University of

Multi-Level Wave-Ray solution of 2D-Helmholtz equation

Dirk van Eijkeren
(1) Introduction

Acoustics
Helmholtz
(2) Objective
(3) Numerical

Iterative
Multi-Level
(4) Wave-Ray

Principle
Separation
(5) Results

1D
2D
(6) Concluding

	OutlineIntroduction Objective Numerical Wave-Ray	Results	Concluding			
	00	00	0000	0		0

Acoustics

- Structural acoustics
- Aero acoustics
- Interior acoustics
- Exterior acoustics
- Mixed
- Noise and sound control important
- Noise: Aircraft, traffic, cruise ship
- Sound: Cinema, theatre, home sound systems

Acoustics

- Conservation of mass, momentum and energy
- Viscous and heat conducting effects neglected
- Adiabatic process
- 140 [dB] fluctuations of 200 [Pa]
- Atmospheric pressure $10^{5}[\mathrm{~Pa}]$
- Small perturbations \rightarrow linear acoustics

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
	000	000	0000	0	

Helmholtz equation

- Linear acoustics \rightarrow Wave-equation
- Separation of variables \rightarrow Standing wave solutions

$$
p(\mathbf{x}, t)=u(\mathbf{x}) g(t)
$$

- Superposition \rightarrow One equation per frequency ω
- Helmholtz equation for $u(\mathbf{x})$:
- $\nabla^{2} u(\mathbf{x})+k(\mathbf{x})^{2} u(\mathbf{x})=f(\mathbf{x})$
- Wave-number k for frequency and speed of sound:

$$
k^{2}=\frac{\omega^{2}}{c_{0}(\mathrm{x})^{2}}
$$

- Sources of sound $f(\mathbf{x})$ for frequency

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	$\circ 0$	Concluding			
	$\circ 0$	000	000	\circ	
4	Helmholtz	000		000	0000

- Harmonic function k periods per 2π
- Numerical solution required
- Finite Difference Method:

$$
\frac{u_{i-1}^{h}-2 u_{i}^{h}+u_{i+1}^{h}}{h}+k_{i}^{h} u_{i}^{h}=f_{i}^{h}
$$

- System of algebraic equations:
$\mathbf{A} \cdot \mathbf{u}^{h}=\mathbf{f}^{h}$
- Direct method: exact
- Iterative method: approximation
- Large $k L$ requires fine mesh

Figure: Solution $k=5.3, L=2 \pi$

Helmholtz equation

- Iterative techniques are inefficient
- Multi-Level techniques for efficient solution
- Standard Multi-Level schemes fail for Helmholtz
- Wave-Ray scheme improves the efficiency
- Separation of rays required for Wave-Ray scheme

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0		

Objective

Develop Wave-Ray algorithm for 2D-Helmholtz equation:

- Extend existing 1D algorithm to non-homogeneous case
- Produce scheme for ray separation in 2D space
- Build 2D Wave-Ray algorithm

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0		

Iterative method

- Start with proper initial approximation $\tilde{\mathbf{u}}^{h}$
- Correct approximation to reach new approximation $\hat{\mathbf{u}}^{h}$
- Residual is difference in equations: $\mathbf{r}=\mathbf{f}^{h}-\mathbf{A} \cdot \hat{\mathbf{u}}^{h}$
- Amplification of residual per sweep in approximation usually $1-\mathcal{O}\left(h^{s}\right)$
- For Helmholtz error amplification depends on h and k

Outline	Introduction
	00
000	

Numerical	Wave-Ray
00	0000
000	00000

Iterative method

Two methods used:

- Gauß-Seidel: Stable on coarse grids
- Kaczmarz:
- Solves projection of \mathbf{u}^{h} :
$\left(\mathbf{A} \cdot \mathbf{A}^{\top}\right) \cdot \mathbf{y}^{h}=\mathbf{f}^{h}$, with $\mathbf{A}^{\top} \cdot \mathbf{y}^{h}=\mathbf{u}^{h}$
- Always stable but slower

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
	000	000	00000	0	

Multi-Level method

- Residual reduction per sweep $1-\mathcal{O}\left(h^{s}\right) \rightarrow$ coarse grid residual reduction better
- Fine grids cannot reduce low frequen errors efficient
- Coarse grids are used to reduce thes ϵ error components

