless speed of unity. Also, for elliptical contacts the wavelength of
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Figure 6.9: ∆∞ as a function of N for different values of L. Rx/Ry = 0.05,

these modulations is approximately equal to 5.13/Ωn for free vibrations and
2π/Ωe for sinusoidally varying loads.

As an illustration and confirmation of the propagation mechanism and
wavelength of the induced film modulations, Figure 6.10 shows interference
plots of the film thickness at different instants in time in the simulation for
N = 500, L = 20 and Rx/Ry = 0.05. The associated pressure contours are
given in Figure 6.11. For clarity, the centre line film thickness and pressure
are plotted in Figure 6.12. The amplitude of the oscillation is A = 0.2. The
excitation frequency is Ωe = 2π and, indeed, for this particular case, the
wavelength of the film modulations is 1.

Figure 6.10: Interference plots of the film thickness at T = 0.0, 1.0 and 2.0,
for M = 500, L = 20, A = 0.2 and Ωe = 2π. Rx/Ry = 0.05.

Here, we end the discussion of the film thickness and pressure and focus our
attention to the damping induced by elliptical contacts.
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Figure 6.11: Pressure contour plots at T = 0.0, 1.0 and 2.0, for M = 500,
L = 20, A = 0.2 and Ωe = 2π. Rx/Ry = 0.05.
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Figure 6.12: Centre line pressure (solid lines, left labels) and film thickness
at T = 0.0, 1.0 and 2.0, for M = 500, L = 20, A = 0.2 and Ωe = 2π.
Rx/Ry = 0.05.

6.2.2 Damping

From the hysteresis loop, values for the damping constant D were obtained
for a variety of N and L values at Rx/Ry = 0.05. The results are collected in
Figure 6.13. The curve-fit function of Equation 5.16, as derived for circular
contacts, is included in the Figure. This function is denoted by Dc.

As is shown in the plot, despite the use of N , the damping values for the
elliptical contact are slightly larger than those obtained for circular contacts.
The general trend, however, i.e. less damping for higher values of N and
higher values of L, remains the same. Apparently, viscous flow does vanish,
but it does not vanish as rapidly towards the sides of the contact, as happens
in the equivalent circular contact.

The curve-fit function of Equation 5.16, derived for the circular contact,
needs some minor adjustments to fit the values for the elliptical contacts, i.e.
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Figure 6.13: Damping constant D versus N for Rx/Ry = 0.05 and various
values of L.

the number 1.14 in the function f(L) = 1.14− 0.0234L, must increase up to
1.9 for Rx/Ry = 0.05. The curve-fit function of the damping constant D for
Rx/Ry = 0.05, also included in Figure 6.13, thus reads:

D(N, L) = f(L)Ng(L) where

f(L) = 1.9− 0.0234L

g(L) = −0.769− 0.0024L (6.2)

6.3 Numerical accuracy

As for circular contacts, most solutions presented in this chapter were calcu-
lated on −4.5 ≤ X ≤ 1.5 and 3 ≤ Y ≤ 3. Depending on the load number
M , this size was adjusted so that the inlet boundary did not influence the
solution. The finest mesh used in the steady state calculations contained
513x513 nodal points. The transient solutions were obtained using 257x257
points. The coarsest mesh employed in the FMG algorithm, consisted of
33x33 points. Again, 3V (2, 1) cycles and 30 relaxations on the coarsest grid
are enough, for the steady state solution to converge below the discretization
error.

The second order covergence is confirmed in Table 6.1, which shows ∆h
∞

calculated using different mesh sizes h, the difference ∆h
∞−∆H

∞ and the ratio
(∆h
∞−∆H

∞)/(∆H
∞−∆2H

∞ ). From the Table, it can be concluded that the value
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of the mutual approach is well below 1%.

level # ∆h
∞ ∆h

∞ −∆H
∞

∆h
∞−∆H

∞
∆H∞−∆2H∞

4 0.915
5 0.9069 −7.92 10−3

6 0.90495 −1.98 10−3 0.25
7 0.90450 −4.50 10−4 0.23
8 0.90438 −1.22 10−4 0.27

Table 6.1: Convergence test for ∆∞. M = 500, L = 5 and Rx/Ry = 0.05.

The convergence of the central (Hc) and minimum film thickness (Hm) is
confirmed in Table 6.2.

level # Hc Hm

4 6.12 10−2 5.23 10−2

5 7.17 10−2 6.03 10−2

6 7.43 10−2 6.15 10−2

7 7.49 10−2 6.16 10−2

8 7.51 10−2 6.17 10−2

Table 6.2: Convergence test for Hc and Hm. M = 500, L = 5 and Rx/Ry =
0.05.

The discussion of the accuracy of the transient solution is similar to the
discussion given in Section 5.2.4. The accuracy is estimated to be below 4%
for all cases considered.

6.4 Concluding remarks

The solutions presented in this chapter show that the pressure and film thick-
ness for elliptical contacts can very effectively be solved by applying the scal-
ing based on the Hertzian parameters given in Chapter 3. In addition, it may
be concluded that the results, given for the circular contacts in Chapter 5
apply also for elliptical contacts, provided the parameter M is replaced by N .
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Chapter 7

Starved lubrication

In the previous chapters, it was assumed that the gap between the the rolling
element and the raceway was completely filled by the lubricant. In real
applications, however, the amount of lubricant is generally insufficient to
realize these fully flooded conditions. As a result, one can distinguish a
pressurized region, where the amount of lubricant is sufficient to fully fill the
gap, and a starved region, where part of the gap is filled with the surrounding
medium or the oil vapour. In the pressurized region, the classical Reynolds
equation accurately predicts the flow in the gap. In the starved region, one
may assume that the lubricant is transported downstream by shear flow only.

As stated in Chapter 3, the thickness of the inlet lubricant layer, Hl;inlet,
was used to describe starvation. Assuming that the inlet lubricant layer is
constant (Hl;inlet = Hoil), the steady state starved lubricated problem is a
three parameter problem (M , L and Hoil). With sinusoidally varying loads,
the solution also depends on the frequency Ωe and the amplitude A of the
varying load. For free vibrations there are three additional parameters, i.e.
the frequency Ωn, the initial mutual approach ∆0 and the initial approaching
velocity ∆̇0.

7.1 Steady state solution

Figures 7.1, 7.2 and 7.3 show, respectively, the steady state pressure, the
fractional film content and the film thickness in the starved lubricated con-
tact, obtained with the algorithm described in Chapter 4. The parameters
used are M = 100, L = 5 and Hoil = 9.78 10−2. This specific value of Hoil

equals the value of the central film thickness in the fully flooded situation,
which will be denoted by Hcff . As was shown by Chevalier [14], in this case
starvation is significant but not severe or “parched”.
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Figure 7.1: The pressure distribution P (X, Y ) for M = 100, L = 5 and
Hoil = Hcff .

Figure 7.2: The fractional film content distribution θ(X, Y ) for M = 100,
L = 5 and Hoil = Hcff .

As for the fully flooded case, the pressure resembles the Hertzian pressure
profile, except for the smooth increase just in front of the Hertzian circle and
the Petrusevich-like spike near the outlet. However, under starved conditions,
the pressure build-up only starts once the amount of lubricant is sufficient
to fill the gap, i.e. when θ = 1. This leads to the free boundary, close to
the Hertzian contact circle. The jump in the pressure gradient at the inlet
meniscus is also shown in the Figure. This jump will be illustrated more
clearly in subsequent Figures.

At this stage, it is interesting to see that the actual shape of the inlet
meniscus is a circular arc, concentric to the Hertzian circle. Hence, the
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Figure 7.3: Film thickness H(X, Y ) for M = 100, L = 5 and Hoil = Hcff .

assumption that the inlet meniscus is a straight line aligned to the Y -axis,
as was assumed in the fully flooded situation, is realistic only if the meniscus
is sufficiently far away from the contact.

In the fractional film content distribution, shown in Figure 7.2, one clearly
observes a part of the domain, for which the value of the fractional film con-
tent is unity, which corresponds to the region of positive pressures in Fig-
ure 7.1. This confirms that the solution complies with the complementarity
condition. That is to say, the region in which P > 0 exactly matches the
region in which θ = 1. In addition, as expressed by the JFO relation, the
discontinuity in θ clearly shows. (As a reminder, the JFO relation for steady
state conditions states that, a discontinuity exists only at the inlet of the
pressurized region.) It is observed that at the outlet meniscus, the frac-
tional film content is a smooth function. The latter observation will again
be illustrated more clearly in subsequent Figures, see Figure 7.7.

Obviously, since less lubricant is available to the contact, the film thick-
ness values are smaller than in the fully flooded case. In this case, the film
thickness distribution shown in Figure 7.3, resembles the fully flooded dis-
tribution. However, this is not true in general, as will be discussed later
on.

In Figure 7.4 the lubricant layer or lubricant profile Hl = θH is shown for
the conditions stated before. This may seem a peculiar quantity to depict,
but, as will be shown, it is very useful to explain phenomena in starved
contacts. That is to say, in the starved region, Hl represents the amount of
oil in the gap, as if it were adhered onto a single surface (as may indeed be true
in the inlet). In the pressurized region, it is simply the film thickness. Thus,
if the lubricant completely adheres to the raceway, one would observe the
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Figure 7.4: Lubricant distribution Hl(X, Y ) for M = 100, L = 5 and Hoil =
Hcff .

lubricant film of Figure 7.4, as if the observer is looking through a transparent
rolling element. (Note that, as indicated before, the actual distribution of
the lubricant across the gap is irrelevant.)

