

University of wente

University of Twente

6

Multi-Level Wave-Ray solution of 2D-Helmholtz equation

Dirk van Eijkeren

▲□▶ <□▶ < 글▶ < 글▶ < 글 < つへの</p>

1 Introduction Acoustics Helmholtz **2** Objective **3** Numerical Iterative Multi-Level 4 Wave-Ray Principle Separation Results 5 1D 2D

6 Concluding

Outline Introduction Objective Numerical Wave-Ray Results Concluding

Acoustics

- Structural acoustics
- Aero acoustics

Introduction

2 Acoustics

- Interior acoustics
- Exterior acoustics
- Mixed
- Noise and sound control important
 - Noise: Aircraft, traffic, cruise ship
 - Sound: Cinema, theatre, home sound systems

Acoustics

- Conservation of mass, momentum and energy
- Viscous and heat conducting effects neglected
- Adiabatic process
 - 140 [dB] fluctuations of 200 [Pa]
 - Atmospheric pressure 10⁵ [Pa]
- Small perturbations \rightarrow linear acoustics

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	TO
Acoustics	000		000	00000			15

Helmholtz equation

- Linear acoustics \rightarrow Wave-equation
- Separation of variables \rightarrow Standing wave solutions $p(\mathbf{x}, t) = u(\mathbf{x}) g(t)$
- Superposition \rightarrow One equation per frequency ω
- Helmholtz equation for $u(\mathbf{x})$:
 - $\nabla^2 u(\mathbf{x}) + k(\mathbf{x})^2 u(\mathbf{x}) = f(\mathbf{x})$
 - Wave-number k for frequency and speed of sound:
 - $k^2 = \frac{\omega^2}{c_0(\mathbf{x})^2}$
 - Sources of sound $f(\mathbf{x})$ for frequency

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
							TS
	000			00000			13
4 Helmholt	z						

・ロン ・四 と ・ 日 と ・ 日

- Harmonic function
 k periods per 2π
- Numerical solution required
- Finite Difference Method: $\frac{u_{i-1}^{h}-2u_{i}^{h}+u_{i+1}^{h}}{h}+k_{i}^{h}u_{i}^{h}=f_{i}^{h}$
- System of algebraic equations:
 A · u^h = f^h
 - Direct method: exact
 - Iterative method: approximation
- Large kL requires fine mesh

Figure: Solution k = 5.3, $L = 2\pi$

イロト 不得下 イヨト イヨト 二日

Outlin	e Introduction	Objective	Numerical	Wave-Ray	Results	Concluding		
	00		00	0000			TC	
	000		000	00000				
5 Helm	holtz							

Helmholtz equation

- Iterative techniques are inefficient
- Multi-Level techniques for efficient solution
- Standard Multi-Level schemes fail for Helmholtz
- Wave-Ray scheme improves the efficiency
- Separation of rays required for Wave-Ray scheme

Objective

Develop Wave-Ray algorithm for 2D-Helmholtz equation:

- Extend existing 1D algorithm to non-homogeneous case
- Produce scheme for ray separation in 2D space
- Build 2D Wave-Ray algorithm

Iterative method

- Start with proper initial approximation $\tilde{\mathbf{u}}^h$
- Correct approximation to reach new approximation $\hat{\mathbf{u}}^h$
- Residual is difference in equations: $\mathbf{r} = \mathbf{f}^h \mathbf{A} \cdot \hat{\mathbf{u}}^h$
- Amplification of residual per sweep in approximation usually $1-\mathcal{O}\left(h^{s}
 ight)$
- For Helmholtz error amplification depends on h and k

Iterative method

Two methods used:

- Gauß-Seidel: Stable on coarse grids
- Kaczmarz:
 - Solves projection of **u**^h:

$$(\mathbf{A} \cdot \mathbf{A}^{\mathsf{T}}) \cdot \mathbf{y}^{h} = \mathbf{f}^{h}$$
, with $\mathbf{A}^{\mathsf{T}} \cdot \mathbf{y}^{h} = \mathbf{u}^{h}$

Always stable but slower

Outline	Introduction	Objective	Numerical	Wave-Ray 0000	Results	Concluding	TS
9 Iterative							

