

University of Twente

Thin Layer Flow in Rolling Element Bearings

Marco T. van Zoelen, Supervisors: Dr. CH Venner, Dr. PM Lugt

Content

- Introduction
- Theory
- Experimental setup
- Results
- Conclusion

Introduction

Background:

- Rolling element bearing: Service life??
- <u>Greased and sealed for life:</u> Service life is determined by grease life.
- Grease life: Maintain a sufficiently thick lubricant film.

Introduction

Supply layer thickness Ó Film thickness

Aim of this research:

- Develop a model that predicts change supply layer thickness.
- Use this model to predict long term film thickness decay.

Introduction

Contact pressure effect

Centrifugal effect

Theory

Model: contact pressure effect

- Rolling tracks are covered by a thin layer of lubricant.
- Lubricant is distributed evenly along the tracks.
- Considering flow due to "*high*" contact pressures:
 - Elastic deformation
 - Viscosity Pressure dependence
 - Density Pressure dependence
- For a symmetrical distribution:

$$h(t) = \frac{1}{\sqrt{Ct + h_0^{-2}}}$$

$$C = C(h_0, l_t, F, E', a, geometry)$$

Experimental approach

- Roller loaded against rotating glass disk.
- Small droplet of oil.
- Film thickness is measured using optical interferometry.

Experimental results

Central film thickness - Different Loads

Conclusion

- Grease life prediction: Film thickness is determined by supply layer.
- Model is developed to predict change of supply layer.
 - Centrifugal effects
 - Contact pressure effects
- Model is validated experimentally.