It can be seen that up to the inlet meniscus Hl = Hoil. This means that,
in the starved region, the lubricant is transported downstream undisturbed.
In addition, it illustrates the bow-wave at the inlet meniscus; a phenomenon
that one can actually observe in experiments. (The bow-wave might be less
steep because of the surface tension of the lubricant.) The side leakage and
the outlet distribution, which result from the rolling element’s passage, are
clearly visible; almost all the lubricant is pushed aside, forming the two trail-
ing bands downstream. Apparently, only a fraction of the available lubricant
is able to enter the narrow gap between the surfaces in the high pressure
zone. Also note that the two bands separate the wake from that part of the
lubricant, which remains unaffected by the passage of the rolling element.
As found in the fully flooded situation, the Figure shows the film thickness
constriction near the outlet of the contact.

7.1.1 Varying Hoil

To illustrate how the thickness of the inlet lubricant layer, Hoil, influences
the solution, Figures 7.5 and 7.6 show, respectively, the pressure and the film
thickness along the centre line Y = 0, for values of Hoil ranging from 4 times
Hcff to 0.25 times Hcff . The lubricant layer, Hl, is included in Figure 7.6.
The associated fractional film content θ is shown in Figure 7.7.
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Figure 7.5: Pressure P (X, Y = 0) for fully flooded conditions and various
values of Hoil. The Moes parameters are M = 100 and L = 5.
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Figure 7.6: Film thickness H(X, Y = 0) and lubricant profile Hl(X, Y = 0)
for fully flooded conditions and various values of Hoil. The Moes parameters
are M = 100 and L = 5.
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In starved lubricated contacts, two asymptotes can be distinguished. As
could be expected, the solution converges to the fully flooded solution for
increasing values of Hoil, whereas for vanishing values of Hoil, the solution
converges to the dry contact solution.

It is interesting to see that, if Hoil is only 4 times Hcff , the difference be-
tween the solutions for starved lubrication and the fully flooded case already
becomes very small. Apparently, only a very limited amount of lubricant is
required to obtain fully flooded conditions. Actually, this is one of the main
reasons why rolling element bearings operate as reliably as they do.

For vanishing values of Hoil, the pressure converges to the Hertzian pres-
sure, which can be verified in Figure 7.5. The associated film thickness would
therefore converge to zero. However, before the point of vanishing film thick-
nesses, as can be observed in Figure 7.6, the film thickness converges to
Hoil. Apparentely, if practically no lubricant is available, all of it is used
to separate the surfaces. This conclusion is also supported by the vanishing
difference between the inlet oil film Hoil, and the value of Hl at the outlet
of the contact. This confirms the statement made by Chevalier [14], that
starved lubrication is indeed very efficient.

With respect to the film thickness distribution, it should be noted that
the constriction near the outlet almost disappears, making the film thick-
ness more flat. The slight curvature that remains must be ascribed to the
increased density at higher pressures, included in the analysis.
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Figure 7.7: Fractional film content θ(X, Y = 0) for various values of Hoil.
The Moes parameters are M = 100 and L = 5.

The fractional film content of Figure 7.7 and the lubricant distribution in
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Figure 7.6, reveal that the discontinuity and the associated bow-wave become
less for decreasing values of Hoil. In addition, Figure 7.7 shows that the
discontinuity in the fractional film content vanishes at the outlet meniscus.

The reader is referred to the thesis of Chevalier [14] and the references
therein for a more detailed discussion on all the topics mentioned above, as
well as the presentation of numerous solutions at different M and L values. In
addition, a very satisfactory agreement between numerical and experimental
results was found in this reference. In the present study, the focus will be
upon the stiffness and the time dependent solution, as discussed in subsequent
sections.

7.1.2 Stiffness

The effect of starvation on the mutual approach ∆∞, presented in Figure 7.8,
shows that, for values of Hoil significantly larger than Hcff , ∆∞ is close to the
fully flooded approach (∆∞ = 0.897). With decreasing values of Hoil, ∆∞
slowly increases. Effects of starvation are only significant for Hoil/Hcff < 1.
Below this value, ∆∞ linearly increases to the Hertzian approach.

Hoil/Hcff

∆
∞

43.532.521.510.50

1

0.98

0.96

0.94

0.92

0.9

Figure 7.8: ∆∞ as a function of Hoil/Hcff for M = 100 and L = 5.

These results support the statement that the curve-fit function of the flexibil-
ity, presented in Chapter 5, is quite accurate down to lubricant layers which
are equal to the central fully flooded film thickness. If starvation is more
severe, the flexibility, and hence the stiffness, is more Hertzian.
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7.2 Time dependent solution

In this section, the time dependent solution is discussed. For the sake of
brevity, we will restrict ourselves to the case of sinusoidally varying loads. In
particular, it will be shown how the meniscus changes its shape with time.
From the solution, it will be concluded that starvation leads to smaller values
of the damping compared to the fully flooded situation.

The simulation starts from the steady state solution, as given in the
previous section. Subsequently, the pressure and the film thickness as well as
the fractional film content and the lubricant layer distribution are monitored
as the force varies sinusoidally.

Figure 7.9 shows interference plots of the lubricant profile Hl at different
instants in the simulation. The meniscus is indicated in the Figure by the
solid line (see the arrow in the first frame). This line encloses the pressurized
region. In the region enclosed by the line, the Figure thus shows the usual
interference plot of the film thickness. In the outer region, it shows the lubri-
cant layer. Figure 7.10 shows the associated pressure, the film thickness and
lubricant film along the centre line (Y = 0). For clarity reasons, Figure 7.11
shows ∆ versus T . In the Figure, letters have been included at certain
points, marking the instants corresponding to those given in Figure 7.9 and
Figure 7.10.

Similarly as in the fully flooded situation, the central film thickness hardly
decreases in the initial stages of the simulation, despite the increase of the
load. To compensate for the increased load, the contact area increases and
the film becomes thinner only just outside the Hertzian contact circle, as can
be observed most clearly in Figure 7.10. At this location, squeeze motion
is induced. Thus, the reduction in film thickness with increasing load is
less than would be observed if the load was increased quasi-statically. As in
the fully flooded situation, film thickness modulations are thus induced in
the inlet of the contact. They subsequently propagate downstream with the
dimensionless speed of unity. Since the period of oscillation in terms of T
was shown to map onto 2π, the period of oscillation in terms of T is 2π/Ωe.
Because the velocity with which the film thickness modulations propagate is
unity, the wavelength of the modulations is 2π/Ωe and is 1 for this particular
case.
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Figure 7.9: Lubricant distribution for M = 100, L = 5, A = 0.3 and Ωe = 2π.
The time between consecutive frames is 0.25. The dimensionless wavelength
is Λ = 0.06.
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Figure 7.10: Centre line pressure (dashed lines, left labels), lubricant film and
film thickness (solid lines, right labels) for M = 100, L = 5 and Ωe = 2π.
The time between consecutive frames is 0.25.
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In the fully flooded case, the inlet was filled with oil everywhere. In the
present case, one can clearly see that the size of the pressurized region de-
pends on the load, i.e. it expands if the load increases and reduces in size as
the load decreases. Hence, as the load increases, the lubricant that results
from the squeeze motion, added to the lubricant fraction near the meniscus,
is enough to fill the gap and the meniscus moves into the (initially) starved
region. Figure 7.10 clearly shows that the squeeze motion at T = 0 has
introduced an uprise of lubricant at the outlet of the contact, which can be
observed clearly at the outlet at T = 0.25 (indicated by the arrow in picture
B). The forming of the uprise is further illustrated in Figure 7.12. It shows
the lubricant layer and film thickness at T = 1.75, T = 2.00 and T = 2.25.
These instants correspond to the situation at the minimum, the average and
the maximum load. It is noted that the uprise of lubricant is formed at the
instant at which the approaching velocity is a maximum and not, as one
might believe, at the maximum load.

In the same manner as the propagation of the film thickness modulations,
lubricant layer modulations formed at the outlet of the contact propagate at
the dimensionless speed of unity. This follows directly from the assumption
that lubricant in the starved region is transported by means of Couette flow
only. That is to say, in the starved region, the modified Reynolds equation
reduces to:

−∂θH

∂X
− ∂θH

∂T
= 0. (7.1)

Consequently, Hl = θH = θH(X − T ) and, indeed, the lubricant layer
modulations propagate at a dimensionless velocity of 1.
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Figure 7.12: Lubricant layer and film thickness for T = 1.75, 2.00 and 2.25

It is noted that the transportation of lubricant inside the wake and, in fact,
in the entire starved region is governed by the same mechanism as by which
lubricant is transported within the high pressure zone. As stated earlier, in
the high pressure zone Poiseuille flow is virtually absent and the Reynolds
equation reduces to −∂(ρ̄H)/∂X−∂(ρ̄H)/∂T = 0. Hence, ρ̄H = ρ̄H(X−T )
which, by neglecting the effect of pressure on ρ̄, validates the given statement.

From Figure 7.10, it can be inferred that the lubricant layer modulations
at Y = 0 are transported downstream at a higher velocity than the velocity
of the outlet meniscus; a conclusion which follows directly from the JFO
relation. That is to say, if the velocity of the meniscus were larger, a bow-
wave would form near the outlet, which should have shown up in the wake at
later times. It may thus be concluded that at T = 0, at which for sinusoidally
varying loads the approaching velocity is a maximum, the velocity of the
meniscus in the X-direction at Y = 0, was smaller than unity.