Residual for standard iterative method after each sweep for $k=0$
Residual for Multi-Level method after each cycle for $k=0$

Outline	Introduction oo 000	Objective	Numerical 00 -0	Wave-Ray 0000 00000	$\begin{aligned} & \text { Results } \\ & \circ \\ & \circ \end{aligned}$	Concluding

Inter-grid operators

- Interpolation from coarse grid to fine grid, index $I=2 i$:

$$
\begin{gathered}
I_{H}^{h}\langle \rangle=\frac{1}{2}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] \rightarrow \\
I_{H}^{h}\left\langle v_{l}^{H}\right\rangle \Rightarrow v_{i-1}^{h}=\frac{v_{l-1}^{H}+v_{l+1}^{H}}{2}, v_{i}^{h}=v_{l}^{H}, v_{i+1}^{h}=\frac{v_{l}^{H}+v_{l+1}^{H}}{2}
\end{gathered}
$$

- Restriction fine to coarse grid by full weighting:

$$
I_{h}^{H}\langle \rangle=\frac{1}{4}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] \rightarrow I_{h}^{H}\left\langle u_{i}^{h}\right\rangle=\frac{1}{4}\left(u_{i-1}^{h}+2 u_{i}^{h}+u_{i+1}^{h}\right)
$$

OutlineIntroduction 00	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0	

Full Approximation Scheme(FAS)

- Equation coarse grid for Full Approximation Scheme:

$$
I_{h}^{H}\langle\mathbf{A}\rangle \cdot \mathbf{u}^{H}=I_{h}^{H}\left\langle\mathbf{f}^{h}-\mathbf{A} \cdot \tilde{\mathbf{u}}^{h}\right\rangle+I_{h}^{H}\langle\mathbf{A}\rangle \cdot I_{h}^{H}\left\langle\tilde{\mathbf{u}}^{h}\right\rangle
$$

- Correction of fine grid solution:

$$
\hat{\mathbf{u}}^{h}=\tilde{\mathbf{u}}^{h}+I_{H}^{h}\left\langle\mathbf{u}^{H}-I_{h}^{H}\left\langle\tilde{\mathbf{u}}^{h}\right\rangle\right\rangle
$$

OutlineIntroduction 00	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	000	0	

Wave-Ray Principle

Figure: Residual $k=5.3, L=2 \pi$

- Frequency solution remains in residual
- Different cycle for reducing these components
- Introduction of ray equations for this process
- Separation scheme for rays required

Ray equations

- Ray equations for amplitude harmonic functions in solution $u=a(x) e^{\iota s(x)}+b(x) e^{-\iota s(x)}$ with $s(x)=\int_{x_{a}}^{x_{b}} k(x) d x$
- 1D:
- Substitution in Helmholtz leads to:

$$
\frac{d^{2} a}{d x^{2}}+\iota\left(\frac{d(a k)}{d x}+k \frac{d a}{d x}\right)=f_{a}, \frac{d^{2} b}{d x^{2}}-\iota\left(\frac{d(b k)}{d x}+k \frac{d b}{d x}\right)=f_{b}
$$

$$
\text { with } f_{a} e^{\iota s(x)}+f_{b} e^{-l s(x)}=f
$$

- f_{a} and f_{b} unknown for arbitrary forcing
- Boundary conditions represent sound radiated into domain

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	000	Concluding	
	00	000	00000	0	

Ray equations

- 2D:
- Ray equations for all directions
- Representation with eight directions sufficient on grids with $k h \approx 1$
- Ray solution interpolated grid with $k h=4$ to $k h=1$ via grid with $k h=2$
- Ray solution corrects Helmholtz solution on grid with $k h \approx 1$ $\hat{u}_{i}^{h}=\tilde{u}_{i}^{h}+\left(\hat{a}_{i}^{h}-\tilde{a}_{i}^{h}\right) e^{\iota s_{i}}+\left(\hat{b}_{i}^{h}-\tilde{b}_{i}^{h}\right) e^{-\iota s_{i}}$
- Separation of components in residual provides for right hand sides

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	Concluding		
	0000	000	\circ		
15		000	00000	0	

Wave-Ray scheme

- Start with standard Multi-Level cycle; Wave Cycle
- Coarsest grid $k h \approx 4$
- No relaxation on grids with $1 \leq k h \leq 2.8$
- Subsequently Ray Cycle
- Restriction of functions to $k h \approx 1$
- Separation process to ray grid with $k h \approx 4$
- Boundary conditions introduced with ray equations
- Interpolation ray, correction wave on $k h \approx 1$