イロン イロン イヨン イヨン 三日

Multi-Level method

- Residual reduction per sweep $1 \mathcal{O}(h^s) \rightarrow$ coarse grid residual reduction better
- Fine grids cannot reduce low frequent errors efficient
- Coarse grids are used to reduce these error components

Residual for standard iterative method after each sweep for k = 0Residual for Multi-Level method after each cycle for k = 0

Outline Introduction Objective Numerical Wave-Ray Results Concluding 00 00 000 0 10 Multi-Level

Inter-grid operators

• Interpolation from coarse grid to fine grid, index I = 2i:

$$I_{H}^{h}\left\langle \right\rangle = \frac{1}{2} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \rightarrow$$
$$I_{H}^{h}\left\langle v_{I}^{H}\right\rangle \Longrightarrow v_{i-1}^{h} = \frac{v_{I-1}^{H} + v_{I+1}^{H}}{2}, v_{i}^{h} = v_{I}^{H}, v_{i+1}^{h} = \frac{v_{I}^{H} + v_{I+1}^{H}}{2}$$

• Restriction fine to coarse grid by full weighting:

$$I_{h}^{H}\left\langle \right\rangle = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \rightarrow I_{h}^{H}\left\langle u_{i}^{h}\right\rangle = \frac{1}{4}\left(u_{i-1}^{h} + 2u_{i}^{h} + u_{i+1}^{h}\right)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ □ 臣 = のへで

Outline	Introduction	Objective	Numerical	Wave-Ray	Concluding	
	00		00	0000		Te
	000		000	00000		
11 Multi-L	evel					

Full Approximation Scheme(FAS)

• Equation coarse grid for Full Approximation Scheme:

$$I_{h}^{H}\langle \mathbf{A}\rangle \cdot \mathbf{u}^{H} = I_{h}^{H}\left\langle \mathbf{f}^{h} - \mathbf{A} \cdot \tilde{\mathbf{u}}^{h} \right\rangle + I_{h}^{H}\langle \mathbf{A}\rangle \cdot I_{h}^{H}\left\langle \tilde{\mathbf{u}}^{h} \right\rangle$$

• Correction of fine grid solution:

$$\hat{\mathbf{u}}^{h} = \tilde{\mathbf{u}}^{h} + I_{H}^{h} \left\langle \mathbf{u}^{H} - I_{h}^{H} \left\langle \tilde{\mathbf{u}}^{h} \right\rangle \right\rangle$$

Outline Introduction Objective Numerical Wave-Ray Results Concluding

x10⁻³ 1.5 Re(r) Im(r) 1.0 0.5 ► 0.0 -0.5 -1.0 -1.5 -3 -2 -1 0 2 3 x[m]

Figure: Residual k = 5.3, $L = 2\pi$

Wave-Ray Principle

- Frequency solution remains in residual
- Different cycle for reducing these components
- Introduction of ray equations for this process

イロト イポト イヨト イヨト

• Separation scheme for rays required

C	Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
		00		00	0000			TS
13	Principle	000		000	00000			

Ray equations

- Ray equations for amplitude harmonic functions in solution $u = a(x) e^{\iota s(x)} + b(x) e^{-\iota s(x)} \text{ with } s(x) = \int_{x_a}^{x_b} k(x) dx$
- 1D:
 - Substitution in Helmholtz leads to: $\frac{d^{2}a}{dx^{2}} + \iota \left(\frac{d(ak)}{dx} + k\frac{da}{dx}\right) = f_{a}, \ \frac{d^{2}b}{dx^{2}} - \iota \left(\frac{d(bk)}{dx} + k\frac{db}{dx}\right) = f_{b}$ with $f_{a}e^{\iota s(x)} + f_{b}e^{-\iota s(x)} = f$
 - f_a and f_b unknown for arbitrary forcing
 - Boundary conditions represent sound radiated into domain

(Dutline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
		00		00	0000			TS
14	Principle	000		000	00000			10

Ray equations

- 2D:
 - Ray equations for all directions
 - Representation with eight directions sufficient on grids with $kh\approx 1$
- Ray solution interpolated grid with kh = 4 to kh = 1 via grid with kh = 2
- Ray solution corrects Helmholtz solution on grid with $kh \approx 1$ $\hat{u}_i^h = \tilde{u}_i^h + (\hat{a}_i^h - \tilde{a}_i^h) e^{\iota s_i} + (\hat{b}_i^h - \tilde{b}_i^h) e^{-\iota s_i}$
- Separation of components in residual provides for right hand sides