Near the two lubricant ridges however, the normal velocity of the meniscus
has exceeded the normal component of the outflow velocity. This can be
concluded from the solution in Figure 7.9 at T = 0.25, by the somewhat
ragged circular arc showing the discontinuity.

At T = 0.25, the load has reached its maximum value and squeeze mo-
tion becomes zero. Thus, after this instant, the pressurized region becomes
smaller. Note that if the load becomes smaller, near the sides the inlet menis-
cus ceases to be concentric to the Hertzian contact circle. At this location,
no lubricant is available; it was squeezed out earlier and deposited further
away.
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It is shown most clearly in the interference plot at T = 0.75, that the
lubricant profile in the wake resembles a “footprint” of the film thickness
at the maximum load. Since Poisseuille flow is virtually absent in the high
pressure zone and, by definition, in the starved region, only a very small
“boundary layer” exists, for the Poisseuille term to be of any influence. From
the foot-print, it can be inferred that this influence must be very small.

Another interesting point is the lubricant layer distribution in the wake
at times T > 1.75. From this time on, the film thickness modulations, which
were induced at the start of the simulation, start to affect the lubricant
profile at the outlet. Obviously, at locations where the film thickness is
larger, the outflow is larger and, subsequently, so is the uprise in the lubricant
profile. Hence, also crescent-shaped film thickness modulations appear in the
lubricant profile in the wake. At T = 2.75, one clearly observes the lubricant
profile which is seen periodically at all later times.

Finally, it is noted that if slip is to be included, i.e. if the surface speeds
of the contacting solids are different from the average speed, the actual disc-
tribution of the lubricant on the two surfaces becomes important. If all the
lubricant adheres to one surface, it will, obviously, be transported with the
velocity of that particular surface. This differs from the velocity with which it
would be transported if all the lubricant adheres to the other surface, clearly
illustrating that the model cannot be valid. However, it does remain valid as
long as the lubricant is distributed evenly between the two contacting solids.
For pure rolling, the model is valid regardless of the distribution.

7.3 Damping

To see whether, and if so when, starved lubrication affects damping, Fig-
ure 7.13 shows the dimensionless damping constant D for four values of the
ratio Hoil/Hcff . For fully flooded lubrication, the value of the damping con-
stant for M = 100 and L = 5 is 0.027 (see Chapter 5).

Although further investigation is required, the values shown in Figure 7.13
indicate that starvation, when it becomes important in the actual application,
does have a significant effect on damping. Unlike the limited influence of
starvation on stiffness, compared to the fully flooded situation the value of
D decreases already by a factor of about 4 for Hoil = Hcff .
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Figure 7.13: Damping constant D for four values of Hoil/Hcff .

7.4 Concluding remarks

From this chapter, it may be concluded that, if the thickness of the lubricant
layer available to the contact decreases to values which are of the order of
the central fully flooded film thickness, starvation should be included in the
analysis. Fortunately however, the formula for the stiffness, as presented in
Chapter 5, is fairly accurate for starved lubricated contacts down to Hoil ≈
Hcff . Damping values calculated under conditions of full flooding, decrease
(approximately in a linear fashion) as the amount of lubricant available is
reduced. In that case, other sources of damping might dominate the damping
in the bearing.

Especially in rolling element bearings, the assumption of a constant inlet
film Hoil is not very realistic. In fact, the wake which forms at the outlet of
the contact will be the inlet distribution for the next rolling element. (Since
the time between two consecutive passages is very small, surface tension
may be neglected and also the replenishment of the track.) The inclusion of
a perturbed inlet oil layer in the model is beyond the scope of this thesis,
but is an interesting topic for future research.



Chapter 8

Experimental verification

In this chapter, we compare results from experiments that were carried out
on a ball and disc apparatus with results obtained with the EHL circular
contact model. In the experiment, the applied load was rapidly increased.
This results in an oscillatory motion of the contacting bodies. Modulations
in the film thickness which result from these oscillations are clearly visible.
After the numerical contact model was tailored to this experiment, a very
satisfactory agreement was found. The experiments were carried out by
R. Larsson and P. Eriksson at Lule̊a University of Technology, Lule̊a, Sweden.

8.1 Experimental setup

The experiments were performed on a so-called ball and disc apparatus for
interferometric measurements of lubricant film thickness. The apparatus is
schematically sketched in Figure 8.1.

A polished steel ball with a diameter of 50 mm and mounted on a shaft,
is pressed against a Ø104 mm circular glass disc. The glass disc is mounted
in a bearing and is free to rotate around its centre. The ball shaft is driven
by an electric motor. As the ball rotates in contact with the glass disc, the
disc also starts to rotate. Driven by the friction in the contact, a pure rolling
condition occurs. The lubricant is applied in a small reservoir, in which
the ball on its shaft is mounted. Fully flooded lubrication conditions occur
since the rotation of the ball brings ample lubricant from the reservoir to the
contact.

The contact area is illuminated by white light, filtered by means of an
interference filter of 20 nm band width, to a wavelength of 577.5 nm. The
glass disc is made semi-transparent by means of a thin chromium layer and
interference occurs between light reflected by the chromium layer and light
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Figure 8.1: Experimental apparatus.

reflected by the ball surface. A pattern of bright and dark fringes can be
observed in the contact. Each fringe corresponds to a level of more or less
constant film thickness and the difference in film thickness between two neigh-
bouring bright (or dark) fringes is Λ/2n, where Λ is the wavelength and n is
the refractive index of the lubricant. Bright fringes occur at film thicknesses
given by:

h =
Λ

2n

(
q − 1.2

2π

)
q = 1, 2, 3, . . . (8.1)

For more details about optical interferometry applied to EHL, reference is
made to, e.g. Foord, Wedeven, Westlake and Cameron [22].

An initial static load is applied by a pneumatic cylinder mounted between
the ball shaft holder and the base of the apparatus. A sudden change of the
load is obtained by impacting a steel wedge into the space between the base
and the ball holder. The load will then be increased within a few milliseconds.

The contact is magnified by a microscope and the time history recorded
with a B/W high-speed video system. The system includes a high-speed
video camera, an intensifier unit and a processor unit. The recordings are
transferred to a PC for permanent storage after each session. The recording
speed in this case was 4500 frames/s.

The lubricant used in this investigation is a fully formulated polyalphaolefin
oil of viscosity grade VG46. The lubricant temperature was held constant
at room temperature (23◦C). The lubricant refractive index at atmospheric
pressure and room temperature is n0 = 1.460. The speed of the rotating ball
shaft was 141 r.p.m., which corresponds to a surface velocity of 0.37 m/s.
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Parameter Value Dimension

R 12.5 10−3 m
E′ 1.17 1011 Pa
η0 92 10−3 Pa s
α 1.8 10−8 Pa−1

z 0.484 -
us 0.74 m/s
fi 45 N
ff 165 N

Table 8.1: Parameters and their values in the experiment.

The initial load of 45 N was almost stepwise increased to 165 N during the
experiment. These loads correspond to maximum Hertzian pressures of 0.35
and 0.54 GPa respectively. The experimental data are summarised in Table
8.1.

8.2 Results

Figure 8.2: Interferogram at the initial load (t=0). In all subsequent pictures,
the direction of flow is from bottom to top.

Figure 8.2 displays the measured interferogram of the film thickness at the
initial load and a surface velocity of 0.37 m/s. All the characteristics of an
EHL contact can be seen, i.e. a horseshoe-shaped film thickness distribution
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with a plateau of roughly constant value in the contact centre, and the overall
minimum value at the side lobes. For this particular case the measured
central film thickness was hc = 0.34 µ m, and the minimum film thickness
was hm = 0.15 µ m. The influence of pressure on the refractive index has
been taken into account.

Figure 8.3 shows snapshots of the film thickness for times t > 0, i.e. after
the sudden increase of the load. The time between two consecutive frames
is 0.22 ms. The increase of the load quickly leads to a larger contact region.
The contact size in the fifth frame already corresponds to the size of the
Hertzian contact circle, associated with the final load. However, because of
the greater stiffness of the film in the central region, see Section 5.2.1, the
main changes in the film thickness due to squeeze motion occur just out-
side the initial Hertzian contact circle. The changes thus induced on the
inlet side are propagated through the high viscosity region with the average
surface speed. As stated in the previous chapters, this characteristic be-
haviour has been observed earlier, experimentally as well as theoretically, for
surface features like dents, bumps and waviness, see Wedeven and Cusano
[70], Kaneta [36], Kaneta, Sakai and Nishikawa [37] and [38] and Venner and
Lubrecht [67] and [68].

It is noted that the film thickness does not immediately reach the new
steady state value associated with the higher load. Due to inertia effects,
the ball and disc start to carry out an oscillatory motion. In the same way
as before, the changes in film thickness induced by this motion occur near
the Hertzian contact circle corresponding with the final load. The periodic
changes in film thickness induced in the inlet propagate through the high
viscosity region, giving rise to the pattern of waves with a specific wavelength.
Due to the energy dissipation in the lubricant, the amplitude of these waves
decreases with time. Transient effects could not be distinguished after about
0.022s, i.e. after 100 frames. Evidently, from that moment on the steady
state situation was reached. From this relatively large period, it can be
concluded that damping in the experimental apparatus together with the
viscous damping in the lubricant must be small.