OutlineIntroduction Objective Numerical 00 Wave-Ray	Results	Concluding			
	00	00	0000	0	

Separation for 1D

- Residual harmonic function: $r_{i}=r_{a i} e^{\iota s_{i}}+r_{b i} e^{-\iota s_{i}}$
- Multiplication with inverse ray component:

$$
r_{i} e^{-\iota s_{i}}=r_{a i}+r_{b i} e^{-2 \iota s_{i}}
$$

- Frequency relative to mesh $2 k_{i} h$
- Full weighting to grid with $k h \approx 2$ such that:
- Constant components remain constant
- Components with $2 k_{i} h$ eliminated
- Injection of result to grid with $k h \approx 4$

Outline Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
00	00	0000	0		
000	000	00000	0		

Example for 1D

Figure: Test residual $r=e^{\iota s(x)}+2 e^{-\iota s(x)}$ obtains twice frequency after multiplication

Example for 1D

Figure: Amplitude almost exact after weighing, exact after injection to coarser grid

Outline Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0	
	000	00000	0		

Separation for 2D

- Process similar to 1D, Circle of frequencies
- Repeated weighing to eliminate specific directions
- Domain extended in last step to avoid boundary influences

Figure: Frequencies in all directions, shifted after multiplication

Outline Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0	

Example for 2D

Figure: Separation for test residual $r=\sum_{n=0}^{7} e^{\iota k \xi_{n}}$ returns exact amplitude

Outline	Introduction 00 000	Objective	$\begin{aligned} & \text { Numerical } \\ & 00 \\ & 000 \end{aligned}$	Wave-Ray 0000 0000	$\begin{aligned} & \text { Results } \\ & \circ \\ & \hline \end{aligned}$	Concluding

Result for 1D

Residual norm after each cycle

Figure: L_{2}-norm of residual reduces fast for case with sources and varying wave-number

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0	000	0
	000	000	0000	0		

Result for 2D

- Only four rays implemented
- Diagonal rays cause process to stall
- Fast reduction of residual in implemented directions

Figure: Residual norm for 2D case

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
2000	000	00000	0		

Conclusions and recommendations

- Conclusions:
- Separation for 1D and 2D is possible
- 1D Wave-Ray scheme shows good performance
- 2D scheme works for $k=2.6$ with four rays
- Initial performance 2D promising
- Recommendations:
- 2D scheme needs extension to eight rays

Outline	Introduction	Objective	Numerical	Wave-Ray	Results	Concluding
	00	00	0000	0		

Conclusions and recommendations

- Conclusions:
- Separation for 1D and 2D is possible
- 1D Wave-Ray scheme shows good performance
- 2D scheme works for $k=2.6$ with four rays
- Initial performance 2D promising
- Recommendations:
- 2D scheme needs extension to eight rays
- Parameter study for best setup 2D

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
	000	000	0000	0	

Conclusions and recommendations

- Conclusions:
- Separation for 1D and 2D is possible
- 1D Wave-Ray scheme shows good performance
- 2D scheme works for $k=2.6$ with four rays
- Initial performance 2D promising
- Recommendations:
- 2D scheme needs extension to eight rays
- Parameter study for best setup 2D
- Extension 3D for practical use and experimental validation

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
	000	000	00000	0	

University of Twente Enschede - The Netherlands

Outline $\left.\begin{array}{lll}\text { Introduction } & \text { Objective } & \text { Numerical } \\ & 00 & 00 \\ 000 & 000 & 0000 \\ 5 & 000 & 00000 \\ & & 0\end{array}\right)$ Results Concluding

Programma

- $14.00- \pm 15.45$ Afstudeer colloquium
- $\pm 15.45- \pm 16.30$ Borrel in Diepzat tijdens besloten ondervraging
- $\pm 16.30- \pm 17.00$ Diploma-uitreiking? in Z203
- $\pm 17.00-17.55$ Verder borrelen in diepzat
- 18.00-... Borrelen en lichte maaltijd op Matenweg 32

Outline	Introduction	Objective	Numerical	Wave-Ray	Results
	00	00	0000	0	Concluding
	000	000	00000	0	