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
				0000			TS
15 Principl	e 000		000	00000			

Wave-Ray scheme

- Start with standard Multi-Level cycle; Wave Cycle
 - Coarsest grid $kh \approx 4$
 - No relaxation on grids with $1 \le kh \le 2.8$
- Subsequently Ray Cycle
 - Restriction of functions to $kh \approx 1$
 - Separation process to ray grid with $kh \approx 4$
 - · Boundary conditions introduced with ray equations
 - Interpolation ray, correction wave on khpprox 1

C	Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
					0000			TS
16	Principle	000		000	00000			

Separation for 1D

- Residual harmonic function: $r_i = r_{ai}e^{\iota s_i} + r_{bi}e^{-\iota s_i}$
- Multiplication with inverse ray component: $r_i e^{-\iota s_i} = r_{ai} + r_{bi} e^{-2\iota s_i}$
- Frequency relative to mesh 2k_ih
- Full weighting to grid with $kh \approx 2$ such that:
 - Constant components remain constant
 - Components with $2k_ih$ eliminated
- Injection of result to grid with $kh \approx 4$

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
							TS
17 Separat	ion			0000			15

ヘロン 人間 とくほど 人間 とうほ

Example for 1D

Figure: Test residual $r = e^{\iota s(x)} + 2e^{-\iota s(x)}$ obtains twice frequency after multiplication

Outline		Objective	Wave-Ray	Concluding	
18 Separat	ion		0000		

Example for 1D

Figure: Amplitude almost exact after weighing, exact after injection to coarser grid

Outline		Objective	Wave-Ray	Concluding	
					TC
19 Separat	ion		00000		10

Separation for 2D

- Process similar to 1D, Circle of frequencies
- Repeated weighing to eliminate specific directions
- Domain extended in last step to avoid boundary influences

Figure: Frequencies in all directions, shifted after multiplication

Example for 2D

Figure: Separation for test residual $r = \sum_{n=0}^{7} e^{\iota k \xi_n}$ returns exact amplitude

C	Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
								TC
21	C				00000			13
21	Separatio	n						

Result for 1D

Figure: L_2 -norm of residual reduces fast for case with sources and varying wave-number

イロト イポト イヨト イヨト 二日

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding	
	00		00	0000	0		TS
22 1D							

Result for 2D

- Only four rays implemented
- Diagonal rays cause process to stall
- Fast reduction of residual in implemented directions

Figure: Residual norm for 2D case

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

Outline	Introduction 00 000	Objective	Numerical 00 000	Wave-Ray 0000 00000	Results ○	Concluding	TS
23 2D							

Conclusions and recommendations

• Conclusions:

24

- Separation for 1D and 2D is possible
- 1D Wave-Ray scheme shows good performance
- 2D scheme works for k = 2.6 with four rays
- Initial performance 2D promising
- Recommendations:
 - 2D scheme needs extension to eight rays

Conclusions and recommendations

- Conclusions:
 - Separation for 1D and 2D is possible
 - 1D Wave-Ray scheme shows good performance
 - 2D scheme works for k = 2.6 with four rays
 - Initial performance 2D promising
- Recommendations:
 - 2D scheme needs extension to eight rays
 - Parameter study for best setup 2D

Conclusions and recommendations

- Conclusions:
 - Separation for 1D and 2D is possible
 - 1D Wave-Ray scheme shows good performance
 - 2D scheme works for k = 2.6 with four rays
 - Initial performance 2D promising
- Recommendations:
 - 2D scheme needs extension to eight rays
 - Parameter study for best setup 2D
 - Extension 3D for practical use and experimental validation

- **・ ロ ・ ・ 回 ・ ・ 三 ・** ・ 三 ・ の � �

Outline Introducti 00 000 bjective Ni

al Wav

Ray R

Concluding

25

Programma

- 14.00-±15.45 Afstudeer colloquium
- ±15.45-±16.30 Borrel in Diepzat tijdens besloten ondervraging
- $\pm 16.30 \pm 17.00$ Diploma-uitreiking? in Z203
- $\pm 17.00-17.55$ Verder borrelen in diepzat
- 18.00-... Borrelen en lichte maaltijd op Matenweg 32