8.3 Theoretical study

The EHL contact model, as presented in Chapter 3, needs some adjustments,
before it can be applied to the experiment just described. The conditions
of the experiment are modelled by assuming force balance at T = 0. Sub-
sequently, we assume that the load increases linearly with time, in a short
interval after which, at Tf , it reaches its final value. A motivation for this
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Figure 8.3: Interferogram of film thickness for 0 ≤ t ≤ 4.22ms (left to
right/top to bottom). The time increment between consecutive pictures is
0.22ms.
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choice is given in Section 8.3.1.
Based on the Hertzian parameters associated with the initial load, the

dimensionless equation of motion thus reads:

1

Ω2
n

d2∆

dT 2
+

3

2π

∫
S

P (X, Y, T ) dX dY = F(T ), (8.2)

where F(T ) is the dimensionless load, given by:

F = 1 T = 0;

F = 1 +
(ff−fi)

fi

T
Tf

0 < T ≤ Tf ;

F =
ff

fi
T > Tf .

(8.3)

In this equation, fi is the initial load and ff denotes the final load.
The determination of the values Ωn and Tf , is given in the next section.

8.3.1 Numerical solution

The discrete equations were solved in the domain (−5.5 ≤ X ≤ 2.5, −4.0 ≤
Y ≤ 4.0) on a uniform grid with mesh size dX = dY = 0.03125, i.e using
257x257 grid points. The steady state situation was calculated on a two
times finer mesh.

The different variables were scaled by means of the Hertzian contact pa-
rameter values corresponding to the initial load. For the initial load, the
region of large pressures thus roughly covers the domain X2 + Y 2 ≤ 1. Be-
cause the load increases, the region of large pressures grows and, after a very
short time, is equal to Hertzian contact circle corresponding to the final load,
i.e. to roughly X2 + Y 2 ≤ (ff/fi)

2/3. This increase must be anticipated in
the choice of the calculational domain. Its boundaries must stay sufficiently
far away from the high pressure region to avoid numerical starvation effects.

The values of the dimensionless parameters used in the numerical simula-
tion are listed in Table 8.2. All values were computed directly from the data
collected in Table 8.1, except for the value of the dimensionless frequency Ωn

and Tf .
In the model, a raceway of infinite mass is assumed. Hence, the only

“vibrating mass” is the ball. In the experimental setup, the situation is
more complex and, instead of Equation 8.2, one needs a model describing the
dynamical behaviour of the entire experimental rig. This can be circumvented
however, by the introduction of an effective mass, as is explained below.

In Chapter 5 it was shown that the wavelength of the film thickness mod-
ulations which propagate through the high pressure zone, is approximately
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Parameter Value Dimension

ai 0.243 10−3 m
phi 0.363 109 Pa
ci 2.37 10−6 m
λ 48.8 10−3 -
ᾱ 6.53 -
Ω 2.4 -
M 58.1 -
L 4.6 -
Fi 1 -
Ff 3.67 -
Tf 1.69 -

Table 8.2: Hertzian and dimensionless parameters used in the simulation

5.13/Ωn. From this wavelength, the frequency at which the ball and glass
disc vibrate can easily be deduced without measuring the actual value of the
frequency in the dry contact case. In the measurements, the dimensionless
wavelength, in terms of the parameters based on the final load, is approxi-
mately 1.1. In terms of the parameters based on the initial load, as is used in
the simulation, this gives Ωn = 2.4. The associated effective mass is readily
calculated as 1.43 kg. As could be expected, the effective mass is larger than
the mass of the rolling element (0.51 kg), because it includes parts of the
mass of the glass disc and the structural supports.

By lack of more detailed information, it is assumed that the load increases
linearly in a short time interval. An assessment of this interval, which is diffi-
cult to determine experimentally, can be made with the help of the measured
interferograms. As can be observed from Figure 8.3, the contact size only
increases in the first five or six interferograms. After this time frame, the
contact size starts to oscillate. Hence, it can be assumed that the load in-
creases within the first five frames, i.e. within 1.11ms, and remains constant
afterwards. This corresponds with Tf = 1.7.

8.3.2 Results

To facilitate a direct comparison with the experimental results the calculated
film thickness will be presented in pseudo interferograms, i.e. an interfero-
gram generated from the computed film thickness, based on the same wave-
length of the light used in the experiments. Figure 8.4 presents the computed
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interferogram for the film thickness at t = 0, together with the (dimension-
less) pressure and film thickness along the centre line of the contact. The
calculated central film thickness equals hc = 0.32 µ m, which differs only
5.9% from the experimental value. The calculated minimal film thickness
was hm = 0.18 µ m, resulting in a much larger difference of approximately
20% from the measured value.
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Figure 8.4: Steady state interferogram of the film thickness (left) and pressure
and film thickness along the centre line (Y = 0).

Figure 8.5 illustrates the changes in the solution after the load has been
changed. This figure shows snapshots of film thickness and pressure at the
same instants as those in the experiments. From a comparison between Fig-
ures 8.3 and 8.5, it can be seen that a qualitatively good agreement with
the theory and experiment exists, i.e. a fast growth of the contact size im-
mediately after the load is increased and, subsequently, the film thickness
modulations that travel through the contact. In both cases, these modula-
tions gradually decay until the steady state solution is reached.

Since, with respect to the film thickness, the most interesting phenomena
occur within the first twenty frames, we have limited the simulations to these
frames only.

More results of the numerical simulation are given in Figures 8.6 and 8.7.
These figures display, respectively, the approach of ball and the glass disc and
the central and minimum film thickness as a function of time. In Figure 8.6
one observes that the approach δ quickly rises to approximately the steady
state value associated with the final load. From that moment on, it oscillates
around this value with hardly any reduction in amplitude in the considered
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Figure 8.5: Computed pseudo interferograms of film thickness for 0 ≤ t ≤
4.22 ms (left to right/top to bottom). The time increment between consec-
utive pictures is 0.22 ms.
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Figure 8.6: Approach δ as a function of time.

time frame. Energy dissipation in the lubricant must thus be small.
Figure 8.7 confirms the earlier observations, see Section 5.2.1, that the

central film thickness increases in the initial stage of the experiment, although
the load also increases rapidly during this period.

8.4 Concluding remarks

In this chapter, emphasis was placed upon the effect of the vibrations on
film thickness and pressure. We circumvented the need to model the entire
dynamic interaction between the ball and glass disc (including supports and
other structural elements of the test apparatus) by introducing the concept
of an effective mass. This choice is justified by the good agreement between
the experimental and the theoretical results.

On the other hand, the results clearly indicate the need to include both
squeeze and entraining motion in the analysis of vibrational behaviour on
film thickness and pressure. As stated earlier, this can be determined in
advance from the value of Ωn, see Chapter 5.

Finally, no quantitative comparison was made between the experimental
and calculated data. This has been left out since, in the experimental setup,
the verification of fringe order is lost after the sudden impact. Furthermore,
with respect to the determination of Ωn, it is recognized that it would be
more appropriate to measure the frequency in a dry contact situation and
derive Ωn from that measurement.

With respect to the study of noise and vibration of bearings, it is noted
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Figure 8.7: Central- (hc) and minimum film thickness (hm) as a function of
time.

that it is extremely difficult to investigate the influence of the individual EHL
contacts from measurements on a full bearing. Therefore, it would seem
more efficient to derive simplified but accurate models for the individual
EHL contacts, which may be based on both theory and experiment, and
subsequently incorporate these models in dynamic models of the bearing.
This subsequently enables the study of the vibrational behaviour and noise
production of the bearing. The obtained good qualitative agreement between
theory and experiment indicates that the model can indeed be used for this
purpose and the present results must be looked upon as an initial step in
understanding the influence of the lubricant on vibrations of rolling element
bearings, which is important with respect to sound production and vibration
control.
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Recommendations for future
research

The present research deals with the stiffness and damping of a single EHL contact
as a function of the operating conditions, the contact geometry and lubricant
supply. The presented relations are ready to be included in structural dynamics
models of rolling element bearings, see Wensing [73]. With such models, general
guidelines can be developed concerning the control of the vibrational behaviour
and noise emission of bearings.

It is recommended that “ball on disc” experiments are carried out to vali-
date more quantitatively the theoretical results, see Larsson and Lundberg [44],
Nishikawa, Handa, Teshima, Matsuda and Kaneta [55] and Guangteng, Cann,
Spikes and Olver [25]. The results may also be verified from “full bearing” mea-
surements as described in Wensing [73] and Zeillinger [78].

It would be interesting to study, both experimentally and theoretically, whether
vibrations from a preceeding rolling element will affect the vibrations of the next
element via the disturbed lubricant layer in the wake. In the model, this has al-
ready been taking into account by taking the outlet lubricant layer as the boundary
condition for the inlet lubricant layer. This would verify whether this coupling,
which is neglected in structural dynamic models, should be included.

The presented results all apply to situations where the sum speed is non-zero.
Thus, the asymptotic situation of “pure squeeze” motion (Ωn,e → ∞) has been
excluded. Obviously, this situation can not be analysed efficiently with the scaled
equations given in the thesis and appropriate scales are thus required.

Finally, we restricted ourselves to an isothermal model, assuming Newtonian
behaviour of the lubricant. For pure rolling, one may expect the predictions to be
accurate. However, if sliding occurs, both non-Newtonian lubricant behaviour and
thermal effects may become important, see Bos [9], Johnson and Tevaarwerk [34],
Bair and Winer [4] and Jacobson [31].
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Appendix A

Weierstrass solution

The energy equation for dry contact oscillations, induced by inertia forces,
is given by Equation 2.23:

1

2

(
d∆

dT

)2

+
2

5
∆5/2 = ∆ + C. (A.1)

If C = 0 and introducing ∆ = Z2, this equation reduces to:(
dZ

dT

)2

+
1

5
Z3 − 1

2
= 0. (A.2)

Introducing T = γΓ, where γ2 = −20, the differential equation becomes:(
dZ

dΓ

)2

− 4Z3 + 10 = 0. (A.3)

This equation is solved by the Weierstrass elliptic function ℘(Γ; g2, g3) with
invariants g2 = 0 and g3 = 10:

Z (Γ) = ℘ (Γ + C2; 0, 10) , (A.4)

see Abramowitz and Stegun [1] and Whittaker and Watson [74]. C2 is a
constant of integration which represents a phase shift. Note that, since T
is real, Γ and C2 must be imaginary. Finally, using one of the properties of
homogeneity: ℘(λT ; λ−4g2, λ

−6g3) = λ−2℘(T ; g2, g3) and backsubstitution of
∆ = Z2, yields:

∆ = 400℘
(
T + ι

√
20C2; 0,−1/800

)2
, (A.5)

where ι =
√
−1 and the argument becomes real again. The Weierstrass

solution is shown in Figure A.1 for two full periods. Note that Equation A.5
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shows regions for which the solution goes to infinity and regions for which
it is bounded. Obviously, the bounded solution is the appropriate one (the
solution between Tn and 2Tn (4Tn and 5Tn) given in Figure A.1).
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Figure A.1: The Weierstrass solution 400℘(T ; 0,−1/800)2

The period of oscillation for the bounded solution, Tn, can be determined as
follows. As a starting point, we invert Equation A.2:

dT
dZ

=
(
−1

5
Z3 +

1

2

)−1/2

. (A.6)

Integration yields:

T =
∫ Z

Z0

(
−1

5
z3 +

1

2

)−1/2

dz =
∫ Z

Z0

{f(z)}−1/2 dz, (A.7)

where f(z) = −z3/5 + 1/2. For our purpose of determining Tn, we take
f(Z0) = 0, i.e. Z0 = (5/2)1/3. Note that for the mutual approach ∆, the
lower bound is ∆0 = Z2

0 = (5/2)2/3, which is the maximum mutual approach
of rolling element and raceway. Since the Weierstrass solution is symmetric
about Z0, half the period of oscillation can be obtained by taking the upper
bound of the integral equal to Z =

√
∆ = 0.

Since f(Z0) = 0, Taylor’s expansion for f(z) around Z0 reads:

f(z) = −3

5
Z2

0 (z − Z0)−
3

5
Z0 (z − Z0)

2 − 1

5
(z − Z0)

3 . (A.8)

On writing (z − Z0)
−1 = τ and (Z − Z0)

−1 = ξ, we have

T =
∫ ∞

ξ

(
−3

5
Z2

0τ
3 − 3

5
Z0τ

2 − 1

5
τ
)−1/2

dτ. (A.9)
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To remove the second term in the cubic involved, write:

τ = − 1

3Z2
0

(20σ + Z0) and ξ = − 1

3Z2
0

(20s + Z0) , (A.10)

and we get

T =
∫ ∞

s

(
4σ3 − g2σ − g3

)−1/2
dσ, (A.11)

where g2 = 0 and g3 = −1/800, as was obtained before. This expression is
the integral formula for the Weierstrass elliptic function with invariants g2

and g3 and thus s = ℘(T ; g2, g3).
From the Taylor expansion and the variables s and ξ introduced, one can

deduce that:

Z = Z0 +
1

4
f ′(Z0)

{
℘(T ; g2, g3)−

1

24
f ′′(Z0)

}−1

, (A.12)

where the prime indicates differentation with respect to z. Taking Z = 0,
which is the upper bound needed in the integral expression of Equation A.7,

this provides the lower bound s = ℘(1
2
Tn; g2, g3) = 1

10
3

√
5
2
, needed in expres-

sion Equation A.11. Hence, conform Equation 2.26, the period of oscillation
is:

Tn = 2
∫ ∞

1
10

3
√

5
2

(
4σ3 + 1/800

)−1/2
dσ ≈ 5.383. (A.13)
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Appendix B

Advection operator

Using a first order discretization, especially in the high pressure zone, it is
known that film thickness variations as observed in Chapter 5 decay fast a
result of the discretization; not as a result of physical phenomena. Hence,
for time dependent problems, great care must be taken to obtain accurate
results and this is the topic of this Appendix.

The general form of what is known in computational fluid dynamics as
the advection operator, acting on an unknown function u, is:

Lu = a
∂u

∂x
+ b

∂u

∂y
. (B.1)

This function is discussed here since, if the Poiseuille term vanishes, the
Reynolds equation reduces to:

−∂ρ̄H

∂X
− ∂ρ̄H

∂T
= 0, (B.2)

which is a special form of the advection operator. (By inspection it follows
that Equation B.2 reduces to Equation B.1 by setting a = b = −1, ρ̄H = u,
X = x and T = y. We may thus restrict ourselves to the discussion to cases
where a = b = 1.)

The solution of the homogeneous advection equation is given by:

u =
∞∑

r=0

Are
iωr(y−x), (B.3)

where ωr is the frequency of oscillation in the “cross-stream”-direction and
Ar is the amplitude. The amplitude and frequency follow from the initial
conditions and the component eiω(y−x) is a so-called characteristic component.
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Many stable second order schemes exist for the discretization of the ad-
vection operator. One such discretization is the so-called standard upstream
discretization. It is defined by:

Lhuh = h−1
x (1.5ui,j − 2.0ui−1,j + 0.5ui−2,j)

+h−1
y (1.5ui,j − 2.0ui−1,j−1 + 0.5ui−2,j−2) , (B.4)

where hx and hy denote the mesh sizes and i and j are the indices in the x-
and y-directions. Neglecting higher order terms, the truncation error τhx,hy ,
i.e. the difference between the operator and the discrete approximation of
the operator, is given by:

τhx,hy = −h2
x

3

∂3u

∂x3
−

h2
y

3

∂3u

∂y3
+ . . . , (B.5)

where . . . denote higher order terms. For brevity, τhx,hy will henceforth be
referred to as τ . For a single characteristic component eiω(y−x), the absolute
value of the error can be shown to be:

|τ | =
∣∣∣∣∣13h2

xω
3

(
1−

h2
y

h2
x

)∣∣∣∣∣ + . . . (B.6)

Apparently, the frequency ω strongly affects the discretization error. Fur-
thermore, it is noted that the error will be dominated by higher order terms
for hy = hx. Equation B.6 can now be used to choose the mesh size in the
y-direction, when the mesh size in the x-direction is prescribed. As an il-
lustration, Figure B.1 shows 3τ/(h2

xω
3) as a function of hy/hx. The picture

shows that for the truncation error to be small, the mesh size hy should equal
hx. Although hy may be chosen smaller, values of hy significantly larger than
hx lead to large truncation errors.

An alternative scheme is the so-called narrow upstream discretization.
The narrow upstream discretization depends on the ratio hy/hx. For h−1

x ≥
h−1

y it reads:

Lhuh =
(
h−1

x − h−1
y

)
(1.5ui,j − 2.0ui−1,j + 0.5ui−2,j)

+
(
h−1

y

)
(1.5ui,j − 2.0ui−1,j−1 + 0.5ui−2,j−2) , (B.7)

whereas for h−1
x < h−1

y it reads:

Lhuh =
(
h−1

x

)
(1.5ui,j − 2.0ui−1,j−1 + 0.5ui−2,j−2)

+
(
h−1

y − h−1
x

)
(1.5ui,j − 2.0ui,j−1 + 0.5ui,j−2) . (B.8)
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Figure B.1: Discretization error for SU2 and NU2 discretization.

Using a Taylor expansion, the discretization error for h−1
x ≥ h−1

y is:

τ = −h2
x

3

(
∂3u

∂x3
+ 3

∂3u

∂x2∂y
+ 3

hy

hx

∂3u

∂x∂y2
+

h2
y

h2
x

∂3u

∂y3

)
. (B.9)

Otherwise, it is equal to:

τ = −h2
x

3

(
∂3u

∂x3
+ 3

hy

hx

∂3u

∂x2∂y
+ 3

h2
y

h2
x

∂3u

∂x∂y2
+

h2
y

h2
x

∂3u

∂y3

)
. (B.10)

Substitution of a characteristic component gives:

|τ | =
∣∣∣∣∣13ω3h2

x

(
2− hy

hx

) (
1− hy

hx

)∣∣∣∣∣ , (B.11)

if h−1
x ≥ h−1

y , whereas otherwise the error becomes:

|τ | =
∣∣∣∣∣13ω3h2

x

(
2
hy

hx
− 1

) (
1− hy

hx

)∣∣∣∣∣ . (B.12)

The error for the narrow upstream discretization is included in Figure B.1.
One observes that the error is generally smaller than the error for the stan-
dard upstream discretization. Besides it vanishes not only at hy = hx, but
also at hy = 2hx and hy = 0.5hx. Given the mesh size hx, the optimum choice
for hy would be hy = 2hx, as it is the largest mesh size for which the error
is dominated by higher order terms. As a result, since the work associated
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with both discretizations is equal, the narrow upstream discretization is to
be preferred.

When the Poiseuille term vanishes in the Reynolds equation, which in-
deed occurs in the high pressure zone, one may conclude that the narrow
upstream discretization is more accurate and justifies the choice for this type
of discretization. The time step, i.e. the mesh size hy in the discussion above,
is chosen to equal hx. Although the optimum choice would be 2hx, the choice
is motivated by the smaller error that results from the discretization of the
equation of motion.

An additional advantage of the narrow upstream discretization with re-
spect to the multigrid solver is the accurate representation of the character-
istic components on coarser levels. This especially shows if the time step
is taken to equal twice the spatial mesh size of the finest level. Then, the
characteristic component is represented with an accuracy that is dominated
by higher order terms, not only on the finest grid, but also on two coarser
grids. For hy = hx, this only holds for characteristic components on one level
coarser.



Appendix C

Discrete elastic deformation

The film thickness equation for general elliptical contacts is given by:

H(X, Y, T ) = −∆(T )+SX2+(1− S) Y 2+
1

πK

∫∫
S

P (X ′, Y ′, T ) dX ′dY ′√
κ2 (X −X ′)2 + (Y − Y ′)2

,

(C.1)
The elastic deformation, i.e. the last term in the equation above, is

discretized by approximating the pressure by a piecewise constant function
on a uniform grid with mesh size h and value Pk,l in X ′k−h/2 ≤ X ′ ≤ X ′k+h/2
and Y ′l − h/2 ≤ Y ′ ≤ Y ′l + h/2. The discrete deformation in (Xi, Yj) can
then be written as:

nX∑
k=0

nY∑
l=0

KikjlPk,l, (C.2)

where Kikjl follows from:

Kikjl =
1

πK

∫ Yl+h/2

Yl−h/2

∫ Xk+h/2

Xk−h/2

dX ′dY ′√
κ2 (Xi −X ′)2 + (Yj − Y ′)2

(C.3)

The discrete kernel Kikjl can be calculated analytically:

Kikjl =
1

πK

{
|Xp|arcsinh(

Yp

Xp
) + |Yp|arcsinh(

Xp

Yp
)

− |Xm|arcsinh(
Yp

Xm

)− |Yp|arcsinh(
Xm

Yp

)

− |Xp|arcsinh(
Ym

Xp

)− |Ym|arcsinh(
Xp

Ym

)

+ |Xm|arcsinh(
Ym

Xm
) + |Ym|arcsinh(

Xm

Ym
)
}

(C.4)
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where

Xp = Xi −Xk + hX/2, Xm = Xi −Xk − hX/2,

Yp = (Yj − Yl + hY /2) /κ, Ym = (Yj − Yl − hY /2) /κ. (C.5)



Appendix D

Multigrid

In this appendix a résumé of the most important features of the multigrid
technique is given. It discusses the behaviour of standard relaxation schemes.
Subsequently, it shows how this behaviour can be exploited to reduce com-
putation time. The so-called Correction Scheme for linear and the Full Ap-
proximation Scheme for non-linear operators is discussed. In addition, it
discusses the Full Multigrid Algorithm.

D.1 Relaxation

To illustrate the multigrid procedure, consider the following equation:

L(u) = f, (D.1)

where L is a differential operator, u is the unknown solution and f is the
right-hand side function. A discrete approximation uh of u should then satisfy
the approximate equation:

Lh(uh) = fh, (D.2)

where Lh and fh are discrete approximations of L and f , respectively. The
superscript h denotes the mesh size.

Since the ultimate goal is to find the solution of the continuum problem
L(u) = f , our objective is to obtain an approximation ūh to uh for which the
algebraic error ‖uh− ūh‖ is smaller than the discretization error ‖u−uh‖. A
more accurate approximation to uh would only imply additional work without
increasing the accuracy; the discretization error dominates the difference
between u and ūh.

Starting from an approximation ũh, the error in ũh can be reduced by
relaxations. Gauss-Seidel relaxation efficiently reduces high-frequency error
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components in ũh. Low-frequency components however are hardly affected
and hence the asymptotic speed of convergence is low.

From a local mode analysis, one can deduce the asymptotic reduction
factor µ̄, defined according to:

µ̄ = max {|µ(θ1, θ2)| ; π/2 ≤ (θ1, θ2) ≤ π} , (D.3)

where µ(θ1, θ2) is the amplification factor. This factor equals the ratio be-
tween the absolute value of the amplitude of a Fourier component (θ1, θ2)
after a relaxation sweep and the absolute value of the same component be-
fore the sweep. It tells us how well high-frequency components, which can
not be represented on a coarser grid, are reduced by a single relaxation sweep.
Hence, high-frequency error components are at least reduced by a factor µ̄ν,
where ν is the total number of relaxations on the grid.

D.2 Correction Scheme (CS)

After a number of relaxation sweeps, due to the fast convergence of the
high-frequency components, the error becomes a smooth function. Instead of
continuing the relaxation process on the fine grid, the error is now represented
on a coarser grid by means of restriction. Once the error is solved on the
coarse grid, it can subsequently be used to update the solution on the fine
grid. This process forms the basis for the so-called Correction Scheme (CS)
which is discussed below.

Consider again the discrete equation:

Lh(uh) = fh (D.4)

and let ũh be the approximation obtained after a few relaxations on the fine
grid h.

A measure for the accuracy of the approximation ũh is given by the resid-
ual rh, defined according to:

rh = fh − Lh(ũh). (D.5)

Using Lh(uh) = fh, and assuming Lh to be linear, it follows that:

rh = Lh(uh)− Lh(ũh) = Lh(uh − ũh). (D.6)

Substitution of the error, defined according to vh = uh − ũh, yields:

Lh(vh) = rh. (D.7)
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Since, after a number of relaxations, vh is smooth compared to the mesh
size h, it can be approximated on a coarser grid H, where usually H = 2h.
This serves two purposes. First, the computation time decreases since the
number of unknowns is reduced by a factor 2d, where d is the dimension of the
problem. Secondly, some of the low-frequency errors become high-frequency
errors compared to the mesh size H and, as a result, they can efficiently be
reduced by relaxation. The coarse grid approximation vH to vh then follows
from:

LH(vH) = IH
h rh, (D.8)

where LH is a representation of Lh on the coarse grid and IH
h is a restriction

operator. It is usually sufficient to take LH to be the fine grid operator
evaluated on the coarse grid, but other representations do exist. Once a
sufficient approximation v̄H to vH is obtained, it is used to update the solution
on the fine grid according to:

ūh = ũh + Ih
H v̄H , (D.9)

where Ih
H is an interpolation operator. High-frequency components intro-

duced by the interpolation are eliminated by one or two additional relaxations
on the fine grid.

The restriction and interpolation operators will be discussed in a subse-
quent section.

D.3 Full Approximation Scheme (FAS)

The CS can only be applied for linear operators Lh. For non-linear operators,
the Full Approximation Scheme (FAS) is required.

FAS is derived from the equation for the residual:

rh = Lh(uh)− Lh(ũh). (D.10)

Substitution of the error vh = uh − ũh and rearranging yields:

Lh(ũh + vh) = Lh(ũh) + rh. (D.11)

Since vh is again smooth compared to the mesh size h and the non-linearity of
Lh prevents the reduction to Equation D.8, the “full” equation is represented
on the coarse grid:

LH(ûH) = f̂H , (D.12)

where ûH is the coarse grid variable:

ûH ≡ IH
h (ũh + vh) = IH

h ũh + vH , (D.13)



160 Multigrid

and f̂H is the FAS right-hand side, defined according to:

f̂H ≡ LH(IH
h ũh) + IH

h rh. (D.14)

From a sufficiently accurate approximation ¯̂u
H

of the coarse grid variable ûH,
a coarse grid approximation v̄H of vh follows from:

v̄H = ¯̂u
H − IH

h ũh, (D.15)

which is subsequently used to update the fine grid solution according to:

ūh = ũh + Ih
H v̄H . (D.16)

Note that, if applied to linear operators, FAS reduces to CS.

D.4 Restriction and interpolation operators

The restriction operator IH
h transfers a function, e.g. the residual, to the

coarser grid. If standard coarsening is applied, the simplest form of restriction
is so-called injection. Injection transfers the value of the function on the fine
grid to the corresponding coarse grid point. A more accurate transfer is
obtained using full weighting. With full weighting, the value in the coarse
grid point is a weighted average of function values in points adjacent to
the corresponding fine grid point. Full weighting has the advantage that the
components |θ1,2| = π, i.e. the highest frequency which can be represented on
the grid, vanish in the coarse grid representation, whereas injection projects
these components onto θ1,2 = 0. The coarse grid correction is therefore less
accurate for injection than it is in the case of full weighting.

The interpolation or prolongation operator Ih
H interpolates the function

on the coarse grid to the fine grid. Linear interpolation is usually sufficient.
Full weighting and linear interpolation are illustrated in Figure D.4 for two-
dimensional problems.

D.5 Coarse grid correction cycle

The coarse grid equations can usually be solved by means of the same relax-
ation procedure as was derived for the original set of equations. Hence, as
for the fine grid equation, the convergence of the coarse grid equation slows
down due to the poor reduction of the low-frequency error components and,
after a number of relaxations, the error is smooth with respect to the coarser
mesh. It can thus be approximated accurately on an even coarser grid.
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Figure D.1: Restriction operator IH
h and prolongation operator Ih

H .

Indeed, the procedure can be repeated recursively until a grid is reached for
which the solution can be obtained within only a limited number of relax-
ations. This recursive procedure is known as the coarse grid correction cycle
or V (ν1, ν2)-cycle, where ν1 and ν2 denote, respectively, the number of pre-
and post relaxations. One refers to W (ν1, ν2)-cycles if, on each grid, 2 coarse
grid correction cycles are used to update the solution on that particular grid.
The V (ν1, ν2)- and W (ν1, ν2)-cycles are illustrated in Figure D.2. ν0 indicates
the number of relaxations needed to solve the equations on the coarsest grid.
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Figure D.2: V (ν1, ν2)- and W (ν1, ν2)-cycle.

The amount of work, required to obtain a solution using the cycles described
above, can be given in terms of so-called work units (WU). One WU equals
the amount of work needed for one complete relaxation sweep on the finest
grid. If n denotes the number of unknowns on the finest grid, one WU thus
requires O(n) operations.

Neglecting the work associated with the intergrid transfers IH
h and Ih

H ,
which only require O(n) operations, as well as the ν0 relaxations on the
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coarsest grid, the work associated with one V -cycle, WV , adds up to:

WV = (ν1 + ν2) WU
(
1 + 2−d + 2−2d + . . .

)
≤ ν1 + ν2

(1− 2−d)
WU. (D.17)

If it is assumed that, by the coarse grid correction cycle, all low-frequency
error components are solved exactly and that there is no interaction between
low- and high-frequencies in the grid transfers, then the error reduction of
one cycle equals the reduction of high-frequency components on the finest
grid.

Hence, starting from an arbitrary approximation, for which the error
is O(1), the number of cycles M needed to solve the problem below the
discretization error follows from:(

µ̄ν1+ν2

)M
≤ hs, (D.18)

where s is the order of the discretization. Since h = O(1/n), it follows that:

M ≥ s ln (n)

ln (1/µ̄ν1+ν2)
. (D.19)

Hence, O(lnn) cycles are needed to converge below the discretization error
and, since the work needed for one cycle is O(n), the total amount of work
equals O(n lnn). The amount of work needed to converge below the dis-
cretization error using relaxation only is sn2 ln(n), showing that already by
applying correction cycles only, a significant gain in computing time can be
achieved.

D.6 Full Multigrid (FMG)

As explained in the previous section, the poor initial approximation dictates
that O(lnn) coarse grid correction cycles are required to converge below
the discretization error. The number of cycles can be reduced to O(1) by
improving the initial approximation.

In FMG, the initial approximation on the fine grid follows from interpo-
lation of the solution on the next coarser grid, which has previously been
calculated by a similar FMG algorithm. The recursive algorithm, thus es-
tablished, is depicted in Figure D.3.

Since the error in the solution on the coarser grid is now O(Hs), the
number of cycles M , follows from the condition:(

µ̄ν1+ν2

)M
Hs ≤ hs. (D.20)
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Figure D.3: The FMG algorithm with 1V (ν1, ν2)-cycle per refinement.

For standard coarsening, this yields for M :

M ≥ s ln (2)

ln (1/µ̄ν1+ν2)
. (D.21)

Hence, only O(1) cycles are needed to obtain a converged solution, provided
the interpolation is at least of order s, but preferably of higher order.

The total amount of work that is needed in the FMG algorithm equals:

WFMG = MWV

(
1 + 2−d + 2−2d + . . .

)
≤ 1

(1− 2−d)
MWV . (D.22)

Substitution of Equation D.17 yields:

WFMG =
ν1 + ν2

(1− 2−d)2MWU. (D.23)

Consequently, since 1 WU is O(n), the total amount of work is O(n) and the
algorithm is optimal.

D.7 Convergence

Since a sequence of grids is used in the FMG algorithm, one can easily check
whether the solution has converged below the level of the discretization error
by comparing converged solutions on different grids. These solutions are
indicated by the double circles in Figure D.3. In addition, the order of
convergence can easily be verified.

If the converged solution on grid k is denoted by ūk, then a difference
norm ERR(k, k − 1) can be defined according to:

ERR(k, k − 1) = Hd
∑ ∣∣∣ūk−1 − IH

h ūk
∣∣∣ , (D.24)
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where H denotes the mesh size on grid k−1, d is the dimension of the problem
and IH

h denotes injection. The difference norm consists of four different
components. First, it contains the discretization errors on level k and level k−
1, i.e. hd ∑ ∣∣∣u− ūh

∣∣∣ and Hd ∑ ∣∣∣u− ūH
∣∣∣. In addition, it contains the algebraic

errors on level k and k − 1, i.e. hd ∑ ∣∣∣ūh − uh
∣∣∣ and Hd ∑ ∣∣∣ūH − uH

∣∣∣. If the
algebraic errors on both grids are small compared to the discretization error,
the difference norm is dominated by the difference between the discretization
errors on the grids. Then, the difference norm remains unchanged if the
algebraic error is reduced by means of one additional coarse grid correction
cycle and the solutions must have converged to the level of the discretization
error.

The order of discretization is verified by monitoring the ratio between
the difference norms ERR(k, k − 1) and ERR(k − 1, k − 2). From a similar
analysis, this ratio should equal (2)−s for standard coarsening.



Appendix E

Multilevel multi-integration

In this appendix, the multilevel multi-integration technique is discussed in
detail. The discussion of results will be restricted to the circular contact
kernel. The elliptical kernel is discussed in the main text.

E.1 Introduction

The elastic deformation integral is an example of so-called integral trans-
forms. Integral transforms are integrals of the type:

w(x) =
∫

S
K(x, y)u (y) dy, (x, y) ∈ S ⊆ IRd, (E.1)

where K(x, y) denotes the kernel of the integral transform and u(y) is a
given function. Obviously, the evaluation of a discrete approximation of
the integral transform requires a complete O(n) summation, where n is the
number of grid points on which u is defined. Consequently, the evaluation
of the integral in all the n grid points xi requires O(n2) operations and this
would also be the complexity in the FMG algorithm in which evaluating w(x)
appears as a subtask, i.e. when u is to be solved. The computing time would
thus be dominated by the matrix multiplication. Multilevel integration aims
at the reduction of the O(n2) complexity.

E.2 Discretization

A discretization of Equation E.1 is obtained by approximating the function
u(y) on the interval (yh

j , yh
j+1) by a piecewise polynominal function ûh of

degree 2s − 1, where yh
j = ya + jh denote the gridpoints on which u(yh

j ) is
given. Let the grid points xh

i = xa + ih coincide with yh
i , uh

j = uh(yh
j ) be the
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function values in yh
j and wh

i = w(xh
i ) the integral transform evaluated in xh

i .
The discretization is then obtained by piecewise integration using ûh instead
of uh, which yields:

wh
i ≡

∫
S

K(x, y)ūh(y)dy =
∑
j

Khh
i,j uh

j . (E.2)

The error introduced by the discretization is h2su2s(ζ), where u2s(ζ) denotes
the 2sth derivative of u in some point ζ ∈ S.

The influence coefficients Khh
i,j can often be evaluated analytically. The

coefficients for the elastic deformation are given in Appendix C. In terms of
the elastic deformation, Khh

i,j represents the deformation in xh
i due to a unit

pressure on ya + (j − 1/2)h ≤ y ≤ ya + (j + 1/2)h.

E.3 Coarse grid integration

As in multigrid, in order to obtain a fast algorithm one needs to look for
smooth functions which may be solved or evaluated on coarser grids. In the
elastic deformation integral, if the discrete kernel Khh

i,j is smooth compared
to the grid size h, the kernel may well be approximated by an interpolation
of its values on a coarser grid. Since the elastic kernel is singular, it is never
smooth around the singularity. However, it is smooth a sufficient distance
away from the singularity. For simplicity, the general idea of the algorithm
is discussed for non-singular kernels first. The extension to singular kernels
follows in a subsequent section.

E.3.1 Smooth kernels

The coarse grid integral transform is obtained in two steps. First, let K̃hh
i,j

be a coarse grid approximation of the discrete kernel Khh
i,j , defined by:

K̃hh
i,j ≡

[
IIh

HKhH
i,.

]
j
, (E.3)

where IIh
H is the interpolation matrix. The index on which IIh

H works is
denoted by a dot. Hence, in this case, the dot corresponds to an interpolation
with respect to the y-direction. The new index appears after the final bracket.
The coarse grid kernel KhH

i,J is simply the fine grid kernel, evaluated in the
coarse grid points. Mathematically, the coarse grid kernel is thus obtained
by injection, i.e. KhH

i,J ≡ Khh
i,2J , where J is the coarse grid index for standard

coarsening.
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Using the interpolated kernel, the integral can be written as:

wh
i =

∑
j

K̃hh
i,j uh

j +
∑
j

(
Khh

i,j − K̃hh
i,j

)
uh

j . (E.4)

Since K̃hh
i,j is an interpolation of Khh

i,j itself, using only coarse grid points,

Khh
i,j − K̃hh

i,j vanishes in even points (the points which coincide with coarse

grid points). In odd points, the interpolation error Khh
i,j − K̃hh

i,j is h2pK2p(ξ),
where 2p is the interpolation order and K2p(ξ) is the 2pth derivative of K
in some point ξ ∈ S. Whenever the kernel is smooth compared to u, i.e. if
h2pK2p(ξ) is sufficiently small compared to the discretization error h2su2s(ζ),
the interpolation error may be neglected and the integral can be approxi-
mated by:

wh
i ≈ w̃h

i ≡
∑
j

K̃hh
i,j uh

j =
∑
j

[
IIh

HKhH
i,.

]
j
uh

j =
∑
J

KhH
i,J

[
(IIh

H)Tuh
.

]
J
, (E.5)

where (IIh
H)T is the adjoint (or transpose) of the interpolation matrix, gener-

ally referred to as anterpolation. Consequently, defining

uH
J ≡

[
(IIh

H)Tuh
.

]
J
, (E.6)

the fine grid multi-integration can be reduced to a coarse grid integration:

w̃h
i =

∑
J

KhH
i,J uH

J . (E.7)

It is noted that, since the interpolation is local, the work associated with
the intergrid transfer (IIh

H)T is only O(n). Therefore, it does not increase the
complexity of the algorithm.

Since the smoothness of the kernel K(x, y) is very often the same for both
the x- and y-direction, a similar procedure can be applied in the x-direction.
Let K̂hh

i,j be an approximation to Khh
i,j defined according to:

K̂hh
i,j =

[
IIh

HKHh
.,j

]
i
, (E.8)

where again the coarse grid kernel KHh
I,j is the fine grid kernel evaluated in

the coarse grid points. Then, wh
i can be written as:

wh
i =

[
IIh

HwH
.

]
i
+

∑
j

(
Khh

i,j − K̂hh
i,j

)
uh

j , (E.9)

where
wH

I ≡
∑
j

KH,h
I,j uh

j . (E.10)
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Since K̂hH
i,J is an interpolation of KhH

i,J itself, KhH
i,J − K̂hH

i,J vanishes in even
points and in odd points it is only O(h2p|K2p|). Hence, if the kernel is
sufficiently smooth, the interpolation error may be neglected and the integral
reduces to:

wh
i ≈

[
IIh

HwH
.

]
i
. (E.11)

The two steps may be combined such that both the summation and the
evaluation of the integral transform extends over the even points only. The
integral transform in the odd points can subsequently be obtained by inter-
polation from its value in the even points.

k=1

k=2

k=3

k=4

uH
J = (IIh

H)Tuh
j

KHH
I,J = Khh

2I,2J

w̃H
I =

∑
J KHH

I,J uH
J

w̃h
i = IIh

Hw̃H
I

Figure E.1: The multilevel multi-integration cycle.

Obviously, if the kernel is still smooth with respect to the coarse grid, even
coarser grids may be used. Indeed, the process can be applied recursively
until a grid is obtained for which the number of points is O(

√
n). Then,

plain evaluation on this grid only requires O(n) operations and an optimum
reduction is achieved. The multilevel algorithm thus obtained is illustrated
in Figure E.1.

With respect to the interpolation II, it is noted that, since the kernel is
well defined outside the domain, central interpolation can, and for smallest
errors preferably should, be used near the boundaries of the domain. The
order of interpolation should be at least equal to the discretization order but
is generally 6th or 8th order.

E.3.2 Singular smooth kernel

In the section above, the kernel was assumed to be smooth in the entire
domain. The elastic deformation kernel K(x, y) = 1/|x − y| however, is
singular and as a result it is never smooth around x = y. On the other hand,
for ‖x − y‖ � h, or in the discrete summation ‖i − j‖ � 1, the kernel is
again smooth. (m will be used to denote the discrete distance from which
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the kernel is again smooth.) The delimiters ‖ have been used to indicate that
for the two-dimensional elastic deformation kernel, m has two independent
components.

Kernels of this type are referred to as singular smooth kernels. The
multilevel multi-integration may still be applied for singular smooth kernels,
provided one corrects for the large interpolation errors that are introduced
near the singularity. Obviously, this can only work if the region which needs
to be corrected is sufficiently small.

Consider first the integral transform in the even points, i.e. the points
which coincide with the coarse grid points. For these points, Equation E.4
can be replaced by the equality:

wh
i =

∑
j

K̃hh
i,j uh

j +
∑

‖i−j‖≤m

(Khh
i,j − K̃hh

i,j )uh
j +

∑
‖i−j‖>m

(Khh
i,j − K̃hh

i,j )uh
j . (E.12)

Since for ‖i − j‖ > m the discrete kernel is again smooth, the last term
in Equation E.12 may be neglected. (Note that, by definition, Khh

i,j − K̃hh
i,j

vanishes in the even points.) Reduction of the integral to a coarse grid
summation, as described previously for the smooth kernels, yields the ap-
proximation:

wh
i ≈ w̃h

i +
∑

‖i−j‖≤m

(Khh
i,j − K̃hh

i,j )uh
j . (E.13)

For the odd points, Equation E.9 can be written as:

wh
i =

[
IIh

HwH
.

]
i
+

∑
‖i−j‖≤m

(Khh
i,j − K̂hh

i,j )uh
j +

∑
‖i−j‖>m

(Khh
i,j − K̂hh

i,j )uh
j , (E.14)

which, since for ‖i− j‖ � m the term Khh
i,j − K̂hh

i,j can be neglected, reduces
to:

wh
i =

[
IIh

HwH
.

]
i
+

∑
‖i−j‖≤m

(Khh
i,j − K̂hh

i,j )uh
j . (E.15)

Combination of the two individual steps implies that firstly, the integral
transform is evaluated on the coarse grid. The values are subsequently cor-
rected according to Equation E.13 and injected in to the fine grid. Secondly,
the values in the odd points are obtained by interpolation and the correction
according to Equation E.15.

The problem that remains is the determination of the correction size m.
For the one-dimensional kernel ln(X−X ′), Brandt and Lubrecht [12] showed
that m ∼ lnn. Hence, the total complexity of the algorithm is O(n lnn).
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E.4 Higher dimensions

For kernels of higher dimension, the algorithm described above can be ap-
plied in each direction separately. This ensures that the complexity of the
algorithm remains at most O(n lnn), since the individual components are of
this complexity.

For the two-dimensional kernel 1/r, the reader must realize that the region
which needs to be corrected is a two-dimensional patch. Hence, for each
coarsening direction, one needs to determine the size of the correction region
in the direction of interpolation, m1, as well as the size perpendicular to this
direction, m2.

For the circular kernel, since the kernel has similar smoothness properties
in both the X- and Y -directions, Brandt and Lubrecht showed that m1 and
m2 are independent of the direction of interpolation. In addition, they showed
that the correction size that was determined for the one-dimensional kernel
may also be applied for the correction size in the direction of interpolation
of the two-dimensional kernel. m1 ∼ ln n and m2 = 2 proved to be sufficient
for interpolation errors which are small compared to the discretization error.

Below, the algorithm is illustrated for the circular kernel. For elliptical
kernels, the reader is referred to the main text.

E.5 Circular kernel

Consider the elastic deformation integral:

w(x, y) =
2

π2

∫∫
S

u (x′, y′) dx′dy′√
(x− x′)2 + (y − y′)2

. (E.16)

For u(x, y) =
√

1− x2 − y2, the solution in the unit circle x2 + y2 < 1 , is
readily obtained as:

w(x, y) = 1− x2

2
− y2

2
. (E.17)

To monitor the error in the multilevel multi-integration, an error norm
El

k is defined according to:

El
k = hxhy

nx∑
i=0

ny∑
j=0

|wk,l
i,j − w(xi, yj)|, (E.18)

where wk,l
i,j is the discrete transform on level l, where, by the multilevel multi-

integration algorithm, the multi-summation has been carried out on level k.
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Hence, El
k is the average absolute error of the integrals and for k = l the error

norm reduces to the L1 norm of the discretization error. Then, if El
k ≈ El

l

at level k for which the number of points is O(
√

n), the error introduced by
the multilevel multi-integration is small compared to the discretization error
and the total amount of work needed for the multi-summation is O(n lnn).

Table E.1 shows El
k for the discrete transform on a domain −2 ≤ x ≤ 2

and −2 ≤ y ≤ 2 using 6th order interpolation. 8th order interpolation was
used in Table E.2. The coarsest level l = 1, contains (4+1)(4+1) gridpoints,
level l = 2 contains (8 + 1)(8 + 1) points, etc. Hence, the mesh sizes hx and
hy decrease by factor 2 for each level. Furthermore, the correction size in
the direction of interpolation in both the X- and Y -directions is, conform
Brandt and Lubrecht, m1 = 3 + ln(1/h). The correction size perpendicular
to the direction of interpolation is m2 = 2.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5
1 2.86 10−1

2 1.58 10−1 1.58 10−1

3 4.68 10−2 4.69 10−2 4.70 10−2

4 1.56 10−2 1.53 10−2 1.53 10−2 1.54 10−2

5 3.07 10−3 3.00 10−3 2.95 10−3 3.02 10−3 3.13 10−3

6 9.50 10−4 9.19 10−4 8.72 10−4 8.41 10−4 9.19 10−4 1.03 10−2

7 2.47 10−4 2.39 10−4 2.26 10−4 2.06 10−4 1.20 10−4 3.35 10−4

8 8.93 10−5 8.53 10−5 7.77 10−5 6.41 10−5 4.55 10−5 5.88 10−5

Table E.1: El
k-norm for κ = 1.0 using 6th order transfer.

Table E.2 shows El
k using 8th order interpolation.

l k = l k = l − 1 k = l − 2 k = l − 3 k = l − 4 k = l − 5
1 2.86 10−1

2 1.58 10−1 1.58 10−1

3 4.68 10−2 4.69 10−2 4.71 10−2

4 1.56 10−2 1.66 10−2 1.70 10−2 1.73 10−2

5 3.07 10−3 3.14 10−3 3.19 10−3 3.17 10−3 3.22 10−3

6 9.50 10−4 9.67 10−4 9.91 10−4 1.00 10−3 9.92 10−4 1.04 10−3

7 2.47 10−4 2.48 10−4 2.49 10−4 2.49 10−4 2.41 10−4 2.40 10−4

8 8.93 10−5 8.98 10−5 9.06 10−5 9.18 10−5 9.19 10−5 8.45 10−5

Table E.2: El
k-norm for κ = 1.0 using 8th order transfer.
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The Tables show that, indeed, the algorithm introduces interpolation
errors which are small compared to the discretization error. Specifically,
Table E.1 shows that 6th order interpolation is already sufficient to achieve
this goal. The increased accuracy by the 8th order interpolation, and the
associated additional work, is thus superfluous.
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